tracing, page-allocator: add trace event for page traffic related to the buddy lists
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
56
57 /*
58 * Array of node states.
59 */
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 [N_CPU] = { { [0] = 1UL } },
69 #endif /* NUMA */
70 };
71 EXPORT_SYMBOL(node_states);
72
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 unsigned long highest_memmap_pfn __read_mostly;
76 int percpu_pagelist_fraction;
77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78
79 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80 int pageblock_order __read_mostly;
81 #endif
82
83 static void __free_pages_ok(struct page *page, unsigned int order);
84
85 /*
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 *
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
95 */
96 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
97 #ifdef CONFIG_ZONE_DMA
98 256,
99 #endif
100 #ifdef CONFIG_ZONE_DMA32
101 256,
102 #endif
103 #ifdef CONFIG_HIGHMEM
104 32,
105 #endif
106 32,
107 };
108
109 EXPORT_SYMBOL(totalram_pages);
110
111 static char * const zone_names[MAX_NR_ZONES] = {
112 #ifdef CONFIG_ZONE_DMA
113 "DMA",
114 #endif
115 #ifdef CONFIG_ZONE_DMA32
116 "DMA32",
117 #endif
118 "Normal",
119 #ifdef CONFIG_HIGHMEM
120 "HighMem",
121 #endif
122 "Movable",
123 };
124
125 int min_free_kbytes = 1024;
126
127 unsigned long __meminitdata nr_kernel_pages;
128 unsigned long __meminitdata nr_all_pages;
129 static unsigned long __meminitdata dma_reserve;
130
131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 /*
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
138 */
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
151
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 int nr_online_nodes __read_mostly = 1;
168 EXPORT_SYMBOL(nr_node_ids);
169 EXPORT_SYMBOL(nr_online_nodes);
170 #endif
171
172 int page_group_by_mobility_disabled __read_mostly;
173
174 static void set_pageblock_migratetype(struct page *page, int migratetype)
175 {
176
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
179
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
182 }
183
184 bool oom_killer_disabled __read_mostly;
185
186 #ifdef CONFIG_DEBUG_VM
187 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188 {
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
192
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
200
201 return ret;
202 }
203
204 static int page_is_consistent(struct zone *zone, struct page *page)
205 {
206 if (!pfn_valid_within(page_to_pfn(page)))
207 return 0;
208 if (zone != page_zone(page))
209 return 0;
210
211 return 1;
212 }
213 /*
214 * Temporary debugging check for pages not lying within a given zone.
215 */
216 static int bad_range(struct zone *zone, struct page *page)
217 {
218 if (page_outside_zone_boundaries(zone, page))
219 return 1;
220 if (!page_is_consistent(zone, page))
221 return 1;
222
223 return 0;
224 }
225 #else
226 static inline int bad_range(struct zone *zone, struct page *page)
227 {
228 return 0;
229 }
230 #endif
231
232 static void bad_page(struct page *page)
233 {
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
237
238 /*
239 * Allow a burst of 60 reports, then keep quiet for that minute;
240 * or allow a steady drip of one report per second.
241 */
242 if (nr_shown == 60) {
243 if (time_before(jiffies, resume)) {
244 nr_unshown++;
245 goto out;
246 }
247 if (nr_unshown) {
248 printk(KERN_ALERT
249 "BUG: Bad page state: %lu messages suppressed\n",
250 nr_unshown);
251 nr_unshown = 0;
252 }
253 nr_shown = 0;
254 }
255 if (nr_shown++ == 0)
256 resume = jiffies + 60 * HZ;
257
258 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
259 current->comm, page_to_pfn(page));
260 printk(KERN_ALERT
261 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
262 page, (void *)page->flags, page_count(page),
263 page_mapcount(page), page->mapping, page->index);
264
265 dump_stack();
266 out:
267 /* Leave bad fields for debug, except PageBuddy could make trouble */
268 __ClearPageBuddy(page);
269 add_taint(TAINT_BAD_PAGE);
270 }
271
272 /*
273 * Higher-order pages are called "compound pages". They are structured thusly:
274 *
275 * The first PAGE_SIZE page is called the "head page".
276 *
277 * The remaining PAGE_SIZE pages are called "tail pages".
278 *
279 * All pages have PG_compound set. All pages have their ->private pointing at
280 * the head page (even the head page has this).
281 *
282 * The first tail page's ->lru.next holds the address of the compound page's
283 * put_page() function. Its ->lru.prev holds the order of allocation.
284 * This usage means that zero-order pages may not be compound.
285 */
286
287 static void free_compound_page(struct page *page)
288 {
289 __free_pages_ok(page, compound_order(page));
290 }
291
292 void prep_compound_page(struct page *page, unsigned long order)
293 {
294 int i;
295 int nr_pages = 1 << order;
296
297 set_compound_page_dtor(page, free_compound_page);
298 set_compound_order(page, order);
299 __SetPageHead(page);
300 for (i = 1; i < nr_pages; i++) {
301 struct page *p = page + i;
302
303 __SetPageTail(p);
304 p->first_page = page;
305 }
306 }
307
308 static int destroy_compound_page(struct page *page, unsigned long order)
309 {
310 int i;
311 int nr_pages = 1 << order;
312 int bad = 0;
313
314 if (unlikely(compound_order(page) != order) ||
315 unlikely(!PageHead(page))) {
316 bad_page(page);
317 bad++;
318 }
319
320 __ClearPageHead(page);
321
322 for (i = 1; i < nr_pages; i++) {
323 struct page *p = page + i;
324
325 if (unlikely(!PageTail(p) || (p->first_page != page))) {
326 bad_page(page);
327 bad++;
328 }
329 __ClearPageTail(p);
330 }
331
332 return bad;
333 }
334
335 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
336 {
337 int i;
338
339 /*
340 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
341 * and __GFP_HIGHMEM from hard or soft interrupt context.
342 */
343 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
344 for (i = 0; i < (1 << order); i++)
345 clear_highpage(page + i);
346 }
347
348 static inline void set_page_order(struct page *page, int order)
349 {
350 set_page_private(page, order);
351 __SetPageBuddy(page);
352 }
353
354 static inline void rmv_page_order(struct page *page)
355 {
356 __ClearPageBuddy(page);
357 set_page_private(page, 0);
358 }
359
360 /*
361 * Locate the struct page for both the matching buddy in our
362 * pair (buddy1) and the combined O(n+1) page they form (page).
363 *
364 * 1) Any buddy B1 will have an order O twin B2 which satisfies
365 * the following equation:
366 * B2 = B1 ^ (1 << O)
367 * For example, if the starting buddy (buddy2) is #8 its order
368 * 1 buddy is #10:
369 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
370 *
371 * 2) Any buddy B will have an order O+1 parent P which
372 * satisfies the following equation:
373 * P = B & ~(1 << O)
374 *
375 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
376 */
377 static inline struct page *
378 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
379 {
380 unsigned long buddy_idx = page_idx ^ (1 << order);
381
382 return page + (buddy_idx - page_idx);
383 }
384
385 static inline unsigned long
386 __find_combined_index(unsigned long page_idx, unsigned int order)
387 {
388 return (page_idx & ~(1 << order));
389 }
390
391 /*
392 * This function checks whether a page is free && is the buddy
393 * we can do coalesce a page and its buddy if
394 * (a) the buddy is not in a hole &&
395 * (b) the buddy is in the buddy system &&
396 * (c) a page and its buddy have the same order &&
397 * (d) a page and its buddy are in the same zone.
398 *
399 * For recording whether a page is in the buddy system, we use PG_buddy.
400 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
401 *
402 * For recording page's order, we use page_private(page).
403 */
404 static inline int page_is_buddy(struct page *page, struct page *buddy,
405 int order)
406 {
407 if (!pfn_valid_within(page_to_pfn(buddy)))
408 return 0;
409
410 if (page_zone_id(page) != page_zone_id(buddy))
411 return 0;
412
413 if (PageBuddy(buddy) && page_order(buddy) == order) {
414 VM_BUG_ON(page_count(buddy) != 0);
415 return 1;
416 }
417 return 0;
418 }
419
420 /*
421 * Freeing function for a buddy system allocator.
422 *
423 * The concept of a buddy system is to maintain direct-mapped table
424 * (containing bit values) for memory blocks of various "orders".
425 * The bottom level table contains the map for the smallest allocatable
426 * units of memory (here, pages), and each level above it describes
427 * pairs of units from the levels below, hence, "buddies".
428 * At a high level, all that happens here is marking the table entry
429 * at the bottom level available, and propagating the changes upward
430 * as necessary, plus some accounting needed to play nicely with other
431 * parts of the VM system.
432 * At each level, we keep a list of pages, which are heads of continuous
433 * free pages of length of (1 << order) and marked with PG_buddy. Page's
434 * order is recorded in page_private(page) field.
435 * So when we are allocating or freeing one, we can derive the state of the
436 * other. That is, if we allocate a small block, and both were
437 * free, the remainder of the region must be split into blocks.
438 * If a block is freed, and its buddy is also free, then this
439 * triggers coalescing into a block of larger size.
440 *
441 * -- wli
442 */
443
444 static inline void __free_one_page(struct page *page,
445 struct zone *zone, unsigned int order,
446 int migratetype)
447 {
448 unsigned long page_idx;
449
450 if (unlikely(PageCompound(page)))
451 if (unlikely(destroy_compound_page(page, order)))
452 return;
453
454 VM_BUG_ON(migratetype == -1);
455
456 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
457
458 VM_BUG_ON(page_idx & ((1 << order) - 1));
459 VM_BUG_ON(bad_range(zone, page));
460
461 while (order < MAX_ORDER-1) {
462 unsigned long combined_idx;
463 struct page *buddy;
464
465 buddy = __page_find_buddy(page, page_idx, order);
466 if (!page_is_buddy(page, buddy, order))
467 break;
468
469 /* Our buddy is free, merge with it and move up one order. */
470 list_del(&buddy->lru);
471 zone->free_area[order].nr_free--;
472 rmv_page_order(buddy);
473 combined_idx = __find_combined_index(page_idx, order);
474 page = page + (combined_idx - page_idx);
475 page_idx = combined_idx;
476 order++;
477 }
478 set_page_order(page, order);
479 list_add(&page->lru,
480 &zone->free_area[order].free_list[migratetype]);
481 zone->free_area[order].nr_free++;
482 }
483
484 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
485 /*
486 * free_page_mlock() -- clean up attempts to free and mlocked() page.
487 * Page should not be on lru, so no need to fix that up.
488 * free_pages_check() will verify...
489 */
490 static inline void free_page_mlock(struct page *page)
491 {
492 __dec_zone_page_state(page, NR_MLOCK);
493 __count_vm_event(UNEVICTABLE_MLOCKFREED);
494 }
495 #else
496 static void free_page_mlock(struct page *page) { }
497 #endif
498
499 static inline int free_pages_check(struct page *page)
500 {
501 if (unlikely(page_mapcount(page) |
502 (page->mapping != NULL) |
503 (atomic_read(&page->_count) != 0) |
504 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
505 bad_page(page);
506 return 1;
507 }
508 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
509 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
510 return 0;
511 }
512
513 /*
514 * Frees a list of pages.
515 * Assumes all pages on list are in same zone, and of same order.
516 * count is the number of pages to free.
517 *
518 * If the zone was previously in an "all pages pinned" state then look to
519 * see if this freeing clears that state.
520 *
521 * And clear the zone's pages_scanned counter, to hold off the "all pages are
522 * pinned" detection logic.
523 */
524 static void free_pages_bulk(struct zone *zone, int count,
525 struct list_head *list, int order)
526 {
527 spin_lock(&zone->lock);
528 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
529 zone->pages_scanned = 0;
530
531 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
532 while (count--) {
533 struct page *page;
534
535 VM_BUG_ON(list_empty(list));
536 page = list_entry(list->prev, struct page, lru);
537 /* have to delete it as __free_one_page list manipulates */
538 list_del(&page->lru);
539 trace_mm_page_pcpu_drain(page, order, page_private(page));
540 __free_one_page(page, zone, order, page_private(page));
541 }
542 spin_unlock(&zone->lock);
543 }
544
545 static void free_one_page(struct zone *zone, struct page *page, int order,
546 int migratetype)
547 {
548 spin_lock(&zone->lock);
549 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
550 zone->pages_scanned = 0;
551
552 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
553 __free_one_page(page, zone, order, migratetype);
554 spin_unlock(&zone->lock);
555 }
556
557 static void __free_pages_ok(struct page *page, unsigned int order)
558 {
559 unsigned long flags;
560 int i;
561 int bad = 0;
562 int wasMlocked = __TestClearPageMlocked(page);
563
564 kmemcheck_free_shadow(page, order);
565
566 for (i = 0 ; i < (1 << order) ; ++i)
567 bad += free_pages_check(page + i);
568 if (bad)
569 return;
570
571 if (!PageHighMem(page)) {
572 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
573 debug_check_no_obj_freed(page_address(page),
574 PAGE_SIZE << order);
575 }
576 arch_free_page(page, order);
577 kernel_map_pages(page, 1 << order, 0);
578
579 local_irq_save(flags);
580 if (unlikely(wasMlocked))
581 free_page_mlock(page);
582 __count_vm_events(PGFREE, 1 << order);
583 free_one_page(page_zone(page), page, order,
584 get_pageblock_migratetype(page));
585 local_irq_restore(flags);
586 }
587
588 /*
589 * permit the bootmem allocator to evade page validation on high-order frees
590 */
591 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
592 {
593 if (order == 0) {
594 __ClearPageReserved(page);
595 set_page_count(page, 0);
596 set_page_refcounted(page);
597 __free_page(page);
598 } else {
599 int loop;
600
601 prefetchw(page);
602 for (loop = 0; loop < BITS_PER_LONG; loop++) {
603 struct page *p = &page[loop];
604
605 if (loop + 1 < BITS_PER_LONG)
606 prefetchw(p + 1);
607 __ClearPageReserved(p);
608 set_page_count(p, 0);
609 }
610
611 set_page_refcounted(page);
612 __free_pages(page, order);
613 }
614 }
615
616
617 /*
618 * The order of subdivision here is critical for the IO subsystem.
619 * Please do not alter this order without good reasons and regression
620 * testing. Specifically, as large blocks of memory are subdivided,
621 * the order in which smaller blocks are delivered depends on the order
622 * they're subdivided in this function. This is the primary factor
623 * influencing the order in which pages are delivered to the IO
624 * subsystem according to empirical testing, and this is also justified
625 * by considering the behavior of a buddy system containing a single
626 * large block of memory acted on by a series of small allocations.
627 * This behavior is a critical factor in sglist merging's success.
628 *
629 * -- wli
630 */
631 static inline void expand(struct zone *zone, struct page *page,
632 int low, int high, struct free_area *area,
633 int migratetype)
634 {
635 unsigned long size = 1 << high;
636
637 while (high > low) {
638 area--;
639 high--;
640 size >>= 1;
641 VM_BUG_ON(bad_range(zone, &page[size]));
642 list_add(&page[size].lru, &area->free_list[migratetype]);
643 area->nr_free++;
644 set_page_order(&page[size], high);
645 }
646 }
647
648 /*
649 * This page is about to be returned from the page allocator
650 */
651 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
652 {
653 if (unlikely(page_mapcount(page) |
654 (page->mapping != NULL) |
655 (atomic_read(&page->_count) != 0) |
656 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
657 bad_page(page);
658 return 1;
659 }
660
661 set_page_private(page, 0);
662 set_page_refcounted(page);
663
664 arch_alloc_page(page, order);
665 kernel_map_pages(page, 1 << order, 1);
666
667 if (gfp_flags & __GFP_ZERO)
668 prep_zero_page(page, order, gfp_flags);
669
670 if (order && (gfp_flags & __GFP_COMP))
671 prep_compound_page(page, order);
672
673 return 0;
674 }
675
676 /*
677 * Go through the free lists for the given migratetype and remove
678 * the smallest available page from the freelists
679 */
680 static inline
681 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
682 int migratetype)
683 {
684 unsigned int current_order;
685 struct free_area * area;
686 struct page *page;
687
688 /* Find a page of the appropriate size in the preferred list */
689 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
690 area = &(zone->free_area[current_order]);
691 if (list_empty(&area->free_list[migratetype]))
692 continue;
693
694 page = list_entry(area->free_list[migratetype].next,
695 struct page, lru);
696 list_del(&page->lru);
697 rmv_page_order(page);
698 area->nr_free--;
699 expand(zone, page, order, current_order, area, migratetype);
700 return page;
701 }
702
703 return NULL;
704 }
705
706
707 /*
708 * This array describes the order lists are fallen back to when
709 * the free lists for the desirable migrate type are depleted
710 */
711 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
712 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
714 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
715 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
716 };
717
718 /*
719 * Move the free pages in a range to the free lists of the requested type.
720 * Note that start_page and end_pages are not aligned on a pageblock
721 * boundary. If alignment is required, use move_freepages_block()
722 */
723 static int move_freepages(struct zone *zone,
724 struct page *start_page, struct page *end_page,
725 int migratetype)
726 {
727 struct page *page;
728 unsigned long order;
729 int pages_moved = 0;
730
731 #ifndef CONFIG_HOLES_IN_ZONE
732 /*
733 * page_zone is not safe to call in this context when
734 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
735 * anyway as we check zone boundaries in move_freepages_block().
