wait_noreap_copyout(): check for ->wo_info != NULL
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <trace/events/kmem.h>
52
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 #include "internal.h"
56
57 /*
58 * Array of node states.
59 */
60 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
61 [N_POSSIBLE] = NODE_MASK_ALL,
62 [N_ONLINE] = { { [0] = 1UL } },
63 #ifndef CONFIG_NUMA
64 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
65 #ifdef CONFIG_HIGHMEM
66 [N_HIGH_MEMORY] = { { [0] = 1UL } },
67 #endif
68 [N_CPU] = { { [0] = 1UL } },
69 #endif /* NUMA */
70 };
71 EXPORT_SYMBOL(node_states);
72
73 unsigned long totalram_pages __read_mostly;
74 unsigned long totalreserve_pages __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81
82 static void __free_pages_ok(struct page *page, unsigned int order);
83
84 /*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
94 */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 32,
104 #endif
105 32,
106 };
107
108 EXPORT_SYMBOL(totalram_pages);
109
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
122 };
123
124 int min_free_kbytes = 1024;
125
126 static unsigned long __meminitdata nr_kernel_pages;
127 static unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170
171 int page_group_by_mobility_disabled __read_mostly;
172
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181 }
182
183 bool oom_killer_disabled __read_mostly;
184
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
191
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
201 }
202
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
209
210 return 1;
211 }
212 /*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
221
222 return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 return 0;
228 }
229 #endif
230
231 static void bad_page(struct page *page)
232 {
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
258 current->comm, page_to_pfn(page));
259 printk(KERN_ALERT
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
263
264 dump_stack();
265 out:
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
268 add_taint(TAINT_BAD_PAGE);
269 }
270
271 /*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
284 */
285
286 static void free_compound_page(struct page *page)
287 {
288 __free_pages_ok(page, compound_order(page));
289 }
290
291 void prep_compound_page(struct page *page, unsigned long order)
292 {
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305 }
306
307 static int destroy_compound_page(struct page *page, unsigned long order)
308 {
309 int i;
310 int nr_pages = 1 << order;
311 int bad = 0;
312
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
315 bad_page(page);
316 bad++;
317 }
318
319 __ClearPageHead(page);
320
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
323
324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 bad_page(page);
326 bad++;
327 }
328 __ClearPageTail(p);
329 }
330
331 return bad;
332 }
333
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335 {
336 int i;
337
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345 }
346
347 static inline void set_page_order(struct page *page, int order)
348 {
349 set_page_private(page, order);
350 __SetPageBuddy(page);
351 }
352
353 static inline void rmv_page_order(struct page *page)
354 {
355 __ClearPageBuddy(page);
356 set_page_private(page, 0);
357 }
358
359 /*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375 */
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378 {
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382 }
383
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
386 {
387 return (page_idx & ~(1 << order));
388 }
389
390 /*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400 *
401 * For recording page's order, we use page_private(page).
402 */
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
405 {
406 if (!pfn_valid_within(page_to_pfn(buddy)))
407 return 0;
408
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 VM_BUG_ON(page_count(buddy) != 0);
414 return 1;
415 }
416 return 0;
417 }
418
419 /*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
443 static inline void __free_one_page(struct page *page,
444 struct zone *zone, unsigned int order,
445 int migratetype)
446 {
447 unsigned long page_idx;
448
449 if (unlikely(PageCompound(page)))
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
452
453 VM_BUG_ON(migratetype == -1);
454
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
457 VM_BUG_ON(page_idx & ((1 << order) - 1));
458 VM_BUG_ON(bad_range(zone, page));
459
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
462 struct page *buddy;
463
464 buddy = __page_find_buddy(page, page_idx, order);
465 if (!page_is_buddy(page, buddy, order))
466 break;
467
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy->lru);
470 zone->free_area[order].nr_free--;
471 rmv_page_order(buddy);
472 combined_idx = __find_combined_index(page_idx, order);
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
480 zone->free_area[order].nr_free++;
481 }
482
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484 /*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489 static inline void free_page_mlock(struct page *page)
490 {
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493 }
494 #else
495 static void free_page_mlock(struct page *page) { }
496 #endif
497
498 static inline int free_pages_check(struct page *page)
499 {
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
502 (atomic_read(&page->_count) != 0) |
503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504 bad_page(page);
505 return 1;
506 }
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
510 }
511
512 /*
513 * Frees a number of pages from the PCP lists
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
523 static void free_pcppages_bulk(struct zone *zone, int count,
524 struct per_cpu_pages *pcp)
525 {
526 int migratetype = 0;
527 int batch_free = 0;
528
529 spin_lock(&zone->lock);
530 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
531 zone->pages_scanned = 0;
532
533 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
534 while (count) {
535 struct page *page;
536 struct list_head *list;
537
538 /*
539 * Remove pages from lists in a round-robin fashion. A
540 * batch_free count is maintained that is incremented when an
541 * empty list is encountered. This is so more pages are freed
542 * off fuller lists instead of spinning excessively around empty
543 * lists
544 */
545 do {
546 batch_free++;
547 if (++migratetype == MIGRATE_PCPTYPES)
548 migratetype = 0;
549 list = &pcp->lists[migratetype];
550 } while (list_empty(list));
551
552 do {
553 page = list_entry(list->prev, struct page, lru);
554 /* must delete as __free_one_page list manipulates */
555 list_del(&page->lru);
556 __free_one_page(page, zone, 0, migratetype);
557 trace_mm_page_pcpu_drain(page, 0, migratetype);
558 } while (--count && --batch_free && !list_empty(list));
559 }
560 spin_unlock(&zone->lock);
561 }
562
563 static void free_one_page(struct zone *zone, struct page *page, int order,
564 int migratetype)
565 {
566 spin_lock(&zone->lock);
567 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
568 zone->pages_scanned = 0;
569
570 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
571 __free_one_page(page, zone, order, migratetype);
572 spin_unlock(&zone->lock);
573 }
574
575 static void __free_pages_ok(struct page *page, unsigned int order)
576 {
577 unsigned long flags;
578 int i;
579 int bad = 0;
580 int wasMlocked = __TestClearPageMlocked(page);
581
582 kmemcheck_free_shadow(page, order);
583
584 for (i = 0 ; i < (1 << order) ; ++i)
585 bad += free_pages_check(page + i);
586 if (bad)
587 return;
588
589 if (!PageHighMem(page)) {
590 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
591 debug_check_no_obj_freed(page_address(page),
592 PAGE_SIZE << order);
593 }
594 arch_free_page(page, order);
595 kernel_map_pages(page, 1 << order, 0);
596
597 local_irq_save(flags);
598 if (unlikely(wasMlocked))
599 free_page_mlock(page);
600 __count_vm_events(PGFREE, 1 << order);
601 free_one_page(page_zone(page), page, order,
602 get_pageblock_migratetype(page));
603 local_irq_restore(flags);
604 }
605
606 /*
607 * permit the bootmem allocator to evade page validation on high-order frees
608 */
609 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
610 {
611 if (order == 0) {
612 __ClearPageReserved(page);
613 set_page_count(page, 0);
614 set_page_refcounted(page);
615 __free_page(page);
616 } else {
617 int loop;
618
619 prefetchw(page);
620 for (loop = 0; loop < BITS_PER_LONG; loop++) {
621 struct page *p = &page[loop];
622
623 if (loop + 1 < BITS_PER_LONG)
624 prefetchw(p + 1);
625 __ClearPageReserved(p);
626 set_page_count(p, 0);
627 }
628
629 set_page_refcounted(page);
630 __free_pages(page, order);
631 }
632 }
633
634
635 /*
636 * The order of subdivision here is critical for the IO subsystem.
637 * Please do not alter this order without good reasons and regression
638 * testing. Specifically, as large blocks of memory are subdivided,
639 * the order in which smaller blocks are delivered depends on the order
640 * they're subdivided in this function. This is the primary factor
641 * influencing the order in which pages are delivered to the IO
642 * subsystem according to empirical testing, and this is also justified
643 * by considering the behavior of a buddy system containing a single
644 * large block of memory acted on by a series of small allocations.
645 * This behavior is a critical factor in sglist merging's success.
646 *
647 * -- wli
648 */
649 static inline void expand(struct zone *zone, struct page *page,
650 int low, int high, struct free_area *area,
651 int migratetype)
652 {
653 unsigned long size = 1 << high;
654
655 while (high > low) {
656 area--;
657 high--;
658 size >>= 1;
659 VM_BUG_ON(bad_range(zone, &page[size]));
660 list_add(&page[size].lru, &area->free_list[migratetype]);
661 area->nr_free++;
662 set_page_order(&page[size], high);
663 }
664 }
665
666 /*
667 * This page is about to be returned from the page allocator
668 */
669 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
670 {
671 if (unlikely(page_mapcount(page) |
672 (page->mapping != NULL) |
673 (atomic_read(&page->_count) != 0) |
674 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
675 bad_page(page);
676 return 1;
677 }
678
679 set_page_private(page, 0);
680 set_page_refcounted(page);
681
682 arch_alloc_page(page, order);
683 kernel_map_pages(page, 1 << order, 1);
684
685 if (gfp_flags & __GFP_ZERO)
686 prep_zero_page(page, order, gfp_flags);
687
688 if (order && (gfp_flags & __GFP_COMP))
689 prep_compound_page(page, order);
690
691 return 0;
692 }
693
694 /*
695 * Go through the free lists for the given migratetype and remove
696 * the smallest available page from the freelists
697 */
698 static inline
699 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
700 int migratetype)
701 {
702 unsigned int current_order;
703 struct free_area * area;
704 struct page *page;
705
706 /* Find a page of the appropriate size in the preferred list */
707 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
708 area = &(zone->free_area[current_order]);
709 if (list_empty(&area->free_list[migratetype]))
710 continue;
711
712 page = list_entry(area->free_list[migratetype].next,
713 struct page, lru);
714 list_del(&page->lru);
715 rmv_page_order(page);
716 area->nr_free--;
717 expand(zone, page, order, current_order, area, migratetype);
718 return page;
719 }
720
721 return NULL;
722 }
723
724
725 /*
726 * This array describes the order lists are fallen back to when
727 * the free lists for the desirable migrate type are depleted
728 */
729 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
730 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
731 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
732 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
733 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
734 };
735
736 /*
737 * Move the free pages in a range to the free lists of the requested type.
738 * Note that start_page and end_pages are not aligned on a pageblock
739 * boundary. If alignment is required, use move_freepages_block()
740 */
741 static int move_freepages(struct zone *zone,
742 struct page *start_page, struct page *end_page,
743 int migratetype)
744 {
745 struct page *page;
746 unsigned long order;
747 int pages_moved = 0;
748
749 #ifndef CONFIG_HOLES_IN_ZONE
750 /*
751 * page_zone is not safe to call in this context when
752 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
753 * anyway as we check zone boundaries in move_freepages_block().
754 * Remove at a later date when no bug reports exist related to
755 * grouping pages by mobility
756 */
757 BUG_ON(page_zone(start_page) != page_zone(end_page));
758 #endif
759
760 for (page = start_page; page <= end_page;) {
761 /* Make sure we are not inadvertently changing nodes */
762 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
763
764 if (!pfn_valid_within(page_to_pfn(page))) {
765 page++;
766 continue;
767 }
768
769 if (!PageBuddy(page)) {
770 page++;
771 continue;
772 }
773
774 order = page_order(page);
775 list_del(&page->lru);
776 list_add(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 page += 1 << order;
779 pages_moved += 1 << order;
780 }
781
782 return pages_moved;
783 }
784
785 static int move_freepages_block(struct zone *zone, struct page *page,
786 int migratetype)
787 {
788 unsigned long start_pfn, end_pfn;
789 struct page *start_page, *end_page;
790
791 start_pfn = page_to_pfn(page);
792 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
793 start_page = pfn_to_page(start_pfn);
794 end_page = start_page + pageblock_nr_pages - 1;
795 end_pfn = start_pfn + pageblock_nr_pages - 1;
796
797 /* Do not cross zone boundaries */
798 if (start_pfn < zone->zone_start_pfn)
799 start_page = page;
800 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
801 return 0;
802
803 return move_freepages(zone, start_page, end_page, migratetype);
804 }
805
806 static void change_pageblock_range(struct page *pageblock_page,
807 int start_order, int migratetype)
808 {
809 int nr_pageblocks = 1 << (start_order - pageblock_order);
810
811 while (nr_pageblocks--) {
812 set_pageblock_migratetype(pageblock_page, migratetype);
813 pageblock_page += pageblock_nr_pages;
814 }
815 }
816
817 /* Remove an element from the buddy allocator from the fallback list */
818 static inline struct page *
819 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
820 {
821 struct free_area * area;
822 int current_order;
823 struct page *page;
824 int migratetype, i;
825
826 /* Find the largest possible block of pages in the other list */
827 for (current_order = MAX_ORDER-1; current_order >= order;
828 --current_order) {
829 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
830 migratetype = fallbacks[start_migratetype][i];
831
832 /* MIGRATE_RESERVE handled later if necessary */
833 if (migratetype == MIGRATE_RESERVE)
834 continue;
835
836 area = &(zone->free_area[current_order]);
837 if (list_empty(&area->free_list[migratetype]))
838 continue;
839
840 page = list_entry(area->free_list[migratetype].next,
841 struct page, lru);
842 area->nr_free--;
843
844 /*
845 * If breaking a large block of pages, move all free
846 * pages to the preferred allocation list. If falling
847 * back for a reclaimable kernel allocation, be more
848 * agressive about taking ownership of free pages
849 */
850 if (unlikely(current_order >= (pageblock_order >> 1)) ||
851 start_migratetype == MIGRATE_RECLAIMABLE ||
852 page_group_by_mobility_disabled) {
853 unsigned long pages;
854 pages = move_freepages_block(zone, page,
855 start_migratetype);
856
857 /* Claim the whole block if over half of it is free */
858 if (pages >= (1 << (pageblock_order-1)) ||
859 page_group_by_mobility_disabled)
860 set_pageblock_migratetype(page,
861 start_migratetype);
862
863 migratetype = start_migratetype;
864 }
865
866 /* Remove the page from the freelists */
867 list_del(&page->lru);
868 rmv_page_order(page);
869
870 /* Take ownership for orders >= pageblock_order */
871 if (current_order >= pageblock_order)
872 change_pageblock_range(page, current_order,
873 start_migratetype);
874
875 expand(zone, page, order, current_order, area, migratetype);
876
877 trace_mm_page_alloc_extfrag(page, order, current_order,
878 start_migratetype, migratetype);
879
880 return page;
881 }
882 }
883
884 return NULL;
885 }
886
887 /*
888 * Do the hard work of removing an element from the buddy allocator.
889 * Call me with the zone->lock already held.
890 */
891 static struct page *__rmqueue(struct zone *zone, unsigned int order,
892 int migratetype)
893 {
894 struct page *page;
895
896 retry_reserve:
897 page = __rmqueue_smallest(zone, order, migratetype);
898
899 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
900 page = __rmqueue_fallback(zone, order, migratetype);
901
902 /*
903 * Use MIGRATE_RESERVE rather than fail an allocation. goto
904 * is used because __rmqueue_smallest is an inline function
905 * and we want just one call site
906 */
907 if (!page) {
908 migratetype = MIGRATE_RESERVE;
909 goto retry_reserve;
910 }
911 }
912
913 trace_mm_page_alloc_zone_locked(page, order, migratetype);
914 return page;
915 }
916
917 /*
918 * Obtain a specified number of elements from the buddy allocator, all under
919 * a single hold of the lock, for efficiency. Add them to the supplied list.
920 * Returns the number of new pages which were placed at *list.
921 */
922 static int rmqueue_bulk(struct zone *zone, unsigned int order,
923 unsigned long count, struct list_head *list,
924 int migratetype, int cold)
925 {
926 int i;
927
928 spin_lock(&zone->lock);
929 for (i = 0; i < count; ++i) {
930 struct page *page = __rmqueue(zone, order, migratetype);
931 if (unlikely(page == NULL))
932 break;
933
934 /*
935 * Split buddy pages returned by expand() are received here
936 * in physical page order. The page is added to the callers and
937 * list and the list head then moves forward. From the callers
938 * perspective, the linked list is ordered by page number in
939 * some conditions. This is useful for IO devices that can
940 * merge IO requests if the physical pages are ordered
941 * properly.
942 */
943 if (likely(cold == 0))
944 list_add(&page->lru, list);
945 else
946 list_add_tail(&page->lru, list);
947 set_page_private(page, migratetype);
948 list = &page->lru;
949 }
950 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
951 spin_unlock(&zone->lock);
952 return i;
953 }
954
955 #ifdef CONFIG_NUMA
956 /*
957 * Called from the vmstat counter updater to drain pagesets of this
958 * currently executing processor on remote nodes after they have
959 * expired.
960 *
961 * Note that this function must be called with the thread pinned to
962 * a single processor.
963 */
964 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
965 {
966 unsigned long flags;
967 int to_drain;
968
969 local_irq_save(flags);
970 if (pcp->count >= pcp->batch)
971 to_drain = pcp->batch;
972 else
973 to_drain = pcp->count;
974 free_pcppages_bulk(zone, to_drain, pcp);
975 pcp->count -= to_drain;
976 local_irq_restore(flags);
977 }
978 #endif
979
980 /*
981 * Drain pages of the indicated processor.
982 *
983 * The processor must either be the current processor and the
984 * thread pinned to the current processor or a processor that
985 * is not online.
