[PATCH] Replace min_unmapped_ratio by min_unmapped_pages in struct zone
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 #include "internal.h"
44
45 /*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map);
51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52 EXPORT_SYMBOL(node_possible_map);
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalreserve_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57
58 static void __free_pages_ok(struct page *page, unsigned int order);
59
60 /*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
70 */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
73 #ifdef CONFIG_ZONE_DMA32
74 256,
75 #endif
76 #ifdef CONFIG_HIGHMEM
77 32
78 #endif
79 };
80
81 EXPORT_SYMBOL(totalram_pages);
82
83 /*
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
86 */
87 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
88 EXPORT_SYMBOL(zone_table);
89
90 static char *zone_names[MAX_NR_ZONES] = {
91 "DMA",
92 #ifdef CONFIG_ZONE_DMA32
93 "DMA32",
94 #endif
95 "Normal",
96 #ifdef CONFIG_HIGHMEM
97 "HighMem"
98 #endif
99 };
100
101 int min_free_kbytes = 1024;
102
103 unsigned long __meminitdata nr_kernel_pages;
104 unsigned long __meminitdata nr_all_pages;
105
106 #ifdef CONFIG_DEBUG_VM
107 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
108 {
109 int ret = 0;
110 unsigned seq;
111 unsigned long pfn = page_to_pfn(page);
112
113 do {
114 seq = zone_span_seqbegin(zone);
115 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116 ret = 1;
117 else if (pfn < zone->zone_start_pfn)
118 ret = 1;
119 } while (zone_span_seqretry(zone, seq));
120
121 return ret;
122 }
123
124 static int page_is_consistent(struct zone *zone, struct page *page)
125 {
126 #ifdef CONFIG_HOLES_IN_ZONE
127 if (!pfn_valid(page_to_pfn(page)))
128 return 0;
129 #endif
130 if (zone != page_zone(page))
131 return 0;
132
133 return 1;
134 }
135 /*
136 * Temporary debugging check for pages not lying within a given zone.
137 */
138 static int bad_range(struct zone *zone, struct page *page)
139 {
140 if (page_outside_zone_boundaries(zone, page))
141 return 1;
142 if (!page_is_consistent(zone, page))
143 return 1;
144
145 return 0;
146 }
147 #else
148 static inline int bad_range(struct zone *zone, struct page *page)
149 {
150 return 0;
151 }
152 #endif
153
154 static void bad_page(struct page *page)
155 {
156 printk(KERN_EMERG "Bad page state in process '%s'\n"
157 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159 KERN_EMERG "Backtrace:\n",
160 current->comm, page, (int)(2*sizeof(unsigned long)),
161 (unsigned long)page->flags, page->mapping,
162 page_mapcount(page), page_count(page));
163 dump_stack();
164 page->flags &= ~(1 << PG_lru |
165 1 << PG_private |
166 1 << PG_locked |
167 1 << PG_active |
168 1 << PG_dirty |
169 1 << PG_reclaim |
170 1 << PG_slab |
171 1 << PG_swapcache |
172 1 << PG_writeback |
173 1 << PG_buddy );
174 set_page_count(page, 0);
175 reset_page_mapcount(page);
176 page->mapping = NULL;
177 add_taint(TAINT_BAD_PAGE);
178 }
179
180 /*
181 * Higher-order pages are called "compound pages". They are structured thusly:
182 *
183 * The first PAGE_SIZE page is called the "head page".
184 *
185 * The remaining PAGE_SIZE pages are called "tail pages".
186 *
187 * All pages have PG_compound set. All pages have their ->private pointing at
188 * the head page (even the head page has this).
189 *
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function. Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
193 */
194
195 static void free_compound_page(struct page *page)
196 {
197 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
198 }
199
200 static void prep_compound_page(struct page *page, unsigned long order)
201 {
202 int i;
203 int nr_pages = 1 << order;
204
205 page[1].lru.next = (void *)free_compound_page; /* set dtor */
206 page[1].lru.prev = (void *)order;
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
209
210 __SetPageCompound(p);
211 set_page_private(p, (unsigned long)page);
212 }
213 }
214
215 static void destroy_compound_page(struct page *page, unsigned long order)
216 {
217 int i;
218 int nr_pages = 1 << order;
219
220 if (unlikely((unsigned long)page[1].lru.prev != order))
221 bad_page(page);
222
223 for (i = 0; i < nr_pages; i++) {
224 struct page *p = page + i;
225
226 if (unlikely(!PageCompound(p) |
227 (page_private(p) != (unsigned long)page)))
228 bad_page(page);
229 __ClearPageCompound(p);
230 }
231 }
232
233 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
234 {
235 int i;
236
237 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
238 /*
239 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240 * and __GFP_HIGHMEM from hard or soft interrupt context.
241 */
242 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
243 for (i = 0; i < (1 << order); i++)
244 clear_highpage(page + i);
245 }
246
247 /*
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
251 */
252 static inline unsigned long page_order(struct page *page)
253 {
254 return page_private(page);
255 }
256
257 static inline void set_page_order(struct page *page, int order)
258 {
259 set_page_private(page, order);
260 __SetPageBuddy(page);
261 }
262
263 static inline void rmv_page_order(struct page *page)
264 {
265 __ClearPageBuddy(page);
266 set_page_private(page, 0);
267 }
268
269 /*
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
272 *
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 * B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
279 *
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 * P = B & ~(1 << O)
283 *
284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
285 */
286 static inline struct page *
287 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
288 {
289 unsigned long buddy_idx = page_idx ^ (1 << order);
290
291 return page + (buddy_idx - page_idx);
292 }
293
294 static inline unsigned long
295 __find_combined_index(unsigned long page_idx, unsigned int order)
296 {
297 return (page_idx & ~(1 << order));
298 }
299
300 /*
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
303 * (a) the buddy is not in a hole &&
304 * (b) the buddy is in the buddy system &&
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
307 *
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
310 *
311 * For recording page's order, we use page_private(page).
312 */
313 static inline int page_is_buddy(struct page *page, struct page *buddy,
314 int order)
315 {
316 #ifdef CONFIG_HOLES_IN_ZONE
317 if (!pfn_valid(page_to_pfn(buddy)))
318 return 0;
319 #endif
320
321 if (page_zone_id(page) != page_zone_id(buddy))
322 return 0;
323
324 if (PageBuddy(buddy) && page_order(buddy) == order) {
325 BUG_ON(page_count(buddy) != 0);
326 return 1;
327 }
328 return 0;
329 }
330
331 /*
332 * Freeing function for a buddy system allocator.
333 *
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
345 * order is recorded in page_private(page) field.
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other. That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
351 *
352 * -- wli
353 */
354
355 static inline void __free_one_page(struct page *page,
356 struct zone *zone, unsigned int order)
357 {
358 unsigned long page_idx;
359 int order_size = 1 << order;
360
361 if (unlikely(PageCompound(page)))
362 destroy_compound_page(page, order);
363
364 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
365
366 VM_BUG_ON(page_idx & (order_size - 1));
367 VM_BUG_ON(bad_range(zone, page));
368
369 zone->free_pages += order_size;
370 while (order < MAX_ORDER-1) {
371 unsigned long combined_idx;
372 struct free_area *area;
373 struct page *buddy;
374
375 buddy = __page_find_buddy(page, page_idx, order);
376 if (!page_is_buddy(page, buddy, order))
377 break; /* Move the buddy up one level. */
378
379 list_del(&buddy->lru);
380 area = zone->free_area + order;
381 area->nr_free--;
382 rmv_page_order(buddy);
383 combined_idx = __find_combined_index(page_idx, order);
384 page = page + (combined_idx - page_idx);
385 page_idx = combined_idx;
386 order++;
387 }
388 set_page_order(page, order);
389 list_add(&page->lru, &zone->free_area[order].free_list);
390 zone->free_area[order].nr_free++;
391 }
392
393 static inline int free_pages_check(struct page *page)
394 {
395 if (unlikely(page_mapcount(page) |
396 (page->mapping != NULL) |
397 (page_count(page) != 0) |
398 (page->flags & (
399 1 << PG_lru |
400 1 << PG_private |
401 1 << PG_locked |
402 1 << PG_active |
403 1 << PG_reclaim |
404 1 << PG_slab |
405 1 << PG_swapcache |
406 1 << PG_writeback |
407 1 << PG_reserved |
408 1 << PG_buddy ))))
409 bad_page(page);
410 if (PageDirty(page))
411 __ClearPageDirty(page);
412 /*
413 * For now, we report if PG_reserved was found set, but do not
414 * clear it, and do not free the page. But we shall soon need
415 * to do more, for when the ZERO_PAGE count wraps negative.
416 */
417 return PageReserved(page);
418 }
419
420 /*
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
423 * count is the number of pages to free.
