cpuset: mm: reduce large amounts of memory barrier related damage v3
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 static void set_pageblock_migratetype(struct page *page, int migratetype)
222 {
223
224 if (unlikely(page_group_by_mobility_disabled))
225 migratetype = MIGRATE_UNMOVABLE;
226
227 set_pageblock_flags_group(page, (unsigned long)migratetype,
228 PB_migrate, PB_migrate_end);
229 }
230
231 bool oom_killer_disabled __read_mostly;
232
233 #ifdef CONFIG_DEBUG_VM
234 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
235 {
236 int ret = 0;
237 unsigned seq;
238 unsigned long pfn = page_to_pfn(page);
239
240 do {
241 seq = zone_span_seqbegin(zone);
242 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
243 ret = 1;
244 else if (pfn < zone->zone_start_pfn)
245 ret = 1;
246 } while (zone_span_seqretry(zone, seq));
247
248 return ret;
249 }
250
251 static int page_is_consistent(struct zone *zone, struct page *page)
252 {
253 if (!pfn_valid_within(page_to_pfn(page)))
254 return 0;
255 if (zone != page_zone(page))
256 return 0;
257
258 return 1;
259 }
260 /*
261 * Temporary debugging check for pages not lying within a given zone.
262 */
263 static int bad_range(struct zone *zone, struct page *page)
264 {
265 if (page_outside_zone_boundaries(zone, page))
266 return 1;
267 if (!page_is_consistent(zone, page))
268 return 1;
269
270 return 0;
271 }
272 #else
273 static inline int bad_range(struct zone *zone, struct page *page)
274 {
275 return 0;
276 }
277 #endif
278
279 static void bad_page(struct page *page)
280 {
281 static unsigned long resume;
282 static unsigned long nr_shown;
283 static unsigned long nr_unshown;
284
285 /* Don't complain about poisoned pages */
286 if (PageHWPoison(page)) {
287 reset_page_mapcount(page); /* remove PageBuddy */
288 return;
289 }
290
291 /*
292 * Allow a burst of 60 reports, then keep quiet for that minute;
293 * or allow a steady drip of one report per second.
294 */
295 if (nr_shown == 60) {
296 if (time_before(jiffies, resume)) {
297 nr_unshown++;
298 goto out;
299 }
300 if (nr_unshown) {
301 printk(KERN_ALERT
302 "BUG: Bad page state: %lu messages suppressed\n",
303 nr_unshown);
304 nr_unshown = 0;
305 }
306 nr_shown = 0;
307 }
308 if (nr_shown++ == 0)
309 resume = jiffies + 60 * HZ;
310
311 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
312 current->comm, page_to_pfn(page));
313 dump_page(page);
314
315 print_modules();
316 dump_stack();
317 out:
318 /* Leave bad fields for debug, except PageBuddy could make trouble */
319 reset_page_mapcount(page); /* remove PageBuddy */
320 add_taint(TAINT_BAD_PAGE);
321 }
322
323 /*
324 * Higher-order pages are called "compound pages". They are structured thusly:
325 *
326 * The first PAGE_SIZE page is called the "head page".
327 *
328 * The remaining PAGE_SIZE pages are called "tail pages".
329 *
330 * All pages have PG_compound set. All tail pages have their ->first_page
331 * pointing at the head page.
332 *
333 * The first tail page's ->lru.next holds the address of the compound page's
334 * put_page() function. Its ->lru.prev holds the order of allocation.
335 * This usage means that zero-order pages may not be compound.
336 */
337
338 static void free_compound_page(struct page *page)
339 {
340 __free_pages_ok(page, compound_order(page));
341 }
342
343 void prep_compound_page(struct page *page, unsigned long order)
344 {
345 int i;
346 int nr_pages = 1 << order;
347
348 set_compound_page_dtor(page, free_compound_page);
349 set_compound_order(page, order);
350 __SetPageHead(page);
351 for (i = 1; i < nr_pages; i++) {
352 struct page *p = page + i;
353 __SetPageTail(p);
354 set_page_count(p, 0);
355 p->first_page = page;
356 }
357 }
358
359 /* update __split_huge_page_refcount if you change this function */
360 static int destroy_compound_page(struct page *page, unsigned long order)
361 {
362 int i;
363 int nr_pages = 1 << order;
364 int bad = 0;
365
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
368 bad_page(page);
369 bad++;
370 }
371
372 __ClearPageHead(page);
373
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
376
377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
378 bad_page(page);
379 bad++;
380 }
381 __ClearPageTail(p);
382 }
383
384 return bad;
385 }
386
387 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388 {
389 int i;
390
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398 }
399
400 #ifdef CONFIG_DEBUG_PAGEALLOC
401 unsigned int _debug_guardpage_minorder;
402
403 static int __init debug_guardpage_minorder_setup(char *buf)
404 {
405 unsigned long res;
406
407 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
408 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
409 return 0;
410 }
411 _debug_guardpage_minorder = res;
412 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
413 return 0;
414 }
415 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
416
417 static inline void set_page_guard_flag(struct page *page)
418 {
419 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
420 }
421
422 static inline void clear_page_guard_flag(struct page *page)
423 {
424 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426 #else
427 static inline void set_page_guard_flag(struct page *page) { }
428 static inline void clear_page_guard_flag(struct page *page) { }
429 #endif
430
431 static inline void set_page_order(struct page *page, int order)
432 {
433 set_page_private(page, order);
434 __SetPageBuddy(page);
435 }
436
437 static inline void rmv_page_order(struct page *page)
438 {
439 __ClearPageBuddy(page);
440 set_page_private(page, 0);
441 }
442
443 /*
444 * Locate the struct page for both the matching buddy in our
445 * pair (buddy1) and the combined O(n+1) page they form (page).
446 *
447 * 1) Any buddy B1 will have an order O twin B2 which satisfies
448 * the following equation:
449 * B2 = B1 ^ (1 << O)
450 * For example, if the starting buddy (buddy2) is #8 its order
451 * 1 buddy is #10:
452 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
453 *
454 * 2) Any buddy B will have an order O+1 parent P which
455 * satisfies the following equation:
456 * P = B & ~(1 << O)
457 *
458 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
459 */
460 static inline unsigned long
461 __find_buddy_index(unsigned long page_idx, unsigned int order)
462 {
463 return page_idx ^ (1 << order);
464 }
465
466 /*
467 * This function checks whether a page is free && is the buddy
468 * we can do coalesce a page and its buddy if
469 * (a) the buddy is not in a hole &&
470 * (b) the buddy is in the buddy system &&
471 * (c) a page and its buddy have the same order &&
472 * (d) a page and its buddy are in the same zone.
473 *
474 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
475 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
476 *
477 * For recording page's order, we use page_private(page).
478 */
479 static inline int page_is_buddy(struct page *page, struct page *buddy,
480 int order)
481 {
482 if (!pfn_valid_within(page_to_pfn(buddy)))
483 return 0;
484
485 if (page_zone_id(page) != page_zone_id(buddy))
486 return 0;
487
488 if (page_is_guard(buddy) && page_order(buddy) == order) {
489 VM_BUG_ON(page_count(buddy) != 0);
490 return 1;
491 }
492
493 if (PageBuddy(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497 return 0;
498 }
499
500 /*
501 * Freeing function for a buddy system allocator.
502 *
503 * The concept of a buddy system is to maintain direct-mapped table
504 * (containing bit values) for memory blocks of various "orders".
505 * The bottom level table contains the map for the smallest allocatable
506 * units of memory (here, pages), and each level above it describes
507 * pairs of units from the levels below, hence, "buddies".
508 * At a high level, all that happens here is marking the table entry
509 * at the bottom level available, and propagating the changes upward
510 * as necessary, plus some accounting needed to play nicely with other
511 * parts of the VM system.
512 * At each level, we keep a list of pages, which are heads of continuous
513 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
514 * order is recorded in page_private(page) field.
515 * So when we are allocating or freeing one, we can derive the state of the
516 * other. That is, if we allocate a small block, and both were
517 * free, the remainder of the region must be split into blocks.
518 * If a block is freed, and its buddy is also free, then this
519 * triggers coalescing into a block of larger size.
520 *
521 * -- wli
522 */
523
524 static inline void __free_one_page(struct page *page,
525 struct zone *zone, unsigned int order,
526 int migratetype)
527 {
528 unsigned long page_idx;
529 unsigned long combined_idx;
530 unsigned long uninitialized_var(buddy_idx);
531 struct page *buddy;
532
533 if (unlikely(PageCompound(page)))
534 if (unlikely(destroy_compound_page(page, order)))
535 return;
536
537 VM_BUG_ON(migratetype == -1);
538
539 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
540
541 VM_BUG_ON(page_idx & ((1 << order) - 1));
542 VM_BUG_ON(bad_range(zone, page));
543
544 while (order < MAX_ORDER-1) {
545 buddy_idx = __find_buddy_index(page_idx, order);
546 buddy = page + (buddy_idx - page_idx);
547 if (!page_is_buddy(page, buddy, order))
548 break;
549 /*
550 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
551 * merge with it and move up one order.
552 */
553 if (page_is_guard(buddy)) {
554 clear_page_guard_flag(buddy);
555 set_page_private(page, 0);
556 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
557 } else {
558 list_del(&buddy->lru);
559 zone->free_area[order].nr_free--;
560 rmv_page_order(buddy);
561 }
562 combined_idx = buddy_idx & page_idx;
563 page = page + (combined_idx - page_idx);
564 page_idx = combined_idx;
565 order++;
566 }
567 set_page_order(page, order);
568
569 /*
570 * If this is not the largest possible page, check if the buddy
571 * of the next-highest order is free. If it is, it's possible
572 * that pages are being freed that will coalesce soon. In case,
573 * that is happening, add the free page to the tail of the list
574 * so it's less likely to be used soon and more likely to be merged
575 * as a higher order page
576 */
577 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
578 struct page *higher_page, *higher_buddy;
579 combined_idx = buddy_idx & page_idx;
580 higher_page = page + (combined_idx - page_idx);
581 buddy_idx = __find_buddy_index(combined_idx, order + 1);
582 higher_buddy = page + (buddy_idx - combined_idx);
583 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
584 list_add_tail(&page->lru,
585 &zone->free_area[order].free_list[migratetype]);
586 goto out;
587 }
588 }
589
590 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
591 out:
592 zone->free_area[order].nr_free++;
593 }
594
595 /*
596 * free_page_mlock() -- clean up attempts to free and mlocked() page.
597 * Page should not be on lru, so no need to fix that up.
598 * free_pages_check() will verify...
599 */
600 static inline void free_page_mlock(struct page *page)
601 {
602 __dec_zone_page_state(page, NR_MLOCK);
603 __count_vm_event(UNEVICTABLE_MLOCKFREED);
604 }
605
606 static inline int free_pages_check(struct page *page)
607 {
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
610 (atomic_read(&page->_count) != 0) |
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
613 bad_page(page);
614 return 1;
615 }
616 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
617 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
618 return 0;
619 }
620
621 /*
622 * Frees a number of pages from the PCP lists
623 * Assumes all pages on list are in same zone, and of same order.
624 * count is the number of pages to free.
625 *
626 * If the zone was previously in an "all pages pinned" state then look to
627 * see if this freeing clears that state.
628 *
629 * And clear the zone's pages_scanned counter, to hold off the "all pages are
630 * pinned" detection logic.
631 */
632 static void free_pcppages_bulk(struct zone *zone, int count,
633 struct per_cpu_pages *pcp)
634 {
635 int migratetype = 0;
636 int batch_free = 0;
637 int to_free = count;
638
639 spin_lock(&zone->lock);
640 zone->all_unreclaimable = 0;
641 zone->pages_scanned = 0;
642
643 while (to_free) {
644 struct page *page;
645 struct list_head *list;
646
647 /*
648 * Remove pages from lists in a round-robin fashion. A
649 * batch_free count is maintained that is incremented when an
650 * empty list is encountered. This is so more pages are freed
651 * off fuller lists instead of spinning excessively around empty
652 * lists
653 */
654 do {
655 batch_free++;
656 if (++migratetype == MIGRATE_PCPTYPES)
657 migratetype = 0;
658 list = &pcp->lists[migratetype];
659 } while (list_empty(list));
660
661 /* This is the only non-empty list. Free them all. */
662 if (batch_free == MIGRATE_PCPTYPES)
663 batch_free = to_free;
664
665 do {
666 page = list_entry(list->prev, struct page, lru);
667 /* must delete as __free_one_page list manipulates */
668 list_del(&page->lru);
669 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
670 __free_one_page(page, zone, 0, page_private(page));
671 trace_mm_page_pcpu_drain(page, 0, page_private(page));
672 } while (--to_free && --batch_free && !list_empty(list));
673 }
674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 spin_unlock(&zone->lock);
676 }
677
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
680 {
681 spin_lock(&zone->lock);
682 zone->all_unreclaimable = 0;
683 zone->pages_scanned = 0;
684
685 __free_one_page(page, zone, order, migratetype);
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
687 spin_unlock(&zone->lock);
688 }
689
690 static bool free_pages_prepare(struct page *page, unsigned int order)
691 {
692 int i;
693 int bad = 0;
694
695 trace_mm_page_free(page, order);
696 kmemcheck_free_shadow(page, order);
697
698 if (PageAnon(page))
699 page->mapping = NULL;
700 for (i = 0; i < (1 << order); i++)
701 bad += free_pages_check(page + i);
702 if (bad)
703 return false;
704
705 if (!PageHighMem(page)) {
706 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
707 debug_check_no_obj_freed(page_address(page),
708 PAGE_SIZE << order);
709 }
710 arch_free_page(page, order);
711 kernel_map_pages(page, 1 << order, 0);
712
713 return true;
714 }
715
716 static void __free_pages_ok(struct page *page, unsigned int order)
717 {
718 unsigned long flags;
719 int wasMlocked = __TestClearPageMlocked(page);
720
721 if (!free_pages_prepare(page, order))
722 return;
723
724 local_irq_save(flags);
725 if (unlikely(wasMlocked))
726 free_page_mlock(page);
727 __count_vm_events(PGFREE, 1 << order);
728 free_one_page(page_zone(page), page, order,
729 get_pageblock_migratetype(page));
730 local_irq_restore(flags);
731 }
732
733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
734 {
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
737
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
746 }
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
750 }
751
752
753 /*
754 * The order of subdivision here is critical for the IO subsystem.
755 * Please do not alter this order without good reasons and regression
756 * testing. Specifically, as large blocks of memory are subdivided,
757 * the order in which smaller blocks are delivered depends on the order
758 * they're subdivided in this function. This is the primary factor
759 * influencing the order in which pages are delivered to the IO
760 * subsystem according to empirical testing, and this is also justified
761 * by considering the behavior of a buddy system containing a single
762 * large block of memory acted on by a series of small allocations.
763 * This behavior is a critical factor in sglist merging's success.
764 *
765 * -- wli
766 */
767 static inline void expand(struct zone *zone, struct page *page,
768 int low, int high, struct free_area *area,
769 int migratetype)
770 {
771 unsigned long size = 1 << high;
772
773 while (high > low) {
774 area--;
775 high--;
776 size >>= 1;
777 VM_BUG_ON(bad_range(zone, &page[size]));
778
779 #ifdef CONFIG_DEBUG_PAGEALLOC
780 if (high < debug_guardpage_minorder()) {
781 /*
782 * Mark as guard pages (or page), that will allow to
783 * merge back to allocator when buddy will be freed.
784 * Corresponding page table entries will not be touched,
785 * pages will stay not present in virtual address space
786 */
787 INIT_LIST_HEAD(&page[size].lru);
788 set_page_guard_flag(&page[size]);
789 set_page_private(&page[size], high);
790 /* Guard pages are not available for any usage */
791 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
792 continue;
793 }
794 #endif
795 list_add(&page[size].lru, &area->free_list[migratetype]);
796 area->nr_free++;
797 set_page_order(&page[size], high);
798 }
799 }
800
801 /*
802 * This page is about to be returned from the page allocator
803 */
804 static inline int check_new_page(struct page *page)
805 {
806 if (unlikely(page_mapcount(page) |
807 (page->mapping != NULL) |
808 (atomic_read(&page->_count) != 0) |
809 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
810 (mem_cgroup_bad_page_check(page)))) {
811 bad_page(page);
812 return 1;
813 }
814 return 0;
815 }
816
817 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
818 {
819 int i;
820
821 for (i = 0; i < (1 << order); i++) {
822 struct page *p = page + i;
823 if (unlikely(check_new_page(p)))
824 return 1;
825 }
826
827 set_page_private(page, 0);
828 set_page_refcounted(page);
829
830 arch_alloc_page(page, order);
831 kernel_map_pages(page, 1 << order, 1);
832
833 if (gfp_flags & __GFP_ZERO)
834 prep_zero_page(page, order, gfp_flags);
835
836 if (order && (gfp_flags & __GFP_COMP))
837 prep_compound_page(page, order);
838
839 return 0;
840 }
841
842 /*
843 * Go through the free lists for the given migratetype and remove
844 * the smallest available page from the freelists
845 */
846 static inline
847 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
848 int migratetype)
849 {
850 unsigned int current_order;
851 struct free_area * area;
852 struct page *page;
853
854 /* Find a page of the appropriate size in the preferred list */
855 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
856 area = &(zone->free_area[current_order]);
857 if (list_empty(&area->free_list[migratetype]))
858 continue;
859
860 page = list_entry(area->free_list[migratetype].next,
861 struct page, lru);
862 list_del(&page->lru);
863 rmv_page_order(page);
864 area->nr_free--;
865 expand(zone, page, order, current_order, area, migratetype);
866 return page;
867 }
868
869 return NULL;
870 }
871
872
873 /*
874 * This array describes the order lists are fallen back to when
875 * the free lists for the desirable migrate type are depleted
876 */
877 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
878 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
879 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
880 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
881 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
882 };
883
884 /*
885 * Move the free pages in a range to the free lists of the requested type.
886 * Note that start_page and end_pages are not aligned on a pageblock
887 * boundary. If alignment is required, use move_freepages_block()
888 */
889 static int move_freepages(struct zone *zone,
890 struct page *start_page, struct page *end_page,
891 int migratetype)
892 {
893 struct page *page;
894 unsigned long order;
895 int pages_moved = 0;
896
897 #ifndef CONFIG_HOLES_IN_ZONE
898 /*
899 * page_zone is not safe to call in this context when
900 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
901 * anyway as we check zone boundaries in move_freepages_block().
902 * Remove at a later date when no bug reports exist related to
903 * grouping pages by mobility
904 */
905 BUG_ON(page_zone(start_page) != page_zone(end_page));
906 #endif
907
908 for (page = start_page; page <= end_page;) {
909 /* Make sure we are not inadvertently changing nodes */
910 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
911
912 if (!pfn_valid_within(page_to_pfn(page))) {
913 page++;
914 continue;
915 }
916
917 if (!PageBuddy(page)) {
918 page++;
919 continue;
920 }
921
922 order = page_order(page);
923 list_move(&page->lru,
924 &zone->free_area[order].free_list[migratetype]);
925 page += 1 << order;
926 pages_moved += 1 << order;
927 }
928
929 return pages_moved;
930 }
931
932 static int move_freepages_block(struct zone *zone, struct page *page,
933 int migratetype)
934 {
935 unsigned long start_pfn, end_pfn;
936 struct page *start_page, *end_page;
937
938 start_pfn = page_to_pfn(page);
939 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
940 start_page = pfn_to_page(start_pfn);
941 end_page = start_page + pageblock_nr_pages - 1;
942 end_pfn = start_pfn + pageblock_nr_pages - 1;
943
944 /* Do not cross zone boundaries */
945 if (start_pfn < zone->zone_start_pfn)
946 start_page = page;
947 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
948 return 0;
949
950 return move_freepages(zone, start_page, end_page, migratetype);
951 }
952
953 static void change_pageblock_range(struct page *pageblock_page,
954 int start_order, int migratetype)
955 {
956 int nr_pageblocks = 1 << (start_order - pageblock_order);
957
958 while (nr_pageblocks--) {
959 set_pageblock_migratetype(pageblock_page, migratetype);
960 pageblock_page += pageblock_nr_pages;
961 }
962 }
963
964 /* Remove an element from the buddy allocator from the fallback list */
965 static inline struct page *
966 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
967 {
968 struct free_area * area;
969 int current_order;
970 struct page *page;
971 int migratetype, i;
972
973 /* Find the largest possible block of pages in the other list */
974 for (current_order = MAX_ORDER-1; current_order >= order;
975 --current_order) {
976 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
977 migratetype = fallbacks[start_migratetype][i];
978
979 /* MIGRATE_RESERVE handled later if necessary */
980 if (migratetype == MIGRATE_RESERVE)
981 continue;
982
983 area = &(zone->free_area[current_order]);
984 if (list_empty(&area->free_list[migratetype]))
985 continue;
986
987 page = list_entry(area->free_list[migratetype].next,
988 struct page, lru);
989 area->nr_free--;
990
991 /*
992 * If breaking a large block of pages, move all free
993 * pages to the preferred allocation list. If falling
994 * back for a reclaimable kernel allocation, be more
995 * aggressive about taking ownership of free pages
996 */
997 if (unlikely(current_order >= (pageblock_order >> 1)) ||
998 start_migratetype == MIGRATE_RECLAIMABLE ||
999 page_group_by_mobility_disabled) {
1000 unsigned long pages;
1001 pages = move_freepages_block(zone, page,
1002 start_migratetype);
1003
1004 /* Claim the whole block if over half of it is free */
1005 if (pages >= (1 << (pageblock_order-1)) ||
1006 page_group_by_mobility_disabled)
1007 set_pageblock_migratetype(page,
1008 start_migratetype);
1009
1010 migratetype = start_migratetype;
1011 }
1012
1013 /* Remove the page from the freelists */
1014 list_del(&page->lru);
1015 rmv_page_order(page);
1016
1017 /* Take ownership for orders >= pageblock_order */
1018 if (current_order >= pageblock_order)
1019 change_pageblock_range(page, current_order,
1020 start_migratetype);
1021
1022 expand(zone, page, order, current_order, area, migratetype);
1023
1024 trace_mm_page_alloc_extfrag(page, order, current_order,
1025 start_migratetype, migratetype);
1026
1027 return page;
1028 }
1029 }
1030
1031 return NULL;
1032 }
1033
1034 /*
1035 * Do the hard work of removing an element from the buddy allocator.
