mm: introduce do_set_pmd()
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 /*
95 * Array of node states.
96 */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 [N_CPU] = { { [0] = 1UL } },
109 #endif /* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 /*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 return page->index;
134 }
135
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 page->index = migratetype;
139 }
140
141 #ifdef CONFIG_PM_SLEEP
142 /*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
150
151 static gfp_t saved_gfp_mask;
152
153 void pm_restore_gfp_mask(void)
154 {
155 WARN_ON(!mutex_is_locked(&pm_mutex));
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
160 }
161
162 void pm_restrict_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169
170 bool pm_suspended_storage(void)
171 {
172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 return false;
174 return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181
182 static void __free_pages_ok(struct page *page, unsigned int order);
183
184 /*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
194 */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 32,
204 #endif
205 32,
206 };
207
208 EXPORT_SYMBOL(totalram_pages);
209
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 "DMA32",
216 #endif
217 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 "HighMem",
220 #endif
221 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 "Device",
224 #endif
225 };
226
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232 #ifdef CONFIG_CMA
233 "CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237 #endif
238 };
239
240 compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248 #endif
249 };
250
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 return true;
294
295 return false;
296 }
297
298 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
299 {
300 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
301 return true;
302
303 return false;
304 }
305
306 /*
307 * Returns false when the remaining initialisation should be deferred until
308 * later in the boot cycle when it can be parallelised.
309 */
310 static inline bool update_defer_init(pg_data_t *pgdat,
311 unsigned long pfn, unsigned long zone_end,
312 unsigned long *nr_initialised)
313 {
314 unsigned long max_initialise;
315
316 /* Always populate low zones for address-contrained allocations */
317 if (zone_end < pgdat_end_pfn(pgdat))
318 return true;
319 /*
320 * Initialise at least 2G of a node but also take into account that
321 * two large system hashes that can take up 1GB for 0.25TB/node.
322 */
323 max_initialise = max(2UL << (30 - PAGE_SHIFT),
324 (pgdat->node_spanned_pages >> 8));
325
326 (*nr_initialised)++;
327 if ((*nr_initialised > max_initialise) &&
328 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
329 pgdat->first_deferred_pfn = pfn;
330 return false;
331 }
332
333 return true;
334 }
335 #else
336 static inline void reset_deferred_meminit(pg_data_t *pgdat)
337 {
338 }
339
340 static inline bool early_page_uninitialised(unsigned long pfn)
341 {
342 return false;
343 }
344
345 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
346 {
347 return false;
348 }
349
350 static inline bool update_defer_init(pg_data_t *pgdat,
351 unsigned long pfn, unsigned long zone_end,
352 unsigned long *nr_initialised)
353 {
354 return true;
355 }
356 #endif
357
358 /* Return a pointer to the bitmap storing bits affecting a block of pages */
359 static inline unsigned long *get_pageblock_bitmap(struct page *page,
360 unsigned long pfn)
361 {
362 #ifdef CONFIG_SPARSEMEM
363 return __pfn_to_section(pfn)->pageblock_flags;
364 #else
365 return page_zone(page)->pageblock_flags;
366 #endif /* CONFIG_SPARSEMEM */
367 }
368
369 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
370 {
371 #ifdef CONFIG_SPARSEMEM
372 pfn &= (PAGES_PER_SECTION-1);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #else
375 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
376 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
377 #endif /* CONFIG_SPARSEMEM */
378 }
379
380 /**
381 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
382 * @page: The page within the block of interest
383 * @pfn: The target page frame number
384 * @end_bitidx: The last bit of interest to retrieve
385 * @mask: mask of bits that the caller is interested in
386 *
387 * Return: pageblock_bits flags
388 */
389 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
390 unsigned long pfn,
391 unsigned long end_bitidx,
392 unsigned long mask)
393 {
394 unsigned long *bitmap;
395 unsigned long bitidx, word_bitidx;
396 unsigned long word;
397
398 bitmap = get_pageblock_bitmap(page, pfn);
399 bitidx = pfn_to_bitidx(page, pfn);
400 word_bitidx = bitidx / BITS_PER_LONG;