424 *
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
427 *
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
430 */
431 static void free_pages_bulk(struct zone *zone, int count,
432 struct list_head *list, int order)
433 {
434 spin_lock(&zone->lock);
435 zone->all_unreclaimable = 0;
436 zone->pages_scanned = 0;
437 while (count--) {
438 struct page *page;
439
440 VM_BUG_ON(list_empty(list));
441 page = list_entry(list->prev, struct page, lru);
442 /* have to delete it as __free_one_page list manipulates */
443 list_del(&page->lru);
444 __free_one_page(page, zone, order);
445 }
446 spin_unlock(&zone->lock);
447 }
448
449 static void free_one_page(struct zone *zone, struct page *page, int order)
450 {
451 spin_lock(&zone->lock);
452 zone->all_unreclaimable = 0;
453 zone->pages_scanned = 0;
454 __free_one_page(page, zone ,order);
455 spin_unlock(&zone->lock);
456 }
457
458 static void __free_pages_ok(struct page *page, unsigned int order)
459 {
460 unsigned long flags;
461 int i;
462 int reserved = 0;
463
464 arch_free_page(page, order);
465 if (!PageHighMem(page))
466 debug_check_no_locks_freed(page_address(page),
467 PAGE_SIZE<<order);
468
469 for (i = 0 ; i < (1 << order) ; ++i)
470 reserved += free_pages_check(page + i);
471 if (reserved)
472 return;
473
474 kernel_map_pages(page, 1 << order, 0);
475 local_irq_save(flags);
476 __count_vm_events(PGFREE, 1 << order);
477 free_one_page(page_zone(page), page, order);
478 local_irq_restore(flags);
479 }
480
481 /*
482 * permit the bootmem allocator to evade page validation on high-order frees
483 */
484 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
485 {
486 if (order == 0) {
487 __ClearPageReserved(page);
488 set_page_count(page, 0);
489 set_page_refcounted(page);
490 __free_page(page);
491 } else {
492 int loop;
493
494 prefetchw(page);
495 for (loop = 0; loop < BITS_PER_LONG; loop++) {
496 struct page *p = &page[loop];
497
498 if (loop + 1 < BITS_PER_LONG)
499 prefetchw(p + 1);
500 __ClearPageReserved(p);
501 set_page_count(p, 0);
502 }
503
504 set_page_refcounted(page);
505 __free_pages(page, order);
506 }
507 }
508
509
510 /*
511 * The order of subdivision here is critical for the IO subsystem.
512 * Please do not alter this order without good reasons and regression
513 * testing. Specifically, as large blocks of memory are subdivided,
514 * the order in which smaller blocks are delivered depends on the order
515 * they're subdivided in this function. This is the primary factor
516 * influencing the order in which pages are delivered to the IO
517 * subsystem according to empirical testing, and this is also justified
518 * by considering the behavior of a buddy system containing a single
519 * large block of memory acted on by a series of small allocations.
520 * This behavior is a critical factor in sglist merging's success.
521 *
522 * -- wli
523 */
524 static inline void expand(struct zone *zone, struct page *page,
525 int low, int high, struct free_area *area)
526 {
527 unsigned long size = 1 << high;
528
529 while (high > low) {
530 area--;
531 high--;
532 size >>= 1;
533 VM_BUG_ON(bad_range(zone, &page[size]));
534 list_add(&page[size].lru, &area->free_list);
535 area->nr_free++;
536 set_page_order(&page[size], high);
537 }
538 }
539
540 /*
541 * This page is about to be returned from the page allocator
542 */
543 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
544 {
545 if (unlikely(page_mapcount(page) |
546 (page->mapping != NULL) |
547 (page_count(page) != 0) |
548 (page->flags & (
549 1 << PG_lru |
550 1 << PG_private |
551 1 << PG_locked |
552 1 << PG_active |
553 1 << PG_dirty |
554 1 << PG_reclaim |
555 1 << PG_slab |
556 1 << PG_swapcache |
557 1 << PG_writeback |
558 1 << PG_reserved |
559 1 << PG_buddy ))))
560 bad_page(page);
561
562 /*
563 * For now, we report if PG_reserved was found set, but do not
564 * clear it, and do not allocate the page: as a safety net.
565 */
566 if (PageReserved(page))
567 return 1;
568
569 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
570 1 << PG_referenced | 1 << PG_arch_1 |
571 1 << PG_checked | 1 << PG_mappedtodisk);
572 set_page_private(page, 0);
573 set_page_refcounted(page);
574 kernel_map_pages(page, 1 << order, 1);
575
576 if (gfp_flags & __GFP_ZERO)
577 prep_zero_page(page, order, gfp_flags);
578
579 if (order && (gfp_flags & __GFP_COMP))
580 prep_compound_page(page, order);
581
582 return 0;
583 }
584
585 /*
586 * Do the hard work of removing an element from the buddy allocator.
587 * Call me with the zone->lock already held.
588 */
589 static struct page *__rmqueue(struct zone *zone, unsigned int order)
590 {
591 struct free_area * area;
592 unsigned int current_order;
593 struct page *page;
594
595 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
596 area = zone->free_area + current_order;
597 if (list_empty(&area->free_list))
598 continue;
599
600 page = list_entry(area->free_list.next, struct page, lru);
601 list_del(&page->lru);
602 rmv_page_order(page);
603 area->nr_free--;
604 zone->free_pages -= 1UL << order;
605 expand(zone, page, order, current_order, area);
606 return page;
607 }
608
609 return NULL;
610 }
611
612 /*
613 * Obtain a specified number of elements from the buddy allocator, all under
614 * a single hold of the lock, for efficiency. Add them to the supplied list.
615 * Returns the number of new pages which were placed at *list.
616 */
617 static int rmqueue_bulk(struct zone *zone, unsigned int order,
618 unsigned long count, struct list_head *list)
619 {
620 int i;
621
622 spin_lock(&zone->lock);
623 for (i = 0; i < count; ++i) {
624 struct page *page = __rmqueue(zone, order);
625 if (unlikely(page == NULL))
626 break;
627 list_add_tail(&page->lru, list);
628 }
629 spin_unlock(&zone->lock);
630 return i;
631 }
632
633 #ifdef CONFIG_NUMA
634 /*
635 * Called from the slab reaper to drain pagesets on a particular node that
636 * belongs to the currently executing processor.
637 * Note that this function must be called with the thread pinned to
638 * a single processor.
639 */
640 void drain_node_pages(int nodeid)
641 {
642 int i;
643 enum zone_type z;
644 unsigned long flags;
645
646 for (z = 0; z < MAX_NR_ZONES; z++) {
647 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
648 struct per_cpu_pageset *pset;
649
650 if (!populated_zone(zone))
651 continue;
652
653 pset = zone_pcp(zone, smp_processor_id());
654 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
655 struct per_cpu_pages *pcp;
656
657 pcp = &pset->pcp[i];
658 if (pcp->count) {
659 local_irq_save(flags);
660 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
661 pcp->count = 0;
662 local_irq_restore(flags);
663 }
664 }
665 }
666 }
667 #endif
668
669 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
670 static void __drain_pages(unsigned int cpu)
671 {
672 unsigned long flags;
673 struct zone *zone;
674 int i;
675
676 for_each_zone(zone) {
677 struct per_cpu_pageset *pset;
678
679 pset = zone_pcp(zone, cpu);
680 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
681 struct per_cpu_pages *pcp;
682
683 pcp = &pset->pcp[i];
684 local_irq_save(flags);
685 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
686 pcp->count = 0;
687 local_irq_restore(flags);
688 }
689 }
690 }
691 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
692
693 #ifdef CONFIG_PM
694
695 void mark_free_pages(struct zone *zone)
696 {
697 unsigned long zone_pfn, flags;
698 int order;
699 struct list_head *curr;
700
701 if (!zone->spanned_pages)
702 return;
703
704 spin_lock_irqsave(&zone->lock, flags);
705 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
706 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
707
708 for (order = MAX_ORDER - 1; order >= 0; --order)
709 list_for_each(curr, &zone->free_area[order].free_list) {
710 unsigned long start_pfn, i;
711
712 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
713
714 for (i=0; i < (1<<order); i++)
715 SetPageNosaveFree(pfn_to_page(start_pfn+i));
716 }
717 spin_unlock_irqrestore(&zone->lock, flags);
718 }
719
720 /*
721 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
722 */
723 void drain_local_pages(void)
724 {
725 unsigned long flags;
726
727 local_irq_save(flags);
728 __drain_pages(smp_processor_id());
729 local_irq_restore(flags);
730 }
731 #endif /* CONFIG_PM */
732
733 /*
734 * Free a 0-order page
735 */
736 static void fastcall free_hot_cold_page(struct page *page, int cold)
737 {
738 struct zone *zone = page_zone(page);
739 struct per_cpu_pages *pcp;
740 unsigned long flags;
741
742 arch_free_page(page, 0);
743
744 if (PageAnon(page))
745 page->mapping = NULL;
746 if (free_pages_check(page))
747 return;
748
749 kernel_map_pages(page, 1, 0);
750
751 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
752 local_irq_save(flags);
753 __count_vm_event(PGFREE);
754 list_add(&page->lru, &pcp->list);
755 pcp->count++;
756 if (pcp->count >= pcp->high) {
757 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
758 pcp->count -= pcp->batch;
759 }
760 local_irq_restore(flags);
761 put_cpu();
762 }
763
764 void fastcall free_hot_page(struct page *page)
765 {
766 free_hot_cold_page(page, 0);
767 }
768
769 void fastcall free_cold_page(struct page *page)
770 {
771 free_hot_cold_page(page, 1);
772 }
773
774 /*
775 * split_page takes a non-compound higher-order page, and splits it into
776 * n (1<<order) sub-pages: page[0..n]
777 * Each sub-page must be freed individually.
