mm: Extend gfp masking to the page allocator
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
55
56 /*
57 * Array of node states.
58 */
59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62 #ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 #ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66 #endif
67 [N_CPU] = { { [0] = 1UL } },
68 #endif /* NUMA */
69 };
70 EXPORT_SYMBOL(node_states);
71
72 unsigned long totalram_pages __read_mostly;
73 unsigned long totalreserve_pages __read_mostly;
74 unsigned long highest_memmap_pfn __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81
82 static void __free_pages_ok(struct page *page, unsigned int order);
83
84 /*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
94 */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 32,
104 #endif
105 32,
106 };
107
108 EXPORT_SYMBOL(totalram_pages);
109
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
122 };
123
124 int min_free_kbytes = 1024;
125
126 unsigned long __meminitdata nr_kernel_pages;
127 unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170
171 int page_group_by_mobility_disabled __read_mostly;
172
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181 }
182
183 bool oom_killer_disabled __read_mostly;
184
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
191
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
201 }
202
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
209
210 return 1;
211 }
212 /*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
221
222 return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 return 0;
228 }
229 #endif
230
231 static void bad_page(struct page *page)
232 {
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
258 current->comm, page_to_pfn(page));
259 printk(KERN_ALERT
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
263
264 dump_stack();
265 out:
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
268 add_taint(TAINT_BAD_PAGE);
269 }
270
271 /*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
284 */
285
286 static void free_compound_page(struct page *page)
287 {
288 __free_pages_ok(page, compound_order(page));
289 }
290
291 void prep_compound_page(struct page *page, unsigned long order)
292 {
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305 }
306
307 static int destroy_compound_page(struct page *page, unsigned long order)
308 {
309 int i;
310 int nr_pages = 1 << order;
311 int bad = 0;
312
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
315 bad_page(page);
316 bad++;
317 }
318
319 __ClearPageHead(page);
320
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
323
324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 bad_page(page);
326 bad++;
327 }
328 __ClearPageTail(p);
329 }
330
331 return bad;
332 }
333
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335 {
336 int i;
337
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345 }
346
347 static inline void set_page_order(struct page *page, int order)
348 {
349 set_page_private(page, order);
350 __SetPageBuddy(page);
351 }
352
353 static inline void rmv_page_order(struct page *page)
354 {
355 __ClearPageBuddy(page);
356 set_page_private(page, 0);
357 }
358
359 /*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375 */
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378 {
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382 }
383
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
386 {
387 return (page_idx & ~(1 << order));
388 }
389
390 /*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400 *
401 * For recording page's order, we use page_private(page).
402 */
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
405 {
406 if (!pfn_valid_within(page_to_pfn(buddy)))
407 return 0;
408
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 VM_BUG_ON(page_count(buddy) != 0);
414 return 1;
415 }
416 return 0;
417 }
418
419 /*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
443 static inline void __free_one_page(struct page *page,
444 struct zone *zone, unsigned int order,
445 int migratetype)
446 {
447 unsigned long page_idx;
448
449 if (unlikely(PageCompound(page)))
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
452
453 VM_BUG_ON(migratetype == -1);
454
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
457 VM_BUG_ON(page_idx & ((1 << order) - 1));
458 VM_BUG_ON(bad_range(zone, page));
459
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
462 struct page *buddy;
463
464 buddy = __page_find_buddy(page, page_idx, order);
465 if (!page_is_buddy(page, buddy, order))
466 break;
467
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy->lru);
470 zone->free_area[order].nr_free--;
471 rmv_page_order(buddy);
472 combined_idx = __find_combined_index(page_idx, order);
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
480 zone->free_area[order].nr_free++;
481 }
482
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484 /*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489 static inline void free_page_mlock(struct page *page)
490 {
491 __ClearPageMlocked(page);
492 __dec_zone_page_state(page, NR_MLOCK);
493 __count_vm_event(UNEVICTABLE_MLOCKFREED);
494 }
495 #else
496 static void free_page_mlock(struct page *page) { }
497 #endif
498
499 static inline int free_pages_check(struct page *page)
500 {
501 if (unlikely(page_mapcount(page) |
502 (page->mapping != NULL) |
503 (atomic_read(&page->_count) != 0) |
504 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
505 bad_page(page);
506 return 1;
507 }
508 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
509 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
510 return 0;
511 }
512
513 /*
514 * Frees a list of pages.
515 * Assumes all pages on list are in same zone, and of same order.
516 * count is the number of pages to free.
517 *
518 * If the zone was previously in an "all pages pinned" state then look to
519 * see if this freeing clears that state.
520 *
521 * And clear the zone's pages_scanned counter, to hold off the "all pages are
522 * pinned" detection logic.
523 */
524 static void free_pages_bulk(struct zone *zone, int count,
525 struct list_head *list, int order)
526 {
527 spin_lock(&zone->lock);
528 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
529 zone->pages_scanned = 0;
530
531 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
532 while (count--) {
533 struct page *page;
534
535 VM_BUG_ON(list_empty(list));
536 page = list_entry(list->prev, struct page, lru);
537 /* have to delete it as __free_one_page list manipulates */
538 list_del(&page->lru);
539 __free_one_page(page, zone, order, page_private(page));
540 }
541 spin_unlock(&zone->lock);
542 }
543
544 static void free_one_page(struct zone *zone, struct page *page, int order,
545 int migratetype)
546 {
547 spin_lock(&zone->lock);
548 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
549 zone->pages_scanned = 0;
550
551 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
552 __free_one_page(page, zone, order, migratetype);
553 spin_unlock(&zone->lock);
554 }
555
556 static void __free_pages_ok(struct page *page, unsigned int order)
557 {
558 unsigned long flags;
559 int i;
560 int bad = 0;
561 int clearMlocked = PageMlocked(page);
562
563 kmemcheck_free_shadow(page, order);
564
565 for (i = 0 ; i < (1 << order) ; ++i)
566 bad += free_pages_check(page + i);
567 if (bad)
568 return;
569
570 if (!PageHighMem(page)) {
571 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
572 debug_check_no_obj_freed(page_address(page),
573 PAGE_SIZE << order);
574 }
575 arch_free_page(page, order);
576 kernel_map_pages(page, 1 << order, 0);
577
578 local_irq_save(flags);
579 if (unlikely(clearMlocked))
580 free_page_mlock(page);
581 __count_vm_events(PGFREE, 1 << order);
582 free_one_page(page_zone(page), page, order,
583 get_pageblock_migratetype(page));
584 local_irq_restore(flags);
585 }
586
587 /*
588 * permit the bootmem allocator to evade page validation on high-order frees
589 */
590 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
591 {
592 if (order == 0) {
593 __ClearPageReserved(page);
594 set_page_count(page, 0);
595 set_page_refcounted(page);
596 __free_page(page);
597 } else {
598 int loop;
599
600 prefetchw(page);
601 for (loop = 0; loop < BITS_PER_LONG; loop++) {
602 struct page *p = &page[loop];
603
604 if (loop + 1 < BITS_PER_LONG)
605 prefetchw(p + 1);
606 __ClearPageReserved(p);
607 set_page_count(p, 0);
608 }
609
610 set_page_refcounted(page);
611 __free_pages(page, order);
612 }
613 }
614
615
616 /*
617 * The order of subdivision here is critical for the IO subsystem.
618 * Please do not alter this order without good reasons and regression
619 * testing. Specifically, as large blocks of memory are subdivided,
620 * the order in which smaller blocks are delivered depends on the order
621 * they're subdivided in this function. This is the primary factor
622 * influencing the order in which pages are delivered to the IO
623 * subsystem according to empirical testing, and this is also justified
624 * by considering the behavior of a buddy system containing a single
625 * large block of memory acted on by a series of small allocations.
626 * This behavior is a critical factor in sglist merging's success.
627 *
628 * -- wli
629 */
630 static inline void expand(struct zone *zone, struct page *page,
631 int low, int high, struct free_area *area,
632 int migratetype)
633 {
634 unsigned long size = 1 << high;
635
636 while (high > low) {
637 area--;
638 high--;
639 size >>= 1;
640 VM_BUG_ON(bad_range(zone, &page[size]));
641 list_add(&page[size].lru, &area->free_list[migratetype]);
642 area->nr_free++;
643 set_page_order(&page[size], high);
644 }
645 }
646
647 /*
648 * This page is about to be returned from the page allocator
649 */
650 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
651 {
652 if (unlikely(page_mapcount(page) |
653 (page->mapping != NULL) |
654 (atomic_read(&page->_count) != 0) |
655 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
656 bad_page(page);
657 return 1;
658 }
659
660 set_page_private(page, 0);
661 set_page_refcounted(page);
662
663 arch_alloc_page(page, order);
664 kernel_map_pages(page, 1 << order, 1);
665
666 if (gfp_flags & __GFP_ZERO)
667 prep_zero_page(page, order, gfp_flags);
668
669 if (order && (gfp_flags & __GFP_COMP))
670 prep_compound_page(page, order);
671
672 return 0;
673 }
674
675 /*
676 * Go through the free lists for the given migratetype and remove
677 * the smallest available page from the freelists
678 */
679 static inline
680 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
681 int migratetype)
682 {
683 unsigned int current_order;
684 struct free_area * area;
685 struct page *page;
686
687 /* Find a page of the appropriate size in the preferred list */
688 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
689 area = &(zone->free_area[current_order]);
690 if (list_empty(&area->free_list[migratetype]))
691 continue;
692
693 page = list_entry(area->free_list[migratetype].next,
694 struct page, lru);
695 list_del(&page->lru);
696 rmv_page_order(page);
697 area->nr_free--;
698 expand(zone, page, order, current_order, area, migratetype);
699 return page;
700 }
701
702 return NULL;
703 }
704
705
706 /*
707 * This array describes the order lists are fallen back to when
708 * the free lists for the desirable migrate type are depleted
709 */
710 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
711 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
714 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
715 };
716
717 /*
718 * Move the free pages in a range to the free lists of the requested type.
719 * Note that start_page and end_pages are not aligned on a pageblock
720 * boundary. If alignment is required, use move_freepages_block()
721 */
722 static int move_freepages(struct zone *zone,
723 struct page *start_page, struct page *end_page,
724 int migratetype)
725 {
726 struct page *page;
727 unsigned long order;
728 int pages_moved = 0;
729
730 #ifndef CONFIG_HOLES_IN_ZONE
731 /*
732 * page_zone is not safe to call in this context when
733 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
734 * anyway as we check zone boundaries in move_freepages_block().
735 * Remove at a later date when no bug reports exist related to
736 * grouping pages by mobility
737 */
738 BUG_ON(page_zone(start_page) != page_zone(end_page));
739 #endif
740
741 for (page = start_page; page <= end_page;) {
742 /* Make sure we are not inadvertently changing nodes */
743 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
744
745 if (!pfn_valid_within(page_to_pfn(page))) {
746 page++;
747 continue;
748 }
749
750 if (!PageBuddy(page)) {
751 page++;
752 continue;
753 }
754
755 order = page_order(page);
756 list_del(&page->lru);
757 list_add(&page->lru,
758 &zone->free_area[order].free_list[migratetype]);
759 page += 1 << order;
760 pages_moved += 1 << order;
761 }
762
763 return pages_moved;
764 }
765
766 static int move_freepages_block(struct zone *zone, struct page *page,
767 int migratetype)
768 {
769 unsigned long start_pfn, end_pfn;
770 struct page *start_page, *end_page;
771
772 start_pfn = page_to_pfn(page);
773 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
774 start_page = pfn_to_page(start_pfn);
775 end_page = start_page + pageblock_nr_pages - 1;
776 end_pfn = start_pfn + pageblock_nr_pages - 1;
777
778 /* Do not cross zone boundaries */
779 if (start_pfn < zone->zone_start_pfn)
780 start_page = page;
781 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
782 return 0;
783
784 return move_freepages(zone, start_page, end_page, migratetype);
785 }
786
787 /* Remove an element from the buddy allocator from the fallback list */
788 static inline struct page *
789 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
790 {
791 struct free_area * area;
792 int current_order;
793 struct page *page;
794 int migratetype, i;
795
796 /* Find the largest possible block of pages in the other list */
797 for (current_order = MAX_ORDER-1; current_order >= order;
798 --current_order) {
799 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
800 migratetype = fallbacks[start_migratetype][i];
801
802 /* MIGRATE_RESERVE handled later if necessary */
803 if (migratetype == MIGRATE_RESERVE)
804 continue;
805
806 area = &(zone->free_area[current_order]);
807 if (list_empty(&area->free_list[migratetype]))
808 continue;
809
810 page = list_entry(area->free_list[migratetype].next,
811 struct page, lru);
812 area->nr_free--;
813
814 /*
815 * If breaking a large block of pages, move all free
816 * pages to the preferred allocation list. If falling
817 * back for a reclaimable kernel allocation, be more
818 * agressive about taking ownership of free pages
819 */
820 if (unlikely(current_order >= (pageblock_order >> 1)) ||
821 start_migratetype == MIGRATE_RECLAIMABLE) {
822 unsigned long pages;
823 pages = move_freepages_block(zone, page,
824 start_migratetype);
825
826 /* Claim the whole block if over half of it is free */
827 if (pages >= (1 << (pageblock_order-1)))
828 set_pageblock_migratetype(page,
829 start_migratetype);
830
831 migratetype = start_migratetype;
832 }
833
834 /* Remove the page from the freelists */
835 list_del(&page->lru);
836 rmv_page_order(page);
837
838 if (current_order == pageblock_order)
839 set_pageblock_migratetype(page,
840 start_migratetype);
841
842 expand(zone, page, order, current_order, area, migratetype);
843 return page;
844 }
845 }
846
847 return NULL;
848 }
849
850 /*
851 * Do the hard work of removing an element from the buddy allocator.
852 * Call me with the zone->lock already held.
853 */
854 static struct page *__rmqueue(struct zone *zone, unsigned int order,
855 int migratetype)
856 {
857 struct page *page;
858
859 retry_reserve:
860 page = __rmqueue_smallest(zone, order, migratetype);
861
862 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
863 page = __rmqueue_fallback(zone, order, migratetype);
864
865 /*
866 * Use MIGRATE_RESERVE rather than fail an allocation. goto
867 * is used because __rmqueue_smallest is an inline function
868 * and we want just one call site
869 */
870 if (!page) {
871 migratetype = MIGRATE_RESERVE;
872 goto retry_reserve;
873 }
874 }
875
876 return page;
877 }
878
879 /*
880 * Obtain a specified number of elements from the buddy allocator, all under
881 * a single hold of the lock, for efficiency. Add them to the supplied list.
882 * Returns the number of new pages which were placed at *list.
883 */
884 static int rmqueue_bulk(struct zone *zone, unsigned int order,
885 unsigned long count, struct list_head *list,
886 int migratetype)
887 {
888 int i;
889
890 spin_lock(&zone->lock);
891 for (i = 0; i < count; ++i) {
892 struct page *page = __rmqueue(zone, order, migratetype);
893 if (unlikely(page == NULL))
894 break;
895
896 /*
897 * Split buddy pages returned by expand() are received here
898 * in physical page order. The page is added to the callers and
899 * list and the list head then moves forward. From the callers
900 * perspective, the linked list is ordered by page number in
901 * some conditions. This is useful for IO devices that can
902 * merge IO requests if the physical pages are ordered
903 * properly.
904 */
905 list_add(&page->lru, list);
906 set_page_private(page, migratetype);
907 list = &page->lru;
908 }
909 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
910 spin_unlock(&zone->lock);
911 return i;
912 }
913
914 #ifdef CONFIG_NUMA
915 /*
916 * Called from the vmstat counter updater to drain pagesets of this
917 * currently executing processor on remote nodes after they have
918 * expired.
919 *
920 * Note that this function must be called with the thread pinned to
921 * a single processor.
922 */
923 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
924 {
925 unsigned long flags;
926 int to_drain;
927
928 local_irq_save(flags);
929 if (pcp->count >= pcp->batch)
930 to_drain = pcp->batch;
931 else
932 to_drain = pcp->count;
933 free_pages_bulk(zone, to_drain, &pcp->list, 0);
934 pcp->count -= to_drain;
935 local_irq_restore(flags);
936 }
937 #endif
938
939 /*
940 * Drain pages of the indicated processor.
941 *
942 * The processor must either be the current processor and the
943 * thread pinned to the current processor or a processor that
944 * is not online.