401 bitidx &= (BITS_PER_LONG-1);
402
403 word = bitmap[word_bitidx];
404 bitidx += end_bitidx;
405 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
406 }
407
408 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
409 unsigned long end_bitidx,
410 unsigned long mask)
411 {
412 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
413 }
414
415 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
416 {
417 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
418 }
419
420 /**
421 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
422 * @page: The page within the block of interest
423 * @flags: The flags to set
424 * @pfn: The target page frame number
425 * @end_bitidx: The last bit of interest
426 * @mask: mask of bits that the caller is interested in
427 */
428 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
429 unsigned long pfn,
430 unsigned long end_bitidx,
431 unsigned long mask)
432 {
433 unsigned long *bitmap;
434 unsigned long bitidx, word_bitidx;
435 unsigned long old_word, word;
436
437 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
438
439 bitmap = get_pageblock_bitmap(page, pfn);
440 bitidx = pfn_to_bitidx(page, pfn);
441 word_bitidx = bitidx / BITS_PER_LONG;
442 bitidx &= (BITS_PER_LONG-1);
443
444 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
445
446 bitidx += end_bitidx;
447 mask <<= (BITS_PER_LONG - bitidx - 1);
448 flags <<= (BITS_PER_LONG - bitidx - 1);
449
450 word = READ_ONCE(bitmap[word_bitidx]);
451 for (;;) {
452 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
453 if (word == old_word)
454 break;
455 word = old_word;
456 }
457 }
458
459 void set_pageblock_migratetype(struct page *page, int migratetype)
460 {
461 if (unlikely(page_group_by_mobility_disabled &&
462 migratetype < MIGRATE_PCPTYPES))
463 migratetype = MIGRATE_UNMOVABLE;
464
465 set_pageblock_flags_group(page, (unsigned long)migratetype,
466 PB_migrate, PB_migrate_end);
467 }
468
469 #ifdef CONFIG_DEBUG_VM
470 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
471 {
472 int ret = 0;
473 unsigned seq;
474 unsigned long pfn = page_to_pfn(page);
475 unsigned long sp, start_pfn;
476
477 do {
478 seq = zone_span_seqbegin(zone);
479 start_pfn = zone->zone_start_pfn;
480 sp = zone->spanned_pages;
481 if (!zone_spans_pfn(zone, pfn))
482 ret = 1;
483 } while (zone_span_seqretry(zone, seq));
484
485 if (ret)
486 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
487 pfn, zone_to_nid(zone), zone->name,
488 start_pfn, start_pfn + sp);
489
490 return ret;
491 }
492
493 static int page_is_consistent(struct zone *zone, struct page *page)
494 {
495 if (!pfn_valid_within(page_to_pfn(page)))
496 return 0;
497 if (zone != page_zone(page))
498 return 0;
499
500 return 1;
501 }
502 /*
503 * Temporary debugging check for pages not lying within a given zone.
504 */
505 static int bad_range(struct zone *zone, struct page *page)
506 {
507 if (page_outside_zone_boundaries(zone, page))
508 return 1;
509 if (!page_is_consistent(zone, page))
510 return 1;
511
512 return 0;
513 }
514 #else
515 static inline int bad_range(struct zone *zone, struct page *page)
516 {
517 return 0;
518 }
519 #endif
520
521 static void bad_page(struct page *page, const char *reason,
522 unsigned long bad_flags)
523 {
524 static unsigned long resume;
525 static unsigned long nr_shown;
526 static unsigned long nr_unshown;
527
528 /*
529 * Allow a burst of 60 reports, then keep quiet for that minute;
530 * or allow a steady drip of one report per second.
531 */
532 if (nr_shown == 60) {
533 if (time_before(jiffies, resume)) {
534 nr_unshown++;
535 goto out;
536 }
537 if (nr_unshown) {
538 pr_alert(
539 "BUG: Bad page state: %lu messages suppressed\n",
540 nr_unshown);
541 nr_unshown = 0;
542 }
543 nr_shown = 0;
544 }
545 if (nr_shown++ == 0)
546 resume = jiffies + 60 * HZ;
547
548 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
549 current->comm, page_to_pfn(page));
550 __dump_page(page, reason);
551 bad_flags &= page->flags;
552 if (bad_flags)
553 pr_alert("bad because of flags: %#lx(%pGp)\n",
554 bad_flags, &bad_flags);
555 dump_page_owner(page);
556
557 print_modules();
558 dump_stack();
559 out:
560 /* Leave bad fields for debug, except PageBuddy could make trouble */
561 page_mapcount_reset(page); /* remove PageBuddy */
562 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
563 }
564
565 /*
566 * Higher-order pages are called "compound pages". They are structured thusly:
567 *
568 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
569 *
570 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
571 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
572 *
573 * The first tail page's ->compound_dtor holds the offset in array of compound
574 * page destructors. See compound_page_dtors.