1036 * Call me with the zone->lock already held.
1037 */
1038 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1039 int migratetype)
1040 {
1041 struct page *page;
1042
1043 retry_reserve:
1044 page = __rmqueue_smallest(zone, order, migratetype);
1045
1046 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1047 page = __rmqueue_fallback(zone, order, migratetype);
1048
1049 /*
1050 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1051 * is used because __rmqueue_smallest is an inline function
1052 * and we want just one call site
1053 */
1054 if (!page) {
1055 migratetype = MIGRATE_RESERVE;
1056 goto retry_reserve;
1057 }
1058 }
1059
1060 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1061 return page;
1062 }
1063
1064 /*
1065 * Obtain a specified number of elements from the buddy allocator, all under
1066 * a single hold of the lock, for efficiency. Add them to the supplied list.
1067 * Returns the number of new pages which were placed at *list.
1068 */
1069 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1070 unsigned long count, struct list_head *list,
1071 int migratetype, int cold)
1072 {
1073 int i;
1074
1075 spin_lock(&zone->lock);
1076 for (i = 0; i < count; ++i) {
1077 struct page *page = __rmqueue(zone, order, migratetype);
1078 if (unlikely(page == NULL))
1079 break;
1080
1081 /*
1082 * Split buddy pages returned by expand() are received here
1083 * in physical page order. The page is added to the callers and
1084 * list and the list head then moves forward. From the callers
1085 * perspective, the linked list is ordered by page number in
1086 * some conditions. This is useful for IO devices that can
1087 * merge IO requests if the physical pages are ordered
1088 * properly.
1089 */
1090 if (likely(cold == 0))
1091 list_add(&page->lru, list);
1092 else
1093 list_add_tail(&page->lru, list);
1094 set_page_private(page, migratetype);
1095 list = &page->lru;
1096 }
1097 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1098 spin_unlock(&zone->lock);
1099 return i;
1100 }
1101
1102 #ifdef CONFIG_NUMA
1103 /*
1104 * Called from the vmstat counter updater to drain pagesets of this
1105 * currently executing processor on remote nodes after they have
1106 * expired.
1107 *
1108 * Note that this function must be called with the thread pinned to
1109 * a single processor.
1110 */
1111 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1112 {
1113 unsigned long flags;
1114 int to_drain;
1115
1116 local_irq_save(flags);
1117 if (pcp->count >= pcp->batch)
1118 to_drain = pcp->batch;
1119 else
1120 to_drain = pcp->count;
1121 free_pcppages_bulk(zone, to_drain, pcp);
1122 pcp->count -= to_drain;
1123 local_irq_restore(flags);
1124 }
1125 #endif
1126
1127 /*
1128 * Drain pages of the indicated processor.
1129 *
1130 * The processor must either be the current processor and the
1131 * thread pinned to the current processor or a processor that
1132 * is not online.
1133 */
1134 static void drain_pages(unsigned int cpu)
1135 {
1136 unsigned long flags;
1137 struct zone *zone;
1138
1139 for_each_populated_zone(zone) {
1140 struct per_cpu_pageset *pset;
1141 struct per_cpu_pages *pcp;
1142
1143 local_irq_save(flags);
1144 pset = per_cpu_ptr(zone->pageset, cpu);
1145
1146 pcp = &pset->pcp;
1147 if (pcp->count) {
1148 free_pcppages_bulk(zone, pcp->count, pcp);
1149 pcp->count = 0;
1150 }
1151 local_irq_restore(flags);
1152 }
1153 }
1154
1155 /*
1156 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1157 */
1158 void drain_local_pages(void *arg)
1159 {
1160 drain_pages(smp_processor_id());
1161 }
1162
1163 /*
1164 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1165 */
1166 void drain_all_pages(void)
1167 {
1168 on_each_cpu(drain_local_pages, NULL, 1);
1169 }
1170
1171 #ifdef CONFIG_HIBERNATION
1172
1173 void mark_free_pages(struct zone *zone)
1174 {
1175 unsigned long pfn, max_zone_pfn;
1176 unsigned long flags;
1177 int order, t;
1178 struct list_head *curr;
1179
1180 if (!zone->spanned_pages)
1181 return;
1182
1183 spin_lock_irqsave(&zone->lock, flags);
1184
1185 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1186 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1187 if (pfn_valid(pfn)) {
1188 struct page *page = pfn_to_page(pfn);
1189
1190 if (!swsusp_page_is_forbidden(page))
1191 swsusp_unset_page_free(page);
1192 }
1193
1194 for_each_migratetype_order(order, t) {
1195 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1196 unsigned long i;
1197
1198 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1199 for (i = 0; i < (1UL << order); i++)
1200 swsusp_set_page_free(pfn_to_page(pfn + i));
1201 }
1202 }
1203 spin_unlock_irqrestore(&zone->lock, flags);
1204 }
1205 #endif /* CONFIG_PM */
1206
1207 /*
1208 * Free a 0-order page
1209 * cold == 1 ? free a cold page : free a hot page
1210 */
1211 void free_hot_cold_page(struct page *page, int cold)
1212 {
1213 struct zone *zone = page_zone(page);
1214 struct per_cpu_pages *pcp;
1215 unsigned long flags;
1216 int migratetype;
1217 int wasMlocked = __TestClearPageMlocked(page);
1218
1219 if (!free_pages_prepare(page, 0))
1220 return;
1221
1222 migratetype = get_pageblock_migratetype(page);
1223 set_page_private(page, migratetype);
1224 local_irq_save(flags);
1225 if (unlikely(wasMlocked))
1226 free_page_mlock(page);
1227 __count_vm_event(PGFREE);
1228
1229 /*
1230 * We only track unmovable, reclaimable and movable on pcp lists.
1231 * Free ISOLATE pages back to the allocator because they are being
1232 * offlined but treat RESERVE as movable pages so we can get those
1233 * areas back if necessary. Otherwise, we may have to free
1234 * excessively into the page allocator
1235 */
1236 if (migratetype >= MIGRATE_PCPTYPES) {
1237 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1238 free_one_page(zone, page, 0, migratetype);
1239 goto out;
1240 }
1241 migratetype = MIGRATE_MOVABLE;
1242 }
1243
1244 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1245 if (cold)
1246 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1247 else
1248 list_add(&page->lru, &pcp->lists[migratetype]);
1249 pcp->count++;
1250 if (pcp->count >= pcp->high) {
1251 free_pcppages_bulk(zone, pcp->batch, pcp);
1252 pcp->count -= pcp->batch;
1253 }
1254
1255 out:
1256 local_irq_restore(flags);
1257 }
1258
1259 /*
1260 * Free a list of 0-order pages
1261 */
1262 void free_hot_cold_page_list(struct list_head *list, int cold)
1263 {
1264 struct page *page, *next;
1265
1266 list_for_each_entry_safe(page, next, list, lru) {
1267 trace_mm_page_free_batched(page, cold);
1268 free_hot_cold_page(page, cold);
1269 }
1270 }
1271
1272 /*
1273 * split_page takes a non-compound higher-order page, and splits it into
1274 * n (1<<order) sub-pages: page[0..n]
1275 * Each sub-page must be freed individually.
1276 *
1277 * Note: this is probably too low level an operation for use in drivers.
1278 * Please consult with lkml before using this in your driver.
1279 */
1280 void split_page(struct page *page, unsigned int order)
1281 {
1282 int i;
1283
1284 VM_BUG_ON(PageCompound(page));
1285 VM_BUG_ON(!page_count(page));
1286
1287 #ifdef CONFIG_KMEMCHECK
1288 /*
1289 * Split shadow pages too, because free(page[0]) would
1290 * otherwise free the whole shadow.
1291 */
1292 if (kmemcheck_page_is_tracked(page))
1293 split_page(virt_to_page(page[0].shadow), order);
1294 #endif
1295
1296 for (i = 1; i < (1 << order); i++)
1297 set_page_refcounted(page + i);
1298 }
1299
1300 /*
1301 * Similar to split_page except the page is already free. As this is only
1302 * being used for migration, the migratetype of the block also changes.
1303 * As this is called with interrupts disabled, the caller is responsible
1304 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1305 * are enabled.
1306 *
1307 * Note: this is probably too low level an operation for use in drivers.
1308 * Please consult with lkml before using this in your driver.
1309 */
1310 int split_free_page(struct page *page)
1311 {
1312 unsigned int order;
1313 unsigned long watermark;
1314 struct zone *zone;
1315
1316 BUG_ON(!PageBuddy(page));
1317
1318 zone = page_zone(page);
1319 order = page_order(page);
1320
1321 /* Obey watermarks as if the page was being allocated */
1322 watermark = low_wmark_pages(zone) + (1 << order);
1323 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1324 return 0;
1325
1326 /* Remove page from free list */
1327 list_del(&page->lru);
1328 zone->free_area[order].nr_free--;
1329 rmv_page_order(page);
1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1331
1332 /* Split into individual pages */
1333 set_page_refcounted(page);
1334 split_page(page, order);
1335
1336 if (order >= pageblock_order - 1) {
1337 struct page *endpage = page + (1 << order) - 1;
1338 for (; page < endpage; page += pageblock_nr_pages)
1339 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1340 }
1341
1342 return 1 << order;
1343 }
1344
1345 /*
1346 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1347 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1348 * or two.
1349 */
1350 static inline
1351 struct page *buffered_rmqueue(struct zone *preferred_zone,
1352 struct zone *zone, int order, gfp_t gfp_flags,
1353 int migratetype)
1354 {
1355 unsigned long flags;
1356 struct page *page;
1357 int cold = !!(gfp_flags & __GFP_COLD);
1358
1359 again:
1360 if (likely(order == 0)) {
1361 struct per_cpu_pages *pcp;
1362 struct list_head *list;
1363
1364 local_irq_save(flags);
1365 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1366 list = &pcp->lists[migratetype];
1367 if (list_empty(list)) {
1368 pcp->count += rmqueue_bulk(zone, 0,
1369 pcp->batch, list,
1370 migratetype, cold);
1371 if (unlikely(list_empty(list)))
1372 goto failed;
1373 }
1374
1375 if (cold)
1376 page = list_entry(list->prev, struct page, lru);
1377 else
1378 page = list_entry(list->next, struct page, lru);
1379
1380 list_del(&page->lru);
1381 pcp->count--;
1382 } else {
1383 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1384 /*
1385 * __GFP_NOFAIL is not to be used in new code.
1386 *
1387 * All __GFP_NOFAIL callers should be fixed so that they
1388 * properly detect and handle allocation failures.
1389 *
1390 * We most definitely don't want callers attempting to
1391 * allocate greater than order-1 page units with
1392 * __GFP_NOFAIL.
1393 */
1394 WARN_ON_ONCE(order > 1);
1395 }
1396 spin_lock_irqsave(&zone->lock, flags);
1397 page = __rmqueue(zone, order, migratetype);
1398 spin_unlock(&zone->lock);
1399 if (!page)
1400 goto failed;
1401 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1402 }
1403
1404 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1405 zone_statistics(preferred_zone, zone, gfp_flags);
1406 local_irq_restore(flags);
1407
1408 VM_BUG_ON(bad_range(zone, page));
1409 if (prep_new_page(page, order, gfp_flags))
1410 goto again;
1411 return page;
1412
1413 failed:
1414 local_irq_restore(flags);
1415 return NULL;
1416 }
1417
1418 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1419 #define ALLOC_WMARK_MIN WMARK_MIN
1420 #define ALLOC_WMARK_LOW WMARK_LOW
1421 #define ALLOC_WMARK_HIGH WMARK_HIGH
1422 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1423
1424 /* Mask to get the watermark bits */
1425 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1426
1427 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1428 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1429 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1430
1431 #ifdef CONFIG_FAIL_PAGE_ALLOC
1432
1433 static struct {
1434 struct fault_attr attr;
1435
1436 u32 ignore_gfp_highmem;
1437 u32 ignore_gfp_wait;
1438 u32 min_order;
1439 } fail_page_alloc = {
1440 .attr = FAULT_ATTR_INITIALIZER,
1441 .ignore_gfp_wait = 1,
1442 .ignore_gfp_highmem = 1,
1443 .min_order = 1,
1444 };
1445
1446 static int __init setup_fail_page_alloc(char *str)
1447 {
1448 return setup_fault_attr(&fail_page_alloc.attr, str);
1449 }
1450 __setup("fail_page_alloc=", setup_fail_page_alloc);
1451
1452 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1453 {
1454 if (order < fail_page_alloc.min_order)
1455 return 0;
1456 if (gfp_mask & __GFP_NOFAIL)
1457 return 0;
1458 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1459 return 0;
1460 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1461 return 0;
1462
1463 return should_fail(&fail_page_alloc.attr, 1 << order);
1464 }
1465
1466 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1467
1468 static int __init fail_page_alloc_debugfs(void)
1469 {
1470 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1471 struct dentry *dir;
1472
1473 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1474 &fail_page_alloc.attr);
1475 if (IS_ERR(dir))
1476 return PTR_ERR(dir);
1477
1478 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1479 &fail_page_alloc.ignore_gfp_wait))
1480 goto fail;
1481 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1482 &fail_page_alloc.ignore_gfp_highmem))
1483 goto fail;
1484 if (!debugfs_create_u32("min-order", mode, dir,
1485 &fail_page_alloc.min_order))
1486 goto fail;
1487
1488 return 0;
1489 fail:
1490 debugfs_remove_recursive(dir);
1491
1492 return -ENOMEM;
1493 }
1494
1495 late_initcall(fail_page_alloc_debugfs);
1496
1497 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1498
1499 #else /* CONFIG_FAIL_PAGE_ALLOC */
1500
1501 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1502 {
1503 return 0;
1504 }
1505
1506 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1507
1508 /*
1509 * Return true if free pages are above 'mark'. This takes into account the order
1510 * of the allocation.
1511 */
1512 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1513 int classzone_idx, int alloc_flags, long free_pages)
1514 {
1515 /* free_pages my go negative - that's OK */
1516 long min = mark;
1517 int o;
1518
1519 free_pages -= (1 << order) - 1;
1520 if (alloc_flags & ALLOC_HIGH)
1521 min -= min / 2;
1522 if (alloc_flags & ALLOC_HARDER)
1523 min -= min / 4;
1524
1525 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1526 return false;
1527 for (o = 0; o < order; o++) {
1528 /* At the next order, this order's pages become unavailable */
1529 free_pages -= z->free_area[o].nr_free << o;
1530
1531 /* Require fewer higher order pages to be free */
1532 min >>= 1;
1533
1534 if (free_pages <= min)
1535 return false;
1536 }
1537 return true;
1538 }
1539
1540 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1541 int classzone_idx, int alloc_flags)
1542 {
1543 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1544 zone_page_state(z, NR_FREE_PAGES));
1545 }
1546
1547 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1548 int classzone_idx, int alloc_flags)
1549 {
1550 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1551
1552 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1553 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1554
1555 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1556 free_pages);
1557 }
1558
1559 #ifdef CONFIG_NUMA
1560 /*
1561 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1562 * skip over zones that are not allowed by the cpuset, or that have
1563 * been recently (in last second) found to be nearly full. See further
1564 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1565 * that have to skip over a lot of full or unallowed zones.
1566 *
1567 * If the zonelist cache is present in the passed in zonelist, then
1568 * returns a pointer to the allowed node mask (either the current
1569 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1570 *
1571 * If the zonelist cache is not available for this zonelist, does
1572 * nothing and returns NULL.
1573 *
1574 * If the fullzones BITMAP in the zonelist cache is stale (more than
1575 * a second since last zap'd) then we zap it out (clear its bits.)
1576 *
1577 * We hold off even calling zlc_setup, until after we've checked the
1578 * first zone in the zonelist, on the theory that most allocations will
1579 * be satisfied from that first zone, so best to examine that zone as
1580 * quickly as we can.
1581 */
1582 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1583 {
1584 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1585 nodemask_t *allowednodes; /* zonelist_cache approximation */
1586
1587 zlc = zonelist->zlcache_ptr;
1588 if (!zlc)
1589 return NULL;
1590
1591 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1592 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1593 zlc->last_full_zap = jiffies;
1594 }
1595
1596 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1597 &cpuset_current_mems_allowed :
1598 &node_states[N_HIGH_MEMORY];
1599 return allowednodes;
1600 }
1601
1602 /*
1603 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1604 * if it is worth looking at further for free memory:
1605 * 1) Check that the zone isn't thought to be full (doesn't have its
1606 * bit set in the zonelist_cache fullzones BITMAP).
1607 * 2) Check that the zones node (obtained from the zonelist_cache
1608 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1609 * Return true (non-zero) if zone is worth looking at further, or
1610 * else return false (zero) if it is not.
1611 *
1612 * This check -ignores- the distinction between various watermarks,
1613 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1614 * found to be full for any variation of these watermarks, it will
1615 * be considered full for up to one second by all requests, unless
1616 * we are so low on memory on all allowed nodes that we are forced
1617 * into the second scan of the zonelist.
1618 *
1619 * In the second scan we ignore this zonelist cache and exactly
1620 * apply the watermarks to all zones, even it is slower to do so.
1621 * We are low on memory in the second scan, and should leave no stone
1622 * unturned looking for a free page.
1623 */
1624 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1625 nodemask_t *allowednodes)
1626 {
1627 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1628 int i; /* index of *z in zonelist zones */
1629 int n; /* node that zone *z is on */
1630
1631 zlc = zonelist->zlcache_ptr;
1632 if (!zlc)
1633 return 1;
1634
1635 i = z - zonelist->_zonerefs;
1636 n = zlc->z_to_n[i];
1637
1638 /* This zone is worth trying if it is allowed but not full */
1639 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1640 }
1641
1642 /*
1643 * Given 'z' scanning a zonelist, set the corresponding bit in
1644 * zlc->fullzones, so that subsequent attempts to allocate a page
1645 * from that zone don't waste time re-examining it.
1646 */
1647 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1648 {
1649 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1650 int i; /* index of *z in zonelist zones */
1651
1652 zlc = zonelist->zlcache_ptr;
1653 if (!zlc)
1654 return;
1655
1656 i = z - zonelist->_zonerefs;
1657
1658 set_bit(i, zlc->fullzones);
1659 }
1660
1661 /*
1662 * clear all zones full, called after direct reclaim makes progress so that
1663 * a zone that was recently full is not skipped over for up to a second
1664 */
1665 static void zlc_clear_zones_full(struct zonelist *zonelist)
1666 {
1667 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1668
1669 zlc = zonelist->zlcache_ptr;
1670 if (!zlc)
1671 return;
1672
1673 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1674 }
1675
1676 #else /* CONFIG_NUMA */
1677
1678 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1679 {
1680 return NULL;
1681 }
1682
1683 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1684 nodemask_t *allowednodes)
1685 {
1686 return 1;
1687 }
1688
1689 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1690 {
1691 }
1692
1693 static void zlc_clear_zones_full(struct zonelist *zonelist)
1694 {
1695 }
1696 #endif /* CONFIG_NUMA */
1697
1698 /*
1699 * get_page_from_freelist goes through the zonelist trying to allocate
1700 * a page.