945 */
946 static void drain_pages(unsigned int cpu)
947 {
948 unsigned long flags;
949 struct zone *zone;
950
951 for_each_populated_zone(zone) {
952 struct per_cpu_pageset *pset;
953 struct per_cpu_pages *pcp;
954
955 pset = zone_pcp(zone, cpu);
956
957 pcp = &pset->pcp;
958 local_irq_save(flags);
959 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
960 pcp->count = 0;
961 local_irq_restore(flags);
962 }
963 }
964
965 /*
966 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
967 */
968 void drain_local_pages(void *arg)
969 {
970 drain_pages(smp_processor_id());
971 }
972
973 /*
974 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
975 */
976 void drain_all_pages(void)
977 {
978 on_each_cpu(drain_local_pages, NULL, 1);
979 }
980
981 #ifdef CONFIG_HIBERNATION
982
983 void mark_free_pages(struct zone *zone)
984 {
985 unsigned long pfn, max_zone_pfn;
986 unsigned long flags;
987 int order, t;
988 struct list_head *curr;
989
990 if (!zone->spanned_pages)
991 return;
992
993 spin_lock_irqsave(&zone->lock, flags);
994
995 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
996 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
997 if (pfn_valid(pfn)) {
998 struct page *page = pfn_to_page(pfn);
999
1000 if (!swsusp_page_is_forbidden(page))
1001 swsusp_unset_page_free(page);
1002 }
1003
1004 for_each_migratetype_order(order, t) {
1005 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1006 unsigned long i;
1007
1008 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1009 for (i = 0; i < (1UL << order); i++)
1010 swsusp_set_page_free(pfn_to_page(pfn + i));
1011 }
1012 }
1013 spin_unlock_irqrestore(&zone->lock, flags);
1014 }
1015 #endif /* CONFIG_PM */
1016
1017 /*
1018 * Free a 0-order page
1019 */
1020 static void free_hot_cold_page(struct page *page, int cold)
1021 {
1022 struct zone *zone = page_zone(page);
1023 struct per_cpu_pages *pcp;
1024 unsigned long flags;
1025 int clearMlocked = PageMlocked(page);
1026
1027 kmemcheck_free_shadow(page, 0);
1028
1029 if (PageAnon(page))
1030 page->mapping = NULL;
1031 if (free_pages_check(page))
1032 return;
1033
1034 if (!PageHighMem(page)) {
1035 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1036 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1037 }
1038 arch_free_page(page, 0);
1039 kernel_map_pages(page, 1, 0);
1040
1041 pcp = &zone_pcp(zone, get_cpu())->pcp;
1042 set_page_private(page, get_pageblock_migratetype(page));
1043 local_irq_save(flags);
1044 if (unlikely(clearMlocked))
1045 free_page_mlock(page);
1046 __count_vm_event(PGFREE);
1047
1048 if (cold)
1049 list_add_tail(&page->lru, &pcp->list);
1050 else
1051 list_add(&page->lru, &pcp->list);
1052 pcp->count++;
1053 if (pcp->count >= pcp->high) {
1054 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1055 pcp->count -= pcp->batch;
1056 }
1057 local_irq_restore(flags);
1058 put_cpu();
1059 }
1060
1061 void free_hot_page(struct page *page)
1062 {
1063 free_hot_cold_page(page, 0);
1064 }
1065
1066 void free_cold_page(struct page *page)
1067 {
1068 free_hot_cold_page(page, 1);
1069 }
1070
1071 /*
1072 * split_page takes a non-compound higher-order page, and splits it into
1073 * n (1<<order) sub-pages: page[0..n]
1074 * Each sub-page must be freed individually.
1075 *
1076 * Note: this is probably too low level an operation for use in drivers.
1077 * Please consult with lkml before using this in your driver.
1078 */
1079 void split_page(struct page *page, unsigned int order)
1080 {
1081 int i;
1082
1083 VM_BUG_ON(PageCompound(page));
1084 VM_BUG_ON(!page_count(page));
1085
1086 #ifdef CONFIG_KMEMCHECK
1087 /*
1088 * Split shadow pages too, because free(page[0]) would
1089 * otherwise free the whole shadow.
1090 */
1091 if (kmemcheck_page_is_tracked(page))
1092 split_page(virt_to_page(page[0].shadow), order);
1093 #endif
1094
1095 for (i = 1; i < (1 << order); i++)
1096 set_page_refcounted(page + i);
1097 }
1098
1099 /*
1100 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1101 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1102 * or two.
1103 */
1104 static inline
1105 struct page *buffered_rmqueue(struct zone *preferred_zone,
1106 struct zone *zone, int order, gfp_t gfp_flags,
1107 int migratetype)
1108 {
1109 unsigned long flags;
1110 struct page *page;
1111 int cold = !!(gfp_flags & __GFP_COLD);
1112 int cpu;
1113
1114 again:
1115 cpu = get_cpu();
1116 if (likely(order == 0)) {
1117 struct per_cpu_pages *pcp;
1118
1119 pcp = &zone_pcp(zone, cpu)->pcp;
1120 local_irq_save(flags);
1121 if (!pcp->count) {
1122 pcp->count = rmqueue_bulk(zone, 0,
1123 pcp->batch, &pcp->list, migratetype);
1124 if (unlikely(!pcp->count))
1125 goto failed;
1126 }
1127
1128 /* Find a page of the appropriate migrate type */
1129 if (cold) {
1130 list_for_each_entry_reverse(page, &pcp->list, lru)
1131 if (page_private(page) == migratetype)
1132 break;
1133 } else {
1134 list_for_each_entry(page, &pcp->list, lru)
1135 if (page_private(page) == migratetype)
1136 break;
1137 }
1138
1139 /* Allocate more to the pcp list if necessary */
1140 if (unlikely(&page->lru == &pcp->list)) {
1141 pcp->count += rmqueue_bulk(zone, 0,
1142 pcp->batch, &pcp->list, migratetype);
1143 page = list_entry(pcp->list.next, struct page, lru);
1144 }
1145
1146 list_del(&page->lru);
1147 pcp->count--;
1148 } else {
1149 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1150 /*
1151 * __GFP_NOFAIL is not to be used in new code.
1152 *
1153 * All __GFP_NOFAIL callers should be fixed so that they
1154 * properly detect and handle allocation failures.
1155 *
1156 * We most definitely don't want callers attempting to
1157 * allocate greater than single-page units with
1158 * __GFP_NOFAIL.
1159 */
1160 WARN_ON_ONCE(order > 0);
1161 }
1162 spin_lock_irqsave(&zone->lock, flags);
1163 page = __rmqueue(zone, order, migratetype);
1164 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1165 spin_unlock(&zone->lock);
1166 if (!page)
1167 goto failed;
1168 }
1169
1170 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1171 zone_statistics(preferred_zone, zone);
1172 local_irq_restore(flags);
1173 put_cpu();
1174
1175 VM_BUG_ON(bad_range(zone, page));
1176 if (prep_new_page(page, order, gfp_flags))
1177 goto again;
1178 return page;
1179
1180 failed:
1181 local_irq_restore(flags);
1182 put_cpu();
1183 return NULL;
1184 }
1185
1186 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1187 #define ALLOC_WMARK_MIN WMARK_MIN
1188 #define ALLOC_WMARK_LOW WMARK_LOW
1189 #define ALLOC_WMARK_HIGH WMARK_HIGH
1190 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1191
1192 /* Mask to get the watermark bits */
1193 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1194
1195 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1196 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1197 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1198
1199 #ifdef CONFIG_FAIL_PAGE_ALLOC
1200
1201 static struct fail_page_alloc_attr {
1202 struct fault_attr attr;
1203
1204 u32 ignore_gfp_highmem;
1205 u32 ignore_gfp_wait;
1206 u32 min_order;
1207
1208 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1209
1210 struct dentry *ignore_gfp_highmem_file;
1211 struct dentry *ignore_gfp_wait_file;
1212 struct dentry *min_order_file;
1213
1214 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1215
1216 } fail_page_alloc = {
1217 .attr = FAULT_ATTR_INITIALIZER,
1218 .ignore_gfp_wait = 1,
1219 .ignore_gfp_highmem = 1,
1220 .min_order = 1,
1221 };
1222
1223 static int __init setup_fail_page_alloc(char *str)
1224 {
1225 return setup_fault_attr(&fail_page_alloc.attr, str);
1226 }
1227 __setup("fail_page_alloc=", setup_fail_page_alloc);
1228
1229 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1230 {
1231 if (order < fail_page_alloc.min_order)
1232 return 0;
1233 if (gfp_mask & __GFP_NOFAIL)
1234 return 0;
1235 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1236 return 0;
1237 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1238 return 0;
1239
1240 return should_fail(&fail_page_alloc.attr, 1 << order);
1241 }
1242
1243 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1244
1245 static int __init fail_page_alloc_debugfs(void)
1246 {
1247 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1248 struct dentry *dir;
1249 int err;
1250
1251 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1252 "fail_page_alloc");
1253 if (err)
1254 return err;
1255 dir = fail_page_alloc.attr.dentries.dir;
1256
1257 fail_page_alloc.ignore_gfp_wait_file =
1258 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1259 &fail_page_alloc.ignore_gfp_wait);
1260
1261 fail_page_alloc.ignore_gfp_highmem_file =
1262 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1263 &fail_page_alloc.ignore_gfp_highmem);
1264 fail_page_alloc.min_order_file =
1265 debugfs_create_u32("min-order", mode, dir,
1266 &fail_page_alloc.min_order);
1267
1268 if (!fail_page_alloc.ignore_gfp_wait_file ||
1269 !fail_page_alloc.ignore_gfp_highmem_file ||
1270 !fail_page_alloc.min_order_file) {
1271 err = -ENOMEM;
1272 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1273 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1274 debugfs_remove(fail_page_alloc.min_order_file);
1275 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1276 }
1277
1278 return err;
1279 }
1280
1281 late_initcall(fail_page_alloc_debugfs);
1282
1283 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1284
1285 #else /* CONFIG_FAIL_PAGE_ALLOC */
1286
1287 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1288 {
1289 return 0;
1290 }
1291
1292 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1293
1294 /*
1295 * Return 1 if free pages are above 'mark'. This takes into account the order
1296 * of the allocation.
1297 */
1298 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1299 int classzone_idx, int alloc_flags)
1300 {
1301 /* free_pages my go negative - that's OK */
1302 long min = mark;
1303 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1304 int o;
1305
1306 if (alloc_flags & ALLOC_HIGH)
1307 min -= min / 2;
1308 if (alloc_flags & ALLOC_HARDER)
1309 min -= min / 4;
1310
1311 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1312 return 0;
1313 for (o = 0; o < order; o++) {
1314 /* At the next order, this order's pages become unavailable */
1315 free_pages -= z->free_area[o].nr_free << o;
1316
1317 /* Require fewer higher order pages to be free */
1318 min >>= 1;
1319
1320 if (free_pages <= min)
1321 return 0;
1322 }
1323 return 1;
1324 }
1325
1326 #ifdef CONFIG_NUMA
1327 /*
1328 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1329 * skip over zones that are not allowed by the cpuset, or that have
1330 * been recently (in last second) found to be nearly full. See further
1331 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1332 * that have to skip over a lot of full or unallowed zones.
1333 *
1334 * If the zonelist cache is present in the passed in zonelist, then
1335 * returns a pointer to the allowed node mask (either the current
1336 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1337 *
1338 * If the zonelist cache is not available for this zonelist, does
1339 * nothing and returns NULL.
1340 *
1341 * If the fullzones BITMAP in the zonelist cache is stale (more than
1342 * a second since last zap'd) then we zap it out (clear its bits.)
1343 *
1344 * We hold off even calling zlc_setup, until after we've checked the
1345 * first zone in the zonelist, on the theory that most allocations will
1346 * be satisfied from that first zone, so best to examine that zone as
1347 * quickly as we can.
1348 */
1349 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1350 {
1351 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1352 nodemask_t *allowednodes; /* zonelist_cache approximation */
1353
1354 zlc = zonelist->zlcache_ptr;
1355 if (!zlc)
1356 return NULL;
1357
1358 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1359 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1360 zlc->last_full_zap = jiffies;
1361 }
1362
1363 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1364 &cpuset_current_mems_allowed :
1365 &node_states[N_HIGH_MEMORY];
1366 return allowednodes;
1367 }
1368
1369 /*
1370 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1371 * if it is worth looking at further for free memory:
1372 * 1) Check that the zone isn't thought to be full (doesn't have its
1373 * bit set in the zonelist_cache fullzones BITMAP).
1374 * 2) Check that the zones node (obtained from the zonelist_cache
1375 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1376 * Return true (non-zero) if zone is worth looking at further, or
1377 * else return false (zero) if it is not.
1378 *
1379 * This check -ignores- the distinction between various watermarks,
1380 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1381 * found to be full for any variation of these watermarks, it will
1382 * be considered full for up to one second by all requests, unless
1383 * we are so low on memory on all allowed nodes that we are forced
1384 * into the second scan of the zonelist.
1385 *
1386 * In the second scan we ignore this zonelist cache and exactly
1387 * apply the watermarks to all zones, even it is slower to do so.
1388 * We are low on memory in the second scan, and should leave no stone
1389 * unturned looking for a free page.
1390 */
1391 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1392 nodemask_t *allowednodes)
1393 {
1394 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1395 int i; /* index of *z in zonelist zones */
1396 int n; /* node that zone *z is on */
1397
1398 zlc = zonelist->zlcache_ptr;
1399 if (!zlc)
1400 return 1;
1401
1402 i = z - zonelist->_zonerefs;
1403 n = zlc->z_to_n[i];
1404
1405 /* This zone is worth trying if it is allowed but not full */
1406 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1407 }
1408
1409 /*
1410 * Given 'z' scanning a zonelist, set the corresponding bit in
1411 * zlc->fullzones, so that subsequent attempts to allocate a page
1412 * from that zone don't waste time re-examining it.
1413 */
1414 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1415 {
1416 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1417 int i; /* index of *z in zonelist zones */
1418
1419 zlc = zonelist->zlcache_ptr;
1420 if (!zlc)
1421 return;
1422
1423 i = z - zonelist->_zonerefs;
1424
1425 set_bit(i, zlc->fullzones);
1426 }
1427
1428 #else /* CONFIG_NUMA */
1429
1430 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1431 {
1432 return NULL;
1433 }
1434
1435 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1436 nodemask_t *allowednodes)
1437 {
1438 return 1;
1439 }
1440
1441 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1442 {
1443 }
1444 #endif /* CONFIG_NUMA */
1445
1446 /*
1447 * get_page_from_freelist goes through the zonelist trying to allocate
1448 * a page.
1449 */
1450 static struct page *
1451 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1452 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1453 struct zone *preferred_zone, int migratetype)
1454 {
1455 struct zoneref *z;
1456 struct page *page = NULL;
1457 int classzone_idx;
1458 struct zone *zone;
1459 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1460 int zlc_active = 0; /* set if using zonelist_cache */
1461 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1462
1463 classzone_idx = zone_idx(preferred_zone);
1464 zonelist_scan:
1465 /*
1466 * Scan zonelist, looking for a zone with enough free.
1467 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1468 */
1469 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1470 high_zoneidx, nodemask) {
1471 if (NUMA_BUILD && zlc_active &&
1472 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1473 continue;
1474 if ((alloc_flags & ALLOC_CPUSET) &&
1475 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1476 goto try_next_zone;
1477
1478 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1479 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1480 unsigned long mark;
1481 int ret;
1482
1483 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1484 if (zone_watermark_ok(zone, order, mark,
1485 classzone_idx, alloc_flags))
1486 goto try_this_zone;
1487
1488 if (zone_reclaim_mode == 0)
1489 goto this_zone_full;
1490
1491 ret = zone_reclaim(zone, gfp_mask, order);
1492 switch (ret) {
1493 case ZONE_RECLAIM_NOSCAN:
1494 /* did not scan */
1495 goto try_next_zone;
1496 case ZONE_RECLAIM_FULL:
1497 /* scanned but unreclaimable */
1498 goto this_zone_full;
1499 default:
1500 /* did we reclaim enough */
1501 if (!zone_watermark_ok(zone, order, mark,
1502 classzone_idx, alloc_flags))
1503 goto this_zone_full;
1504 }
1505 }
1506
1507 try_this_zone:
1508 page = buffered_rmqueue(preferred_zone, zone, order,
1509 gfp_mask, migratetype);
1510 if (page)
1511 break;
1512 this_zone_full:
1513 if (NUMA_BUILD)
1514 zlc_mark_zone_full(zonelist, z);
1515 try_next_zone:
1516 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1517 /*
1518 * we do zlc_setup after the first zone is tried but only
1519 * if there are multiple nodes make it worthwhile
1520 */
1521 allowednodes = zlc_setup(zonelist, alloc_flags);
1522 zlc_active = 1;
1523 did_zlc_setup = 1;
1524 }
1525 }
1526
1527 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1528 /* Disable zlc cache for second zonelist scan */
1529 zlc_active = 0;
1530 goto zonelist_scan;
1531 }
1532 return page;
1533 }
1534
1535 static inline int
1536 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1537 unsigned long pages_reclaimed)
1538 {
1539 /* Do not loop if specifically requested */
1540 if (gfp_mask & __GFP_NORETRY)
1541 return 0;
1542
1543 /*
1544 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1545 * means __GFP_NOFAIL, but that may not be true in other
1546 * implementations.
1547 */
1548 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1549 return 1;
1550
1551 /*
1552 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1553 * specified, then we retry until we no longer reclaim any pages
1554 * (above), or we've reclaimed an order of pages at least as
1555 * large as the allocation's order. In both cases, if the
1556 * allocation still fails, we stop retrying.
1557 */
1558 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1559 return 1;
1560
1561 /*
1562 * Don't let big-order allocations loop unless the caller
1563 * explicitly requests that.
1564 */
1565 if (gfp_mask & __GFP_NOFAIL)
1566 return 1;
1567
1568 return 0;
1569 }
1570
1571 static inline struct page *
1572 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1573 struct zonelist *zonelist, enum zone_type high_zoneidx,
1574 nodemask_t *nodemask, struct zone *preferred_zone,
1575 int migratetype)
1576 {
1577 struct page *page;
1578
1579 /* Acquire the OOM killer lock for the zones in zonelist */
1580 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1581 schedule_timeout_uninterruptible(1);
1582 return NULL;
1583 }
1584
1585 /*
1586 * Go through the zonelist yet one more time, keep very high watermark
1587 * here, this is only to catch a parallel oom killing, we must fail if
1588 * we're still under heavy pressure.