778 *
779 * Note: this is probably too low level an operation for use in drivers.
780 * Please consult with lkml before using this in your driver.
781 */
782 void split_page(struct page *page, unsigned int order)
783 {
784 int i;
785
786 VM_BUG_ON(PageCompound(page));
787 VM_BUG_ON(!page_count(page));
788 for (i = 1; i < (1 << order); i++)
789 set_page_refcounted(page + i);
790 }
791
792 /*
793 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
794 * we cheat by calling it from here, in the order > 0 path. Saves a branch
795 * or two.
796 */
797 static struct page *buffered_rmqueue(struct zonelist *zonelist,
798 struct zone *zone, int order, gfp_t gfp_flags)
799 {
800 unsigned long flags;
801 struct page *page;
802 int cold = !!(gfp_flags & __GFP_COLD);
803 int cpu;
804
805 again:
806 cpu = get_cpu();
807 if (likely(order == 0)) {
808 struct per_cpu_pages *pcp;
809
810 pcp = &zone_pcp(zone, cpu)->pcp[cold];
811 local_irq_save(flags);
812 if (!pcp->count) {
813 pcp->count += rmqueue_bulk(zone, 0,
814 pcp->batch, &pcp->list);
815 if (unlikely(!pcp->count))
816 goto failed;
817 }
818 page = list_entry(pcp->list.next, struct page, lru);
819 list_del(&page->lru);
820 pcp->count--;
821 } else {
822 spin_lock_irqsave(&zone->lock, flags);
823 page = __rmqueue(zone, order);
824 spin_unlock(&zone->lock);
825 if (!page)
826 goto failed;
827 }
828
829 __count_zone_vm_events(PGALLOC, zone, 1 << order);
830 zone_statistics(zonelist, zone);
831 local_irq_restore(flags);
832 put_cpu();
833
834 VM_BUG_ON(bad_range(zone, page));
835 if (prep_new_page(page, order, gfp_flags))
836 goto again;
837 return page;
838
839 failed:
840 local_irq_restore(flags);
841 put_cpu();
842 return NULL;
843 }
844
845 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
846 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
847 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
848 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
849 #define ALLOC_HARDER 0x10 /* try to alloc harder */
850 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
851 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
852
853 /*
854 * Return 1 if free pages are above 'mark'. This takes into account the order
855 * of the allocation.
856 */
857 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
858 int classzone_idx, int alloc_flags)
859 {
860 /* free_pages my go negative - that's OK */
861 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
862 int o;
863
864 if (alloc_flags & ALLOC_HIGH)
865 min -= min / 2;
866 if (alloc_flags & ALLOC_HARDER)
867 min -= min / 4;
868
869 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
870 return 0;
871 for (o = 0; o < order; o++) {
872 /* At the next order, this order's pages become unavailable */
873 free_pages -= z->free_area[o].nr_free << o;
874
875 /* Require fewer higher order pages to be free */
876 min >>= 1;
877
878 if (free_pages <= min)
879 return 0;
880 }
881 return 1;
882 }
883
884 /*
885 * get_page_from_freeliest goes through the zonelist trying to allocate
886 * a page.
887 */
888 static struct page *
889 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
890 struct zonelist *zonelist, int alloc_flags)
891 {
892 struct zone **z = zonelist->zones;
893 struct page *page = NULL;
894 int classzone_idx = zone_idx(*z);
895 struct zone *zone;
896
897 /*
898 * Go through the zonelist once, looking for a zone with enough free.
899 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
900 */
901 do {
902 zone = *z;
903 if (unlikely((gfp_mask & __GFP_THISNODE) &&
904 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
905 break;
906 if ((alloc_flags & ALLOC_CPUSET) &&
907 !cpuset_zone_allowed(zone, gfp_mask))
908 continue;
909
910 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
911 unsigned long mark;
912 if (alloc_flags & ALLOC_WMARK_MIN)
913 mark = zone->pages_min;
914 else if (alloc_flags & ALLOC_WMARK_LOW)
915 mark = zone->pages_low;
916 else
917 mark = zone->pages_high;
918 if (!zone_watermark_ok(zone , order, mark,
919 classzone_idx, alloc_flags))
920 if (!zone_reclaim_mode ||
921 !zone_reclaim(zone, gfp_mask, order))
922 continue;
923 }
924
925 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
926 if (page) {
927 break;
928 }
929 } while (*(++z) != NULL);
930 return page;
931 }
932
933 /*
934 * This is the 'heart' of the zoned buddy allocator.
935 */
936 struct page * fastcall
937 __alloc_pages(gfp_t gfp_mask, unsigned int order,
938 struct zonelist *zonelist)
939 {
940 const gfp_t wait = gfp_mask & __GFP_WAIT;
941 struct zone **z;
942 struct page *page;
943 struct reclaim_state reclaim_state;
944 struct task_struct *p = current;
945 int do_retry;
946 int alloc_flags;
947 int did_some_progress;
948
949 might_sleep_if(wait);
950
951 restart:
952 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
953
954 if (unlikely(*z == NULL)) {
955 /* Should this ever happen?? */
956 return NULL;
957 }
958
959 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
960 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
961 if (page)
962 goto got_pg;
963
964 do {
965 wakeup_kswapd(*z, order);
966 } while (*(++z));
967
968 /*
969 * OK, we're below the kswapd watermark and have kicked background
970 * reclaim. Now things get more complex, so set up alloc_flags according
971 * to how we want to proceed.
972 *
973 * The caller may dip into page reserves a bit more if the caller
974 * cannot run direct reclaim, or if the caller has realtime scheduling
975 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
976 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
977 */
978 alloc_flags = ALLOC_WMARK_MIN;
979 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
980 alloc_flags |= ALLOC_HARDER;
981 if (gfp_mask & __GFP_HIGH)
982 alloc_flags |= ALLOC_HIGH;
983 if (wait)
984 alloc_flags |= ALLOC_CPUSET;
985
986 /*
987 * Go through the zonelist again. Let __GFP_HIGH and allocations
988 * coming from realtime tasks go deeper into reserves.
989 *
990 * This is the last chance, in general, before the goto nopage.
991 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
992 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
993 */
994 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
995 if (page)
996 goto got_pg;
997
998 /* This allocation should allow future memory freeing. */
999
1000 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1001 && !in_interrupt()) {
1002 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1003 nofail_alloc:
1004 /* go through the zonelist yet again, ignoring mins */
1005 page = get_page_from_freelist(gfp_mask, order,
1006 zonelist, ALLOC_NO_WATERMARKS);
1007 if (page)
1008 goto got_pg;
1009 if (gfp_mask & __GFP_NOFAIL) {
1010 blk_congestion_wait(WRITE, HZ/50);
1011 goto nofail_alloc;
1012 }
1013 }
1014 goto nopage;
1015 }
1016
1017 /* Atomic allocations - we can't balance anything */
1018 if (!wait)
1019 goto nopage;
1020
1021 rebalance:
1022 cond_resched();
1023
1024 /* We now go into synchronous reclaim */
1025 cpuset_memory_pressure_bump();
1026 p->flags |= PF_MEMALLOC;
1027 reclaim_state.reclaimed_slab = 0;
1028 p->reclaim_state = &reclaim_state;
1029
1030 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1031
1032 p->reclaim_state = NULL;
1033 p->flags &= ~PF_MEMALLOC;
1034
1035 cond_resched();
1036
1037 if (likely(did_some_progress)) {
1038 page = get_page_from_freelist(gfp_mask, order,
1039 zonelist, alloc_flags);
1040 if (page)
1041 goto got_pg;
1042 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1043 /*
1044 * Go through the zonelist yet one more time, keep
1045 * very high watermark here, this is only to catch
1046 * a parallel oom killing, we must fail if we're still
1047 * under heavy pressure.