1701 */
1702 static struct page *
1703 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1704 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1705 struct zone *preferred_zone, int migratetype)
1706 {
1707 struct zoneref *z;
1708 struct page *page = NULL;
1709 int classzone_idx;
1710 struct zone *zone;
1711 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1712 int zlc_active = 0; /* set if using zonelist_cache */
1713 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1714
1715 classzone_idx = zone_idx(preferred_zone);
1716 zonelist_scan:
1717 /*
1718 * Scan zonelist, looking for a zone with enough free.
1719 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1720 */
1721 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1722 high_zoneidx, nodemask) {
1723 if (NUMA_BUILD && zlc_active &&
1724 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1725 continue;
1726 if ((alloc_flags & ALLOC_CPUSET) &&
1727 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1728 continue;
1729 /*
1730 * When allocating a page cache page for writing, we
1731 * want to get it from a zone that is within its dirty
1732 * limit, such that no single zone holds more than its
1733 * proportional share of globally allowed dirty pages.
1734 * The dirty limits take into account the zone's
1735 * lowmem reserves and high watermark so that kswapd
1736 * should be able to balance it without having to
1737 * write pages from its LRU list.
1738 *
1739 * This may look like it could increase pressure on
1740 * lower zones by failing allocations in higher zones
1741 * before they are full. But the pages that do spill
1742 * over are limited as the lower zones are protected
1743 * by this very same mechanism. It should not become
1744 * a practical burden to them.
1745 *
1746 * XXX: For now, allow allocations to potentially
1747 * exceed the per-zone dirty limit in the slowpath
1748 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1749 * which is important when on a NUMA setup the allowed
1750 * zones are together not big enough to reach the
1751 * global limit. The proper fix for these situations
1752 * will require awareness of zones in the
1753 * dirty-throttling and the flusher threads.
1754 */
1755 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1756 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1757 goto this_zone_full;
1758
1759 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1760 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1761 unsigned long mark;
1762 int ret;
1763
1764 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1765 if (zone_watermark_ok(zone, order, mark,
1766 classzone_idx, alloc_flags))
1767 goto try_this_zone;
1768
1769 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1770 /*
1771 * we do zlc_setup if there are multiple nodes
1772 * and before considering the first zone allowed
1773 * by the cpuset.
1774 */
1775 allowednodes = zlc_setup(zonelist, alloc_flags);
1776 zlc_active = 1;
1777 did_zlc_setup = 1;
1778 }
1779
1780 if (zone_reclaim_mode == 0)
1781 goto this_zone_full;
1782
1783 /*
1784 * As we may have just activated ZLC, check if the first
1785 * eligible zone has failed zone_reclaim recently.
1786 */
1787 if (NUMA_BUILD && zlc_active &&
1788 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1789 continue;
1790
1791 ret = zone_reclaim(zone, gfp_mask, order);
1792 switch (ret) {
1793 case ZONE_RECLAIM_NOSCAN:
1794 /* did not scan */
1795 continue;
1796 case ZONE_RECLAIM_FULL:
1797 /* scanned but unreclaimable */
1798 continue;
1799 default:
1800 /* did we reclaim enough */
1801 if (!zone_watermark_ok(zone, order, mark,
1802 classzone_idx, alloc_flags))
1803 goto this_zone_full;
1804 }
1805 }
1806
1807 try_this_zone:
1808 page = buffered_rmqueue(preferred_zone, zone, order,
1809 gfp_mask, migratetype);
1810 if (page)
1811 break;
1812 this_zone_full:
1813 if (NUMA_BUILD)
1814 zlc_mark_zone_full(zonelist, z);
1815 }
1816
1817 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1818 /* Disable zlc cache for second zonelist scan */
1819 zlc_active = 0;
1820 goto zonelist_scan;
1821 }
1822 return page;
1823 }
1824
1825 /*
1826 * Large machines with many possible nodes should not always dump per-node
1827 * meminfo in irq context.
1828 */
1829 static inline bool should_suppress_show_mem(void)
1830 {
1831 bool ret = false;
1832
1833 #if NODES_SHIFT > 8
1834 ret = in_interrupt();
1835 #endif
1836 return ret;
1837 }
1838
1839 static DEFINE_RATELIMIT_STATE(nopage_rs,
1840 DEFAULT_RATELIMIT_INTERVAL,
1841 DEFAULT_RATELIMIT_BURST);
1842
1843 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1844 {
1845 unsigned int filter = SHOW_MEM_FILTER_NODES;
1846
1847 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1848 debug_guardpage_minorder() > 0)
1849 return;
1850
1851 /*
1852 * This documents exceptions given to allocations in certain
1853 * contexts that are allowed to allocate outside current's set
1854 * of allowed nodes.
1855 */
1856 if (!(gfp_mask & __GFP_NOMEMALLOC))
1857 if (test_thread_flag(TIF_MEMDIE) ||
1858 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1859 filter &= ~SHOW_MEM_FILTER_NODES;
1860 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1861 filter &= ~SHOW_MEM_FILTER_NODES;
1862
1863 if (fmt) {
1864 struct va_format vaf;
1865 va_list args;
1866
1867 va_start(args, fmt);
1868
1869 vaf.fmt = fmt;
1870 vaf.va = &args;
1871
1872 pr_warn("%pV", &vaf);
1873
1874 va_end(args);
1875 }
1876
1877 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1878 current->comm, order, gfp_mask);
1879
1880 dump_stack();
1881 if (!should_suppress_show_mem())
1882 show_mem(filter);
1883 }
1884
1885 static inline int
1886 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1887 unsigned long did_some_progress,
1888 unsigned long pages_reclaimed)
1889 {
1890 /* Do not loop if specifically requested */
1891 if (gfp_mask & __GFP_NORETRY)
1892 return 0;
1893
1894 /* Always retry if specifically requested */
1895 if (gfp_mask & __GFP_NOFAIL)
1896 return 1;
1897
1898 /*
1899 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1900 * making forward progress without invoking OOM. Suspend also disables
1901 * storage devices so kswapd will not help. Bail if we are suspending.
1902 */
1903 if (!did_some_progress && pm_suspended_storage())
1904 return 0;
1905
1906 /*
1907 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1908 * means __GFP_NOFAIL, but that may not be true in other
1909 * implementations.
1910 */
1911 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1912 return 1;
1913
1914 /*
1915 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1916 * specified, then we retry until we no longer reclaim any pages
1917 * (above), or we've reclaimed an order of pages at least as
1918 * large as the allocation's order. In both cases, if the
1919 * allocation still fails, we stop retrying.
1920 */
1921 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1922 return 1;
1923
1924 return 0;
1925 }
1926
1927 static inline struct page *
1928 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1929 struct zonelist *zonelist, enum zone_type high_zoneidx,
1930 nodemask_t *nodemask, struct zone *preferred_zone,
1931 int migratetype)
1932 {
1933 struct page *page;
1934
1935 /* Acquire the OOM killer lock for the zones in zonelist */
1936 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1937 schedule_timeout_uninterruptible(1);
1938 return NULL;
1939 }
1940
1941 /*
1942 * Go through the zonelist yet one more time, keep very high watermark
1943 * here, this is only to catch a parallel oom killing, we must fail if
1944 * we're still under heavy pressure.
1945 */
1946 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1947 order, zonelist, high_zoneidx,
1948 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1949 preferred_zone, migratetype);
1950 if (page)
1951 goto out;
1952
1953 if (!(gfp_mask & __GFP_NOFAIL)) {
1954 /* The OOM killer will not help higher order allocs */
1955 if (order > PAGE_ALLOC_COSTLY_ORDER)
1956 goto out;
1957 /* The OOM killer does not needlessly kill tasks for lowmem */
1958 if (high_zoneidx < ZONE_NORMAL)
1959 goto out;
1960 /*
1961 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1962 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1963 * The caller should handle page allocation failure by itself if
1964 * it specifies __GFP_THISNODE.
1965 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1966 */
1967 if (gfp_mask & __GFP_THISNODE)
1968 goto out;
1969 }
1970 /* Exhausted what can be done so it's blamo time */
1971 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
1972
1973 out:
1974 clear_zonelist_oom(zonelist, gfp_mask);
1975 return page;
1976 }
1977
1978 #ifdef CONFIG_COMPACTION
1979 /* Try memory compaction for high-order allocations before reclaim */
1980 static struct page *
1981 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1982 struct zonelist *zonelist, enum zone_type high_zoneidx,
1983 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1984 int migratetype, bool sync_migration,
1985 bool *deferred_compaction,
1986 unsigned long *did_some_progress)
1987 {
1988 struct page *page;
1989
1990 if (!order)
1991 return NULL;
1992
1993 if (compaction_deferred(preferred_zone, order)) {
1994 *deferred_compaction = true;
1995 return NULL;
1996 }
1997
1998 current->flags |= PF_MEMALLOC;
1999 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2000 nodemask, sync_migration);
2001 current->flags &= ~PF_MEMALLOC;
2002 if (*did_some_progress != COMPACT_SKIPPED) {
2003
2004 /* Page migration frees to the PCP lists but we want merging */
2005 drain_pages(get_cpu());
2006 put_cpu();
2007
2008 page = get_page_from_freelist(gfp_mask, nodemask,
2009 order, zonelist, high_zoneidx,
2010 alloc_flags, preferred_zone,
2011 migratetype);
2012 if (page) {
2013 preferred_zone->compact_considered = 0;
2014 preferred_zone->compact_defer_shift = 0;
2015 if (order >= preferred_zone->compact_order_failed)
2016 preferred_zone->compact_order_failed = order + 1;
2017 count_vm_event(COMPACTSUCCESS);
2018 return page;
2019 }
2020
2021 /*
2022 * It's bad if compaction run occurs and fails.
2023 * The most likely reason is that pages exist,
2024 * but not enough to satisfy watermarks.
2025 */
2026 count_vm_event(COMPACTFAIL);
2027
2028 /*
2029 * As async compaction considers a subset of pageblocks, only
2030 * defer if the failure was a sync compaction failure.
2031 */
2032 if (sync_migration)
2033 defer_compaction(preferred_zone, order);
2034
2035 cond_resched();
2036 }
2037
2038 return NULL;
2039 }
2040 #else
2041 static inline struct page *
2042 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2043 struct zonelist *zonelist, enum zone_type high_zoneidx,
2044 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2045 int migratetype, bool sync_migration,
2046 bool *deferred_compaction,
2047 unsigned long *did_some_progress)
2048 {
2049 return NULL;
2050 }
2051 #endif /* CONFIG_COMPACTION */
2052
2053 /* The really slow allocator path where we enter direct reclaim */
2054 static inline struct page *
2055 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2056 struct zonelist *zonelist, enum zone_type high_zoneidx,
2057 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2058 int migratetype, unsigned long *did_some_progress)
2059 {
2060 struct page *page = NULL;
2061 struct reclaim_state reclaim_state;
2062 bool drained = false;
2063
2064 cond_resched();
2065
2066 /* We now go into synchronous reclaim */
2067 cpuset_memory_pressure_bump();
2068 current->flags |= PF_MEMALLOC;
2069 lockdep_set_current_reclaim_state(gfp_mask);
2070 reclaim_state.reclaimed_slab = 0;
2071 current->reclaim_state = &reclaim_state;
2072
2073 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2074
2075 current->reclaim_state = NULL;
2076 lockdep_clear_current_reclaim_state();
2077 current->flags &= ~PF_MEMALLOC;
2078
2079 cond_resched();
2080
2081 if (unlikely(!(*did_some_progress)))
2082 return NULL;
2083
2084 /* After successful reclaim, reconsider all zones for allocation */
2085 if (NUMA_BUILD)
2086 zlc_clear_zones_full(zonelist);
2087
2088 retry:
2089 page = get_page_from_freelist(gfp_mask, nodemask, order,
2090 zonelist, high_zoneidx,
2091 alloc_flags, preferred_zone,
2092 migratetype);
2093
2094 /*
2095 * If an allocation failed after direct reclaim, it could be because
2096 * pages are pinned on the per-cpu lists. Drain them and try again
2097 */
2098 if (!page && !drained) {
2099 drain_all_pages();
2100 drained = true;
2101 goto retry;
2102 }
2103
2104 return page;
2105 }
2106
2107 /*
2108 * This is called in the allocator slow-path if the allocation request is of
2109 * sufficient urgency to ignore watermarks and take other desperate measures
2110 */
2111 static inline struct page *
2112 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2113 struct zonelist *zonelist, enum zone_type high_zoneidx,
2114 nodemask_t *nodemask, struct zone *preferred_zone,
2115 int migratetype)
2116 {
2117 struct page *page;
2118
2119 do {
2120 page = get_page_from_freelist(gfp_mask, nodemask, order,
2121 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2122 preferred_zone, migratetype);
2123
2124 if (!page && gfp_mask & __GFP_NOFAIL)
2125 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2126 } while (!page && (gfp_mask & __GFP_NOFAIL));
2127
2128 return page;
2129 }
2130
2131 static inline
2132 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2133 enum zone_type high_zoneidx,
2134 enum zone_type classzone_idx)
2135 {
2136 struct zoneref *z;
2137 struct zone *zone;
2138
2139 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2140 wakeup_kswapd(zone, order, classzone_idx);
2141 }
2142
2143 static inline int
2144 gfp_to_alloc_flags(gfp_t gfp_mask)
2145 {
2146 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2147 const gfp_t wait = gfp_mask & __GFP_WAIT;
2148
2149 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2150 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2151
2152 /*
2153 * The caller may dip into page reserves a bit more if the caller
2154 * cannot run direct reclaim, or if the caller has realtime scheduling
2155 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2156 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2157 */
2158 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2159
2160 if (!wait) {
2161 /*
2162 * Not worth trying to allocate harder for
2163 * __GFP_NOMEMALLOC even if it can't schedule.
2164 */
2165 if (!(gfp_mask & __GFP_NOMEMALLOC))
2166 alloc_flags |= ALLOC_HARDER;
2167 /*
2168 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2169 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2170 */
2171 alloc_flags &= ~ALLOC_CPUSET;
2172 } else if (unlikely(rt_task(current)) && !in_interrupt())
2173 alloc_flags |= ALLOC_HARDER;
2174
2175 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2176 if (!in_interrupt() &&
2177 ((current->flags & PF_MEMALLOC) ||
2178 unlikely(test_thread_flag(TIF_MEMDIE))))
2179 alloc_flags |= ALLOC_NO_WATERMARKS;
2180 }
2181
2182 return alloc_flags;
2183 }
2184
2185 static inline struct page *
2186 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2187 struct zonelist *zonelist, enum zone_type high_zoneidx,
2188 nodemask_t *nodemask, struct zone *preferred_zone,
2189 int migratetype)
2190 {
2191 const gfp_t wait = gfp_mask & __GFP_WAIT;
2192 struct page *page = NULL;
2193 int alloc_flags;
2194 unsigned long pages_reclaimed = 0;
2195 unsigned long did_some_progress;
2196 bool sync_migration = false;
2197 bool deferred_compaction = false;
2198
2199 /*
2200 * In the slowpath, we sanity check order to avoid ever trying to
2201 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2202 * be using allocators in order of preference for an area that is
2203 * too large.
2204 */
2205 if (order >= MAX_ORDER) {
2206 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2207 return NULL;
2208 }
2209
2210 /*
2211 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2212 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2213 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2214 * using a larger set of nodes after it has established that the
2215 * allowed per node queues are empty and that nodes are
2216 * over allocated.
2217 */
2218 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2219 goto nopage;
2220
2221 restart:
2222 if (!(gfp_mask & __GFP_NO_KSWAPD))
2223 wake_all_kswapd(order, zonelist, high_zoneidx,
2224 zone_idx(preferred_zone));
2225
2226 /*
2227 * OK, we're below the kswapd watermark and have kicked background
2228 * reclaim. Now things get more complex, so set up alloc_flags according
2229 * to how we want to proceed.
2230 */
2231 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2232
2233 /*
2234 * Find the true preferred zone if the allocation is unconstrained by
2235 * cpusets.
2236 */
2237 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2238 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2239 &preferred_zone);
2240
2241 rebalance:
2242 /* This is the last chance, in general, before the goto nopage. */
2243 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2244 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2245 preferred_zone, migratetype);
2246 if (page)
2247 goto got_pg;
2248
2249 /* Allocate without watermarks if the context allows */
2250 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2251 page = __alloc_pages_high_priority(gfp_mask, order,
2252 zonelist, high_zoneidx, nodemask,
2253 preferred_zone, migratetype);
2254 if (page)
2255 goto got_pg;
2256 }
2257
2258 /* Atomic allocations - we can't balance anything */
2259 if (!wait)
2260 goto nopage;
2261
2262 /* Avoid recursion of direct reclaim */
2263 if (current->flags & PF_MEMALLOC)
2264 goto nopage;
2265
2266 /* Avoid allocations with no watermarks from looping endlessly */
2267 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2268 goto nopage;
2269
2270 /*
2271 * Try direct compaction. The first pass is asynchronous. Subsequent
2272 * attempts after direct reclaim are synchronous
2273 */
2274 page = __alloc_pages_direct_compact(gfp_mask, order,
2275 zonelist, high_zoneidx,
2276 nodemask,
2277 alloc_flags, preferred_zone,
2278 migratetype, sync_migration,
2279 &deferred_compaction,
2280 &did_some_progress);
2281 if (page)
2282 goto got_pg;
2283 sync_migration = true;
2284
2285 /*
2286 * If compaction is deferred for high-order allocations, it is because
2287 * sync compaction recently failed. In this is the case and the caller
2288 * has requested the system not be heavily disrupted, fail the
2289 * allocation now instead of entering direct reclaim
2290 */
2291 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2292 goto nopage;
2293
2294 /* Try direct reclaim and then allocating */
2295 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2296 zonelist, high_zoneidx,
2297 nodemask,
2298 alloc_flags, preferred_zone,
2299 migratetype, &did_some_progress);
2300 if (page)
2301 goto got_pg;
2302
2303 /*
2304 * If we failed to make any progress reclaiming, then we are
2305 * running out of options and have to consider going OOM
2306 */
2307 if (!did_some_progress) {
2308 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2309 if (oom_killer_disabled)
2310 goto nopage;
2311 page = __alloc_pages_may_oom(gfp_mask, order,
2312 zonelist, high_zoneidx,
2313 nodemask, preferred_zone,
2314 migratetype);
2315 if (page)
2316 goto got_pg;
2317
2318 if (!(gfp_mask & __GFP_NOFAIL)) {
2319 /*
2320 * The oom killer is not called for high-order
2321 * allocations that may fail, so if no progress
2322 * is being made, there are no other options and
2323 * retrying is unlikely to help.
2324 */
2325 if (order > PAGE_ALLOC_COSTLY_ORDER)
2326 goto nopage;
2327 /*
2328 * The oom killer is not called for lowmem
2329 * allocations to prevent needlessly killing
2330 * innocent tasks.
2331 */
2332 if (high_zoneidx < ZONE_NORMAL)
2333 goto nopage;
2334 }
2335
2336 goto restart;
2337 }
2338 }
2339
2340 /* Check if we should retry the allocation */
2341 pages_reclaimed += did_some_progress;
2342 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2343 pages_reclaimed)) {
2344 /* Wait for some write requests to complete then retry */
2345 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2346 goto rebalance;
2347 } else {
2348 /*
2349 * High-order allocations do not necessarily loop after
2350 * direct reclaim and reclaim/compaction depends on compaction
2351 * being called after reclaim so call directly if necessary
2352 */
2353 page = __alloc_pages_direct_compact(gfp_mask, order,
2354 zonelist, high_zoneidx,
2355 nodemask,
2356 alloc_flags, preferred_zone,
2357 migratetype, sync_migration,
2358 &deferred_compaction,
2359 &did_some_progress);
2360 if (page)
2361 goto got_pg;
2362 }
2363
2364 nopage:
2365 warn_alloc_failed(gfp_mask, order, NULL);
2366 return page;
2367 got_pg:
2368 if (kmemcheck_enabled)
2369 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2370 return page;
2371
2372 }
2373
2374 /*
2375 * This is the 'heart' of the zoned buddy allocator.