1589 */
1590 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1591 order, zonelist, high_zoneidx,
1592 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1593 preferred_zone, migratetype);
1594 if (page)
1595 goto out;
1596
1597 /* The OOM killer will not help higher order allocs */
1598 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1599 goto out;
1600
1601 /* Exhausted what can be done so it's blamo time */
1602 out_of_memory(zonelist, gfp_mask, order);
1603
1604 out:
1605 clear_zonelist_oom(zonelist, gfp_mask);
1606 return page;
1607 }
1608
1609 /* The really slow allocator path where we enter direct reclaim */
1610 static inline struct page *
1611 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1612 struct zonelist *zonelist, enum zone_type high_zoneidx,
1613 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1614 int migratetype, unsigned long *did_some_progress)
1615 {
1616 struct page *page = NULL;
1617 struct reclaim_state reclaim_state;
1618 struct task_struct *p = current;
1619
1620 cond_resched();
1621
1622 /* We now go into synchronous reclaim */
1623 cpuset_memory_pressure_bump();
1624
1625 /*
1626 * The task's cpuset might have expanded its set of allowable nodes
1627 */
1628 p->flags |= PF_MEMALLOC;
1629 lockdep_set_current_reclaim_state(gfp_mask);
1630 reclaim_state.reclaimed_slab = 0;
1631 p->reclaim_state = &reclaim_state;
1632
1633 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1634
1635 p->reclaim_state = NULL;
1636 lockdep_clear_current_reclaim_state();
1637 p->flags &= ~PF_MEMALLOC;
1638
1639 cond_resched();
1640
1641 if (order != 0)
1642 drain_all_pages();
1643
1644 if (likely(*did_some_progress))
1645 page = get_page_from_freelist(gfp_mask, nodemask, order,
1646 zonelist, high_zoneidx,
1647 alloc_flags, preferred_zone,
1648 migratetype);
1649 return page;
1650 }
1651
1652 /*
1653 * This is called in the allocator slow-path if the allocation request is of
1654 * sufficient urgency to ignore watermarks and take other desperate measures
1655 */
1656 static inline struct page *
1657 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1658 struct zonelist *zonelist, enum zone_type high_zoneidx,
1659 nodemask_t *nodemask, struct zone *preferred_zone,
1660 int migratetype)
1661 {
1662 struct page *page;
1663
1664 do {
1665 page = get_page_from_freelist(gfp_mask, nodemask, order,
1666 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1667 preferred_zone, migratetype);
1668
1669 if (!page && gfp_mask & __GFP_NOFAIL)
1670 congestion_wait(WRITE, HZ/50);
1671 } while (!page && (gfp_mask & __GFP_NOFAIL));
1672
1673 return page;
1674 }
1675
1676 static inline
1677 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1678 enum zone_type high_zoneidx)
1679 {
1680 struct zoneref *z;
1681 struct zone *zone;
1682
1683 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1684 wakeup_kswapd(zone, order);
1685 }
1686
1687 static inline int
1688 gfp_to_alloc_flags(gfp_t gfp_mask)
1689 {
1690 struct task_struct *p = current;
1691 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1692 const gfp_t wait = gfp_mask & __GFP_WAIT;
1693
1694 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1695 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1696
1697 /*
1698 * The caller may dip into page reserves a bit more if the caller
1699 * cannot run direct reclaim, or if the caller has realtime scheduling
1700 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1701 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1702 */
1703 alloc_flags |= (gfp_mask & __GFP_HIGH);
1704
1705 if (!wait) {
1706 alloc_flags |= ALLOC_HARDER;
1707 /*
1708 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1709 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1710 */
1711 alloc_flags &= ~ALLOC_CPUSET;
1712 } else if (unlikely(rt_task(p)))
1713 alloc_flags |= ALLOC_HARDER;
1714
1715 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1716 if (!in_interrupt() &&
1717 ((p->flags & PF_MEMALLOC) ||
1718 unlikely(test_thread_flag(TIF_MEMDIE))))
1719 alloc_flags |= ALLOC_NO_WATERMARKS;
1720 }
1721
1722 return alloc_flags;
1723 }
1724
1725 static inline struct page *
1726 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1727 struct zonelist *zonelist, enum zone_type high_zoneidx,
1728 nodemask_t *nodemask, struct zone *preferred_zone,
1729 int migratetype)
1730 {
1731 const gfp_t wait = gfp_mask & __GFP_WAIT;
1732 struct page *page = NULL;
1733 int alloc_flags;
1734 unsigned long pages_reclaimed = 0;
1735 unsigned long did_some_progress;
1736 struct task_struct *p = current;
1737
1738 /*
1739 * In the slowpath, we sanity check order to avoid ever trying to
1740 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1741 * be using allocators in order of preference for an area that is
1742 * too large.
1743 */
1744 if (WARN_ON_ONCE(order >= MAX_ORDER))
1745 return NULL;
1746
1747 /*
1748 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1749 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1750 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1751 * using a larger set of nodes after it has established that the
1752 * allowed per node queues are empty and that nodes are
1753 * over allocated.
1754 */
1755 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1756 goto nopage;
1757
1758 wake_all_kswapd(order, zonelist, high_zoneidx);
1759
1760 /*
1761 * OK, we're below the kswapd watermark and have kicked background
1762 * reclaim. Now things get more complex, so set up alloc_flags according
1763 * to how we want to proceed.
1764 */
1765 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1766
1767 restart:
1768 /* This is the last chance, in general, before the goto nopage. */
1769 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1770 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1771 preferred_zone, migratetype);
1772 if (page)
1773 goto got_pg;
1774
1775 rebalance:
1776 /* Allocate without watermarks if the context allows */
1777 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1778 page = __alloc_pages_high_priority(gfp_mask, order,
1779 zonelist, high_zoneidx, nodemask,
1780 preferred_zone, migratetype);
1781 if (page)
1782 goto got_pg;
1783 }
1784
1785 /* Atomic allocations - we can't balance anything */
1786 if (!wait)
1787 goto nopage;
1788
1789 /* Avoid recursion of direct reclaim */
1790 if (p->flags & PF_MEMALLOC)
1791 goto nopage;
1792
1793 /* Try direct reclaim and then allocating */
1794 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1795 zonelist, high_zoneidx,
1796 nodemask,
1797 alloc_flags, preferred_zone,
1798 migratetype, &did_some_progress);
1799 if (page)
1800 goto got_pg;
1801
1802 /*
1803 * If we failed to make any progress reclaiming, then we are
1804 * running out of options and have to consider going OOM
1805 */
1806 if (!did_some_progress) {
1807 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1808 if (oom_killer_disabled)
1809 goto nopage;
1810 page = __alloc_pages_may_oom(gfp_mask, order,
1811 zonelist, high_zoneidx,
1812 nodemask, preferred_zone,
1813 migratetype);
1814 if (page)
1815 goto got_pg;
1816
1817 /*
1818 * The OOM killer does not trigger for high-order
1819 * ~__GFP_NOFAIL allocations so if no progress is being
1820 * made, there are no other options and retrying is
1821 * unlikely to help.
1822 */
1823 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1824 !(gfp_mask & __GFP_NOFAIL))
1825 goto nopage;
1826
1827 goto restart;
1828 }
1829 }
1830
1831 /* Check if we should retry the allocation */
1832 pages_reclaimed += did_some_progress;
1833 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1834 /* Wait for some write requests to complete then retry */
1835 congestion_wait(WRITE, HZ/50);
1836 goto rebalance;
1837 }
1838
1839 nopage:
1840 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1841 printk(KERN_WARNING "%s: page allocation failure."
1842 " order:%d, mode:0x%x\n",
1843 p->comm, order, gfp_mask);
1844 dump_stack();
1845 show_mem();
1846 }
1847 return page;
1848 got_pg:
1849 if (kmemcheck_enabled)
1850 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1851 return page;
1852
1853 }
1854
1855 /*
1856 * This is the 'heart' of the zoned buddy allocator.
1857 */
1858 struct page *
1859 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1860 struct zonelist *zonelist, nodemask_t *nodemask)
1861 {
1862 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1863 struct zone *preferred_zone;
1864 struct page *page;
1865 int migratetype = allocflags_to_migratetype(gfp_mask);
1866
1867 gfp_mask &= gfp_allowed_mask;
1868
1869 lockdep_trace_alloc(gfp_mask);
1870
1871 might_sleep_if(gfp_mask & __GFP_WAIT);
1872
1873 if (should_fail_alloc_page(gfp_mask, order))
1874 return NULL;
1875
1876 /*
1877 * Check the zones suitable for the gfp_mask contain at least one
1878 * valid zone. It's possible to have an empty zonelist as a result
1879 * of GFP_THISNODE and a memoryless node
1880 */
1881 if (unlikely(!zonelist->_zonerefs->zone))
1882 return NULL;
1883
1884 /* The preferred zone is used for statistics later */
1885 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1886 if (!preferred_zone)
1887 return NULL;
1888
1889 /* First allocation attempt */
1890 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1891 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1892 preferred_zone, migratetype);
1893 if (unlikely(!page))
1894 page = __alloc_pages_slowpath(gfp_mask, order,
1895 zonelist, high_zoneidx, nodemask,
1896 preferred_zone, migratetype);
1897
1898 return page;
1899 }
1900 EXPORT_SYMBOL(__alloc_pages_nodemask);
1901
1902 /*
1903 * Common helper functions.
1904 */
1905 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1906 {
1907 struct page * page;
1908 page = alloc_pages(gfp_mask, order);
1909 if (!page)
1910 return 0;
1911 return (unsigned long) page_address(page);
1912 }
1913
1914 EXPORT_SYMBOL(__get_free_pages);
1915
1916 unsigned long get_zeroed_page(gfp_t gfp_mask)
1917 {
1918 struct page * page;
1919
1920 /*
1921 * get_zeroed_page() returns a 32-bit address, which cannot represent
1922 * a highmem page
1923 */
1924 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1925
1926 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1927 if (page)
1928 return (unsigned long) page_address(page);
1929 return 0;
1930 }
1931
1932 EXPORT_SYMBOL(get_zeroed_page);
1933
1934 void __pagevec_free(struct pagevec *pvec)
1935 {
1936 int i = pagevec_count(pvec);
1937
1938 while (--i >= 0)
1939 free_hot_cold_page(pvec->pages[i], pvec->cold);
1940 }
1941
1942 void __free_pages(struct page *page, unsigned int order)
1943 {
1944 if (put_page_testzero(page)) {
1945 if (order == 0)
1946 free_hot_page(page);
1947 else
1948 __free_pages_ok(page, order);
1949 }
1950 }
1951
1952 EXPORT_SYMBOL(__free_pages);
1953
1954 void free_pages(unsigned long addr, unsigned int order)
1955 {
1956 if (addr != 0) {
1957 VM_BUG_ON(!virt_addr_valid((void *)addr));
1958 __free_pages(virt_to_page((void *)addr), order);
1959 }
1960 }
1961
1962 EXPORT_SYMBOL(free_pages);
1963
1964 /**
1965 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1966 * @size: the number of bytes to allocate
1967 * @gfp_mask: GFP flags for the allocation
1968 *
1969 * This function is similar to alloc_pages(), except that it allocates the
1970 * minimum number of pages to satisfy the request. alloc_pages() can only
1971 * allocate memory in power-of-two pages.
1972 *
1973 * This function is also limited by MAX_ORDER.
1974 *
1975 * Memory allocated by this function must be released by free_pages_exact().
1976 */
1977 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1978 {
1979 unsigned int order = get_order(size);
1980 unsigned long addr;
1981
1982 addr = __get_free_pages(gfp_mask, order);
1983 if (addr) {
1984 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1985 unsigned long used = addr + PAGE_ALIGN(size);
1986
1987 split_page(virt_to_page(addr), order);
1988 while (used < alloc_end) {
1989 free_page(used);
1990 used += PAGE_SIZE;
1991 }
1992 }
1993
1994 return (void *)addr;
1995 }
1996 EXPORT_SYMBOL(alloc_pages_exact);
1997
1998 /**
1999 * free_pages_exact - release memory allocated via alloc_pages_exact()
2000 * @virt: the value returned by alloc_pages_exact.
2001 * @size: size of allocation, same value as passed to alloc_pages_exact().
2002 *
2003 * Release the memory allocated by a previous call to alloc_pages_exact.
2004 */
2005 void free_pages_exact(void *virt, size_t size)
2006 {
2007 unsigned long addr = (unsigned long)virt;
2008 unsigned long end = addr + PAGE_ALIGN(size);
2009
2010 while (addr < end) {
2011 free_page(addr);
2012 addr += PAGE_SIZE;
2013 }
2014 }
2015 EXPORT_SYMBOL(free_pages_exact);
2016
2017 static unsigned int nr_free_zone_pages(int offset)
2018 {
2019 struct zoneref *z;
2020 struct zone *zone;
2021
2022 /* Just pick one node, since fallback list is circular */
2023 unsigned int sum = 0;
2024
2025 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2026
2027 for_each_zone_zonelist(zone, z, zonelist, offset) {
2028 unsigned long size = zone->present_pages;
2029 unsigned long high = high_wmark_pages(zone);
2030 if (size > high)
2031 sum += size - high;
2032 }
2033
2034 return sum;
2035 }
2036
2037 /*
2038 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2039 */
2040 unsigned int nr_free_buffer_pages(void)
2041 {
2042 return nr_free_zone_pages(gfp_zone(GFP_USER));
2043 }
2044 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2045
2046 /*
2047 * Amount of free RAM allocatable within all zones
2048 */
2049 unsigned int nr_free_pagecache_pages(void)
2050 {
2051 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2052 }
2053
2054 static inline void show_node(struct zone *zone)
2055 {
2056 if (NUMA_BUILD)
2057 printk("Node %d ", zone_to_nid(zone));
2058 }
2059
2060 void si_meminfo(struct sysinfo *val)
2061 {
2062 val->totalram = totalram_pages;
2063 val->sharedram = 0;
2064 val->freeram = global_page_state(NR_FREE_PAGES);
2065 val->bufferram = nr_blockdev_pages();
2066 val->totalhigh = totalhigh_pages;
2067 val->freehigh = nr_free_highpages();
2068 val->mem_unit = PAGE_SIZE;
2069 }
2070
2071 EXPORT_SYMBOL(si_meminfo);
2072
2073 #ifdef CONFIG_NUMA
2074 void si_meminfo_node(struct sysinfo *val, int nid)
2075 {
2076 pg_data_t *pgdat = NODE_DATA(nid);
2077
2078 val->totalram = pgdat->node_present_pages;
2079 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2080 #ifdef CONFIG_HIGHMEM
2081 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2082 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2083 NR_FREE_PAGES);
2084 #else
2085 val->totalhigh = 0;
2086 val->freehigh = 0;
2087 #endif
2088 val->mem_unit = PAGE_SIZE;
2089 }
2090 #endif
2091
2092 #define K(x) ((x) << (PAGE_SHIFT-10))
2093
2094 /*
2095 * Show free area list (used inside shift_scroll-lock stuff)
2096 * We also calculate the percentage fragmentation. We do this by counting the
2097 * memory on each free list with the exception of the first item on the list.
2098 */
2099 void show_free_areas(void)
2100 {
2101 int cpu;
2102 struct zone *zone;
2103
2104 for_each_populated_zone(zone) {
2105 show_node(zone);
2106 printk("%s per-cpu:\n", zone->name);
2107
2108 for_each_online_cpu(cpu) {
2109 struct per_cpu_pageset *pageset;
2110
2111 pageset = zone_pcp(zone, cpu);
2112
2113 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2114 cpu, pageset->pcp.high,
2115 pageset->pcp.batch, pageset->pcp.count);
2116 }
2117 }
2118
2119 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2120 " inactive_file:%lu"
2121 " unevictable:%lu"
2122 " dirty:%lu writeback:%lu unstable:%lu\n"
2123 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2124 global_page_state(NR_ACTIVE_ANON),
2125 global_page_state(NR_ACTIVE_FILE),
2126 global_page_state(NR_INACTIVE_ANON),
2127 global_page_state(NR_INACTIVE_FILE),
2128 global_page_state(NR_UNEVICTABLE),
2129 global_page_state(NR_FILE_DIRTY),
2130 global_page_state(NR_WRITEBACK),
2131 global_page_state(NR_UNSTABLE_NFS),
2132 global_page_state(NR_FREE_PAGES),
2133 global_page_state(NR_SLAB_RECLAIMABLE) +
2134 global_page_state(NR_SLAB_UNRECLAIMABLE),
2135 global_page_state(NR_FILE_MAPPED),
2136 global_page_state(NR_PAGETABLE),
2137 global_page_state(NR_BOUNCE));
2138
2139 for_each_populated_zone(zone) {
2140 int i;
2141
2142 show_node(zone);
2143 printk("%s"
2144 " free:%lukB"
2145 " min:%lukB"
2146 " low:%lukB"
2147 " high:%lukB"
2148 " active_anon:%lukB"
2149 " inactive_anon:%lukB"
2150 " active_file:%lukB"
2151 " inactive_file:%lukB"
2152 " unevictable:%lukB"
2153 " present:%lukB"
2154 " pages_scanned:%lu"
2155 " all_unreclaimable? %s"
2156 "\n",
2157 zone->name,
2158 K(zone_page_state(zone, NR_FREE_PAGES)),
2159 K(min_wmark_pages(zone)),
2160 K(low_wmark_pages(zone)),
2161 K(high_wmark_pages(zone)),
2162 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2163 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2164 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2165 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2166 K(zone_page_state(zone, NR_UNEVICTABLE)),
2167 K(zone->present_pages),
2168 zone->pages_scanned,
2169 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2170 );
2171 printk("lowmem_reserve[]:");
2172 for (i = 0; i < MAX_NR_ZONES; i++)
2173 printk(" %lu", zone->lowmem_reserve[i]);
2174 printk("\n");
2175 }
2176
2177 for_each_populated_zone(zone) {
2178 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2179
2180 show_node(zone);
2181 printk("%s: ", zone->name);
2182
2183 spin_lock_irqsave(&zone->lock, flags);
2184 for (order = 0; order < MAX_ORDER; order++) {
2185 nr[order] = zone->free_area[order].nr_free;
2186 total += nr[order] << order;
2187 }
2188 spin_unlock_irqrestore(&zone->lock, flags);
2189 for (order = 0; order < MAX_ORDER; order++)
2190 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2191 printk("= %lukB\n", K(total));
2192 }
2193
2194 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2195
2196 show_swap_cache_info();
2197 }
2198
2199 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2200 {
2201 zoneref->zone = zone;
2202 zoneref->zone_idx = zone_idx(zone);
2203 }
2204
2205 /*
2206 * Builds allocation fallback zone lists.