1048 */
1049 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1050 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1051 if (page)
1052 goto got_pg;
1053
1054 out_of_memory(zonelist, gfp_mask, order);
1055 goto restart;
1056 }
1057
1058 /*
1059 * Don't let big-order allocations loop unless the caller explicitly
1060 * requests that. Wait for some write requests to complete then retry.
1061 *
1062 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1063 * <= 3, but that may not be true in other implementations.
1064 */
1065 do_retry = 0;
1066 if (!(gfp_mask & __GFP_NORETRY)) {
1067 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1068 do_retry = 1;
1069 if (gfp_mask & __GFP_NOFAIL)
1070 do_retry = 1;
1071 }
1072 if (do_retry) {
1073 blk_congestion_wait(WRITE, HZ/50);
1074 goto rebalance;
1075 }
1076
1077 nopage:
1078 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1079 printk(KERN_WARNING "%s: page allocation failure."
1080 " order:%d, mode:0x%x\n",
1081 p->comm, order, gfp_mask);
1082 dump_stack();
1083 show_mem();
1084 }
1085 got_pg:
1086 return page;
1087 }
1088
1089 EXPORT_SYMBOL(__alloc_pages);
1090
1091 /*
1092 * Common helper functions.
1093 */
1094 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1095 {
1096 struct page * page;
1097 page = alloc_pages(gfp_mask, order);
1098 if (!page)
1099 return 0;
1100 return (unsigned long) page_address(page);
1101 }
1102
1103 EXPORT_SYMBOL(__get_free_pages);
1104
1105 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1106 {
1107 struct page * page;
1108
1109 /*
1110 * get_zeroed_page() returns a 32-bit address, which cannot represent
1111 * a highmem page
1112 */
1113 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1114
1115 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1116 if (page)
1117 return (unsigned long) page_address(page);
1118 return 0;
1119 }
1120
1121 EXPORT_SYMBOL(get_zeroed_page);
1122
1123 void __pagevec_free(struct pagevec *pvec)
1124 {
1125 int i = pagevec_count(pvec);
1126
1127 while (--i >= 0)
1128 free_hot_cold_page(pvec->pages[i], pvec->cold);
1129 }
1130
1131 fastcall void __free_pages(struct page *page, unsigned int order)
1132 {
1133 if (put_page_testzero(page)) {
1134 if (order == 0)
1135 free_hot_page(page);
1136 else
1137 __free_pages_ok(page, order);
1138 }
1139 }
1140
1141 EXPORT_SYMBOL(__free_pages);
1142
1143 fastcall void free_pages(unsigned long addr, unsigned int order)
1144 {
1145 if (addr != 0) {
1146 VM_BUG_ON(!virt_addr_valid((void *)addr));
1147 __free_pages(virt_to_page((void *)addr), order);
1148 }
1149 }
1150
1151 EXPORT_SYMBOL(free_pages);
1152
1153 /*
1154 * Total amount of free (allocatable) RAM:
1155 */
1156 unsigned int nr_free_pages(void)
1157 {
1158 unsigned int sum = 0;
1159 struct zone *zone;
1160
1161 for_each_zone(zone)
1162 sum += zone->free_pages;
1163
1164 return sum;
1165 }
1166
1167 EXPORT_SYMBOL(nr_free_pages);
1168
1169 #ifdef CONFIG_NUMA
1170 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1171 {
1172 unsigned int sum = 0;
1173 enum zone_type i;
1174
1175 for (i = 0; i < MAX_NR_ZONES; i++)
1176 sum += pgdat->node_zones[i].free_pages;
1177
1178 return sum;
1179 }
1180 #endif
1181
1182 static unsigned int nr_free_zone_pages(int offset)
1183 {
1184 /* Just pick one node, since fallback list is circular */
1185 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1186 unsigned int sum = 0;
1187
1188 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1189 struct zone **zonep = zonelist->zones;
1190 struct zone *zone;
1191
1192 for (zone = *zonep++; zone; zone = *zonep++) {
1193 unsigned long size = zone->present_pages;
1194 unsigned long high = zone->pages_high;
1195 if (size > high)
1196 sum += size - high;
1197 }
1198
1199 return sum;
1200 }
1201
1202 /*
1203 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1204 */
1205 unsigned int nr_free_buffer_pages(void)
1206 {
1207 return nr_free_zone_pages(gfp_zone(GFP_USER));
1208 }
1209
1210 /*
1211 * Amount of free RAM allocatable within all zones
1212 */
1213 unsigned int nr_free_pagecache_pages(void)
1214 {
1215 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1216 }
1217 #ifdef CONFIG_NUMA
1218 static void show_node(struct zone *zone)
1219 {
1220 printk("Node %d ", zone->zone_pgdat->node_id);
1221 }
1222 #else
1223 #define show_node(zone) do { } while (0)
1224 #endif
1225
1226 void si_meminfo(struct sysinfo *val)
1227 {
1228 val->totalram = totalram_pages;
1229 val->sharedram = 0;
1230 val->freeram = nr_free_pages();
1231 val->bufferram = nr_blockdev_pages();
1232 val->totalhigh = totalhigh_pages;
1233 val->freehigh = nr_free_highpages();
1234 val->mem_unit = PAGE_SIZE;
1235 }
1236
1237 EXPORT_SYMBOL(si_meminfo);
1238
1239 #ifdef CONFIG_NUMA
1240 void si_meminfo_node(struct sysinfo *val, int nid)
1241 {
1242 pg_data_t *pgdat = NODE_DATA(nid);
1243
1244 val->totalram = pgdat->node_present_pages;
1245 val->freeram = nr_free_pages_pgdat(pgdat);
1246 #ifdef CONFIG_HIGHMEM
1247 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1248 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1249 #else
1250 val->totalhigh = 0;
1251 val->freehigh = 0;
1252 #endif
1253 val->mem_unit = PAGE_SIZE;
1254 }
1255 #endif
1256
1257 #define K(x) ((x) << (PAGE_SHIFT-10))
1258
1259 /*
1260 * Show free area list (used inside shift_scroll-lock stuff)
1261 * We also calculate the percentage fragmentation. We do this by counting the
1262 * memory on each free list with the exception of the first item on the list.
1263 */
1264 void show_free_areas(void)
1265 {
1266 int cpu, temperature;
1267 unsigned long active;
1268 unsigned long inactive;
1269 unsigned long free;
1270 struct zone *zone;
1271
1272 for_each_zone(zone) {
1273 show_node(zone);
1274 printk("%s per-cpu:", zone->name);
1275
1276 if (!populated_zone(zone)) {
1277 printk(" empty\n");
1278 continue;
1279 } else
1280 printk("\n");
1281
1282 for_each_online_cpu(cpu) {
1283 struct per_cpu_pageset *pageset;
1284
1285 pageset = zone_pcp(zone, cpu);
1286
1287 for (temperature = 0; temperature < 2; temperature++)
1288 printk("cpu %d %s: high %d, batch %d used:%d\n",
1289 cpu,
1290 temperature ? "cold" : "hot",
1291 pageset->pcp[temperature].high,
1292 pageset->pcp[temperature].batch,
1293 pageset->pcp[temperature].count);
1294 }
1295 }
1296
1297 get_zone_counts(&active, &inactive, &free);
1298
1299 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1300 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1301 active,
1302 inactive,
1303 global_page_state(NR_FILE_DIRTY),
1304 global_page_state(NR_WRITEBACK),
1305 global_page_state(NR_UNSTABLE_NFS),
1306 nr_free_pages(),
1307 global_page_state(NR_SLAB),
1308 global_page_state(NR_FILE_MAPPED),
1309 global_page_state(NR_PAGETABLE));
1310
1311 for_each_zone(zone) {
1312 int i;
1313
1314 show_node(zone);
1315 printk("%s"
1316 " free:%lukB"
1317 " min:%lukB"
1318 " low:%lukB"
1319 " high:%lukB"
1320 " active:%lukB"
1321 " inactive:%lukB"
1322 " present:%lukB"
1323 " pages_scanned:%lu"
1324 " all_unreclaimable? %s"
1325 "\n",
1326 zone->name,
1327 K(zone->free_pages),
1328 K(zone->pages_min),
1329 K(zone->pages_low),
1330 K(zone->pages_high),
1331 K(zone->nr_active),
1332 K(zone->nr_inactive),
1333 K(zone->present_pages),
1334 zone->pages_scanned,
1335 (zone->all_unreclaimable ? "yes" : "no")
1336 );
1337 printk("lowmem_reserve[]:");
1338 for (i = 0; i < MAX_NR_ZONES; i++)
1339 printk(" %lu", zone->lowmem_reserve[i]);
1340 printk("\n");
1341 }
1342
1343 for_each_zone(zone) {
1344 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1345
1346 show_node(zone);
1347 printk("%s: ", zone->name);
1348 if (!populated_zone(zone)) {
1349 printk("empty\n");
1350 continue;
1351 }
1352
1353 spin_lock_irqsave(&zone->lock, flags);
1354 for (order = 0; order < MAX_ORDER; order++) {
1355 nr[order] = zone->free_area[order].nr_free;
1356 total += nr[order] << order;
1357 }
1358 spin_unlock_irqrestore(&zone->lock, flags);
1359 for (order = 0; order < MAX_ORDER; order++)
1360 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1361 printk("= %lukB\n", K(total));
1362 }
1363
1364 show_swap_cache_info();
1365 }
1366
1367 /*
1368 * Builds allocation fallback zone lists.