2376 */
2377 struct page *
2378 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2379 struct zonelist *zonelist, nodemask_t *nodemask)
2380 {
2381 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2382 struct zone *preferred_zone;
2383 struct page *page = NULL;
2384 int migratetype = allocflags_to_migratetype(gfp_mask);
2385 unsigned int cpuset_mems_cookie;
2386
2387 gfp_mask &= gfp_allowed_mask;
2388
2389 lockdep_trace_alloc(gfp_mask);
2390
2391 might_sleep_if(gfp_mask & __GFP_WAIT);
2392
2393 if (should_fail_alloc_page(gfp_mask, order))
2394 return NULL;
2395
2396 /*
2397 * Check the zones suitable for the gfp_mask contain at least one
2398 * valid zone. It's possible to have an empty zonelist as a result
2399 * of GFP_THISNODE and a memoryless node
2400 */
2401 if (unlikely(!zonelist->_zonerefs->zone))
2402 return NULL;
2403
2404 retry_cpuset:
2405 cpuset_mems_cookie = get_mems_allowed();
2406
2407 /* The preferred zone is used for statistics later */
2408 first_zones_zonelist(zonelist, high_zoneidx,
2409 nodemask ? : &cpuset_current_mems_allowed,
2410 &preferred_zone);
2411 if (!preferred_zone)
2412 goto out;
2413
2414 /* First allocation attempt */
2415 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2416 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2417 preferred_zone, migratetype);
2418 if (unlikely(!page))
2419 page = __alloc_pages_slowpath(gfp_mask, order,
2420 zonelist, high_zoneidx, nodemask,
2421 preferred_zone, migratetype);
2422
2423 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2424
2425 out:
2426 /*
2427 * When updating a task's mems_allowed, it is possible to race with
2428 * parallel threads in such a way that an allocation can fail while
2429 * the mask is being updated. If a page allocation is about to fail,
2430 * check if the cpuset changed during allocation and if so, retry.
2431 */
2432 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2433 goto retry_cpuset;
2434
2435 return page;
2436 }
2437 EXPORT_SYMBOL(__alloc_pages_nodemask);
2438
2439 /*
2440 * Common helper functions.
2441 */
2442 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2443 {
2444 struct page *page;
2445
2446 /*
2447 * __get_free_pages() returns a 32-bit address, which cannot represent
2448 * a highmem page
2449 */
2450 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2451
2452 page = alloc_pages(gfp_mask, order);
2453 if (!page)
2454 return 0;
2455 return (unsigned long) page_address(page);
2456 }
2457 EXPORT_SYMBOL(__get_free_pages);
2458
2459 unsigned long get_zeroed_page(gfp_t gfp_mask)
2460 {
2461 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2462 }
2463 EXPORT_SYMBOL(get_zeroed_page);
2464
2465 void __free_pages(struct page *page, unsigned int order)
2466 {
2467 if (put_page_testzero(page)) {
2468 if (order == 0)
2469 free_hot_cold_page(page, 0);
2470 else
2471 __free_pages_ok(page, order);
2472 }
2473 }
2474
2475 EXPORT_SYMBOL(__free_pages);
2476
2477 void free_pages(unsigned long addr, unsigned int order)
2478 {
2479 if (addr != 0) {
2480 VM_BUG_ON(!virt_addr_valid((void *)addr));
2481 __free_pages(virt_to_page((void *)addr), order);
2482 }
2483 }
2484
2485 EXPORT_SYMBOL(free_pages);
2486
2487 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2488 {
2489 if (addr) {
2490 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2491 unsigned long used = addr + PAGE_ALIGN(size);
2492
2493 split_page(virt_to_page((void *)addr), order);
2494 while (used < alloc_end) {
2495 free_page(used);
2496 used += PAGE_SIZE;
2497 }
2498 }
2499 return (void *)addr;
2500 }
2501
2502 /**
2503 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2504 * @size: the number of bytes to allocate
2505 * @gfp_mask: GFP flags for the allocation
2506 *
2507 * This function is similar to alloc_pages(), except that it allocates the
2508 * minimum number of pages to satisfy the request. alloc_pages() can only
2509 * allocate memory in power-of-two pages.
2510 *
2511 * This function is also limited by MAX_ORDER.
2512 *
2513 * Memory allocated by this function must be released by free_pages_exact().
2514 */
2515 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2516 {
2517 unsigned int order = get_order(size);
2518 unsigned long addr;
2519
2520 addr = __get_free_pages(gfp_mask, order);
2521 return make_alloc_exact(addr, order, size);
2522 }
2523 EXPORT_SYMBOL(alloc_pages_exact);
2524
2525 /**
2526 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2527 * pages on a node.
2528 * @nid: the preferred node ID where memory should be allocated
2529 * @size: the number of bytes to allocate
2530 * @gfp_mask: GFP flags for the allocation
2531 *
2532 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2533 * back.
2534 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2535 * but is not exact.
2536 */
2537 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2538 {
2539 unsigned order = get_order(size);
2540 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2541 if (!p)
2542 return NULL;
2543 return make_alloc_exact((unsigned long)page_address(p), order, size);
2544 }
2545 EXPORT_SYMBOL(alloc_pages_exact_nid);
2546
2547 /**
2548 * free_pages_exact - release memory allocated via alloc_pages_exact()
2549 * @virt: the value returned by alloc_pages_exact.
2550 * @size: size of allocation, same value as passed to alloc_pages_exact().
2551 *
2552 * Release the memory allocated by a previous call to alloc_pages_exact.
2553 */
2554 void free_pages_exact(void *virt, size_t size)
2555 {
2556 unsigned long addr = (unsigned long)virt;
2557 unsigned long end = addr + PAGE_ALIGN(size);
2558
2559 while (addr < end) {
2560 free_page(addr);
2561 addr += PAGE_SIZE;
2562 }
2563 }
2564 EXPORT_SYMBOL(free_pages_exact);
2565
2566 static unsigned int nr_free_zone_pages(int offset)
2567 {
2568 struct zoneref *z;
2569 struct zone *zone;
2570
2571 /* Just pick one node, since fallback list is circular */
2572 unsigned int sum = 0;
2573
2574 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2575
2576 for_each_zone_zonelist(zone, z, zonelist, offset) {
2577 unsigned long size = zone->present_pages;
2578 unsigned long high = high_wmark_pages(zone);
2579 if (size > high)
2580 sum += size - high;
2581 }
2582
2583 return sum;
2584 }
2585
2586 /*
2587 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2588 */
2589 unsigned int nr_free_buffer_pages(void)
2590 {
2591 return nr_free_zone_pages(gfp_zone(GFP_USER));
2592 }
2593 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2594
2595 /*
2596 * Amount of free RAM allocatable within all zones
2597 */
2598 unsigned int nr_free_pagecache_pages(void)
2599 {
2600 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2601 }
2602
2603 static inline void show_node(struct zone *zone)
2604 {
2605 if (NUMA_BUILD)
2606 printk("Node %d ", zone_to_nid(zone));
2607 }
2608
2609 void si_meminfo(struct sysinfo *val)
2610 {
2611 val->totalram = totalram_pages;
2612 val->sharedram = 0;
2613 val->freeram = global_page_state(NR_FREE_PAGES);
2614 val->bufferram = nr_blockdev_pages();
2615 val->totalhigh = totalhigh_pages;
2616 val->freehigh = nr_free_highpages();
2617 val->mem_unit = PAGE_SIZE;
2618 }
2619
2620 EXPORT_SYMBOL(si_meminfo);
2621
2622 #ifdef CONFIG_NUMA
2623 void si_meminfo_node(struct sysinfo *val, int nid)
2624 {
2625 pg_data_t *pgdat = NODE_DATA(nid);
2626
2627 val->totalram = pgdat->node_present_pages;
2628 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2629 #ifdef CONFIG_HIGHMEM
2630 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2631 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2632 NR_FREE_PAGES);
2633 #else
2634 val->totalhigh = 0;
2635 val->freehigh = 0;
2636 #endif
2637 val->mem_unit = PAGE_SIZE;
2638 }
2639 #endif
2640
2641 /*
2642 * Determine whether the node should be displayed or not, depending on whether
2643 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2644 */
2645 bool skip_free_areas_node(unsigned int flags, int nid)
2646 {
2647 bool ret = false;
2648 unsigned int cpuset_mems_cookie;
2649
2650 if (!(flags & SHOW_MEM_FILTER_NODES))
2651 goto out;
2652
2653 do {
2654 cpuset_mems_cookie = get_mems_allowed();
2655 ret = !node_isset(nid, cpuset_current_mems_allowed);
2656 } while (!put_mems_allowed(cpuset_mems_cookie));
2657 out:
2658 return ret;
2659 }
2660
2661 #define K(x) ((x) << (PAGE_SHIFT-10))
2662
2663 /*
2664 * Show free area list (used inside shift_scroll-lock stuff)
2665 * We also calculate the percentage fragmentation. We do this by counting the
2666 * memory on each free list with the exception of the first item on the list.
2667 * Suppresses nodes that are not allowed by current's cpuset if
2668 * SHOW_MEM_FILTER_NODES is passed.
2669 */
2670 void show_free_areas(unsigned int filter)
2671 {
2672 int cpu;
2673 struct zone *zone;
2674
2675 for_each_populated_zone(zone) {
2676 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2677 continue;
2678 show_node(zone);
2679 printk("%s per-cpu:\n", zone->name);
2680
2681 for_each_online_cpu(cpu) {
2682 struct per_cpu_pageset *pageset;
2683
2684 pageset = per_cpu_ptr(zone->pageset, cpu);
2685
2686 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2687 cpu, pageset->pcp.high,
2688 pageset->pcp.batch, pageset->pcp.count);
2689 }
2690 }
2691
2692 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2693 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2694 " unevictable:%lu"
2695 " dirty:%lu writeback:%lu unstable:%lu\n"
2696 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2697 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2698 global_page_state(NR_ACTIVE_ANON),
2699 global_page_state(NR_INACTIVE_ANON),
2700 global_page_state(NR_ISOLATED_ANON),
2701 global_page_state(NR_ACTIVE_FILE),
2702 global_page_state(NR_INACTIVE_FILE),
2703 global_page_state(NR_ISOLATED_FILE),
2704 global_page_state(NR_UNEVICTABLE),
2705 global_page_state(NR_FILE_DIRTY),
2706 global_page_state(NR_WRITEBACK),
2707 global_page_state(NR_UNSTABLE_NFS),
2708 global_page_state(NR_FREE_PAGES),
2709 global_page_state(NR_SLAB_RECLAIMABLE),
2710 global_page_state(NR_SLAB_UNRECLAIMABLE),
2711 global_page_state(NR_FILE_MAPPED),
2712 global_page_state(NR_SHMEM),
2713 global_page_state(NR_PAGETABLE),
2714 global_page_state(NR_BOUNCE));
2715
2716 for_each_populated_zone(zone) {
2717 int i;
2718
2719 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2720 continue;
2721 show_node(zone);
2722 printk("%s"
2723 " free:%lukB"
2724 " min:%lukB"
2725 " low:%lukB"
2726 " high:%lukB"
2727 " active_anon:%lukB"
2728 " inactive_anon:%lukB"
2729 " active_file:%lukB"
2730 " inactive_file:%lukB"
2731 " unevictable:%lukB"
2732 " isolated(anon):%lukB"
2733 " isolated(file):%lukB"
2734 " present:%lukB"
2735 " mlocked:%lukB"
2736 " dirty:%lukB"
2737 " writeback:%lukB"
2738 " mapped:%lukB"
2739 " shmem:%lukB"
2740 " slab_reclaimable:%lukB"
2741 " slab_unreclaimable:%lukB"
2742 " kernel_stack:%lukB"
2743 " pagetables:%lukB"
2744 " unstable:%lukB"
2745 " bounce:%lukB"
2746 " writeback_tmp:%lukB"
2747 " pages_scanned:%lu"
2748 " all_unreclaimable? %s"
2749 "\n",
2750 zone->name,
2751 K(zone_page_state(zone, NR_FREE_PAGES)),
2752 K(min_wmark_pages(zone)),
2753 K(low_wmark_pages(zone)),
2754 K(high_wmark_pages(zone)),
2755 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2756 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2757 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2758 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2759 K(zone_page_state(zone, NR_UNEVICTABLE)),
2760 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2761 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2762 K(zone->present_pages),
2763 K(zone_page_state(zone, NR_MLOCK)),
2764 K(zone_page_state(zone, NR_FILE_DIRTY)),
2765 K(zone_page_state(zone, NR_WRITEBACK)),
2766 K(zone_page_state(zone, NR_FILE_MAPPED)),
2767 K(zone_page_state(zone, NR_SHMEM)),
2768 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2769 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2770 zone_page_state(zone, NR_KERNEL_STACK) *
2771 THREAD_SIZE / 1024,
2772 K(zone_page_state(zone, NR_PAGETABLE)),
2773 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2774 K(zone_page_state(zone, NR_BOUNCE)),
2775 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2776 zone->pages_scanned,
2777 (zone->all_unreclaimable ? "yes" : "no")
2778 );
2779 printk("lowmem_reserve[]:");
2780 for (i = 0; i < MAX_NR_ZONES; i++)
2781 printk(" %lu", zone->lowmem_reserve[i]);
2782 printk("\n");
2783 }
2784
2785 for_each_populated_zone(zone) {
2786 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2787
2788 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2789 continue;
2790 show_node(zone);
2791 printk("%s: ", zone->name);
2792
2793 spin_lock_irqsave(&zone->lock, flags);
2794 for (order = 0; order < MAX_ORDER; order++) {
2795 nr[order] = zone->free_area[order].nr_free;
2796 total += nr[order] << order;
2797 }
2798 spin_unlock_irqrestore(&zone->lock, flags);
2799 for (order = 0; order < MAX_ORDER; order++)
2800 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2801 printk("= %lukB\n", K(total));
2802 }
2803
2804 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2805
2806 show_swap_cache_info();
2807 }
2808
2809 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2810 {
2811 zoneref->zone = zone;
2812 zoneref->zone_idx = zone_idx(zone);
2813 }
2814
2815 /*
2816 * Builds allocation fallback zone lists.
2817 *
2818 * Add all populated zones of a node to the zonelist.
2819 */
2820 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2821 int nr_zones, enum zone_type zone_type)
2822 {
2823 struct zone *zone;
2824
2825 BUG_ON(zone_type >= MAX_NR_ZONES);
2826 zone_type++;
2827
2828 do {
2829 zone_type--;
2830 zone = pgdat->node_zones + zone_type;
2831 if (populated_zone(zone)) {
2832 zoneref_set_zone(zone,
2833 &zonelist->_zonerefs[nr_zones++]);
2834 check_highest_zone(zone_type);
2835 }
2836
2837 } while (zone_type);
2838 return nr_zones;
2839 }
2840
2841
2842 /*
2843 * zonelist_order:
2844 * 0 = automatic detection of better ordering.
2845 * 1 = order by ([node] distance, -zonetype)
2846 * 2 = order by (-zonetype, [node] distance)
2847 *
2848 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2849 * the same zonelist. So only NUMA can configure this param.
2850 */
2851 #define ZONELIST_ORDER_DEFAULT 0
2852 #define ZONELIST_ORDER_NODE 1
2853 #define ZONELIST_ORDER_ZONE 2
2854
2855 /* zonelist order in the kernel.
2856 * set_zonelist_order() will set this to NODE or ZONE.
2857 */
2858 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2859 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2860
2861
2862 #ifdef CONFIG_NUMA
2863 /* The value user specified ....changed by config */
2864 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2865 /* string for sysctl */
2866 #define NUMA_ZONELIST_ORDER_LEN 16
2867 char numa_zonelist_order[16] = "default";
2868
2869 /*
2870 * interface for configure zonelist ordering.
2871 * command line option "numa_zonelist_order"
2872 * = "[dD]efault - default, automatic configuration.
2873 * = "[nN]ode - order by node locality, then by zone within node
2874 * = "[zZ]one - order by zone, then by locality within zone
2875 */
2876
2877 static int __parse_numa_zonelist_order(char *s)
2878 {
2879 if (*s == 'd' || *s == 'D') {
2880 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2881 } else if (*s == 'n' || *s == 'N') {
2882 user_zonelist_order = ZONELIST_ORDER_NODE;
2883 } else if (*s == 'z' || *s == 'Z') {
2884 user_zonelist_order = ZONELIST_ORDER_ZONE;
2885 } else {
2886 printk(KERN_WARNING
2887 "Ignoring invalid numa_zonelist_order value: "
2888 "%s\n", s);
2889 return -EINVAL;
2890 }
2891 return 0;
2892 }
2893
2894 static __init int setup_numa_zonelist_order(char *s)
2895 {
2896 int ret;
2897
2898 if (!s)
2899 return 0;
2900
2901 ret = __parse_numa_zonelist_order(s);
2902 if (ret == 0)
2903 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2904
2905 return ret;
2906 }
2907 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2908
2909 /*
2910 * sysctl handler for numa_zonelist_order
2911 */
2912 int numa_zonelist_order_handler(ctl_table *table, int write,
2913 void __user *buffer, size_t *length,
2914 loff_t *ppos)
2915 {
2916 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2917 int ret;
2918 static DEFINE_MUTEX(zl_order_mutex);
2919
2920 mutex_lock(&zl_order_mutex);
2921 if (write)
2922 strcpy(saved_string, (char*)table->data);
2923 ret = proc_dostring(table, write, buffer, length, ppos);
2924 if (ret)
2925 goto out;
2926 if (write) {
2927 int oldval = user_zonelist_order;
2928 if (__parse_numa_zonelist_order((char*)table->data)) {
2929 /*
2930 * bogus value. restore saved string
2931 */
2932 strncpy((char*)table->data, saved_string,
2933 NUMA_ZONELIST_ORDER_LEN);
2934 user_zonelist_order = oldval;
2935 } else if (oldval != user_zonelist_order) {
2936 mutex_lock(&zonelists_mutex);
2937 build_all_zonelists(NULL);
2938 mutex_unlock(&zonelists_mutex);
2939 }
2940 }
2941 out:
2942 mutex_unlock(&zl_order_mutex);
2943 return ret;
2944 }
2945
2946
2947 #define MAX_NODE_LOAD (nr_online_nodes)
2948 static int node_load[MAX_NUMNODES];
2949
2950 /**
2951 * find_next_best_node - find the next node that should appear in a given node's fallback list
2952 * @node: node whose fallback list we're appending
2953 * @used_node_mask: nodemask_t of already used nodes
2954 *
2955 * We use a number of factors to determine which is the next node that should
2956 * appear on a given node's fallback list. The node should not have appeared
2957 * already in @node's fallback list, and it should be the next closest node
2958 * according to the distance array (which contains arbitrary distance values
2959 * from each node to each node in the system), and should also prefer nodes
2960 * with no CPUs, since presumably they'll have very little allocation pressure
2961 * on them otherwise.
2962 * It returns -1 if no node is found.
2963 */
2964 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2965 {
2966 int n, val;
2967 int min_val = INT_MAX;
2968 int best_node = -1;
2969 const struct cpumask *tmp = cpumask_of_node(0);
2970
2971 /* Use the local node if we haven't already */
2972 if (!node_isset(node, *used_node_mask)) {
2973 node_set(node, *used_node_mask);
2974 return node;
2975 }
2976
2977 for_each_node_state(n, N_HIGH_MEMORY) {
2978
2979 /* Don't want a node to appear more than once */
2980 if (node_isset(n, *used_node_mask))
2981 continue;
2982
2983 /* Use the distance array to find the distance */
2984 val = node_distance(node, n);
2985
2986 /* Penalize nodes under us ("prefer the next node") */
2987 val += (n < node);
2988
2989 /* Give preference to headless and unused nodes */
2990 tmp = cpumask_of_node(n);
2991 if (!cpumask_empty(tmp))
2992 val += PENALTY_FOR_NODE_WITH_CPUS;
2993
2994 /* Slight preference for less loaded node */
2995 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2996 val += node_load[n];
2997
2998 if (val < min_val) {
2999 min_val = val;
3000 best_node = n;
3001 }
3002 }
3003
3004 if (best_node >= 0)
3005 node_set(best_node, *used_node_mask);
3006
3007 return best_node;
3008 }
3009
3010
3011 /*
3012 * Build zonelists ordered by node and zones within node.
3013 * This results in maximum locality--normal zone overflows into local
3014 * DMA zone, if any--but risks exhausting DMA zone.
3015 */
3016 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3017 {
3018 int j;
3019 struct zonelist *zonelist;
3020
3021 zonelist = &pgdat->node_zonelists[0];
3022 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3023 ;
3024 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3025 MAX_NR_ZONES - 1);
3026 zonelist->_zonerefs[j].zone = NULL;
3027 zonelist->_zonerefs[j].zone_idx = 0;
3028 }
3029
3030 /*
3031 * Build gfp_thisnode zonelists
3032 */
3033 static void build_thisnode_zonelists(pg_data_t *pgdat)
3034 {
3035 int j;
3036 struct zonelist *zonelist;
3037
3038 zonelist = &pgdat->node_zonelists[1];
3039 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3040 zonelist->_zonerefs[j].zone = NULL;
3041 zonelist->_zonerefs[j].zone_idx = 0;
3042 }
3043
3044 /*
3045 * Build zonelists ordered by zone and nodes within zones.