736 * Remove at a later date when no bug reports exist related to
737 * grouping pages by mobility
738 */
739 BUG_ON(page_zone(start_page) != page_zone(end_page));
740 #endif
741
742 for (page = start_page; page <= end_page;) {
743 /* Make sure we are not inadvertently changing nodes */
744 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
745
746 if (!pfn_valid_within(page_to_pfn(page))) {
747 page++;
748 continue;
749 }
750
751 if (!PageBuddy(page)) {
752 page++;
753 continue;
754 }
755
756 order = page_order(page);
757 list_del(&page->lru);
758 list_add(&page->lru,
759 &zone->free_area[order].free_list[migratetype]);
760 page += 1 << order;
761 pages_moved += 1 << order;
762 }
763
764 return pages_moved;
765 }
766
767 static int move_freepages_block(struct zone *zone, struct page *page,
768 int migratetype)
769 {
770 unsigned long start_pfn, end_pfn;
771 struct page *start_page, *end_page;
772
773 start_pfn = page_to_pfn(page);
774 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
775 start_page = pfn_to_page(start_pfn);
776 end_page = start_page + pageblock_nr_pages - 1;
777 end_pfn = start_pfn + pageblock_nr_pages - 1;
778
779 /* Do not cross zone boundaries */
780 if (start_pfn < zone->zone_start_pfn)
781 start_page = page;
782 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
783 return 0;
784
785 return move_freepages(zone, start_page, end_page, migratetype);
786 }
787
788 static void change_pageblock_range(struct page *pageblock_page,
789 int start_order, int migratetype)
790 {
791 int nr_pageblocks = 1 << (start_order - pageblock_order);
792
793 while (nr_pageblocks--) {
794 set_pageblock_migratetype(pageblock_page, migratetype);
795 pageblock_page += pageblock_nr_pages;
796 }
797 }
798
799 /* Remove an element from the buddy allocator from the fallback list */
800 static inline struct page *
801 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
802 {
803 struct free_area * area;
804 int current_order;
805 struct page *page;
806 int migratetype, i;
807
808 /* Find the largest possible block of pages in the other list */
809 for (current_order = MAX_ORDER-1; current_order >= order;
810 --current_order) {
811 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
812 migratetype = fallbacks[start_migratetype][i];
813
814 /* MIGRATE_RESERVE handled later if necessary */
815 if (migratetype == MIGRATE_RESERVE)
816 continue;
817
818 area = &(zone->free_area[current_order]);
819 if (list_empty(&area->free_list[migratetype]))
820 continue;
821
822 page = list_entry(area->free_list[migratetype].next,
823 struct page, lru);
824 area->nr_free--;
825
826 /*
827 * If breaking a large block of pages, move all free
828 * pages to the preferred allocation list. If falling
829 * back for a reclaimable kernel allocation, be more
830 * agressive about taking ownership of free pages
831 */
832 if (unlikely(current_order >= (pageblock_order >> 1)) ||
833 start_migratetype == MIGRATE_RECLAIMABLE ||
834 page_group_by_mobility_disabled) {
835 unsigned long pages;
836 pages = move_freepages_block(zone, page,
837 start_migratetype);
838
839 /* Claim the whole block if over half of it is free */
840 if (pages >= (1 << (pageblock_order-1)) ||
841 page_group_by_mobility_disabled)
842 set_pageblock_migratetype(page,
843 start_migratetype);
844
845 migratetype = start_migratetype;
846 }
847
848 /* Remove the page from the freelists */
849 list_del(&page->lru);
850 rmv_page_order(page);
851
852 /* Take ownership for orders >= pageblock_order */
853 if (current_order >= pageblock_order)
854 change_pageblock_range(page, current_order,
855 start_migratetype);
856
857 expand(zone, page, order, current_order, area, migratetype);
858
859 trace_mm_page_alloc_extfrag(page, order, current_order,
860 start_migratetype, migratetype);
861
862 return page;
863 }
864 }
865
866 return NULL;
867 }
868
869 /*
870 * Do the hard work of removing an element from the buddy allocator.
871 * Call me with the zone->lock already held.
872 */
873 static struct page *__rmqueue(struct zone *zone, unsigned int order,
874 int migratetype)
875 {
876 struct page *page;
877
878 retry_reserve:
879 page = __rmqueue_smallest(zone, order, migratetype);
880
881 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
882 page = __rmqueue_fallback(zone, order, migratetype);
883
884 /*
885 * Use MIGRATE_RESERVE rather than fail an allocation. goto
886 * is used because __rmqueue_smallest is an inline function
887 * and we want just one call site
888 */
889 if (!page) {
890 migratetype = MIGRATE_RESERVE;
891 goto retry_reserve;
892 }
893 }
894
895 trace_mm_page_alloc_zone_locked(page, order, migratetype);
896 return page;
897 }
898
899 /*
900 * Obtain a specified number of elements from the buddy allocator, all under
901 * a single hold of the lock, for efficiency. Add them to the supplied list.
902 * Returns the number of new pages which were placed at *list.
903 */
904 static int rmqueue_bulk(struct zone *zone, unsigned int order,
905 unsigned long count, struct list_head *list,
906 int migratetype, int cold)
907 {
908 int i;
909
910 spin_lock(&zone->lock);
911 for (i = 0; i < count; ++i) {
912 struct page *page = __rmqueue(zone, order, migratetype);
913 if (unlikely(page == NULL))
914 break;
915
916 /*
917 * Split buddy pages returned by expand() are received here
918 * in physical page order. The page is added to the callers and
919 * list and the list head then moves forward. From the callers
920 * perspective, the linked list is ordered by page number in
921 * some conditions. This is useful for IO devices that can
922 * merge IO requests if the physical pages are ordered
923 * properly.
924 */
925 if (likely(cold == 0))
926 list_add(&page->lru, list);
927 else
928 list_add_tail(&page->lru, list);
929 set_page_private(page, migratetype);
930 list = &page->lru;
931 }
932 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
933 spin_unlock(&zone->lock);
934 return i;
935 }
936
937 #ifdef CONFIG_NUMA
938 /*
939 * Called from the vmstat counter updater to drain pagesets of this
940 * currently executing processor on remote nodes after they have
941 * expired.
942 *
943 * Note that this function must be called with the thread pinned to
944 * a single processor.
945 */
946 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
947 {
948 unsigned long flags;
949 int to_drain;
950
951 local_irq_save(flags);
952 if (pcp->count >= pcp->batch)
953 to_drain = pcp->batch;
954 else
955 to_drain = pcp->count;
956 free_pages_bulk(zone, to_drain, &pcp->list, 0);
957 pcp->count -= to_drain;
958 local_irq_restore(flags);
959 }
960 #endif
961
962 /*
963 * Drain pages of the indicated processor.
964 *
965 * The processor must either be the current processor and the
966 * thread pinned to the current processor or a processor that
967 * is not online.
968 */
969 static void drain_pages(unsigned int cpu)
970 {
971 unsigned long flags;
972 struct zone *zone;
973
974 for_each_populated_zone(zone) {
975 struct per_cpu_pageset *pset;
976 struct per_cpu_pages *pcp;
977
978 pset = zone_pcp(zone, cpu);
979
980 pcp = &pset->pcp;
981 local_irq_save(flags);
982 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
983 pcp->count = 0;
984 local_irq_restore(flags);
985 }
986 }
987
988 /*
989 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
990 */
991 void drain_local_pages(void *arg)
992 {
993 drain_pages(smp_processor_id());
994 }
995
996 /*
997 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
998 */
999 void drain_all_pages(void)
1000 {
1001 on_each_cpu(drain_local_pages, NULL, 1);
1002 }
1003
1004 #ifdef CONFIG_HIBERNATION
1005
1006 void mark_free_pages(struct zone *zone)
1007 {
1008 unsigned long pfn, max_zone_pfn;
1009 unsigned long flags;
1010 int order, t;
1011 struct list_head *curr;
1012
1013 if (!zone->spanned_pages)
1014 return;
1015
1016 spin_lock_irqsave(&zone->lock, flags);
1017
1018 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1019 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1020 if (pfn_valid(pfn)) {
1021 struct page *page = pfn_to_page(pfn);
1022
1023 if (!swsusp_page_is_forbidden(page))
1024 swsusp_unset_page_free(page);
1025 }
1026
1027 for_each_migratetype_order(order, t) {
1028 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1029 unsigned long i;
1030
1031 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1032 for (i = 0; i < (1UL << order); i++)
1033 swsusp_set_page_free(pfn_to_page(pfn + i));
1034 }
1035 }
1036 spin_unlock_irqrestore(&zone->lock, flags);
1037 }
1038 #endif /* CONFIG_PM */
1039
1040 /*
1041 * Free a 0-order page
1042 */
1043 static void free_hot_cold_page(struct page *page, int cold)
1044 {
1045 struct zone *zone = page_zone(page);
1046 struct per_cpu_pages *pcp;
1047 unsigned long flags;
1048 int wasMlocked = __TestClearPageMlocked(page);
1049
1050 kmemcheck_free_shadow(page, 0);
1051
1052 if (PageAnon(page))
1053 page->mapping = NULL;
1054 if (free_pages_check(page))
1055 return;
1056
1057 if (!PageHighMem(page)) {
1058 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1059 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1060 }
1061 arch_free_page(page, 0);
1062 kernel_map_pages(page, 1, 0);
1063
1064 pcp = &zone_pcp(zone, get_cpu())->pcp;
1065 set_page_private(page, get_pageblock_migratetype(page));
1066 local_irq_save(flags);
1067 if (unlikely(wasMlocked))
1068 free_page_mlock(page);
1069 __count_vm_event(PGFREE);
1070
1071 if (cold)
1072 list_add_tail(&page->lru, &pcp->list);
1073 else
1074 list_add(&page->lru, &pcp->list);
1075 pcp->count++;
1076 if (pcp->count >= pcp->high) {
1077 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1078 pcp->count -= pcp->batch;
1079 }
1080 local_irq_restore(flags);
1081 put_cpu();
1082 }
1083
1084 void free_hot_page(struct page *page)
1085 {
1086 trace_mm_page_free_direct(page, 0);
1087 free_hot_cold_page(page, 0);
1088 }
1089
1090 /*
1091 * split_page takes a non-compound higher-order page, and splits it into
1092 * n (1<<order) sub-pages: page[0..n]
1093 * Each sub-page must be freed individually.
1094 *
1095 * Note: this is probably too low level an operation for use in drivers.
1096 * Please consult with lkml before using this in your driver.
1097 */
1098 void split_page(struct page *page, unsigned int order)
1099 {
1100 int i;
1101
1102 VM_BUG_ON(PageCompound(page));
1103 VM_BUG_ON(!page_count(page));
1104
1105 #ifdef CONFIG_KMEMCHECK
1106 /*
1107 * Split shadow pages too, because free(page[0]) would
1108 * otherwise free the whole shadow.
1109 */
1110 if (kmemcheck_page_is_tracked(page))
1111 split_page(virt_to_page(page[0].shadow), order);
1112 #endif
1113
1114 for (i = 1; i < (1 << order); i++)
1115 set_page_refcounted(page + i);
1116 }
1117
1118 /*
1119 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1120 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1121 * or two.
1122 */
1123 static inline
1124 struct page *buffered_rmqueue(struct zone *preferred_zone,
1125 struct zone *zone, int order, gfp_t gfp_flags,
1126 int migratetype)
1127 {
1128 unsigned long flags;
1129 struct page *page;
1130 int cold = !!(gfp_flags & __GFP_COLD);
1131 int cpu;
1132
1133 again:
1134 cpu = get_cpu();
1135 if (likely(order == 0)) {
1136 struct per_cpu_pages *pcp;
1137
1138 pcp = &zone_pcp(zone, cpu)->pcp;
1139 local_irq_save(flags);
1140 if (!pcp->count) {
1141 pcp->count = rmqueue_bulk(zone, 0,
1142 pcp->batch, &pcp->list,
1143 migratetype, cold);
1144 if (unlikely(!pcp->count))
1145 goto failed;
1146 }
1147
1148 /* Find a page of the appropriate migrate type */
1149 if (cold) {
1150 list_for_each_entry_reverse(page, &pcp->list, lru)
1151 if (page_private(page) == migratetype)
1152 break;
1153 } else {
1154 list_for_each_entry(page, &pcp->list, lru)
1155 if (page_private(page) == migratetype)
1156 break;
1157 }
1158
1159 /* Allocate more to the pcp list if necessary */
1160 if (unlikely(&page->lru == &pcp->list)) {
1161 int get_one_page = 0;
1162
1163 pcp->count += rmqueue_bulk(zone, 0,
1164 pcp->batch, &pcp->list,
1165 migratetype, cold);
1166 list_for_each_entry(page, &pcp->list, lru) {
1167 if (get_pageblock_migratetype(page) !=
1168 MIGRATE_ISOLATE) {
1169 get_one_page = 1;
1170 break;
1171 }
1172 }
1173 if (!get_one_page)
1174 goto failed;
1175 }
1176
1177 list_del(&page->lru);
1178 pcp->count--;
1179 } else {
1180 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1181 /*
1182 * __GFP_NOFAIL is not to be used in new code.
1183 *
1184 * All __GFP_NOFAIL callers should be fixed so that they
1185 * properly detect and handle allocation failures.
1186 *
1187 * We most definitely don't want callers attempting to
1188 * allocate greater than order-1 page units with
1189 * __GFP_NOFAIL.
1190 */
1191 WARN_ON_ONCE(order > 1);
1192 }
1193 spin_lock_irqsave(&zone->lock, flags);
1194 page = __rmqueue(zone, order, migratetype);
1195 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1196 spin_unlock(&zone->lock);
1197 if (!page)
1198 goto failed;
1199 }
1200
1201 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1202 zone_statistics(preferred_zone, zone);
1203 local_irq_restore(flags);
1204 put_cpu();
1205
1206 VM_BUG_ON(bad_range(zone, page));
1207 if (prep_new_page(page, order, gfp_flags))
1208 goto again;
1209 return page;
1210
1211 failed:
1212 local_irq_restore(flags);
1213 put_cpu();
1214 return NULL;
1215 }
1216
1217 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1218 #define ALLOC_WMARK_MIN WMARK_MIN
1219 #define ALLOC_WMARK_LOW WMARK_LOW
1220 #define ALLOC_WMARK_HIGH WMARK_HIGH
1221 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1222
1223 /* Mask to get the watermark bits */
1224 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1225
1226 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1227 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1228 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1229
1230 #ifdef CONFIG_FAIL_PAGE_ALLOC
1231
1232 static struct fail_page_alloc_attr {
1233 struct fault_attr attr;
1234
1235 u32 ignore_gfp_highmem;
1236 u32 ignore_gfp_wait;
1237 u32 min_order;
1238
1239 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1240
1241 struct dentry *ignore_gfp_highmem_file;
1242 struct dentry *ignore_gfp_wait_file;
1243 struct dentry *min_order_file;
1244
1245 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1246
1247 } fail_page_alloc = {
1248 .attr = FAULT_ATTR_INITIALIZER,
1249 .ignore_gfp_wait = 1,
1250 .ignore_gfp_highmem = 1,
1251 .min_order = 1,
1252 };
1253
1254 static int __init setup_fail_page_alloc(char *str)
1255 {
1256 return setup_fault_attr(&fail_page_alloc.attr, str);
1257 }
1258 __setup("fail_page_alloc=", setup_fail_page_alloc);
1259
1260 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1261 {
1262 if (order < fail_page_alloc.min_order)
1263 return 0;
1264 if (gfp_mask & __GFP_NOFAIL)
1265 return 0;
1266 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1267 return 0;
1268 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1269 return 0;
1270
1271 return should_fail(&fail_page_alloc.attr, 1 << order);
1272 }
1273
1274 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1275
1276 static int __init fail_page_alloc_debugfs(void)
1277 {
1278 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1279 struct dentry *dir;
1280 int err;
1281
1282 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1283 "fail_page_alloc");
1284 if (err)
1285 return err;
1286 dir = fail_page_alloc.attr.dentries.dir;
1287
1288 fail_page_alloc.ignore_gfp_wait_file =
1289 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1290 &fail_page_alloc.ignore_gfp_wait);
1291
1292 fail_page_alloc.ignore_gfp_highmem_file =
1293 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1294 &fail_page_alloc.ignore_gfp_highmem);
1295 fail_page_alloc.min_order_file =
1296 debugfs_create_u32("min-order", mode, dir,
1297 &fail_page_alloc.min_order);
1298
1299 if (!fail_page_alloc.ignore_gfp_wait_file ||
1300 !fail_page_alloc.ignore_gfp_highmem_file ||
1301 !fail_page_alloc.min_order_file) {
1302 err = -ENOMEM;
1303 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1304 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1305 debugfs_remove(fail_page_alloc.min_order_file);
1306 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1307 }
1308
1309 return err;
1310 }
1311
1312 late_initcall(fail_page_alloc_debugfs);
1313
1314 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1315
1316 #else /* CONFIG_FAIL_PAGE_ALLOC */
1317
1318 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1319 {
1320 return 0;
1321 }
1322
1323 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1324
1325 /*
1326 * Return 1 if free pages are above 'mark'. This takes into account the order
1327 * of the allocation.
1328 */
1329 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1330 int classzone_idx, int alloc_flags)
1331 {
1332 /* free_pages my go negative - that's OK */
1333 long min = mark;
1334 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1335 int o;
1336
1337 if (alloc_flags & ALLOC_HIGH)
1338 min -= min / 2;
1339 if (alloc_flags & ALLOC_HARDER)
1340 min -= min / 4;
1341
1342 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1343 return 0;
1344 for (o = 0; o < order; o++) {
1345 /* At the next order, this order's pages become unavailable */
1346 free_pages -= z->free_area[o].nr_free << o;
1347
1348 /* Require fewer higher order pages to be free */
1349 min >>= 1;
1350
1351 if (free_pages <= min)
1352 return 0;
1353 }
1354 return 1;
1355 }
1356
1357 #ifdef CONFIG_NUMA
1358 /*
1359 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1360 * skip over zones that are not allowed by the cpuset, or that have
1361 * been recently (in last second) found to be nearly full. See further
1362 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1363 * that have to skip over a lot of full or unallowed zones.
1364 *
1365 * If the zonelist cache is present in the passed in zonelist, then
1366 * returns a pointer to the allowed node mask (either the current
1367 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1368 *
1369 * If the zonelist cache is not available for this zonelist, does
1370 * nothing and returns NULL.
1371 *
1372 * If the fullzones BITMAP in the zonelist cache is stale (more than
1373 * a second since last zap'd) then we zap it out (clear its bits.)
1374 *
1375 * We hold off even calling zlc_setup, until after we've checked the
1376 * first zone in the zonelist, on the theory that most allocations will
1377 * be satisfied from that first zone, so best to examine that zone as
1378 * quickly as we can.
1379 */
1380 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1381 {
1382 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1383 nodemask_t *allowednodes; /* zonelist_cache approximation */
1384
1385 zlc = zonelist->zlcache_ptr;
1386 if (!zlc)
1387 return NULL;
1388
1389 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1390 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1391 zlc->last_full_zap = jiffies;
1392 }
1393
1394 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1395 &cpuset_current_mems_allowed :
1396 &node_states[N_HIGH_MEMORY];
1397 return allowednodes;
1398 }
1399
1400 /*
1401 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1402 * if it is worth looking at further for free memory:
1403 * 1) Check that the zone isn't thought to be full (doesn't have its
1404 * bit set in the zonelist_cache fullzones BITMAP).
1405 * 2) Check that the zones node (obtained from the zonelist_cache
1406 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1407 * Return true (non-zero) if zone is worth looking at further, or
1408 * else return false (zero) if it is not.
1409 *
1410 * This check -ignores- the distinction between various watermarks,
1411 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1412 * found to be full for any variation of these watermarks, it will
1413 * be considered full for up to one second by all requests, unless
1414 * we are so low on memory on all allowed nodes that we are forced
1415 * into the second scan of the zonelist.
1416 *
1417 * In the second scan we ignore this zonelist cache and exactly
1418 * apply the watermarks to all zones, even it is slower to do so.