1369 *
1370 * Add all populated zones of a node to the zonelist.
1371 */
1372 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1373 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1374 {
1375 struct zone *zone;
1376
1377 BUG_ON(zone_type >= MAX_NR_ZONES);
1378 zone_type++;
1379
1380 do {
1381 zone_type--;
1382 zone = pgdat->node_zones + zone_type;
1383 if (populated_zone(zone)) {
1384 zonelist->zones[nr_zones++] = zone;
1385 check_highest_zone(zone_type);
1386 }
1387
1388 } while (zone_type);
1389 return nr_zones;
1390 }
1391
1392 #ifdef CONFIG_NUMA
1393 #define MAX_NODE_LOAD (num_online_nodes())
1394 static int __meminitdata node_load[MAX_NUMNODES];
1395 /**
1396 * find_next_best_node - find the next node that should appear in a given node's fallback list
1397 * @node: node whose fallback list we're appending
1398 * @used_node_mask: nodemask_t of already used nodes
1399 *
1400 * We use a number of factors to determine which is the next node that should
1401 * appear on a given node's fallback list. The node should not have appeared
1402 * already in @node's fallback list, and it should be the next closest node
1403 * according to the distance array (which contains arbitrary distance values
1404 * from each node to each node in the system), and should also prefer nodes
1405 * with no CPUs, since presumably they'll have very little allocation pressure
1406 * on them otherwise.
1407 * It returns -1 if no node is found.
1408 */
1409 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1410 {
1411 int n, val;
1412 int min_val = INT_MAX;
1413 int best_node = -1;
1414
1415 /* Use the local node if we haven't already */
1416 if (!node_isset(node, *used_node_mask)) {
1417 node_set(node, *used_node_mask);
1418 return node;
1419 }
1420
1421 for_each_online_node(n) {
1422 cpumask_t tmp;
1423
1424 /* Don't want a node to appear more than once */
1425 if (node_isset(n, *used_node_mask))
1426 continue;
1427
1428 /* Use the distance array to find the distance */
1429 val = node_distance(node, n);
1430
1431 /* Penalize nodes under us ("prefer the next node") */
1432 val += (n < node);
1433
1434 /* Give preference to headless and unused nodes */
1435 tmp = node_to_cpumask(n);
1436 if (!cpus_empty(tmp))
1437 val += PENALTY_FOR_NODE_WITH_CPUS;
1438
1439 /* Slight preference for less loaded node */
1440 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1441 val += node_load[n];
1442
1443 if (val < min_val) {
1444 min_val = val;
1445 best_node = n;
1446 }
1447 }
1448
1449 if (best_node >= 0)
1450 node_set(best_node, *used_node_mask);
1451
1452 return best_node;
1453 }
1454
1455 static void __meminit build_zonelists(pg_data_t *pgdat)
1456 {
1457 int j, node, local_node;
1458 enum zone_type i;
1459 int prev_node, load;
1460 struct zonelist *zonelist;
1461 nodemask_t used_mask;
1462
1463 /* initialize zonelists */
1464 for (i = 0; i < MAX_NR_ZONES; i++) {
1465 zonelist = pgdat->node_zonelists + i;
1466 zonelist->zones[0] = NULL;
1467 }
1468
1469 /* NUMA-aware ordering of nodes */
1470 local_node = pgdat->node_id;
1471 load = num_online_nodes();
1472 prev_node = local_node;
1473 nodes_clear(used_mask);
1474 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1475 int distance = node_distance(local_node, node);
1476
1477 /*
1478 * If another node is sufficiently far away then it is better
1479 * to reclaim pages in a zone before going off node.
1480 */
1481 if (distance > RECLAIM_DISTANCE)
1482 zone_reclaim_mode = 1;
1483
1484 /*
1485 * We don't want to pressure a particular node.
1486 * So adding penalty to the first node in same
1487 * distance group to make it round-robin.
1488 */
1489
1490 if (distance != node_distance(local_node, prev_node))
1491 node_load[node] += load;
1492 prev_node = node;
1493 load--;
1494 for (i = 0; i < MAX_NR_ZONES; i++) {
1495 zonelist = pgdat->node_zonelists + i;
1496 for (j = 0; zonelist->zones[j] != NULL; j++);
1497
1498 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1499 zonelist->zones[j] = NULL;
1500 }
1501 }
1502 }
1503
1504 #else /* CONFIG_NUMA */
1505
1506 static void __meminit build_zonelists(pg_data_t *pgdat)
1507 {
1508 int node, local_node;
1509 enum zone_type i,j;
1510
1511 local_node = pgdat->node_id;
1512 for (i = 0; i < MAX_NR_ZONES; i++) {
1513 struct zonelist *zonelist;
1514
1515 zonelist = pgdat->node_zonelists + i;
1516
1517 j = build_zonelists_node(pgdat, zonelist, 0, i);
1518 /*
1519 * Now we build the zonelist so that it contains the zones
1520 * of all the other nodes.
1521 * We don't want to pressure a particular node, so when
1522 * building the zones for node N, we make sure that the
1523 * zones coming right after the local ones are those from
1524 * node N+1 (modulo N)
1525 */
1526 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1527 if (!node_online(node))
1528 continue;
1529 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1530 }
1531 for (node = 0; node < local_node; node++) {
1532 if (!node_online(node))
1533 continue;
1534 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1535 }
1536
1537 zonelist->zones[j] = NULL;
1538 }
1539 }
1540
1541 #endif /* CONFIG_NUMA */
1542
1543 /* return values int ....just for stop_machine_run() */
1544 static int __meminit __build_all_zonelists(void *dummy)
1545 {
1546 int nid;
1547 for_each_online_node(nid)
1548 build_zonelists(NODE_DATA(nid));
1549 return 0;
1550 }
1551
1552 void __meminit build_all_zonelists(void)
1553 {
1554 if (system_state == SYSTEM_BOOTING) {
1555 __build_all_zonelists(0);
1556 cpuset_init_current_mems_allowed();
1557 } else {
1558 /* we have to stop all cpus to guaranntee there is no user
1559 of zonelist */
1560 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1561 /* cpuset refresh routine should be here */
1562 }
1563 vm_total_pages = nr_free_pagecache_pages();
1564 printk("Built %i zonelists. Total pages: %ld\n",
1565 num_online_nodes(), vm_total_pages);
1566 }
1567
1568 /*
1569 * Helper functions to size the waitqueue hash table.
1570 * Essentially these want to choose hash table sizes sufficiently
1571 * large so that collisions trying to wait on pages are rare.
1572 * But in fact, the number of active page waitqueues on typical
1573 * systems is ridiculously low, less than 200. So this is even
1574 * conservative, even though it seems large.
1575 *
1576 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1577 * waitqueues, i.e. the size of the waitq table given the number of pages.
1578 */
1579 #define PAGES_PER_WAITQUEUE 256
1580
1581 #ifndef CONFIG_MEMORY_HOTPLUG
1582 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1583 {
1584 unsigned long size = 1;
1585
1586 pages /= PAGES_PER_WAITQUEUE;
1587
1588 while (size < pages)
1589 size <<= 1;
1590
1591 /*
1592 * Once we have dozens or even hundreds of threads sleeping
1593 * on IO we've got bigger problems than wait queue collision.
1594 * Limit the size of the wait table to a reasonable size.
1595 */
1596 size = min(size, 4096UL);
1597
1598 return max(size, 4UL);
1599 }
1600 #else
1601 /*
1602 * A zone's size might be changed by hot-add, so it is not possible to determine
1603 * a suitable size for its wait_table. So we use the maximum size now.
1604 *
1605 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1606 *
1607 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1608 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1609 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1610 *
1611 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1612 * or more by the traditional way. (See above). It equals:
1613 *
1614 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1615 * ia64(16K page size) : = ( 8G + 4M)byte.
1616 * powerpc (64K page size) : = (32G +16M)byte.