3046 * This results in conserving DMA zone[s] until all Normal memory is
3047 * exhausted, but results in overflowing to remote node while memory
3048 * may still exist in local DMA zone.
3049 */
3050 static int node_order[MAX_NUMNODES];
3051
3052 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3053 {
3054 int pos, j, node;
3055 int zone_type; /* needs to be signed */
3056 struct zone *z;
3057 struct zonelist *zonelist;
3058
3059 zonelist = &pgdat->node_zonelists[0];
3060 pos = 0;
3061 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3062 for (j = 0; j < nr_nodes; j++) {
3063 node = node_order[j];
3064 z = &NODE_DATA(node)->node_zones[zone_type];
3065 if (populated_zone(z)) {
3066 zoneref_set_zone(z,
3067 &zonelist->_zonerefs[pos++]);
3068 check_highest_zone(zone_type);
3069 }
3070 }
3071 }
3072 zonelist->_zonerefs[pos].zone = NULL;
3073 zonelist->_zonerefs[pos].zone_idx = 0;
3074 }
3075
3076 static int default_zonelist_order(void)
3077 {
3078 int nid, zone_type;
3079 unsigned long low_kmem_size,total_size;
3080 struct zone *z;
3081 int average_size;
3082 /*
3083 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3084 * If they are really small and used heavily, the system can fall
3085 * into OOM very easily.
3086 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3087 */
3088 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3089 low_kmem_size = 0;
3090 total_size = 0;
3091 for_each_online_node(nid) {
3092 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3093 z = &NODE_DATA(nid)->node_zones[zone_type];
3094 if (populated_zone(z)) {
3095 if (zone_type < ZONE_NORMAL)
3096 low_kmem_size += z->present_pages;
3097 total_size += z->present_pages;
3098 } else if (zone_type == ZONE_NORMAL) {
3099 /*
3100 * If any node has only lowmem, then node order
3101 * is preferred to allow kernel allocations
3102 * locally; otherwise, they can easily infringe
3103 * on other nodes when there is an abundance of
3104 * lowmem available to allocate from.
3105 */
3106 return ZONELIST_ORDER_NODE;
3107 }
3108 }
3109 }
3110 if (!low_kmem_size || /* there are no DMA area. */
3111 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3112 return ZONELIST_ORDER_NODE;
3113 /*
3114 * look into each node's config.
3115 * If there is a node whose DMA/DMA32 memory is very big area on
3116 * local memory, NODE_ORDER may be suitable.
3117 */
3118 average_size = total_size /
3119 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3120 for_each_online_node(nid) {
3121 low_kmem_size = 0;
3122 total_size = 0;
3123 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3124 z = &NODE_DATA(nid)->node_zones[zone_type];
3125 if (populated_zone(z)) {
3126 if (zone_type < ZONE_NORMAL)
3127 low_kmem_size += z->present_pages;
3128 total_size += z->present_pages;
3129 }
3130 }
3131 if (low_kmem_size &&
3132 total_size > average_size && /* ignore small node */
3133 low_kmem_size > total_size * 70/100)
3134 return ZONELIST_ORDER_NODE;
3135 }
3136 return ZONELIST_ORDER_ZONE;
3137 }
3138
3139 static void set_zonelist_order(void)
3140 {
3141 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3142 current_zonelist_order = default_zonelist_order();
3143 else
3144 current_zonelist_order = user_zonelist_order;
3145 }
3146
3147 static void build_zonelists(pg_data_t *pgdat)
3148 {
3149 int j, node, load;
3150 enum zone_type i;
3151 nodemask_t used_mask;
3152 int local_node, prev_node;
3153 struct zonelist *zonelist;
3154 int order = current_zonelist_order;
3155
3156 /* initialize zonelists */
3157 for (i = 0; i < MAX_ZONELISTS; i++) {
3158 zonelist = pgdat->node_zonelists + i;
3159 zonelist->_zonerefs[0].zone = NULL;
3160 zonelist->_zonerefs[0].zone_idx = 0;
3161 }
3162
3163 /* NUMA-aware ordering of nodes */
3164 local_node = pgdat->node_id;
3165 load = nr_online_nodes;
3166 prev_node = local_node;
3167 nodes_clear(used_mask);
3168
3169 memset(node_order, 0, sizeof(node_order));
3170 j = 0;
3171
3172 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3173 int distance = node_distance(local_node, node);
3174
3175 /*
3176 * If another node is sufficiently far away then it is better
3177 * to reclaim pages in a zone before going off node.
3178 */
3179 if (distance > RECLAIM_DISTANCE)
3180 zone_reclaim_mode = 1;
3181
3182 /*
3183 * We don't want to pressure a particular node.
3184 * So adding penalty to the first node in same
3185 * distance group to make it round-robin.
3186 */
3187 if (distance != node_distance(local_node, prev_node))
3188 node_load[node] = load;
3189
3190 prev_node = node;
3191 load--;
3192 if (order == ZONELIST_ORDER_NODE)
3193 build_zonelists_in_node_order(pgdat, node);
3194 else
3195 node_order[j++] = node; /* remember order */
3196 }
3197
3198 if (order == ZONELIST_ORDER_ZONE) {
3199 /* calculate node order -- i.e., DMA last! */
3200 build_zonelists_in_zone_order(pgdat, j);
3201 }
3202
3203 build_thisnode_zonelists(pgdat);
3204 }
3205
3206 /* Construct the zonelist performance cache - see further mmzone.h */
3207 static void build_zonelist_cache(pg_data_t *pgdat)
3208 {
3209 struct zonelist *zonelist;
3210 struct zonelist_cache *zlc;
3211 struct zoneref *z;
3212
3213 zonelist = &pgdat->node_zonelists[0];
3214 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3215 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3216 for (z = zonelist->_zonerefs; z->zone; z++)
3217 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3218 }
3219
3220 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3221 /*
3222 * Return node id of node used for "local" allocations.
3223 * I.e., first node id of first zone in arg node's generic zonelist.
3224 * Used for initializing percpu 'numa_mem', which is used primarily
3225 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3226 */
3227 int local_memory_node(int node)
3228 {
3229 struct zone *zone;
3230
3231 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3232 gfp_zone(GFP_KERNEL),
3233 NULL,
3234 &zone);
3235 return zone->node;
3236 }
3237 #endif
3238
3239 #else /* CONFIG_NUMA */
3240
3241 static void set_zonelist_order(void)
3242 {
3243 current_zonelist_order = ZONELIST_ORDER_ZONE;
3244 }
3245
3246 static void build_zonelists(pg_data_t *pgdat)
3247 {
3248 int node, local_node;
3249 enum zone_type j;
3250 struct zonelist *zonelist;
3251
3252 local_node = pgdat->node_id;
3253
3254 zonelist = &pgdat->node_zonelists[0];
3255 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3256
3257 /*
3258 * Now we build the zonelist so that it contains the zones
3259 * of all the other nodes.
3260 * We don't want to pressure a particular node, so when
3261 * building the zones for node N, we make sure that the
3262 * zones coming right after the local ones are those from
3263 * node N+1 (modulo N)
3264 */
3265 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3266 if (!node_online(node))
3267 continue;
3268 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3269 MAX_NR_ZONES - 1);
3270 }
3271 for (node = 0; node < local_node; node++) {
3272 if (!node_online(node))
3273 continue;
3274 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3275 MAX_NR_ZONES - 1);
3276 }
3277
3278 zonelist->_zonerefs[j].zone = NULL;
3279 zonelist->_zonerefs[j].zone_idx = 0;
3280 }
3281
3282 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3283 static void build_zonelist_cache(pg_data_t *pgdat)
3284 {
3285 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3286 }
3287
3288 #endif /* CONFIG_NUMA */
3289
3290 /*
3291 * Boot pageset table. One per cpu which is going to be used for all
3292 * zones and all nodes. The parameters will be set in such a way
3293 * that an item put on a list will immediately be handed over to
3294 * the buddy list. This is safe since pageset manipulation is done
3295 * with interrupts disabled.
3296 *
3297 * The boot_pagesets must be kept even after bootup is complete for
3298 * unused processors and/or zones. They do play a role for bootstrapping
3299 * hotplugged processors.
3300 *
3301 * zoneinfo_show() and maybe other functions do
3302 * not check if the processor is online before following the pageset pointer.
3303 * Other parts of the kernel may not check if the zone is available.
3304 */
3305 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3306 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3307 static void setup_zone_pageset(struct zone *zone);
3308
3309 /*
3310 * Global mutex to protect against size modification of zonelists
3311 * as well as to serialize pageset setup for the new populated zone.
3312 */
3313 DEFINE_MUTEX(zonelists_mutex);
3314
3315 /* return values int ....just for stop_machine() */
3316 static __init_refok int __build_all_zonelists(void *data)
3317 {
3318 int nid;
3319 int cpu;
3320
3321 #ifdef CONFIG_NUMA
3322 memset(node_load, 0, sizeof(node_load));
3323 #endif
3324 for_each_online_node(nid) {
3325 pg_data_t *pgdat = NODE_DATA(nid);
3326
3327 build_zonelists(pgdat);
3328 build_zonelist_cache(pgdat);
3329 }
3330
3331 /*
3332 * Initialize the boot_pagesets that are going to be used
3333 * for bootstrapping processors. The real pagesets for
3334 * each zone will be allocated later when the per cpu
3335 * allocator is available.
3336 *
3337 * boot_pagesets are used also for bootstrapping offline
3338 * cpus if the system is already booted because the pagesets
3339 * are needed to initialize allocators on a specific cpu too.
3340 * F.e. the percpu allocator needs the page allocator which
3341 * needs the percpu allocator in order to allocate its pagesets
3342 * (a chicken-egg dilemma).
3343 */
3344 for_each_possible_cpu(cpu) {
3345 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3346
3347 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3348 /*
3349 * We now know the "local memory node" for each node--
3350 * i.e., the node of the first zone in the generic zonelist.
3351 * Set up numa_mem percpu variable for on-line cpus. During
3352 * boot, only the boot cpu should be on-line; we'll init the
3353 * secondary cpus' numa_mem as they come on-line. During
3354 * node/memory hotplug, we'll fixup all on-line cpus.
3355 */
3356 if (cpu_online(cpu))
3357 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3358 #endif
3359 }
3360
3361 return 0;
3362 }
3363
3364 /*
3365 * Called with zonelists_mutex held always
3366 * unless system_state == SYSTEM_BOOTING.
3367 */
3368 void __ref build_all_zonelists(void *data)
3369 {
3370 set_zonelist_order();
3371
3372 if (system_state == SYSTEM_BOOTING) {
3373 __build_all_zonelists(NULL);
3374 mminit_verify_zonelist();
3375 cpuset_init_current_mems_allowed();
3376 } else {
3377 /* we have to stop all cpus to guarantee there is no user
3378 of zonelist */
3379 #ifdef CONFIG_MEMORY_HOTPLUG
3380 if (data)
3381 setup_zone_pageset((struct zone *)data);
3382 #endif
3383 stop_machine(__build_all_zonelists, NULL, NULL);
3384 /* cpuset refresh routine should be here */
3385 }
3386 vm_total_pages = nr_free_pagecache_pages();
3387 /*
3388 * Disable grouping by mobility if the number of pages in the
3389 * system is too low to allow the mechanism to work. It would be
3390 * more accurate, but expensive to check per-zone. This check is
3391 * made on memory-hotadd so a system can start with mobility
3392 * disabled and enable it later
3393 */
3394 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3395 page_group_by_mobility_disabled = 1;
3396 else
3397 page_group_by_mobility_disabled = 0;
3398
3399 printk("Built %i zonelists in %s order, mobility grouping %s. "
3400 "Total pages: %ld\n",
3401 nr_online_nodes,
3402 zonelist_order_name[current_zonelist_order],
3403 page_group_by_mobility_disabled ? "off" : "on",
3404 vm_total_pages);
3405 #ifdef CONFIG_NUMA
3406 printk("Policy zone: %s\n", zone_names[policy_zone]);
3407 #endif
3408 }
3409
3410 /*
3411 * Helper functions to size the waitqueue hash table.
3412 * Essentially these want to choose hash table sizes sufficiently
3413 * large so that collisions trying to wait on pages are rare.
3414 * But in fact, the number of active page waitqueues on typical
3415 * systems is ridiculously low, less than 200. So this is even
3416 * conservative, even though it seems large.
3417 *
3418 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3419 * waitqueues, i.e. the size of the waitq table given the number of pages.
3420 */
3421 #define PAGES_PER_WAITQUEUE 256
3422
3423 #ifndef CONFIG_MEMORY_HOTPLUG
3424 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3425 {
3426 unsigned long size = 1;
3427
3428 pages /= PAGES_PER_WAITQUEUE;
3429
3430 while (size < pages)
3431 size <<= 1;
3432
3433 /*
3434 * Once we have dozens or even hundreds of threads sleeping
3435 * on IO we've got bigger problems than wait queue collision.
3436 * Limit the size of the wait table to a reasonable size.
3437 */
3438 size = min(size, 4096UL);
3439
3440 return max(size, 4UL);
3441 }
3442 #else
3443 /*
3444 * A zone's size might be changed by hot-add, so it is not possible to determine
3445 * a suitable size for its wait_table. So we use the maximum size now.
3446 *
3447 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3448 *
3449 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3450 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3451 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3452 *
3453 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3454 * or more by the traditional way. (See above). It equals:
3455 *
3456 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3457 * ia64(16K page size) : = ( 8G + 4M)byte.
3458 * powerpc (64K page size) : = (32G +16M)byte.
3459 */
3460 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3461 {
3462 return 4096UL;
3463 }
3464 #endif
3465
3466 /*
3467 * This is an integer logarithm so that shifts can be used later
3468 * to extract the more random high bits from the multiplicative
3469 * hash function before the remainder is taken.
3470 */
3471 static inline unsigned long wait_table_bits(unsigned long size)
3472 {
3473 return ffz(~size);
3474 }
3475
3476 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3477
3478 /*
3479 * Check if a pageblock contains reserved pages
3480 */
3481 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3482 {
3483 unsigned long pfn;
3484
3485 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3486 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3487 return 1;
3488 }
3489 return 0;
3490 }
3491
3492 /*
3493 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3494 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3495 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3496 * higher will lead to a bigger reserve which will get freed as contiguous
3497 * blocks as reclaim kicks in
3498 */
3499 static void setup_zone_migrate_reserve(struct zone *zone)
3500 {
3501 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3502 struct page *page;
3503 unsigned long block_migratetype;
3504 int reserve;
3505
3506 /*
3507 * Get the start pfn, end pfn and the number of blocks to reserve
3508 * We have to be careful to be aligned to pageblock_nr_pages to
3509 * make sure that we always check pfn_valid for the first page in
3510 * the block.
3511 */
3512 start_pfn = zone->zone_start_pfn;
3513 end_pfn = start_pfn + zone->spanned_pages;
3514 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3515 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3516 pageblock_order;
3517
3518 /*
3519 * Reserve blocks are generally in place to help high-order atomic
3520 * allocations that are short-lived. A min_free_kbytes value that
3521 * would result in more than 2 reserve blocks for atomic allocations
3522 * is assumed to be in place to help anti-fragmentation for the
3523 * future allocation of hugepages at runtime.
3524 */
3525 reserve = min(2, reserve);
3526
3527 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3528 if (!pfn_valid(pfn))
3529 continue;
3530 page = pfn_to_page(pfn);
3531
3532 /* Watch out for overlapping nodes */
3533 if (page_to_nid(page) != zone_to_nid(zone))
3534 continue;
3535
3536 block_migratetype = get_pageblock_migratetype(page);
3537
3538 /* Only test what is necessary when the reserves are not met */
3539 if (reserve > 0) {
3540 /*
3541 * Blocks with reserved pages will never free, skip
3542 * them.
3543 */
3544 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3545 if (pageblock_is_reserved(pfn, block_end_pfn))
3546 continue;
3547
3548 /* If this block is reserved, account for it */
3549 if (block_migratetype == MIGRATE_RESERVE) {
3550 reserve--;
3551 continue;
3552 }
3553
3554 /* Suitable for reserving if this block is movable */
3555 if (block_migratetype == MIGRATE_MOVABLE) {
3556 set_pageblock_migratetype(page,
3557 MIGRATE_RESERVE);
3558 move_freepages_block(zone, page,
3559 MIGRATE_RESERVE);
3560 reserve--;
3561 continue;
3562 }
3563 }
3564
3565 /*
3566 * If the reserve is met and this is a previous reserved block,
3567 * take it back
3568 */
3569 if (block_migratetype == MIGRATE_RESERVE) {
3570 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3571 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3572 }
3573 }
3574 }
3575
3576 /*
3577 * Initially all pages are reserved - free ones are freed
3578 * up by free_all_bootmem() once the early boot process is
3579 * done. Non-atomic initialization, single-pass.
3580 */
3581 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3582 unsigned long start_pfn, enum memmap_context context)
3583 {
3584 struct page *page;
3585 unsigned long end_pfn = start_pfn + size;
3586 unsigned long pfn;
3587 struct zone *z;
3588
3589 if (highest_memmap_pfn < end_pfn - 1)
3590 highest_memmap_pfn = end_pfn - 1;
3591
3592 z = &NODE_DATA(nid)->node_zones[zone];
3593 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3594 /*
3595 * There can be holes in boot-time mem_map[]s
3596 * handed to this function. They do not
3597 * exist on hotplugged memory.
3598 */
3599 if (context == MEMMAP_EARLY) {
3600 if (!early_pfn_valid(pfn))
3601 continue;
3602 if (!early_pfn_in_nid(pfn, nid))
3603 continue;
3604 }
3605 page = pfn_to_page(pfn);
3606 set_page_links(page, zone, nid, pfn);
3607 mminit_verify_page_links(page, zone, nid, pfn);
3608 init_page_count(page);
3609 reset_page_mapcount(page);
3610 SetPageReserved(page);
3611 /*
3612 * Mark the block movable so that blocks are reserved for
3613 * movable at startup. This will force kernel allocations
3614 * to reserve their blocks rather than leaking throughout
3615 * the address space during boot when many long-lived
3616 * kernel allocations are made. Later some blocks near
3617 * the start are marked MIGRATE_RESERVE by
3618 * setup_zone_migrate_reserve()
3619 *
3620 * bitmap is created for zone's valid pfn range. but memmap
3621 * can be created for invalid pages (for alignment)
3622 * check here not to call set_pageblock_migratetype() against
3623 * pfn out of zone.
3624 */
3625 if ((z->zone_start_pfn <= pfn)
3626 && (pfn < z->zone_start_pfn + z->spanned_pages)
3627 && !(pfn & (pageblock_nr_pages - 1)))
3628 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3629
3630 INIT_LIST_HEAD(&page->lru);
3631 #ifdef WANT_PAGE_VIRTUAL
3632 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3633 if (!is_highmem_idx(zone))
3634 set_page_address(page, __va(pfn << PAGE_SHIFT));
3635 #endif
3636 }
3637 }
3638
3639 static void __meminit zone_init_free_lists(struct zone *zone)
3640 {
3641 int order, t;
3642 for_each_migratetype_order(order, t) {
3643 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3644 zone->free_area[order].nr_free = 0;
3645 }
3646 }
3647
3648 #ifndef __HAVE_ARCH_MEMMAP_INIT
3649 #define memmap_init(size, nid, zone, start_pfn) \
3650 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3651 #endif
3652
3653 static int zone_batchsize(struct zone *zone)
3654 {
3655 #ifdef CONFIG_MMU
3656 int batch;
3657
3658 /*
3659 * The per-cpu-pages pools are set to around 1000th of the
3660 * size of the zone. But no more than 1/2 of a meg.
3661 *
3662 * OK, so we don't know how big the cache is. So guess.
3663 */
3664 batch = zone->present_pages / 1024;
3665 if (batch * PAGE_SIZE > 512 * 1024)
3666 batch = (512 * 1024) / PAGE_SIZE;
3667 batch /= 4; /* We effectively *= 4 below */
3668 if (batch < 1)
3669 batch = 1;
3670
3671 /*
3672 * Clamp the batch to a 2^n - 1 value. Having a power
3673 * of 2 value was found to be more likely to have
3674 * suboptimal cache aliasing properties in some cases.
3675 *
3676 * For example if 2 tasks are alternately allocating
3677 * batches of pages, one task can end up with a lot
3678 * of pages of one half of the possible page colors
3679 * and the other with pages of the other colors.