986 */
987 static void drain_pages(unsigned int cpu)
988 {
989 unsigned long flags;
990 struct zone *zone;
991
992 for_each_populated_zone(zone) {
993 struct per_cpu_pageset *pset;
994 struct per_cpu_pages *pcp;
995
996 pset = zone_pcp(zone, cpu);
997
998 pcp = &pset->pcp;
999 local_irq_save(flags);
1000 free_pcppages_bulk(zone, pcp->count, pcp);
1001 pcp->count = 0;
1002 local_irq_restore(flags);
1003 }
1004 }
1005
1006 /*
1007 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1008 */
1009 void drain_local_pages(void *arg)
1010 {
1011 drain_pages(smp_processor_id());
1012 }
1013
1014 /*
1015 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1016 */
1017 void drain_all_pages(void)
1018 {
1019 on_each_cpu(drain_local_pages, NULL, 1);
1020 }
1021
1022 #ifdef CONFIG_HIBERNATION
1023
1024 void mark_free_pages(struct zone *zone)
1025 {
1026 unsigned long pfn, max_zone_pfn;
1027 unsigned long flags;
1028 int order, t;
1029 struct list_head *curr;
1030
1031 if (!zone->spanned_pages)
1032 return;
1033
1034 spin_lock_irqsave(&zone->lock, flags);
1035
1036 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1037 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1038 if (pfn_valid(pfn)) {
1039 struct page *page = pfn_to_page(pfn);
1040
1041 if (!swsusp_page_is_forbidden(page))
1042 swsusp_unset_page_free(page);
1043 }
1044
1045 for_each_migratetype_order(order, t) {
1046 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1047 unsigned long i;
1048
1049 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1050 for (i = 0; i < (1UL << order); i++)
1051 swsusp_set_page_free(pfn_to_page(pfn + i));
1052 }
1053 }
1054 spin_unlock_irqrestore(&zone->lock, flags);
1055 }
1056 #endif /* CONFIG_PM */
1057
1058 /*
1059 * Free a 0-order page
1060 */
1061 static void free_hot_cold_page(struct page *page, int cold)
1062 {
1063 struct zone *zone = page_zone(page);
1064 struct per_cpu_pages *pcp;
1065 unsigned long flags;
1066 int migratetype;
1067 int wasMlocked = __TestClearPageMlocked(page);
1068
1069 kmemcheck_free_shadow(page, 0);
1070
1071 if (PageAnon(page))
1072 page->mapping = NULL;
1073 if (free_pages_check(page))
1074 return;
1075
1076 if (!PageHighMem(page)) {
1077 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1078 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1079 }
1080 arch_free_page(page, 0);
1081 kernel_map_pages(page, 1, 0);
1082
1083 pcp = &zone_pcp(zone, get_cpu())->pcp;
1084 migratetype = get_pageblock_migratetype(page);
1085 set_page_private(page, migratetype);
1086 local_irq_save(flags);
1087 if (unlikely(wasMlocked))
1088 free_page_mlock(page);
1089 __count_vm_event(PGFREE);
1090
1091 /*
1092 * We only track unmovable, reclaimable and movable on pcp lists.
1093 * Free ISOLATE pages back to the allocator because they are being
1094 * offlined but treat RESERVE as movable pages so we can get those
1095 * areas back if necessary. Otherwise, we may have to free
1096 * excessively into the page allocator
1097 */
1098 if (migratetype >= MIGRATE_PCPTYPES) {
1099 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1100 free_one_page(zone, page, 0, migratetype);
1101 goto out;
1102 }
1103 migratetype = MIGRATE_MOVABLE;
1104 }
1105
1106 if (cold)
1107 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1108 else
1109 list_add(&page->lru, &pcp->lists[migratetype]);
1110 pcp->count++;
1111 if (pcp->count >= pcp->high) {
1112 free_pcppages_bulk(zone, pcp->batch, pcp);
1113 pcp->count -= pcp->batch;
1114 }
1115
1116 out:
1117 local_irq_restore(flags);
1118 put_cpu();
1119 }
1120
1121 void free_hot_page(struct page *page)
1122 {
1123 trace_mm_page_free_direct(page, 0);
1124 free_hot_cold_page(page, 0);
1125 }
1126
1127 /*
1128 * split_page takes a non-compound higher-order page, and splits it into
1129 * n (1<<order) sub-pages: page[0..n]
1130 * Each sub-page must be freed individually.
1131 *
1132 * Note: this is probably too low level an operation for use in drivers.
1133 * Please consult with lkml before using this in your driver.
1134 */
1135 void split_page(struct page *page, unsigned int order)
1136 {
1137 int i;
1138
1139 VM_BUG_ON(PageCompound(page));
1140 VM_BUG_ON(!page_count(page));
1141
1142 #ifdef CONFIG_KMEMCHECK
1143 /*
1144 * Split shadow pages too, because free(page[0]) would
1145 * otherwise free the whole shadow.
1146 */
1147 if (kmemcheck_page_is_tracked(page))
1148 split_page(virt_to_page(page[0].shadow), order);
1149 #endif
1150
1151 for (i = 1; i < (1 << order); i++)
1152 set_page_refcounted(page + i);
1153 }
1154
1155 /*
1156 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1157 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1158 * or two.
1159 */
1160 static inline
1161 struct page *buffered_rmqueue(struct zone *preferred_zone,
1162 struct zone *zone, int order, gfp_t gfp_flags,
1163 int migratetype)
1164 {
1165 unsigned long flags;
1166 struct page *page;
1167 int cold = !!(gfp_flags & __GFP_COLD);
1168 int cpu;
1169
1170 again:
1171 cpu = get_cpu();
1172 if (likely(order == 0)) {
1173 struct per_cpu_pages *pcp;
1174 struct list_head *list;
1175
1176 pcp = &zone_pcp(zone, cpu)->pcp;
1177 list = &pcp->lists[migratetype];
1178 local_irq_save(flags);
1179 if (list_empty(list)) {
1180 pcp->count += rmqueue_bulk(zone, 0,
1181 pcp->batch, list,
1182 migratetype, cold);
1183 if (unlikely(list_empty(list)))
1184 goto failed;
1185 }
1186
1187 if (cold)
1188 page = list_entry(list->prev, struct page, lru);
1189 else
1190 page = list_entry(list->next, struct page, lru);
1191
1192 list_del(&page->lru);
1193 pcp->count--;
1194 } else {
1195 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1196 /*
1197 * __GFP_NOFAIL is not to be used in new code.
1198 *
1199 * All __GFP_NOFAIL callers should be fixed so that they
1200 * properly detect and handle allocation failures.
1201 *
1202 * We most definitely don't want callers attempting to
1203 * allocate greater than order-1 page units with
1204 * __GFP_NOFAIL.
1205 */
1206 WARN_ON_ONCE(order > 1);
1207 }
1208 spin_lock_irqsave(&zone->lock, flags);
1209 page = __rmqueue(zone, order, migratetype);
1210 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1211 spin_unlock(&zone->lock);
1212 if (!page)
1213 goto failed;
1214 }
1215
1216 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1217 zone_statistics(preferred_zone, zone);
1218 local_irq_restore(flags);
1219 put_cpu();
1220
1221 VM_BUG_ON(bad_range(zone, page));
1222 if (prep_new_page(page, order, gfp_flags))
1223 goto again;
1224 return page;
1225
1226 failed:
1227 local_irq_restore(flags);
1228 put_cpu();
1229 return NULL;
1230 }
1231
1232 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1233 #define ALLOC_WMARK_MIN WMARK_MIN
1234 #define ALLOC_WMARK_LOW WMARK_LOW
1235 #define ALLOC_WMARK_HIGH WMARK_HIGH
1236 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1237
1238 /* Mask to get the watermark bits */
1239 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1240
1241 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1242 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1243 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1244
1245 #ifdef CONFIG_FAIL_PAGE_ALLOC
1246
1247 static struct fail_page_alloc_attr {
1248 struct fault_attr attr;
1249
1250 u32 ignore_gfp_highmem;
1251 u32 ignore_gfp_wait;
1252 u32 min_order;
1253
1254 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1255
1256 struct dentry *ignore_gfp_highmem_file;
1257 struct dentry *ignore_gfp_wait_file;
1258 struct dentry *min_order_file;
1259
1260 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1261
1262 } fail_page_alloc = {
1263 .attr = FAULT_ATTR_INITIALIZER,
1264 .ignore_gfp_wait = 1,
1265 .ignore_gfp_highmem = 1,
1266 .min_order = 1,
1267 };
1268
1269 static int __init setup_fail_page_alloc(char *str)
1270 {
1271 return setup_fault_attr(&fail_page_alloc.attr, str);
1272 }
1273 __setup("fail_page_alloc=", setup_fail_page_alloc);
1274
1275 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1276 {
1277 if (order < fail_page_alloc.min_order)
1278 return 0;
1279 if (gfp_mask & __GFP_NOFAIL)
1280 return 0;
1281 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1282 return 0;
1283 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1284 return 0;
1285
1286 return should_fail(&fail_page_alloc.attr, 1 << order);
1287 }
1288
1289 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1290
1291 static int __init fail_page_alloc_debugfs(void)
1292 {
1293 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1294 struct dentry *dir;
1295 int err;
1296
1297 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1298 "fail_page_alloc");
1299 if (err)
1300 return err;
1301 dir = fail_page_alloc.attr.dentries.dir;
1302
1303 fail_page_alloc.ignore_gfp_wait_file =
1304 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1305 &fail_page_alloc.ignore_gfp_wait);
1306
1307 fail_page_alloc.ignore_gfp_highmem_file =
1308 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1309 &fail_page_alloc.ignore_gfp_highmem);
1310 fail_page_alloc.min_order_file =
1311 debugfs_create_u32("min-order", mode, dir,
1312 &fail_page_alloc.min_order);
1313
1314 if (!fail_page_alloc.ignore_gfp_wait_file ||
1315 !fail_page_alloc.ignore_gfp_highmem_file ||
1316 !fail_page_alloc.min_order_file) {
1317 err = -ENOMEM;
1318 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1319 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1320 debugfs_remove(fail_page_alloc.min_order_file);
1321 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1322 }
1323
1324 return err;
1325 }
1326
1327 late_initcall(fail_page_alloc_debugfs);
1328
1329 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1330
1331 #else /* CONFIG_FAIL_PAGE_ALLOC */
1332
1333 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1334 {
1335 return 0;
1336 }
1337
1338 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1339
1340 /*
1341 * Return 1 if free pages are above 'mark'. This takes into account the order
1342 * of the allocation.
1343 */
1344 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1345 int classzone_idx, int alloc_flags)
1346 {
1347 /* free_pages my go negative - that's OK */
1348 long min = mark;
1349 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1350 int o;
1351
1352 if (alloc_flags & ALLOC_HIGH)
1353 min -= min / 2;
1354 if (alloc_flags & ALLOC_HARDER)
1355 min -= min / 4;
1356
1357 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1358 return 0;
1359 for (o = 0; o < order; o++) {
1360 /* At the next order, this order's pages become unavailable */
1361 free_pages -= z->free_area[o].nr_free << o;
1362
1363 /* Require fewer higher order pages to be free */
1364 min >>= 1;
1365
1366 if (free_pages <= min)
1367 return 0;
1368 }
1369 return 1;
1370 }
1371
1372 #ifdef CONFIG_NUMA
1373 /*
1374 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1375 * skip over zones that are not allowed by the cpuset, or that have
1376 * been recently (in last second) found to be nearly full. See further
1377 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1378 * that have to skip over a lot of full or unallowed zones.
1379 *
1380 * If the zonelist cache is present in the passed in zonelist, then
1381 * returns a pointer to the allowed node mask (either the current
1382 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1383 *
1384 * If the zonelist cache is not available for this zonelist, does
1385 * nothing and returns NULL.
1386 *
1387 * If the fullzones BITMAP in the zonelist cache is stale (more than
1388 * a second since last zap'd) then we zap it out (clear its bits.)
1389 *
1390 * We hold off even calling zlc_setup, until after we've checked the
1391 * first zone in the zonelist, on the theory that most allocations will
1392 * be satisfied from that first zone, so best to examine that zone as
1393 * quickly as we can.
1394 */
1395 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1396 {
1397 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1398 nodemask_t *allowednodes; /* zonelist_cache approximation */
1399
1400 zlc = zonelist->zlcache_ptr;
1401 if (!zlc)
1402 return NULL;
1403
1404 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1405 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1406 zlc->last_full_zap = jiffies;
1407 }
1408
1409 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1410 &cpuset_current_mems_allowed :
1411 &node_states[N_HIGH_MEMORY];
1412 return allowednodes;
1413 }
1414
1415 /*
1416 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1417 * if it is worth looking at further for free memory:
1418 * 1) Check that the zone isn't thought to be full (doesn't have its
1419 * bit set in the zonelist_cache fullzones BITMAP).
1420 * 2) Check that the zones node (obtained from the zonelist_cache
1421 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1422 * Return true (non-zero) if zone is worth looking at further, or
1423 * else return false (zero) if it is not.
1424 *
1425 * This check -ignores- the distinction between various watermarks,
1426 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1427 * found to be full for any variation of these watermarks, it will
1428 * be considered full for up to one second by all requests, unless
1429 * we are so low on memory on all allowed nodes that we are forced
1430 * into the second scan of the zonelist.
1431 *
1432 * In the second scan we ignore this zonelist cache and exactly
1433 * apply the watermarks to all zones, even it is slower to do so.
1434 * We are low on memory in the second scan, and should leave no stone
1435 * unturned looking for a free page.
1436 */
1437 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1438 nodemask_t *allowednodes)
1439 {
1440 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1441 int i; /* index of *z in zonelist zones */
1442 int n; /* node that zone *z is on */
1443
1444 zlc = zonelist->zlcache_ptr;
1445 if (!zlc)
1446 return 1;
1447
1448 i = z - zonelist->_zonerefs;
1449 n = zlc->z_to_n[i];
1450
1451 /* This zone is worth trying if it is allowed but not full */
1452 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1453 }
1454
1455 /*
1456 * Given 'z' scanning a zonelist, set the corresponding bit in
1457 * zlc->fullzones, so that subsequent attempts to allocate a page
1458 * from that zone don't waste time re-examining it.
1459 */
1460 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1461 {
1462 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1463 int i; /* index of *z in zonelist zones */
1464
1465 zlc = zonelist->zlcache_ptr;
1466 if (!zlc)
1467 return;
1468
1469 i = z - zonelist->_zonerefs;
1470
1471 set_bit(i, zlc->fullzones);
1472 }
1473
1474 #else /* CONFIG_NUMA */
1475
1476 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1477 {
1478 return NULL;
1479 }
1480
1481 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1482 nodemask_t *allowednodes)
1483 {
1484 return 1;
1485 }
1486
1487 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1488 {
1489 }
1490 #endif /* CONFIG_NUMA */
1491
1492 /*
1493 * get_page_from_freelist goes through the zonelist trying to allocate
1494 * a page.
1495 */
1496 static struct page *
1497 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1498 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1499 struct zone *preferred_zone, int migratetype)
1500 {
1501 struct zoneref *z;
1502 struct page *page = NULL;
1503 int classzone_idx;
1504 struct zone *zone;
1505 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1506 int zlc_active = 0; /* set if using zonelist_cache */
1507 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1508
1509 classzone_idx = zone_idx(preferred_zone);
1510 zonelist_scan:
1511 /*
1512 * Scan zonelist, looking for a zone with enough free.
1513 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1514 */
1515 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1516 high_zoneidx, nodemask) {
1517 if (NUMA_BUILD && zlc_active &&
1518 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1519 continue;
1520 if ((alloc_flags & ALLOC_CPUSET) &&
1521 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1522 goto try_next_zone;
1523
1524 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1525 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1526 unsigned long mark;
1527 int ret;
1528
1529 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1530 if (zone_watermark_ok(zone, order, mark,
1531 classzone_idx, alloc_flags))
1532 goto try_this_zone;
1533
1534 if (zone_reclaim_mode == 0)
1535 goto this_zone_full;
1536
1537 ret = zone_reclaim(zone, gfp_mask, order);
1538 switch (ret) {
1539 case ZONE_RECLAIM_NOSCAN:
1540 /* did not scan */
1541 goto try_next_zone;
1542 case ZONE_RECLAIM_FULL:
1543 /* scanned but unreclaimable */
1544 goto this_zone_full;
1545 default:
1546 /* did we reclaim enough */
1547 if (!zone_watermark_ok(zone, order, mark,
1548 classzone_idx, alloc_flags))
1549 goto this_zone_full;
1550 }
1551 }
1552
1553 try_this_zone:
1554 page = buffered_rmqueue(preferred_zone, zone, order,
1555 gfp_mask, migratetype);
1556 if (page)
1557 break;
1558 this_zone_full:
1559 if (NUMA_BUILD)
1560 zlc_mark_zone_full(zonelist, z);
1561 try_next_zone:
1562 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1563 /*
1564 * we do zlc_setup after the first zone is tried but only
1565 * if there are multiple nodes make it worthwhile
1566 */
1567 allowednodes = zlc_setup(zonelist, alloc_flags);
1568 zlc_active = 1;
1569 did_zlc_setup = 1;
1570 }
1571 }
1572
1573 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1574 /* Disable zlc cache for second zonelist scan */
1575 zlc_active = 0;
1576 goto zonelist_scan;
1577 }
1578 return page;
1579 }
1580
1581 static inline int
1582 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1583 unsigned long pages_reclaimed)
1584 {
1585 /* Do not loop if specifically requested */
1586 if (gfp_mask & __GFP_NORETRY)
1587 return 0;
1588
1589 /*
1590 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1591 * means __GFP_NOFAIL, but that may not be true in other
1592 * implementations.
1593 */
1594 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1595 return 1;
1596
1597 /*
1598 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1599 * specified, then we retry until we no longer reclaim any pages
1600 * (above), or we've reclaimed an order of pages at least as
1601 * large as the allocation's order. In both cases, if the
1602 * allocation still fails, we stop retrying.
1603 */
1604 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1605 return 1;
1606
1607 /*
1608 * Don't let big-order allocations loop unless the caller
1609 * explicitly requests that.
1610 */
1611 if (gfp_mask & __GFP_NOFAIL)
1612 return 1;
1613
1614 return 0;
1615 }
1616
1617 static inline struct page *
1618 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1619 struct zonelist *zonelist, enum zone_type high_zoneidx,
1620 nodemask_t *nodemask, struct zone *preferred_zone,
1621 int migratetype)
1622 {
1623 struct page *page;
1624
1625 /* Acquire the OOM killer lock for the zones in zonelist */
1626 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1627 schedule_timeout_uninterruptible(1);
1628 return NULL;
1629 }
1630
1631 /*
1632 * Go through the zonelist yet one more time, keep very high watermark
1633 * here, this is only to catch a parallel oom killing, we must fail if
1634 * we're still under heavy pressure.