1419 * We are low on memory in the second scan, and should leave no stone
1420 * unturned looking for a free page.
1421 */
1422 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1423 nodemask_t *allowednodes)
1424 {
1425 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1426 int i; /* index of *z in zonelist zones */
1427 int n; /* node that zone *z is on */
1428
1429 zlc = zonelist->zlcache_ptr;
1430 if (!zlc)
1431 return 1;
1432
1433 i = z - zonelist->_zonerefs;
1434 n = zlc->z_to_n[i];
1435
1436 /* This zone is worth trying if it is allowed but not full */
1437 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1438 }
1439
1440 /*
1441 * Given 'z' scanning a zonelist, set the corresponding bit in
1442 * zlc->fullzones, so that subsequent attempts to allocate a page
1443 * from that zone don't waste time re-examining it.
1444 */
1445 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1446 {
1447 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1448 int i; /* index of *z in zonelist zones */
1449
1450 zlc = zonelist->zlcache_ptr;
1451 if (!zlc)
1452 return;
1453
1454 i = z - zonelist->_zonerefs;
1455
1456 set_bit(i, zlc->fullzones);
1457 }
1458
1459 #else /* CONFIG_NUMA */
1460
1461 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1462 {
1463 return NULL;
1464 }
1465
1466 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1467 nodemask_t *allowednodes)
1468 {
1469 return 1;
1470 }
1471
1472 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1473 {
1474 }
1475 #endif /* CONFIG_NUMA */
1476
1477 /*
1478 * get_page_from_freelist goes through the zonelist trying to allocate
1479 * a page.
1480 */
1481 static struct page *
1482 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1483 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1484 struct zone *preferred_zone, int migratetype)
1485 {
1486 struct zoneref *z;
1487 struct page *page = NULL;
1488 int classzone_idx;
1489 struct zone *zone;
1490 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1491 int zlc_active = 0; /* set if using zonelist_cache */
1492 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1493
1494 classzone_idx = zone_idx(preferred_zone);
1495 zonelist_scan:
1496 /*
1497 * Scan zonelist, looking for a zone with enough free.
1498 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1499 */
1500 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1501 high_zoneidx, nodemask) {
1502 if (NUMA_BUILD && zlc_active &&
1503 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1504 continue;
1505 if ((alloc_flags & ALLOC_CPUSET) &&
1506 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1507 goto try_next_zone;
1508
1509 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1510 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1511 unsigned long mark;
1512 int ret;
1513
1514 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1515 if (zone_watermark_ok(zone, order, mark,
1516 classzone_idx, alloc_flags))
1517 goto try_this_zone;
1518
1519 if (zone_reclaim_mode == 0)
1520 goto this_zone_full;
1521
1522 ret = zone_reclaim(zone, gfp_mask, order);
1523 switch (ret) {
1524 case ZONE_RECLAIM_NOSCAN:
1525 /* did not scan */
1526 goto try_next_zone;
1527 case ZONE_RECLAIM_FULL:
1528 /* scanned but unreclaimable */
1529 goto this_zone_full;
1530 default:
1531 /* did we reclaim enough */
1532 if (!zone_watermark_ok(zone, order, mark,
1533 classzone_idx, alloc_flags))
1534 goto this_zone_full;
1535 }
1536 }
1537
1538 try_this_zone:
1539 page = buffered_rmqueue(preferred_zone, zone, order,
1540 gfp_mask, migratetype);
1541 if (page)
1542 break;
1543 this_zone_full:
1544 if (NUMA_BUILD)
1545 zlc_mark_zone_full(zonelist, z);
1546 try_next_zone:
1547 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1548 /*
1549 * we do zlc_setup after the first zone is tried but only
1550 * if there are multiple nodes make it worthwhile
1551 */
1552 allowednodes = zlc_setup(zonelist, alloc_flags);
1553 zlc_active = 1;
1554 did_zlc_setup = 1;
1555 }
1556 }
1557
1558 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1559 /* Disable zlc cache for second zonelist scan */
1560 zlc_active = 0;
1561 goto zonelist_scan;
1562 }
1563 return page;
1564 }
1565
1566 static inline int
1567 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1568 unsigned long pages_reclaimed)
1569 {
1570 /* Do not loop if specifically requested */
1571 if (gfp_mask & __GFP_NORETRY)
1572 return 0;
1573
1574 /*
1575 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1576 * means __GFP_NOFAIL, but that may not be true in other
1577 * implementations.
1578 */
1579 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1580 return 1;
1581
1582 /*
1583 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1584 * specified, then we retry until we no longer reclaim any pages
1585 * (above), or we've reclaimed an order of pages at least as
1586 * large as the allocation's order. In both cases, if the
1587 * allocation still fails, we stop retrying.
1588 */
1589 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1590 return 1;
1591
1592 /*
1593 * Don't let big-order allocations loop unless the caller
1594 * explicitly requests that.
1595 */
1596 if (gfp_mask & __GFP_NOFAIL)
1597 return 1;
1598
1599 return 0;
1600 }
1601
1602 static inline struct page *
1603 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1604 struct zonelist *zonelist, enum zone_type high_zoneidx,
1605 nodemask_t *nodemask, struct zone *preferred_zone,
1606 int migratetype)
1607 {
1608 struct page *page;
1609
1610 /* Acquire the OOM killer lock for the zones in zonelist */
1611 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1612 schedule_timeout_uninterruptible(1);
1613 return NULL;
1614 }
1615
1616 /*
1617 * Go through the zonelist yet one more time, keep very high watermark
1618 * here, this is only to catch a parallel oom killing, we must fail if
1619 * we're still under heavy pressure.
1620 */
1621 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1622 order, zonelist, high_zoneidx,
1623 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1624 preferred_zone, migratetype);
1625 if (page)
1626 goto out;
1627
1628 /* The OOM killer will not help higher order allocs */
1629 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1630 goto out;
1631
1632 /* Exhausted what can be done so it's blamo time */
1633 out_of_memory(zonelist, gfp_mask, order);
1634
1635 out:
1636 clear_zonelist_oom(zonelist, gfp_mask);
1637 return page;
1638 }
1639
1640 /* The really slow allocator path where we enter direct reclaim */
1641 static inline struct page *
1642 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1643 struct zonelist *zonelist, enum zone_type high_zoneidx,
1644 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1645 int migratetype, unsigned long *did_some_progress)
1646 {
1647 struct page *page = NULL;
1648 struct reclaim_state reclaim_state;
1649 struct task_struct *p = current;
1650
1651 cond_resched();
1652
1653 /* We now go into synchronous reclaim */
1654 cpuset_memory_pressure_bump();
1655 p->flags |= PF_MEMALLOC;
1656 lockdep_set_current_reclaim_state(gfp_mask);
1657 reclaim_state.reclaimed_slab = 0;
1658 p->reclaim_state = &reclaim_state;
1659
1660 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1661
1662 p->reclaim_state = NULL;
1663 lockdep_clear_current_reclaim_state();
1664 p->flags &= ~PF_MEMALLOC;
1665
1666 cond_resched();
1667
1668 if (order != 0)
1669 drain_all_pages();
1670
1671 if (likely(*did_some_progress))
1672 page = get_page_from_freelist(gfp_mask, nodemask, order,
1673 zonelist, high_zoneidx,
1674 alloc_flags, preferred_zone,
1675 migratetype);
1676 return page;
1677 }
1678
1679 /*
1680 * This is called in the allocator slow-path if the allocation request is of
1681 * sufficient urgency to ignore watermarks and take other desperate measures
1682 */
1683 static inline struct page *
1684 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1685 struct zonelist *zonelist, enum zone_type high_zoneidx,
1686 nodemask_t *nodemask, struct zone *preferred_zone,
1687 int migratetype)
1688 {
1689 struct page *page;
1690
1691 do {
1692 page = get_page_from_freelist(gfp_mask, nodemask, order,
1693 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1694 preferred_zone, migratetype);
1695
1696 if (!page && gfp_mask & __GFP_NOFAIL)
1697 congestion_wait(BLK_RW_ASYNC, HZ/50);
1698 } while (!page && (gfp_mask & __GFP_NOFAIL));
1699
1700 return page;
1701 }
1702
1703 static inline
1704 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1705 enum zone_type high_zoneidx)
1706 {
1707 struct zoneref *z;
1708 struct zone *zone;
1709
1710 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1711 wakeup_kswapd(zone, order);
1712 }
1713
1714 static inline int
1715 gfp_to_alloc_flags(gfp_t gfp_mask)
1716 {
1717 struct task_struct *p = current;
1718 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1719 const gfp_t wait = gfp_mask & __GFP_WAIT;
1720
1721 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1722 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1723
1724 /*
1725 * The caller may dip into page reserves a bit more if the caller
1726 * cannot run direct reclaim, or if the caller has realtime scheduling
1727 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1728 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1729 */
1730 alloc_flags |= (gfp_mask & __GFP_HIGH);
1731
1732 if (!wait) {
1733 alloc_flags |= ALLOC_HARDER;
1734 /*
1735 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1736 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1737 */
1738 alloc_flags &= ~ALLOC_CPUSET;
1739 } else if (unlikely(rt_task(p)))
1740 alloc_flags |= ALLOC_HARDER;
1741
1742 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1743 if (!in_interrupt() &&
1744 ((p->flags & PF_MEMALLOC) ||
1745 unlikely(test_thread_flag(TIF_MEMDIE))))
1746 alloc_flags |= ALLOC_NO_WATERMARKS;
1747 }
1748
1749 return alloc_flags;
1750 }
1751
1752 static inline struct page *
1753 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1754 struct zonelist *zonelist, enum zone_type high_zoneidx,
1755 nodemask_t *nodemask, struct zone *preferred_zone,
1756 int migratetype)
1757 {
1758 const gfp_t wait = gfp_mask & __GFP_WAIT;
1759 struct page *page = NULL;
1760 int alloc_flags;
1761 unsigned long pages_reclaimed = 0;
1762 unsigned long did_some_progress;
1763 struct task_struct *p = current;
1764
1765 /*
1766 * In the slowpath, we sanity check order to avoid ever trying to
1767 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1768 * be using allocators in order of preference for an area that is
1769 * too large.
1770 */
1771 if (order >= MAX_ORDER) {
1772 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1773 return NULL;
1774 }
1775
1776 /*
1777 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1778 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1779 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1780 * using a larger set of nodes after it has established that the
1781 * allowed per node queues are empty and that nodes are
1782 * over allocated.
1783 */
1784 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1785 goto nopage;
1786
1787 wake_all_kswapd(order, zonelist, high_zoneidx);
1788
1789 restart:
1790 /*
1791 * OK, we're below the kswapd watermark and have kicked background
1792 * reclaim. Now things get more complex, so set up alloc_flags according
1793 * to how we want to proceed.
1794 */
1795 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1796
1797 /* This is the last chance, in general, before the goto nopage. */
1798 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1799 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1800 preferred_zone, migratetype);
1801 if (page)
1802 goto got_pg;
1803
1804 rebalance:
1805 /* Allocate without watermarks if the context allows */
1806 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1807 page = __alloc_pages_high_priority(gfp_mask, order,
1808 zonelist, high_zoneidx, nodemask,
1809 preferred_zone, migratetype);
1810 if (page)
1811 goto got_pg;
1812 }
1813
1814 /* Atomic allocations - we can't balance anything */
1815 if (!wait)
1816 goto nopage;
1817
1818 /* Avoid recursion of direct reclaim */
1819 if (p->flags & PF_MEMALLOC)
1820 goto nopage;
1821
1822 /* Avoid allocations with no watermarks from looping endlessly */
1823 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1824 goto nopage;
1825
1826 /* Try direct reclaim and then allocating */
1827 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1828 zonelist, high_zoneidx,
1829 nodemask,
1830 alloc_flags, preferred_zone,
1831 migratetype, &did_some_progress);
1832 if (page)
1833 goto got_pg;
1834
1835 /*
1836 * If we failed to make any progress reclaiming, then we are
1837 * running out of options and have to consider going OOM
1838 */
1839 if (!did_some_progress) {
1840 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1841 if (oom_killer_disabled)
1842 goto nopage;
1843 page = __alloc_pages_may_oom(gfp_mask, order,
1844 zonelist, high_zoneidx,
1845 nodemask, preferred_zone,
1846 migratetype);
1847 if (page)
1848 goto got_pg;
1849
1850 /*
1851 * The OOM killer does not trigger for high-order
1852 * ~__GFP_NOFAIL allocations so if no progress is being
1853 * made, there are no other options and retrying is
1854 * unlikely to help.
1855 */
1856 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1857 !(gfp_mask & __GFP_NOFAIL))
1858 goto nopage;
1859
1860 goto restart;
1861 }
1862 }
1863
1864 /* Check if we should retry the allocation */
1865 pages_reclaimed += did_some_progress;
1866 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1867 /* Wait for some write requests to complete then retry */
1868 congestion_wait(BLK_RW_ASYNC, HZ/50);
1869 goto rebalance;
1870 }
1871
1872 nopage:
1873 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1874 printk(KERN_WARNING "%s: page allocation failure."
1875 " order:%d, mode:0x%x\n",
1876 p->comm, order, gfp_mask);
1877 dump_stack();
1878 show_mem();
1879 }
1880 return page;
1881 got_pg:
1882 if (kmemcheck_enabled)
1883 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1884 return page;
1885
1886 }
1887
1888 /*
1889 * This is the 'heart' of the zoned buddy allocator.
1890 */
1891 struct page *
1892 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1893 struct zonelist *zonelist, nodemask_t *nodemask)
1894 {
1895 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1896 struct zone *preferred_zone;
1897 struct page *page;
1898 int migratetype = allocflags_to_migratetype(gfp_mask);
1899
1900 gfp_mask &= gfp_allowed_mask;
1901
1902 lockdep_trace_alloc(gfp_mask);
1903
1904 might_sleep_if(gfp_mask & __GFP_WAIT);
1905
1906 if (should_fail_alloc_page(gfp_mask, order))
1907 return NULL;
1908
1909 /*
1910 * Check the zones suitable for the gfp_mask contain at least one
1911 * valid zone. It's possible to have an empty zonelist as a result
1912 * of GFP_THISNODE and a memoryless node
1913 */
1914 if (unlikely(!zonelist->_zonerefs->zone))
1915 return NULL;
1916
1917 /* The preferred zone is used for statistics later */
1918 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1919 if (!preferred_zone)
1920 return NULL;
1921
1922 /* First allocation attempt */
1923 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1924 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1925 preferred_zone, migratetype);
1926 if (unlikely(!page))
1927 page = __alloc_pages_slowpath(gfp_mask, order,
1928 zonelist, high_zoneidx, nodemask,
1929 preferred_zone, migratetype);
1930
1931 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1932 return page;
1933 }
1934 EXPORT_SYMBOL(__alloc_pages_nodemask);
1935
1936 /*
1937 * Common helper functions.
1938 */
1939 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1940 {
1941 struct page *page;
1942
1943 /*
1944 * __get_free_pages() returns a 32-bit address, which cannot represent
1945 * a highmem page
1946 */
1947 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1948
1949 page = alloc_pages(gfp_mask, order);
1950 if (!page)
1951 return 0;
1952 return (unsigned long) page_address(page);
1953 }
1954 EXPORT_SYMBOL(__get_free_pages);
1955
1956 unsigned long get_zeroed_page(gfp_t gfp_mask)
1957 {
1958 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1959 }
1960 EXPORT_SYMBOL(get_zeroed_page);
1961
1962 void __pagevec_free(struct pagevec *pvec)
1963 {
1964 int i = pagevec_count(pvec);
1965
1966 while (--i >= 0) {
1967 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1968 free_hot_cold_page(pvec->pages[i], pvec->cold);
1969 }
1970 }
1971
1972 void __free_pages(struct page *page, unsigned int order)
1973 {
1974 if (put_page_testzero(page)) {
1975 trace_mm_page_free_direct(page, order);
1976 if (order == 0)
1977 free_hot_page(page);
1978 else
1979 __free_pages_ok(page, order);
1980 }
1981 }
1982
1983 EXPORT_SYMBOL(__free_pages);
1984
1985 void free_pages(unsigned long addr, unsigned int order)
1986 {
1987 if (addr != 0) {
1988 VM_BUG_ON(!virt_addr_valid((void *)addr));
1989 __free_pages(virt_to_page((void *)addr), order);
1990 }
1991 }
1992
1993 EXPORT_SYMBOL(free_pages);
1994
1995 /**
1996 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1997 * @size: the number of bytes to allocate
1998 * @gfp_mask: GFP flags for the allocation
1999 *
2000 * This function is similar to alloc_pages(), except that it allocates the
2001 * minimum number of pages to satisfy the request. alloc_pages() can only
2002 * allocate memory in power-of-two pages.
2003 *
2004 * This function is also limited by MAX_ORDER.
2005 *
2006 * Memory allocated by this function must be released by free_pages_exact().
2007 */
2008 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2009 {
2010 unsigned int order = get_order(size);
2011 unsigned long addr;
2012
2013 addr = __get_free_pages(gfp_mask, order);
2014 if (addr) {
2015 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2016 unsigned long used = addr + PAGE_ALIGN(size);
2017
2018 split_page(virt_to_page((void *)addr), order);
2019 while (used < alloc_end) {
2020 free_page(used);
2021 used += PAGE_SIZE;
2022 }
2023 }
2024
2025 return (void *)addr;
2026 }
2027 EXPORT_SYMBOL(alloc_pages_exact);
2028
2029 /**
2030 * free_pages_exact - release memory allocated via alloc_pages_exact()
2031 * @virt: the value returned by alloc_pages_exact.
2032 * @size: size of allocation, same value as passed to alloc_pages_exact().
2033 *
2034 * Release the memory allocated by a previous call to alloc_pages_exact.