3680 */
3681 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3682
3683 return batch;
3684
3685 #else
3686 /* The deferral and batching of frees should be suppressed under NOMMU
3687 * conditions.
3688 *
3689 * The problem is that NOMMU needs to be able to allocate large chunks
3690 * of contiguous memory as there's no hardware page translation to
3691 * assemble apparent contiguous memory from discontiguous pages.
3692 *
3693 * Queueing large contiguous runs of pages for batching, however,
3694 * causes the pages to actually be freed in smaller chunks. As there
3695 * can be a significant delay between the individual batches being
3696 * recycled, this leads to the once large chunks of space being
3697 * fragmented and becoming unavailable for high-order allocations.
3698 */
3699 return 0;
3700 #endif
3701 }
3702
3703 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3704 {
3705 struct per_cpu_pages *pcp;
3706 int migratetype;
3707
3708 memset(p, 0, sizeof(*p));
3709
3710 pcp = &p->pcp;
3711 pcp->count = 0;
3712 pcp->high = 6 * batch;
3713 pcp->batch = max(1UL, 1 * batch);
3714 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3715 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3716 }
3717
3718 /*
3719 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3720 * to the value high for the pageset p.
3721 */
3722
3723 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3724 unsigned long high)
3725 {
3726 struct per_cpu_pages *pcp;
3727
3728 pcp = &p->pcp;
3729 pcp->high = high;
3730 pcp->batch = max(1UL, high/4);
3731 if ((high/4) > (PAGE_SHIFT * 8))
3732 pcp->batch = PAGE_SHIFT * 8;
3733 }
3734
3735 static void setup_zone_pageset(struct zone *zone)
3736 {
3737 int cpu;
3738
3739 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3740
3741 for_each_possible_cpu(cpu) {
3742 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3743
3744 setup_pageset(pcp, zone_batchsize(zone));
3745
3746 if (percpu_pagelist_fraction)
3747 setup_pagelist_highmark(pcp,
3748 (zone->present_pages /
3749 percpu_pagelist_fraction));
3750 }
3751 }
3752
3753 /*
3754 * Allocate per cpu pagesets and initialize them.
3755 * Before this call only boot pagesets were available.
3756 */
3757 void __init setup_per_cpu_pageset(void)
3758 {
3759 struct zone *zone;
3760
3761 for_each_populated_zone(zone)
3762 setup_zone_pageset(zone);
3763 }
3764
3765 static noinline __init_refok
3766 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3767 {
3768 int i;
3769 struct pglist_data *pgdat = zone->zone_pgdat;
3770 size_t alloc_size;
3771
3772 /*
3773 * The per-page waitqueue mechanism uses hashed waitqueues
3774 * per zone.
3775 */
3776 zone->wait_table_hash_nr_entries =
3777 wait_table_hash_nr_entries(zone_size_pages);
3778 zone->wait_table_bits =
3779 wait_table_bits(zone->wait_table_hash_nr_entries);
3780 alloc_size = zone->wait_table_hash_nr_entries
3781 * sizeof(wait_queue_head_t);
3782
3783 if (!slab_is_available()) {
3784 zone->wait_table = (wait_queue_head_t *)
3785 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3786 } else {
3787 /*
3788 * This case means that a zone whose size was 0 gets new memory
3789 * via memory hot-add.
3790 * But it may be the case that a new node was hot-added. In
3791 * this case vmalloc() will not be able to use this new node's
3792 * memory - this wait_table must be initialized to use this new
3793 * node itself as well.
3794 * To use this new node's memory, further consideration will be
3795 * necessary.
3796 */
3797 zone->wait_table = vmalloc(alloc_size);
3798 }
3799 if (!zone->wait_table)
3800 return -ENOMEM;
3801
3802 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3803 init_waitqueue_head(zone->wait_table + i);
3804
3805 return 0;
3806 }
3807
3808 static int __zone_pcp_update(void *data)
3809 {
3810 struct zone *zone = data;
3811 int cpu;
3812 unsigned long batch = zone_batchsize(zone), flags;
3813
3814 for_each_possible_cpu(cpu) {
3815 struct per_cpu_pageset *pset;
3816 struct per_cpu_pages *pcp;
3817
3818 pset = per_cpu_ptr(zone->pageset, cpu);
3819 pcp = &pset->pcp;
3820
3821 local_irq_save(flags);
3822 free_pcppages_bulk(zone, pcp->count, pcp);
3823 setup_pageset(pset, batch);
3824 local_irq_restore(flags);
3825 }
3826 return 0;
3827 }
3828
3829 void zone_pcp_update(struct zone *zone)
3830 {
3831 stop_machine(__zone_pcp_update, zone, NULL);
3832 }
3833
3834 static __meminit void zone_pcp_init(struct zone *zone)
3835 {
3836 /*
3837 * per cpu subsystem is not up at this point. The following code
3838 * relies on the ability of the linker to provide the
3839 * offset of a (static) per cpu variable into the per cpu area.
3840 */
3841 zone->pageset = &boot_pageset;
3842
3843 if (zone->present_pages)
3844 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3845 zone->name, zone->present_pages,
3846 zone_batchsize(zone));
3847 }
3848
3849 __meminit int init_currently_empty_zone(struct zone *zone,
3850 unsigned long zone_start_pfn,
3851 unsigned long size,
3852 enum memmap_context context)
3853 {
3854 struct pglist_data *pgdat = zone->zone_pgdat;
3855 int ret;
3856 ret = zone_wait_table_init(zone, size);
3857 if (ret)
3858 return ret;
3859 pgdat->nr_zones = zone_idx(zone) + 1;
3860
3861 zone->zone_start_pfn = zone_start_pfn;
3862
3863 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3864 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3865 pgdat->node_id,
3866 (unsigned long)zone_idx(zone),
3867 zone_start_pfn, (zone_start_pfn + size));
3868
3869 zone_init_free_lists(zone);
3870
3871 return 0;
3872 }
3873
3874 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3875 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3876 /*
3877 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3878 * Architectures may implement their own version but if add_active_range()
3879 * was used and there are no special requirements, this is a convenient
3880 * alternative
3881 */
3882 int __meminit __early_pfn_to_nid(unsigned long pfn)
3883 {
3884 unsigned long start_pfn, end_pfn;
3885 int i, nid;
3886
3887 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3888 if (start_pfn <= pfn && pfn < end_pfn)
3889 return nid;
3890 /* This is a memory hole */
3891 return -1;
3892 }
3893 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3894
3895 int __meminit early_pfn_to_nid(unsigned long pfn)
3896 {
3897 int nid;
3898
3899 nid = __early_pfn_to_nid(pfn);
3900 if (nid >= 0)
3901 return nid;
3902 /* just returns 0 */
3903 return 0;
3904 }
3905
3906 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3907 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3908 {
3909 int nid;
3910
3911 nid = __early_pfn_to_nid(pfn);
3912 if (nid >= 0 && nid != node)
3913 return false;
3914 return true;
3915 }
3916 #endif
3917
3918 /**
3919 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3920 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3921 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3922 *
3923 * If an architecture guarantees that all ranges registered with
3924 * add_active_ranges() contain no holes and may be freed, this
3925 * this function may be used instead of calling free_bootmem() manually.
3926 */
3927 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
3928 {
3929 unsigned long start_pfn, end_pfn;
3930 int i, this_nid;
3931
3932 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
3933 start_pfn = min(start_pfn, max_low_pfn);
3934 end_pfn = min(end_pfn, max_low_pfn);
3935
3936 if (start_pfn < end_pfn)
3937 free_bootmem_node(NODE_DATA(this_nid),
3938 PFN_PHYS(start_pfn),
3939 (end_pfn - start_pfn) << PAGE_SHIFT);
3940 }
3941 }
3942
3943 int __init add_from_early_node_map(struct range *range, int az,
3944 int nr_range, int nid)
3945 {
3946 unsigned long start_pfn, end_pfn;
3947 int i;
3948
3949 /* need to go over early_node_map to find out good range for node */
3950 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL)
3951 nr_range = add_range(range, az, nr_range, start_pfn, end_pfn);
3952 return nr_range;
3953 }
3954
3955 /**
3956 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3957 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3958 *
3959 * If an architecture guarantees that all ranges registered with
3960 * add_active_ranges() contain no holes and may be freed, this
3961 * function may be used instead of calling memory_present() manually.
3962 */
3963 void __init sparse_memory_present_with_active_regions(int nid)
3964 {
3965 unsigned long start_pfn, end_pfn;
3966 int i, this_nid;
3967
3968 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
3969 memory_present(this_nid, start_pfn, end_pfn);
3970 }
3971
3972 /**
3973 * get_pfn_range_for_nid - Return the start and end page frames for a node
3974 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3975 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3976 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3977 *
3978 * It returns the start and end page frame of a node based on information
3979 * provided by an arch calling add_active_range(). If called for a node
3980 * with no available memory, a warning is printed and the start and end
3981 * PFNs will be 0.
3982 */
3983 void __meminit get_pfn_range_for_nid(unsigned int nid,
3984 unsigned long *start_pfn, unsigned long *end_pfn)
3985 {
3986 unsigned long this_start_pfn, this_end_pfn;
3987 int i;
3988
3989 *start_pfn = -1UL;
3990 *end_pfn = 0;
3991
3992 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
3993 *start_pfn = min(*start_pfn, this_start_pfn);
3994 *end_pfn = max(*end_pfn, this_end_pfn);
3995 }
3996
3997 if (*start_pfn == -1UL)
3998 *start_pfn = 0;
3999 }
4000
4001 /*
4002 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4003 * assumption is made that zones within a node are ordered in monotonic
4004 * increasing memory addresses so that the "highest" populated zone is used
4005 */
4006 static void __init find_usable_zone_for_movable(void)
4007 {
4008 int zone_index;
4009 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4010 if (zone_index == ZONE_MOVABLE)
4011 continue;
4012
4013 if (arch_zone_highest_possible_pfn[zone_index] >
4014 arch_zone_lowest_possible_pfn[zone_index])
4015 break;
4016 }
4017
4018 VM_BUG_ON(zone_index == -1);
4019 movable_zone = zone_index;
4020 }
4021
4022 /*
4023 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4024 * because it is sized independent of architecture. Unlike the other zones,
4025 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4026 * in each node depending on the size of each node and how evenly kernelcore
4027 * is distributed. This helper function adjusts the zone ranges
4028 * provided by the architecture for a given node by using the end of the
4029 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4030 * zones within a node are in order of monotonic increases memory addresses
4031 */
4032 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4033 unsigned long zone_type,
4034 unsigned long node_start_pfn,
4035 unsigned long node_end_pfn,
4036 unsigned long *zone_start_pfn,
4037 unsigned long *zone_end_pfn)
4038 {
4039 /* Only adjust if ZONE_MOVABLE is on this node */
4040 if (zone_movable_pfn[nid]) {
4041 /* Size ZONE_MOVABLE */
4042 if (zone_type == ZONE_MOVABLE) {
4043 *zone_start_pfn = zone_movable_pfn[nid];
4044 *zone_end_pfn = min(node_end_pfn,
4045 arch_zone_highest_possible_pfn[movable_zone]);
4046
4047 /* Adjust for ZONE_MOVABLE starting within this range */
4048 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4049 *zone_end_pfn > zone_movable_pfn[nid]) {
4050 *zone_end_pfn = zone_movable_pfn[nid];
4051
4052 /* Check if this whole range is within ZONE_MOVABLE */
4053 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4054 *zone_start_pfn = *zone_end_pfn;
4055 }
4056 }
4057
4058 /*
4059 * Return the number of pages a zone spans in a node, including holes
4060 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4061 */
4062 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4063 unsigned long zone_type,
4064 unsigned long *ignored)
4065 {
4066 unsigned long node_start_pfn, node_end_pfn;
4067 unsigned long zone_start_pfn, zone_end_pfn;
4068
4069 /* Get the start and end of the node and zone */
4070 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4071 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4072 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4073 adjust_zone_range_for_zone_movable(nid, zone_type,
4074 node_start_pfn, node_end_pfn,
4075 &zone_start_pfn, &zone_end_pfn);
4076
4077 /* Check that this node has pages within the zone's required range */
4078 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4079 return 0;
4080
4081 /* Move the zone boundaries inside the node if necessary */
4082 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4083 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4084
4085 /* Return the spanned pages */
4086 return zone_end_pfn - zone_start_pfn;
4087 }
4088
4089 /*
4090 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4091 * then all holes in the requested range will be accounted for.
4092 */
4093 unsigned long __meminit __absent_pages_in_range(int nid,
4094 unsigned long range_start_pfn,
4095 unsigned long range_end_pfn)
4096 {
4097 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4098 unsigned long start_pfn, end_pfn;
4099 int i;
4100
4101 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4102 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4103 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4104 nr_absent -= end_pfn - start_pfn;
4105 }
4106 return nr_absent;
4107 }
4108
4109 /**
4110 * absent_pages_in_range - Return number of page frames in holes within a range
4111 * @start_pfn: The start PFN to start searching for holes
4112 * @end_pfn: The end PFN to stop searching for holes
4113 *
4114 * It returns the number of pages frames in memory holes within a range.
4115 */
4116 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4117 unsigned long end_pfn)
4118 {
4119 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4120 }
4121
4122 /* Return the number of page frames in holes in a zone on a node */
4123 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4124 unsigned long zone_type,
4125 unsigned long *ignored)
4126 {
4127 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4128 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4129 unsigned long node_start_pfn, node_end_pfn;
4130 unsigned long zone_start_pfn, zone_end_pfn;
4131
4132 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4133 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4134 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4135
4136 adjust_zone_range_for_zone_movable(nid, zone_type,
4137 node_start_pfn, node_end_pfn,
4138 &zone_start_pfn, &zone_end_pfn);
4139 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4140 }
4141
4142 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4143 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4144 unsigned long zone_type,
4145 unsigned long *zones_size)
4146 {
4147 return zones_size[zone_type];
4148 }
4149
4150 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4151 unsigned long zone_type,
4152 unsigned long *zholes_size)
4153 {
4154 if (!zholes_size)
4155 return 0;
4156
4157 return zholes_size[zone_type];
4158 }
4159
4160 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4161
4162 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4163 unsigned long *zones_size, unsigned long *zholes_size)
4164 {
4165 unsigned long realtotalpages, totalpages = 0;
4166 enum zone_type i;
4167
4168 for (i = 0; i < MAX_NR_ZONES; i++)
4169 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4170 zones_size);
4171 pgdat->node_spanned_pages = totalpages;
4172
4173 realtotalpages = totalpages;
4174 for (i = 0; i < MAX_NR_ZONES; i++)
4175 realtotalpages -=
4176 zone_absent_pages_in_node(pgdat->node_id, i,
4177 zholes_size);
4178 pgdat->node_present_pages = realtotalpages;
4179 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4180 realtotalpages);
4181 }
4182
4183 #ifndef CONFIG_SPARSEMEM
4184 /*
4185 * Calculate the size of the zone->blockflags rounded to an unsigned long
4186 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4187 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4188 * round what is now in bits to nearest long in bits, then return it in
4189 * bytes.
4190 */
4191 static unsigned long __init usemap_size(unsigned long zonesize)
4192 {
4193 unsigned long usemapsize;
4194
4195 usemapsize = roundup(zonesize, pageblock_nr_pages);
4196 usemapsize = usemapsize >> pageblock_order;
4197 usemapsize *= NR_PAGEBLOCK_BITS;
4198 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4199
4200 return usemapsize / 8;
4201 }
4202
4203 static void __init setup_usemap(struct pglist_data *pgdat,
4204 struct zone *zone, unsigned long zonesize)
4205 {
4206 unsigned long usemapsize = usemap_size(zonesize);
4207 zone->pageblock_flags = NULL;
4208 if (usemapsize)
4209 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4210 usemapsize);
4211 }
4212 #else
4213 static inline void setup_usemap(struct pglist_data *pgdat,
4214 struct zone *zone, unsigned long zonesize) {}
4215 #endif /* CONFIG_SPARSEMEM */
4216
4217 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4218
4219 /* Return a sensible default order for the pageblock size. */
4220 static inline int pageblock_default_order(void)
4221 {
4222 if (HPAGE_SHIFT > PAGE_SHIFT)
4223 return HUGETLB_PAGE_ORDER;
4224
4225 return MAX_ORDER-1;
4226 }
4227
4228 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4229 static inline void __init set_pageblock_order(unsigned int order)
4230 {
4231 /* Check that pageblock_nr_pages has not already been setup */
4232 if (pageblock_order)
4233 return;
4234
4235 /*
4236 * Assume the largest contiguous order of interest is a huge page.
4237 * This value may be variable depending on boot parameters on IA64
4238 */
4239 pageblock_order = order;
4240 }
4241 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4242
4243 /*
4244 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4245 * and pageblock_default_order() are unused as pageblock_order is set
4246 * at compile-time. See include/linux/pageblock-flags.h for the values of
4247 * pageblock_order based on the kernel config
4248 */
4249 static inline int pageblock_default_order(unsigned int order)
4250 {
4251 return MAX_ORDER-1;
4252 }
4253 #define set_pageblock_order(x) do {} while (0)
4254
4255 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4256
4257 /*
4258 * Set up the zone data structures:
4259 * - mark all pages reserved
4260 * - mark all memory queues empty
4261 * - clear the memory bitmaps
4262 */
4263 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4264 unsigned long *zones_size, unsigned long *zholes_size)
4265 {
4266 enum zone_type j;
4267 int nid = pgdat->node_id;
4268 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4269 int ret;
4270
4271 pgdat_resize_init(pgdat);
4272 pgdat->nr_zones = 0;
4273 init_waitqueue_head(&pgdat->kswapd_wait);
4274 pgdat->kswapd_max_order = 0;
4275 pgdat_page_cgroup_init(pgdat);
4276
4277 for (j = 0; j < MAX_NR_ZONES; j++) {
4278 struct zone *zone = pgdat->node_zones + j;
4279 unsigned long size, realsize, memmap_pages;
4280 enum lru_list lru;
4281
4282 size = zone_spanned_pages_in_node(nid, j, zones_size);
4283 realsize = size - zone_absent_pages_in_node(nid, j,
4284 zholes_size);
4285
4286 /*
4287 * Adjust realsize so that it accounts for how much memory
4288 * is used by this zone for memmap. This affects the watermark
4289 * and per-cpu initialisations
4290 */
4291 memmap_pages =
4292 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4293 if (realsize >= memmap_pages) {
4294 realsize -= memmap_pages;
4295 if (memmap_pages)
4296 printk(KERN_DEBUG
4297 " %s zone: %lu pages used for memmap\n",
4298 zone_names[j], memmap_pages);
4299 } else
4300 printk(KERN_WARNING
4301 " %s zone: %lu pages exceeds realsize %lu\n",
4302 zone_names[j], memmap_pages, realsize);
4303
4304 /* Account for reserved pages */
4305 if (j == 0 && realsize > dma_reserve) {
4306 realsize -= dma_reserve;
4307 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4308 zone_names[0], dma_reserve);
4309 }
4310
4311 if (!is_highmem_idx(j))
4312 nr_kernel_pages += realsize;
4313 nr_all_pages += realsize;
4314
4315 zone->spanned_pages = size;
4316 zone->present_pages = realsize;
4317 #ifdef CONFIG_NUMA
4318 zone->node = nid;
4319 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4320 / 100;
4321 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4322 #endif
4323 zone->name = zone_names[j];
4324 spin_lock_init(&zone->lock);
4325 spin_lock_init(&zone->lru_lock);
4326 zone_seqlock_init(zone);
4327 zone->zone_pgdat = pgdat;
4328
4329 zone_pcp_init(zone);
4330 for_each_lru(lru)
4331 INIT_LIST_HEAD(&zone->lruvec.lists[lru]);
4332 zone->reclaim_stat.recent_rotated[0] = 0;
4333 zone->reclaim_stat.recent_rotated[1] = 0;
4334 zone->reclaim_stat.recent_scanned[0] = 0;
4335 zone->reclaim_stat.recent_scanned[1] = 0;
4336 zap_zone_vm_stats(zone);
4337 zone->flags = 0;
4338 if (!size)
4339 continue;
4340
4341 set_pageblock_order(pageblock_default_order());
4342 setup_usemap(pgdat, zone, size);
4343 ret = init_currently_empty_zone(zone, zone_start_pfn,
4344 size, MEMMAP_EARLY);
4345 BUG_ON(ret);
4346 memmap_init(size, nid, j, zone_start_pfn);
4347 zone_start_pfn += size;
4348 }
4349 }
4350
4351 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4352 {
4353 /* Skip empty nodes */
4354 if (!pgdat->node_spanned_pages)
4355 return;
4356
4357 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4358 /* ia64 gets its own node_mem_map, before this, without bootmem */
4359 if (!pgdat->node_mem_map) {
4360 unsigned long size, start, end;
4361 struct page *map;
4362
4363 /*
4364 * The zone's endpoints aren't required to be MAX_ORDER
4365 * aligned but the node_mem_map endpoints must be in order
4366 * for the buddy allocator to function correctly.