1617 */
1618 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1619 {
1620 return 4096UL;
1621 }
1622 #endif
1623
1624 /*
1625 * This is an integer logarithm so that shifts can be used later
1626 * to extract the more random high bits from the multiplicative
1627 * hash function before the remainder is taken.
1628 */
1629 static inline unsigned long wait_table_bits(unsigned long size)
1630 {
1631 return ffz(~size);
1632 }
1633
1634 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1635
1636 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1637 unsigned long *zones_size, unsigned long *zholes_size)
1638 {
1639 unsigned long realtotalpages, totalpages = 0;
1640 enum zone_type i;
1641
1642 for (i = 0; i < MAX_NR_ZONES; i++)
1643 totalpages += zones_size[i];
1644 pgdat->node_spanned_pages = totalpages;
1645
1646 realtotalpages = totalpages;
1647 if (zholes_size)
1648 for (i = 0; i < MAX_NR_ZONES; i++)
1649 realtotalpages -= zholes_size[i];
1650 pgdat->node_present_pages = realtotalpages;
1651 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1652 }
1653
1654
1655 /*
1656 * Initially all pages are reserved - free ones are freed
1657 * up by free_all_bootmem() once the early boot process is
1658 * done. Non-atomic initialization, single-pass.
1659 */
1660 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1661 unsigned long start_pfn)
1662 {
1663 struct page *page;
1664 unsigned long end_pfn = start_pfn + size;
1665 unsigned long pfn;
1666
1667 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1668 if (!early_pfn_valid(pfn))
1669 continue;
1670 page = pfn_to_page(pfn);
1671 set_page_links(page, zone, nid, pfn);
1672 init_page_count(page);
1673 reset_page_mapcount(page);
1674 SetPageReserved(page);
1675 INIT_LIST_HEAD(&page->lru);
1676 #ifdef WANT_PAGE_VIRTUAL
1677 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1678 if (!is_highmem_idx(zone))
1679 set_page_address(page, __va(pfn << PAGE_SHIFT));
1680 #endif
1681 }
1682 }
1683
1684 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1685 unsigned long size)
1686 {
1687 int order;
1688 for (order = 0; order < MAX_ORDER ; order++) {
1689 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1690 zone->free_area[order].nr_free = 0;
1691 }
1692 }
1693
1694 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1695 void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1696 unsigned long pfn, unsigned long size)
1697 {
1698 unsigned long snum = pfn_to_section_nr(pfn);
1699 unsigned long end = pfn_to_section_nr(pfn + size);
1700
1701 if (FLAGS_HAS_NODE)
1702 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1703 else
1704 for (; snum <= end; snum++)
1705 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1706 }
1707
1708 #ifndef __HAVE_ARCH_MEMMAP_INIT
1709 #define memmap_init(size, nid, zone, start_pfn) \
1710 memmap_init_zone((size), (nid), (zone), (start_pfn))
1711 #endif
1712
1713 static int __cpuinit zone_batchsize(struct zone *zone)
1714 {
1715 int batch;
1716
1717 /*
1718 * The per-cpu-pages pools are set to around 1000th of the
1719 * size of the zone. But no more than 1/2 of a meg.
1720 *
1721 * OK, so we don't know how big the cache is. So guess.
1722 */
1723 batch = zone->present_pages / 1024;
1724 if (batch * PAGE_SIZE > 512 * 1024)
1725 batch = (512 * 1024) / PAGE_SIZE;
1726 batch /= 4; /* We effectively *= 4 below */
1727 if (batch < 1)
1728 batch = 1;
1729
1730 /*
1731 * Clamp the batch to a 2^n - 1 value. Having a power
1732 * of 2 value was found to be more likely to have
1733 * suboptimal cache aliasing properties in some cases.
1734 *
1735 * For example if 2 tasks are alternately allocating
1736 * batches of pages, one task can end up with a lot
1737 * of pages of one half of the possible page colors
1738 * and the other with pages of the other colors.
1739 */
1740 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1741
1742 return batch;
1743 }
1744
1745 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1746 {
1747 struct per_cpu_pages *pcp;
1748
1749 memset(p, 0, sizeof(*p));
1750
1751 pcp = &p->pcp[0]; /* hot */
1752 pcp->count = 0;
1753 pcp->high = 6 * batch;
1754 pcp->batch = max(1UL, 1 * batch);
1755 INIT_LIST_HEAD(&pcp->list);
1756
1757 pcp = &p->pcp[1]; /* cold*/
1758 pcp->count = 0;
1759 pcp->high = 2 * batch;
1760 pcp->batch = max(1UL, batch/2);
1761 INIT_LIST_HEAD(&pcp->list);
1762 }
1763
1764 /*
1765 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1766 * to the value high for the pageset p.
1767 */
1768
1769 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1770 unsigned long high)
1771 {
1772 struct per_cpu_pages *pcp;
1773
1774 pcp = &p->pcp[0]; /* hot list */
1775 pcp->high = high;
1776 pcp->batch = max(1UL, high/4);
1777 if ((high/4) > (PAGE_SHIFT * 8))
1778 pcp->batch = PAGE_SHIFT * 8;
1779 }
1780
1781
1782 #ifdef CONFIG_NUMA
1783 /*
1784 * Boot pageset table. One per cpu which is going to be used for all
1785 * zones and all nodes. The parameters will be set in such a way
1786 * that an item put on a list will immediately be handed over to
1787 * the buddy list. This is safe since pageset manipulation is done
1788 * with interrupts disabled.
1789 *
1790 * Some NUMA counter updates may also be caught by the boot pagesets.
1791 *
1792 * The boot_pagesets must be kept even after bootup is complete for
1793 * unused processors and/or zones. They do play a role for bootstrapping
1794 * hotplugged processors.
1795 *
1796 * zoneinfo_show() and maybe other functions do
1797 * not check if the processor is online before following the pageset pointer.
1798 * Other parts of the kernel may not check if the zone is available.
1799 */
1800 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1801
1802 /*
1803 * Dynamically allocate memory for the
1804 * per cpu pageset array in struct zone.
1805 */
1806 static int __cpuinit process_zones(int cpu)
1807 {
1808 struct zone *zone, *dzone;
1809
1810 for_each_zone(zone) {
1811
1812 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1813 GFP_KERNEL, cpu_to_node(cpu));
1814 if (!zone_pcp(zone, cpu))
1815 goto bad;
1816
1817 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1818
1819 if (percpu_pagelist_fraction)
1820 setup_pagelist_highmark(zone_pcp(zone, cpu),
1821 (zone->present_pages / percpu_pagelist_fraction));
1822 }
1823
1824 return 0;
1825 bad:
1826 for_each_zone(dzone) {
1827 if (dzone == zone)
1828 break;
1829 kfree(zone_pcp(dzone, cpu));
1830 zone_pcp(dzone, cpu) = NULL;
1831 }
1832 return -ENOMEM;
1833 }
1834
1835 static inline void free_zone_pagesets(int cpu)
1836 {
1837 struct zone *zone;
1838
1839 for_each_zone(zone) {
1840 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1841
1842 /* Free per_cpu_pageset if it is slab allocated */
1843 if (pset != &boot_pageset[cpu])
1844 kfree(pset);
1845 zone_pcp(zone, cpu) = NULL;
1846 }
1847 }
1848
1849 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1850 unsigned long action,
1851 void *hcpu)
1852 {
1853 int cpu = (long)hcpu;
1854 int ret = NOTIFY_OK;
1855
1856 switch (action) {
1857 case CPU_UP_PREPARE:
1858 if (process_zones(cpu))
1859 ret = NOTIFY_BAD;
1860 break;
1861 case CPU_UP_CANCELED:
1862 case CPU_DEAD:
1863 free_zone_pagesets(cpu);
1864 break;
1865 default:
1866 break;
1867 }
1868 return ret;
1869 }
1870
1871 static struct notifier_block __cpuinitdata pageset_notifier =
1872 { &pageset_cpuup_callback, NULL, 0 };
1873
1874 void __init setup_per_cpu_pageset(void)
1875 {
1876 int err;
1877
1878 /* Initialize per_cpu_pageset for cpu 0.
1879 * A cpuup callback will do this for every cpu
1880 * as it comes online
1881 */
1882 err = process_zones(smp_processor_id());
1883 BUG_ON(err);
1884 register_cpu_notifier(&pageset_notifier);
1885 }
1886
1887 #endif
1888
1889 static __meminit
1890 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1891 {
1892 int i;
1893 struct pglist_data *pgdat = zone->zone_pgdat;
1894 size_t alloc_size;
1895
1896 /*
1897 * The per-page waitqueue mechanism uses hashed waitqueues
1898 * per zone.