2207 *
2208 * Add all populated zones of a node to the zonelist.
2209 */
2210 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2211 int nr_zones, enum zone_type zone_type)
2212 {
2213 struct zone *zone;
2214
2215 BUG_ON(zone_type >= MAX_NR_ZONES);
2216 zone_type++;
2217
2218 do {
2219 zone_type--;
2220 zone = pgdat->node_zones + zone_type;
2221 if (populated_zone(zone)) {
2222 zoneref_set_zone(zone,
2223 &zonelist->_zonerefs[nr_zones++]);
2224 check_highest_zone(zone_type);
2225 }
2226
2227 } while (zone_type);
2228 return nr_zones;
2229 }
2230
2231
2232 /*
2233 * zonelist_order:
2234 * 0 = automatic detection of better ordering.
2235 * 1 = order by ([node] distance, -zonetype)
2236 * 2 = order by (-zonetype, [node] distance)
2237 *
2238 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2239 * the same zonelist. So only NUMA can configure this param.
2240 */
2241 #define ZONELIST_ORDER_DEFAULT 0
2242 #define ZONELIST_ORDER_NODE 1
2243 #define ZONELIST_ORDER_ZONE 2
2244
2245 /* zonelist order in the kernel.
2246 * set_zonelist_order() will set this to NODE or ZONE.
2247 */
2248 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2249 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2250
2251
2252 #ifdef CONFIG_NUMA
2253 /* The value user specified ....changed by config */
2254 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2255 /* string for sysctl */
2256 #define NUMA_ZONELIST_ORDER_LEN 16
2257 char numa_zonelist_order[16] = "default";
2258
2259 /*
2260 * interface for configure zonelist ordering.
2261 * command line option "numa_zonelist_order"
2262 * = "[dD]efault - default, automatic configuration.
2263 * = "[nN]ode - order by node locality, then by zone within node
2264 * = "[zZ]one - order by zone, then by locality within zone
2265 */
2266
2267 static int __parse_numa_zonelist_order(char *s)
2268 {
2269 if (*s == 'd' || *s == 'D') {
2270 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2271 } else if (*s == 'n' || *s == 'N') {
2272 user_zonelist_order = ZONELIST_ORDER_NODE;
2273 } else if (*s == 'z' || *s == 'Z') {
2274 user_zonelist_order = ZONELIST_ORDER_ZONE;
2275 } else {
2276 printk(KERN_WARNING
2277 "Ignoring invalid numa_zonelist_order value: "
2278 "%s\n", s);
2279 return -EINVAL;
2280 }
2281 return 0;
2282 }
2283
2284 static __init int setup_numa_zonelist_order(char *s)
2285 {
2286 if (s)
2287 return __parse_numa_zonelist_order(s);
2288 return 0;
2289 }
2290 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2291
2292 /*
2293 * sysctl handler for numa_zonelist_order
2294 */
2295 int numa_zonelist_order_handler(ctl_table *table, int write,
2296 struct file *file, void __user *buffer, size_t *length,
2297 loff_t *ppos)
2298 {
2299 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2300 int ret;
2301
2302 if (write)
2303 strncpy(saved_string, (char*)table->data,
2304 NUMA_ZONELIST_ORDER_LEN);
2305 ret = proc_dostring(table, write, file, buffer, length, ppos);
2306 if (ret)
2307 return ret;
2308 if (write) {
2309 int oldval = user_zonelist_order;
2310 if (__parse_numa_zonelist_order((char*)table->data)) {
2311 /*
2312 * bogus value. restore saved string
2313 */
2314 strncpy((char*)table->data, saved_string,
2315 NUMA_ZONELIST_ORDER_LEN);
2316 user_zonelist_order = oldval;
2317 } else if (oldval != user_zonelist_order)
2318 build_all_zonelists();
2319 }
2320 return 0;
2321 }
2322
2323
2324 #define MAX_NODE_LOAD (nr_online_nodes)
2325 static int node_load[MAX_NUMNODES];
2326
2327 /**
2328 * find_next_best_node - find the next node that should appear in a given node's fallback list
2329 * @node: node whose fallback list we're appending
2330 * @used_node_mask: nodemask_t of already used nodes
2331 *
2332 * We use a number of factors to determine which is the next node that should
2333 * appear on a given node's fallback list. The node should not have appeared
2334 * already in @node's fallback list, and it should be the next closest node
2335 * according to the distance array (which contains arbitrary distance values
2336 * from each node to each node in the system), and should also prefer nodes
2337 * with no CPUs, since presumably they'll have very little allocation pressure
2338 * on them otherwise.
2339 * It returns -1 if no node is found.
2340 */
2341 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2342 {
2343 int n, val;
2344 int min_val = INT_MAX;
2345 int best_node = -1;
2346 const struct cpumask *tmp = cpumask_of_node(0);
2347
2348 /* Use the local node if we haven't already */
2349 if (!node_isset(node, *used_node_mask)) {
2350 node_set(node, *used_node_mask);
2351 return node;
2352 }
2353
2354 for_each_node_state(n, N_HIGH_MEMORY) {
2355
2356 /* Don't want a node to appear more than once */
2357 if (node_isset(n, *used_node_mask))
2358 continue;
2359
2360 /* Use the distance array to find the distance */
2361 val = node_distance(node, n);
2362
2363 /* Penalize nodes under us ("prefer the next node") */
2364 val += (n < node);
2365
2366 /* Give preference to headless and unused nodes */
2367 tmp = cpumask_of_node(n);
2368 if (!cpumask_empty(tmp))
2369 val += PENALTY_FOR_NODE_WITH_CPUS;
2370
2371 /* Slight preference for less loaded node */
2372 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2373 val += node_load[n];
2374
2375 if (val < min_val) {
2376 min_val = val;
2377 best_node = n;
2378 }
2379 }
2380
2381 if (best_node >= 0)
2382 node_set(best_node, *used_node_mask);
2383
2384 return best_node;
2385 }
2386
2387
2388 /*
2389 * Build zonelists ordered by node and zones within node.
2390 * This results in maximum locality--normal zone overflows into local
2391 * DMA zone, if any--but risks exhausting DMA zone.
2392 */
2393 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2394 {
2395 int j;
2396 struct zonelist *zonelist;
2397
2398 zonelist = &pgdat->node_zonelists[0];
2399 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2400 ;
2401 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2402 MAX_NR_ZONES - 1);
2403 zonelist->_zonerefs[j].zone = NULL;
2404 zonelist->_zonerefs[j].zone_idx = 0;
2405 }
2406
2407 /*
2408 * Build gfp_thisnode zonelists
2409 */
2410 static void build_thisnode_zonelists(pg_data_t *pgdat)
2411 {
2412 int j;
2413 struct zonelist *zonelist;
2414
2415 zonelist = &pgdat->node_zonelists[1];
2416 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2417 zonelist->_zonerefs[j].zone = NULL;
2418 zonelist->_zonerefs[j].zone_idx = 0;
2419 }
2420
2421 /*
2422 * Build zonelists ordered by zone and nodes within zones.
2423 * This results in conserving DMA zone[s] until all Normal memory is
2424 * exhausted, but results in overflowing to remote node while memory
2425 * may still exist in local DMA zone.
2426 */
2427 static int node_order[MAX_NUMNODES];
2428
2429 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2430 {
2431 int pos, j, node;
2432 int zone_type; /* needs to be signed */
2433 struct zone *z;
2434 struct zonelist *zonelist;
2435
2436 zonelist = &pgdat->node_zonelists[0];
2437 pos = 0;
2438 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2439 for (j = 0; j < nr_nodes; j++) {
2440 node = node_order[j];
2441 z = &NODE_DATA(node)->node_zones[zone_type];
2442 if (populated_zone(z)) {
2443 zoneref_set_zone(z,
2444 &zonelist->_zonerefs[pos++]);
2445 check_highest_zone(zone_type);
2446 }
2447 }
2448 }
2449 zonelist->_zonerefs[pos].zone = NULL;
2450 zonelist->_zonerefs[pos].zone_idx = 0;
2451 }
2452
2453 static int default_zonelist_order(void)
2454 {
2455 int nid, zone_type;
2456 unsigned long low_kmem_size,total_size;
2457 struct zone *z;
2458 int average_size;
2459 /*
2460 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2461 * If they are really small and used heavily, the system can fall
2462 * into OOM very easily.
2463 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2464 */
2465 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2466 low_kmem_size = 0;
2467 total_size = 0;
2468 for_each_online_node(nid) {
2469 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2470 z = &NODE_DATA(nid)->node_zones[zone_type];
2471 if (populated_zone(z)) {
2472 if (zone_type < ZONE_NORMAL)
2473 low_kmem_size += z->present_pages;
2474 total_size += z->present_pages;
2475 }
2476 }
2477 }
2478 if (!low_kmem_size || /* there are no DMA area. */
2479 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2480 return ZONELIST_ORDER_NODE;
2481 /*
2482 * look into each node's config.
2483 * If there is a node whose DMA/DMA32 memory is very big area on
2484 * local memory, NODE_ORDER may be suitable.
2485 */
2486 average_size = total_size /
2487 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2488 for_each_online_node(nid) {
2489 low_kmem_size = 0;
2490 total_size = 0;
2491 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2492 z = &NODE_DATA(nid)->node_zones[zone_type];
2493 if (populated_zone(z)) {
2494 if (zone_type < ZONE_NORMAL)
2495 low_kmem_size += z->present_pages;
2496 total_size += z->present_pages;
2497 }
2498 }
2499 if (low_kmem_size &&
2500 total_size > average_size && /* ignore small node */
2501 low_kmem_size > total_size * 70/100)
2502 return ZONELIST_ORDER_NODE;
2503 }
2504 return ZONELIST_ORDER_ZONE;
2505 }
2506
2507 static void set_zonelist_order(void)
2508 {
2509 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2510 current_zonelist_order = default_zonelist_order();
2511 else
2512 current_zonelist_order = user_zonelist_order;
2513 }
2514
2515 static void build_zonelists(pg_data_t *pgdat)
2516 {
2517 int j, node, load;
2518 enum zone_type i;
2519 nodemask_t used_mask;
2520 int local_node, prev_node;
2521 struct zonelist *zonelist;
2522 int order = current_zonelist_order;
2523
2524 /* initialize zonelists */
2525 for (i = 0; i < MAX_ZONELISTS; i++) {
2526 zonelist = pgdat->node_zonelists + i;
2527 zonelist->_zonerefs[0].zone = NULL;
2528 zonelist->_zonerefs[0].zone_idx = 0;
2529 }
2530
2531 /* NUMA-aware ordering of nodes */
2532 local_node = pgdat->node_id;
2533 load = nr_online_nodes;
2534 prev_node = local_node;
2535 nodes_clear(used_mask);
2536
2537 memset(node_load, 0, sizeof(node_load));
2538 memset(node_order, 0, sizeof(node_order));
2539 j = 0;
2540
2541 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2542 int distance = node_distance(local_node, node);
2543
2544 /*
2545 * If another node is sufficiently far away then it is better
2546 * to reclaim pages in a zone before going off node.
2547 */
2548 if (distance > RECLAIM_DISTANCE)
2549 zone_reclaim_mode = 1;
2550
2551 /*
2552 * We don't want to pressure a particular node.
2553 * So adding penalty to the first node in same
2554 * distance group to make it round-robin.
2555 */
2556 if (distance != node_distance(local_node, prev_node))
2557 node_load[node] = load;
2558
2559 prev_node = node;
2560 load--;
2561 if (order == ZONELIST_ORDER_NODE)
2562 build_zonelists_in_node_order(pgdat, node);
2563 else
2564 node_order[j++] = node; /* remember order */
2565 }
2566
2567 if (order == ZONELIST_ORDER_ZONE) {
2568 /* calculate node order -- i.e., DMA last! */
2569 build_zonelists_in_zone_order(pgdat, j);
2570 }
2571
2572 build_thisnode_zonelists(pgdat);
2573 }
2574
2575 /* Construct the zonelist performance cache - see further mmzone.h */
2576 static void build_zonelist_cache(pg_data_t *pgdat)
2577 {
2578 struct zonelist *zonelist;
2579 struct zonelist_cache *zlc;
2580 struct zoneref *z;
2581
2582 zonelist = &pgdat->node_zonelists[0];
2583 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2584 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2585 for (z = zonelist->_zonerefs; z->zone; z++)
2586 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2587 }
2588
2589
2590 #else /* CONFIG_NUMA */
2591
2592 static void set_zonelist_order(void)
2593 {
2594 current_zonelist_order = ZONELIST_ORDER_ZONE;
2595 }
2596
2597 static void build_zonelists(pg_data_t *pgdat)
2598 {
2599 int node, local_node;
2600 enum zone_type j;
2601 struct zonelist *zonelist;
2602
2603 local_node = pgdat->node_id;
2604
2605 zonelist = &pgdat->node_zonelists[0];
2606 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2607
2608 /*
2609 * Now we build the zonelist so that it contains the zones
2610 * of all the other nodes.
2611 * We don't want to pressure a particular node, so when
2612 * building the zones for node N, we make sure that the
2613 * zones coming right after the local ones are those from
2614 * node N+1 (modulo N)
2615 */
2616 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2617 if (!node_online(node))
2618 continue;
2619 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2620 MAX_NR_ZONES - 1);
2621 }
2622 for (node = 0; node < local_node; node++) {
2623 if (!node_online(node))
2624 continue;
2625 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2626 MAX_NR_ZONES - 1);
2627 }
2628
2629 zonelist->_zonerefs[j].zone = NULL;
2630 zonelist->_zonerefs[j].zone_idx = 0;
2631 }
2632
2633 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2634 static void build_zonelist_cache(pg_data_t *pgdat)
2635 {
2636 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2637 }
2638
2639 #endif /* CONFIG_NUMA */
2640
2641 /* return values int ....just for stop_machine() */
2642 static int __build_all_zonelists(void *dummy)
2643 {
2644 int nid;
2645
2646 for_each_online_node(nid) {
2647 pg_data_t *pgdat = NODE_DATA(nid);
2648
2649 build_zonelists(pgdat);
2650 build_zonelist_cache(pgdat);
2651 }
2652 return 0;
2653 }
2654
2655 void build_all_zonelists(void)
2656 {
2657 set_zonelist_order();
2658
2659 if (system_state == SYSTEM_BOOTING) {
2660 __build_all_zonelists(NULL);
2661 mminit_verify_zonelist();
2662 cpuset_init_current_mems_allowed();
2663 } else {
2664 /* we have to stop all cpus to guarantee there is no user
2665 of zonelist */
2666 stop_machine(__build_all_zonelists, NULL, NULL);
2667 /* cpuset refresh routine should be here */
2668 }
2669 vm_total_pages = nr_free_pagecache_pages();
2670 /*
2671 * Disable grouping by mobility if the number of pages in the
2672 * system is too low to allow the mechanism to work. It would be
2673 * more accurate, but expensive to check per-zone. This check is
2674 * made on memory-hotadd so a system can start with mobility
2675 * disabled and enable it later
2676 */
2677 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2678 page_group_by_mobility_disabled = 1;
2679 else
2680 page_group_by_mobility_disabled = 0;
2681
2682 printk("Built %i zonelists in %s order, mobility grouping %s. "
2683 "Total pages: %ld\n",
2684 nr_online_nodes,
2685 zonelist_order_name[current_zonelist_order],
2686 page_group_by_mobility_disabled ? "off" : "on",
2687 vm_total_pages);
2688 #ifdef CONFIG_NUMA
2689 printk("Policy zone: %s\n", zone_names[policy_zone]);
2690 #endif
2691 }
2692
2693 /*
2694 * Helper functions to size the waitqueue hash table.
2695 * Essentially these want to choose hash table sizes sufficiently
2696 * large so that collisions trying to wait on pages are rare.
2697 * But in fact, the number of active page waitqueues on typical
2698 * systems is ridiculously low, less than 200. So this is even
2699 * conservative, even though it seems large.
2700 *
2701 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2702 * waitqueues, i.e. the size of the waitq table given the number of pages.
2703 */
2704 #define PAGES_PER_WAITQUEUE 256
2705
2706 #ifndef CONFIG_MEMORY_HOTPLUG
2707 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2708 {
2709 unsigned long size = 1;
2710
2711 pages /= PAGES_PER_WAITQUEUE;
2712
2713 while (size < pages)
2714 size <<= 1;
2715
2716 /*
2717 * Once we have dozens or even hundreds of threads sleeping
2718 * on IO we've got bigger problems than wait queue collision.