1635 */
1636 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1637 order, zonelist, high_zoneidx,
1638 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1639 preferred_zone, migratetype);
1640 if (page)
1641 goto out;
1642
1643 /* The OOM killer will not help higher order allocs */
1644 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1645 goto out;
1646
1647 /* Exhausted what can be done so it's blamo time */
1648 out_of_memory(zonelist, gfp_mask, order);
1649
1650 out:
1651 clear_zonelist_oom(zonelist, gfp_mask);
1652 return page;
1653 }
1654
1655 /* The really slow allocator path where we enter direct reclaim */
1656 static inline struct page *
1657 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1658 struct zonelist *zonelist, enum zone_type high_zoneidx,
1659 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1660 int migratetype, unsigned long *did_some_progress)
1661 {
1662 struct page *page = NULL;
1663 struct reclaim_state reclaim_state;
1664 struct task_struct *p = current;
1665
1666 cond_resched();
1667
1668 /* We now go into synchronous reclaim */
1669 cpuset_memory_pressure_bump();
1670 p->flags |= PF_MEMALLOC;
1671 lockdep_set_current_reclaim_state(gfp_mask);
1672 reclaim_state.reclaimed_slab = 0;
1673 p->reclaim_state = &reclaim_state;
1674
1675 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1676
1677 p->reclaim_state = NULL;
1678 lockdep_clear_current_reclaim_state();
1679 p->flags &= ~PF_MEMALLOC;
1680
1681 cond_resched();
1682
1683 if (order != 0)
1684 drain_all_pages();
1685
1686 if (likely(*did_some_progress))
1687 page = get_page_from_freelist(gfp_mask, nodemask, order,
1688 zonelist, high_zoneidx,
1689 alloc_flags, preferred_zone,
1690 migratetype);
1691 return page;
1692 }
1693
1694 /*
1695 * This is called in the allocator slow-path if the allocation request is of
1696 * sufficient urgency to ignore watermarks and take other desperate measures
1697 */
1698 static inline struct page *
1699 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1700 struct zonelist *zonelist, enum zone_type high_zoneidx,
1701 nodemask_t *nodemask, struct zone *preferred_zone,
1702 int migratetype)
1703 {
1704 struct page *page;
1705
1706 do {
1707 page = get_page_from_freelist(gfp_mask, nodemask, order,
1708 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1709 preferred_zone, migratetype);
1710
1711 if (!page && gfp_mask & __GFP_NOFAIL)
1712 congestion_wait(BLK_RW_ASYNC, HZ/50);
1713 } while (!page && (gfp_mask & __GFP_NOFAIL));
1714
1715 return page;
1716 }
1717
1718 static inline
1719 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1720 enum zone_type high_zoneidx)
1721 {
1722 struct zoneref *z;
1723 struct zone *zone;
1724
1725 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1726 wakeup_kswapd(zone, order);
1727 }
1728
1729 static inline int
1730 gfp_to_alloc_flags(gfp_t gfp_mask)
1731 {
1732 struct task_struct *p = current;
1733 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1734 const gfp_t wait = gfp_mask & __GFP_WAIT;
1735
1736 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1737 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1738
1739 /*
1740 * The caller may dip into page reserves a bit more if the caller
1741 * cannot run direct reclaim, or if the caller has realtime scheduling
1742 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1743 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1744 */
1745 alloc_flags |= (gfp_mask & __GFP_HIGH);
1746
1747 if (!wait) {
1748 alloc_flags |= ALLOC_HARDER;
1749 /*
1750 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1751 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1752 */
1753 alloc_flags &= ~ALLOC_CPUSET;
1754 } else if (unlikely(rt_task(p)))
1755 alloc_flags |= ALLOC_HARDER;
1756
1757 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1758 if (!in_interrupt() &&
1759 ((p->flags & PF_MEMALLOC) ||
1760 unlikely(test_thread_flag(TIF_MEMDIE))))
1761 alloc_flags |= ALLOC_NO_WATERMARKS;
1762 }
1763
1764 return alloc_flags;
1765 }
1766
1767 static inline struct page *
1768 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1769 struct zonelist *zonelist, enum zone_type high_zoneidx,
1770 nodemask_t *nodemask, struct zone *preferred_zone,
1771 int migratetype)
1772 {
1773 const gfp_t wait = gfp_mask & __GFP_WAIT;
1774 struct page *page = NULL;
1775 int alloc_flags;
1776 unsigned long pages_reclaimed = 0;
1777 unsigned long did_some_progress;
1778 struct task_struct *p = current;
1779
1780 /*
1781 * In the slowpath, we sanity check order to avoid ever trying to
1782 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1783 * be using allocators in order of preference for an area that is
1784 * too large.
1785 */
1786 if (order >= MAX_ORDER) {
1787 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1788 return NULL;
1789 }
1790
1791 /*
1792 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1793 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1794 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1795 * using a larger set of nodes after it has established that the
1796 * allowed per node queues are empty and that nodes are
1797 * over allocated.
1798 */
1799 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1800 goto nopage;
1801
1802 wake_all_kswapd(order, zonelist, high_zoneidx);
1803
1804 restart:
1805 /*
1806 * OK, we're below the kswapd watermark and have kicked background
1807 * reclaim. Now things get more complex, so set up alloc_flags according
1808 * to how we want to proceed.
1809 */
1810 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1811
1812 /* This is the last chance, in general, before the goto nopage. */
1813 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1814 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1815 preferred_zone, migratetype);
1816 if (page)
1817 goto got_pg;
1818
1819 rebalance:
1820 /* Allocate without watermarks if the context allows */
1821 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1822 page = __alloc_pages_high_priority(gfp_mask, order,
1823 zonelist, high_zoneidx, nodemask,
1824 preferred_zone, migratetype);
1825 if (page)
1826 goto got_pg;
1827 }
1828
1829 /* Atomic allocations - we can't balance anything */
1830 if (!wait)
1831 goto nopage;
1832
1833 /* Avoid recursion of direct reclaim */
1834 if (p->flags & PF_MEMALLOC)
1835 goto nopage;
1836
1837 /* Avoid allocations with no watermarks from looping endlessly */
1838 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1839 goto nopage;
1840
1841 /* Try direct reclaim and then allocating */
1842 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1843 zonelist, high_zoneidx,
1844 nodemask,
1845 alloc_flags, preferred_zone,
1846 migratetype, &did_some_progress);
1847 if (page)
1848 goto got_pg;
1849
1850 /*
1851 * If we failed to make any progress reclaiming, then we are
1852 * running out of options and have to consider going OOM
1853 */
1854 if (!did_some_progress) {
1855 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1856 if (oom_killer_disabled)
1857 goto nopage;
1858 page = __alloc_pages_may_oom(gfp_mask, order,
1859 zonelist, high_zoneidx,
1860 nodemask, preferred_zone,
1861 migratetype);
1862 if (page)
1863 goto got_pg;
1864
1865 /*
1866 * The OOM killer does not trigger for high-order
1867 * ~__GFP_NOFAIL allocations so if no progress is being
1868 * made, there are no other options and retrying is
1869 * unlikely to help.
1870 */
1871 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1872 !(gfp_mask & __GFP_NOFAIL))
1873 goto nopage;
1874
1875 goto restart;
1876 }
1877 }
1878
1879 /* Check if we should retry the allocation */
1880 pages_reclaimed += did_some_progress;
1881 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1882 /* Wait for some write requests to complete then retry */
1883 congestion_wait(BLK_RW_ASYNC, HZ/50);
1884 goto rebalance;
1885 }
1886
1887 nopage:
1888 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1889 printk(KERN_WARNING "%s: page allocation failure."
1890 " order:%d, mode:0x%x\n",
1891 p->comm, order, gfp_mask);
1892 dump_stack();
1893 show_mem();
1894 }
1895 return page;
1896 got_pg:
1897 if (kmemcheck_enabled)
1898 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1899 return page;
1900
1901 }
1902
1903 /*
1904 * This is the 'heart' of the zoned buddy allocator.
1905 */
1906 struct page *
1907 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1908 struct zonelist *zonelist, nodemask_t *nodemask)
1909 {
1910 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1911 struct zone *preferred_zone;
1912 struct page *page;
1913 int migratetype = allocflags_to_migratetype(gfp_mask);
1914
1915 gfp_mask &= gfp_allowed_mask;
1916
1917 lockdep_trace_alloc(gfp_mask);
1918
1919 might_sleep_if(gfp_mask & __GFP_WAIT);
1920
1921 if (should_fail_alloc_page(gfp_mask, order))
1922 return NULL;
1923
1924 /*
1925 * Check the zones suitable for the gfp_mask contain at least one
1926 * valid zone. It's possible to have an empty zonelist as a result
1927 * of GFP_THISNODE and a memoryless node
1928 */
1929 if (unlikely(!zonelist->_zonerefs->zone))
1930 return NULL;
1931
1932 /* The preferred zone is used for statistics later */
1933 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1934 if (!preferred_zone)
1935 return NULL;
1936
1937 /* First allocation attempt */
1938 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1939 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1940 preferred_zone, migratetype);
1941 if (unlikely(!page))
1942 page = __alloc_pages_slowpath(gfp_mask, order,
1943 zonelist, high_zoneidx, nodemask,
1944 preferred_zone, migratetype);
1945
1946 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1947 return page;
1948 }
1949 EXPORT_SYMBOL(__alloc_pages_nodemask);
1950
1951 /*
1952 * Common helper functions.
1953 */
1954 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1955 {
1956 struct page *page;
1957
1958 /*
1959 * __get_free_pages() returns a 32-bit address, which cannot represent
1960 * a highmem page
1961 */
1962 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1963
1964 page = alloc_pages(gfp_mask, order);
1965 if (!page)
1966 return 0;
1967 return (unsigned long) page_address(page);
1968 }
1969 EXPORT_SYMBOL(__get_free_pages);
1970
1971 unsigned long get_zeroed_page(gfp_t gfp_mask)
1972 {
1973 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1974 }
1975 EXPORT_SYMBOL(get_zeroed_page);
1976
1977 void __pagevec_free(struct pagevec *pvec)
1978 {
1979 int i = pagevec_count(pvec);
1980
1981 while (--i >= 0) {
1982 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1983 free_hot_cold_page(pvec->pages[i], pvec->cold);
1984 }
1985 }
1986
1987 void __free_pages(struct page *page, unsigned int order)
1988 {
1989 if (put_page_testzero(page)) {
1990 trace_mm_page_free_direct(page, order);
1991 if (order == 0)
1992 free_hot_page(page);
1993 else
1994 __free_pages_ok(page, order);
1995 }
1996 }
1997
1998 EXPORT_SYMBOL(__free_pages);
1999
2000 void free_pages(unsigned long addr, unsigned int order)
2001 {
2002 if (addr != 0) {
2003 VM_BUG_ON(!virt_addr_valid((void *)addr));
2004 __free_pages(virt_to_page((void *)addr), order);
2005 }
2006 }
2007
2008 EXPORT_SYMBOL(free_pages);
2009
2010 /**
2011 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2012 * @size: the number of bytes to allocate
2013 * @gfp_mask: GFP flags for the allocation
2014 *
2015 * This function is similar to alloc_pages(), except that it allocates the
2016 * minimum number of pages to satisfy the request. alloc_pages() can only
2017 * allocate memory in power-of-two pages.
2018 *
2019 * This function is also limited by MAX_ORDER.
2020 *
2021 * Memory allocated by this function must be released by free_pages_exact().
2022 */
2023 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2024 {
2025 unsigned int order = get_order(size);
2026 unsigned long addr;
2027
2028 addr = __get_free_pages(gfp_mask, order);
2029 if (addr) {
2030 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2031 unsigned long used = addr + PAGE_ALIGN(size);
2032
2033 split_page(virt_to_page((void *)addr), order);
2034 while (used < alloc_end) {
2035 free_page(used);
2036 used += PAGE_SIZE;
2037 }
2038 }
2039
2040 return (void *)addr;
2041 }
2042 EXPORT_SYMBOL(alloc_pages_exact);
2043
2044 /**
2045 * free_pages_exact - release memory allocated via alloc_pages_exact()
2046 * @virt: the value returned by alloc_pages_exact.
2047 * @size: size of allocation, same value as passed to alloc_pages_exact().
2048 *
2049 * Release the memory allocated by a previous call to alloc_pages_exact.
2050 */
2051 void free_pages_exact(void *virt, size_t size)
2052 {
2053 unsigned long addr = (unsigned long)virt;
2054 unsigned long end = addr + PAGE_ALIGN(size);
2055
2056 while (addr < end) {
2057 free_page(addr);
2058 addr += PAGE_SIZE;
2059 }
2060 }
2061 EXPORT_SYMBOL(free_pages_exact);
2062
2063 static unsigned int nr_free_zone_pages(int offset)
2064 {
2065 struct zoneref *z;
2066 struct zone *zone;
2067
2068 /* Just pick one node, since fallback list is circular */
2069 unsigned int sum = 0;
2070
2071 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2072
2073 for_each_zone_zonelist(zone, z, zonelist, offset) {
2074 unsigned long size = zone->present_pages;
2075 unsigned long high = high_wmark_pages(zone);
2076 if (size > high)
2077 sum += size - high;
2078 }
2079
2080 return sum;
2081 }
2082
2083 /*
2084 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2085 */
2086 unsigned int nr_free_buffer_pages(void)
2087 {
2088 return nr_free_zone_pages(gfp_zone(GFP_USER));
2089 }
2090 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2091
2092 /*
2093 * Amount of free RAM allocatable within all zones
2094 */
2095 unsigned int nr_free_pagecache_pages(void)
2096 {
2097 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2098 }
2099
2100 static inline void show_node(struct zone *zone)
2101 {
2102 if (NUMA_BUILD)
2103 printk("Node %d ", zone_to_nid(zone));
2104 }
2105
2106 void si_meminfo(struct sysinfo *val)
2107 {
2108 val->totalram = totalram_pages;
2109 val->sharedram = 0;
2110 val->freeram = global_page_state(NR_FREE_PAGES);
2111 val->bufferram = nr_blockdev_pages();
2112 val->totalhigh = totalhigh_pages;
2113 val->freehigh = nr_free_highpages();
2114 val->mem_unit = PAGE_SIZE;
2115 }
2116
2117 EXPORT_SYMBOL(si_meminfo);
2118
2119 #ifdef CONFIG_NUMA
2120 void si_meminfo_node(struct sysinfo *val, int nid)
2121 {
2122 pg_data_t *pgdat = NODE_DATA(nid);
2123
2124 val->totalram = pgdat->node_present_pages;
2125 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2126 #ifdef CONFIG_HIGHMEM
2127 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2128 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2129 NR_FREE_PAGES);
2130 #else
2131 val->totalhigh = 0;
2132 val->freehigh = 0;
2133 #endif
2134 val->mem_unit = PAGE_SIZE;
2135 }
2136 #endif
2137
2138 #define K(x) ((x) << (PAGE_SHIFT-10))
2139
2140 /*
2141 * Show free area list (used inside shift_scroll-lock stuff)
2142 * We also calculate the percentage fragmentation. We do this by counting the
2143 * memory on each free list with the exception of the first item on the list.
2144 */
2145 void show_free_areas(void)
2146 {
2147 int cpu;
2148 struct zone *zone;
2149
2150 for_each_populated_zone(zone) {
2151 show_node(zone);
2152 printk("%s per-cpu:\n", zone->name);
2153
2154 for_each_online_cpu(cpu) {
2155 struct per_cpu_pageset *pageset;
2156
2157 pageset = zone_pcp(zone, cpu);
2158
2159 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2160 cpu, pageset->pcp.high,
2161 pageset->pcp.batch, pageset->pcp.count);
2162 }
2163 }
2164
2165 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2166 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2167 " unevictable:%lu"
2168 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2169 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2170 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2171 global_page_state(NR_ACTIVE_ANON),
2172 global_page_state(NR_INACTIVE_ANON),
2173 global_page_state(NR_ISOLATED_ANON),
2174 global_page_state(NR_ACTIVE_FILE),
2175 global_page_state(NR_INACTIVE_FILE),
2176 global_page_state(NR_ISOLATED_FILE),
2177 global_page_state(NR_UNEVICTABLE),
2178 global_page_state(NR_FILE_DIRTY),
2179 global_page_state(NR_WRITEBACK),
2180 global_page_state(NR_UNSTABLE_NFS),
2181 nr_blockdev_pages(),
2182 global_page_state(NR_FREE_PAGES),
2183 global_page_state(NR_SLAB_RECLAIMABLE),
2184 global_page_state(NR_SLAB_UNRECLAIMABLE),
2185 global_page_state(NR_FILE_MAPPED),
2186 global_page_state(NR_SHMEM),
2187 global_page_state(NR_PAGETABLE),
2188 global_page_state(NR_BOUNCE));
2189
2190 for_each_populated_zone(zone) {
2191 int i;
2192
2193 show_node(zone);
2194 printk("%s"
2195 " free:%lukB"
2196 " min:%lukB"
2197 " low:%lukB"
2198 " high:%lukB"
2199 " active_anon:%lukB"
2200 " inactive_anon:%lukB"
2201 " active_file:%lukB"
2202 " inactive_file:%lukB"
2203 " unevictable:%lukB"
2204 " isolated(anon):%lukB"
2205 " isolated(file):%lukB"
2206 " present:%lukB"
2207 " mlocked:%lukB"
2208 " dirty:%lukB"
2209 " writeback:%lukB"
2210 " mapped:%lukB"
2211 " shmem:%lukB"
2212 " slab_reclaimable:%lukB"
2213 " slab_unreclaimable:%lukB"
2214 " kernel_stack:%lukB"
2215 " pagetables:%lukB"
2216 " unstable:%lukB"
2217 " bounce:%lukB"
2218 " writeback_tmp:%lukB"
2219 " pages_scanned:%lu"
2220 " all_unreclaimable? %s"
2221 "\n",
2222 zone->name,
2223 K(zone_page_state(zone, NR_FREE_PAGES)),
2224 K(min_wmark_pages(zone)),
2225 K(low_wmark_pages(zone)),
2226 K(high_wmark_pages(zone)),
2227 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2228 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2229 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2230 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2231 K(zone_page_state(zone, NR_UNEVICTABLE)),
2232 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2233 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2234 K(zone->present_pages),
2235 K(zone_page_state(zone, NR_MLOCK)),
2236 K(zone_page_state(zone, NR_FILE_DIRTY)),
2237 K(zone_page_state(zone, NR_WRITEBACK)),
2238 K(zone_page_state(zone, NR_FILE_MAPPED)),
2239 K(zone_page_state(zone, NR_SHMEM)),
2240 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2241 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2242 zone_page_state(zone, NR_KERNEL_STACK) *
2243 THREAD_SIZE / 1024,
2244 K(zone_page_state(zone, NR_PAGETABLE)),
2245 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2246 K(zone_page_state(zone, NR_BOUNCE)),
2247 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2248 zone->pages_scanned,
2249 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2250 );
2251 printk("lowmem_reserve[]:");
2252 for (i = 0; i < MAX_NR_ZONES; i++)
2253 printk(" %lu", zone->lowmem_reserve[i]);
2254 printk("\n");
2255 }
2256
2257 for_each_populated_zone(zone) {
2258 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2259
2260 show_node(zone);
2261 printk("%s: ", zone->name);
2262
2263 spin_lock_irqsave(&zone->lock, flags);
2264 for (order = 0; order < MAX_ORDER; order++) {
2265 nr[order] = zone->free_area[order].nr_free;
2266 total += nr[order] << order;
2267 }
2268 spin_unlock_irqrestore(&zone->lock, flags);
2269 for (order = 0; order < MAX_ORDER; order++)
2270 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2271 printk("= %lukB\n", K(total));
2272 }
2273
2274 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2275
2276 show_swap_cache_info();
2277 }
2278
2279 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2280 {
2281 zoneref->zone = zone;
2282 zoneref->zone_idx = zone_idx(zone);
2283 }
2284
2285 /*
2286 * Builds allocation fallback zone lists.