575 *
576 * The first tail page's ->compound_order holds the order of allocation.
577 * This usage means that zero-order pages may not be compound.
578 */
579
580 void free_compound_page(struct page *page)
581 {
582 __free_pages_ok(page, compound_order(page));
583 }
584
585 void prep_compound_page(struct page *page, unsigned int order)
586 {
587 int i;
588 int nr_pages = 1 << order;
589
590 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
591 set_compound_order(page, order);
592 __SetPageHead(page);
593 for (i = 1; i < nr_pages; i++) {
594 struct page *p = page + i;
595 set_page_count(p, 0);
596 p->mapping = TAIL_MAPPING;
597 set_compound_head(p, page);
598 }
599 atomic_set(compound_mapcount_ptr(page), -1);
600 }
601
602 #ifdef CONFIG_DEBUG_PAGEALLOC
603 unsigned int _debug_guardpage_minorder;
604 bool _debug_pagealloc_enabled __read_mostly
605 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
606 EXPORT_SYMBOL(_debug_pagealloc_enabled);
607 bool _debug_guardpage_enabled __read_mostly;
608
609 static int __init early_debug_pagealloc(char *buf)
610 {
611 if (!buf)
612 return -EINVAL;
613 return kstrtobool(buf, &_debug_pagealloc_enabled);
614 }
615 early_param("debug_pagealloc", early_debug_pagealloc);
616
617 static bool need_debug_guardpage(void)
618 {
619 /* If we don't use debug_pagealloc, we don't need guard page */
620 if (!debug_pagealloc_enabled())
621 return false;
622
623 return true;
624 }
625
626 static void init_debug_guardpage(void)
627 {
628 if (!debug_pagealloc_enabled())
629 return;
630
631 _debug_guardpage_enabled = true;
632 }
633
634 struct page_ext_operations debug_guardpage_ops = {
635 .need = need_debug_guardpage,
636 .init = init_debug_guardpage,
637 };
638
639 static int __init debug_guardpage_minorder_setup(char *buf)
640 {
641 unsigned long res;
642
643 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
644 pr_err("Bad debug_guardpage_minorder value\n");
645 return 0;
646 }
647 _debug_guardpage_minorder = res;
648 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
649 return 0;
650 }
651 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
652
653 static inline void set_page_guard(struct zone *zone, struct page *page,
654 unsigned int order, int migratetype)
655 {
656 struct page_ext *page_ext;
657
658 if (!debug_guardpage_enabled())
659 return;
660
661 page_ext = lookup_page_ext(page);
662 if (unlikely(!page_ext))
663 return;
664
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
671 }
672
673 static inline void clear_page_guard(struct zone *zone, struct page *page,
674 unsigned int order, int migratetype)
675 {
676 struct page_ext *page_ext;
677
678 if (!debug_guardpage_enabled())
679 return;
680
681 page_ext = lookup_page_ext(page);
682 if (unlikely(!page_ext))
683 return;
684
685 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
686
687 set_page_private(page, 0);
688 if (!is_migrate_isolate(migratetype))
689 __mod_zone_freepage_state(zone, (1 << order), migratetype);
690 }
691 #else
692 struct page_ext_operations debug_guardpage_ops = { NULL, };
693 static inline void set_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype) {}
695 static inline void clear_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) {}
697 #endif
698
699 static inline void set_page_order(struct page *page, unsigned int order)
700 {
701 set_page_private(page, order);
702 __SetPageBuddy(page);
703 }
704
705 static inline void rmv_page_order(struct page *page)
706 {
707 __ClearPageBuddy(page);
708 set_page_private(page, 0);
709 }
710
711 /*
712 * This function checks whether a page is free && is the buddy
713 * we can do coalesce a page and its buddy if
714 * (a) the buddy is not in a hole &&
715 * (b) the buddy is in the buddy system &&
716 * (c) a page and its buddy have the same order &&
717 * (d) a page and its buddy are in the same zone.