1899 */
1900 zone->wait_table_hash_nr_entries =
1901 wait_table_hash_nr_entries(zone_size_pages);
1902 zone->wait_table_bits =
1903 wait_table_bits(zone->wait_table_hash_nr_entries);
1904 alloc_size = zone->wait_table_hash_nr_entries
1905 * sizeof(wait_queue_head_t);
1906
1907 if (system_state == SYSTEM_BOOTING) {
1908 zone->wait_table = (wait_queue_head_t *)
1909 alloc_bootmem_node(pgdat, alloc_size);
1910 } else {
1911 /*
1912 * This case means that a zone whose size was 0 gets new memory
1913 * via memory hot-add.
1914 * But it may be the case that a new node was hot-added. In
1915 * this case vmalloc() will not be able to use this new node's
1916 * memory - this wait_table must be initialized to use this new
1917 * node itself as well.
1918 * To use this new node's memory, further consideration will be
1919 * necessary.
1920 */
1921 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1922 }
1923 if (!zone->wait_table)
1924 return -ENOMEM;
1925
1926 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1927 init_waitqueue_head(zone->wait_table + i);
1928
1929 return 0;
1930 }
1931
1932 static __meminit void zone_pcp_init(struct zone *zone)
1933 {
1934 int cpu;
1935 unsigned long batch = zone_batchsize(zone);
1936
1937 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1938 #ifdef CONFIG_NUMA
1939 /* Early boot. Slab allocator not functional yet */
1940 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1941 setup_pageset(&boot_pageset[cpu],0);
1942 #else
1943 setup_pageset(zone_pcp(zone,cpu), batch);
1944 #endif
1945 }
1946 if (zone->present_pages)
1947 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1948 zone->name, zone->present_pages, batch);
1949 }
1950
1951 __meminit int init_currently_empty_zone(struct zone *zone,
1952 unsigned long zone_start_pfn,
1953 unsigned long size)
1954 {
1955 struct pglist_data *pgdat = zone->zone_pgdat;
1956 int ret;
1957 ret = zone_wait_table_init(zone, size);
1958 if (ret)
1959 return ret;
1960 pgdat->nr_zones = zone_idx(zone) + 1;
1961
1962 zone->zone_start_pfn = zone_start_pfn;
1963
1964 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1965
1966 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1967
1968 return 0;
1969 }
1970
1971 /*
1972 * Set up the zone data structures:
1973 * - mark all pages reserved
1974 * - mark all memory queues empty
1975 * - clear the memory bitmaps
1976 */
1977 static void __meminit free_area_init_core(struct pglist_data *pgdat,
1978 unsigned long *zones_size, unsigned long *zholes_size)
1979 {
1980 enum zone_type j;
1981 int nid = pgdat->node_id;
1982 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1983 int ret;
1984
1985 pgdat_resize_init(pgdat);
1986 pgdat->nr_zones = 0;
1987 init_waitqueue_head(&pgdat->kswapd_wait);
1988 pgdat->kswapd_max_order = 0;
1989
1990 for (j = 0; j < MAX_NR_ZONES; j++) {
1991 struct zone *zone = pgdat->node_zones + j;
1992 unsigned long size, realsize;
1993
1994 realsize = size = zones_size[j];
1995 if (zholes_size)
1996 realsize -= zholes_size[j];
1997
1998 if (!is_highmem_idx(j))
1999 nr_kernel_pages += realsize;
2000 nr_all_pages += realsize;
2001
2002 zone->spanned_pages = size;
2003 zone->present_pages = realsize;
2004 #ifdef CONFIG_NUMA
2005 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2006 / 100;
2007 #endif
2008 zone->name = zone_names[j];
2009 spin_lock_init(&zone->lock);
2010 spin_lock_init(&zone->lru_lock);
2011 zone_seqlock_init(zone);
2012 zone->zone_pgdat = pgdat;
2013 zone->free_pages = 0;
2014
2015 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2016
2017 zone_pcp_init(zone);
2018 INIT_LIST_HEAD(&zone->active_list);
2019 INIT_LIST_HEAD(&zone->inactive_list);
2020 zone->nr_scan_active = 0;
2021 zone->nr_scan_inactive = 0;
2022 zone->nr_active = 0;
2023 zone->nr_inactive = 0;
2024 zap_zone_vm_stats(zone);
2025 atomic_set(&zone->reclaim_in_progress, 0);
2026 if (!size)
2027 continue;
2028
2029 zonetable_add(zone, nid, j, zone_start_pfn, size);
2030 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2031 BUG_ON(ret);
2032 zone_start_pfn += size;
2033 }
2034 }
2035
2036 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2037 {
2038 /* Skip empty nodes */
2039 if (!pgdat->node_spanned_pages)
2040 return;
2041
2042 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2043 /* ia64 gets its own node_mem_map, before this, without bootmem */
2044 if (!pgdat->node_mem_map) {
2045 unsigned long size, start, end;
2046 struct page *map;
2047
2048 /*
2049 * The zone's endpoints aren't required to be MAX_ORDER
2050 * aligned but the node_mem_map endpoints must be in order
2051 * for the buddy allocator to function correctly.
2052 */
2053 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2054 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2055 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2056 size = (end - start) * sizeof(struct page);
2057 map = alloc_remap(pgdat->node_id, size);
2058 if (!map)
2059 map = alloc_bootmem_node(pgdat, size);
2060 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2061 }
2062 #ifdef CONFIG_FLATMEM
2063 /*
2064 * With no DISCONTIG, the global mem_map is just set as node 0's
2065 */
2066 if (pgdat == NODE_DATA(0))
2067 mem_map = NODE_DATA(0)->node_mem_map;
2068 #endif
2069 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2070 }
2071
2072 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2073 unsigned long *zones_size, unsigned long node_start_pfn,
2074 unsigned long *zholes_size)
2075 {
2076 pgdat->node_id = nid;
2077 pgdat->node_start_pfn = node_start_pfn;
2078 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2079
2080 alloc_node_mem_map(pgdat);
2081
2082 free_area_init_core(pgdat, zones_size, zholes_size);
2083 }
2084
2085 #ifndef CONFIG_NEED_MULTIPLE_NODES
2086 static bootmem_data_t contig_bootmem_data;
2087 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2088
2089 EXPORT_SYMBOL(contig_page_data);
2090 #endif
2091
2092 void __init free_area_init(unsigned long *zones_size)
2093 {
2094 free_area_init_node(0, NODE_DATA(0), zones_size,
2095 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2096 }
2097
2098 #ifdef CONFIG_HOTPLUG_CPU
2099 static int page_alloc_cpu_notify(struct notifier_block *self,
2100 unsigned long action, void *hcpu)
2101 {
2102 int cpu = (unsigned long)hcpu;
2103
2104 if (action == CPU_DEAD) {
2105 local_irq_disable();
2106 __drain_pages(cpu);
2107 vm_events_fold_cpu(cpu);
2108 local_irq_enable();
2109 refresh_cpu_vm_stats(cpu);
2110 }
2111 return NOTIFY_OK;
2112 }
2113 #endif /* CONFIG_HOTPLUG_CPU */
2114
2115 void __init page_alloc_init(void)
2116 {
2117 hotcpu_notifier(page_alloc_cpu_notify, 0);
2118 }
2119
2120 /*
2121 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2122 * or min_free_kbytes changes.
2123 */
2124 static void calculate_totalreserve_pages(void)
2125 {
2126 struct pglist_data *pgdat;
2127 unsigned long reserve_pages = 0;
2128 enum zone_type i, j;
2129
2130 for_each_online_pgdat(pgdat) {
2131 for (i = 0; i < MAX_NR_ZONES; i++) {
2132 struct zone *zone = pgdat->node_zones + i;
2133 unsigned long max = 0;
2134
2135 /* Find valid and maximum lowmem_reserve in the zone */
2136 for (j = i; j < MAX_NR_ZONES; j++) {
2137 if (zone->lowmem_reserve[j] > max)
2138 max = zone->lowmem_reserve[j];
2139 }
2140
2141 /* we treat pages_high as reserved pages. */
2142 max += zone->pages_high;
2143
2144 if (max > zone->present_pages)
2145 max = zone->present_pages;
2146 reserve_pages += max;
2147 }
2148 }
2149 totalreserve_pages = reserve_pages;
2150 }
2151
2152 /*
2153 * setup_per_zone_lowmem_reserve - called whenever
2154 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2155 * has a correct pages reserved value, so an adequate number of
2156 * pages are left in the zone after a successful __alloc_pages().