2287 *
2288 * Add all populated zones of a node to the zonelist.
2289 */
2290 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2291 int nr_zones, enum zone_type zone_type)
2292 {
2293 struct zone *zone;
2294
2295 BUG_ON(zone_type >= MAX_NR_ZONES);
2296 zone_type++;
2297
2298 do {
2299 zone_type--;
2300 zone = pgdat->node_zones + zone_type;
2301 if (populated_zone(zone)) {
2302 zoneref_set_zone(zone,
2303 &zonelist->_zonerefs[nr_zones++]);
2304 check_highest_zone(zone_type);
2305 }
2306
2307 } while (zone_type);
2308 return nr_zones;
2309 }
2310
2311
2312 /*
2313 * zonelist_order:
2314 * 0 = automatic detection of better ordering.
2315 * 1 = order by ([node] distance, -zonetype)
2316 * 2 = order by (-zonetype, [node] distance)
2317 *
2318 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2319 * the same zonelist. So only NUMA can configure this param.
2320 */
2321 #define ZONELIST_ORDER_DEFAULT 0
2322 #define ZONELIST_ORDER_NODE 1
2323 #define ZONELIST_ORDER_ZONE 2
2324
2325 /* zonelist order in the kernel.
2326 * set_zonelist_order() will set this to NODE or ZONE.
2327 */
2328 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2329 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2330
2331
2332 #ifdef CONFIG_NUMA
2333 /* The value user specified ....changed by config */
2334 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2335 /* string for sysctl */
2336 #define NUMA_ZONELIST_ORDER_LEN 16
2337 char numa_zonelist_order[16] = "default";
2338
2339 /*
2340 * interface for configure zonelist ordering.
2341 * command line option "numa_zonelist_order"
2342 * = "[dD]efault - default, automatic configuration.
2343 * = "[nN]ode - order by node locality, then by zone within node
2344 * = "[zZ]one - order by zone, then by locality within zone
2345 */
2346
2347 static int __parse_numa_zonelist_order(char *s)
2348 {
2349 if (*s == 'd' || *s == 'D') {
2350 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2351 } else if (*s == 'n' || *s == 'N') {
2352 user_zonelist_order = ZONELIST_ORDER_NODE;
2353 } else if (*s == 'z' || *s == 'Z') {
2354 user_zonelist_order = ZONELIST_ORDER_ZONE;
2355 } else {
2356 printk(KERN_WARNING
2357 "Ignoring invalid numa_zonelist_order value: "
2358 "%s\n", s);
2359 return -EINVAL;
2360 }
2361 return 0;
2362 }
2363
2364 static __init int setup_numa_zonelist_order(char *s)
2365 {
2366 if (s)
2367 return __parse_numa_zonelist_order(s);
2368 return 0;
2369 }
2370 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2371
2372 /*
2373 * sysctl handler for numa_zonelist_order
2374 */
2375 int numa_zonelist_order_handler(ctl_table *table, int write,
2376 struct file *file, void __user *buffer, size_t *length,
2377 loff_t *ppos)
2378 {
2379 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2380 int ret;
2381
2382 if (write)
2383 strncpy(saved_string, (char*)table->data,
2384 NUMA_ZONELIST_ORDER_LEN);
2385 ret = proc_dostring(table, write, file, buffer, length, ppos);
2386 if (ret)
2387 return ret;
2388 if (write) {
2389 int oldval = user_zonelist_order;
2390 if (__parse_numa_zonelist_order((char*)table->data)) {
2391 /*
2392 * bogus value. restore saved string
2393 */
2394 strncpy((char*)table->data, saved_string,
2395 NUMA_ZONELIST_ORDER_LEN);
2396 user_zonelist_order = oldval;
2397 } else if (oldval != user_zonelist_order)
2398 build_all_zonelists();
2399 }
2400 return 0;
2401 }
2402
2403
2404 #define MAX_NODE_LOAD (nr_online_nodes)
2405 static int node_load[MAX_NUMNODES];
2406
2407 /**
2408 * find_next_best_node - find the next node that should appear in a given node's fallback list
2409 * @node: node whose fallback list we're appending
2410 * @used_node_mask: nodemask_t of already used nodes
2411 *
2412 * We use a number of factors to determine which is the next node that should
2413 * appear on a given node's fallback list. The node should not have appeared
2414 * already in @node's fallback list, and it should be the next closest node
2415 * according to the distance array (which contains arbitrary distance values
2416 * from each node to each node in the system), and should also prefer nodes
2417 * with no CPUs, since presumably they'll have very little allocation pressure
2418 * on them otherwise.
2419 * It returns -1 if no node is found.
2420 */
2421 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2422 {
2423 int n, val;
2424 int min_val = INT_MAX;
2425 int best_node = -1;
2426 const struct cpumask *tmp = cpumask_of_node(0);
2427
2428 /* Use the local node if we haven't already */
2429 if (!node_isset(node, *used_node_mask)) {
2430 node_set(node, *used_node_mask);
2431 return node;
2432 }
2433
2434 for_each_node_state(n, N_HIGH_MEMORY) {
2435
2436 /* Don't want a node to appear more than once */
2437 if (node_isset(n, *used_node_mask))
2438 continue;
2439
2440 /* Use the distance array to find the distance */
2441 val = node_distance(node, n);
2442
2443 /* Penalize nodes under us ("prefer the next node") */
2444 val += (n < node);
2445
2446 /* Give preference to headless and unused nodes */
2447 tmp = cpumask_of_node(n);
2448 if (!cpumask_empty(tmp))
2449 val += PENALTY_FOR_NODE_WITH_CPUS;
2450
2451 /* Slight preference for less loaded node */
2452 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2453 val += node_load[n];
2454
2455 if (val < min_val) {
2456 min_val = val;
2457 best_node = n;
2458 }
2459 }
2460
2461 if (best_node >= 0)
2462 node_set(best_node, *used_node_mask);
2463
2464 return best_node;
2465 }
2466
2467
2468 /*
2469 * Build zonelists ordered by node and zones within node.
2470 * This results in maximum locality--normal zone overflows into local
2471 * DMA zone, if any--but risks exhausting DMA zone.
2472 */
2473 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2474 {
2475 int j;
2476 struct zonelist *zonelist;
2477
2478 zonelist = &pgdat->node_zonelists[0];
2479 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2480 ;
2481 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2482 MAX_NR_ZONES - 1);
2483 zonelist->_zonerefs[j].zone = NULL;
2484 zonelist->_zonerefs[j].zone_idx = 0;
2485 }
2486
2487 /*
2488 * Build gfp_thisnode zonelists
2489 */
2490 static void build_thisnode_zonelists(pg_data_t *pgdat)
2491 {
2492 int j;
2493 struct zonelist *zonelist;
2494
2495 zonelist = &pgdat->node_zonelists[1];
2496 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2497 zonelist->_zonerefs[j].zone = NULL;
2498 zonelist->_zonerefs[j].zone_idx = 0;
2499 }
2500
2501 /*
2502 * Build zonelists ordered by zone and nodes within zones.
2503 * This results in conserving DMA zone[s] until all Normal memory is
2504 * exhausted, but results in overflowing to remote node while memory
2505 * may still exist in local DMA zone.
2506 */
2507 static int node_order[MAX_NUMNODES];
2508
2509 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2510 {
2511 int pos, j, node;
2512 int zone_type; /* needs to be signed */
2513 struct zone *z;
2514 struct zonelist *zonelist;
2515
2516 zonelist = &pgdat->node_zonelists[0];
2517 pos = 0;
2518 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2519 for (j = 0; j < nr_nodes; j++) {
2520 node = node_order[j];
2521 z = &NODE_DATA(node)->node_zones[zone_type];
2522 if (populated_zone(z)) {
2523 zoneref_set_zone(z,
2524 &zonelist->_zonerefs[pos++]);
2525 check_highest_zone(zone_type);
2526 }
2527 }
2528 }
2529 zonelist->_zonerefs[pos].zone = NULL;
2530 zonelist->_zonerefs[pos].zone_idx = 0;
2531 }
2532
2533 static int default_zonelist_order(void)
2534 {
2535 int nid, zone_type;
2536 unsigned long low_kmem_size,total_size;
2537 struct zone *z;
2538 int average_size;
2539 /*
2540 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2541 * If they are really small and used heavily, the system can fall
2542 * into OOM very easily.
2543 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2544 */
2545 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2546 low_kmem_size = 0;
2547 total_size = 0;
2548 for_each_online_node(nid) {
2549 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2550 z = &NODE_DATA(nid)->node_zones[zone_type];
2551 if (populated_zone(z)) {
2552 if (zone_type < ZONE_NORMAL)
2553 low_kmem_size += z->present_pages;
2554 total_size += z->present_pages;
2555 }
2556 }
2557 }
2558 if (!low_kmem_size || /* there are no DMA area. */
2559 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2560 return ZONELIST_ORDER_NODE;
2561 /*
2562 * look into each node's config.
2563 * If there is a node whose DMA/DMA32 memory is very big area on
2564 * local memory, NODE_ORDER may be suitable.
2565 */
2566 average_size = total_size /
2567 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2568 for_each_online_node(nid) {
2569 low_kmem_size = 0;
2570 total_size = 0;
2571 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2572 z = &NODE_DATA(nid)->node_zones[zone_type];
2573 if (populated_zone(z)) {
2574 if (zone_type < ZONE_NORMAL)
2575 low_kmem_size += z->present_pages;
2576 total_size += z->present_pages;
2577 }
2578 }
2579 if (low_kmem_size &&
2580 total_size > average_size && /* ignore small node */
2581 low_kmem_size > total_size * 70/100)
2582 return ZONELIST_ORDER_NODE;
2583 }
2584 return ZONELIST_ORDER_ZONE;
2585 }
2586
2587 static void set_zonelist_order(void)
2588 {
2589 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2590 current_zonelist_order = default_zonelist_order();
2591 else
2592 current_zonelist_order = user_zonelist_order;
2593 }
2594
2595 static void build_zonelists(pg_data_t *pgdat)
2596 {
2597 int j, node, load;
2598 enum zone_type i;
2599 nodemask_t used_mask;
2600 int local_node, prev_node;
2601 struct zonelist *zonelist;
2602 int order = current_zonelist_order;
2603
2604 /* initialize zonelists */
2605 for (i = 0; i < MAX_ZONELISTS; i++) {
2606 zonelist = pgdat->node_zonelists + i;
2607 zonelist->_zonerefs[0].zone = NULL;
2608 zonelist->_zonerefs[0].zone_idx = 0;
2609 }
2610
2611 /* NUMA-aware ordering of nodes */
2612 local_node = pgdat->node_id;
2613 load = nr_online_nodes;
2614 prev_node = local_node;
2615 nodes_clear(used_mask);
2616
2617 memset(node_order, 0, sizeof(node_order));
2618 j = 0;
2619
2620 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2621 int distance = node_distance(local_node, node);
2622
2623 /*
2624 * If another node is sufficiently far away then it is better
2625 * to reclaim pages in a zone before going off node.
2626 */
2627 if (distance > RECLAIM_DISTANCE)
2628 zone_reclaim_mode = 1;
2629
2630 /*
2631 * We don't want to pressure a particular node.
2632 * So adding penalty to the first node in same
2633 * distance group to make it round-robin.
2634 */
2635 if (distance != node_distance(local_node, prev_node))
2636 node_load[node] = load;
2637
2638 prev_node = node;
2639 load--;
2640 if (order == ZONELIST_ORDER_NODE)
2641 build_zonelists_in_node_order(pgdat, node);
2642 else
2643 node_order[j++] = node; /* remember order */
2644 }
2645
2646 if (order == ZONELIST_ORDER_ZONE) {
2647 /* calculate node order -- i.e., DMA last! */
2648 build_zonelists_in_zone_order(pgdat, j);
2649 }
2650
2651 build_thisnode_zonelists(pgdat);
2652 }
2653
2654 /* Construct the zonelist performance cache - see further mmzone.h */
2655 static void build_zonelist_cache(pg_data_t *pgdat)
2656 {
2657 struct zonelist *zonelist;
2658 struct zonelist_cache *zlc;
2659 struct zoneref *z;
2660
2661 zonelist = &pgdat->node_zonelists[0];
2662 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2663 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2664 for (z = zonelist->_zonerefs; z->zone; z++)
2665 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2666 }
2667
2668
2669 #else /* CONFIG_NUMA */
2670
2671 static void set_zonelist_order(void)
2672 {
2673 current_zonelist_order = ZONELIST_ORDER_ZONE;
2674 }
2675
2676 static void build_zonelists(pg_data_t *pgdat)
2677 {
2678 int node, local_node;
2679 enum zone_type j;
2680 struct zonelist *zonelist;
2681
2682 local_node = pgdat->node_id;
2683
2684 zonelist = &pgdat->node_zonelists[0];
2685 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2686
2687 /*
2688 * Now we build the zonelist so that it contains the zones
2689 * of all the other nodes.
2690 * We don't want to pressure a particular node, so when
2691 * building the zones for node N, we make sure that the
2692 * zones coming right after the local ones are those from
2693 * node N+1 (modulo N)
2694 */
2695 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2696 if (!node_online(node))
2697 continue;
2698 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2699 MAX_NR_ZONES - 1);
2700 }
2701 for (node = 0; node < local_node; node++) {
2702 if (!node_online(node))
2703 continue;
2704 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2705 MAX_NR_ZONES - 1);
2706 }
2707
2708 zonelist->_zonerefs[j].zone = NULL;
2709 zonelist->_zonerefs[j].zone_idx = 0;
2710 }
2711
2712 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2713 static void build_zonelist_cache(pg_data_t *pgdat)
2714 {
2715 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2716 }
2717
2718 #endif /* CONFIG_NUMA */
2719
2720 /* return values int ....just for stop_machine() */
2721 static int __build_all_zonelists(void *dummy)
2722 {
2723 int nid;
2724
2725 #ifdef CONFIG_NUMA
2726 memset(node_load, 0, sizeof(node_load));
2727 #endif
2728 for_each_online_node(nid) {
2729 pg_data_t *pgdat = NODE_DATA(nid);
2730
2731 build_zonelists(pgdat);
2732 build_zonelist_cache(pgdat);
2733 }
2734 return 0;
2735 }
2736
2737 void build_all_zonelists(void)
2738 {
2739 set_zonelist_order();
2740
2741 if (system_state == SYSTEM_BOOTING) {
2742 __build_all_zonelists(NULL);
2743 mminit_verify_zonelist();
2744 cpuset_init_current_mems_allowed();
2745 } else {
2746 /* we have to stop all cpus to guarantee there is no user
2747 of zonelist */
2748 stop_machine(__build_all_zonelists, NULL, NULL);
2749 /* cpuset refresh routine should be here */
2750 }
2751 vm_total_pages = nr_free_pagecache_pages();
2752 /*
2753 * Disable grouping by mobility if the number of pages in the
2754 * system is too low to allow the mechanism to work. It would be
2755 * more accurate, but expensive to check per-zone. This check is
2756 * made on memory-hotadd so a system can start with mobility
2757 * disabled and enable it later
2758 */
2759 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2760 page_group_by_mobility_disabled = 1;
2761 else
2762 page_group_by_mobility_disabled = 0;
2763
2764 printk("Built %i zonelists in %s order, mobility grouping %s. "
2765 "Total pages: %ld\n",
2766 nr_online_nodes,
2767 zonelist_order_name[current_zonelist_order],
2768 page_group_by_mobility_disabled ? "off" : "on",
2769 vm_total_pages);
2770 #ifdef CONFIG_NUMA
2771 printk("Policy zone: %s\n", zone_names[policy_zone]);
2772 #endif
2773 }
2774
2775 /*
2776 * Helper functions to size the waitqueue hash table.