718 *
719 * For recording whether a page is in the buddy system, we set ->_mapcount
720 * PAGE_BUDDY_MAPCOUNT_VALUE.
721 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
722 * serialized by zone->lock.
723 *
724 * For recording page's order, we use page_private(page).
725 */
726 static inline int page_is_buddy(struct page *page, struct page *buddy,
727 unsigned int order)
728 {
729 if (!pfn_valid_within(page_to_pfn(buddy)))
730 return 0;
731
732 if (page_is_guard(buddy) && page_order(buddy) == order) {
733 if (page_zone_id(page) != page_zone_id(buddy))
734 return 0;
735
736 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
737
738 return 1;
739 }
740
741 if (PageBuddy(buddy) && page_order(buddy) == order) {
742 /*
743 * zone check is done late to avoid uselessly
744 * calculating zone/node ids for pages that could
745 * never merge.
746 */
747 if (page_zone_id(page) != page_zone_id(buddy))
748 return 0;
749
750 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
751
752 return 1;
753 }
754 return 0;
755 }
756
757 /*
758 * Freeing function for a buddy system allocator.
759 *
760 * The concept of a buddy system is to maintain direct-mapped table
761 * (containing bit values) for memory blocks of various "orders".
762 * The bottom level table contains the map for the smallest allocatable
763 * units of memory (here, pages), and each level above it describes
764 * pairs of units from the levels below, hence, "buddies".
765 * At a high level, all that happens here is marking the table entry
766 * at the bottom level available, and propagating the changes upward
767 * as necessary, plus some accounting needed to play nicely with other
768 * parts of the VM system.
769 * At each level, we keep a list of pages, which are heads of continuous
770 * free pages of length of (1 << order) and marked with _mapcount
771 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
772 * field.
773 * So when we are allocating or freeing one, we can derive the state of the
774 * other. That is, if we allocate a small block, and both were
775 * free, the remainder of the region must be split into blocks.
776 * If a block is freed, and its buddy is also free, then this
777 * triggers coalescing into a block of larger size.
778 *
779 * -- nyc
780 */
781
782 static inline void __free_one_page(struct page *page,
783 unsigned long pfn,
784 struct zone *zone, unsigned int order,
785 int migratetype)
786 {
787 unsigned long page_idx;
788 unsigned long combined_idx;
789 unsigned long uninitialized_var(buddy_idx);
790 struct page *buddy;
791 unsigned int max_order;
792
793 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
794
795 VM_BUG_ON(!zone_is_initialized(zone));
796 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
797
798 VM_BUG_ON(migratetype == -1);
799 if (likely(!is_migrate_isolate(migratetype)))
800 __mod_zone_freepage_state(zone, 1 << order, migratetype);
801
802 page_idx = pfn & ((1 << MAX_ORDER) - 1);
803
804 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
805 VM_BUG_ON_PAGE(bad_range(zone, page), page);
806
807 continue_merging:
808 while (order < max_order - 1) {
809 buddy_idx = __find_buddy_index(page_idx, order);
810 buddy = page + (buddy_idx - page_idx);
811 if (!page_is_buddy(page, buddy, order))
812 goto done_merging;
813 /*
814 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
815 * merge with it and move up one order.
816 */
817 if (page_is_guard(buddy)) {
818 clear_page_guard(zone, buddy, order, migratetype);
819 } else {
820 list_del(&buddy->lru);
821 zone->free_area[order].nr_free--;
822 rmv_page_order(buddy);
823 }
824 combined_idx = buddy_idx & page_idx;
825 page = page + (combined_idx - page_idx);
826 page_idx = combined_idx;
827 order++;
828 }
829 if (max_order < MAX_ORDER) {
830 /* If we are here, it means order is >= pageblock_order.
831 * We want to prevent merge between freepages on isolate
832 * pageblock and normal pageblock. Without this, pageblock
833 * isolation could cause incorrect freepage or CMA accounting.
834 *
835 * We don't want to hit this code for the more frequent
836 * low-order merging.