2035 */
2036 void free_pages_exact(void *virt, size_t size)
2037 {
2038 unsigned long addr = (unsigned long)virt;
2039 unsigned long end = addr + PAGE_ALIGN(size);
2040
2041 while (addr < end) {
2042 free_page(addr);
2043 addr += PAGE_SIZE;
2044 }
2045 }
2046 EXPORT_SYMBOL(free_pages_exact);
2047
2048 static unsigned int nr_free_zone_pages(int offset)
2049 {
2050 struct zoneref *z;
2051 struct zone *zone;
2052
2053 /* Just pick one node, since fallback list is circular */
2054 unsigned int sum = 0;
2055
2056 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2057
2058 for_each_zone_zonelist(zone, z, zonelist, offset) {
2059 unsigned long size = zone->present_pages;
2060 unsigned long high = high_wmark_pages(zone);
2061 if (size > high)
2062 sum += size - high;
2063 }
2064
2065 return sum;
2066 }
2067
2068 /*
2069 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2070 */
2071 unsigned int nr_free_buffer_pages(void)
2072 {
2073 return nr_free_zone_pages(gfp_zone(GFP_USER));
2074 }
2075 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2076
2077 /*
2078 * Amount of free RAM allocatable within all zones
2079 */
2080 unsigned int nr_free_pagecache_pages(void)
2081 {
2082 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2083 }
2084
2085 static inline void show_node(struct zone *zone)
2086 {
2087 if (NUMA_BUILD)
2088 printk("Node %d ", zone_to_nid(zone));
2089 }
2090
2091 void si_meminfo(struct sysinfo *val)
2092 {
2093 val->totalram = totalram_pages;
2094 val->sharedram = 0;
2095 val->freeram = global_page_state(NR_FREE_PAGES);
2096 val->bufferram = nr_blockdev_pages();
2097 val->totalhigh = totalhigh_pages;
2098 val->freehigh = nr_free_highpages();
2099 val->mem_unit = PAGE_SIZE;
2100 }
2101
2102 EXPORT_SYMBOL(si_meminfo);
2103
2104 #ifdef CONFIG_NUMA
2105 void si_meminfo_node(struct sysinfo *val, int nid)
2106 {
2107 pg_data_t *pgdat = NODE_DATA(nid);
2108
2109 val->totalram = pgdat->node_present_pages;
2110 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2111 #ifdef CONFIG_HIGHMEM
2112 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2113 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2114 NR_FREE_PAGES);
2115 #else
2116 val->totalhigh = 0;
2117 val->freehigh = 0;
2118 #endif
2119 val->mem_unit = PAGE_SIZE;
2120 }
2121 #endif
2122
2123 #define K(x) ((x) << (PAGE_SHIFT-10))
2124
2125 /*
2126 * Show free area list (used inside shift_scroll-lock stuff)
2127 * We also calculate the percentage fragmentation. We do this by counting the
2128 * memory on each free list with the exception of the first item on the list.
2129 */
2130 void show_free_areas(void)
2131 {
2132 int cpu;
2133 struct zone *zone;
2134
2135 for_each_populated_zone(zone) {
2136 show_node(zone);
2137 printk("%s per-cpu:\n", zone->name);
2138
2139 for_each_online_cpu(cpu) {
2140 struct per_cpu_pageset *pageset;
2141
2142 pageset = zone_pcp(zone, cpu);
2143
2144 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2145 cpu, pageset->pcp.high,
2146 pageset->pcp.batch, pageset->pcp.count);
2147 }
2148 }
2149
2150 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2151 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2152 " unevictable:%lu"
2153 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2154 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2155 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2156 global_page_state(NR_ACTIVE_ANON),
2157 global_page_state(NR_INACTIVE_ANON),
2158 global_page_state(NR_ISOLATED_ANON),
2159 global_page_state(NR_ACTIVE_FILE),
2160 global_page_state(NR_INACTIVE_FILE),
2161 global_page_state(NR_ISOLATED_FILE),
2162 global_page_state(NR_UNEVICTABLE),
2163 global_page_state(NR_FILE_DIRTY),
2164 global_page_state(NR_WRITEBACK),
2165 global_page_state(NR_UNSTABLE_NFS),
2166 nr_blockdev_pages(),
2167 global_page_state(NR_FREE_PAGES),
2168 global_page_state(NR_SLAB_RECLAIMABLE),
2169 global_page_state(NR_SLAB_UNRECLAIMABLE),
2170 global_page_state(NR_FILE_MAPPED),
2171 global_page_state(NR_SHMEM),
2172 global_page_state(NR_PAGETABLE),
2173 global_page_state(NR_BOUNCE));
2174
2175 for_each_populated_zone(zone) {
2176 int i;
2177
2178 show_node(zone);
2179 printk("%s"
2180 " free:%lukB"
2181 " min:%lukB"
2182 " low:%lukB"
2183 " high:%lukB"
2184 " active_anon:%lukB"
2185 " inactive_anon:%lukB"
2186 " active_file:%lukB"
2187 " inactive_file:%lukB"
2188 " unevictable:%lukB"
2189 " isolated(anon):%lukB"
2190 " isolated(file):%lukB"
2191 " present:%lukB"
2192 " mlocked:%lukB"
2193 " dirty:%lukB"
2194 " writeback:%lukB"
2195 " mapped:%lukB"
2196 " shmem:%lukB"
2197 " slab_reclaimable:%lukB"
2198 " slab_unreclaimable:%lukB"
2199 " kernel_stack:%lukB"
2200 " pagetables:%lukB"
2201 " unstable:%lukB"
2202 " bounce:%lukB"
2203 " writeback_tmp:%lukB"
2204 " pages_scanned:%lu"
2205 " all_unreclaimable? %s"
2206 "\n",
2207 zone->name,
2208 K(zone_page_state(zone, NR_FREE_PAGES)),
2209 K(min_wmark_pages(zone)),
2210 K(low_wmark_pages(zone)),
2211 K(high_wmark_pages(zone)),
2212 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2213 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2214 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2215 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2216 K(zone_page_state(zone, NR_UNEVICTABLE)),
2217 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2218 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2219 K(zone->present_pages),
2220 K(zone_page_state(zone, NR_MLOCK)),
2221 K(zone_page_state(zone, NR_FILE_DIRTY)),
2222 K(zone_page_state(zone, NR_WRITEBACK)),
2223 K(zone_page_state(zone, NR_FILE_MAPPED)),
2224 K(zone_page_state(zone, NR_SHMEM)),
2225 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2226 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2227 zone_page_state(zone, NR_KERNEL_STACK) *
2228 THREAD_SIZE / 1024,
2229 K(zone_page_state(zone, NR_PAGETABLE)),
2230 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2231 K(zone_page_state(zone, NR_BOUNCE)),
2232 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2233 zone->pages_scanned,
2234 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2235 );
2236 printk("lowmem_reserve[]:");
2237 for (i = 0; i < MAX_NR_ZONES; i++)
2238 printk(" %lu", zone->lowmem_reserve[i]);
2239 printk("\n");
2240 }
2241
2242 for_each_populated_zone(zone) {
2243 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2244
2245 show_node(zone);
2246 printk("%s: ", zone->name);
2247
2248 spin_lock_irqsave(&zone->lock, flags);
2249 for (order = 0; order < MAX_ORDER; order++) {
2250 nr[order] = zone->free_area[order].nr_free;
2251 total += nr[order] << order;
2252 }
2253 spin_unlock_irqrestore(&zone->lock, flags);
2254 for (order = 0; order < MAX_ORDER; order++)
2255 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2256 printk("= %lukB\n", K(total));
2257 }
2258
2259 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2260
2261 show_swap_cache_info();
2262 }
2263
2264 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2265 {
2266 zoneref->zone = zone;
2267 zoneref->zone_idx = zone_idx(zone);
2268 }
2269
2270 /*
2271 * Builds allocation fallback zone lists.
2272 *
2273 * Add all populated zones of a node to the zonelist.
2274 */
2275 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2276 int nr_zones, enum zone_type zone_type)
2277 {
2278 struct zone *zone;
2279
2280 BUG_ON(zone_type >= MAX_NR_ZONES);
2281 zone_type++;
2282
2283 do {
2284 zone_type--;
2285 zone = pgdat->node_zones + zone_type;
2286 if (populated_zone(zone)) {
2287 zoneref_set_zone(zone,
2288 &zonelist->_zonerefs[nr_zones++]);
2289 check_highest_zone(zone_type);
2290 }
2291
2292 } while (zone_type);
2293 return nr_zones;
2294 }
2295
2296
2297 /*
2298 * zonelist_order:
2299 * 0 = automatic detection of better ordering.
2300 * 1 = order by ([node] distance, -zonetype)
2301 * 2 = order by (-zonetype, [node] distance)
2302 *
2303 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2304 * the same zonelist. So only NUMA can configure this param.
2305 */
2306 #define ZONELIST_ORDER_DEFAULT 0
2307 #define ZONELIST_ORDER_NODE 1
2308 #define ZONELIST_ORDER_ZONE 2
2309
2310 /* zonelist order in the kernel.
2311 * set_zonelist_order() will set this to NODE or ZONE.
2312 */
2313 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2314 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2315
2316
2317 #ifdef CONFIG_NUMA
2318 /* The value user specified ....changed by config */
2319 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2320 /* string for sysctl */
2321 #define NUMA_ZONELIST_ORDER_LEN 16
2322 char numa_zonelist_order[16] = "default";
2323
2324 /*
2325 * interface for configure zonelist ordering.
2326 * command line option "numa_zonelist_order"
2327 * = "[dD]efault - default, automatic configuration.
2328 * = "[nN]ode - order by node locality, then by zone within node
2329 * = "[zZ]one - order by zone, then by locality within zone
2330 */
2331
2332 static int __parse_numa_zonelist_order(char *s)
2333 {
2334 if (*s == 'd' || *s == 'D') {
2335 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2336 } else if (*s == 'n' || *s == 'N') {
2337 user_zonelist_order = ZONELIST_ORDER_NODE;
2338 } else if (*s == 'z' || *s == 'Z') {
2339 user_zonelist_order = ZONELIST_ORDER_ZONE;
2340 } else {
2341 printk(KERN_WARNING
2342 "Ignoring invalid numa_zonelist_order value: "
2343 "%s\n", s);
2344 return -EINVAL;
2345 }
2346 return 0;
2347 }
2348
2349 static __init int setup_numa_zonelist_order(char *s)
2350 {
2351 if (s)
2352 return __parse_numa_zonelist_order(s);
2353 return 0;
2354 }
2355 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2356
2357 /*
2358 * sysctl handler for numa_zonelist_order
2359 */
2360 int numa_zonelist_order_handler(ctl_table *table, int write,
2361 struct file *file, void __user *buffer, size_t *length,
2362 loff_t *ppos)
2363 {
2364 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2365 int ret;
2366
2367 if (write)
2368 strncpy(saved_string, (char*)table->data,
2369 NUMA_ZONELIST_ORDER_LEN);
2370 ret = proc_dostring(table, write, file, buffer, length, ppos);
2371 if (ret)
2372 return ret;
2373 if (write) {
2374 int oldval = user_zonelist_order;
2375 if (__parse_numa_zonelist_order((char*)table->data)) {
2376 /*
2377 * bogus value. restore saved string
2378 */
2379 strncpy((char*)table->data, saved_string,
2380 NUMA_ZONELIST_ORDER_LEN);
2381 user_zonelist_order = oldval;
2382 } else if (oldval != user_zonelist_order)
2383 build_all_zonelists();
2384 }
2385 return 0;
2386 }
2387
2388
2389 #define MAX_NODE_LOAD (nr_online_nodes)
2390 static int node_load[MAX_NUMNODES];
2391
2392 /**
2393 * find_next_best_node - find the next node that should appear in a given node's fallback list
2394 * @node: node whose fallback list we're appending
2395 * @used_node_mask: nodemask_t of already used nodes
2396 *
2397 * We use a number of factors to determine which is the next node that should
2398 * appear on a given node's fallback list. The node should not have appeared
2399 * already in @node's fallback list, and it should be the next closest node
2400 * according to the distance array (which contains arbitrary distance values
2401 * from each node to each node in the system), and should also prefer nodes
2402 * with no CPUs, since presumably they'll have very little allocation pressure
2403 * on them otherwise.
2404 * It returns -1 if no node is found.
2405 */
2406 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2407 {
2408 int n, val;
2409 int min_val = INT_MAX;
2410 int best_node = -1;
2411 const struct cpumask *tmp = cpumask_of_node(0);
2412
2413 /* Use the local node if we haven't already */
2414 if (!node_isset(node, *used_node_mask)) {
2415 node_set(node, *used_node_mask);
2416 return node;
2417 }
2418
2419 for_each_node_state(n, N_HIGH_MEMORY) {
2420
2421 /* Don't want a node to appear more than once */
2422 if (node_isset(n, *used_node_mask))
2423 continue;
2424
2425 /* Use the distance array to find the distance */
2426 val = node_distance(node, n);
2427
2428 /* Penalize nodes under us ("prefer the next node") */
2429 val += (n < node);
2430
2431 /* Give preference to headless and unused nodes */
2432 tmp = cpumask_of_node(n);
2433 if (!cpumask_empty(tmp))
2434 val += PENALTY_FOR_NODE_WITH_CPUS;
2435
2436 /* Slight preference for less loaded node */
2437 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2438 val += node_load[n];
2439
2440 if (val < min_val) {
2441 min_val = val;
2442 best_node = n;
2443 }
2444 }
2445
2446 if (best_node >= 0)
2447 node_set(best_node, *used_node_mask);
2448
2449 return best_node;
2450 }
2451
2452
2453 /*
2454 * Build zonelists ordered by node and zones within node.
2455 * This results in maximum locality--normal zone overflows into local
2456 * DMA zone, if any--but risks exhausting DMA zone.
2457 */
2458 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2459 {
2460 int j;
2461 struct zonelist *zonelist;
2462
2463 zonelist = &pgdat->node_zonelists[0];
2464 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2465 ;
2466 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2467 MAX_NR_ZONES - 1);
2468 zonelist->_zonerefs[j].zone = NULL;
2469 zonelist->_zonerefs[j].zone_idx = 0;
2470 }
2471
2472 /*
2473 * Build gfp_thisnode zonelists
2474 */
2475 static void build_thisnode_zonelists(pg_data_t *pgdat)
2476 {
2477 int j;
2478 struct zonelist *zonelist;
2479
2480 zonelist = &pgdat->node_zonelists[1];
2481 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2482 zonelist->_zonerefs[j].zone = NULL;
2483 zonelist->_zonerefs[j].zone_idx = 0;
2484 }
2485
2486 /*
2487 * Build zonelists ordered by zone and nodes within zones.
2488 * This results in conserving DMA zone[s] until all Normal memory is
2489 * exhausted, but results in overflowing to remote node while memory
2490 * may still exist in local DMA zone.
2491 */
2492 static int node_order[MAX_NUMNODES];
2493
2494 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2495 {
2496 int pos, j, node;
2497 int zone_type; /* needs to be signed */
2498 struct zone *z;
2499 struct zonelist *zonelist;
2500
2501 zonelist = &pgdat->node_zonelists[0];
2502 pos = 0;
2503 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2504 for (j = 0; j < nr_nodes; j++) {
2505 node = node_order[j];
2506 z = &NODE_DATA(node)->node_zones[zone_type];
2507 if (populated_zone(z)) {
2508 zoneref_set_zone(z,
2509 &zonelist->_zonerefs[pos++]);
2510 check_highest_zone(zone_type);
2511 }
2512 }
2513 }
2514 zonelist->_zonerefs[pos].zone = NULL;
2515 zonelist->_zonerefs[pos].zone_idx = 0;
2516 }
2517
2518 static int default_zonelist_order(void)
2519 {
2520 int nid, zone_type;
2521 unsigned long low_kmem_size,total_size;
2522 struct zone *z;
2523 int average_size;
2524 /*
2525 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2526 * If they are really small and used heavily, the system can fall
2527 * into OOM very easily.
2528 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2529 */
2530 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2531 low_kmem_size = 0;
2532 total_size = 0;
2533 for_each_online_node(nid) {
2534 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2535 z = &NODE_DATA(nid)->node_zones[zone_type];
2536 if (populated_zone(z)) {
2537 if (zone_type < ZONE_NORMAL)
2538 low_kmem_size += z->present_pages;
2539 total_size += z->present_pages;
2540 }
2541 }
2542 }
2543 if (!low_kmem_size || /* there are no DMA area. */
2544 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2545 return ZONELIST_ORDER_NODE;
2546 /*
2547 * look into each node's config.
2548 * If there is a node whose DMA/DMA32 memory is very big area on
2549 * local memory, NODE_ORDER may be suitable.
2550 */
2551 average_size = total_size /
2552 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2553 for_each_online_node(nid) {
2554 low_kmem_size = 0;
2555 total_size = 0;
2556 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2557 z = &NODE_DATA(nid)->node_zones[zone_type];
2558 if (populated_zone(z)) {
2559 if (zone_type < ZONE_NORMAL)
2560 low_kmem_size += z->present_pages;
2561 total_size += z->present_pages;
2562 }
2563 }
2564 if (low_kmem_size &&
2565 total_size > average_size && /* ignore small node */
2566 low_kmem_size > total_size * 70/100)
2567 return ZONELIST_ORDER_NODE;
2568 }
2569 return ZONELIST_ORDER_ZONE;
2570 }
2571
2572 static void set_zonelist_order(void)
2573 {
2574 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2575 current_zonelist_order = default_zonelist_order();
2576 else
2577 current_zonelist_order = user_zonelist_order;
2578 }
2579
2580 static void build_zonelists(pg_data_t *pgdat)
2581 {
2582 int j, node, load;
2583 enum zone_type i;
2584 nodemask_t used_mask;
2585 int local_node, prev_node;
2586 struct zonelist *zonelist;
2587 int order = current_zonelist_order;
2588
2589 /* initialize zonelists */
2590 for (i = 0; i < MAX_ZONELISTS; i++) {
2591 zonelist = pgdat->node_zonelists + i;
2592 zonelist->_zonerefs[0].zone = NULL;
2593 zonelist->_zonerefs[0].zone_idx = 0;
2594 }
2595
2596 /* NUMA-aware ordering of nodes */
2597 local_node = pgdat->node_id;
2598 load = nr_online_nodes;
2599 prev_node = local_node;
2600 nodes_clear(used_mask);
2601
2602 memset(node_order, 0, sizeof(node_order));
2603 j = 0;
2604
2605 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2606 int distance = node_distance(local_node, node);
2607
2608 /*
2609 * If another node is sufficiently far away then it is better
2610 * to reclaim pages in a zone before going off node.
2611 */
2612 if (distance > RECLAIM_DISTANCE)
2613 zone_reclaim_mode = 1;
2614
2615 /*
2616 * We don't want to pressure a particular node.
2617 * So adding penalty to the first node in same
2618 * distance group to make it round-robin.