2719 * Limit the size of the wait table to a reasonable size.
2720 */
2721 size = min(size, 4096UL);
2722
2723 return max(size, 4UL);
2724 }
2725 #else
2726 /*
2727 * A zone's size might be changed by hot-add, so it is not possible to determine
2728 * a suitable size for its wait_table. So we use the maximum size now.
2729 *
2730 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2731 *
2732 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2733 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2734 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2735 *
2736 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2737 * or more by the traditional way. (See above). It equals:
2738 *
2739 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2740 * ia64(16K page size) : = ( 8G + 4M)byte.
2741 * powerpc (64K page size) : = (32G +16M)byte.
2742 */
2743 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2744 {
2745 return 4096UL;
2746 }
2747 #endif
2748
2749 /*
2750 * This is an integer logarithm so that shifts can be used later
2751 * to extract the more random high bits from the multiplicative
2752 * hash function before the remainder is taken.
2753 */
2754 static inline unsigned long wait_table_bits(unsigned long size)
2755 {
2756 return ffz(~size);
2757 }
2758
2759 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2760
2761 /*
2762 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2763 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2764 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2765 * higher will lead to a bigger reserve which will get freed as contiguous
2766 * blocks as reclaim kicks in
2767 */
2768 static void setup_zone_migrate_reserve(struct zone *zone)
2769 {
2770 unsigned long start_pfn, pfn, end_pfn;
2771 struct page *page;
2772 unsigned long reserve, block_migratetype;
2773
2774 /* Get the start pfn, end pfn and the number of blocks to reserve */
2775 start_pfn = zone->zone_start_pfn;
2776 end_pfn = start_pfn + zone->spanned_pages;
2777 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2778 pageblock_order;
2779
2780 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2781 if (!pfn_valid(pfn))
2782 continue;
2783 page = pfn_to_page(pfn);
2784
2785 /* Watch out for overlapping nodes */
2786 if (page_to_nid(page) != zone_to_nid(zone))
2787 continue;
2788
2789 /* Blocks with reserved pages will never free, skip them. */
2790 if (PageReserved(page))
2791 continue;
2792
2793 block_migratetype = get_pageblock_migratetype(page);
2794
2795 /* If this block is reserved, account for it */
2796 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2797 reserve--;
2798 continue;
2799 }
2800
2801 /* Suitable for reserving if this block is movable */
2802 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2803 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2804 move_freepages_block(zone, page, MIGRATE_RESERVE);
2805 reserve--;
2806 continue;
2807 }
2808
2809 /*
2810 * If the reserve is met and this is a previous reserved block,
2811 * take it back
2812 */
2813 if (block_migratetype == MIGRATE_RESERVE) {
2814 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2815 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2816 }
2817 }
2818 }
2819
2820 /*
2821 * Initially all pages are reserved - free ones are freed
2822 * up by free_all_bootmem() once the early boot process is
2823 * done. Non-atomic initialization, single-pass.
2824 */
2825 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2826 unsigned long start_pfn, enum memmap_context context)
2827 {
2828 struct page *page;
2829 unsigned long end_pfn = start_pfn + size;
2830 unsigned long pfn;
2831 struct zone *z;
2832
2833 if (highest_memmap_pfn < end_pfn - 1)
2834 highest_memmap_pfn = end_pfn - 1;
2835
2836 z = &NODE_DATA(nid)->node_zones[zone];
2837 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2838 /*
2839 * There can be holes in boot-time mem_map[]s
2840 * handed to this function. They do not
2841 * exist on hotplugged memory.
2842 */
2843 if (context == MEMMAP_EARLY) {
2844 if (!early_pfn_valid(pfn))
2845 continue;
2846 if (!early_pfn_in_nid(pfn, nid))
2847 continue;
2848 }
2849 page = pfn_to_page(pfn);
2850 set_page_links(page, zone, nid, pfn);
2851 mminit_verify_page_links(page, zone, nid, pfn);
2852 init_page_count(page);
2853 reset_page_mapcount(page);
2854 SetPageReserved(page);
2855 /*
2856 * Mark the block movable so that blocks are reserved for
2857 * movable at startup. This will force kernel allocations
2858 * to reserve their blocks rather than leaking throughout
2859 * the address space during boot when many long-lived
2860 * kernel allocations are made. Later some blocks near
2861 * the start are marked MIGRATE_RESERVE by
2862 * setup_zone_migrate_reserve()
2863 *
2864 * bitmap is created for zone's valid pfn range. but memmap
2865 * can be created for invalid pages (for alignment)
2866 * check here not to call set_pageblock_migratetype() against
2867 * pfn out of zone.
2868 */
2869 if ((z->zone_start_pfn <= pfn)
2870 && (pfn < z->zone_start_pfn + z->spanned_pages)
2871 && !(pfn & (pageblock_nr_pages - 1)))
2872 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2873
2874 INIT_LIST_HEAD(&page->lru);
2875 #ifdef WANT_PAGE_VIRTUAL
2876 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2877 if (!is_highmem_idx(zone))
2878 set_page_address(page, __va(pfn << PAGE_SHIFT));
2879 #endif
2880 }
2881 }
2882
2883 static void __meminit zone_init_free_lists(struct zone *zone)
2884 {
2885 int order, t;
2886 for_each_migratetype_order(order, t) {
2887 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2888 zone->free_area[order].nr_free = 0;
2889 }
2890 }
2891
2892 #ifndef __HAVE_ARCH_MEMMAP_INIT
2893 #define memmap_init(size, nid, zone, start_pfn) \
2894 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2895 #endif
2896
2897 static int zone_batchsize(struct zone *zone)
2898 {
2899 #ifdef CONFIG_MMU
2900 int batch;
2901
2902 /*
2903 * The per-cpu-pages pools are set to around 1000th of the
2904 * size of the zone. But no more than 1/2 of a meg.
2905 *
2906 * OK, so we don't know how big the cache is. So guess.
2907 */
2908 batch = zone->present_pages / 1024;
2909 if (batch * PAGE_SIZE > 512 * 1024)
2910 batch = (512 * 1024) / PAGE_SIZE;
2911 batch /= 4; /* We effectively *= 4 below */
2912 if (batch < 1)
2913 batch = 1;
2914
2915 /*
2916 * Clamp the batch to a 2^n - 1 value. Having a power
2917 * of 2 value was found to be more likely to have
2918 * suboptimal cache aliasing properties in some cases.
2919 *
2920 * For example if 2 tasks are alternately allocating
2921 * batches of pages, one task can end up with a lot
2922 * of pages of one half of the possible page colors
2923 * and the other with pages of the other colors.
2924 */
2925 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2926
2927 return batch;
2928
2929 #else
2930 /* The deferral and batching of frees should be suppressed under NOMMU
2931 * conditions.
2932 *
2933 * The problem is that NOMMU needs to be able to allocate large chunks
2934 * of contiguous memory as there's no hardware page translation to
2935 * assemble apparent contiguous memory from discontiguous pages.
2936 *
2937 * Queueing large contiguous runs of pages for batching, however,
2938 * causes the pages to actually be freed in smaller chunks. As there
2939 * can be a significant delay between the individual batches being
2940 * recycled, this leads to the once large chunks of space being
2941 * fragmented and becoming unavailable for high-order allocations.
2942 */
2943 return 0;
2944 #endif
2945 }
2946
2947 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2948 {
2949 struct per_cpu_pages *pcp;
2950
2951 memset(p, 0, sizeof(*p));
2952
2953 pcp = &p->pcp;
2954 pcp->count = 0;
2955 pcp->high = 6 * batch;
2956 pcp->batch = max(1UL, 1 * batch);
2957 INIT_LIST_HEAD(&pcp->list);
2958 }
2959
2960 /*
2961 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2962 * to the value high for the pageset p.
2963 */
2964
2965 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2966 unsigned long high)
2967 {
2968 struct per_cpu_pages *pcp;
2969
2970 pcp = &p->pcp;
2971 pcp->high = high;
2972 pcp->batch = max(1UL, high/4);
2973 if ((high/4) > (PAGE_SHIFT * 8))
2974 pcp->batch = PAGE_SHIFT * 8;
2975 }
2976
2977
2978 #ifdef CONFIG_NUMA
2979 /*
2980 * Boot pageset table. One per cpu which is going to be used for all
2981 * zones and all nodes. The parameters will be set in such a way
2982 * that an item put on a list will immediately be handed over to
2983 * the buddy list. This is safe since pageset manipulation is done
2984 * with interrupts disabled.
2985 *
2986 * Some NUMA counter updates may also be caught by the boot pagesets.
2987 *
2988 * The boot_pagesets must be kept even after bootup is complete for
2989 * unused processors and/or zones. They do play a role for bootstrapping
2990 * hotplugged processors.
2991 *
2992 * zoneinfo_show() and maybe other functions do
2993 * not check if the processor is online before following the pageset pointer.
2994 * Other parts of the kernel may not check if the zone is available.
2995 */
2996 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2997
2998 /*
2999 * Dynamically allocate memory for the
3000 * per cpu pageset array in struct zone.
3001 */
3002 static int __cpuinit process_zones(int cpu)
3003 {
3004 struct zone *zone, *dzone;
3005 int node = cpu_to_node(cpu);
3006
3007 node_set_state(node, N_CPU); /* this node has a cpu */
3008
3009 for_each_populated_zone(zone) {
3010 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3011 GFP_KERNEL, node);
3012 if (!zone_pcp(zone, cpu))
3013 goto bad;
3014
3015 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3016
3017 if (percpu_pagelist_fraction)
3018 setup_pagelist_highmark(zone_pcp(zone, cpu),
3019 (zone->present_pages / percpu_pagelist_fraction));
3020 }
3021
3022 return 0;
3023 bad:
3024 for_each_zone(dzone) {
3025 if (!populated_zone(dzone))
3026 continue;
3027 if (dzone == zone)
3028 break;
3029 kfree(zone_pcp(dzone, cpu));
3030 zone_pcp(dzone, cpu) = NULL;
3031 }
3032 return -ENOMEM;
3033 }
3034
3035 static inline void free_zone_pagesets(int cpu)
3036 {
3037 struct zone *zone;
3038
3039 for_each_zone(zone) {
3040 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3041
3042 /* Free per_cpu_pageset if it is slab allocated */
3043 if (pset != &boot_pageset[cpu])
3044 kfree(pset);
3045 zone_pcp(zone, cpu) = NULL;
3046 }
3047 }
3048
3049 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3050 unsigned long action,
3051 void *hcpu)
3052 {
3053 int cpu = (long)hcpu;
3054 int ret = NOTIFY_OK;
3055
3056 switch (action) {
3057 case CPU_UP_PREPARE:
3058 case CPU_UP_PREPARE_FROZEN:
3059 if (process_zones(cpu))
3060 ret = NOTIFY_BAD;
3061 break;
3062 case CPU_UP_CANCELED:
3063 case CPU_UP_CANCELED_FROZEN:
3064 case CPU_DEAD:
3065 case CPU_DEAD_FROZEN:
3066 free_zone_pagesets(cpu);
3067 break;
3068 default:
3069 break;
3070 }
3071 return ret;
3072 }
3073
3074 static struct notifier_block __cpuinitdata pageset_notifier =
3075 { &pageset_cpuup_callback, NULL, 0 };
3076
3077 void __init setup_per_cpu_pageset(void)
3078 {
3079 int err;
3080
3081 /* Initialize per_cpu_pageset for cpu 0.
3082 * A cpuup callback will do this for every cpu
3083 * as it comes online
3084 */
3085 err = process_zones(smp_processor_id());
3086 BUG_ON(err);
3087 register_cpu_notifier(&pageset_notifier);
3088 }
3089
3090 #endif
3091
3092 static noinline __init_refok
3093 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3094 {
3095 int i;
3096 struct pglist_data *pgdat = zone->zone_pgdat;
3097 size_t alloc_size;
3098
3099 /*
3100 * The per-page waitqueue mechanism uses hashed waitqueues
3101 * per zone.
3102 */
3103 zone->wait_table_hash_nr_entries =
3104 wait_table_hash_nr_entries(zone_size_pages);
3105 zone->wait_table_bits =
3106 wait_table_bits(zone->wait_table_hash_nr_entries);
3107 alloc_size = zone->wait_table_hash_nr_entries
3108 * sizeof(wait_queue_head_t);
3109
3110 if (!slab_is_available()) {
3111 zone->wait_table = (wait_queue_head_t *)
3112 alloc_bootmem_node(pgdat, alloc_size);
3113 } else {
3114 /*
3115 * This case means that a zone whose size was 0 gets new memory
3116 * via memory hot-add.
3117 * But it may be the case that a new node was hot-added. In
3118 * this case vmalloc() will not be able to use this new node's
3119 * memory - this wait_table must be initialized to use this new
3120 * node itself as well.
3121 * To use this new node's memory, further consideration will be
3122 * necessary.
3123 */
3124 zone->wait_table = vmalloc(alloc_size);
3125 }
3126 if (!zone->wait_table)
3127 return -ENOMEM;
3128
3129 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3130 init_waitqueue_head(zone->wait_table + i);
3131
3132 return 0;
3133 }
3134
3135 static __meminit void zone_pcp_init(struct zone *zone)
3136 {
3137 int cpu;
3138 unsigned long batch = zone_batchsize(zone);
3139
3140 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3141 #ifdef CONFIG_NUMA
3142 /* Early boot. Slab allocator not functional yet */
3143 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3144 setup_pageset(&boot_pageset[cpu],0);
3145 #else
3146 setup_pageset(zone_pcp(zone,cpu), batch);
3147 #endif
3148 }
3149 if (zone->present_pages)
3150 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3151 zone->name, zone->present_pages, batch);
3152 }
3153
3154 __meminit int init_currently_empty_zone(struct zone *zone,
3155 unsigned long zone_start_pfn,
3156 unsigned long size,
3157 enum memmap_context context)
3158 {
3159 struct pglist_data *pgdat = zone->zone_pgdat;
3160 int ret;
3161 ret = zone_wait_table_init(zone, size);
3162 if (ret)
3163 return ret;
3164 pgdat->nr_zones = zone_idx(zone) + 1;
3165
3166 zone->zone_start_pfn = zone_start_pfn;
3167
3168 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3169 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3170 pgdat->node_id,
3171 (unsigned long)zone_idx(zone),
3172 zone_start_pfn, (zone_start_pfn + size));
3173
3174 zone_init_free_lists(zone);
3175
3176 return 0;
3177 }
3178
3179 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3180 /*
3181 * Basic iterator support. Return the first range of PFNs for a node
3182 * Note: nid == MAX_NUMNODES returns first region regardless of node
3183 */
3184 static int __meminit first_active_region_index_in_nid(int nid)
3185 {
3186 int i;
3187
3188 for (i = 0; i < nr_nodemap_entries; i++)
3189 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3190 return i;
3191
3192 return -1;
3193 }
3194
3195 /*
3196 * Basic iterator support. Return the next active range of PFNs for a node
3197 * Note: nid == MAX_NUMNODES returns next region regardless of node
3198 */
3199 static int __meminit next_active_region_index_in_nid(int index, int nid)
3200 {
3201 for (index = index + 1; index < nr_nodemap_entries; index++)
3202 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3203 return index;
3204
3205 return -1;
3206 }
3207
3208 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3209 /*
3210 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3211 * Architectures may implement their own version but if add_active_range()
3212 * was used and there are no special requirements, this is a convenient
3213 * alternative
3214 */
3215 int __meminit __early_pfn_to_nid(unsigned long pfn)
3216 {
3217 int i;
3218
3219 for (i = 0; i < nr_nodemap_entries; i++) {
3220 unsigned long start_pfn = early_node_map[i].start_pfn;
3221 unsigned long end_pfn = early_node_map[i].end_pfn;
3222
3223 if (start_pfn <= pfn && pfn < end_pfn)
3224 return early_node_map[i].nid;
3225 }
3226 /* This is a memory hole */
3227 return -1;
3228 }
3229 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3230
3231 int __meminit early_pfn_to_nid(unsigned long pfn)
3232 {
3233 int nid;
3234
3235 nid = __early_pfn_to_nid(pfn);
3236 if (nid >= 0)
3237 return nid;
3238 /* just returns 0 */
3239 return 0;
3240 }
3241
3242 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3243 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3244 {
3245 int nid;
3246
3247 nid = __early_pfn_to_nid(pfn);
3248 if (nid >= 0 && nid != node)
3249 return false;
3250 return true;
3251 }
3252 #endif
3253
3254 /* Basic iterator support to walk early_node_map[] */
3255 #define for_each_active_range_index_in_nid(i, nid) \
3256 for (i = first_active_region_index_in_nid(nid); i != -1; \
3257 i = next_active_region_index_in_nid(i, nid))
3258
3259 /**
3260 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3261 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3262 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3263 *
3264 * If an architecture guarantees that all ranges registered with
3265 * add_active_ranges() contain no holes and may be freed, this
3266 * this function may be used instead of calling free_bootmem() manually.