2777 * Essentially these want to choose hash table sizes sufficiently
2778 * large so that collisions trying to wait on pages are rare.
2779 * But in fact, the number of active page waitqueues on typical
2780 * systems is ridiculously low, less than 200. So this is even
2781 * conservative, even though it seems large.
2782 *
2783 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2784 * waitqueues, i.e. the size of the waitq table given the number of pages.
2785 */
2786 #define PAGES_PER_WAITQUEUE 256
2787
2788 #ifndef CONFIG_MEMORY_HOTPLUG
2789 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2790 {
2791 unsigned long size = 1;
2792
2793 pages /= PAGES_PER_WAITQUEUE;
2794
2795 while (size < pages)
2796 size <<= 1;
2797
2798 /*
2799 * Once we have dozens or even hundreds of threads sleeping
2800 * on IO we've got bigger problems than wait queue collision.
2801 * Limit the size of the wait table to a reasonable size.
2802 */
2803 size = min(size, 4096UL);
2804
2805 return max(size, 4UL);
2806 }
2807 #else
2808 /*
2809 * A zone's size might be changed by hot-add, so it is not possible to determine
2810 * a suitable size for its wait_table. So we use the maximum size now.
2811 *
2812 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2813 *
2814 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2815 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2816 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2817 *
2818 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2819 * or more by the traditional way. (See above). It equals:
2820 *
2821 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2822 * ia64(16K page size) : = ( 8G + 4M)byte.
2823 * powerpc (64K page size) : = (32G +16M)byte.
2824 */
2825 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2826 {
2827 return 4096UL;
2828 }
2829 #endif
2830
2831 /*
2832 * This is an integer logarithm so that shifts can be used later
2833 * to extract the more random high bits from the multiplicative
2834 * hash function before the remainder is taken.
2835 */
2836 static inline unsigned long wait_table_bits(unsigned long size)
2837 {
2838 return ffz(~size);
2839 }
2840
2841 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2842
2843 /*
2844 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2845 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2846 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2847 * higher will lead to a bigger reserve which will get freed as contiguous
2848 * blocks as reclaim kicks in
2849 */
2850 static void setup_zone_migrate_reserve(struct zone *zone)
2851 {
2852 unsigned long start_pfn, pfn, end_pfn;
2853 struct page *page;
2854 unsigned long block_migratetype;
2855 int reserve;
2856
2857 /* Get the start pfn, end pfn and the number of blocks to reserve */
2858 start_pfn = zone->zone_start_pfn;
2859 end_pfn = start_pfn + zone->spanned_pages;
2860 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2861 pageblock_order;
2862
2863 /*
2864 * Reserve blocks are generally in place to help high-order atomic
2865 * allocations that are short-lived. A min_free_kbytes value that
2866 * would result in more than 2 reserve blocks for atomic allocations
2867 * is assumed to be in place to help anti-fragmentation for the
2868 * future allocation of hugepages at runtime.
2869 */
2870 reserve = min(2, reserve);
2871
2872 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2873 if (!pfn_valid(pfn))
2874 continue;
2875 page = pfn_to_page(pfn);
2876
2877 /* Watch out for overlapping nodes */
2878 if (page_to_nid(page) != zone_to_nid(zone))
2879 continue;
2880
2881 /* Blocks with reserved pages will never free, skip them. */
2882 if (PageReserved(page))
2883 continue;
2884
2885 block_migratetype = get_pageblock_migratetype(page);
2886
2887 /* If this block is reserved, account for it */
2888 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2889 reserve--;
2890 continue;
2891 }
2892
2893 /* Suitable for reserving if this block is movable */
2894 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2895 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2896 move_freepages_block(zone, page, MIGRATE_RESERVE);
2897 reserve--;
2898 continue;
2899 }
2900
2901 /*
2902 * If the reserve is met and this is a previous reserved block,
2903 * take it back
2904 */
2905 if (block_migratetype == MIGRATE_RESERVE) {
2906 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2907 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2908 }
2909 }
2910 }
2911
2912 /*
2913 * Initially all pages are reserved - free ones are freed
2914 * up by free_all_bootmem() once the early boot process is
2915 * done. Non-atomic initialization, single-pass.
2916 */
2917 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2918 unsigned long start_pfn, enum memmap_context context)
2919 {
2920 struct page *page;
2921 unsigned long end_pfn = start_pfn + size;
2922 unsigned long pfn;
2923 struct zone *z;
2924
2925 if (highest_memmap_pfn < end_pfn - 1)
2926 highest_memmap_pfn = end_pfn - 1;
2927
2928 z = &NODE_DATA(nid)->node_zones[zone];
2929 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2930 /*
2931 * There can be holes in boot-time mem_map[]s
2932 * handed to this function. They do not
2933 * exist on hotplugged memory.
2934 */
2935 if (context == MEMMAP_EARLY) {
2936 if (!early_pfn_valid(pfn))
2937 continue;
2938 if (!early_pfn_in_nid(pfn, nid))
2939 continue;
2940 }
2941 page = pfn_to_page(pfn);
2942 set_page_links(page, zone, nid, pfn);
2943 mminit_verify_page_links(page, zone, nid, pfn);
2944 init_page_count(page);
2945 reset_page_mapcount(page);
2946 SetPageReserved(page);
2947 /*
2948 * Mark the block movable so that blocks are reserved for
2949 * movable at startup. This will force kernel allocations
2950 * to reserve their blocks rather than leaking throughout
2951 * the address space during boot when many long-lived
2952 * kernel allocations are made. Later some blocks near
2953 * the start are marked MIGRATE_RESERVE by
2954 * setup_zone_migrate_reserve()
2955 *
2956 * bitmap is created for zone's valid pfn range. but memmap
2957 * can be created for invalid pages (for alignment)
2958 * check here not to call set_pageblock_migratetype() against
2959 * pfn out of zone.
2960 */
2961 if ((z->zone_start_pfn <= pfn)
2962 && (pfn < z->zone_start_pfn + z->spanned_pages)
2963 && !(pfn & (pageblock_nr_pages - 1)))
2964 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2965
2966 INIT_LIST_HEAD(&page->lru);
2967 #ifdef WANT_PAGE_VIRTUAL
2968 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2969 if (!is_highmem_idx(zone))
2970 set_page_address(page, __va(pfn << PAGE_SHIFT));
2971 #endif
2972 }
2973 }
2974
2975 static void __meminit zone_init_free_lists(struct zone *zone)
2976 {
2977 int order, t;
2978 for_each_migratetype_order(order, t) {
2979 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2980 zone->free_area[order].nr_free = 0;
2981 }
2982 }
2983
2984 #ifndef __HAVE_ARCH_MEMMAP_INIT
2985 #define memmap_init(size, nid, zone, start_pfn) \
2986 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2987 #endif
2988
2989 static int zone_batchsize(struct zone *zone)
2990 {
2991 #ifdef CONFIG_MMU
2992 int batch;
2993
2994 /*
2995 * The per-cpu-pages pools are set to around 1000th of the
2996 * size of the zone. But no more than 1/2 of a meg.
2997 *
2998 * OK, so we don't know how big the cache is. So guess.
2999 */
3000 batch = zone->present_pages / 1024;
3001 if (batch * PAGE_SIZE > 512 * 1024)
3002 batch = (512 * 1024) / PAGE_SIZE;
3003 batch /= 4; /* We effectively *= 4 below */
3004 if (batch < 1)
3005 batch = 1;
3006
3007 /*
3008 * Clamp the batch to a 2^n - 1 value. Having a power
3009 * of 2 value was found to be more likely to have
3010 * suboptimal cache aliasing properties in some cases.
3011 *
3012 * For example if 2 tasks are alternately allocating
3013 * batches of pages, one task can end up with a lot
3014 * of pages of one half of the possible page colors
3015 * and the other with pages of the other colors.
3016 */
3017 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3018
3019 return batch;
3020
3021 #else
3022 /* The deferral and batching of frees should be suppressed under NOMMU
3023 * conditions.
3024 *
3025 * The problem is that NOMMU needs to be able to allocate large chunks
3026 * of contiguous memory as there's no hardware page translation to
3027 * assemble apparent contiguous memory from discontiguous pages.
3028 *
3029 * Queueing large contiguous runs of pages for batching, however,
3030 * causes the pages to actually be freed in smaller chunks. As there
3031 * can be a significant delay between the individual batches being
3032 * recycled, this leads to the once large chunks of space being
3033 * fragmented and becoming unavailable for high-order allocations.
3034 */
3035 return 0;
3036 #endif
3037 }
3038
3039 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3040 {
3041 struct per_cpu_pages *pcp;
3042 int migratetype;
3043
3044 memset(p, 0, sizeof(*p));
3045
3046 pcp = &p->pcp;
3047 pcp->count = 0;
3048 pcp->high = 6 * batch;
3049 pcp->batch = max(1UL, 1 * batch);
3050 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3051 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3052 }
3053
3054 /*
3055 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3056 * to the value high for the pageset p.
3057 */
3058
3059 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3060 unsigned long high)
3061 {
3062 struct per_cpu_pages *pcp;
3063
3064 pcp = &p->pcp;
3065 pcp->high = high;
3066 pcp->batch = max(1UL, high/4);
3067 if ((high/4) > (PAGE_SHIFT * 8))
3068 pcp->batch = PAGE_SHIFT * 8;
3069 }
3070
3071
3072 #ifdef CONFIG_NUMA
3073 /*
3074 * Boot pageset table. One per cpu which is going to be used for all
3075 * zones and all nodes. The parameters will be set in such a way
3076 * that an item put on a list will immediately be handed over to
3077 * the buddy list. This is safe since pageset manipulation is done
3078 * with interrupts disabled.
3079 *
3080 * Some NUMA counter updates may also be caught by the boot pagesets.
3081 *
3082 * The boot_pagesets must be kept even after bootup is complete for
3083 * unused processors and/or zones. They do play a role for bootstrapping
3084 * hotplugged processors.
3085 *
3086 * zoneinfo_show() and maybe other functions do
3087 * not check if the processor is online before following the pageset pointer.
3088 * Other parts of the kernel may not check if the zone is available.
3089 */
3090 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3091
3092 /*
3093 * Dynamically allocate memory for the
3094 * per cpu pageset array in struct zone.
3095 */
3096 static int __cpuinit process_zones(int cpu)
3097 {
3098 struct zone *zone, *dzone;
3099 int node = cpu_to_node(cpu);
3100
3101 node_set_state(node, N_CPU); /* this node has a cpu */
3102
3103 for_each_populated_zone(zone) {
3104 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3105 GFP_KERNEL, node);
3106 if (!zone_pcp(zone, cpu))
3107 goto bad;
3108
3109 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3110
3111 if (percpu_pagelist_fraction)
3112 setup_pagelist_highmark(zone_pcp(zone, cpu),
3113 (zone->present_pages / percpu_pagelist_fraction));
3114 }
3115
3116 return 0;
3117 bad:
3118 for_each_zone(dzone) {
3119 if (!populated_zone(dzone))
3120 continue;
3121 if (dzone == zone)
3122 break;
3123 kfree(zone_pcp(dzone, cpu));
3124 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3125 }
3126 return -ENOMEM;
3127 }
3128
3129 static inline void free_zone_pagesets(int cpu)
3130 {
3131 struct zone *zone;
3132
3133 for_each_zone(zone) {
3134 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3135
3136 /* Free per_cpu_pageset if it is slab allocated */
3137 if (pset != &boot_pageset[cpu])
3138 kfree(pset);
3139 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3140 }
3141 }
3142
3143 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3144 unsigned long action,
3145 void *hcpu)
3146 {
3147 int cpu = (long)hcpu;
3148 int ret = NOTIFY_OK;
3149
3150 switch (action) {
3151 case CPU_UP_PREPARE:
3152 case CPU_UP_PREPARE_FROZEN:
3153 if (process_zones(cpu))
3154 ret = NOTIFY_BAD;
3155 break;
3156 case CPU_UP_CANCELED:
3157 case CPU_UP_CANCELED_FROZEN:
3158 case CPU_DEAD:
3159 case CPU_DEAD_FROZEN:
3160 free_zone_pagesets(cpu);
3161 break;
3162 default:
3163 break;
3164 }
3165 return ret;
3166 }
3167
3168 static struct notifier_block __cpuinitdata pageset_notifier =
3169 { &pageset_cpuup_callback, NULL, 0 };
3170
3171 void __init setup_per_cpu_pageset(void)
3172 {
3173 int err;
3174
3175 /* Initialize per_cpu_pageset for cpu 0.
3176 * A cpuup callback will do this for every cpu
3177 * as it comes online
3178 */
3179 err = process_zones(smp_processor_id());
3180 BUG_ON(err);
3181 register_cpu_notifier(&pageset_notifier);
3182 }
3183
3184 #endif
3185
3186 static noinline __init_refok
3187 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3188 {
3189 int i;
3190 struct pglist_data *pgdat = zone->zone_pgdat;
3191 size_t alloc_size;
3192
3193 /*
3194 * The per-page waitqueue mechanism uses hashed waitqueues
3195 * per zone.
3196 */
3197 zone->wait_table_hash_nr_entries =
3198 wait_table_hash_nr_entries(zone_size_pages);
3199 zone->wait_table_bits =
3200 wait_table_bits(zone->wait_table_hash_nr_entries);
3201 alloc_size = zone->wait_table_hash_nr_entries
3202 * sizeof(wait_queue_head_t);
3203
3204 if (!slab_is_available()) {
3205 zone->wait_table = (wait_queue_head_t *)
3206 alloc_bootmem_node(pgdat, alloc_size);
3207 } else {
3208 /*
3209 * This case means that a zone whose size was 0 gets new memory
3210 * via memory hot-add.
3211 * But it may be the case that a new node was hot-added. In
3212 * this case vmalloc() will not be able to use this new node's
3213 * memory - this wait_table must be initialized to use this new
3214 * node itself as well.
3215 * To use this new node's memory, further consideration will be
3216 * necessary.
3217 */
3218 zone->wait_table = vmalloc(alloc_size);
3219 }
3220 if (!zone->wait_table)
3221 return -ENOMEM;
3222
3223 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3224 init_waitqueue_head(zone->wait_table + i);
3225
3226 return 0;
3227 }
3228
3229 static int __zone_pcp_update(void *data)
3230 {
3231 struct zone *zone = data;
3232 int cpu;
3233 unsigned long batch = zone_batchsize(zone), flags;
3234
3235 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3236 struct per_cpu_pageset *pset;
3237 struct per_cpu_pages *pcp;
3238
3239 pset = zone_pcp(zone, cpu);
3240 pcp = &pset->pcp;
3241
3242 local_irq_save(flags);
3243 free_pcppages_bulk(zone, pcp->count, pcp);
3244 setup_pageset(pset, batch);
3245 local_irq_restore(flags);
3246 }
3247 return 0;
3248 }
3249
3250 void zone_pcp_update(struct zone *zone)
3251 {
3252 stop_machine(__zone_pcp_update, zone, NULL);
3253 }
3254
3255 static __meminit void zone_pcp_init(struct zone *zone)
3256 {
3257 int cpu;
3258 unsigned long batch = zone_batchsize(zone);
3259
3260 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3261 #ifdef CONFIG_NUMA
3262 /* Early boot. Slab allocator not functional yet */
3263 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3264 setup_pageset(&boot_pageset[cpu],0);
3265 #else
3266 setup_pageset(zone_pcp(zone,cpu), batch);
3267 #endif
3268 }
3269 if (zone->present_pages)
3270 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3271 zone->name, zone->present_pages, batch);
3272 }
3273
3274 __meminit int init_currently_empty_zone(struct zone *zone,
3275 unsigned long zone_start_pfn,
3276 unsigned long size,
3277 enum memmap_context context)
3278 {
3279 struct pglist_data *pgdat = zone->zone_pgdat;
3280 int ret;
3281 ret = zone_wait_table_init(zone, size);
3282 if (ret)
3283 return ret;
3284 pgdat->nr_zones = zone_idx(zone) + 1;
3285
3286 zone->zone_start_pfn = zone_start_pfn;
3287
3288 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3289 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3290 pgdat->node_id,
3291 (unsigned long)zone_idx(zone),
3292 zone_start_pfn, (zone_start_pfn + size));
3293
3294 zone_init_free_lists(zone);
3295
3296 return 0;
3297 }
3298
3299 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3300 /*
3301 * Basic iterator support. Return the first range of PFNs for a node
3302 * Note: nid == MAX_NUMNODES returns first region regardless of node
3303 */
3304 static int __meminit first_active_region_index_in_nid(int nid)
3305 {
3306 int i;
3307
3308 for (i = 0; i < nr_nodemap_entries; i++)
3309 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3310 return i;
3311
3312 return -1;
3313 }
3314
3315 /*
3316 * Basic iterator support. Return the next active range of PFNs for a node
3317 * Note: nid == MAX_NUMNODES returns next region regardless of node
3318 */
3319 static int __meminit next_active_region_index_in_nid(int index, int nid)
3320 {
3321 for (index = index + 1; index < nr_nodemap_entries; index++)
3322 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3323 return index;
3324
3325 return -1;
3326 }
3327
3328 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3329 /*
3330 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3331 * Architectures may implement their own version but if add_active_range()
3332 * was used and there are no special requirements, this is a convenient
3333 * alternative
3334 */
3335 int __meminit __early_pfn_to_nid(unsigned long pfn)
3336 {
3337 int i;
3338
3339 for (i = 0; i < nr_nodemap_entries; i++) {
3340 unsigned long start_pfn = early_node_map[i].start_pfn;
3341 unsigned long end_pfn = early_node_map[i].end_pfn;
3342
3343 if (start_pfn <= pfn && pfn < end_pfn)
3344 return early_node_map[i].nid;
3345 }
3346 /* This is a memory hole */
3347 return -1;
3348 }
3349 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3350
3351 int __meminit early_pfn_to_nid(unsigned long pfn)
3352 {
3353 int nid;
3354
3355 nid = __early_pfn_to_nid(pfn);
3356 if (nid >= 0)
3357 return nid;
3358 /* just returns 0 */
3359 return 0;
3360 }
3361
3362 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3363 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3364 {
3365 int nid;
3366
3367 nid = __early_pfn_to_nid(pfn);
3368 if (nid >= 0 && nid != node)
3369 return false;
3370 return true;
3371 }
3372 #endif
3373
3374 /* Basic iterator support to walk early_node_map[] */
3375 #define for_each_active_range_index_in_nid(i, nid) \
3376 for (i = first_active_region_index_in_nid(nid); i != -1; \
3377 i = next_active_region_index_in_nid(i, nid))
3378
3379 /**
3380 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3381 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3382 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3383 *
3384 * If an architecture guarantees that all ranges registered with
3385 * add_active_ranges() contain no holes and may be freed, this
3386 * this function may be used instead of calling free_bootmem() manually.