837 */
838 if (unlikely(has_isolate_pageblock(zone))) {
839 int buddy_mt;
840
841 buddy_idx = __find_buddy_index(page_idx, order);
842 buddy = page + (buddy_idx - page_idx);
843 buddy_mt = get_pageblock_migratetype(buddy);
844
845 if (migratetype != buddy_mt
846 && (is_migrate_isolate(migratetype) ||
847 is_migrate_isolate(buddy_mt)))
848 goto done_merging;
849 }
850 max_order++;
851 goto continue_merging;
852 }
853
854 done_merging:
855 set_page_order(page, order);
856
857 /*
858 * If this is not the largest possible page, check if the buddy
859 * of the next-highest order is free. If it is, it's possible
860 * that pages are being freed that will coalesce soon. In case,
861 * that is happening, add the free page to the tail of the list
862 * so it's less likely to be used soon and more likely to be merged
863 * as a higher order page
864 */
865 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
866 struct page *higher_page, *higher_buddy;
867 combined_idx = buddy_idx & page_idx;
868 higher_page = page + (combined_idx - page_idx);
869 buddy_idx = __find_buddy_index(combined_idx, order + 1);
870 higher_buddy = higher_page + (buddy_idx - combined_idx);
871 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
872 list_add_tail(&page->lru,
873 &zone->free_area[order].free_list[migratetype]);
874 goto out;
875 }
876 }
877
878 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
879 out:
880 zone->free_area[order].nr_free++;
881 }
882
883 /*
884 * A bad page could be due to a number of fields. Instead of multiple branches,
885 * try and check multiple fields with one check. The caller must do a detailed
886 * check if necessary.
887 */
888 static inline bool page_expected_state(struct page *page,
889 unsigned long check_flags)
890 {
891 if (unlikely(atomic_read(&page->_mapcount) != -1))
892 return false;
893
894 if (unlikely((unsigned long)page->mapping |
895 page_ref_count(page) |
896 #ifdef CONFIG_MEMCG
897 (unsigned long)page->mem_cgroup |
898 #endif
899 (page->flags & check_flags)))
900 return false;
901
902 return true;
903 }
904
905 static void free_pages_check_bad(struct page *page)
906 {
907 const char *bad_reason;
908 unsigned long bad_flags;
909
910 bad_reason = NULL;
911 bad_flags = 0;
912
913 if (unlikely(atomic_read(&page->_mapcount) != -1))
914 bad_reason = "nonzero mapcount";
915 if (unlikely(page->mapping != NULL))
916 bad_reason = "non-NULL mapping";
917 if (unlikely(page_ref_count(page) != 0))
918 bad_reason = "nonzero _refcount";
919 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
920 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
921 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
922 }
923 #ifdef CONFIG_MEMCG
924 if (unlikely(page->mem_cgroup))
925 bad_reason = "page still charged to cgroup";
926 #endif
927 bad_page(page, bad_reason, bad_flags);
928 }
929
930 static inline int free_pages_check(struct page *page)
931 {
932 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
933 return 0;
934
935 /* Something has gone sideways, find it */
936 free_pages_check_bad(page);
937 return 1;
938 }
939
940 static int free_tail_pages_check(struct page *head_page, struct page *page)
941 {
942 int ret = 1;
943
944 /*
945 * We rely page->lru.next never has bit 0 set, unless the page
946 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
947 */
948 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
949
950 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
951 ret = 0;
952 goto out;
953 }
954 switch (page - head_page) {
955 case 1:
956 /* the first tail page: ->mapping is compound_mapcount() */
957 if (unlikely(compound_mapcount(page))) {
958 bad_page(page, "nonzero compound_mapcount", 0);
959 goto out;
960 }
961 break;
962 case 2:
963 /*
964 * the second tail page: ->mapping is
965 * page_deferred_list().next -- ignore value.