2157 */
2158 static void setup_per_zone_lowmem_reserve(void)
2159 {
2160 struct pglist_data *pgdat;
2161 enum zone_type j, idx;
2162
2163 for_each_online_pgdat(pgdat) {
2164 for (j = 0; j < MAX_NR_ZONES; j++) {
2165 struct zone *zone = pgdat->node_zones + j;
2166 unsigned long present_pages = zone->present_pages;
2167
2168 zone->lowmem_reserve[j] = 0;
2169
2170 idx = j;
2171 while (idx) {
2172 struct zone *lower_zone;
2173
2174 idx--;
2175
2176 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2177 sysctl_lowmem_reserve_ratio[idx] = 1;
2178
2179 lower_zone = pgdat->node_zones + idx;
2180 lower_zone->lowmem_reserve[j] = present_pages /
2181 sysctl_lowmem_reserve_ratio[idx];
2182 present_pages += lower_zone->present_pages;
2183 }
2184 }
2185 }
2186
2187 /* update totalreserve_pages */
2188 calculate_totalreserve_pages();
2189 }
2190
2191 /*
2192 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2193 * that the pages_{min,low,high} values for each zone are set correctly
2194 * with respect to min_free_kbytes.
2195 */
2196 void setup_per_zone_pages_min(void)
2197 {
2198 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2199 unsigned long lowmem_pages = 0;
2200 struct zone *zone;
2201 unsigned long flags;
2202
2203 /* Calculate total number of !ZONE_HIGHMEM pages */
2204 for_each_zone(zone) {
2205 if (!is_highmem(zone))
2206 lowmem_pages += zone->present_pages;
2207 }
2208
2209 for_each_zone(zone) {
2210 u64 tmp;
2211
2212 spin_lock_irqsave(&zone->lru_lock, flags);
2213 tmp = (u64)pages_min * zone->present_pages;
2214 do_div(tmp, lowmem_pages);
2215 if (is_highmem(zone)) {
2216 /*
2217 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2218 * need highmem pages, so cap pages_min to a small
2219 * value here.
2220 *
2221 * The (pages_high-pages_low) and (pages_low-pages_min)
2222 * deltas controls asynch page reclaim, and so should
2223 * not be capped for highmem.
2224 */
2225 int min_pages;
2226
2227 min_pages = zone->present_pages / 1024;
2228 if (min_pages < SWAP_CLUSTER_MAX)
2229 min_pages = SWAP_CLUSTER_MAX;
2230 if (min_pages > 128)
2231 min_pages = 128;
2232 zone->pages_min = min_pages;
2233 } else {
2234 /*
2235 * If it's a lowmem zone, reserve a number of pages
2236 * proportionate to the zone's size.
2237 */
2238 zone->pages_min = tmp;
2239 }
2240
2241 zone->pages_low = zone->pages_min + (tmp >> 2);
2242 zone->pages_high = zone->pages_min + (tmp >> 1);
2243 spin_unlock_irqrestore(&zone->lru_lock, flags);
2244 }
2245
2246 /* update totalreserve_pages */
2247 calculate_totalreserve_pages();
2248 }
2249
2250 /*
2251 * Initialise min_free_kbytes.
2252 *
2253 * For small machines we want it small (128k min). For large machines
2254 * we want it large (64MB max). But it is not linear, because network
2255 * bandwidth does not increase linearly with machine size. We use
2256 *
2257 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2258 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2259 *
2260 * which yields
2261 *
2262 * 16MB: 512k
2263 * 32MB: 724k
2264 * 64MB: 1024k
2265 * 128MB: 1448k
2266 * 256MB: 2048k
2267 * 512MB: 2896k
2268 * 1024MB: 4096k
2269 * 2048MB: 5792k
2270 * 4096MB: 8192k
2271 * 8192MB: 11584k
2272 * 16384MB: 16384k
2273 */
2274 static int __init init_per_zone_pages_min(void)
2275 {
2276 unsigned long lowmem_kbytes;
2277
2278 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2279
2280 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2281 if (min_free_kbytes < 128)
2282 min_free_kbytes = 128;
2283 if (min_free_kbytes > 65536)
2284 min_free_kbytes = 65536;
2285 setup_per_zone_pages_min();
2286 setup_per_zone_lowmem_reserve();
2287 return 0;
2288 }
2289 module_init(init_per_zone_pages_min)
2290
2291 /*
2292 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2293 * that we can call two helper functions whenever min_free_kbytes
2294 * changes.
2295 */
2296 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2297 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2298 {
2299 proc_dointvec(table, write, file, buffer, length, ppos);
2300 setup_per_zone_pages_min();
2301 return 0;
2302 }
2303
2304 #ifdef CONFIG_NUMA
2305 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2306 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2307 {
2308 struct zone *zone;
2309 int rc;
2310
2311 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2312 if (rc)
2313 return rc;
2314
2315 for_each_zone(zone)
2316 zone->min_unmapped_pages = (zone->present_pages *
2317 sysctl_min_unmapped_ratio) / 100;
2318 return 0;
2319 }
2320 #endif
2321
2322 /*
2323 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2324 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2325 * whenever sysctl_lowmem_reserve_ratio changes.
2326 *
2327 * The reserve ratio obviously has absolutely no relation with the
2328 * pages_min watermarks. The lowmem reserve ratio can only make sense
2329 * if in function of the boot time zone sizes.
2330 */
2331 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2332 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2333 {
2334 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2335 setup_per_zone_lowmem_reserve();
2336 return 0;
2337 }
2338
2339 /*
2340 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2341 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2342 * can have before it gets flushed back to buddy allocator.
2343 */
2344
2345 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2346 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2347 {
2348 struct zone *zone;
2349 unsigned int cpu;
2350 int ret;
2351
2352 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2353 if (!write || (ret == -EINVAL))
2354 return ret;
2355 for_each_zone(zone) {
2356 for_each_online_cpu(cpu) {
2357 unsigned long high;
2358 high = zone->present_pages / percpu_pagelist_fraction;
2359 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2360 }
2361 }
2362 return 0;
2363 }
2364
2365 int hashdist = HASHDIST_DEFAULT;
2366
2367 #ifdef CONFIG_NUMA
2368 static int __init set_hashdist(char *str)
2369 {
2370 if (!str)
2371 return 0;
2372 hashdist = simple_strtoul(str, &str, 0);
2373 return 1;
2374 }
2375 __setup("hashdist=", set_hashdist);
2376 #endif
2377
2378 /*
2379 * allocate a large system hash table from bootmem
2380 * - it is assumed that the hash table must contain an exact power-of-2
2381 * quantity of entries
2382 * - limit is the number of hash buckets, not the total allocation size
2383 */
2384 void *__init alloc_large_system_hash(const char *tablename,
2385 unsigned long bucketsize,
2386 unsigned long numentries,
2387 int scale,
2388 int flags,
2389 unsigned int *_hash_shift,
2390 unsigned int *_hash_mask,
2391 unsigned long limit)
2392 {
2393 unsigned long long max = limit;
2394 unsigned long log2qty, size;
2395 void *table = NULL;
2396
2397 /* allow the kernel cmdline to have a say */
2398 if (!numentries) {
2399 /* round applicable memory size up to nearest megabyte */
2400 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2401 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2402 numentries >>= 20 - PAGE_SHIFT;
2403 numentries <<= 20 - PAGE_SHIFT;
2404
2405 /* limit to 1 bucket per 2^scale bytes of low memory */
2406 if (scale > PAGE_SHIFT)
2407 numentries >>= (scale - PAGE_SHIFT);
2408 else
2409 numentries <<= (PAGE_SHIFT - scale);
2410 }
2411 numentries = roundup_pow_of_two(numentries);
2412
2413 /* limit allocation size to 1/16 total memory by default */
2414 if (max == 0) {
2415 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2416 do_div(max, bucketsize);
2417 }
2418
2419 if (numentries > max)
2420 numentries = max;
2421
2422 log2qty = long_log2(numentries);
2423
2424 do {
2425 size = bucketsize << log2qty;
2426 if (flags & HASH_EARLY)
2427 table = alloc_bootmem(size);
2428 else if (hashdist)
2429 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2430 else {
2431 unsigned long order;
2432 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2433 ;
2434 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2435 }
2436 } while (!table && size > PAGE_SIZE && --log2qty);
2437
2438 if (!table)
2439 panic("Failed to allocate %s hash table\n", tablename);
2440
2441 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2442 tablename,
2443 (1U << log2qty),
2444 long_log2(size) - PAGE_SHIFT,
2445 size);
2446
2447 if (_hash_shift)
2448 *_hash_shift = log2qty;
2449 if (_hash_mask)
2450 *_hash_mask = (1 << log2qty) - 1;
2451
2452 return table;
2453 }
2454
2455 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2456 struct page *pfn_to_page(unsigned long pfn)
2457 {
2458 return __pfn_to_page(pfn);
2459 }
2460 unsigned long page_to_pfn(struct page *page)
2461 {
2462 return __page_to_pfn(page);
2463 }
2464 EXPORT_SYMBOL(pfn_to_page);
2465 EXPORT_SYMBOL(page_to_pfn);
2466 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
This page took 0.127317 seconds and 5 git commands to generate.