3387 */
3388 void __init free_bootmem_with_active_regions(int nid,
3389 unsigned long max_low_pfn)
3390 {
3391 int i;
3392
3393 for_each_active_range_index_in_nid(i, nid) {
3394 unsigned long size_pages = 0;
3395 unsigned long end_pfn = early_node_map[i].end_pfn;
3396
3397 if (early_node_map[i].start_pfn >= max_low_pfn)
3398 continue;
3399
3400 if (end_pfn > max_low_pfn)
3401 end_pfn = max_low_pfn;
3402
3403 size_pages = end_pfn - early_node_map[i].start_pfn;
3404 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3405 PFN_PHYS(early_node_map[i].start_pfn),
3406 size_pages << PAGE_SHIFT);
3407 }
3408 }
3409
3410 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3411 {
3412 int i;
3413 int ret;
3414
3415 for_each_active_range_index_in_nid(i, nid) {
3416 ret = work_fn(early_node_map[i].start_pfn,
3417 early_node_map[i].end_pfn, data);
3418 if (ret)
3419 break;
3420 }
3421 }
3422 /**
3423 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3424 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3425 *
3426 * If an architecture guarantees that all ranges registered with
3427 * add_active_ranges() contain no holes and may be freed, this
3428 * function may be used instead of calling memory_present() manually.
3429 */
3430 void __init sparse_memory_present_with_active_regions(int nid)
3431 {
3432 int i;
3433
3434 for_each_active_range_index_in_nid(i, nid)
3435 memory_present(early_node_map[i].nid,
3436 early_node_map[i].start_pfn,
3437 early_node_map[i].end_pfn);
3438 }
3439
3440 /**
3441 * get_pfn_range_for_nid - Return the start and end page frames for a node
3442 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3443 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3444 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3445 *
3446 * It returns the start and end page frame of a node based on information
3447 * provided by an arch calling add_active_range(). If called for a node
3448 * with no available memory, a warning is printed and the start and end
3449 * PFNs will be 0.
3450 */
3451 void __meminit get_pfn_range_for_nid(unsigned int nid,
3452 unsigned long *start_pfn, unsigned long *end_pfn)
3453 {
3454 int i;
3455 *start_pfn = -1UL;
3456 *end_pfn = 0;
3457
3458 for_each_active_range_index_in_nid(i, nid) {
3459 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3460 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3461 }
3462
3463 if (*start_pfn == -1UL)
3464 *start_pfn = 0;
3465 }
3466
3467 /*
3468 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3469 * assumption is made that zones within a node are ordered in monotonic
3470 * increasing memory addresses so that the "highest" populated zone is used
3471 */
3472 static void __init find_usable_zone_for_movable(void)
3473 {
3474 int zone_index;
3475 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3476 if (zone_index == ZONE_MOVABLE)
3477 continue;
3478
3479 if (arch_zone_highest_possible_pfn[zone_index] >
3480 arch_zone_lowest_possible_pfn[zone_index])
3481 break;
3482 }
3483
3484 VM_BUG_ON(zone_index == -1);
3485 movable_zone = zone_index;
3486 }
3487
3488 /*
3489 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3490 * because it is sized independant of architecture. Unlike the other zones,
3491 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3492 * in each node depending on the size of each node and how evenly kernelcore
3493 * is distributed. This helper function adjusts the zone ranges
3494 * provided by the architecture for a given node by using the end of the
3495 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3496 * zones within a node are in order of monotonic increases memory addresses
3497 */
3498 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3499 unsigned long zone_type,
3500 unsigned long node_start_pfn,
3501 unsigned long node_end_pfn,
3502 unsigned long *zone_start_pfn,
3503 unsigned long *zone_end_pfn)
3504 {
3505 /* Only adjust if ZONE_MOVABLE is on this node */
3506 if (zone_movable_pfn[nid]) {
3507 /* Size ZONE_MOVABLE */
3508 if (zone_type == ZONE_MOVABLE) {
3509 *zone_start_pfn = zone_movable_pfn[nid];
3510 *zone_end_pfn = min(node_end_pfn,
3511 arch_zone_highest_possible_pfn[movable_zone]);
3512
3513 /* Adjust for ZONE_MOVABLE starting within this range */
3514 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3515 *zone_end_pfn > zone_movable_pfn[nid]) {
3516 *zone_end_pfn = zone_movable_pfn[nid];
3517
3518 /* Check if this whole range is within ZONE_MOVABLE */
3519 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3520 *zone_start_pfn = *zone_end_pfn;
3521 }
3522 }
3523
3524 /*
3525 * Return the number of pages a zone spans in a node, including holes
3526 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3527 */
3528 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3529 unsigned long zone_type,
3530 unsigned long *ignored)
3531 {
3532 unsigned long node_start_pfn, node_end_pfn;
3533 unsigned long zone_start_pfn, zone_end_pfn;
3534
3535 /* Get the start and end of the node and zone */
3536 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3537 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3538 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3539 adjust_zone_range_for_zone_movable(nid, zone_type,
3540 node_start_pfn, node_end_pfn,
3541 &zone_start_pfn, &zone_end_pfn);
3542
3543 /* Check that this node has pages within the zone's required range */
3544 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3545 return 0;
3546
3547 /* Move the zone boundaries inside the node if necessary */
3548 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3549 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3550
3551 /* Return the spanned pages */
3552 return zone_end_pfn - zone_start_pfn;
3553 }
3554
3555 /*
3556 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3557 * then all holes in the requested range will be accounted for.
3558 */
3559 static unsigned long __meminit __absent_pages_in_range(int nid,
3560 unsigned long range_start_pfn,
3561 unsigned long range_end_pfn)
3562 {
3563 int i = 0;
3564 unsigned long prev_end_pfn = 0, hole_pages = 0;
3565 unsigned long start_pfn;
3566
3567 /* Find the end_pfn of the first active range of pfns in the node */
3568 i = first_active_region_index_in_nid(nid);
3569 if (i == -1)
3570 return 0;
3571
3572 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3573
3574 /* Account for ranges before physical memory on this node */
3575 if (early_node_map[i].start_pfn > range_start_pfn)
3576 hole_pages = prev_end_pfn - range_start_pfn;
3577
3578 /* Find all holes for the zone within the node */
3579 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3580
3581 /* No need to continue if prev_end_pfn is outside the zone */
3582 if (prev_end_pfn >= range_end_pfn)
3583 break;
3584
3585 /* Make sure the end of the zone is not within the hole */
3586 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3587 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3588
3589 /* Update the hole size cound and move on */
3590 if (start_pfn > range_start_pfn) {
3591 BUG_ON(prev_end_pfn > start_pfn);
3592 hole_pages += start_pfn - prev_end_pfn;
3593 }
3594 prev_end_pfn = early_node_map[i].end_pfn;
3595 }
3596
3597 /* Account for ranges past physical memory on this node */
3598 if (range_end_pfn > prev_end_pfn)
3599 hole_pages += range_end_pfn -
3600 max(range_start_pfn, prev_end_pfn);
3601
3602 return hole_pages;
3603 }
3604
3605 /**
3606 * absent_pages_in_range - Return number of page frames in holes within a range
3607 * @start_pfn: The start PFN to start searching for holes
3608 * @end_pfn: The end PFN to stop searching for holes
3609 *
3610 * It returns the number of pages frames in memory holes within a range.
3611 */
3612 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3613 unsigned long end_pfn)
3614 {
3615 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3616 }
3617
3618 /* Return the number of page frames in holes in a zone on a node */
3619 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3620 unsigned long zone_type,
3621 unsigned long *ignored)
3622 {
3623 unsigned long node_start_pfn, node_end_pfn;
3624 unsigned long zone_start_pfn, zone_end_pfn;
3625
3626 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3627 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3628 node_start_pfn);
3629 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3630 node_end_pfn);
3631
3632 adjust_zone_range_for_zone_movable(nid, zone_type,
3633 node_start_pfn, node_end_pfn,
3634 &zone_start_pfn, &zone_end_pfn);
3635 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3636 }
3637
3638 #else
3639 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3640 unsigned long zone_type,
3641 unsigned long *zones_size)
3642 {
3643 return zones_size[zone_type];
3644 }
3645
3646 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3647 unsigned long zone_type,
3648 unsigned long *zholes_size)
3649 {
3650 if (!zholes_size)
3651 return 0;
3652
3653 return zholes_size[zone_type];
3654 }
3655
3656 #endif
3657
3658 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3659 unsigned long *zones_size, unsigned long *zholes_size)
3660 {
3661 unsigned long realtotalpages, totalpages = 0;
3662 enum zone_type i;
3663
3664 for (i = 0; i < MAX_NR_ZONES; i++)
3665 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3666 zones_size);
3667 pgdat->node_spanned_pages = totalpages;
3668
3669 realtotalpages = totalpages;
3670 for (i = 0; i < MAX_NR_ZONES; i++)
3671 realtotalpages -=
3672 zone_absent_pages_in_node(pgdat->node_id, i,
3673 zholes_size);
3674 pgdat->node_present_pages = realtotalpages;
3675 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3676 realtotalpages);
3677 }
3678
3679 #ifndef CONFIG_SPARSEMEM
3680 /*
3681 * Calculate the size of the zone->blockflags rounded to an unsigned long
3682 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3683 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3684 * round what is now in bits to nearest long in bits, then return it in
3685 * bytes.
3686 */
3687 static unsigned long __init usemap_size(unsigned long zonesize)
3688 {
3689 unsigned long usemapsize;
3690
3691 usemapsize = roundup(zonesize, pageblock_nr_pages);
3692 usemapsize = usemapsize >> pageblock_order;
3693 usemapsize *= NR_PAGEBLOCK_BITS;
3694 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3695
3696 return usemapsize / 8;
3697 }
3698
3699 static void __init setup_usemap(struct pglist_data *pgdat,
3700 struct zone *zone, unsigned long zonesize)
3701 {
3702 unsigned long usemapsize = usemap_size(zonesize);
3703 zone->pageblock_flags = NULL;
3704 if (usemapsize)
3705 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3706 }
3707 #else
3708 static void inline setup_usemap(struct pglist_data *pgdat,
3709 struct zone *zone, unsigned long zonesize) {}
3710 #endif /* CONFIG_SPARSEMEM */
3711
3712 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3713
3714 /* Return a sensible default order for the pageblock size. */
3715 static inline int pageblock_default_order(void)
3716 {
3717 if (HPAGE_SHIFT > PAGE_SHIFT)
3718 return HUGETLB_PAGE_ORDER;
3719
3720 return MAX_ORDER-1;
3721 }
3722
3723 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3724 static inline void __init set_pageblock_order(unsigned int order)
3725 {
3726 /* Check that pageblock_nr_pages has not already been setup */
3727 if (pageblock_order)
3728 return;
3729
3730 /*
3731 * Assume the largest contiguous order of interest is a huge page.
3732 * This value may be variable depending on boot parameters on IA64
3733 */
3734 pageblock_order = order;
3735 }
3736 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3737
3738 /*
3739 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3740 * and pageblock_default_order() are unused as pageblock_order is set
3741 * at compile-time. See include/linux/pageblock-flags.h for the values of
3742 * pageblock_order based on the kernel config
3743 */
3744 static inline int pageblock_default_order(unsigned int order)
3745 {
3746 return MAX_ORDER-1;
3747 }
3748 #define set_pageblock_order(x) do {} while (0)
3749
3750 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3751
3752 /*
3753 * Set up the zone data structures:
3754 * - mark all pages reserved
3755 * - mark all memory queues empty
3756 * - clear the memory bitmaps
3757 */
3758 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3759 unsigned long *zones_size, unsigned long *zholes_size)
3760 {
3761 enum zone_type j;
3762 int nid = pgdat->node_id;
3763 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3764 int ret;
3765
3766 pgdat_resize_init(pgdat);
3767 pgdat->nr_zones = 0;
3768 init_waitqueue_head(&pgdat->kswapd_wait);
3769 pgdat->kswapd_max_order = 0;
3770 pgdat_page_cgroup_init(pgdat);
3771
3772 for (j = 0; j < MAX_NR_ZONES; j++) {
3773 struct zone *zone = pgdat->node_zones + j;
3774 unsigned long size, realsize, memmap_pages;
3775 enum lru_list l;
3776
3777 size = zone_spanned_pages_in_node(nid, j, zones_size);
3778 realsize = size - zone_absent_pages_in_node(nid, j,
3779 zholes_size);
3780
3781 /*
3782 * Adjust realsize so that it accounts for how much memory
3783 * is used by this zone for memmap. This affects the watermark
3784 * and per-cpu initialisations
3785 */
3786 memmap_pages =
3787 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3788 if (realsize >= memmap_pages) {
3789 realsize -= memmap_pages;
3790 if (memmap_pages)
3791 printk(KERN_DEBUG
3792 " %s zone: %lu pages used for memmap\n",
3793 zone_names[j], memmap_pages);
3794 } else
3795 printk(KERN_WARNING
3796 " %s zone: %lu pages exceeds realsize %lu\n",
3797 zone_names[j], memmap_pages, realsize);
3798
3799 /* Account for reserved pages */
3800 if (j == 0 && realsize > dma_reserve) {
3801 realsize -= dma_reserve;
3802 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3803 zone_names[0], dma_reserve);
3804 }
3805
3806 if (!is_highmem_idx(j))
3807 nr_kernel_pages += realsize;
3808 nr_all_pages += realsize;
3809
3810 zone->spanned_pages = size;
3811 zone->present_pages = realsize;
3812 #ifdef CONFIG_NUMA
3813 zone->node = nid;
3814 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3815 / 100;
3816 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3817 #endif
3818 zone->name = zone_names[j];
3819 spin_lock_init(&zone->lock);
3820 spin_lock_init(&zone->lru_lock);
3821 zone_seqlock_init(zone);
3822 zone->zone_pgdat = pgdat;
3823
3824 zone->prev_priority = DEF_PRIORITY;
3825
3826 zone_pcp_init(zone);
3827 for_each_lru(l) {
3828 INIT_LIST_HEAD(&zone->lru[l].list);
3829 zone->reclaim_stat.nr_saved_scan[l] = 0;
3830 }
3831 zone->reclaim_stat.recent_rotated[0] = 0;
3832 zone->reclaim_stat.recent_rotated[1] = 0;
3833 zone->reclaim_stat.recent_scanned[0] = 0;
3834 zone->reclaim_stat.recent_scanned[1] = 0;
3835 zap_zone_vm_stats(zone);
3836 zone->flags = 0;
3837 if (!size)
3838 continue;
3839
3840 set_pageblock_order(pageblock_default_order());
3841 setup_usemap(pgdat, zone, size);
3842 ret = init_currently_empty_zone(zone, zone_start_pfn,
3843 size, MEMMAP_EARLY);
3844 BUG_ON(ret);
3845 memmap_init(size, nid, j, zone_start_pfn);
3846 zone_start_pfn += size;
3847 }
3848 }
3849
3850 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3851 {
3852 /* Skip empty nodes */
3853 if (!pgdat->node_spanned_pages)
3854 return;
3855
3856 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3857 /* ia64 gets its own node_mem_map, before this, without bootmem */
3858 if (!pgdat->node_mem_map) {
3859 unsigned long size, start, end;
3860 struct page *map;
3861
3862 /*
3863 * The zone's endpoints aren't required to be MAX_ORDER
3864 * aligned but the node_mem_map endpoints must be in order
3865 * for the buddy allocator to function correctly.
3866 */
3867 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3868 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3869 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3870 size = (end - start) * sizeof(struct page);
3871 map = alloc_remap(pgdat->node_id, size);
3872 if (!map)
3873 map = alloc_bootmem_node(pgdat, size);
3874 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3875 }
3876 #ifndef CONFIG_NEED_MULTIPLE_NODES
3877 /*
3878 * With no DISCONTIG, the global mem_map is just set as node 0's
3879 */
3880 if (pgdat == NODE_DATA(0)) {
3881 mem_map = NODE_DATA(0)->node_mem_map;
3882 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3883 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3884 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3885 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3886 }
3887 #endif
3888 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3889 }
3890
3891 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3892 unsigned long node_start_pfn, unsigned long *zholes_size)
3893 {
3894 pg_data_t *pgdat = NODE_DATA(nid);
3895
3896 pgdat->node_id = nid;
3897 pgdat->node_start_pfn = node_start_pfn;
3898 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3899
3900 alloc_node_mem_map(pgdat);
3901 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3902 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3903 nid, (unsigned long)pgdat,
3904 (unsigned long)pgdat->node_mem_map);
3905 #endif
3906
3907 free_area_init_core(pgdat, zones_size, zholes_size);
3908 }
3909
3910 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3911
3912 #if MAX_NUMNODES > 1
3913 /*
3914 * Figure out the number of possible node ids.