966 */
967 break;
968 default:
969 if (page->mapping != TAIL_MAPPING) {
970 bad_page(page, "corrupted mapping in tail page", 0);
971 goto out;
972 }
973 break;
974 }
975 if (unlikely(!PageTail(page))) {
976 bad_page(page, "PageTail not set", 0);
977 goto out;
978 }
979 if (unlikely(compound_head(page) != head_page)) {
980 bad_page(page, "compound_head not consistent", 0);
981 goto out;
982 }
983 ret = 0;
984 out:
985 page->mapping = NULL;
986 clear_compound_head(page);
987 return ret;
988 }
989
990 static __always_inline bool free_pages_prepare(struct page *page,
991 unsigned int order, bool check_free)
992 {
993 int bad = 0;
994
995 VM_BUG_ON_PAGE(PageTail(page), page);
996
997 trace_mm_page_free(page, order);
998 kmemcheck_free_shadow(page, order);
999
1000 /*
1001 * Check tail pages before head page information is cleared to
1002 * avoid checking PageCompound for order-0 pages.
1003 */
1004 if (unlikely(order)) {
1005 bool compound = PageCompound(page);
1006 int i;
1007
1008 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1009
1010 for (i = 1; i < (1 << order); i++) {
1011 if (compound)
1012 bad += free_tail_pages_check(page, page + i);
1013 if (unlikely(free_pages_check(page + i))) {
1014 bad++;
1015 continue;
1016 }
1017 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1018 }
1019 }
1020 if (PageMappingFlags(page))
1021 page->mapping = NULL;
1022 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1023 memcg_kmem_uncharge(page, order);
1024 __ClearPageKmemcg(page);
1025 }
1026 if (check_free)
1027 bad += free_pages_check(page);
1028 if (bad)
1029 return false;
1030
1031 page_cpupid_reset_last(page);
1032 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1033 reset_page_owner(page, order);
1034
1035 if (!PageHighMem(page)) {
1036 debug_check_no_locks_freed(page_address(page),
1037 PAGE_SIZE << order);
1038 debug_check_no_obj_freed(page_address(page),
1039 PAGE_SIZE << order);
1040 }
1041 arch_free_page(page, order);
1042 kernel_poison_pages(page, 1 << order, 0);
1043 kernel_map_pages(page, 1 << order, 0);
1044 kasan_free_pages(page, order);
1045
1046 return true;
1047 }
1048
1049 #ifdef CONFIG_DEBUG_VM
1050 static inline bool free_pcp_prepare(struct page *page)
1051 {
1052 return free_pages_prepare(page, 0, true);
1053 }
1054
1055 static inline bool bulkfree_pcp_prepare(struct page *page)
1056 {
1057 return false;
1058 }
1059 #else
1060 static bool free_pcp_prepare(struct page *page)
1061 {
1062 return free_pages_prepare(page, 0, false);
1063 }
1064
1065 static bool bulkfree_pcp_prepare(struct page *page)
1066 {
1067 return free_pages_check(page);
1068 }
1069 #endif /* CONFIG_DEBUG_VM */
1070
1071 /*
1072 * Frees a number of pages from the PCP lists
1073 * Assumes all pages on list are in same zone, and of same order.
1074 * count is the number of pages to free.
1075 *
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1078 *
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1081 */
1082 static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1084 {
1085 int migratetype = 0;
1086 int batch_free = 0;
1087 unsigned long nr_scanned;
1088 bool isolated_pageblocks;
1089
1090 spin_lock(&zone->lock);
1091 isolated_pageblocks = has_isolate_pageblock(zone);
1092 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1093 if (nr_scanned)
1094 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1095
1096 while (count) {
1097 struct page *page;
1098 struct list_head *list;
1099
1100 /*
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
1106 */
1107 do {
1108 batch_free++;
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
1113
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
1116 batch_free = count;
1117
1118 do {
1119 int mt; /* migratetype of the to-be-freed page */
1120
1121 page = list_last_entry(list, struct page, lru);
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
1124
1125 mt = get_pcppage_migratetype(page);
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
1129 if (unlikely(isolated_pageblocks))
1130 mt = get_pageblock_migratetype(page);
1131
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1134
1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1136 trace_mm_page_pcpu_drain(page, 0, mt);
1137 } while (--count && --batch_free && !list_empty(list));
1138 }
1139 spin_unlock(&zone->lock);
1140 }
1141
1142 static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
1144 unsigned int order,
1145 int migratetype)
1146 {
1147 unsigned long nr_scanned;
1148 spin_lock(&zone->lock);
1149 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1150 if (nr_scanned)
1151 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1152
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
1156 }
1157 __free_one_page(page, pfn, zone, order, migratetype);
1158 spin_unlock(&zone->lock);
1159 }
1160
1161 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1163 {
1164 set_page_links(page, zone, nid, pfn);
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1168
1169 INIT_LIST_HEAD(&page->lru);
1170 #ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174 #endif
1175 }
1176
1177 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1179 {