3267 */
3268 void __init free_bootmem_with_active_regions(int nid,
3269 unsigned long max_low_pfn)
3270 {
3271 int i;
3272
3273 for_each_active_range_index_in_nid(i, nid) {
3274 unsigned long size_pages = 0;
3275 unsigned long end_pfn = early_node_map[i].end_pfn;
3276
3277 if (early_node_map[i].start_pfn >= max_low_pfn)
3278 continue;
3279
3280 if (end_pfn > max_low_pfn)
3281 end_pfn = max_low_pfn;
3282
3283 size_pages = end_pfn - early_node_map[i].start_pfn;
3284 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3285 PFN_PHYS(early_node_map[i].start_pfn),
3286 size_pages << PAGE_SHIFT);
3287 }
3288 }
3289
3290 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3291 {
3292 int i;
3293 int ret;
3294
3295 for_each_active_range_index_in_nid(i, nid) {
3296 ret = work_fn(early_node_map[i].start_pfn,
3297 early_node_map[i].end_pfn, data);
3298 if (ret)
3299 break;
3300 }
3301 }
3302 /**
3303 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3304 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3305 *
3306 * If an architecture guarantees that all ranges registered with
3307 * add_active_ranges() contain no holes and may be freed, this
3308 * function may be used instead of calling memory_present() manually.
3309 */
3310 void __init sparse_memory_present_with_active_regions(int nid)
3311 {
3312 int i;
3313
3314 for_each_active_range_index_in_nid(i, nid)
3315 memory_present(early_node_map[i].nid,
3316 early_node_map[i].start_pfn,
3317 early_node_map[i].end_pfn);
3318 }
3319
3320 /**
3321 * get_pfn_range_for_nid - Return the start and end page frames for a node
3322 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3323 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3324 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3325 *
3326 * It returns the start and end page frame of a node based on information
3327 * provided by an arch calling add_active_range(). If called for a node
3328 * with no available memory, a warning is printed and the start and end
3329 * PFNs will be 0.
3330 */
3331 void __meminit get_pfn_range_for_nid(unsigned int nid,
3332 unsigned long *start_pfn, unsigned long *end_pfn)
3333 {
3334 int i;
3335 *start_pfn = -1UL;
3336 *end_pfn = 0;
3337
3338 for_each_active_range_index_in_nid(i, nid) {
3339 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3340 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3341 }
3342
3343 if (*start_pfn == -1UL)
3344 *start_pfn = 0;
3345 }
3346
3347 /*
3348 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3349 * assumption is made that zones within a node are ordered in monotonic
3350 * increasing memory addresses so that the "highest" populated zone is used
3351 */
3352 static void __init find_usable_zone_for_movable(void)
3353 {
3354 int zone_index;
3355 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3356 if (zone_index == ZONE_MOVABLE)
3357 continue;
3358
3359 if (arch_zone_highest_possible_pfn[zone_index] >
3360 arch_zone_lowest_possible_pfn[zone_index])
3361 break;
3362 }
3363
3364 VM_BUG_ON(zone_index == -1);
3365 movable_zone = zone_index;
3366 }
3367
3368 /*
3369 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3370 * because it is sized independant of architecture. Unlike the other zones,
3371 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3372 * in each node depending on the size of each node and how evenly kernelcore
3373 * is distributed. This helper function adjusts the zone ranges
3374 * provided by the architecture for a given node by using the end of the
3375 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3376 * zones within a node are in order of monotonic increases memory addresses
3377 */
3378 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3379 unsigned long zone_type,
3380 unsigned long node_start_pfn,
3381 unsigned long node_end_pfn,
3382 unsigned long *zone_start_pfn,
3383 unsigned long *zone_end_pfn)
3384 {
3385 /* Only adjust if ZONE_MOVABLE is on this node */
3386 if (zone_movable_pfn[nid]) {
3387 /* Size ZONE_MOVABLE */
3388 if (zone_type == ZONE_MOVABLE) {
3389 *zone_start_pfn = zone_movable_pfn[nid];
3390 *zone_end_pfn = min(node_end_pfn,
3391 arch_zone_highest_possible_pfn[movable_zone]);
3392
3393 /* Adjust for ZONE_MOVABLE starting within this range */
3394 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3395 *zone_end_pfn > zone_movable_pfn[nid]) {
3396 *zone_end_pfn = zone_movable_pfn[nid];
3397
3398 /* Check if this whole range is within ZONE_MOVABLE */
3399 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3400 *zone_start_pfn = *zone_end_pfn;
3401 }
3402 }
3403
3404 /*
3405 * Return the number of pages a zone spans in a node, including holes
3406 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3407 */
3408 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3409 unsigned long zone_type,
3410 unsigned long *ignored)
3411 {
3412 unsigned long node_start_pfn, node_end_pfn;
3413 unsigned long zone_start_pfn, zone_end_pfn;
3414
3415 /* Get the start and end of the node and zone */
3416 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3417 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3418 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3419 adjust_zone_range_for_zone_movable(nid, zone_type,
3420 node_start_pfn, node_end_pfn,
3421 &zone_start_pfn, &zone_end_pfn);
3422
3423 /* Check that this node has pages within the zone's required range */
3424 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3425 return 0;
3426
3427 /* Move the zone boundaries inside the node if necessary */
3428 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3429 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3430
3431 /* Return the spanned pages */
3432 return zone_end_pfn - zone_start_pfn;
3433 }
3434
3435 /*
3436 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3437 * then all holes in the requested range will be accounted for.
3438 */
3439 static unsigned long __meminit __absent_pages_in_range(int nid,
3440 unsigned long range_start_pfn,
3441 unsigned long range_end_pfn)
3442 {
3443 int i = 0;
3444 unsigned long prev_end_pfn = 0, hole_pages = 0;
3445 unsigned long start_pfn;
3446
3447 /* Find the end_pfn of the first active range of pfns in the node */
3448 i = first_active_region_index_in_nid(nid);
3449 if (i == -1)
3450 return 0;
3451
3452 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3453
3454 /* Account for ranges before physical memory on this node */
3455 if (early_node_map[i].start_pfn > range_start_pfn)
3456 hole_pages = prev_end_pfn - range_start_pfn;
3457
3458 /* Find all holes for the zone within the node */
3459 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3460
3461 /* No need to continue if prev_end_pfn is outside the zone */
3462 if (prev_end_pfn >= range_end_pfn)
3463 break;
3464
3465 /* Make sure the end of the zone is not within the hole */
3466 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3467 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3468
3469 /* Update the hole size cound and move on */
3470 if (start_pfn > range_start_pfn) {
3471 BUG_ON(prev_end_pfn > start_pfn);
3472 hole_pages += start_pfn - prev_end_pfn;
3473 }
3474 prev_end_pfn = early_node_map[i].end_pfn;
3475 }
3476
3477 /* Account for ranges past physical memory on this node */
3478 if (range_end_pfn > prev_end_pfn)
3479 hole_pages += range_end_pfn -
3480 max(range_start_pfn, prev_end_pfn);
3481
3482 return hole_pages;
3483 }
3484
3485 /**
3486 * absent_pages_in_range - Return number of page frames in holes within a range
3487 * @start_pfn: The start PFN to start searching for holes
3488 * @end_pfn: The end PFN to stop searching for holes
3489 *
3490 * It returns the number of pages frames in memory holes within a range.
3491 */
3492 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3493 unsigned long end_pfn)
3494 {
3495 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3496 }
3497
3498 /* Return the number of page frames in holes in a zone on a node */
3499 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3500 unsigned long zone_type,
3501 unsigned long *ignored)
3502 {
3503 unsigned long node_start_pfn, node_end_pfn;
3504 unsigned long zone_start_pfn, zone_end_pfn;
3505
3506 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3507 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3508 node_start_pfn);
3509 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3510 node_end_pfn);
3511
3512 adjust_zone_range_for_zone_movable(nid, zone_type,
3513 node_start_pfn, node_end_pfn,
3514 &zone_start_pfn, &zone_end_pfn);
3515 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3516 }
3517
3518 #else
3519 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3520 unsigned long zone_type,
3521 unsigned long *zones_size)
3522 {
3523 return zones_size[zone_type];
3524 }
3525
3526 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3527 unsigned long zone_type,
3528 unsigned long *zholes_size)
3529 {
3530 if (!zholes_size)
3531 return 0;
3532
3533 return zholes_size[zone_type];
3534 }
3535
3536 #endif
3537
3538 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3539 unsigned long *zones_size, unsigned long *zholes_size)
3540 {
3541 unsigned long realtotalpages, totalpages = 0;
3542 enum zone_type i;
3543
3544 for (i = 0; i < MAX_NR_ZONES; i++)
3545 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3546 zones_size);
3547 pgdat->node_spanned_pages = totalpages;
3548
3549 realtotalpages = totalpages;
3550 for (i = 0; i < MAX_NR_ZONES; i++)
3551 realtotalpages -=
3552 zone_absent_pages_in_node(pgdat->node_id, i,
3553 zholes_size);
3554 pgdat->node_present_pages = realtotalpages;
3555 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3556 realtotalpages);
3557 }
3558
3559 #ifndef CONFIG_SPARSEMEM
3560 /*
3561 * Calculate the size of the zone->blockflags rounded to an unsigned long
3562 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3563 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3564 * round what is now in bits to nearest long in bits, then return it in
3565 * bytes.
3566 */
3567 static unsigned long __init usemap_size(unsigned long zonesize)
3568 {
3569 unsigned long usemapsize;
3570
3571 usemapsize = roundup(zonesize, pageblock_nr_pages);
3572 usemapsize = usemapsize >> pageblock_order;
3573 usemapsize *= NR_PAGEBLOCK_BITS;
3574 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3575
3576 return usemapsize / 8;
3577 }
3578
3579 static void __init setup_usemap(struct pglist_data *pgdat,
3580 struct zone *zone, unsigned long zonesize)
3581 {
3582 unsigned long usemapsize = usemap_size(zonesize);
3583 zone->pageblock_flags = NULL;
3584 if (usemapsize)
3585 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3586 }
3587 #else
3588 static void inline setup_usemap(struct pglist_data *pgdat,
3589 struct zone *zone, unsigned long zonesize) {}
3590 #endif /* CONFIG_SPARSEMEM */
3591
3592 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3593
3594 /* Return a sensible default order for the pageblock size. */
3595 static inline int pageblock_default_order(void)
3596 {
3597 if (HPAGE_SHIFT > PAGE_SHIFT)
3598 return HUGETLB_PAGE_ORDER;
3599
3600 return MAX_ORDER-1;
3601 }
3602
3603 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3604 static inline void __init set_pageblock_order(unsigned int order)
3605 {
3606 /* Check that pageblock_nr_pages has not already been setup */
3607 if (pageblock_order)
3608 return;
3609
3610 /*
3611 * Assume the largest contiguous order of interest is a huge page.
3612 * This value may be variable depending on boot parameters on IA64
3613 */
3614 pageblock_order = order;
3615 }
3616 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3617
3618 /*
3619 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3620 * and pageblock_default_order() are unused as pageblock_order is set
3621 * at compile-time. See include/linux/pageblock-flags.h for the values of
3622 * pageblock_order based on the kernel config
3623 */
3624 static inline int pageblock_default_order(unsigned int order)
3625 {
3626 return MAX_ORDER-1;
3627 }
3628 #define set_pageblock_order(x) do {} while (0)
3629
3630 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3631
3632 /*
3633 * Set up the zone data structures:
3634 * - mark all pages reserved
3635 * - mark all memory queues empty
3636 * - clear the memory bitmaps
3637 */
3638 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3639 unsigned long *zones_size, unsigned long *zholes_size)
3640 {
3641 enum zone_type j;
3642 int nid = pgdat->node_id;
3643 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3644 int ret;
3645
3646 pgdat_resize_init(pgdat);
3647 pgdat->nr_zones = 0;
3648 init_waitqueue_head(&pgdat->kswapd_wait);
3649 pgdat->kswapd_max_order = 0;
3650 pgdat_page_cgroup_init(pgdat);
3651
3652 for (j = 0; j < MAX_NR_ZONES; j++) {
3653 struct zone *zone = pgdat->node_zones + j;
3654 unsigned long size, realsize, memmap_pages;
3655 enum lru_list l;
3656
3657 size = zone_spanned_pages_in_node(nid, j, zones_size);
3658 realsize = size - zone_absent_pages_in_node(nid, j,
3659 zholes_size);
3660
3661 /*
3662 * Adjust realsize so that it accounts for how much memory
3663 * is used by this zone for memmap. This affects the watermark
3664 * and per-cpu initialisations
3665 */
3666 memmap_pages =
3667 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3668 if (realsize >= memmap_pages) {
3669 realsize -= memmap_pages;
3670 if (memmap_pages)
3671 printk(KERN_DEBUG
3672 " %s zone: %lu pages used for memmap\n",
3673 zone_names[j], memmap_pages);
3674 } else
3675 printk(KERN_WARNING
3676 " %s zone: %lu pages exceeds realsize %lu\n",
3677 zone_names[j], memmap_pages, realsize);
3678
3679 /* Account for reserved pages */
3680 if (j == 0 && realsize > dma_reserve) {
3681 realsize -= dma_reserve;
3682 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3683 zone_names[0], dma_reserve);
3684 }
3685
3686 if (!is_highmem_idx(j))
3687 nr_kernel_pages += realsize;
3688 nr_all_pages += realsize;
3689
3690 zone->spanned_pages = size;
3691 zone->present_pages = realsize;
3692 #ifdef CONFIG_NUMA
3693 zone->node = nid;
3694 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3695 / 100;
3696 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3697 #endif
3698 zone->name = zone_names[j];
3699 spin_lock_init(&zone->lock);
3700 spin_lock_init(&zone->lru_lock);
3701 zone_seqlock_init(zone);
3702 zone->zone_pgdat = pgdat;
3703
3704 zone->prev_priority = DEF_PRIORITY;
3705
3706 zone_pcp_init(zone);
3707 for_each_lru(l) {
3708 INIT_LIST_HEAD(&zone->lru[l].list);
3709 zone->lru[l].nr_saved_scan = 0;
3710 }
3711 zone->reclaim_stat.recent_rotated[0] = 0;
3712 zone->reclaim_stat.recent_rotated[1] = 0;
3713 zone->reclaim_stat.recent_scanned[0] = 0;
3714 zone->reclaim_stat.recent_scanned[1] = 0;
3715 zap_zone_vm_stats(zone);
3716 zone->flags = 0;
3717 if (!size)
3718 continue;
3719
3720 set_pageblock_order(pageblock_default_order());
3721 setup_usemap(pgdat, zone, size);
3722 ret = init_currently_empty_zone(zone, zone_start_pfn,
3723 size, MEMMAP_EARLY);
3724 BUG_ON(ret);
3725 memmap_init(size, nid, j, zone_start_pfn);
3726 zone_start_pfn += size;
3727 }
3728 }
3729
3730 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3731 {
3732 /* Skip empty nodes */
3733 if (!pgdat->node_spanned_pages)
3734 return;
3735
3736 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3737 /* ia64 gets its own node_mem_map, before this, without bootmem */
3738 if (!pgdat->node_mem_map) {
3739 unsigned long size, start, end;
3740 struct page *map;
3741
3742 /*
3743 * The zone's endpoints aren't required to be MAX_ORDER
3744 * aligned but the node_mem_map endpoints must be in order
3745 * for the buddy allocator to function correctly.
3746 */
3747 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3748 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3749 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3750 size = (end - start) * sizeof(struct page);
3751 map = alloc_remap(pgdat->node_id, size);
3752 if (!map)
3753 map = alloc_bootmem_node(pgdat, size);
3754 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3755 }
3756 #ifndef CONFIG_NEED_MULTIPLE_NODES
3757 /*
3758 * With no DISCONTIG, the global mem_map is just set as node 0's
3759 */
3760 if (pgdat == NODE_DATA(0)) {
3761 mem_map = NODE_DATA(0)->node_mem_map;
3762 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3763 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3764 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3765 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3766 }
3767 #endif
3768 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3769 }
3770
3771 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3772 unsigned long node_start_pfn, unsigned long *zholes_size)
3773 {
3774 pg_data_t *pgdat = NODE_DATA(nid);
3775
3776 pgdat->node_id = nid;
3777 pgdat->node_start_pfn = node_start_pfn;
3778 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3779
3780 alloc_node_mem_map(pgdat);
3781 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3782 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3783 nid, (unsigned long)pgdat,
3784 (unsigned long)pgdat->node_mem_map);
3785 #endif
3786
3787 free_area_init_core(pgdat, zones_size, zholes_size);
3788 }
3789
3790 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3791
3792 #if MAX_NUMNODES > 1
3793 /*
3794 * Figure out the number of possible node ids.
3795 */
3796 static void __init setup_nr_node_ids(void)
3797 {
3798 unsigned int node;
3799 unsigned int highest = 0;
3800
3801 for_each_node_mask(node, node_possible_map)
3802 highest = node;
3803 nr_node_ids = highest + 1;
3804 }
3805 #else
3806 static inline void setup_nr_node_ids(void)
3807 {
3808 }
3809 #endif
3810
3811 /**
3812 * add_active_range - Register a range of PFNs backed by physical memory
3813 * @nid: The node ID the range resides on
3814 * @start_pfn: The start PFN of the available physical memory
3815 * @end_pfn: The end PFN of the available physical memory
3816 *
3817 * These ranges are stored in an early_node_map[] and later used by
3818 * free_area_init_nodes() to calculate zone sizes and holes. If the
3819 * range spans a memory hole, it is up to the architecture to ensure
3820 * the memory is not freed by the bootmem allocator. If possible
3821 * the range being registered will be merged with existing ranges.