4367 */
4368 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4369 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4370 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4371 size = (end - start) * sizeof(struct page);
4372 map = alloc_remap(pgdat->node_id, size);
4373 if (!map)
4374 map = alloc_bootmem_node_nopanic(pgdat, size);
4375 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4376 }
4377 #ifndef CONFIG_NEED_MULTIPLE_NODES
4378 /*
4379 * With no DISCONTIG, the global mem_map is just set as node 0's
4380 */
4381 if (pgdat == NODE_DATA(0)) {
4382 mem_map = NODE_DATA(0)->node_mem_map;
4383 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4384 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4385 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4386 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4387 }
4388 #endif
4389 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4390 }
4391
4392 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4393 unsigned long node_start_pfn, unsigned long *zholes_size)
4394 {
4395 pg_data_t *pgdat = NODE_DATA(nid);
4396
4397 pgdat->node_id = nid;
4398 pgdat->node_start_pfn = node_start_pfn;
4399 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4400
4401 alloc_node_mem_map(pgdat);
4402 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4403 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4404 nid, (unsigned long)pgdat,
4405 (unsigned long)pgdat->node_mem_map);
4406 #endif
4407
4408 free_area_init_core(pgdat, zones_size, zholes_size);
4409 }
4410
4411 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4412
4413 #if MAX_NUMNODES > 1
4414 /*
4415 * Figure out the number of possible node ids.
4416 */
4417 static void __init setup_nr_node_ids(void)
4418 {
4419 unsigned int node;
4420 unsigned int highest = 0;
4421
4422 for_each_node_mask(node, node_possible_map)
4423 highest = node;
4424 nr_node_ids = highest + 1;
4425 }
4426 #else
4427 static inline void setup_nr_node_ids(void)
4428 {
4429 }
4430 #endif
4431
4432 /**
4433 * node_map_pfn_alignment - determine the maximum internode alignment
4434 *
4435 * This function should be called after node map is populated and sorted.
4436 * It calculates the maximum power of two alignment which can distinguish
4437 * all the nodes.
4438 *
4439 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4440 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4441 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4442 * shifted, 1GiB is enough and this function will indicate so.
4443 *
4444 * This is used to test whether pfn -> nid mapping of the chosen memory
4445 * model has fine enough granularity to avoid incorrect mapping for the
4446 * populated node map.
4447 *
4448 * Returns the determined alignment in pfn's. 0 if there is no alignment
4449 * requirement (single node).
4450 */
4451 unsigned long __init node_map_pfn_alignment(void)
4452 {
4453 unsigned long accl_mask = 0, last_end = 0;
4454 unsigned long start, end, mask;
4455 int last_nid = -1;
4456 int i, nid;
4457
4458 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4459 if (!start || last_nid < 0 || last_nid == nid) {
4460 last_nid = nid;
4461 last_end = end;
4462 continue;
4463 }
4464
4465 /*
4466 * Start with a mask granular enough to pin-point to the
4467 * start pfn and tick off bits one-by-one until it becomes
4468 * too coarse to separate the current node from the last.
4469 */
4470 mask = ~((1 << __ffs(start)) - 1);
4471 while (mask && last_end <= (start & (mask << 1)))
4472 mask <<= 1;
4473
4474 /* accumulate all internode masks */
4475 accl_mask |= mask;
4476 }
4477
4478 /* convert mask to number of pages */
4479 return ~accl_mask + 1;
4480 }
4481
4482 /* Find the lowest pfn for a node */
4483 static unsigned long __init find_min_pfn_for_node(int nid)
4484 {
4485 unsigned long min_pfn = ULONG_MAX;
4486 unsigned long start_pfn;
4487 int i;
4488
4489 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4490 min_pfn = min(min_pfn, start_pfn);
4491
4492 if (min_pfn == ULONG_MAX) {
4493 printk(KERN_WARNING
4494 "Could not find start_pfn for node %d\n", nid);
4495 return 0;
4496 }
4497
4498 return min_pfn;
4499 }
4500
4501 /**
4502 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4503 *
4504 * It returns the minimum PFN based on information provided via
4505 * add_active_range().
4506 */
4507 unsigned long __init find_min_pfn_with_active_regions(void)
4508 {
4509 return find_min_pfn_for_node(MAX_NUMNODES);
4510 }
4511
4512 /*
4513 * early_calculate_totalpages()
4514 * Sum pages in active regions for movable zone.
4515 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4516 */
4517 static unsigned long __init early_calculate_totalpages(void)
4518 {
4519 unsigned long totalpages = 0;
4520 unsigned long start_pfn, end_pfn;
4521 int i, nid;
4522
4523 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4524 unsigned long pages = end_pfn - start_pfn;
4525
4526 totalpages += pages;
4527 if (pages)
4528 node_set_state(nid, N_HIGH_MEMORY);
4529 }
4530 return totalpages;
4531 }
4532
4533 /*
4534 * Find the PFN the Movable zone begins in each node. Kernel memory
4535 * is spread evenly between nodes as long as the nodes have enough
4536 * memory. When they don't, some nodes will have more kernelcore than
4537 * others
4538 */
4539 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4540 {
4541 int i, nid;
4542 unsigned long usable_startpfn;
4543 unsigned long kernelcore_node, kernelcore_remaining;
4544 /* save the state before borrow the nodemask */
4545 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4546 unsigned long totalpages = early_calculate_totalpages();
4547 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4548
4549 /*
4550 * If movablecore was specified, calculate what size of
4551 * kernelcore that corresponds so that memory usable for
4552 * any allocation type is evenly spread. If both kernelcore
4553 * and movablecore are specified, then the value of kernelcore
4554 * will be used for required_kernelcore if it's greater than
4555 * what movablecore would have allowed.
4556 */
4557 if (required_movablecore) {
4558 unsigned long corepages;
4559
4560 /*
4561 * Round-up so that ZONE_MOVABLE is at least as large as what
4562 * was requested by the user
4563 */
4564 required_movablecore =
4565 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4566 corepages = totalpages - required_movablecore;
4567
4568 required_kernelcore = max(required_kernelcore, corepages);
4569 }
4570
4571 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4572 if (!required_kernelcore)
4573 goto out;
4574
4575 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4576 find_usable_zone_for_movable();
4577 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4578
4579 restart:
4580 /* Spread kernelcore memory as evenly as possible throughout nodes */
4581 kernelcore_node = required_kernelcore / usable_nodes;
4582 for_each_node_state(nid, N_HIGH_MEMORY) {
4583 unsigned long start_pfn, end_pfn;
4584
4585 /*
4586 * Recalculate kernelcore_node if the division per node
4587 * now exceeds what is necessary to satisfy the requested
4588 * amount of memory for the kernel
4589 */
4590 if (required_kernelcore < kernelcore_node)
4591 kernelcore_node = required_kernelcore / usable_nodes;
4592
4593 /*
4594 * As the map is walked, we track how much memory is usable
4595 * by the kernel using kernelcore_remaining. When it is
4596 * 0, the rest of the node is usable by ZONE_MOVABLE
4597 */
4598 kernelcore_remaining = kernelcore_node;
4599
4600 /* Go through each range of PFNs within this node */
4601 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4602 unsigned long size_pages;
4603
4604 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4605 if (start_pfn >= end_pfn)
4606 continue;
4607
4608 /* Account for what is only usable for kernelcore */
4609 if (start_pfn < usable_startpfn) {
4610 unsigned long kernel_pages;
4611 kernel_pages = min(end_pfn, usable_startpfn)
4612 - start_pfn;
4613
4614 kernelcore_remaining -= min(kernel_pages,
4615 kernelcore_remaining);
4616 required_kernelcore -= min(kernel_pages,
4617 required_kernelcore);
4618
4619 /* Continue if range is now fully accounted */
4620 if (end_pfn <= usable_startpfn) {
4621
4622 /*
4623 * Push zone_movable_pfn to the end so
4624 * that if we have to rebalance
4625 * kernelcore across nodes, we will
4626 * not double account here
4627 */
4628 zone_movable_pfn[nid] = end_pfn;
4629 continue;
4630 }
4631 start_pfn = usable_startpfn;
4632 }
4633
4634 /*
4635 * The usable PFN range for ZONE_MOVABLE is from
4636 * start_pfn->end_pfn. Calculate size_pages as the
4637 * number of pages used as kernelcore
4638 */
4639 size_pages = end_pfn - start_pfn;
4640 if (size_pages > kernelcore_remaining)
4641 size_pages = kernelcore_remaining;
4642 zone_movable_pfn[nid] = start_pfn + size_pages;
4643
4644 /*
4645 * Some kernelcore has been met, update counts and
4646 * break if the kernelcore for this node has been
4647 * satisified
4648 */
4649 required_kernelcore -= min(required_kernelcore,
4650 size_pages);
4651 kernelcore_remaining -= size_pages;
4652 if (!kernelcore_remaining)
4653 break;
4654 }
4655 }
4656
4657 /*
4658 * If there is still required_kernelcore, we do another pass with one
4659 * less node in the count. This will push zone_movable_pfn[nid] further
4660 * along on the nodes that still have memory until kernelcore is
4661 * satisified
4662 */
4663 usable_nodes--;
4664 if (usable_nodes && required_kernelcore > usable_nodes)
4665 goto restart;
4666
4667 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4668 for (nid = 0; nid < MAX_NUMNODES; nid++)
4669 zone_movable_pfn[nid] =
4670 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4671
4672 out:
4673 /* restore the node_state */
4674 node_states[N_HIGH_MEMORY] = saved_node_state;
4675 }
4676
4677 /* Any regular memory on that node ? */
4678 static void check_for_regular_memory(pg_data_t *pgdat)
4679 {
4680 #ifdef CONFIG_HIGHMEM
4681 enum zone_type zone_type;
4682
4683 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4684 struct zone *zone = &pgdat->node_zones[zone_type];
4685 if (zone->present_pages) {
4686 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4687 break;
4688 }
4689 }
4690 #endif
4691 }
4692
4693 /**
4694 * free_area_init_nodes - Initialise all pg_data_t and zone data
4695 * @max_zone_pfn: an array of max PFNs for each zone
4696 *
4697 * This will call free_area_init_node() for each active node in the system.
4698 * Using the page ranges provided by add_active_range(), the size of each
4699 * zone in each node and their holes is calculated. If the maximum PFN
4700 * between two adjacent zones match, it is assumed that the zone is empty.
4701 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4702 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4703 * starts where the previous one ended. For example, ZONE_DMA32 starts
4704 * at arch_max_dma_pfn.
4705 */
4706 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4707 {
4708 unsigned long start_pfn, end_pfn;
4709 int i, nid;
4710
4711 /* Record where the zone boundaries are */
4712 memset(arch_zone_lowest_possible_pfn, 0,
4713 sizeof(arch_zone_lowest_possible_pfn));
4714 memset(arch_zone_highest_possible_pfn, 0,
4715 sizeof(arch_zone_highest_possible_pfn));
4716 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4717 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4718 for (i = 1; i < MAX_NR_ZONES; i++) {
4719 if (i == ZONE_MOVABLE)
4720 continue;
4721 arch_zone_lowest_possible_pfn[i] =
4722 arch_zone_highest_possible_pfn[i-1];
4723 arch_zone_highest_possible_pfn[i] =
4724 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4725 }
4726 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4727 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4728
4729 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4730 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4731 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4732
4733 /* Print out the zone ranges */
4734 printk("Zone PFN ranges:\n");
4735 for (i = 0; i < MAX_NR_ZONES; i++) {
4736 if (i == ZONE_MOVABLE)
4737 continue;
4738 printk(" %-8s ", zone_names[i]);
4739 if (arch_zone_lowest_possible_pfn[i] ==
4740 arch_zone_highest_possible_pfn[i])
4741 printk("empty\n");
4742 else
4743 printk("%0#10lx -> %0#10lx\n",
4744 arch_zone_lowest_possible_pfn[i],
4745 arch_zone_highest_possible_pfn[i]);
4746 }
4747
4748 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4749 printk("Movable zone start PFN for each node\n");
4750 for (i = 0; i < MAX_NUMNODES; i++) {
4751 if (zone_movable_pfn[i])
4752 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4753 }
4754
4755 /* Print out the early_node_map[] */
4756 printk("Early memory PFN ranges\n");
4757 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4758 printk(" %3d: %0#10lx -> %0#10lx\n", nid, start_pfn, end_pfn);
4759
4760 /* Initialise every node */
4761 mminit_verify_pageflags_layout();
4762 setup_nr_node_ids();
4763 for_each_online_node(nid) {
4764 pg_data_t *pgdat = NODE_DATA(nid);
4765 free_area_init_node(nid, NULL,
4766 find_min_pfn_for_node(nid), NULL);
4767
4768 /* Any memory on that node */
4769 if (pgdat->node_present_pages)
4770 node_set_state(nid, N_HIGH_MEMORY);
4771 check_for_regular_memory(pgdat);
4772 }
4773 }
4774
4775 static int __init cmdline_parse_core(char *p, unsigned long *core)
4776 {
4777 unsigned long long coremem;
4778 if (!p)
4779 return -EINVAL;
4780
4781 coremem = memparse(p, &p);
4782 *core = coremem >> PAGE_SHIFT;
4783
4784 /* Paranoid check that UL is enough for the coremem value */
4785 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4786
4787 return 0;
4788 }
4789
4790 /*
4791 * kernelcore=size sets the amount of memory for use for allocations that
4792 * cannot be reclaimed or migrated.
4793 */
4794 static int __init cmdline_parse_kernelcore(char *p)
4795 {
4796 return cmdline_parse_core(p, &required_kernelcore);
4797 }
4798
4799 /*
4800 * movablecore=size sets the amount of memory for use for allocations that
4801 * can be reclaimed or migrated.
4802 */
4803 static int __init cmdline_parse_movablecore(char *p)
4804 {
4805 return cmdline_parse_core(p, &required_movablecore);
4806 }
4807
4808 early_param("kernelcore", cmdline_parse_kernelcore);
4809 early_param("movablecore", cmdline_parse_movablecore);
4810
4811 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4812
4813 /**
4814 * set_dma_reserve - set the specified number of pages reserved in the first zone
4815 * @new_dma_reserve: The number of pages to mark reserved
4816 *
4817 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4818 * In the DMA zone, a significant percentage may be consumed by kernel image
4819 * and other unfreeable allocations which can skew the watermarks badly. This
4820 * function may optionally be used to account for unfreeable pages in the
4821 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4822 * smaller per-cpu batchsize.
4823 */
4824 void __init set_dma_reserve(unsigned long new_dma_reserve)
4825 {
4826 dma_reserve = new_dma_reserve;
4827 }
4828
4829 void __init free_area_init(unsigned long *zones_size)
4830 {
4831 free_area_init_node(0, zones_size,
4832 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4833 }
4834
4835 static int page_alloc_cpu_notify(struct notifier_block *self,
4836 unsigned long action, void *hcpu)
4837 {
4838 int cpu = (unsigned long)hcpu;
4839
4840 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4841 lru_add_drain_cpu(cpu);
4842 drain_pages(cpu);
4843
4844 /*
4845 * Spill the event counters of the dead processor
4846 * into the current processors event counters.
4847 * This artificially elevates the count of the current
4848 * processor.
4849 */
4850 vm_events_fold_cpu(cpu);
4851
4852 /*
4853 * Zero the differential counters of the dead processor
4854 * so that the vm statistics are consistent.
4855 *
4856 * This is only okay since the processor is dead and cannot
4857 * race with what we are doing.
4858 */
4859 refresh_cpu_vm_stats(cpu);
4860 }
4861 return NOTIFY_OK;
4862 }
4863
4864 void __init page_alloc_init(void)
4865 {
4866 hotcpu_notifier(page_alloc_cpu_notify, 0);
4867 }
4868
4869 /*
4870 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4871 * or min_free_kbytes changes.
4872 */
4873 static void calculate_totalreserve_pages(void)
4874 {
4875 struct pglist_data *pgdat;
4876 unsigned long reserve_pages = 0;
4877 enum zone_type i, j;
4878
4879 for_each_online_pgdat(pgdat) {
4880 for (i = 0; i < MAX_NR_ZONES; i++) {
4881 struct zone *zone = pgdat->node_zones + i;
4882 unsigned long max = 0;
4883
4884 /* Find valid and maximum lowmem_reserve in the zone */
4885 for (j = i; j < MAX_NR_ZONES; j++) {
4886 if (zone->lowmem_reserve[j] > max)
4887 max = zone->lowmem_reserve[j];
4888 }
4889
4890 /* we treat the high watermark as reserved pages. */
4891 max += high_wmark_pages(zone);
4892
4893 if (max > zone->present_pages)
4894 max = zone->present_pages;
4895 reserve_pages += max;
4896 /*
4897 * Lowmem reserves are not available to
4898 * GFP_HIGHUSER page cache allocations and
4899 * kswapd tries to balance zones to their high
4900 * watermark. As a result, neither should be
4901 * regarded as dirtyable memory, to prevent a
4902 * situation where reclaim has to clean pages
4903 * in order to balance the zones.
4904 */
4905 zone->dirty_balance_reserve = max;
4906 }
4907 }
4908 dirty_balance_reserve = reserve_pages;
4909 totalreserve_pages = reserve_pages;
4910 }
4911
4912 /*
4913 * setup_per_zone_lowmem_reserve - called whenever
4914 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4915 * has a correct pages reserved value, so an adequate number of
4916 * pages are left in the zone after a successful __alloc_pages().
4917 */
4918 static void setup_per_zone_lowmem_reserve(void)
4919 {
4920 struct pglist_data *pgdat;
4921 enum zone_type j, idx;
4922
4923 for_each_online_pgdat(pgdat) {
4924 for (j = 0; j < MAX_NR_ZONES; j++) {
4925 struct zone *zone = pgdat->node_zones + j;
4926 unsigned long present_pages = zone->present_pages;
4927
4928 zone->lowmem_reserve[j] = 0;
4929
4930 idx = j;
4931 while (idx) {
4932 struct zone *lower_zone;
4933
4934 idx--;
4935
4936 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4937 sysctl_lowmem_reserve_ratio[idx] = 1;
4938
4939 lower_zone = pgdat->node_zones + idx;
4940 lower_zone->lowmem_reserve[j] = present_pages /
4941 sysctl_lowmem_reserve_ratio[idx];
4942 present_pages += lower_zone->present_pages;
4943 }
4944 }
4945 }
4946
4947 /* update totalreserve_pages */
4948 calculate_totalreserve_pages();
4949 }
4950
4951 /**
4952 * setup_per_zone_wmarks - called when min_free_kbytes changes
4953 * or when memory is hot-{added|removed}
4954 *
4955 * Ensures that the watermark[min,low,high] values for each zone are set
4956 * correctly with respect to min_free_kbytes.
4957 */
4958 void setup_per_zone_wmarks(void)
4959 {
4960 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4961 unsigned long lowmem_pages = 0;
4962 struct zone *zone;
4963 unsigned long flags;
4964
4965 /* Calculate total number of !ZONE_HIGHMEM pages */
4966 for_each_zone(zone) {
4967 if (!is_highmem(zone))
4968 lowmem_pages += zone->present_pages;
4969 }
4970
4971 for_each_zone(zone) {
4972 u64 tmp;
4973
4974 spin_lock_irqsave(&zone->lock, flags);
4975 tmp = (u64)pages_min * zone->present_pages;
4976 do_div(tmp, lowmem_pages);
4977 if (is_highmem(zone)) {
4978 /*
4979 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4980 * need highmem pages, so cap pages_min to a small
4981 * value here.
4982 *
4983 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4984 * deltas controls asynch page reclaim, and so should
4985 * not be capped for highmem.
4986 */
4987 int min_pages;
4988
4989 min_pages = zone->present_pages / 1024;
4990 if (min_pages < SWAP_CLUSTER_MAX)
4991 min_pages = SWAP_CLUSTER_MAX;
4992 if (min_pages > 128)
4993 min_pages = 128;
4994 zone->watermark[WMARK_MIN] = min_pages;
4995 } else {
4996 /*
4997 * If it's a lowmem zone, reserve a number of pages
4998 * proportionate to the zone's size.