2619 */
2620 if (distance != node_distance(local_node, prev_node))
2621 node_load[node] = load;
2622
2623 prev_node = node;
2624 load--;
2625 if (order == ZONELIST_ORDER_NODE)
2626 build_zonelists_in_node_order(pgdat, node);
2627 else
2628 node_order[j++] = node; /* remember order */
2629 }
2630
2631 if (order == ZONELIST_ORDER_ZONE) {
2632 /* calculate node order -- i.e., DMA last! */
2633 build_zonelists_in_zone_order(pgdat, j);
2634 }
2635
2636 build_thisnode_zonelists(pgdat);
2637 }
2638
2639 /* Construct the zonelist performance cache - see further mmzone.h */
2640 static void build_zonelist_cache(pg_data_t *pgdat)
2641 {
2642 struct zonelist *zonelist;
2643 struct zonelist_cache *zlc;
2644 struct zoneref *z;
2645
2646 zonelist = &pgdat->node_zonelists[0];
2647 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2648 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2649 for (z = zonelist->_zonerefs; z->zone; z++)
2650 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2651 }
2652
2653
2654 #else /* CONFIG_NUMA */
2655
2656 static void set_zonelist_order(void)
2657 {
2658 current_zonelist_order = ZONELIST_ORDER_ZONE;
2659 }
2660
2661 static void build_zonelists(pg_data_t *pgdat)
2662 {
2663 int node, local_node;
2664 enum zone_type j;
2665 struct zonelist *zonelist;
2666
2667 local_node = pgdat->node_id;
2668
2669 zonelist = &pgdat->node_zonelists[0];
2670 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2671
2672 /*
2673 * Now we build the zonelist so that it contains the zones
2674 * of all the other nodes.
2675 * We don't want to pressure a particular node, so when
2676 * building the zones for node N, we make sure that the
2677 * zones coming right after the local ones are those from
2678 * node N+1 (modulo N)
2679 */
2680 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2681 if (!node_online(node))
2682 continue;
2683 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2684 MAX_NR_ZONES - 1);
2685 }
2686 for (node = 0; node < local_node; node++) {
2687 if (!node_online(node))
2688 continue;
2689 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2690 MAX_NR_ZONES - 1);
2691 }
2692
2693 zonelist->_zonerefs[j].zone = NULL;
2694 zonelist->_zonerefs[j].zone_idx = 0;
2695 }
2696
2697 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2698 static void build_zonelist_cache(pg_data_t *pgdat)
2699 {
2700 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2701 }
2702
2703 #endif /* CONFIG_NUMA */
2704
2705 /* return values int ....just for stop_machine() */
2706 static int __build_all_zonelists(void *dummy)
2707 {
2708 int nid;
2709
2710 #ifdef CONFIG_NUMA
2711 memset(node_load, 0, sizeof(node_load));
2712 #endif
2713 for_each_online_node(nid) {
2714 pg_data_t *pgdat = NODE_DATA(nid);
2715
2716 build_zonelists(pgdat);
2717 build_zonelist_cache(pgdat);
2718 }
2719 return 0;
2720 }
2721
2722 void build_all_zonelists(void)
2723 {
2724 set_zonelist_order();
2725
2726 if (system_state == SYSTEM_BOOTING) {
2727 __build_all_zonelists(NULL);
2728 mminit_verify_zonelist();
2729 cpuset_init_current_mems_allowed();
2730 } else {
2731 /* we have to stop all cpus to guarantee there is no user
2732 of zonelist */
2733 stop_machine(__build_all_zonelists, NULL, NULL);
2734 /* cpuset refresh routine should be here */
2735 }
2736 vm_total_pages = nr_free_pagecache_pages();
2737 /*
2738 * Disable grouping by mobility if the number of pages in the
2739 * system is too low to allow the mechanism to work. It would be
2740 * more accurate, but expensive to check per-zone. This check is
2741 * made on memory-hotadd so a system can start with mobility
2742 * disabled and enable it later
2743 */
2744 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2745 page_group_by_mobility_disabled = 1;
2746 else
2747 page_group_by_mobility_disabled = 0;
2748
2749 printk("Built %i zonelists in %s order, mobility grouping %s. "
2750 "Total pages: %ld\n",
2751 nr_online_nodes,
2752 zonelist_order_name[current_zonelist_order],
2753 page_group_by_mobility_disabled ? "off" : "on",
2754 vm_total_pages);
2755 #ifdef CONFIG_NUMA
2756 printk("Policy zone: %s\n", zone_names[policy_zone]);
2757 #endif
2758 }
2759
2760 /*
2761 * Helper functions to size the waitqueue hash table.
2762 * Essentially these want to choose hash table sizes sufficiently
2763 * large so that collisions trying to wait on pages are rare.
2764 * But in fact, the number of active page waitqueues on typical
2765 * systems is ridiculously low, less than 200. So this is even
2766 * conservative, even though it seems large.
2767 *
2768 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2769 * waitqueues, i.e. the size of the waitq table given the number of pages.
2770 */
2771 #define PAGES_PER_WAITQUEUE 256
2772
2773 #ifndef CONFIG_MEMORY_HOTPLUG
2774 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2775 {
2776 unsigned long size = 1;
2777
2778 pages /= PAGES_PER_WAITQUEUE;
2779
2780 while (size < pages)
2781 size <<= 1;
2782
2783 /*
2784 * Once we have dozens or even hundreds of threads sleeping
2785 * on IO we've got bigger problems than wait queue collision.
2786 * Limit the size of the wait table to a reasonable size.
2787 */
2788 size = min(size, 4096UL);
2789
2790 return max(size, 4UL);
2791 }
2792 #else
2793 /*
2794 * A zone's size might be changed by hot-add, so it is not possible to determine
2795 * a suitable size for its wait_table. So we use the maximum size now.
2796 *
2797 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2798 *
2799 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2800 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2801 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2802 *
2803 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2804 * or more by the traditional way. (See above). It equals:
2805 *
2806 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2807 * ia64(16K page size) : = ( 8G + 4M)byte.
2808 * powerpc (64K page size) : = (32G +16M)byte.
2809 */
2810 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2811 {
2812 return 4096UL;
2813 }
2814 #endif
2815
2816 /*
2817 * This is an integer logarithm so that shifts can be used later
2818 * to extract the more random high bits from the multiplicative
2819 * hash function before the remainder is taken.
2820 */
2821 static inline unsigned long wait_table_bits(unsigned long size)
2822 {
2823 return ffz(~size);
2824 }
2825
2826 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2827
2828 /*
2829 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2830 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2831 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2832 * higher will lead to a bigger reserve which will get freed as contiguous
2833 * blocks as reclaim kicks in
2834 */
2835 static void setup_zone_migrate_reserve(struct zone *zone)
2836 {
2837 unsigned long start_pfn, pfn, end_pfn;
2838 struct page *page;
2839 unsigned long reserve, block_migratetype;
2840
2841 /* Get the start pfn, end pfn and the number of blocks to reserve */
2842 start_pfn = zone->zone_start_pfn;
2843 end_pfn = start_pfn + zone->spanned_pages;
2844 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2845 pageblock_order;
2846
2847 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2848 if (!pfn_valid(pfn))
2849 continue;
2850 page = pfn_to_page(pfn);
2851
2852 /* Watch out for overlapping nodes */
2853 if (page_to_nid(page) != zone_to_nid(zone))
2854 continue;
2855
2856 /* Blocks with reserved pages will never free, skip them. */
2857 if (PageReserved(page))
2858 continue;
2859
2860 block_migratetype = get_pageblock_migratetype(page);
2861
2862 /* If this block is reserved, account for it */
2863 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2864 reserve--;
2865 continue;
2866 }
2867
2868 /* Suitable for reserving if this block is movable */
2869 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2870 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2871 move_freepages_block(zone, page, MIGRATE_RESERVE);
2872 reserve--;
2873 continue;
2874 }
2875
2876 /*
2877 * If the reserve is met and this is a previous reserved block,
2878 * take it back
2879 */
2880 if (block_migratetype == MIGRATE_RESERVE) {
2881 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2882 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2883 }
2884 }
2885 }
2886
2887 /*
2888 * Initially all pages are reserved - free ones are freed
2889 * up by free_all_bootmem() once the early boot process is
2890 * done. Non-atomic initialization, single-pass.
2891 */
2892 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2893 unsigned long start_pfn, enum memmap_context context)
2894 {
2895 struct page *page;
2896 unsigned long end_pfn = start_pfn + size;
2897 unsigned long pfn;
2898 struct zone *z;
2899
2900 if (highest_memmap_pfn < end_pfn - 1)
2901 highest_memmap_pfn = end_pfn - 1;
2902
2903 z = &NODE_DATA(nid)->node_zones[zone];
2904 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2905 /*
2906 * There can be holes in boot-time mem_map[]s
2907 * handed to this function. They do not
2908 * exist on hotplugged memory.
2909 */
2910 if (context == MEMMAP_EARLY) {
2911 if (!early_pfn_valid(pfn))
2912 continue;
2913 if (!early_pfn_in_nid(pfn, nid))
2914 continue;
2915 }
2916 page = pfn_to_page(pfn);
2917 set_page_links(page, zone, nid, pfn);
2918 mminit_verify_page_links(page, zone, nid, pfn);
2919 init_page_count(page);
2920 reset_page_mapcount(page);
2921 SetPageReserved(page);
2922 /*
2923 * Mark the block movable so that blocks are reserved for
2924 * movable at startup. This will force kernel allocations
2925 * to reserve their blocks rather than leaking throughout
2926 * the address space during boot when many long-lived
2927 * kernel allocations are made. Later some blocks near
2928 * the start are marked MIGRATE_RESERVE by
2929 * setup_zone_migrate_reserve()
2930 *
2931 * bitmap is created for zone's valid pfn range. but memmap
2932 * can be created for invalid pages (for alignment)
2933 * check here not to call set_pageblock_migratetype() against
2934 * pfn out of zone.
2935 */
2936 if ((z->zone_start_pfn <= pfn)
2937 && (pfn < z->zone_start_pfn + z->spanned_pages)
2938 && !(pfn & (pageblock_nr_pages - 1)))
2939 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2940
2941 INIT_LIST_HEAD(&page->lru);
2942 #ifdef WANT_PAGE_VIRTUAL
2943 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2944 if (!is_highmem_idx(zone))
2945 set_page_address(page, __va(pfn << PAGE_SHIFT));
2946 #endif
2947 }
2948 }
2949
2950 static void __meminit zone_init_free_lists(struct zone *zone)
2951 {
2952 int order, t;
2953 for_each_migratetype_order(order, t) {
2954 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2955 zone->free_area[order].nr_free = 0;
2956 }
2957 }
2958
2959 #ifndef __HAVE_ARCH_MEMMAP_INIT
2960 #define memmap_init(size, nid, zone, start_pfn) \
2961 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2962 #endif
2963
2964 static int zone_batchsize(struct zone *zone)
2965 {
2966 #ifdef CONFIG_MMU
2967 int batch;
2968
2969 /*
2970 * The per-cpu-pages pools are set to around 1000th of the
2971 * size of the zone. But no more than 1/2 of a meg.
2972 *
2973 * OK, so we don't know how big the cache is. So guess.
2974 */
2975 batch = zone->present_pages / 1024;
2976 if (batch * PAGE_SIZE > 512 * 1024)
2977 batch = (512 * 1024) / PAGE_SIZE;
2978 batch /= 4; /* We effectively *= 4 below */
2979 if (batch < 1)
2980 batch = 1;
2981
2982 /*
2983 * Clamp the batch to a 2^n - 1 value. Having a power
2984 * of 2 value was found to be more likely to have
2985 * suboptimal cache aliasing properties in some cases.
2986 *
2987 * For example if 2 tasks are alternately allocating
2988 * batches of pages, one task can end up with a lot
2989 * of pages of one half of the possible page colors
2990 * and the other with pages of the other colors.
2991 */
2992 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2993
2994 return batch;
2995
2996 #else
2997 /* The deferral and batching of frees should be suppressed under NOMMU
2998 * conditions.
2999 *
3000 * The problem is that NOMMU needs to be able to allocate large chunks
3001 * of contiguous memory as there's no hardware page translation to
3002 * assemble apparent contiguous memory from discontiguous pages.
3003 *
3004 * Queueing large contiguous runs of pages for batching, however,
3005 * causes the pages to actually be freed in smaller chunks. As there
3006 * can be a significant delay between the individual batches being
3007 * recycled, this leads to the once large chunks of space being
3008 * fragmented and becoming unavailable for high-order allocations.
3009 */
3010 return 0;
3011 #endif
3012 }
3013
3014 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3015 {
3016 struct per_cpu_pages *pcp;
3017
3018 memset(p, 0, sizeof(*p));
3019
3020 pcp = &p->pcp;
3021 pcp->count = 0;
3022 pcp->high = 6 * batch;
3023 pcp->batch = max(1UL, 1 * batch);
3024 INIT_LIST_HEAD(&pcp->list);
3025 }
3026
3027 /*
3028 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3029 * to the value high for the pageset p.
3030 */
3031
3032 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3033 unsigned long high)
3034 {
3035 struct per_cpu_pages *pcp;
3036
3037 pcp = &p->pcp;
3038 pcp->high = high;
3039 pcp->batch = max(1UL, high/4);
3040 if ((high/4) > (PAGE_SHIFT * 8))
3041 pcp->batch = PAGE_SHIFT * 8;
3042 }
3043
3044
3045 #ifdef CONFIG_NUMA
3046 /*
3047 * Boot pageset table. One per cpu which is going to be used for all
3048 * zones and all nodes. The parameters will be set in such a way
3049 * that an item put on a list will immediately be handed over to
3050 * the buddy list. This is safe since pageset manipulation is done
3051 * with interrupts disabled.
3052 *
3053 * Some NUMA counter updates may also be caught by the boot pagesets.
3054 *
3055 * The boot_pagesets must be kept even after bootup is complete for
3056 * unused processors and/or zones. They do play a role for bootstrapping
3057 * hotplugged processors.
3058 *
3059 * zoneinfo_show() and maybe other functions do
3060 * not check if the processor is online before following the pageset pointer.
3061 * Other parts of the kernel may not check if the zone is available.
3062 */
3063 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3064
3065 /*
3066 * Dynamically allocate memory for the
3067 * per cpu pageset array in struct zone.
3068 */
3069 static int __cpuinit process_zones(int cpu)
3070 {
3071 struct zone *zone, *dzone;
3072 int node = cpu_to_node(cpu);
3073
3074 node_set_state(node, N_CPU); /* this node has a cpu */
3075
3076 for_each_populated_zone(zone) {
3077 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3078 GFP_KERNEL, node);
3079 if (!zone_pcp(zone, cpu))
3080 goto bad;
3081
3082 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3083
3084 if (percpu_pagelist_fraction)
3085 setup_pagelist_highmark(zone_pcp(zone, cpu),
3086 (zone->present_pages / percpu_pagelist_fraction));
3087 }
3088
3089 return 0;
3090 bad:
3091 for_each_zone(dzone) {
3092 if (!populated_zone(dzone))
3093 continue;
3094 if (dzone == zone)
3095 break;
3096 kfree(zone_pcp(dzone, cpu));
3097 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3098 }
3099 return -ENOMEM;
3100 }
3101
3102 static inline void free_zone_pagesets(int cpu)
3103 {
3104 struct zone *zone;
3105
3106 for_each_zone(zone) {
3107 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3108
3109 /* Free per_cpu_pageset if it is slab allocated */
3110 if (pset != &boot_pageset[cpu])
3111 kfree(pset);
3112 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3113 }
3114 }
3115
3116 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3117 unsigned long action,
3118 void *hcpu)
3119 {
3120 int cpu = (long)hcpu;
3121 int ret = NOTIFY_OK;
3122
3123 switch (action) {
3124 case CPU_UP_PREPARE:
3125 case CPU_UP_PREPARE_FROZEN:
3126 if (process_zones(cpu))
3127 ret = NOTIFY_BAD;
3128 break;
3129 case CPU_UP_CANCELED:
3130 case CPU_UP_CANCELED_FROZEN:
3131 case CPU_DEAD:
3132 case CPU_DEAD_FROZEN:
3133 free_zone_pagesets(cpu);
3134 break;
3135 default:
3136 break;
3137 }
3138 return ret;
3139 }
3140
3141 static struct notifier_block __cpuinitdata pageset_notifier =
3142 { &pageset_cpuup_callback, NULL, 0 };
3143
3144 void __init setup_per_cpu_pageset(void)
3145 {
3146 int err;
3147
3148 /* Initialize per_cpu_pageset for cpu 0.
3149 * A cpuup callback will do this for every cpu
3150 * as it comes online
3151 */
3152 err = process_zones(smp_processor_id());
3153 BUG_ON(err);
3154 register_cpu_notifier(&pageset_notifier);
3155 }
3156
3157 #endif
3158
3159 static noinline __init_refok
3160 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3161 {
3162 int i;
3163 struct pglist_data *pgdat = zone->zone_pgdat;
3164 size_t alloc_size;
3165
3166 /*
3167 * The per-page waitqueue mechanism uses hashed waitqueues
3168 * per zone.
3169 */
3170 zone->wait_table_hash_nr_entries =
3171 wait_table_hash_nr_entries(zone_size_pages);
3172 zone->wait_table_bits =
3173 wait_table_bits(zone->wait_table_hash_nr_entries);
3174 alloc_size = zone->wait_table_hash_nr_entries
3175 * sizeof(wait_queue_head_t);
3176
3177 if (!slab_is_available()) {
3178 zone->wait_table = (wait_queue_head_t *)
3179 alloc_bootmem_node(pgdat, alloc_size);
3180 } else {
3181 /*
3182 * This case means that a zone whose size was 0 gets new memory
3183 * via memory hot-add.
3184 * But it may be the case that a new node was hot-added. In
3185 * this case vmalloc() will not be able to use this new node's
3186 * memory - this wait_table must be initialized to use this new
3187 * node itself as well.
3188 * To use this new node's memory, further consideration will be
3189 * necessary.