3915 */
3916 static void __init setup_nr_node_ids(void)
3917 {
3918 unsigned int node;
3919 unsigned int highest = 0;
3920
3921 for_each_node_mask(node, node_possible_map)
3922 highest = node;
3923 nr_node_ids = highest + 1;
3924 }
3925 #else
3926 static inline void setup_nr_node_ids(void)
3927 {
3928 }
3929 #endif
3930
3931 /**
3932 * add_active_range - Register a range of PFNs backed by physical memory
3933 * @nid: The node ID the range resides on
3934 * @start_pfn: The start PFN of the available physical memory
3935 * @end_pfn: The end PFN of the available physical memory
3936 *
3937 * These ranges are stored in an early_node_map[] and later used by
3938 * free_area_init_nodes() to calculate zone sizes and holes. If the
3939 * range spans a memory hole, it is up to the architecture to ensure
3940 * the memory is not freed by the bootmem allocator. If possible
3941 * the range being registered will be merged with existing ranges.
3942 */
3943 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3944 unsigned long end_pfn)
3945 {
3946 int i;
3947
3948 mminit_dprintk(MMINIT_TRACE, "memory_register",
3949 "Entering add_active_range(%d, %#lx, %#lx) "
3950 "%d entries of %d used\n",
3951 nid, start_pfn, end_pfn,
3952 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3953
3954 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3955
3956 /* Merge with existing active regions if possible */
3957 for (i = 0; i < nr_nodemap_entries; i++) {
3958 if (early_node_map[i].nid != nid)
3959 continue;
3960
3961 /* Skip if an existing region covers this new one */
3962 if (start_pfn >= early_node_map[i].start_pfn &&
3963 end_pfn <= early_node_map[i].end_pfn)
3964 return;
3965
3966 /* Merge forward if suitable */
3967 if (start_pfn <= early_node_map[i].end_pfn &&
3968 end_pfn > early_node_map[i].end_pfn) {
3969 early_node_map[i].end_pfn = end_pfn;
3970 return;
3971 }
3972
3973 /* Merge backward if suitable */
3974 if (start_pfn < early_node_map[i].end_pfn &&
3975 end_pfn >= early_node_map[i].start_pfn) {
3976 early_node_map[i].start_pfn = start_pfn;
3977 return;
3978 }
3979 }
3980
3981 /* Check that early_node_map is large enough */
3982 if (i >= MAX_ACTIVE_REGIONS) {
3983 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3984 MAX_ACTIVE_REGIONS);
3985 return;
3986 }
3987
3988 early_node_map[i].nid = nid;
3989 early_node_map[i].start_pfn = start_pfn;
3990 early_node_map[i].end_pfn = end_pfn;
3991 nr_nodemap_entries = i + 1;
3992 }
3993
3994 /**
3995 * remove_active_range - Shrink an existing registered range of PFNs
3996 * @nid: The node id the range is on that should be shrunk
3997 * @start_pfn: The new PFN of the range
3998 * @end_pfn: The new PFN of the range
3999 *
4000 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4001 * The map is kept near the end physical page range that has already been
4002 * registered. This function allows an arch to shrink an existing registered
4003 * range.
4004 */
4005 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4006 unsigned long end_pfn)
4007 {
4008 int i, j;
4009 int removed = 0;
4010
4011 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4012 nid, start_pfn, end_pfn);
4013
4014 /* Find the old active region end and shrink */
4015 for_each_active_range_index_in_nid(i, nid) {
4016 if (early_node_map[i].start_pfn >= start_pfn &&
4017 early_node_map[i].end_pfn <= end_pfn) {
4018 /* clear it */
4019 early_node_map[i].start_pfn = 0;
4020 early_node_map[i].end_pfn = 0;
4021 removed = 1;
4022 continue;
4023 }
4024 if (early_node_map[i].start_pfn < start_pfn &&
4025 early_node_map[i].end_pfn > start_pfn) {
4026 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4027 early_node_map[i].end_pfn = start_pfn;
4028 if (temp_end_pfn > end_pfn)
4029 add_active_range(nid, end_pfn, temp_end_pfn);
4030 continue;
4031 }
4032 if (early_node_map[i].start_pfn >= start_pfn &&
4033 early_node_map[i].end_pfn > end_pfn &&
4034 early_node_map[i].start_pfn < end_pfn) {
4035 early_node_map[i].start_pfn = end_pfn;
4036 continue;
4037 }
4038 }
4039
4040 if (!removed)
4041 return;
4042
4043 /* remove the blank ones */
4044 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4045 if (early_node_map[i].nid != nid)
4046 continue;
4047 if (early_node_map[i].end_pfn)
4048 continue;
4049 /* we found it, get rid of it */
4050 for (j = i; j < nr_nodemap_entries - 1; j++)
4051 memcpy(&early_node_map[j], &early_node_map[j+1],
4052 sizeof(early_node_map[j]));
4053 j = nr_nodemap_entries - 1;
4054 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4055 nr_nodemap_entries--;
4056 }
4057 }
4058
4059 /**
4060 * remove_all_active_ranges - Remove all currently registered regions
4061 *
4062 * During discovery, it may be found that a table like SRAT is invalid
4063 * and an alternative discovery method must be used. This function removes
4064 * all currently registered regions.
4065 */
4066 void __init remove_all_active_ranges(void)
4067 {
4068 memset(early_node_map, 0, sizeof(early_node_map));
4069 nr_nodemap_entries = 0;
4070 }
4071
4072 /* Compare two active node_active_regions */
4073 static int __init cmp_node_active_region(const void *a, const void *b)
4074 {
4075 struct node_active_region *arange = (struct node_active_region *)a;
4076 struct node_active_region *brange = (struct node_active_region *)b;
4077
4078 /* Done this way to avoid overflows */
4079 if (arange->start_pfn > brange->start_pfn)
4080 return 1;
4081 if (arange->start_pfn < brange->start_pfn)
4082 return -1;
4083
4084 return 0;
4085 }
4086
4087 /* sort the node_map by start_pfn */
4088 static void __init sort_node_map(void)
4089 {
4090 sort(early_node_map, (size_t)nr_nodemap_entries,
4091 sizeof(struct node_active_region),
4092 cmp_node_active_region, NULL);
4093 }
4094
4095 /* Find the lowest pfn for a node */
4096 static unsigned long __init find_min_pfn_for_node(int nid)
4097 {
4098 int i;
4099 unsigned long min_pfn = ULONG_MAX;
4100
4101 /* Assuming a sorted map, the first range found has the starting pfn */
4102 for_each_active_range_index_in_nid(i, nid)
4103 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4104
4105 if (min_pfn == ULONG_MAX) {
4106 printk(KERN_WARNING
4107 "Could not find start_pfn for node %d\n", nid);
4108 return 0;
4109 }
4110
4111 return min_pfn;
4112 }
4113
4114 /**
4115 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4116 *
4117 * It returns the minimum PFN based on information provided via
4118 * add_active_range().
4119 */
4120 unsigned long __init find_min_pfn_with_active_regions(void)
4121 {
4122 return find_min_pfn_for_node(MAX_NUMNODES);
4123 }
4124
4125 /*
4126 * early_calculate_totalpages()
4127 * Sum pages in active regions for movable zone.
4128 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4129 */
4130 static unsigned long __init early_calculate_totalpages(void)
4131 {
4132 int i;
4133 unsigned long totalpages = 0;
4134
4135 for (i = 0; i < nr_nodemap_entries; i++) {
4136 unsigned long pages = early_node_map[i].end_pfn -
4137 early_node_map[i].start_pfn;
4138 totalpages += pages;
4139 if (pages)
4140 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4141 }
4142 return totalpages;
4143 }
4144
4145 /*
4146 * Find the PFN the Movable zone begins in each node. Kernel memory
4147 * is spread evenly between nodes as long as the nodes have enough
4148 * memory. When they don't, some nodes will have more kernelcore than
4149 * others
4150 */
4151 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4152 {
4153 int i, nid;
4154 unsigned long usable_startpfn;
4155 unsigned long kernelcore_node, kernelcore_remaining;
4156 /* save the state before borrow the nodemask */
4157 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4158 unsigned long totalpages = early_calculate_totalpages();
4159 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4160
4161 /*
4162 * If movablecore was specified, calculate what size of
4163 * kernelcore that corresponds so that memory usable for
4164 * any allocation type is evenly spread. If both kernelcore
4165 * and movablecore are specified, then the value of kernelcore
4166 * will be used for required_kernelcore if it's greater than
4167 * what movablecore would have allowed.
4168 */
4169 if (required_movablecore) {
4170 unsigned long corepages;
4171
4172 /*
4173 * Round-up so that ZONE_MOVABLE is at least as large as what
4174 * was requested by the user
4175 */
4176 required_movablecore =
4177 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4178 corepages = totalpages - required_movablecore;
4179
4180 required_kernelcore = max(required_kernelcore, corepages);
4181 }
4182
4183 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4184 if (!required_kernelcore)
4185 goto out;
4186
4187 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4188 find_usable_zone_for_movable();
4189 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4190
4191 restart:
4192 /* Spread kernelcore memory as evenly as possible throughout nodes */
4193 kernelcore_node = required_kernelcore / usable_nodes;
4194 for_each_node_state(nid, N_HIGH_MEMORY) {
4195 /*
4196 * Recalculate kernelcore_node if the division per node
4197 * now exceeds what is necessary to satisfy the requested
4198 * amount of memory for the kernel
4199 */
4200 if (required_kernelcore < kernelcore_node)
4201 kernelcore_node = required_kernelcore / usable_nodes;
4202
4203 /*
4204 * As the map is walked, we track how much memory is usable
4205 * by the kernel using kernelcore_remaining. When it is
4206 * 0, the rest of the node is usable by ZONE_MOVABLE
4207 */
4208 kernelcore_remaining = kernelcore_node;
4209
4210 /* Go through each range of PFNs within this node */
4211 for_each_active_range_index_in_nid(i, nid) {
4212 unsigned long start_pfn, end_pfn;
4213 unsigned long size_pages;
4214
4215 start_pfn = max(early_node_map[i].start_pfn,
4216 zone_movable_pfn[nid]);
4217 end_pfn = early_node_map[i].end_pfn;
4218 if (start_pfn >= end_pfn)
4219 continue;
4220
4221 /* Account for what is only usable for kernelcore */
4222 if (start_pfn < usable_startpfn) {
4223 unsigned long kernel_pages;
4224 kernel_pages = min(end_pfn, usable_startpfn)
4225 - start_pfn;
4226
4227 kernelcore_remaining -= min(kernel_pages,
4228 kernelcore_remaining);
4229 required_kernelcore -= min(kernel_pages,
4230 required_kernelcore);
4231
4232 /* Continue if range is now fully accounted */
4233 if (end_pfn <= usable_startpfn) {
4234
4235 /*
4236 * Push zone_movable_pfn to the end so
4237 * that if we have to rebalance
4238 * kernelcore across nodes, we will
4239 * not double account here
4240 */
4241 zone_movable_pfn[nid] = end_pfn;
4242 continue;
4243 }
4244 start_pfn = usable_startpfn;
4245 }
4246
4247 /*
4248 * The usable PFN range for ZONE_MOVABLE is from
4249 * start_pfn->end_pfn. Calculate size_pages as the
4250 * number of pages used as kernelcore
4251 */
4252 size_pages = end_pfn - start_pfn;
4253 if (size_pages > kernelcore_remaining)
4254 size_pages = kernelcore_remaining;
4255 zone_movable_pfn[nid] = start_pfn + size_pages;
4256
4257 /*
4258 * Some kernelcore has been met, update counts and
4259 * break if the kernelcore for this node has been
4260 * satisified
4261 */
4262 required_kernelcore -= min(required_kernelcore,
4263 size_pages);
4264 kernelcore_remaining -= size_pages;
4265 if (!kernelcore_remaining)
4266 break;
4267 }
4268 }
4269
4270 /*
4271 * If there is still required_kernelcore, we do another pass with one
4272 * less node in the count. This will push zone_movable_pfn[nid] further
4273 * along on the nodes that still have memory until kernelcore is
4274 * satisified
4275 */
4276 usable_nodes--;
4277 if (usable_nodes && required_kernelcore > usable_nodes)
4278 goto restart;
4279
4280 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4281 for (nid = 0; nid < MAX_NUMNODES; nid++)
4282 zone_movable_pfn[nid] =
4283 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4284
4285 out:
4286 /* restore the node_state */
4287 node_states[N_HIGH_MEMORY] = saved_node_state;
4288 }
4289
4290 /* Any regular memory on that node ? */
4291 static void check_for_regular_memory(pg_data_t *pgdat)
4292 {
4293 #ifdef CONFIG_HIGHMEM
4294 enum zone_type zone_type;
4295
4296 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4297 struct zone *zone = &pgdat->node_zones[zone_type];
4298 if (zone->present_pages)
4299 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4300 }
4301 #endif
4302 }
4303
4304 /**
4305 * free_area_init_nodes - Initialise all pg_data_t and zone data
4306 * @max_zone_pfn: an array of max PFNs for each zone
4307 *
4308 * This will call free_area_init_node() for each active node in the system.
4309 * Using the page ranges provided by add_active_range(), the size of each
4310 * zone in each node and their holes is calculated. If the maximum PFN
4311 * between two adjacent zones match, it is assumed that the zone is empty.
4312 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4313 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4314 * starts where the previous one ended. For example, ZONE_DMA32 starts
4315 * at arch_max_dma_pfn.
4316 */
4317 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4318 {
4319 unsigned long nid;
4320 int i;
4321
4322 /* Sort early_node_map as initialisation assumes it is sorted */
4323 sort_node_map();
4324
4325 /* Record where the zone boundaries are */
4326 memset(arch_zone_lowest_possible_pfn, 0,
4327 sizeof(arch_zone_lowest_possible_pfn));
4328 memset(arch_zone_highest_possible_pfn, 0,
4329 sizeof(arch_zone_highest_possible_pfn));
4330 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4331 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4332 for (i = 1; i < MAX_NR_ZONES; i++) {
4333 if (i == ZONE_MOVABLE)
4334 continue;
4335 arch_zone_lowest_possible_pfn[i] =
4336 arch_zone_highest_possible_pfn[i-1];
4337 arch_zone_highest_possible_pfn[i] =
4338 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4339 }
4340 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4341 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4342
4343 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4344 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4345 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4346
4347 /* Print out the zone ranges */
4348 printk("Zone PFN ranges:\n");
4349 for (i = 0; i < MAX_NR_ZONES; i++) {
4350 if (i == ZONE_MOVABLE)
4351 continue;
4352 printk(" %-8s %0#10lx -> %0#10lx\n",
4353 zone_names[i],
4354 arch_zone_lowest_possible_pfn[i],
4355 arch_zone_highest_possible_pfn[i]);
4356 }
4357
4358 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4359 printk("Movable zone start PFN for each node\n");
4360 for (i = 0; i < MAX_NUMNODES; i++) {
4361 if (zone_movable_pfn[i])
4362 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4363 }
4364
4365 /* Print out the early_node_map[] */
4366 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4367 for (i = 0; i < nr_nodemap_entries; i++)
4368 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4369 early_node_map[i].start_pfn,
4370 early_node_map[i].end_pfn);
4371
4372 /* Initialise every node */
4373 mminit_verify_pageflags_layout();
4374 setup_nr_node_ids();
4375 for_each_online_node(nid) {
4376 pg_data_t *pgdat = NODE_DATA(nid);
4377 free_area_init_node(nid, NULL,
4378 find_min_pfn_for_node(nid), NULL);
4379
4380 /* Any memory on that node */
4381 if (pgdat->node_present_pages)
4382 node_set_state(nid, N_HIGH_MEMORY);
4383 check_for_regular_memory(pgdat);
4384 }
4385 }
4386
4387 static int __init cmdline_parse_core(char *p, unsigned long *core)
4388 {
4389 unsigned long long coremem;
4390 if (!p)
4391 return -EINVAL;
4392
4393 coremem = memparse(p, &p);
4394 *core = coremem >> PAGE_SHIFT;
4395
4396 /* Paranoid check that UL is enough for the coremem value */
4397 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4398
4399 return 0;
4400 }
4401
4402 /*
4403 * kernelcore=size sets the amount of memory for use for allocations that
4404 * cannot be reclaimed or migrated.
4405 */
4406 static int __init cmdline_parse_kernelcore(char *p)
4407 {
4408 return cmdline_parse_core(p, &required_kernelcore);
4409 }
4410
4411 /*
4412 * movablecore=size sets the amount of memory for use for allocations that
4413 * can be reclaimed or migrated.
4414 */
4415 static int __init cmdline_parse_movablecore(char *p)
4416 {
4417 return cmdline_parse_core(p, &required_movablecore);
4418 }
4419
4420 early_param("kernelcore", cmdline_parse_kernelcore);
4421 early_param("movablecore", cmdline_parse_movablecore);
4422
4423 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4424
4425 /**
4426 * set_dma_reserve - set the specified number of pages reserved in the first zone
4427 * @new_dma_reserve: The number of pages to mark reserved
4428 *
4429 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4430 * In the DMA zone, a significant percentage may be consumed by kernel image
4431 * and other unfreeable allocations which can skew the watermarks badly. This
4432 * function may optionally be used to account for unfreeable pages in the
4433 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4434 * smaller per-cpu batchsize.
4435 */
4436 void __init set_dma_reserve(unsigned long new_dma_reserve)
4437 {
4438 dma_reserve = new_dma_reserve;
4439 }
4440
4441 #ifndef CONFIG_NEED_MULTIPLE_NODES
4442 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4443 EXPORT_SYMBOL(contig_page_data);
4444 #endif
4445
4446 void __init free_area_init(unsigned long *zones_size)
4447 {
4448 free_area_init_node(0, zones_size,
4449 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4450 }
4451
4452 static int page_alloc_cpu_notify(struct notifier_block *self,
4453 unsigned long action, void *hcpu)
4454 {
4455 int cpu = (unsigned long)hcpu;
4456
4457 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4458 drain_pages(cpu);
4459
4460 /*
4461 * Spill the event counters of the dead processor
4462 * into the current processors event counters.
4463 * This artificially elevates the count of the current
4464 * processor.
4465 */
4466 vm_events_fold_cpu(cpu);
4467
4468 /*
4469 * Zero the differential counters of the dead processor
4470 * so that the vm statistics are consistent.
4471 *
4472 * This is only okay since the processor is dead and cannot
4473 * race with what we are doing.