4999 */
5000 zone->watermark[WMARK_MIN] = tmp;
5001 }
5002
5003 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5004 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5005 setup_zone_migrate_reserve(zone);
5006 spin_unlock_irqrestore(&zone->lock, flags);
5007 }
5008
5009 /* update totalreserve_pages */
5010 calculate_totalreserve_pages();
5011 }
5012
5013 /*
5014 * The inactive anon list should be small enough that the VM never has to
5015 * do too much work, but large enough that each inactive page has a chance
5016 * to be referenced again before it is swapped out.
5017 *
5018 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5019 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5020 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5021 * the anonymous pages are kept on the inactive list.
5022 *
5023 * total target max
5024 * memory ratio inactive anon
5025 * -------------------------------------
5026 * 10MB 1 5MB
5027 * 100MB 1 50MB
5028 * 1GB 3 250MB
5029 * 10GB 10 0.9GB
5030 * 100GB 31 3GB
5031 * 1TB 101 10GB
5032 * 10TB 320 32GB
5033 */
5034 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5035 {
5036 unsigned int gb, ratio;
5037
5038 /* Zone size in gigabytes */
5039 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5040 if (gb)
5041 ratio = int_sqrt(10 * gb);
5042 else
5043 ratio = 1;
5044
5045 zone->inactive_ratio = ratio;
5046 }
5047
5048 static void __meminit setup_per_zone_inactive_ratio(void)
5049 {
5050 struct zone *zone;
5051
5052 for_each_zone(zone)
5053 calculate_zone_inactive_ratio(zone);
5054 }
5055
5056 /*
5057 * Initialise min_free_kbytes.
5058 *
5059 * For small machines we want it small (128k min). For large machines
5060 * we want it large (64MB max). But it is not linear, because network
5061 * bandwidth does not increase linearly with machine size. We use
5062 *
5063 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5064 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5065 *
5066 * which yields
5067 *
5068 * 16MB: 512k
5069 * 32MB: 724k
5070 * 64MB: 1024k
5071 * 128MB: 1448k
5072 * 256MB: 2048k
5073 * 512MB: 2896k
5074 * 1024MB: 4096k
5075 * 2048MB: 5792k
5076 * 4096MB: 8192k
5077 * 8192MB: 11584k
5078 * 16384MB: 16384k
5079 */
5080 int __meminit init_per_zone_wmark_min(void)
5081 {
5082 unsigned long lowmem_kbytes;
5083
5084 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5085
5086 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5087 if (min_free_kbytes < 128)
5088 min_free_kbytes = 128;
5089 if (min_free_kbytes > 65536)
5090 min_free_kbytes = 65536;
5091 setup_per_zone_wmarks();
5092 refresh_zone_stat_thresholds();
5093 setup_per_zone_lowmem_reserve();
5094 setup_per_zone_inactive_ratio();
5095 return 0;
5096 }
5097 module_init(init_per_zone_wmark_min)
5098
5099 /*
5100 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5101 * that we can call two helper functions whenever min_free_kbytes
5102 * changes.
5103 */
5104 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5105 void __user *buffer, size_t *length, loff_t *ppos)
5106 {
5107 proc_dointvec(table, write, buffer, length, ppos);
5108 if (write)
5109 setup_per_zone_wmarks();
5110 return 0;
5111 }
5112
5113 #ifdef CONFIG_NUMA
5114 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5115 void __user *buffer, size_t *length, loff_t *ppos)
5116 {
5117 struct zone *zone;
5118 int rc;
5119
5120 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5121 if (rc)
5122 return rc;
5123
5124 for_each_zone(zone)
5125 zone->min_unmapped_pages = (zone->present_pages *
5126 sysctl_min_unmapped_ratio) / 100;
5127 return 0;
5128 }
5129
5130 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5131 void __user *buffer, size_t *length, loff_t *ppos)
5132 {
5133 struct zone *zone;
5134 int rc;
5135
5136 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5137 if (rc)
5138 return rc;
5139
5140 for_each_zone(zone)
5141 zone->min_slab_pages = (zone->present_pages *
5142 sysctl_min_slab_ratio) / 100;
5143 return 0;
5144 }
5145 #endif
5146
5147 /*
5148 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5149 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5150 * whenever sysctl_lowmem_reserve_ratio changes.
5151 *
5152 * The reserve ratio obviously has absolutely no relation with the
5153 * minimum watermarks. The lowmem reserve ratio can only make sense
5154 * if in function of the boot time zone sizes.
5155 */
5156 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5157 void __user *buffer, size_t *length, loff_t *ppos)
5158 {
5159 proc_dointvec_minmax(table, write, buffer, length, ppos);
5160 setup_per_zone_lowmem_reserve();
5161 return 0;
5162 }
5163
5164 /*
5165 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5166 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5167 * can have before it gets flushed back to buddy allocator.
5168 */
5169
5170 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5171 void __user *buffer, size_t *length, loff_t *ppos)
5172 {
5173 struct zone *zone;
5174 unsigned int cpu;
5175 int ret;
5176
5177 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5178 if (!write || (ret == -EINVAL))
5179 return ret;
5180 for_each_populated_zone(zone) {
5181 for_each_possible_cpu(cpu) {
5182 unsigned long high;
5183 high = zone->present_pages / percpu_pagelist_fraction;
5184 setup_pagelist_highmark(
5185 per_cpu_ptr(zone->pageset, cpu), high);
5186 }
5187 }
5188 return 0;
5189 }
5190
5191 int hashdist = HASHDIST_DEFAULT;
5192
5193 #ifdef CONFIG_NUMA
5194 static int __init set_hashdist(char *str)
5195 {
5196 if (!str)
5197 return 0;
5198 hashdist = simple_strtoul(str, &str, 0);
5199 return 1;
5200 }
5201 __setup("hashdist=", set_hashdist);
5202 #endif
5203
5204 /*
5205 * allocate a large system hash table from bootmem
5206 * - it is assumed that the hash table must contain an exact power-of-2
5207 * quantity of entries
5208 * - limit is the number of hash buckets, not the total allocation size
5209 */
5210 void *__init alloc_large_system_hash(const char *tablename,
5211 unsigned long bucketsize,
5212 unsigned long numentries,
5213 int scale,
5214 int flags,
5215 unsigned int *_hash_shift,
5216 unsigned int *_hash_mask,
5217 unsigned long limit)
5218 {
5219 unsigned long long max = limit;
5220 unsigned long log2qty, size;
5221 void *table = NULL;
5222
5223 /* allow the kernel cmdline to have a say */
5224 if (!numentries) {
5225 /* round applicable memory size up to nearest megabyte */
5226 numentries = nr_kernel_pages;
5227 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5228 numentries >>= 20 - PAGE_SHIFT;
5229 numentries <<= 20 - PAGE_SHIFT;
5230
5231 /* limit to 1 bucket per 2^scale bytes of low memory */
5232 if (scale > PAGE_SHIFT)
5233 numentries >>= (scale - PAGE_SHIFT);
5234 else
5235 numentries <<= (PAGE_SHIFT - scale);
5236
5237 /* Make sure we've got at least a 0-order allocation.. */
5238 if (unlikely(flags & HASH_SMALL)) {
5239 /* Makes no sense without HASH_EARLY */
5240 WARN_ON(!(flags & HASH_EARLY));
5241 if (!(numentries >> *_hash_shift)) {
5242 numentries = 1UL << *_hash_shift;
5243 BUG_ON(!numentries);
5244 }
5245 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5246 numentries = PAGE_SIZE / bucketsize;
5247 }
5248 numentries = roundup_pow_of_two(numentries);
5249
5250 /* limit allocation size to 1/16 total memory by default */
5251 if (max == 0) {
5252 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5253 do_div(max, bucketsize);
5254 }
5255 max = min(max, 0x80000000ULL);
5256
5257 if (numentries > max)
5258 numentries = max;
5259
5260 log2qty = ilog2(numentries);
5261
5262 do {
5263 size = bucketsize << log2qty;
5264 if (flags & HASH_EARLY)
5265 table = alloc_bootmem_nopanic(size);
5266 else if (hashdist)
5267 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5268 else {
5269 /*
5270 * If bucketsize is not a power-of-two, we may free
5271 * some pages at the end of hash table which
5272 * alloc_pages_exact() automatically does
5273 */
5274 if (get_order(size) < MAX_ORDER) {
5275 table = alloc_pages_exact(size, GFP_ATOMIC);
5276 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5277 }
5278 }
5279 } while (!table && size > PAGE_SIZE && --log2qty);
5280
5281 if (!table)
5282 panic("Failed to allocate %s hash table\n", tablename);
5283
5284 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5285 tablename,
5286 (1UL << log2qty),
5287 ilog2(size) - PAGE_SHIFT,
5288 size);
5289
5290 if (_hash_shift)
5291 *_hash_shift = log2qty;
5292 if (_hash_mask)
5293 *_hash_mask = (1 << log2qty) - 1;
5294
5295 return table;
5296 }
5297
5298 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5299 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5300 unsigned long pfn)
5301 {
5302 #ifdef CONFIG_SPARSEMEM
5303 return __pfn_to_section(pfn)->pageblock_flags;
5304 #else
5305 return zone->pageblock_flags;
5306 #endif /* CONFIG_SPARSEMEM */
5307 }
5308
5309 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5310 {
5311 #ifdef CONFIG_SPARSEMEM
5312 pfn &= (PAGES_PER_SECTION-1);
5313 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5314 #else
5315 pfn = pfn - zone->zone_start_pfn;
5316 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5317 #endif /* CONFIG_SPARSEMEM */
5318 }
5319
5320 /**
5321 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5322 * @page: The page within the block of interest
5323 * @start_bitidx: The first bit of interest to retrieve
5324 * @end_bitidx: The last bit of interest
5325 * returns pageblock_bits flags
5326 */
5327 unsigned long get_pageblock_flags_group(struct page *page,
5328 int start_bitidx, int end_bitidx)
5329 {
5330 struct zone *zone;
5331 unsigned long *bitmap;
5332 unsigned long pfn, bitidx;
5333 unsigned long flags = 0;
5334 unsigned long value = 1;
5335
5336 zone = page_zone(page);
5337 pfn = page_to_pfn(page);
5338 bitmap = get_pageblock_bitmap(zone, pfn);
5339 bitidx = pfn_to_bitidx(zone, pfn);
5340
5341 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5342 if (test_bit(bitidx + start_bitidx, bitmap))
5343 flags |= value;
5344
5345 return flags;
5346 }
5347
5348 /**
5349 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5350 * @page: The page within the block of interest
5351 * @start_bitidx: The first bit of interest
5352 * @end_bitidx: The last bit of interest
5353 * @flags: The flags to set
5354 */
5355 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5356 int start_bitidx, int end_bitidx)
5357 {
5358 struct zone *zone;
5359 unsigned long *bitmap;
5360 unsigned long pfn, bitidx;
5361 unsigned long value = 1;
5362
5363 zone = page_zone(page);
5364 pfn = page_to_pfn(page);
5365 bitmap = get_pageblock_bitmap(zone, pfn);
5366 bitidx = pfn_to_bitidx(zone, pfn);
5367 VM_BUG_ON(pfn < zone->zone_start_pfn);
5368 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5369
5370 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5371 if (flags & value)
5372 __set_bit(bitidx + start_bitidx, bitmap);
5373 else
5374 __clear_bit(bitidx + start_bitidx, bitmap);
5375 }
5376
5377 /*
5378 * This is designed as sub function...plz see page_isolation.c also.
5379 * set/clear page block's type to be ISOLATE.
5380 * page allocater never alloc memory from ISOLATE block.
5381 */
5382
5383 static int
5384 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5385 {
5386 unsigned long pfn, iter, found;
5387 /*
5388 * For avoiding noise data, lru_add_drain_all() should be called
5389 * If ZONE_MOVABLE, the zone never contains immobile pages
5390 */
5391 if (zone_idx(zone) == ZONE_MOVABLE)
5392 return true;
5393
5394 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5395 return true;
5396
5397 pfn = page_to_pfn(page);
5398 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5399 unsigned long check = pfn + iter;
5400
5401 if (!pfn_valid_within(check))
5402 continue;
5403
5404 page = pfn_to_page(check);
5405 if (!page_count(page)) {
5406 if (PageBuddy(page))
5407 iter += (1 << page_order(page)) - 1;
5408 continue;
5409 }
5410 if (!PageLRU(page))
5411 found++;
5412 /*
5413 * If there are RECLAIMABLE pages, we need to check it.
5414 * But now, memory offline itself doesn't call shrink_slab()
5415 * and it still to be fixed.
5416 */
5417 /*
5418 * If the page is not RAM, page_count()should be 0.
5419 * we don't need more check. This is an _used_ not-movable page.
5420 *
5421 * The problematic thing here is PG_reserved pages. PG_reserved
5422 * is set to both of a memory hole page and a _used_ kernel
5423 * page at boot.
5424 */
5425 if (found > count)
5426 return false;
5427 }
5428 return true;
5429 }
5430
5431 bool is_pageblock_removable_nolock(struct page *page)
5432 {
5433 struct zone *zone;
5434 unsigned long pfn;
5435
5436 /*
5437 * We have to be careful here because we are iterating over memory
5438 * sections which are not zone aware so we might end up outside of
5439 * the zone but still within the section.
5440 * We have to take care about the node as well. If the node is offline
5441 * its NODE_DATA will be NULL - see page_zone.
5442 */
5443 if (!node_online(page_to_nid(page)))
5444 return false;
5445
5446 zone = page_zone(page);
5447 pfn = page_to_pfn(page);
5448 if (zone->zone_start_pfn > pfn ||
5449 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5450 return false;
5451
5452 return __count_immobile_pages(zone, page, 0);
5453 }
5454
5455 int set_migratetype_isolate(struct page *page)
5456 {
5457 struct zone *zone;
5458 unsigned long flags, pfn;
5459 struct memory_isolate_notify arg;
5460 int notifier_ret;
5461 int ret = -EBUSY;
5462
5463 zone = page_zone(page);
5464
5465 spin_lock_irqsave(&zone->lock, flags);
5466
5467 pfn = page_to_pfn(page);
5468 arg.start_pfn = pfn;
5469 arg.nr_pages = pageblock_nr_pages;
5470 arg.pages_found = 0;
5471
5472 /*
5473 * It may be possible to isolate a pageblock even if the
5474 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5475 * notifier chain is used by balloon drivers to return the
5476 * number of pages in a range that are held by the balloon
5477 * driver to shrink memory. If all the pages are accounted for
5478 * by balloons, are free, or on the LRU, isolation can continue.
5479 * Later, for example, when memory hotplug notifier runs, these
5480 * pages reported as "can be isolated" should be isolated(freed)
5481 * by the balloon driver through the memory notifier chain.
5482 */
5483 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5484 notifier_ret = notifier_to_errno(notifier_ret);
5485 if (notifier_ret)
5486 goto out;
5487 /*
5488 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5489 * We just check MOVABLE pages.
5490 */
5491 if (__count_immobile_pages(zone, page, arg.pages_found))
5492 ret = 0;
5493
5494 /*
5495 * immobile means "not-on-lru" paes. If immobile is larger than
5496 * removable-by-driver pages reported by notifier, we'll fail.
5497 */
5498
5499 out:
5500 if (!ret) {
5501 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5502 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5503 }
5504
5505 spin_unlock_irqrestore(&zone->lock, flags);
5506 if (!ret)
5507 drain_all_pages();
5508 return ret;
5509 }
5510
5511 void unset_migratetype_isolate(struct page *page)
5512 {
5513 struct zone *zone;
5514 unsigned long flags;
5515 zone = page_zone(page);
5516 spin_lock_irqsave(&zone->lock, flags);
5517 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5518 goto out;
5519 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5520 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5521 out:
5522 spin_unlock_irqrestore(&zone->lock, flags);
5523 }
5524
5525 #ifdef CONFIG_MEMORY_HOTREMOVE
5526 /*
5527 * All pages in the range must be isolated before calling this.
5528 */
5529 void
5530 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5531 {
5532 struct page *page;
5533 struct zone *zone;
5534 int order, i;
5535 unsigned long pfn;
5536 unsigned long flags;
5537 /* find the first valid pfn */
5538 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5539 if (pfn_valid(pfn))
5540 break;
5541 if (pfn == end_pfn)
5542 return;
5543 zone = page_zone(pfn_to_page(pfn));
5544 spin_lock_irqsave(&zone->lock, flags);
5545 pfn = start_pfn;
5546 while (pfn < end_pfn) {
5547 if (!pfn_valid(pfn)) {
5548 pfn++;
5549 continue;
5550 }
5551 page = pfn_to_page(pfn);
5552 BUG_ON(page_count(page));
5553 BUG_ON(!PageBuddy(page));
5554 order = page_order(page);
5555 #ifdef CONFIG_DEBUG_VM
5556 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5557 pfn, 1 << order, end_pfn);
5558 #endif
5559 list_del(&page->lru);
5560 rmv_page_order(page);
5561 zone->free_area[order].nr_free--;
5562 __mod_zone_page_state(zone, NR_FREE_PAGES,
5563 - (1UL << order));
5564 for (i = 0; i < (1 << order); i++)
5565 SetPageReserved((page+i));
5566 pfn += (1 << order);
5567 }
5568 spin_unlock_irqrestore(&zone->lock, flags);
5569 }
5570 #endif
5571
5572 #ifdef CONFIG_MEMORY_FAILURE
5573 bool is_free_buddy_page(struct page *page)
5574 {
5575 struct zone *zone = page_zone(page);
5576 unsigned long pfn = page_to_pfn(page);
5577 unsigned long flags;
5578 int order;
5579
5580 spin_lock_irqsave(&zone->lock, flags);
5581 for (order = 0; order < MAX_ORDER; order++) {
5582 struct page *page_head = page - (pfn & ((1 << order) - 1));
5583
5584 if (PageBuddy(page_head) && page_order(page_head) >= order)
5585 break;
5586 }
5587 spin_unlock_irqrestore(&zone->lock, flags);
5588
5589 return order < MAX_ORDER;
5590 }
5591 #endif
5592
5593 static struct trace_print_flags pageflag_names[] = {
5594 {1UL << PG_locked, "locked" },
5595 {1UL << PG_error, "error" },
5596 {1UL << PG_referenced, "referenced" },
5597 {1UL << PG_uptodate, "uptodate" },
5598 {1UL << PG_dirty, "dirty" },
5599 {1UL << PG_lru, "lru" },
5600 {1UL << PG_active, "active" },
5601 {1UL << PG_slab, "slab" },
5602 {1UL << PG_owner_priv_1, "owner_priv_1" },
5603 {1UL << PG_arch_1, "arch_1" },
5604 {1UL << PG_reserved, "reserved" },
5605 {1UL << PG_private, "private" },
5606 {1UL << PG_private_2, "private_2" },
5607 {1UL << PG_writeback, "writeback" },
5608 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5609 {1UL << PG_head, "head" },
5610 {1UL << PG_tail, "tail" },
5611 #else
5612 {1UL << PG_compound, "compound" },
5613 #endif
5614 {1UL << PG_swapcache, "swapcache" },
5615 {1UL << PG_mappedtodisk, "mappedtodisk" },
5616 {1UL << PG_reclaim, "reclaim" },
5617 {1UL << PG_swapbacked, "swapbacked" },
5618 {1UL << PG_unevictable, "unevictable" },
5619 #ifdef CONFIG_MMU
5620 {1UL << PG_mlocked, "mlocked" },
5621 #endif
5622 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5623 {1UL << PG_uncached, "uncached" },
5624 #endif
5625 #ifdef CONFIG_MEMORY_FAILURE
5626 {1UL << PG_hwpoison, "hwpoison" },
5627 #endif
5628 {-1UL, NULL },
5629 };
5630
5631 static void dump_page_flags(unsigned long flags)
5632 {
5633 const char *delim = "";
5634 unsigned long mask;
5635 int i;
5636
5637 printk(KERN_ALERT "page flags: %#lx(", flags);
5638
5639 /* remove zone id */
5640 flags &= (1UL << NR_PAGEFLAGS) - 1;
5641
5642 for (i = 0; pageflag_names[i].name && flags; i++) {
5643
5644 mask = pageflag_names[i].mask;
5645 if ((flags & mask) != mask)
5646 continue;
5647
5648 flags &= ~mask;
5649 printk("%s%s", delim, pageflag_names[i].name);
5650 delim = "|";
5651 }
5652
5653 /* check for left over flags */
5654 if (flags)
5655 printk("%s%#lx", delim, flags);
5656
5657 printk(")\n");
5658 }
5659
5660 void dump_page(struct page *page)
5661 {
5662 printk(KERN_ALERT
5663 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5664 page, atomic_read(&page->_count), page_mapcount(page),
5665 page->mapping, page->index);
5666 dump_page_flags(page->flags);
5667 mem_cgroup_print_bad_page(page);
5668 }
This page took 0.150991 seconds and 5 git commands to generate.