3190 */
3191 zone->wait_table = vmalloc(alloc_size);
3192 }
3193 if (!zone->wait_table)
3194 return -ENOMEM;
3195
3196 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3197 init_waitqueue_head(zone->wait_table + i);
3198
3199 return 0;
3200 }
3201
3202 static int __zone_pcp_update(void *data)
3203 {
3204 struct zone *zone = data;
3205 int cpu;
3206 unsigned long batch = zone_batchsize(zone), flags;
3207
3208 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3209 struct per_cpu_pageset *pset;
3210 struct per_cpu_pages *pcp;
3211
3212 pset = zone_pcp(zone, cpu);
3213 pcp = &pset->pcp;
3214
3215 local_irq_save(flags);
3216 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3217 setup_pageset(pset, batch);
3218 local_irq_restore(flags);
3219 }
3220 return 0;
3221 }
3222
3223 void zone_pcp_update(struct zone *zone)
3224 {
3225 stop_machine(__zone_pcp_update, zone, NULL);
3226 }
3227
3228 static __meminit void zone_pcp_init(struct zone *zone)
3229 {
3230 int cpu;
3231 unsigned long batch = zone_batchsize(zone);
3232
3233 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3234 #ifdef CONFIG_NUMA
3235 /* Early boot. Slab allocator not functional yet */
3236 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3237 setup_pageset(&boot_pageset[cpu],0);
3238 #else
3239 setup_pageset(zone_pcp(zone,cpu), batch);
3240 #endif
3241 }
3242 if (zone->present_pages)
3243 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3244 zone->name, zone->present_pages, batch);
3245 }
3246
3247 __meminit int init_currently_empty_zone(struct zone *zone,
3248 unsigned long zone_start_pfn,
3249 unsigned long size,
3250 enum memmap_context context)
3251 {
3252 struct pglist_data *pgdat = zone->zone_pgdat;
3253 int ret;
3254 ret = zone_wait_table_init(zone, size);
3255 if (ret)
3256 return ret;
3257 pgdat->nr_zones = zone_idx(zone) + 1;
3258
3259 zone->zone_start_pfn = zone_start_pfn;
3260
3261 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3262 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3263 pgdat->node_id,
3264 (unsigned long)zone_idx(zone),
3265 zone_start_pfn, (zone_start_pfn + size));
3266
3267 zone_init_free_lists(zone);
3268
3269 return 0;
3270 }
3271
3272 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3273 /*
3274 * Basic iterator support. Return the first range of PFNs for a node
3275 * Note: nid == MAX_NUMNODES returns first region regardless of node
3276 */
3277 static int __meminit first_active_region_index_in_nid(int nid)
3278 {
3279 int i;
3280
3281 for (i = 0; i < nr_nodemap_entries; i++)
3282 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3283 return i;
3284
3285 return -1;
3286 }
3287
3288 /*
3289 * Basic iterator support. Return the next active range of PFNs for a node
3290 * Note: nid == MAX_NUMNODES returns next region regardless of node
3291 */
3292 static int __meminit next_active_region_index_in_nid(int index, int nid)
3293 {
3294 for (index = index + 1; index < nr_nodemap_entries; index++)
3295 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3296 return index;
3297
3298 return -1;
3299 }
3300
3301 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3302 /*
3303 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3304 * Architectures may implement their own version but if add_active_range()
3305 * was used and there are no special requirements, this is a convenient
3306 * alternative
3307 */
3308 int __meminit __early_pfn_to_nid(unsigned long pfn)
3309 {
3310 int i;
3311
3312 for (i = 0; i < nr_nodemap_entries; i++) {
3313 unsigned long start_pfn = early_node_map[i].start_pfn;
3314 unsigned long end_pfn = early_node_map[i].end_pfn;
3315
3316 if (start_pfn <= pfn && pfn < end_pfn)
3317 return early_node_map[i].nid;
3318 }
3319 /* This is a memory hole */
3320 return -1;
3321 }
3322 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3323
3324 int __meminit early_pfn_to_nid(unsigned long pfn)
3325 {
3326 int nid;
3327
3328 nid = __early_pfn_to_nid(pfn);
3329 if (nid >= 0)
3330 return nid;
3331 /* just returns 0 */
3332 return 0;
3333 }
3334
3335 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3336 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3337 {
3338 int nid;
3339
3340 nid = __early_pfn_to_nid(pfn);
3341 if (nid >= 0 && nid != node)
3342 return false;
3343 return true;
3344 }
3345 #endif
3346
3347 /* Basic iterator support to walk early_node_map[] */
3348 #define for_each_active_range_index_in_nid(i, nid) \
3349 for (i = first_active_region_index_in_nid(nid); i != -1; \
3350 i = next_active_region_index_in_nid(i, nid))
3351
3352 /**
3353 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3354 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3355 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3356 *
3357 * If an architecture guarantees that all ranges registered with
3358 * add_active_ranges() contain no holes and may be freed, this
3359 * this function may be used instead of calling free_bootmem() manually.
3360 */
3361 void __init free_bootmem_with_active_regions(int nid,
3362 unsigned long max_low_pfn)
3363 {
3364 int i;
3365
3366 for_each_active_range_index_in_nid(i, nid) {
3367 unsigned long size_pages = 0;
3368 unsigned long end_pfn = early_node_map[i].end_pfn;
3369
3370 if (early_node_map[i].start_pfn >= max_low_pfn)
3371 continue;
3372
3373 if (end_pfn > max_low_pfn)
3374 end_pfn = max_low_pfn;
3375
3376 size_pages = end_pfn - early_node_map[i].start_pfn;
3377 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3378 PFN_PHYS(early_node_map[i].start_pfn),
3379 size_pages << PAGE_SHIFT);
3380 }
3381 }
3382
3383 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3384 {
3385 int i;
3386 int ret;
3387
3388 for_each_active_range_index_in_nid(i, nid) {
3389 ret = work_fn(early_node_map[i].start_pfn,
3390 early_node_map[i].end_pfn, data);
3391 if (ret)
3392 break;
3393 }
3394 }
3395 /**
3396 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3397 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3398 *
3399 * If an architecture guarantees that all ranges registered with
3400 * add_active_ranges() contain no holes and may be freed, this
3401 * function may be used instead of calling memory_present() manually.
3402 */
3403 void __init sparse_memory_present_with_active_regions(int nid)
3404 {
3405 int i;
3406
3407 for_each_active_range_index_in_nid(i, nid)
3408 memory_present(early_node_map[i].nid,
3409 early_node_map[i].start_pfn,
3410 early_node_map[i].end_pfn);
3411 }
3412
3413 /**
3414 * get_pfn_range_for_nid - Return the start and end page frames for a node
3415 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3416 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3417 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3418 *
3419 * It returns the start and end page frame of a node based on information
3420 * provided by an arch calling add_active_range(). If called for a node
3421 * with no available memory, a warning is printed and the start and end
3422 * PFNs will be 0.
3423 */
3424 void __meminit get_pfn_range_for_nid(unsigned int nid,
3425 unsigned long *start_pfn, unsigned long *end_pfn)
3426 {
3427 int i;
3428 *start_pfn = -1UL;
3429 *end_pfn = 0;
3430
3431 for_each_active_range_index_in_nid(i, nid) {
3432 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3433 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3434 }
3435
3436 if (*start_pfn == -1UL)
3437 *start_pfn = 0;
3438 }
3439
3440 /*
3441 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3442 * assumption is made that zones within a node are ordered in monotonic
3443 * increasing memory addresses so that the "highest" populated zone is used
3444 */
3445 static void __init find_usable_zone_for_movable(void)
3446 {
3447 int zone_index;
3448 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3449 if (zone_index == ZONE_MOVABLE)
3450 continue;
3451
3452 if (arch_zone_highest_possible_pfn[zone_index] >
3453 arch_zone_lowest_possible_pfn[zone_index])
3454 break;
3455 }
3456
3457 VM_BUG_ON(zone_index == -1);
3458 movable_zone = zone_index;
3459 }
3460
3461 /*
3462 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3463 * because it is sized independant of architecture. Unlike the other zones,
3464 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3465 * in each node depending on the size of each node and how evenly kernelcore
3466 * is distributed. This helper function adjusts the zone ranges
3467 * provided by the architecture for a given node by using the end of the
3468 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3469 * zones within a node are in order of monotonic increases memory addresses
3470 */
3471 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3472 unsigned long zone_type,
3473 unsigned long node_start_pfn,
3474 unsigned long node_end_pfn,
3475 unsigned long *zone_start_pfn,
3476 unsigned long *zone_end_pfn)
3477 {
3478 /* Only adjust if ZONE_MOVABLE is on this node */
3479 if (zone_movable_pfn[nid]) {
3480 /* Size ZONE_MOVABLE */
3481 if (zone_type == ZONE_MOVABLE) {
3482 *zone_start_pfn = zone_movable_pfn[nid];
3483 *zone_end_pfn = min(node_end_pfn,
3484 arch_zone_highest_possible_pfn[movable_zone]);
3485
3486 /* Adjust for ZONE_MOVABLE starting within this range */
3487 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3488 *zone_end_pfn > zone_movable_pfn[nid]) {
3489 *zone_end_pfn = zone_movable_pfn[nid];
3490
3491 /* Check if this whole range is within ZONE_MOVABLE */
3492 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3493 *zone_start_pfn = *zone_end_pfn;
3494 }
3495 }
3496
3497 /*
3498 * Return the number of pages a zone spans in a node, including holes
3499 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3500 */
3501 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3502 unsigned long zone_type,
3503 unsigned long *ignored)
3504 {
3505 unsigned long node_start_pfn, node_end_pfn;
3506 unsigned long zone_start_pfn, zone_end_pfn;
3507
3508 /* Get the start and end of the node and zone */
3509 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3510 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3511 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3512 adjust_zone_range_for_zone_movable(nid, zone_type,
3513 node_start_pfn, node_end_pfn,
3514 &zone_start_pfn, &zone_end_pfn);
3515
3516 /* Check that this node has pages within the zone's required range */
3517 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3518 return 0;
3519
3520 /* Move the zone boundaries inside the node if necessary */
3521 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3522 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3523
3524 /* Return the spanned pages */
3525 return zone_end_pfn - zone_start_pfn;
3526 }
3527
3528 /*
3529 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3530 * then all holes in the requested range will be accounted for.
3531 */
3532 static unsigned long __meminit __absent_pages_in_range(int nid,
3533 unsigned long range_start_pfn,
3534 unsigned long range_end_pfn)
3535 {
3536 int i = 0;
3537 unsigned long prev_end_pfn = 0, hole_pages = 0;
3538 unsigned long start_pfn;
3539
3540 /* Find the end_pfn of the first active range of pfns in the node */
3541 i = first_active_region_index_in_nid(nid);
3542 if (i == -1)
3543 return 0;
3544
3545 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3546
3547 /* Account for ranges before physical memory on this node */
3548 if (early_node_map[i].start_pfn > range_start_pfn)
3549 hole_pages = prev_end_pfn - range_start_pfn;
3550
3551 /* Find all holes for the zone within the node */
3552 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3553
3554 /* No need to continue if prev_end_pfn is outside the zone */
3555 if (prev_end_pfn >= range_end_pfn)
3556 break;
3557
3558 /* Make sure the end of the zone is not within the hole */
3559 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3560 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3561
3562 /* Update the hole size cound and move on */
3563 if (start_pfn > range_start_pfn) {
3564 BUG_ON(prev_end_pfn > start_pfn);
3565 hole_pages += start_pfn - prev_end_pfn;
3566 }
3567 prev_end_pfn = early_node_map[i].end_pfn;
3568 }
3569
3570 /* Account for ranges past physical memory on this node */
3571 if (range_end_pfn > prev_end_pfn)
3572 hole_pages += range_end_pfn -
3573 max(range_start_pfn, prev_end_pfn);
3574
3575 return hole_pages;
3576 }
3577
3578 /**
3579 * absent_pages_in_range - Return number of page frames in holes within a range
3580 * @start_pfn: The start PFN to start searching for holes
3581 * @end_pfn: The end PFN to stop searching for holes
3582 *
3583 * It returns the number of pages frames in memory holes within a range.
3584 */
3585 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3586 unsigned long end_pfn)
3587 {
3588 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3589 }
3590
3591 /* Return the number of page frames in holes in a zone on a node */
3592 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3593 unsigned long zone_type,
3594 unsigned long *ignored)
3595 {
3596 unsigned long node_start_pfn, node_end_pfn;
3597 unsigned long zone_start_pfn, zone_end_pfn;
3598
3599 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3600 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3601 node_start_pfn);
3602 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3603 node_end_pfn);
3604
3605 adjust_zone_range_for_zone_movable(nid, zone_type,
3606 node_start_pfn, node_end_pfn,
3607 &zone_start_pfn, &zone_end_pfn);
3608 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3609 }
3610
3611 #else
3612 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3613 unsigned long zone_type,
3614 unsigned long *zones_size)
3615 {
3616 return zones_size[zone_type];
3617 }
3618
3619 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3620 unsigned long zone_type,
3621 unsigned long *zholes_size)
3622 {
3623 if (!zholes_size)
3624 return 0;
3625
3626 return zholes_size[zone_type];
3627 }
3628
3629 #endif
3630
3631 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3632 unsigned long *zones_size, unsigned long *zholes_size)
3633 {
3634 unsigned long realtotalpages, totalpages = 0;
3635 enum zone_type i;
3636
3637 for (i = 0; i < MAX_NR_ZONES; i++)
3638 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3639 zones_size);
3640 pgdat->node_spanned_pages = totalpages;
3641
3642 realtotalpages = totalpages;
3643 for (i = 0; i < MAX_NR_ZONES; i++)
3644 realtotalpages -=
3645 zone_absent_pages_in_node(pgdat->node_id, i,
3646 zholes_size);
3647 pgdat->node_present_pages = realtotalpages;
3648 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3649 realtotalpages);
3650 }
3651
3652 #ifndef CONFIG_SPARSEMEM
3653 /*
3654 * Calculate the size of the zone->blockflags rounded to an unsigned long
3655 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3656 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3657 * round what is now in bits to nearest long in bits, then return it in
3658 * bytes.
3659 */
3660 static unsigned long __init usemap_size(unsigned long zonesize)
3661 {
3662 unsigned long usemapsize;
3663
3664 usemapsize = roundup(zonesize, pageblock_nr_pages);
3665 usemapsize = usemapsize >> pageblock_order;
3666 usemapsize *= NR_PAGEBLOCK_BITS;
3667 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3668
3669 return usemapsize / 8;
3670 }
3671
3672 static void __init setup_usemap(struct pglist_data *pgdat,
3673 struct zone *zone, unsigned long zonesize)
3674 {
3675 unsigned long usemapsize = usemap_size(zonesize);
3676 zone->pageblock_flags = NULL;
3677 if (usemapsize)
3678 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3679 }
3680 #else
3681 static void inline setup_usemap(struct pglist_data *pgdat,
3682 struct zone *zone, unsigned long zonesize) {}
3683 #endif /* CONFIG_SPARSEMEM */
3684
3685 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3686
3687 /* Return a sensible default order for the pageblock size. */
3688 static inline int pageblock_default_order(void)
3689 {
3690 if (HPAGE_SHIFT > PAGE_SHIFT)
3691 return HUGETLB_PAGE_ORDER;
3692
3693 return MAX_ORDER-1;
3694 }
3695
3696 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3697 static inline void __init set_pageblock_order(unsigned int order)
3698 {
3699 /* Check that pageblock_nr_pages has not already been setup */
3700 if (pageblock_order)
3701 return;
3702
3703 /*
3704 * Assume the largest contiguous order of interest is a huge page.
3705 * This value may be variable depending on boot parameters on IA64
3706 */
3707 pageblock_order = order;
3708 }
3709 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3710
3711 /*
3712 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3713 * and pageblock_default_order() are unused as pageblock_order is set
3714 * at compile-time. See include/linux/pageblock-flags.h for the values of
3715 * pageblock_order based on the kernel config
3716 */
3717 static inline int pageblock_default_order(unsigned int order)
3718 {
3719 return MAX_ORDER-1;
3720 }
3721 #define set_pageblock_order(x) do {} while (0)
3722
3723 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3724
3725 /*
3726 * Set up the zone data structures:
3727 * - mark all pages reserved
3728 * - mark all memory queues empty
3729 * - clear the memory bitmaps
3730 */
3731 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3732 unsigned long *zones_size, unsigned long *zholes_size)
3733 {
3734 enum zone_type j;
3735 int nid = pgdat->node_id;
3736 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3737 int ret;
3738
3739 pgdat_resize_init(pgdat);
3740 pgdat->nr_zones = 0;
3741 init_waitqueue_head(&pgdat->kswapd_wait);
3742 pgdat->kswapd_max_order = 0;
3743 pgdat_page_cgroup_init(pgdat);
3744
3745 for (j = 0; j < MAX_NR_ZONES; j++) {
3746 struct zone *zone = pgdat->node_zones + j;
3747 unsigned long size, realsize, memmap_pages;
3748 enum lru_list l;
3749
3750 size = zone_spanned_pages_in_node(nid, j, zones_size);
3751 realsize = size - zone_absent_pages_in_node(nid, j,
3752 zholes_size);
3753
3754 /*
3755 * Adjust realsize so that it accounts for how much memory
3756 * is used by this zone for memmap. This affects the watermark
3757 * and per-cpu initialisations
3758 */
3759 memmap_pages =
3760 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3761 if (realsize >= memmap_pages) {
3762 realsize -= memmap_pages;
3763 if (memmap_pages)
3764 printk(KERN_DEBUG
3765 " %s zone: %lu pages used for memmap\n",
3766 zone_names[j], memmap_pages);
3767 } else
3768 printk(KERN_WARNING
3769 " %s zone: %lu pages exceeds realsize %lu\n",
3770 zone_names[j], memmap_pages, realsize);
3771
3772 /* Account for reserved pages */
3773 if (j == 0 && realsize > dma_reserve) {
3774 realsize -= dma_reserve;
3775 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3776 zone_names[0], dma_reserve);
3777 }
3778
3779 if (!is_highmem_idx(j))
3780 nr_kernel_pages += realsize;
3781 nr_all_pages += realsize;
3782
3783 zone->spanned_pages = size;
3784 zone->present_pages = realsize;
3785 #ifdef CONFIG_NUMA
3786 zone->node = nid;
3787 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3788 / 100;
3789 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3790 #endif
3791 zone->name = zone_names[j];
3792 spin_lock_init(&zone->lock);
3793 spin_lock_init(&zone->lru_lock);
3794 zone_seqlock_init(zone);
3795 zone->zone_pgdat = pgdat;
3796
3797 zone->prev_priority = DEF_PRIORITY;
3798
3799 zone_pcp_init(zone);
3800 for_each_lru(l) {
3801 INIT_LIST_HEAD(&zone->lru[l].list);
3802 zone->lru[l].nr_saved_scan = 0;
3803 }
3804 zone->reclaim_stat.recent_rotated[0] = 0;
3805 zone->reclaim_stat.recent_rotated[1] = 0;
3806 zone->reclaim_stat.recent_scanned[0] = 0;
3807 zone->reclaim_stat.recent_scanned[1] = 0;
3808 zap_zone_vm_stats(zone);
3809 zone->flags = 0;
3810 if (!size)
3811 continue;
3812
3813 set_pageblock_order(pageblock_default_order());
3814 setup_usemap(pgdat, zone, size);
3815 ret = init_currently_empty_zone(zone, zone_start_pfn,
3816 size, MEMMAP_EARLY);
3817 BUG_ON(ret);
3818 memmap_init(size, nid, j, zone_start_pfn);
3819 zone_start_pfn += size;
3820 }
3821 }
3822
3823 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3824 {
3825 /* Skip empty nodes */
3826 if (!pgdat->node_spanned_pages)
3827 return;
3828
3829 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3830 /* ia64 gets its own node_mem_map, before this, without bootmem */
3831 if (!pgdat->node_mem_map) {
3832 unsigned long size, start, end;
3833 struct page *map;
3834
3835 /*
3836 * The zone's endpoints aren't required to be MAX_ORDER
3837 * aligned but the node_mem_map endpoints must be in order
3838 * for the buddy allocator to function correctly.