4474 */
4475 refresh_cpu_vm_stats(cpu);
4476 }
4477 return NOTIFY_OK;
4478 }
4479
4480 void __init page_alloc_init(void)
4481 {
4482 hotcpu_notifier(page_alloc_cpu_notify, 0);
4483 }
4484
4485 /*
4486 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4487 * or min_free_kbytes changes.
4488 */
4489 static void calculate_totalreserve_pages(void)
4490 {
4491 struct pglist_data *pgdat;
4492 unsigned long reserve_pages = 0;
4493 enum zone_type i, j;
4494
4495 for_each_online_pgdat(pgdat) {
4496 for (i = 0; i < MAX_NR_ZONES; i++) {
4497 struct zone *zone = pgdat->node_zones + i;
4498 unsigned long max = 0;
4499
4500 /* Find valid and maximum lowmem_reserve in the zone */
4501 for (j = i; j < MAX_NR_ZONES; j++) {
4502 if (zone->lowmem_reserve[j] > max)
4503 max = zone->lowmem_reserve[j];
4504 }
4505
4506 /* we treat the high watermark as reserved pages. */
4507 max += high_wmark_pages(zone);
4508
4509 if (max > zone->present_pages)
4510 max = zone->present_pages;
4511 reserve_pages += max;
4512 }
4513 }
4514 totalreserve_pages = reserve_pages;
4515 }
4516
4517 /*
4518 * setup_per_zone_lowmem_reserve - called whenever
4519 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4520 * has a correct pages reserved value, so an adequate number of
4521 * pages are left in the zone after a successful __alloc_pages().
4522 */
4523 static void setup_per_zone_lowmem_reserve(void)
4524 {
4525 struct pglist_data *pgdat;
4526 enum zone_type j, idx;
4527
4528 for_each_online_pgdat(pgdat) {
4529 for (j = 0; j < MAX_NR_ZONES; j++) {
4530 struct zone *zone = pgdat->node_zones + j;
4531 unsigned long present_pages = zone->present_pages;
4532
4533 zone->lowmem_reserve[j] = 0;
4534
4535 idx = j;
4536 while (idx) {
4537 struct zone *lower_zone;
4538
4539 idx--;
4540
4541 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4542 sysctl_lowmem_reserve_ratio[idx] = 1;
4543
4544 lower_zone = pgdat->node_zones + idx;
4545 lower_zone->lowmem_reserve[j] = present_pages /
4546 sysctl_lowmem_reserve_ratio[idx];
4547 present_pages += lower_zone->present_pages;
4548 }
4549 }
4550 }
4551
4552 /* update totalreserve_pages */
4553 calculate_totalreserve_pages();
4554 }
4555
4556 /**
4557 * setup_per_zone_wmarks - called when min_free_kbytes changes
4558 * or when memory is hot-{added|removed}
4559 *
4560 * Ensures that the watermark[min,low,high] values for each zone are set
4561 * correctly with respect to min_free_kbytes.
4562 */
4563 void setup_per_zone_wmarks(void)
4564 {
4565 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4566 unsigned long lowmem_pages = 0;
4567 struct zone *zone;
4568 unsigned long flags;
4569
4570 /* Calculate total number of !ZONE_HIGHMEM pages */
4571 for_each_zone(zone) {
4572 if (!is_highmem(zone))
4573 lowmem_pages += zone->present_pages;
4574 }
4575
4576 for_each_zone(zone) {
4577 u64 tmp;
4578
4579 spin_lock_irqsave(&zone->lock, flags);
4580 tmp = (u64)pages_min * zone->present_pages;
4581 do_div(tmp, lowmem_pages);
4582 if (is_highmem(zone)) {
4583 /*
4584 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4585 * need highmem pages, so cap pages_min to a small
4586 * value here.
4587 *
4588 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4589 * deltas controls asynch page reclaim, and so should
4590 * not be capped for highmem.
4591 */
4592 int min_pages;
4593
4594 min_pages = zone->present_pages / 1024;
4595 if (min_pages < SWAP_CLUSTER_MAX)
4596 min_pages = SWAP_CLUSTER_MAX;
4597 if (min_pages > 128)
4598 min_pages = 128;
4599 zone->watermark[WMARK_MIN] = min_pages;
4600 } else {
4601 /*
4602 * If it's a lowmem zone, reserve a number of pages
4603 * proportionate to the zone's size.
4604 */
4605 zone->watermark[WMARK_MIN] = tmp;
4606 }
4607
4608 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4609 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4610 setup_zone_migrate_reserve(zone);
4611 spin_unlock_irqrestore(&zone->lock, flags);
4612 }
4613
4614 /* update totalreserve_pages */
4615 calculate_totalreserve_pages();
4616 }
4617
4618 /*
4619 * The inactive anon list should be small enough that the VM never has to
4620 * do too much work, but large enough that each inactive page has a chance
4621 * to be referenced again before it is swapped out.
4622 *
4623 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4624 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4625 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4626 * the anonymous pages are kept on the inactive list.
4627 *
4628 * total target max
4629 * memory ratio inactive anon
4630 * -------------------------------------
4631 * 10MB 1 5MB
4632 * 100MB 1 50MB
4633 * 1GB 3 250MB
4634 * 10GB 10 0.9GB
4635 * 100GB 31 3GB
4636 * 1TB 101 10GB
4637 * 10TB 320 32GB
4638 */
4639 void calculate_zone_inactive_ratio(struct zone *zone)
4640 {
4641 unsigned int gb, ratio;
4642
4643 /* Zone size in gigabytes */
4644 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4645 if (gb)
4646 ratio = int_sqrt(10 * gb);
4647 else
4648 ratio = 1;
4649
4650 zone->inactive_ratio = ratio;
4651 }
4652
4653 static void __init setup_per_zone_inactive_ratio(void)
4654 {
4655 struct zone *zone;
4656
4657 for_each_zone(zone)
4658 calculate_zone_inactive_ratio(zone);
4659 }
4660
4661 /*
4662 * Initialise min_free_kbytes.
4663 *
4664 * For small machines we want it small (128k min). For large machines
4665 * we want it large (64MB max). But it is not linear, because network
4666 * bandwidth does not increase linearly with machine size. We use
4667 *
4668 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4669 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4670 *
4671 * which yields
4672 *
4673 * 16MB: 512k
4674 * 32MB: 724k
4675 * 64MB: 1024k
4676 * 128MB: 1448k
4677 * 256MB: 2048k
4678 * 512MB: 2896k
4679 * 1024MB: 4096k
4680 * 2048MB: 5792k
4681 * 4096MB: 8192k
4682 * 8192MB: 11584k
4683 * 16384MB: 16384k
4684 */
4685 static int __init init_per_zone_wmark_min(void)
4686 {
4687 unsigned long lowmem_kbytes;
4688
4689 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4690
4691 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4692 if (min_free_kbytes < 128)
4693 min_free_kbytes = 128;
4694 if (min_free_kbytes > 65536)
4695 min_free_kbytes = 65536;
4696 setup_per_zone_wmarks();
4697 setup_per_zone_lowmem_reserve();
4698 setup_per_zone_inactive_ratio();
4699 return 0;
4700 }
4701 module_init(init_per_zone_wmark_min)
4702
4703 /*
4704 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4705 * that we can call two helper functions whenever min_free_kbytes
4706 * changes.
4707 */
4708 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4709 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4710 {
4711 proc_dointvec(table, write, file, buffer, length, ppos);
4712 if (write)
4713 setup_per_zone_wmarks();
4714 return 0;
4715 }
4716
4717 #ifdef CONFIG_NUMA
4718 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4719 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4720 {
4721 struct zone *zone;
4722 int rc;
4723
4724 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4725 if (rc)
4726 return rc;
4727
4728 for_each_zone(zone)
4729 zone->min_unmapped_pages = (zone->present_pages *
4730 sysctl_min_unmapped_ratio) / 100;
4731 return 0;
4732 }
4733
4734 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4735 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4736 {
4737 struct zone *zone;
4738 int rc;
4739
4740 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4741 if (rc)
4742 return rc;
4743
4744 for_each_zone(zone)
4745 zone->min_slab_pages = (zone->present_pages *
4746 sysctl_min_slab_ratio) / 100;
4747 return 0;
4748 }
4749 #endif
4750
4751 /*
4752 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4753 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4754 * whenever sysctl_lowmem_reserve_ratio changes.
4755 *
4756 * The reserve ratio obviously has absolutely no relation with the
4757 * minimum watermarks. The lowmem reserve ratio can only make sense
4758 * if in function of the boot time zone sizes.
4759 */
4760 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4761 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4762 {
4763 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4764 setup_per_zone_lowmem_reserve();
4765 return 0;
4766 }
4767
4768 /*
4769 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4770 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4771 * can have before it gets flushed back to buddy allocator.
4772 */
4773
4774 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4775 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4776 {
4777 struct zone *zone;
4778 unsigned int cpu;
4779 int ret;
4780
4781 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4782 if (!write || (ret == -EINVAL))
4783 return ret;
4784 for_each_populated_zone(zone) {
4785 for_each_online_cpu(cpu) {
4786 unsigned long high;
4787 high = zone->present_pages / percpu_pagelist_fraction;
4788 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4789 }
4790 }
4791 return 0;
4792 }
4793
4794 int hashdist = HASHDIST_DEFAULT;
4795
4796 #ifdef CONFIG_NUMA
4797 static int __init set_hashdist(char *str)
4798 {
4799 if (!str)
4800 return 0;
4801 hashdist = simple_strtoul(str, &str, 0);
4802 return 1;
4803 }
4804 __setup("hashdist=", set_hashdist);
4805 #endif
4806
4807 /*
4808 * allocate a large system hash table from bootmem
4809 * - it is assumed that the hash table must contain an exact power-of-2
4810 * quantity of entries
4811 * - limit is the number of hash buckets, not the total allocation size
4812 */
4813 void *__init alloc_large_system_hash(const char *tablename,
4814 unsigned long bucketsize,
4815 unsigned long numentries,
4816 int scale,
4817 int flags,
4818 unsigned int *_hash_shift,
4819 unsigned int *_hash_mask,
4820 unsigned long limit)
4821 {
4822 unsigned long long max = limit;
4823 unsigned long log2qty, size;
4824 void *table = NULL;
4825
4826 /* allow the kernel cmdline to have a say */
4827 if (!numentries) {
4828 /* round applicable memory size up to nearest megabyte */
4829 numentries = nr_kernel_pages;
4830 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4831 numentries >>= 20 - PAGE_SHIFT;
4832 numentries <<= 20 - PAGE_SHIFT;
4833
4834 /* limit to 1 bucket per 2^scale bytes of low memory */
4835 if (scale > PAGE_SHIFT)
4836 numentries >>= (scale - PAGE_SHIFT);
4837 else
4838 numentries <<= (PAGE_SHIFT - scale);
4839
4840 /* Make sure we've got at least a 0-order allocation.. */
4841 if (unlikely(flags & HASH_SMALL)) {
4842 /* Makes no sense without HASH_EARLY */
4843 WARN_ON(!(flags & HASH_EARLY));
4844 if (!(numentries >> *_hash_shift)) {
4845 numentries = 1UL << *_hash_shift;
4846 BUG_ON(!numentries);
4847 }
4848 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4849 numentries = PAGE_SIZE / bucketsize;
4850 }
4851 numentries = roundup_pow_of_two(numentries);
4852
4853 /* limit allocation size to 1/16 total memory by default */
4854 if (max == 0) {
4855 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4856 do_div(max, bucketsize);
4857 }
4858
4859 if (numentries > max)
4860 numentries = max;
4861
4862 log2qty = ilog2(numentries);
4863
4864 do {
4865 size = bucketsize << log2qty;
4866 if (flags & HASH_EARLY)
4867 table = alloc_bootmem_nopanic(size);
4868 else if (hashdist)
4869 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4870 else {
4871 /*
4872 * If bucketsize is not a power-of-two, we may free
4873 * some pages at the end of hash table which
4874 * alloc_pages_exact() automatically does
4875 */
4876 if (get_order(size) < MAX_ORDER) {
4877 table = alloc_pages_exact(size, GFP_ATOMIC);
4878 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4879 }
4880 }
4881 } while (!table && size > PAGE_SIZE && --log2qty);
4882
4883 if (!table)
4884 panic("Failed to allocate %s hash table\n", tablename);
4885
4886 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4887 tablename,
4888 (1U << log2qty),
4889 ilog2(size) - PAGE_SHIFT,
4890 size);
4891
4892 if (_hash_shift)
4893 *_hash_shift = log2qty;
4894 if (_hash_mask)
4895 *_hash_mask = (1 << log2qty) - 1;
4896
4897 return table;
4898 }
4899
4900 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4901 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4902 unsigned long pfn)
4903 {
4904 #ifdef CONFIG_SPARSEMEM
4905 return __pfn_to_section(pfn)->pageblock_flags;
4906 #else
4907 return zone->pageblock_flags;
4908 #endif /* CONFIG_SPARSEMEM */
4909 }
4910
4911 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4912 {
4913 #ifdef CONFIG_SPARSEMEM
4914 pfn &= (PAGES_PER_SECTION-1);
4915 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4916 #else
4917 pfn = pfn - zone->zone_start_pfn;
4918 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4919 #endif /* CONFIG_SPARSEMEM */
4920 }
4921
4922 /**
4923 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4924 * @page: The page within the block of interest
4925 * @start_bitidx: The first bit of interest to retrieve
4926 * @end_bitidx: The last bit of interest
4927 * returns pageblock_bits flags
4928 */
4929 unsigned long get_pageblock_flags_group(struct page *page,
4930 int start_bitidx, int end_bitidx)
4931 {
4932 struct zone *zone;
4933 unsigned long *bitmap;
4934 unsigned long pfn, bitidx;
4935 unsigned long flags = 0;
4936 unsigned long value = 1;
4937
4938 zone = page_zone(page);
4939 pfn = page_to_pfn(page);
4940 bitmap = get_pageblock_bitmap(zone, pfn);
4941 bitidx = pfn_to_bitidx(zone, pfn);
4942
4943 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4944 if (test_bit(bitidx + start_bitidx, bitmap))
4945 flags |= value;
4946
4947 return flags;
4948 }
4949
4950 /**
4951 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4952 * @page: The page within the block of interest
4953 * @start_bitidx: The first bit of interest
4954 * @end_bitidx: The last bit of interest
4955 * @flags: The flags to set
4956 */
4957 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4958 int start_bitidx, int end_bitidx)
4959 {
4960 struct zone *zone;
4961 unsigned long *bitmap;
4962 unsigned long pfn, bitidx;
4963 unsigned long value = 1;
4964
4965 zone = page_zone(page);
4966 pfn = page_to_pfn(page);
4967 bitmap = get_pageblock_bitmap(zone, pfn);
4968 bitidx = pfn_to_bitidx(zone, pfn);
4969 VM_BUG_ON(pfn < zone->zone_start_pfn);
4970 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4971
4972 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4973 if (flags & value)
4974 __set_bit(bitidx + start_bitidx, bitmap);
4975 else
4976 __clear_bit(bitidx + start_bitidx, bitmap);
4977 }
4978
4979 /*
4980 * This is designed as sub function...plz see page_isolation.c also.
4981 * set/clear page block's type to be ISOLATE.
4982 * page allocater never alloc memory from ISOLATE block.
4983 */
4984
4985 int set_migratetype_isolate(struct page *page)
4986 {
4987 struct zone *zone;
4988 unsigned long flags;
4989 int ret = -EBUSY;
4990 int zone_idx;
4991
4992 zone = page_zone(page);
4993 zone_idx = zone_idx(zone);
4994 spin_lock_irqsave(&zone->lock, flags);
4995 /*
4996 * In future, more migrate types will be able to be isolation target.
4997 */
4998 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4999 zone_idx != ZONE_MOVABLE)
5000 goto out;
5001 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5002 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5003 ret = 0;
5004 out:
5005 spin_unlock_irqrestore(&zone->lock, flags);
5006 if (!ret)
5007 drain_all_pages();
5008 return ret;
5009 }
5010
5011 void unset_migratetype_isolate(struct page *page)
5012 {
5013 struct zone *zone;
5014 unsigned long flags;
5015 zone = page_zone(page);
5016 spin_lock_irqsave(&zone->lock, flags);
5017 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5018 goto out;
5019 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5020 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5021 out:
5022 spin_unlock_irqrestore(&zone->lock, flags);
5023 }
5024
5025 #ifdef CONFIG_MEMORY_HOTREMOVE
5026 /*
5027 * All pages in the range must be isolated before calling this.
5028 */
5029 void
5030 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5031 {
5032 struct page *page;
5033 struct zone *zone;
5034 int order, i;
5035 unsigned long pfn;
5036 unsigned long flags;
5037 /* find the first valid pfn */
5038 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5039 if (pfn_valid(pfn))
5040 break;
5041 if (pfn == end_pfn)
5042 return;
5043 zone = page_zone(pfn_to_page(pfn));
5044 spin_lock_irqsave(&zone->lock, flags);
5045 pfn = start_pfn;
5046 while (pfn < end_pfn) {
5047 if (!pfn_valid(pfn)) {
5048 pfn++;
5049 continue;
5050 }
5051 page = pfn_to_page(pfn);
5052 BUG_ON(page_count(page));
5053 BUG_ON(!PageBuddy(page));
5054 order = page_order(page);
5055 #ifdef CONFIG_DEBUG_VM
5056 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5057 pfn, 1 << order, end_pfn);
5058 #endif
5059 list_del(&page->lru);
5060 rmv_page_order(page);
5061 zone->free_area[order].nr_free--;
5062 __mod_zone_page_state(zone, NR_FREE_PAGES,
5063 - (1UL << order));
5064 for (i = 0; i < (1 << order); i++)
5065 SetPageReserved((page+i));
5066 pfn += (1 << order);
5067 }
5068 spin_unlock_irqrestore(&zone->lock, flags);
5069 }
5070 #endif
This page took 0.217257 seconds and 5 git commands to generate.