3822 */
3823 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3824 unsigned long end_pfn)
3825 {
3826 int i;
3827
3828 mminit_dprintk(MMINIT_TRACE, "memory_register",
3829 "Entering add_active_range(%d, %#lx, %#lx) "
3830 "%d entries of %d used\n",
3831 nid, start_pfn, end_pfn,
3832 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3833
3834 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3835
3836 /* Merge with existing active regions if possible */
3837 for (i = 0; i < nr_nodemap_entries; i++) {
3838 if (early_node_map[i].nid != nid)
3839 continue;
3840
3841 /* Skip if an existing region covers this new one */
3842 if (start_pfn >= early_node_map[i].start_pfn &&
3843 end_pfn <= early_node_map[i].end_pfn)
3844 return;
3845
3846 /* Merge forward if suitable */
3847 if (start_pfn <= early_node_map[i].end_pfn &&
3848 end_pfn > early_node_map[i].end_pfn) {
3849 early_node_map[i].end_pfn = end_pfn;
3850 return;
3851 }
3852
3853 /* Merge backward if suitable */
3854 if (start_pfn < early_node_map[i].end_pfn &&
3855 end_pfn >= early_node_map[i].start_pfn) {
3856 early_node_map[i].start_pfn = start_pfn;
3857 return;
3858 }
3859 }
3860
3861 /* Check that early_node_map is large enough */
3862 if (i >= MAX_ACTIVE_REGIONS) {
3863 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3864 MAX_ACTIVE_REGIONS);
3865 return;
3866 }
3867
3868 early_node_map[i].nid = nid;
3869 early_node_map[i].start_pfn = start_pfn;
3870 early_node_map[i].end_pfn = end_pfn;
3871 nr_nodemap_entries = i + 1;
3872 }
3873
3874 /**
3875 * remove_active_range - Shrink an existing registered range of PFNs
3876 * @nid: The node id the range is on that should be shrunk
3877 * @start_pfn: The new PFN of the range
3878 * @end_pfn: The new PFN of the range
3879 *
3880 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3881 * The map is kept near the end physical page range that has already been
3882 * registered. This function allows an arch to shrink an existing registered
3883 * range.
3884 */
3885 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3886 unsigned long end_pfn)
3887 {
3888 int i, j;
3889 int removed = 0;
3890
3891 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3892 nid, start_pfn, end_pfn);
3893
3894 /* Find the old active region end and shrink */
3895 for_each_active_range_index_in_nid(i, nid) {
3896 if (early_node_map[i].start_pfn >= start_pfn &&
3897 early_node_map[i].end_pfn <= end_pfn) {
3898 /* clear it */
3899 early_node_map[i].start_pfn = 0;
3900 early_node_map[i].end_pfn = 0;
3901 removed = 1;
3902 continue;
3903 }
3904 if (early_node_map[i].start_pfn < start_pfn &&
3905 early_node_map[i].end_pfn > start_pfn) {
3906 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3907 early_node_map[i].end_pfn = start_pfn;
3908 if (temp_end_pfn > end_pfn)
3909 add_active_range(nid, end_pfn, temp_end_pfn);
3910 continue;
3911 }
3912 if (early_node_map[i].start_pfn >= start_pfn &&
3913 early_node_map[i].end_pfn > end_pfn &&
3914 early_node_map[i].start_pfn < end_pfn) {
3915 early_node_map[i].start_pfn = end_pfn;
3916 continue;
3917 }
3918 }
3919
3920 if (!removed)
3921 return;
3922
3923 /* remove the blank ones */
3924 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3925 if (early_node_map[i].nid != nid)
3926 continue;
3927 if (early_node_map[i].end_pfn)
3928 continue;
3929 /* we found it, get rid of it */
3930 for (j = i; j < nr_nodemap_entries - 1; j++)
3931 memcpy(&early_node_map[j], &early_node_map[j+1],
3932 sizeof(early_node_map[j]));
3933 j = nr_nodemap_entries - 1;
3934 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3935 nr_nodemap_entries--;
3936 }
3937 }
3938
3939 /**
3940 * remove_all_active_ranges - Remove all currently registered regions
3941 *
3942 * During discovery, it may be found that a table like SRAT is invalid
3943 * and an alternative discovery method must be used. This function removes
3944 * all currently registered regions.
3945 */
3946 void __init remove_all_active_ranges(void)
3947 {
3948 memset(early_node_map, 0, sizeof(early_node_map));
3949 nr_nodemap_entries = 0;
3950 }
3951
3952 /* Compare two active node_active_regions */
3953 static int __init cmp_node_active_region(const void *a, const void *b)
3954 {
3955 struct node_active_region *arange = (struct node_active_region *)a;
3956 struct node_active_region *brange = (struct node_active_region *)b;
3957
3958 /* Done this way to avoid overflows */
3959 if (arange->start_pfn > brange->start_pfn)
3960 return 1;
3961 if (arange->start_pfn < brange->start_pfn)
3962 return -1;
3963
3964 return 0;
3965 }
3966
3967 /* sort the node_map by start_pfn */
3968 static void __init sort_node_map(void)
3969 {
3970 sort(early_node_map, (size_t)nr_nodemap_entries,
3971 sizeof(struct node_active_region),
3972 cmp_node_active_region, NULL);
3973 }
3974
3975 /* Find the lowest pfn for a node */
3976 static unsigned long __init find_min_pfn_for_node(int nid)
3977 {
3978 int i;
3979 unsigned long min_pfn = ULONG_MAX;
3980
3981 /* Assuming a sorted map, the first range found has the starting pfn */
3982 for_each_active_range_index_in_nid(i, nid)
3983 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3984
3985 if (min_pfn == ULONG_MAX) {
3986 printk(KERN_WARNING
3987 "Could not find start_pfn for node %d\n", nid);
3988 return 0;
3989 }
3990
3991 return min_pfn;
3992 }
3993
3994 /**
3995 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3996 *
3997 * It returns the minimum PFN based on information provided via
3998 * add_active_range().
3999 */
4000 unsigned long __init find_min_pfn_with_active_regions(void)
4001 {
4002 return find_min_pfn_for_node(MAX_NUMNODES);
4003 }
4004
4005 /*
4006 * early_calculate_totalpages()
4007 * Sum pages in active regions for movable zone.
4008 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4009 */
4010 static unsigned long __init early_calculate_totalpages(void)
4011 {
4012 int i;
4013 unsigned long totalpages = 0;
4014
4015 for (i = 0; i < nr_nodemap_entries; i++) {
4016 unsigned long pages = early_node_map[i].end_pfn -
4017 early_node_map[i].start_pfn;
4018 totalpages += pages;
4019 if (pages)
4020 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4021 }
4022 return totalpages;
4023 }
4024
4025 /*
4026 * Find the PFN the Movable zone begins in each node. Kernel memory
4027 * is spread evenly between nodes as long as the nodes have enough
4028 * memory. When they don't, some nodes will have more kernelcore than
4029 * others
4030 */
4031 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4032 {
4033 int i, nid;
4034 unsigned long usable_startpfn;
4035 unsigned long kernelcore_node, kernelcore_remaining;
4036 unsigned long totalpages = early_calculate_totalpages();
4037 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4038
4039 /*
4040 * If movablecore was specified, calculate what size of
4041 * kernelcore that corresponds so that memory usable for
4042 * any allocation type is evenly spread. If both kernelcore
4043 * and movablecore are specified, then the value of kernelcore
4044 * will be used for required_kernelcore if it's greater than
4045 * what movablecore would have allowed.
4046 */
4047 if (required_movablecore) {
4048 unsigned long corepages;
4049
4050 /*
4051 * Round-up so that ZONE_MOVABLE is at least as large as what
4052 * was requested by the user
4053 */
4054 required_movablecore =
4055 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4056 corepages = totalpages - required_movablecore;
4057
4058 required_kernelcore = max(required_kernelcore, corepages);
4059 }
4060
4061 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4062 if (!required_kernelcore)
4063 return;
4064
4065 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4066 find_usable_zone_for_movable();
4067 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4068
4069 restart:
4070 /* Spread kernelcore memory as evenly as possible throughout nodes */
4071 kernelcore_node = required_kernelcore / usable_nodes;
4072 for_each_node_state(nid, N_HIGH_MEMORY) {
4073 /*
4074 * Recalculate kernelcore_node if the division per node
4075 * now exceeds what is necessary to satisfy the requested
4076 * amount of memory for the kernel
4077 */
4078 if (required_kernelcore < kernelcore_node)
4079 kernelcore_node = required_kernelcore / usable_nodes;
4080
4081 /*
4082 * As the map is walked, we track how much memory is usable
4083 * by the kernel using kernelcore_remaining. When it is
4084 * 0, the rest of the node is usable by ZONE_MOVABLE
4085 */
4086 kernelcore_remaining = kernelcore_node;
4087
4088 /* Go through each range of PFNs within this node */
4089 for_each_active_range_index_in_nid(i, nid) {
4090 unsigned long start_pfn, end_pfn;
4091 unsigned long size_pages;
4092
4093 start_pfn = max(early_node_map[i].start_pfn,
4094 zone_movable_pfn[nid]);
4095 end_pfn = early_node_map[i].end_pfn;
4096 if (start_pfn >= end_pfn)
4097 continue;
4098
4099 /* Account for what is only usable for kernelcore */
4100 if (start_pfn < usable_startpfn) {
4101 unsigned long kernel_pages;
4102 kernel_pages = min(end_pfn, usable_startpfn)
4103 - start_pfn;
4104
4105 kernelcore_remaining -= min(kernel_pages,
4106 kernelcore_remaining);
4107 required_kernelcore -= min(kernel_pages,
4108 required_kernelcore);
4109
4110 /* Continue if range is now fully accounted */
4111 if (end_pfn <= usable_startpfn) {
4112
4113 /*
4114 * Push zone_movable_pfn to the end so
4115 * that if we have to rebalance
4116 * kernelcore across nodes, we will
4117 * not double account here
4118 */
4119 zone_movable_pfn[nid] = end_pfn;
4120 continue;
4121 }
4122 start_pfn = usable_startpfn;
4123 }
4124
4125 /*
4126 * The usable PFN range for ZONE_MOVABLE is from
4127 * start_pfn->end_pfn. Calculate size_pages as the
4128 * number of pages used as kernelcore
4129 */
4130 size_pages = end_pfn - start_pfn;
4131 if (size_pages > kernelcore_remaining)
4132 size_pages = kernelcore_remaining;
4133 zone_movable_pfn[nid] = start_pfn + size_pages;
4134
4135 /*
4136 * Some kernelcore has been met, update counts and
4137 * break if the kernelcore for this node has been
4138 * satisified
4139 */
4140 required_kernelcore -= min(required_kernelcore,
4141 size_pages);
4142 kernelcore_remaining -= size_pages;
4143 if (!kernelcore_remaining)
4144 break;
4145 }
4146 }
4147
4148 /*
4149 * If there is still required_kernelcore, we do another pass with one
4150 * less node in the count. This will push zone_movable_pfn[nid] further
4151 * along on the nodes that still have memory until kernelcore is
4152 * satisified
4153 */
4154 usable_nodes--;
4155 if (usable_nodes && required_kernelcore > usable_nodes)
4156 goto restart;
4157
4158 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4159 for (nid = 0; nid < MAX_NUMNODES; nid++)
4160 zone_movable_pfn[nid] =
4161 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4162 }
4163
4164 /* Any regular memory on that node ? */
4165 static void check_for_regular_memory(pg_data_t *pgdat)
4166 {
4167 #ifdef CONFIG_HIGHMEM
4168 enum zone_type zone_type;
4169
4170 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4171 struct zone *zone = &pgdat->node_zones[zone_type];
4172 if (zone->present_pages)
4173 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4174 }
4175 #endif
4176 }
4177
4178 /**
4179 * free_area_init_nodes - Initialise all pg_data_t and zone data
4180 * @max_zone_pfn: an array of max PFNs for each zone
4181 *
4182 * This will call free_area_init_node() for each active node in the system.
4183 * Using the page ranges provided by add_active_range(), the size of each
4184 * zone in each node and their holes is calculated. If the maximum PFN
4185 * between two adjacent zones match, it is assumed that the zone is empty.
4186 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4187 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4188 * starts where the previous one ended. For example, ZONE_DMA32 starts
4189 * at arch_max_dma_pfn.
4190 */
4191 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4192 {
4193 unsigned long nid;
4194 int i;
4195
4196 /* Sort early_node_map as initialisation assumes it is sorted */
4197 sort_node_map();
4198
4199 /* Record where the zone boundaries are */
4200 memset(arch_zone_lowest_possible_pfn, 0,
4201 sizeof(arch_zone_lowest_possible_pfn));
4202 memset(arch_zone_highest_possible_pfn, 0,
4203 sizeof(arch_zone_highest_possible_pfn));
4204 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4205 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4206 for (i = 1; i < MAX_NR_ZONES; i++) {
4207 if (i == ZONE_MOVABLE)
4208 continue;
4209 arch_zone_lowest_possible_pfn[i] =
4210 arch_zone_highest_possible_pfn[i-1];
4211 arch_zone_highest_possible_pfn[i] =
4212 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4213 }
4214 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4215 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4216
4217 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4218 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4219 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4220
4221 /* Print out the zone ranges */
4222 printk("Zone PFN ranges:\n");
4223 for (i = 0; i < MAX_NR_ZONES; i++) {
4224 if (i == ZONE_MOVABLE)
4225 continue;
4226 printk(" %-8s %0#10lx -> %0#10lx\n",
4227 zone_names[i],
4228 arch_zone_lowest_possible_pfn[i],
4229 arch_zone_highest_possible_pfn[i]);
4230 }
4231
4232 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4233 printk("Movable zone start PFN for each node\n");
4234 for (i = 0; i < MAX_NUMNODES; i++) {
4235 if (zone_movable_pfn[i])
4236 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4237 }
4238
4239 /* Print out the early_node_map[] */
4240 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4241 for (i = 0; i < nr_nodemap_entries; i++)
4242 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4243 early_node_map[i].start_pfn,
4244 early_node_map[i].end_pfn);
4245
4246 /*
4247 * find_zone_movable_pfns_for_nodes/early_calculate_totalpages init
4248 * that node_mask, clear it at first
4249 */
4250 nodes_clear(node_states[N_HIGH_MEMORY]);
4251 /* Initialise every node */
4252 mminit_verify_pageflags_layout();
4253 setup_nr_node_ids();
4254 for_each_online_node(nid) {
4255 pg_data_t *pgdat = NODE_DATA(nid);
4256 free_area_init_node(nid, NULL,
4257 find_min_pfn_for_node(nid), NULL);
4258
4259 /* Any memory on that node */
4260 if (pgdat->node_present_pages)
4261 node_set_state(nid, N_HIGH_MEMORY);
4262 check_for_regular_memory(pgdat);
4263 }
4264 }
4265
4266 static int __init cmdline_parse_core(char *p, unsigned long *core)
4267 {
4268 unsigned long long coremem;
4269 if (!p)
4270 return -EINVAL;
4271
4272 coremem = memparse(p, &p);
4273 *core = coremem >> PAGE_SHIFT;
4274
4275 /* Paranoid check that UL is enough for the coremem value */
4276 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4277
4278 return 0;
4279 }
4280
4281 /*
4282 * kernelcore=size sets the amount of memory for use for allocations that
4283 * cannot be reclaimed or migrated.
4284 */
4285 static int __init cmdline_parse_kernelcore(char *p)
4286 {
4287 return cmdline_parse_core(p, &required_kernelcore);
4288 }
4289
4290 /*
4291 * movablecore=size sets the amount of memory for use for allocations that
4292 * can be reclaimed or migrated.
4293 */
4294 static int __init cmdline_parse_movablecore(char *p)
4295 {
4296 return cmdline_parse_core(p, &required_movablecore);
4297 }
4298
4299 early_param("kernelcore", cmdline_parse_kernelcore);
4300 early_param("movablecore", cmdline_parse_movablecore);
4301
4302 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4303
4304 /**
4305 * set_dma_reserve - set the specified number of pages reserved in the first zone
4306 * @new_dma_reserve: The number of pages to mark reserved
4307 *
4308 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4309 * In the DMA zone, a significant percentage may be consumed by kernel image
4310 * and other unfreeable allocations which can skew the watermarks badly. This
4311 * function may optionally be used to account for unfreeable pages in the
4312 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4313 * smaller per-cpu batchsize.
4314 */
4315 void __init set_dma_reserve(unsigned long new_dma_reserve)
4316 {
4317 dma_reserve = new_dma_reserve;
4318 }
4319
4320 #ifndef CONFIG_NEED_MULTIPLE_NODES
4321 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4322 EXPORT_SYMBOL(contig_page_data);
4323 #endif
4324
4325 void __init free_area_init(unsigned long *zones_size)
4326 {
4327 free_area_init_node(0, zones_size,
4328 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4329 }
4330
4331 static int page_alloc_cpu_notify(struct notifier_block *self,
4332 unsigned long action, void *hcpu)
4333 {
4334 int cpu = (unsigned long)hcpu;
4335
4336 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4337 drain_pages(cpu);
4338
4339 /*
4340 * Spill the event counters of the dead processor
4341 * into the current processors event counters.
4342 * This artificially elevates the count of the current
4343 * processor.
4344 */
4345 vm_events_fold_cpu(cpu);
4346
4347 /*
4348 * Zero the differential counters of the dead processor
4349 * so that the vm statistics are consistent.
4350 *
4351 * This is only okay since the processor is dead and cannot
4352 * race with what we are doing.
4353 */
4354 refresh_cpu_vm_stats(cpu);
4355 }
4356 return NOTIFY_OK;
4357 }
4358
4359 void __init page_alloc_init(void)
4360 {
4361 hotcpu_notifier(page_alloc_cpu_notify, 0);
4362 }
4363
4364 /*
4365 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4366 * or min_free_kbytes changes.