3839 */
3840 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3841 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3842 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3843 size = (end - start) * sizeof(struct page);
3844 map = alloc_remap(pgdat->node_id, size);
3845 if (!map)
3846 map = alloc_bootmem_node(pgdat, size);
3847 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3848 }
3849 #ifndef CONFIG_NEED_MULTIPLE_NODES
3850 /*
3851 * With no DISCONTIG, the global mem_map is just set as node 0's
3852 */
3853 if (pgdat == NODE_DATA(0)) {
3854 mem_map = NODE_DATA(0)->node_mem_map;
3855 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3856 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3857 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3858 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3859 }
3860 #endif
3861 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3862 }
3863
3864 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3865 unsigned long node_start_pfn, unsigned long *zholes_size)
3866 {
3867 pg_data_t *pgdat = NODE_DATA(nid);
3868
3869 pgdat->node_id = nid;
3870 pgdat->node_start_pfn = node_start_pfn;
3871 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3872
3873 alloc_node_mem_map(pgdat);
3874 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3875 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3876 nid, (unsigned long)pgdat,
3877 (unsigned long)pgdat->node_mem_map);
3878 #endif
3879
3880 free_area_init_core(pgdat, zones_size, zholes_size);
3881 }
3882
3883 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3884
3885 #if MAX_NUMNODES > 1
3886 /*
3887 * Figure out the number of possible node ids.
3888 */
3889 static void __init setup_nr_node_ids(void)
3890 {
3891 unsigned int node;
3892 unsigned int highest = 0;
3893
3894 for_each_node_mask(node, node_possible_map)
3895 highest = node;
3896 nr_node_ids = highest + 1;
3897 }
3898 #else
3899 static inline void setup_nr_node_ids(void)
3900 {
3901 }
3902 #endif
3903
3904 /**
3905 * add_active_range - Register a range of PFNs backed by physical memory
3906 * @nid: The node ID the range resides on
3907 * @start_pfn: The start PFN of the available physical memory
3908 * @end_pfn: The end PFN of the available physical memory
3909 *
3910 * These ranges are stored in an early_node_map[] and later used by
3911 * free_area_init_nodes() to calculate zone sizes and holes. If the
3912 * range spans a memory hole, it is up to the architecture to ensure
3913 * the memory is not freed by the bootmem allocator. If possible
3914 * the range being registered will be merged with existing ranges.
3915 */
3916 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3917 unsigned long end_pfn)
3918 {
3919 int i;
3920
3921 mminit_dprintk(MMINIT_TRACE, "memory_register",
3922 "Entering add_active_range(%d, %#lx, %#lx) "
3923 "%d entries of %d used\n",
3924 nid, start_pfn, end_pfn,
3925 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3926
3927 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3928
3929 /* Merge with existing active regions if possible */
3930 for (i = 0; i < nr_nodemap_entries; i++) {
3931 if (early_node_map[i].nid != nid)
3932 continue;
3933
3934 /* Skip if an existing region covers this new one */
3935 if (start_pfn >= early_node_map[i].start_pfn &&
3936 end_pfn <= early_node_map[i].end_pfn)
3937 return;
3938
3939 /* Merge forward if suitable */
3940 if (start_pfn <= early_node_map[i].end_pfn &&
3941 end_pfn > early_node_map[i].end_pfn) {
3942 early_node_map[i].end_pfn = end_pfn;
3943 return;
3944 }
3945
3946 /* Merge backward if suitable */
3947 if (start_pfn < early_node_map[i].end_pfn &&
3948 end_pfn >= early_node_map[i].start_pfn) {
3949 early_node_map[i].start_pfn = start_pfn;
3950 return;
3951 }
3952 }
3953
3954 /* Check that early_node_map is large enough */
3955 if (i >= MAX_ACTIVE_REGIONS) {
3956 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3957 MAX_ACTIVE_REGIONS);
3958 return;
3959 }
3960
3961 early_node_map[i].nid = nid;
3962 early_node_map[i].start_pfn = start_pfn;
3963 early_node_map[i].end_pfn = end_pfn;
3964 nr_nodemap_entries = i + 1;
3965 }
3966
3967 /**
3968 * remove_active_range - Shrink an existing registered range of PFNs
3969 * @nid: The node id the range is on that should be shrunk
3970 * @start_pfn: The new PFN of the range
3971 * @end_pfn: The new PFN of the range
3972 *
3973 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3974 * The map is kept near the end physical page range that has already been
3975 * registered. This function allows an arch to shrink an existing registered
3976 * range.
3977 */
3978 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3979 unsigned long end_pfn)
3980 {
3981 int i, j;
3982 int removed = 0;
3983
3984 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3985 nid, start_pfn, end_pfn);
3986
3987 /* Find the old active region end and shrink */
3988 for_each_active_range_index_in_nid(i, nid) {
3989 if (early_node_map[i].start_pfn >= start_pfn &&
3990 early_node_map[i].end_pfn <= end_pfn) {
3991 /* clear it */
3992 early_node_map[i].start_pfn = 0;
3993 early_node_map[i].end_pfn = 0;
3994 removed = 1;
3995 continue;
3996 }
3997 if (early_node_map[i].start_pfn < start_pfn &&
3998 early_node_map[i].end_pfn > start_pfn) {
3999 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4000 early_node_map[i].end_pfn = start_pfn;
4001 if (temp_end_pfn > end_pfn)
4002 add_active_range(nid, end_pfn, temp_end_pfn);
4003 continue;
4004 }
4005 if (early_node_map[i].start_pfn >= start_pfn &&
4006 early_node_map[i].end_pfn > end_pfn &&
4007 early_node_map[i].start_pfn < end_pfn) {
4008 early_node_map[i].start_pfn = end_pfn;
4009 continue;
4010 }
4011 }
4012
4013 if (!removed)
4014 return;
4015
4016 /* remove the blank ones */
4017 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4018 if (early_node_map[i].nid != nid)
4019 continue;
4020 if (early_node_map[i].end_pfn)
4021 continue;
4022 /* we found it, get rid of it */
4023 for (j = i; j < nr_nodemap_entries - 1; j++)
4024 memcpy(&early_node_map[j], &early_node_map[j+1],
4025 sizeof(early_node_map[j]));
4026 j = nr_nodemap_entries - 1;
4027 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4028 nr_nodemap_entries--;
4029 }
4030 }
4031
4032 /**
4033 * remove_all_active_ranges - Remove all currently registered regions
4034 *
4035 * During discovery, it may be found that a table like SRAT is invalid
4036 * and an alternative discovery method must be used. This function removes
4037 * all currently registered regions.
4038 */
4039 void __init remove_all_active_ranges(void)
4040 {
4041 memset(early_node_map, 0, sizeof(early_node_map));
4042 nr_nodemap_entries = 0;
4043 }
4044
4045 /* Compare two active node_active_regions */
4046 static int __init cmp_node_active_region(const void *a, const void *b)
4047 {
4048 struct node_active_region *arange = (struct node_active_region *)a;
4049 struct node_active_region *brange = (struct node_active_region *)b;
4050
4051 /* Done this way to avoid overflows */
4052 if (arange->start_pfn > brange->start_pfn)
4053 return 1;
4054 if (arange->start_pfn < brange->start_pfn)
4055 return -1;
4056
4057 return 0;
4058 }
4059
4060 /* sort the node_map by start_pfn */
4061 static void __init sort_node_map(void)
4062 {
4063 sort(early_node_map, (size_t)nr_nodemap_entries,
4064 sizeof(struct node_active_region),
4065 cmp_node_active_region, NULL);
4066 }
4067
4068 /* Find the lowest pfn for a node */
4069 static unsigned long __init find_min_pfn_for_node(int nid)
4070 {
4071 int i;
4072 unsigned long min_pfn = ULONG_MAX;
4073
4074 /* Assuming a sorted map, the first range found has the starting pfn */
4075 for_each_active_range_index_in_nid(i, nid)
4076 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4077
4078 if (min_pfn == ULONG_MAX) {
4079 printk(KERN_WARNING
4080 "Could not find start_pfn for node %d\n", nid);
4081 return 0;
4082 }
4083
4084 return min_pfn;
4085 }
4086
4087 /**
4088 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4089 *
4090 * It returns the minimum PFN based on information provided via
4091 * add_active_range().
4092 */
4093 unsigned long __init find_min_pfn_with_active_regions(void)
4094 {
4095 return find_min_pfn_for_node(MAX_NUMNODES);
4096 }
4097
4098 /*
4099 * early_calculate_totalpages()
4100 * Sum pages in active regions for movable zone.
4101 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4102 */
4103 static unsigned long __init early_calculate_totalpages(void)
4104 {
4105 int i;
4106 unsigned long totalpages = 0;
4107
4108 for (i = 0; i < nr_nodemap_entries; i++) {
4109 unsigned long pages = early_node_map[i].end_pfn -
4110 early_node_map[i].start_pfn;
4111 totalpages += pages;
4112 if (pages)
4113 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4114 }
4115 return totalpages;
4116 }
4117
4118 /*
4119 * Find the PFN the Movable zone begins in each node. Kernel memory
4120 * is spread evenly between nodes as long as the nodes have enough
4121 * memory. When they don't, some nodes will have more kernelcore than
4122 * others
4123 */
4124 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4125 {
4126 int i, nid;
4127 unsigned long usable_startpfn;
4128 unsigned long kernelcore_node, kernelcore_remaining;
4129 /* save the state before borrow the nodemask */
4130 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4131 unsigned long totalpages = early_calculate_totalpages();
4132 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4133
4134 /*
4135 * If movablecore was specified, calculate what size of
4136 * kernelcore that corresponds so that memory usable for
4137 * any allocation type is evenly spread. If both kernelcore
4138 * and movablecore are specified, then the value of kernelcore
4139 * will be used for required_kernelcore if it's greater than
4140 * what movablecore would have allowed.
4141 */
4142 if (required_movablecore) {
4143 unsigned long corepages;
4144
4145 /*
4146 * Round-up so that ZONE_MOVABLE is at least as large as what
4147 * was requested by the user
4148 */
4149 required_movablecore =
4150 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4151 corepages = totalpages - required_movablecore;
4152
4153 required_kernelcore = max(required_kernelcore, corepages);
4154 }
4155
4156 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4157 if (!required_kernelcore)
4158 goto out;
4159
4160 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4161 find_usable_zone_for_movable();
4162 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4163
4164 restart:
4165 /* Spread kernelcore memory as evenly as possible throughout nodes */
4166 kernelcore_node = required_kernelcore / usable_nodes;
4167 for_each_node_state(nid, N_HIGH_MEMORY) {
4168 /*
4169 * Recalculate kernelcore_node if the division per node
4170 * now exceeds what is necessary to satisfy the requested
4171 * amount of memory for the kernel
4172 */
4173 if (required_kernelcore < kernelcore_node)
4174 kernelcore_node = required_kernelcore / usable_nodes;
4175
4176 /*
4177 * As the map is walked, we track how much memory is usable
4178 * by the kernel using kernelcore_remaining. When it is
4179 * 0, the rest of the node is usable by ZONE_MOVABLE
4180 */
4181 kernelcore_remaining = kernelcore_node;
4182
4183 /* Go through each range of PFNs within this node */
4184 for_each_active_range_index_in_nid(i, nid) {
4185 unsigned long start_pfn, end_pfn;
4186 unsigned long size_pages;
4187
4188 start_pfn = max(early_node_map[i].start_pfn,
4189 zone_movable_pfn[nid]);
4190 end_pfn = early_node_map[i].end_pfn;
4191 if (start_pfn >= end_pfn)
4192 continue;
4193
4194 /* Account for what is only usable for kernelcore */
4195 if (start_pfn < usable_startpfn) {
4196 unsigned long kernel_pages;
4197 kernel_pages = min(end_pfn, usable_startpfn)
4198 - start_pfn;
4199
4200 kernelcore_remaining -= min(kernel_pages,
4201 kernelcore_remaining);
4202 required_kernelcore -= min(kernel_pages,
4203 required_kernelcore);
4204
4205 /* Continue if range is now fully accounted */
4206 if (end_pfn <= usable_startpfn) {
4207
4208 /*
4209 * Push zone_movable_pfn to the end so
4210 * that if we have to rebalance
4211 * kernelcore across nodes, we will
4212 * not double account here
4213 */
4214 zone_movable_pfn[nid] = end_pfn;
4215 continue;
4216 }
4217 start_pfn = usable_startpfn;
4218 }
4219
4220 /*
4221 * The usable PFN range for ZONE_MOVABLE is from
4222 * start_pfn->end_pfn. Calculate size_pages as the
4223 * number of pages used as kernelcore
4224 */
4225 size_pages = end_pfn - start_pfn;
4226 if (size_pages > kernelcore_remaining)
4227 size_pages = kernelcore_remaining;
4228 zone_movable_pfn[nid] = start_pfn + size_pages;
4229
4230 /*
4231 * Some kernelcore has been met, update counts and
4232 * break if the kernelcore for this node has been
4233 * satisified
4234 */
4235 required_kernelcore -= min(required_kernelcore,
4236 size_pages);
4237 kernelcore_remaining -= size_pages;
4238 if (!kernelcore_remaining)
4239 break;
4240 }
4241 }
4242
4243 /*
4244 * If there is still required_kernelcore, we do another pass with one
4245 * less node in the count. This will push zone_movable_pfn[nid] further
4246 * along on the nodes that still have memory until kernelcore is
4247 * satisified
4248 */
4249 usable_nodes--;
4250 if (usable_nodes && required_kernelcore > usable_nodes)
4251 goto restart;
4252
4253 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4254 for (nid = 0; nid < MAX_NUMNODES; nid++)
4255 zone_movable_pfn[nid] =
4256 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4257
4258 out:
4259 /* restore the node_state */
4260 node_states[N_HIGH_MEMORY] = saved_node_state;
4261 }
4262
4263 /* Any regular memory on that node ? */
4264 static void check_for_regular_memory(pg_data_t *pgdat)
4265 {
4266 #ifdef CONFIG_HIGHMEM
4267 enum zone_type zone_type;
4268
4269 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4270 struct zone *zone = &pgdat->node_zones[zone_type];
4271 if (zone->present_pages)
4272 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4273 }
4274 #endif
4275 }
4276
4277 /**
4278 * free_area_init_nodes - Initialise all pg_data_t and zone data
4279 * @max_zone_pfn: an array of max PFNs for each zone
4280 *
4281 * This will call free_area_init_node() for each active node in the system.
4282 * Using the page ranges provided by add_active_range(), the size of each
4283 * zone in each node and their holes is calculated. If the maximum PFN
4284 * between two adjacent zones match, it is assumed that the zone is empty.
4285 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4286 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4287 * starts where the previous one ended. For example, ZONE_DMA32 starts
4288 * at arch_max_dma_pfn.
4289 */
4290 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4291 {
4292 unsigned long nid;
4293 int i;
4294
4295 /* Sort early_node_map as initialisation assumes it is sorted */
4296 sort_node_map();
4297
4298 /* Record where the zone boundaries are */
4299 memset(arch_zone_lowest_possible_pfn, 0,
4300 sizeof(arch_zone_lowest_possible_pfn));
4301 memset(arch_zone_highest_possible_pfn, 0,
4302 sizeof(arch_zone_highest_possible_pfn));
4303 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4304 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4305 for (i = 1; i < MAX_NR_ZONES; i++) {
4306 if (i == ZONE_MOVABLE)
4307 continue;
4308 arch_zone_lowest_possible_pfn[i] =
4309 arch_zone_highest_possible_pfn[i-1];
4310 arch_zone_highest_possible_pfn[i] =
4311 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4312 }
4313 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4314 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4315
4316 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4317 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4318 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4319
4320 /* Print out the zone ranges */
4321 printk("Zone PFN ranges:\n");
4322 for (i = 0; i < MAX_NR_ZONES; i++) {
4323 if (i == ZONE_MOVABLE)
4324 continue;
4325 printk(" %-8s %0#10lx -> %0#10lx\n",
4326 zone_names[i],
4327 arch_zone_lowest_possible_pfn[i],
4328 arch_zone_highest_possible_pfn[i]);
4329 }
4330
4331 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4332 printk("Movable zone start PFN for each node\n");
4333 for (i = 0; i < MAX_NUMNODES; i++) {
4334 if (zone_movable_pfn[i])
4335 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4336 }
4337
4338 /* Print out the early_node_map[] */
4339 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4340 for (i = 0; i < nr_nodemap_entries; i++)
4341 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4342 early_node_map[i].start_pfn,
4343 early_node_map[i].end_pfn);
4344
4345 /* Initialise every node */
4346 mminit_verify_pageflags_layout();
4347 setup_nr_node_ids();
4348 for_each_online_node(nid) {
4349 pg_data_t *pgdat = NODE_DATA(nid);
4350 free_area_init_node(nid, NULL,
4351 find_min_pfn_for_node(nid), NULL);
4352
4353 /* Any memory on that node */
4354 if (pgdat->node_present_pages)
4355 node_set_state(nid, N_HIGH_MEMORY);
4356 check_for_regular_memory(pgdat);
4357 }
4358 }
4359
4360 static int __init cmdline_parse_core(char *p, unsigned long *core)
4361 {
4362 unsigned long long coremem;
4363 if (!p)
4364 return -EINVAL;
4365
4366 coremem = memparse(p, &p);
4367 *core = coremem >> PAGE_SHIFT;
4368
4369 /* Paranoid check that UL is enough for the coremem value */
4370 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4371
4372 return 0;
4373 }
4374
4375 /*
4376 * kernelcore=size sets the amount of memory for use for allocations that
4377 * cannot be reclaimed or migrated.
4378 */
4379 static int __init cmdline_parse_kernelcore(char *p)
4380 {
4381 return cmdline_parse_core(p, &required_kernelcore);
4382 }
4383
4384 /*
4385 * movablecore=size sets the amount of memory for use for allocations that
4386 * can be reclaimed or migrated.
4387 */
4388 static int __init cmdline_parse_movablecore(char *p)
4389 {
4390 return cmdline_parse_core(p, &required_movablecore);
4391 }
4392
4393 early_param("kernelcore", cmdline_parse_kernelcore);
4394 early_param("movablecore", cmdline_parse_movablecore);
4395
4396 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4397
4398 /**
4399 * set_dma_reserve - set the specified number of pages reserved in the first zone
4400 * @new_dma_reserve: The number of pages to mark reserved
4401 *
4402 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4403 * In the DMA zone, a significant percentage may be consumed by kernel image
4404 * and other unfreeable allocations which can skew the watermarks badly. This
4405 * function may optionally be used to account for unfreeable pages in the
4406 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4407 * smaller per-cpu batchsize.
4408 */
4409 void __init set_dma_reserve(unsigned long new_dma_reserve)
4410 {
4411 dma_reserve = new_dma_reserve;
4412 }
4413
4414 #ifndef CONFIG_NEED_MULTIPLE_NODES
4415 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4416 EXPORT_SYMBOL(contig_page_data);
4417 #endif
4418
4419 void __init free_area_init(unsigned long *zones_size)
4420 {
4421 free_area_init_node(0, zones_size,
4422 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4423 }
4424
4425 static int page_alloc_cpu_notify(struct notifier_block *self,
4426 unsigned long action, void *hcpu)
4427 {
4428 int cpu = (unsigned long)hcpu;
4429
4430 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4431 drain_pages(cpu);
4432
4433 /*
4434 * Spill the event counters of the dead processor
4435 * into the current processors event counters.
4436 * This artificially elevates the count of the current
4437 * processor.
4438 */
4439 vm_events_fold_cpu(cpu);
4440
4441 /*
4442 * Zero the differential counters of the dead processor
4443 * so that the vm statistics are consistent.
4444 *
4445 * This is only okay since the processor is dead and cannot
4446 * race with what we are doing.
4447 */
4448 refresh_cpu_vm_stats(cpu);
4449 }
4450 return NOTIFY_OK;
4451 }
4452
4453 void __init page_alloc_init(void)
4454 {
4455 hotcpu_notifier(page_alloc_cpu_notify, 0);
4456 }
4457
4458 /*
4459 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4460 * or min_free_kbytes changes.
4461 */
4462 static void calculate_totalreserve_pages(void)
4463 {
4464 struct pglist_data *pgdat;
4465 unsigned long reserve_pages = 0;
4466 enum zone_type i, j;
4467
4468 for_each_online_pgdat(pgdat) {
4469 for (i = 0; i < MAX_NR_ZONES; i++) {
4470 struct zone *zone = pgdat->node_zones + i;
4471 unsigned long max = 0;
4472
4473 /* Find valid and maximum lowmem_reserve in the zone */
4474 for (j = i; j < MAX_NR_ZONES; j++) {
4475 if (zone->lowmem_reserve[j] > max)
4476 max = zone->lowmem_reserve[j];
4477 }
4478
4479 /* we treat the high watermark as reserved pages. */
4480 max += high_wmark_pages(zone);
4481
4482 if (max > zone->present_pages)
4483 max = zone->present_pages;
4484 reserve_pages += max;
4485 }
4486 }
4487 totalreserve_pages = reserve_pages;
4488 }
4489
4490 /*
4491 * setup_per_zone_lowmem_reserve - called whenever
4492 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4493 * has a correct pages reserved value, so an adequate number of
4494 * pages are left in the zone after a successful __alloc_pages().
4495 */
4496 static void setup_per_zone_lowmem_reserve(void)
4497 {
4498 struct pglist_data *pgdat;
4499 enum zone_type j, idx;
4500
4501 for_each_online_pgdat(pgdat) {
4502 for (j = 0; j < MAX_NR_ZONES; j++) {
4503 struct zone *zone = pgdat->node_zones + j;
4504 unsigned long present_pages = zone->present_pages;
4505
4506 zone->lowmem_reserve[j] = 0;
4507
4508 idx = j;
4509 while (idx) {
4510 struct zone *lower_zone;
4511
4512 idx--;
4513
4514 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4515 sysctl_lowmem_reserve_ratio[idx] = 1;
4516
4517 lower_zone = pgdat->node_zones + idx;
4518 lower_zone->lowmem_reserve[j] = present_pages /
4519 sysctl_lowmem_reserve_ratio[idx];
4520 present_pages += lower_zone->present_pages;
4521 }
4522 }
4523 }
4524
4525 /* update totalreserve_pages */
4526 calculate_totalreserve_pages();
4527 }
4528
4529 /**
4530 * setup_per_zone_wmarks - called when min_free_kbytes changes
4531 * or when memory is hot-{added|removed}
4532 *
4533 * Ensures that the watermark[min,low,high] values for each zone are set
4534 * correctly with respect to min_free_kbytes.
4535 */
4536 void setup_per_zone_wmarks(void)
4537 {
4538 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4539 unsigned long lowmem_pages = 0;
4540 struct zone *zone;
4541 unsigned long flags;
4542
4543 /* Calculate total number of !ZONE_HIGHMEM pages */
4544 for_each_zone(zone) {
4545 if (!is_highmem(zone))
4546 lowmem_pages += zone->present_pages;
4547 }
4548
4549 for_each_zone(zone) {
4550 u64 tmp;
4551
4552 spin_lock_irqsave(&zone->lock, flags);
4553 tmp = (u64)pages_min * zone->present_pages;
4554 do_div(tmp, lowmem_pages);
4555 if (is_highmem(zone)) {
4556 /*
4557 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4558 * need highmem pages, so cap pages_min to a small
4559 * value here.
4560 *
4561 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4562 * deltas controls asynch page reclaim, and so should
4563 * not be capped for highmem.
4564 */
4565 int min_pages;
4566
4567 min_pages = zone->present_pages / 1024;
4568 if (min_pages < SWAP_CLUSTER_MAX)
4569 min_pages = SWAP_CLUSTER_MAX;
4570 if (min_pages > 128)
4571 min_pages = 128;
4572 zone->watermark[WMARK_MIN] = min_pages;
4573 } else {
4574 /*
4575 * If it's a lowmem zone, reserve a number of pages
4576 * proportionate to the zone's size.
4577 */
4578 zone->watermark[WMARK_MIN] = tmp;
4579 }
4580
4581 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4582 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4583 setup_zone_migrate_reserve(zone);
4584 spin_unlock_irqrestore(&zone->lock, flags);
4585 }
4586
4587 /* update totalreserve_pages */
4588 calculate_totalreserve_pages();
4589 }
4590
4591 /*
4592 * The inactive anon list should be small enough that the VM never has to
4593 * do too much work, but large enough that each inactive page has a chance
4594 * to be referenced again before it is swapped out.
4595 *
4596 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4597 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4598 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4599 * the anonymous pages are kept on the inactive list.
4600 *
4601 * total target max
4602 * memory ratio inactive anon
4603 * -------------------------------------
4604 * 10MB 1 5MB
4605 * 100MB 1 50MB
4606 * 1GB 3 250MB
4607 * 10GB 10 0.9GB
4608 * 100GB 31 3GB
4609 * 1TB 101 10GB
4610 * 10TB 320 32GB
4611 */
4612 void calculate_zone_inactive_ratio(struct zone *zone)
4613 {
4614 unsigned int gb, ratio;
4615
4616 /* Zone size in gigabytes */
4617 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4618 if (gb)
4619 ratio = int_sqrt(10 * gb);
4620 else
4621 ratio = 1;
4622
4623 zone->inactive_ratio = ratio;
4624 }
4625
4626 static void __init setup_per_zone_inactive_ratio(void)
4627 {
4628 struct zone *zone;
4629
4630 for_each_zone(zone)
4631 calculate_zone_inactive_ratio(zone);
4632 }
4633
4634 /*
4635 * Initialise min_free_kbytes.
4636 *
4637 * For small machines we want it small (128k min). For large machines
4638 * we want it large (64MB max). But it is not linear, because network
4639 * bandwidth does not increase linearly with machine size. We use
4640 *
4641 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4642 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4643 *
4644 * which yields
4645 *
4646 * 16MB: 512k
4647 * 32MB: 724k
4648 * 64MB: 1024k
4649 * 128MB: 1448k
4650 * 256MB: 2048k
4651 * 512MB: 2896k
4652 * 1024MB: 4096k
4653 * 2048MB: 5792k
4654 * 4096MB: 8192k
4655 * 8192MB: 11584k
4656 * 16384MB: 16384k
4657 */
4658 static int __init init_per_zone_wmark_min(void)
4659 {
4660 unsigned long lowmem_kbytes;
4661
4662 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4663
4664 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4665 if (min_free_kbytes < 128)
4666 min_free_kbytes = 128;
4667 if (min_free_kbytes > 65536)
4668 min_free_kbytes = 65536;
4669 setup_per_zone_wmarks();
4670 setup_per_zone_lowmem_reserve();
4671 setup_per_zone_inactive_ratio();
4672 return 0;
4673 }
4674 module_init(init_per_zone_wmark_min)
4675
4676 /*
4677 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4678 * that we can call two helper functions whenever min_free_kbytes
4679 * changes.
4680 */
4681 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4682 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4683 {
4684 proc_dointvec(table, write, file, buffer, length, ppos);
4685 if (write)
4686 setup_per_zone_wmarks();
4687 return 0;
4688 }
4689
4690 #ifdef CONFIG_NUMA
4691 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4692 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4693 {
4694 struct zone *zone;
4695 int rc;
4696
4697 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4698 if (rc)
4699 return rc;
4700
4701 for_each_zone(zone)
4702 zone->min_unmapped_pages = (zone->present_pages *
4703 sysctl_min_unmapped_ratio) / 100;
4704 return 0;
4705 }
4706
4707 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4708 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4709 {
4710 struct zone *zone;
4711 int rc;
4712
4713 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4714 if (rc)
4715 return rc;
4716
4717 for_each_zone(zone)
4718 zone->min_slab_pages = (zone->present_pages *
4719 sysctl_min_slab_ratio) / 100;
4720 return 0;
4721 }
4722 #endif
4723
4724 /*
4725 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4726 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4727 * whenever sysctl_lowmem_reserve_ratio changes.
4728 *
4729 * The reserve ratio obviously has absolutely no relation with the
4730 * minimum watermarks. The lowmem reserve ratio can only make sense
4731 * if in function of the boot time zone sizes.
4732 */
4733 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4734 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4735 {
4736 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4737 setup_per_zone_lowmem_reserve();
4738 return 0;
4739 }
4740
4741 /*
4742 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4743 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4744 * can have before it gets flushed back to buddy allocator.
4745 */
4746
4747 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4748 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4749 {
4750 struct zone *zone;
4751 unsigned int cpu;
4752 int ret;
4753
4754 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4755 if (!write || (ret == -EINVAL))
4756 return ret;
4757 for_each_populated_zone(zone) {
4758 for_each_online_cpu(cpu) {
4759 unsigned long high;
4760 high = zone->present_pages / percpu_pagelist_fraction;
4761 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4762 }
4763 }
4764 return 0;
4765 }
4766
4767 int hashdist = HASHDIST_DEFAULT;
4768
4769 #ifdef CONFIG_NUMA
4770 static int __init set_hashdist(char *str)
4771 {
4772 if (!str)
4773 return 0;
4774 hashdist = simple_strtoul(str, &str, 0);
4775 return 1;
4776 }
4777 __setup("hashdist=", set_hashdist);
4778 #endif
4779
4780 /*
4781 * allocate a large system hash table from bootmem
4782 * - it is assumed that the hash table must contain an exact power-of-2
4783 * quantity of entries
4784 * - limit is the number of hash buckets, not the total allocation size
4785 */
4786 void *__init alloc_large_system_hash(const char *tablename,
4787 unsigned long bucketsize,
4788 unsigned long numentries,
4789 int scale,
4790 int flags,
4791 unsigned int *_hash_shift,
4792 unsigned int *_hash_mask,
4793 unsigned long limit)
4794 {
4795 unsigned long long max = limit;
4796 unsigned long log2qty, size;
4797 void *table = NULL;
4798
4799 /* allow the kernel cmdline to have a say */
4800 if (!numentries) {
4801 /* round applicable memory size up to nearest megabyte */
4802 numentries = nr_kernel_pages;
4803 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4804 numentries >>= 20 - PAGE_SHIFT;
4805 numentries <<= 20 - PAGE_SHIFT;
4806
4807 /* limit to 1 bucket per 2^scale bytes of low memory */
4808 if (scale > PAGE_SHIFT)
4809 numentries >>= (scale - PAGE_SHIFT);
4810 else
4811 numentries <<= (PAGE_SHIFT - scale);
4812
4813 /* Make sure we've got at least a 0-order allocation.. */
4814 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4815 numentries = PAGE_SIZE / bucketsize;
4816 }
4817 numentries = roundup_pow_of_two(numentries);
4818
4819 /* limit allocation size to 1/16 total memory by default */
4820 if (max == 0) {
4821 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4822 do_div(max, bucketsize);
4823 }
4824
4825 if (numentries > max)
4826 numentries = max;
4827
4828 log2qty = ilog2(numentries);
4829
4830 do {
4831 size = bucketsize << log2qty;
4832 if (flags & HASH_EARLY)
4833 table = alloc_bootmem_nopanic(size);
4834 else if (hashdist)
4835 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4836 else {
4837 /*
4838 * If bucketsize is not a power-of-two, we may free
4839 * some pages at the end of hash table which
4840 * alloc_pages_exact() automatically does
4841 */
4842 if (get_order(size) < MAX_ORDER) {
4843 table = alloc_pages_exact(size, GFP_ATOMIC);
4844 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4845 }
4846 }
4847 } while (!table && size > PAGE_SIZE && --log2qty);
4848
4849 if (!table)
4850 panic("Failed to allocate %s hash table\n", tablename);
4851
4852 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4853 tablename,
4854 (1U << log2qty),
4855 ilog2(size) - PAGE_SHIFT,
4856 size);
4857
4858 if (_hash_shift)
4859 *_hash_shift = log2qty;
4860 if (_hash_mask)
4861 *_hash_mask = (1 << log2qty) - 1;
4862
4863 return table;
4864 }
4865
4866 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4867 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4868 unsigned long pfn)
4869 {
4870 #ifdef CONFIG_SPARSEMEM
4871 return __pfn_to_section(pfn)->pageblock_flags;
4872 #else
4873 return zone->pageblock_flags;
4874 #endif /* CONFIG_SPARSEMEM */
4875 }
4876
4877 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4878 {
4879 #ifdef CONFIG_SPARSEMEM
4880 pfn &= (PAGES_PER_SECTION-1);
4881 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4882 #else
4883 pfn = pfn - zone->zone_start_pfn;
4884 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4885 #endif /* CONFIG_SPARSEMEM */
4886 }
4887
4888 /**
4889 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4890 * @page: The page within the block of interest
4891 * @start_bitidx: The first bit of interest to retrieve
4892 * @end_bitidx: The last bit of interest
4893 * returns pageblock_bits flags
4894 */
4895 unsigned long get_pageblock_flags_group(struct page *page,
4896 int start_bitidx, int end_bitidx)
4897 {
4898 struct zone *zone;
4899 unsigned long *bitmap;
4900 unsigned long pfn, bitidx;
4901 unsigned long flags = 0;
4902 unsigned long value = 1;
4903
4904 zone = page_zone(page);
4905 pfn = page_to_pfn(page);
4906 bitmap = get_pageblock_bitmap(zone, pfn);
4907 bitidx = pfn_to_bitidx(zone, pfn);
4908
4909 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4910 if (test_bit(bitidx + start_bitidx, bitmap))
4911 flags |= value;
4912
4913 return flags;
4914 }
4915
4916 /**
4917 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4918 * @page: The page within the block of interest
4919 * @start_bitidx: The first bit of interest
4920 * @end_bitidx: The last bit of interest
4921 * @flags: The flags to set
4922 */
4923 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4924 int start_bitidx, int end_bitidx)
4925 {
4926 struct zone *zone;
4927 unsigned long *bitmap;
4928 unsigned long pfn, bitidx;
4929 unsigned long value = 1;
4930
4931 zone = page_zone(page);
4932 pfn = page_to_pfn(page);
4933 bitmap = get_pageblock_bitmap(zone, pfn);
4934 bitidx = pfn_to_bitidx(zone, pfn);
4935 VM_BUG_ON(pfn < zone->zone_start_pfn);
4936 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4937
4938 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4939 if (flags & value)
4940 __set_bit(bitidx + start_bitidx, bitmap);
4941 else
4942 __clear_bit(bitidx + start_bitidx, bitmap);
4943 }
4944
4945 /*
4946 * This is designed as sub function...plz see page_isolation.c also.
4947 * set/clear page block's type to be ISOLATE.
4948 * page allocater never alloc memory from ISOLATE block.
4949 */
4950
4951 int set_migratetype_isolate(struct page *page)
4952 {
4953 struct zone *zone;
4954 unsigned long flags;
4955 int ret = -EBUSY;
4956 int zone_idx;
4957
4958 zone = page_zone(page);
4959 zone_idx = zone_idx(zone);
4960 spin_lock_irqsave(&zone->lock, flags);
4961 /*
4962 * In future, more migrate types will be able to be isolation target.
4963 */
4964 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4965 zone_idx != ZONE_MOVABLE)
4966 goto out;
4967 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4968 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4969 ret = 0;
4970 out:
4971 spin_unlock_irqrestore(&zone->lock, flags);
4972 if (!ret)
4973 drain_all_pages();
4974 return ret;
4975 }
4976
4977 void unset_migratetype_isolate(struct page *page)
4978 {
4979 struct zone *zone;
4980 unsigned long flags;
4981 zone = page_zone(page);
4982 spin_lock_irqsave(&zone->lock, flags);
4983 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4984 goto out;
4985 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4986 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4987 out:
4988 spin_unlock_irqrestore(&zone->lock, flags);
4989 }
4990
4991 #ifdef CONFIG_MEMORY_HOTREMOVE
4992 /*
4993 * All pages in the range must be isolated before calling this.
4994 */
4995 void
4996 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4997 {
4998 struct page *page;
4999 struct zone *zone;
5000 int order, i;
5001 unsigned long pfn;
5002 unsigned long flags;
5003 /* find the first valid pfn */
5004 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5005 if (pfn_valid(pfn))
5006 break;
5007 if (pfn == end_pfn)
5008 return;
5009 zone = page_zone(pfn_to_page(pfn));
5010 spin_lock_irqsave(&zone->lock, flags);
5011 pfn = start_pfn;
5012 while (pfn < end_pfn) {
5013 if (!pfn_valid(pfn)) {
5014 pfn++;
5015 continue;
5016 }
5017 page = pfn_to_page(pfn);
5018 BUG_ON(page_count(page));
5019 BUG_ON(!PageBuddy(page));
5020 order = page_order(page);
5021 #ifdef CONFIG_DEBUG_VM
5022 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5023 pfn, 1 << order, end_pfn);
5024 #endif
5025 list_del(&page->lru);
5026 rmv_page_order(page);
5027 zone->free_area[order].nr_free--;
5028 __mod_zone_page_state(zone, NR_FREE_PAGES,
5029 - (1UL << order));
5030 for (i = 0; i < (1 << order); i++)
5031 SetPageReserved((page+i));
5032 pfn += (1 << order);
5033 }
5034 spin_unlock_irqrestore(&zone->lock, flags);
5035 }
5036 #endif
This page took 0.148379 seconds and 5 git commands to generate.