4367 */
4368 static void calculate_totalreserve_pages(void)
4369 {
4370 struct pglist_data *pgdat;
4371 unsigned long reserve_pages = 0;
4372 enum zone_type i, j;
4373
4374 for_each_online_pgdat(pgdat) {
4375 for (i = 0; i < MAX_NR_ZONES; i++) {
4376 struct zone *zone = pgdat->node_zones + i;
4377 unsigned long max = 0;
4378
4379 /* Find valid and maximum lowmem_reserve in the zone */
4380 for (j = i; j < MAX_NR_ZONES; j++) {
4381 if (zone->lowmem_reserve[j] > max)
4382 max = zone->lowmem_reserve[j];
4383 }
4384
4385 /* we treat the high watermark as reserved pages. */
4386 max += high_wmark_pages(zone);
4387
4388 if (max > zone->present_pages)
4389 max = zone->present_pages;
4390 reserve_pages += max;
4391 }
4392 }
4393 totalreserve_pages = reserve_pages;
4394 }
4395
4396 /*
4397 * setup_per_zone_lowmem_reserve - called whenever
4398 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4399 * has a correct pages reserved value, so an adequate number of
4400 * pages are left in the zone after a successful __alloc_pages().
4401 */
4402 static void setup_per_zone_lowmem_reserve(void)
4403 {
4404 struct pglist_data *pgdat;
4405 enum zone_type j, idx;
4406
4407 for_each_online_pgdat(pgdat) {
4408 for (j = 0; j < MAX_NR_ZONES; j++) {
4409 struct zone *zone = pgdat->node_zones + j;
4410 unsigned long present_pages = zone->present_pages;
4411
4412 zone->lowmem_reserve[j] = 0;
4413
4414 idx = j;
4415 while (idx) {
4416 struct zone *lower_zone;
4417
4418 idx--;
4419
4420 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4421 sysctl_lowmem_reserve_ratio[idx] = 1;
4422
4423 lower_zone = pgdat->node_zones + idx;
4424 lower_zone->lowmem_reserve[j] = present_pages /
4425 sysctl_lowmem_reserve_ratio[idx];
4426 present_pages += lower_zone->present_pages;
4427 }
4428 }
4429 }
4430
4431 /* update totalreserve_pages */
4432 calculate_totalreserve_pages();
4433 }
4434
4435 /**
4436 * setup_per_zone_wmarks - called when min_free_kbytes changes
4437 * or when memory is hot-{added|removed}
4438 *
4439 * Ensures that the watermark[min,low,high] values for each zone are set
4440 * correctly with respect to min_free_kbytes.
4441 */
4442 void setup_per_zone_wmarks(void)
4443 {
4444 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4445 unsigned long lowmem_pages = 0;
4446 struct zone *zone;
4447 unsigned long flags;
4448
4449 /* Calculate total number of !ZONE_HIGHMEM pages */
4450 for_each_zone(zone) {
4451 if (!is_highmem(zone))
4452 lowmem_pages += zone->present_pages;
4453 }
4454
4455 for_each_zone(zone) {
4456 u64 tmp;
4457
4458 spin_lock_irqsave(&zone->lock, flags);
4459 tmp = (u64)pages_min * zone->present_pages;
4460 do_div(tmp, lowmem_pages);
4461 if (is_highmem(zone)) {
4462 /*
4463 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4464 * need highmem pages, so cap pages_min to a small
4465 * value here.
4466 *
4467 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4468 * deltas controls asynch page reclaim, and so should
4469 * not be capped for highmem.
4470 */
4471 int min_pages;
4472
4473 min_pages = zone->present_pages / 1024;
4474 if (min_pages < SWAP_CLUSTER_MAX)
4475 min_pages = SWAP_CLUSTER_MAX;
4476 if (min_pages > 128)
4477 min_pages = 128;
4478 zone->watermark[WMARK_MIN] = min_pages;
4479 } else {
4480 /*
4481 * If it's a lowmem zone, reserve a number of pages
4482 * proportionate to the zone's size.
4483 */
4484 zone->watermark[WMARK_MIN] = tmp;
4485 }
4486
4487 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4488 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4489 setup_zone_migrate_reserve(zone);
4490 spin_unlock_irqrestore(&zone->lock, flags);
4491 }
4492
4493 /* update totalreserve_pages */
4494 calculate_totalreserve_pages();
4495 }
4496
4497 /**
4498 * The inactive anon list should be small enough that the VM never has to
4499 * do too much work, but large enough that each inactive page has a chance
4500 * to be referenced again before it is swapped out.
4501 *
4502 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4503 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4504 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4505 * the anonymous pages are kept on the inactive list.
4506 *
4507 * total target max
4508 * memory ratio inactive anon
4509 * -------------------------------------
4510 * 10MB 1 5MB
4511 * 100MB 1 50MB
4512 * 1GB 3 250MB
4513 * 10GB 10 0.9GB
4514 * 100GB 31 3GB
4515 * 1TB 101 10GB
4516 * 10TB 320 32GB
4517 */
4518 void calculate_zone_inactive_ratio(struct zone *zone)
4519 {
4520 unsigned int gb, ratio;
4521
4522 /* Zone size in gigabytes */
4523 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4524 if (gb)
4525 ratio = int_sqrt(10 * gb);
4526 else
4527 ratio = 1;
4528
4529 zone->inactive_ratio = ratio;
4530 }
4531
4532 static void __init setup_per_zone_inactive_ratio(void)
4533 {
4534 struct zone *zone;
4535
4536 for_each_zone(zone)
4537 calculate_zone_inactive_ratio(zone);
4538 }
4539
4540 /*
4541 * Initialise min_free_kbytes.
4542 *
4543 * For small machines we want it small (128k min). For large machines
4544 * we want it large (64MB max). But it is not linear, because network
4545 * bandwidth does not increase linearly with machine size. We use
4546 *
4547 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4548 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4549 *
4550 * which yields
4551 *
4552 * 16MB: 512k
4553 * 32MB: 724k
4554 * 64MB: 1024k
4555 * 128MB: 1448k
4556 * 256MB: 2048k
4557 * 512MB: 2896k
4558 * 1024MB: 4096k
4559 * 2048MB: 5792k
4560 * 4096MB: 8192k
4561 * 8192MB: 11584k
4562 * 16384MB: 16384k
4563 */
4564 static int __init init_per_zone_wmark_min(void)
4565 {
4566 unsigned long lowmem_kbytes;
4567
4568 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4569
4570 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4571 if (min_free_kbytes < 128)
4572 min_free_kbytes = 128;
4573 if (min_free_kbytes > 65536)
4574 min_free_kbytes = 65536;
4575 setup_per_zone_wmarks();
4576 setup_per_zone_lowmem_reserve();
4577 setup_per_zone_inactive_ratio();
4578 return 0;
4579 }
4580 module_init(init_per_zone_wmark_min)
4581
4582 /*
4583 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4584 * that we can call two helper functions whenever min_free_kbytes
4585 * changes.
4586 */
4587 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4588 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4589 {
4590 proc_dointvec(table, write, file, buffer, length, ppos);
4591 if (write)
4592 setup_per_zone_wmarks();
4593 return 0;
4594 }
4595
4596 #ifdef CONFIG_NUMA
4597 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4598 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4599 {
4600 struct zone *zone;
4601 int rc;
4602
4603 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4604 if (rc)
4605 return rc;
4606
4607 for_each_zone(zone)
4608 zone->min_unmapped_pages = (zone->present_pages *
4609 sysctl_min_unmapped_ratio) / 100;
4610 return 0;
4611 }
4612
4613 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4614 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4615 {
4616 struct zone *zone;
4617 int rc;
4618
4619 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4620 if (rc)
4621 return rc;
4622
4623 for_each_zone(zone)
4624 zone->min_slab_pages = (zone->present_pages *
4625 sysctl_min_slab_ratio) / 100;
4626 return 0;
4627 }
4628 #endif
4629
4630 /*
4631 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4632 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4633 * whenever sysctl_lowmem_reserve_ratio changes.
4634 *
4635 * The reserve ratio obviously has absolutely no relation with the
4636 * minimum watermarks. The lowmem reserve ratio can only make sense
4637 * if in function of the boot time zone sizes.
4638 */
4639 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4640 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4641 {
4642 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4643 setup_per_zone_lowmem_reserve();
4644 return 0;
4645 }
4646
4647 /*
4648 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4649 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4650 * can have before it gets flushed back to buddy allocator.
4651 */
4652
4653 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4654 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4655 {
4656 struct zone *zone;
4657 unsigned int cpu;
4658 int ret;
4659
4660 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4661 if (!write || (ret == -EINVAL))
4662 return ret;
4663 for_each_zone(zone) {
4664 for_each_online_cpu(cpu) {
4665 unsigned long high;
4666 high = zone->present_pages / percpu_pagelist_fraction;
4667 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4668 }
4669 }
4670 return 0;
4671 }
4672
4673 int hashdist = HASHDIST_DEFAULT;
4674
4675 #ifdef CONFIG_NUMA
4676 static int __init set_hashdist(char *str)
4677 {
4678 if (!str)
4679 return 0;
4680 hashdist = simple_strtoul(str, &str, 0);
4681 return 1;
4682 }
4683 __setup("hashdist=", set_hashdist);
4684 #endif
4685
4686 /*
4687 * allocate a large system hash table from bootmem
4688 * - it is assumed that the hash table must contain an exact power-of-2
4689 * quantity of entries
4690 * - limit is the number of hash buckets, not the total allocation size
4691 */
4692 void *__init alloc_large_system_hash(const char *tablename,
4693 unsigned long bucketsize,
4694 unsigned long numentries,
4695 int scale,
4696 int flags,
4697 unsigned int *_hash_shift,
4698 unsigned int *_hash_mask,
4699 unsigned long limit)
4700 {
4701 unsigned long long max = limit;
4702 unsigned long log2qty, size;
4703 void *table = NULL;
4704
4705 /* allow the kernel cmdline to have a say */
4706 if (!numentries) {
4707 /* round applicable memory size up to nearest megabyte */
4708 numentries = nr_kernel_pages;
4709 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4710 numentries >>= 20 - PAGE_SHIFT;
4711 numentries <<= 20 - PAGE_SHIFT;
4712
4713 /* limit to 1 bucket per 2^scale bytes of low memory */
4714 if (scale > PAGE_SHIFT)
4715 numentries >>= (scale - PAGE_SHIFT);
4716 else
4717 numentries <<= (PAGE_SHIFT - scale);
4718
4719 /* Make sure we've got at least a 0-order allocation.. */
4720 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4721 numentries = PAGE_SIZE / bucketsize;
4722 }
4723 numentries = roundup_pow_of_two(numentries);
4724
4725 /* limit allocation size to 1/16 total memory by default */
4726 if (max == 0) {
4727 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4728 do_div(max, bucketsize);
4729 }
4730
4731 if (numentries > max)
4732 numentries = max;
4733
4734 log2qty = ilog2(numentries);
4735
4736 do {
4737 size = bucketsize << log2qty;
4738 if (flags & HASH_EARLY)
4739 table = alloc_bootmem_nopanic(size);
4740 else if (hashdist)
4741 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4742 else {
4743 /*
4744 * If bucketsize is not a power-of-two, we may free
4745 * some pages at the end of hash table which
4746 * alloc_pages_exact() automatically does
4747 */
4748 if (get_order(size) < MAX_ORDER)
4749 table = alloc_pages_exact(size, GFP_ATOMIC);
4750 }
4751 } while (!table && size > PAGE_SIZE && --log2qty);
4752
4753 if (!table)
4754 panic("Failed to allocate %s hash table\n", tablename);
4755
4756 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4757 tablename,
4758 (1U << log2qty),
4759 ilog2(size) - PAGE_SHIFT,
4760 size);
4761
4762 if (_hash_shift)
4763 *_hash_shift = log2qty;
4764 if (_hash_mask)
4765 *_hash_mask = (1 << log2qty) - 1;
4766
4767 /*
4768 * If hashdist is set, the table allocation is done with __vmalloc()
4769 * which invokes the kmemleak_alloc() callback. This function may also
4770 * be called before the slab and kmemleak are initialised when
4771 * kmemleak simply buffers the request to be executed later
4772 * (GFP_ATOMIC flag ignored in this case).
4773 */
4774 if (!hashdist)
4775 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4776
4777 return table;
4778 }
4779
4780 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4781 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4782 unsigned long pfn)
4783 {
4784 #ifdef CONFIG_SPARSEMEM
4785 return __pfn_to_section(pfn)->pageblock_flags;
4786 #else
4787 return zone->pageblock_flags;
4788 #endif /* CONFIG_SPARSEMEM */
4789 }
4790
4791 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4792 {
4793 #ifdef CONFIG_SPARSEMEM
4794 pfn &= (PAGES_PER_SECTION-1);
4795 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4796 #else
4797 pfn = pfn - zone->zone_start_pfn;
4798 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4799 #endif /* CONFIG_SPARSEMEM */
4800 }
4801
4802 /**
4803 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4804 * @page: The page within the block of interest
4805 * @start_bitidx: The first bit of interest to retrieve
4806 * @end_bitidx: The last bit of interest
4807 * returns pageblock_bits flags
4808 */
4809 unsigned long get_pageblock_flags_group(struct page *page,
4810 int start_bitidx, int end_bitidx)
4811 {
4812 struct zone *zone;
4813 unsigned long *bitmap;
4814 unsigned long pfn, bitidx;
4815 unsigned long flags = 0;
4816 unsigned long value = 1;
4817
4818 zone = page_zone(page);
4819 pfn = page_to_pfn(page);
4820 bitmap = get_pageblock_bitmap(zone, pfn);
4821 bitidx = pfn_to_bitidx(zone, pfn);
4822
4823 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4824 if (test_bit(bitidx + start_bitidx, bitmap))
4825 flags |= value;
4826
4827 return flags;
4828 }
4829
4830 /**
4831 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4832 * @page: The page within the block of interest
4833 * @start_bitidx: The first bit of interest
4834 * @end_bitidx: The last bit of interest
4835 * @flags: The flags to set
4836 */
4837 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4838 int start_bitidx, int end_bitidx)
4839 {
4840 struct zone *zone;
4841 unsigned long *bitmap;
4842 unsigned long pfn, bitidx;
4843 unsigned long value = 1;
4844
4845 zone = page_zone(page);
4846 pfn = page_to_pfn(page);
4847 bitmap = get_pageblock_bitmap(zone, pfn);
4848 bitidx = pfn_to_bitidx(zone, pfn);
4849 VM_BUG_ON(pfn < zone->zone_start_pfn);
4850 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4851
4852 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4853 if (flags & value)
4854 __set_bit(bitidx + start_bitidx, bitmap);
4855 else
4856 __clear_bit(bitidx + start_bitidx, bitmap);
4857 }
4858
4859 /*
4860 * This is designed as sub function...plz see page_isolation.c also.
4861 * set/clear page block's type to be ISOLATE.
4862 * page allocater never alloc memory from ISOLATE block.
4863 */
4864
4865 int set_migratetype_isolate(struct page *page)
4866 {
4867 struct zone *zone;
4868 unsigned long flags;
4869 int ret = -EBUSY;
4870
4871 zone = page_zone(page);
4872 spin_lock_irqsave(&zone->lock, flags);
4873 /*
4874 * In future, more migrate types will be able to be isolation target.
4875 */
4876 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4877 goto out;
4878 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4879 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4880 ret = 0;
4881 out:
4882 spin_unlock_irqrestore(&zone->lock, flags);
4883 if (!ret)
4884 drain_all_pages();
4885 return ret;
4886 }
4887
4888 void unset_migratetype_isolate(struct page *page)
4889 {
4890 struct zone *zone;
4891 unsigned long flags;
4892 zone = page_zone(page);
4893 spin_lock_irqsave(&zone->lock, flags);
4894 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4895 goto out;
4896 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4897 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4898 out:
4899 spin_unlock_irqrestore(&zone->lock, flags);
4900 }
4901
4902 #ifdef CONFIG_MEMORY_HOTREMOVE
4903 /*
4904 * All pages in the range must be isolated before calling this.
4905 */
4906 void
4907 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4908 {
4909 struct page *page;
4910 struct zone *zone;
4911 int order, i;
4912 unsigned long pfn;
4913 unsigned long flags;
4914 /* find the first valid pfn */
4915 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4916 if (pfn_valid(pfn))
4917 break;
4918 if (pfn == end_pfn)
4919 return;
4920 zone = page_zone(pfn_to_page(pfn));
4921 spin_lock_irqsave(&zone->lock, flags);
4922 pfn = start_pfn;
4923 while (pfn < end_pfn) {
4924 if (!pfn_valid(pfn)) {
4925 pfn++;
4926 continue;
4927 }
4928 page = pfn_to_page(pfn);
4929 BUG_ON(page_count(page));
4930 BUG_ON(!PageBuddy(page));
4931 order = page_order(page);
4932 #ifdef CONFIG_DEBUG_VM
4933 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4934 pfn, 1 << order, end_pfn);
4935 #endif
4936 list_del(&page->lru);
4937 rmv_page_order(page);
4938 zone->free_area[order].nr_free--;
4939 __mod_zone_page_state(zone, NR_FREE_PAGES,
4940 - (1UL << order));
4941 for (i = 0; i < (1 << order); i++)
4942 SetPageReserved((page+i));
4943 pfn += (1 << order);
4944 }
4945 spin_unlock_irqrestore(&zone->lock, flags);
4946 }
4947 #endif
This page took 0.159886 seconds and 5 git commands to generate.