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181 }
1182
1183 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184 static void init_reserved_page(unsigned long pfn)
1185 {
1186 pg_data_t *pgdat;
1187 int nid, zid;
1188
1189 if (!early_page_uninitialised(pfn))
1190 return;
1191
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1194
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1197
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1200 }
1201 __init_single_pfn(pfn, zid, nid);
1202 }
1203 #else
1204 static inline void init_reserved_page(unsigned long pfn)
1205 {
1206 }
1207 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208
1209 /*
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1214 */
1215 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1216 {
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1219
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1223
1224 init_reserved_page(start_pfn);
1225
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1228
1229 SetPageReserved(page);
1230 }
1231 }
1232 }
1233
1234 static void __free_pages_ok(struct page *page, unsigned int order)
1235 {
1236 unsigned long flags;
1237 int migratetype;
1238 unsigned long pfn = page_to_pfn(page);
1239
1240 if (!free_pages_prepare(page, order, true))
1241 return;
1242
1243 migratetype = get_pfnblock_migratetype(page, pfn);
1244 local_irq_save(flags);
1245 __count_vm_events(PGFREE, 1 << order);
1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
1247 local_irq_restore(flags);
1248 }
1249
1250 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1251 {
1252 unsigned int nr_pages = 1 << order;
1253 struct page *p = page;
1254 unsigned int loop;
1255
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
1261 }
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264
1265 page_zone(page)->managed_pages += nr_pages;
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
1268 }
1269
1270 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1272
1273 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1274
1275 int __meminit early_pfn_to_nid(unsigned long pfn)
1276 {
1277 static DEFINE_SPINLOCK(early_pfn_lock);
1278 int nid;
1279
1280 spin_lock(&early_pfn_lock);
1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1282 if (nid < 0)
1283 nid = first_online_node;
1284 spin_unlock(&early_pfn_lock);
1285
1286 return nid;
1287 }
1288 #endif
1289
1290 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1293 {
1294 int nid;
1295
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1300 }
1301
1302 /* Only safe to use early in boot when initialisation is single-threaded */
1303 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304 {
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1306 }
1307
1308 #else
1309
1310 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311 {
1312 return true;
1313 }
1314 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316 {
1317 return true;
1318 }
1319 #endif
1320
1321
1322 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1323 unsigned int order)
1324 {
1325 if (early_page_uninitialised(pfn))
1326 return;
1327 return __free_pages_boot_core(page, order);
1328 }
1329
1330 /*
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1336 *
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 *
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1346 */
1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349 {
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_page(start_pfn);
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371 }
1372
1373 void set_zone_contiguous(struct zone *zone)
1374 {
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1377
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1382
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1384
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1388 }
1389
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1392 }
1393
1394 void clear_zone_contiguous(struct zone *zone)
1395 {
1396 zone->contiguous = false;
1397 }
1398
1399 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1400 static void __init deferred_free_range(struct page *page,
1401 unsigned long pfn, int nr_pages)
1402 {
1403 int i;
1404
1405 if (!page)
1406 return;
1407
1408 /* Free a large naturally-aligned chunk if possible */
1409 if (nr_pages == MAX_ORDER_NR_PAGES &&
1410 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1412 __free_pages_boot_core(page, MAX_ORDER-1);
1413 return;
1414 }
1415
1416 for (i = 0; i < nr_pages; i++, page++)
1417 __free_pages_boot_core(page, 0);
1418 }
1419
1420 /* Completion tracking for deferred_init_memmap() threads */
1421 static atomic_t pgdat_init_n_undone __initdata;
1422 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1423
1424 static inline void __init pgdat_init_report_one_done(void)
1425 {
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1428 }
1429
1430 /* Initialise remaining memory on a node */
1431 static int __init deferred_init_memmap(void *data)
1432 {
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1443
1444 if (first_init_pfn == ULONG_MAX) {
1445 pgdat_init_report_one_done();
1446 return 0;
1447 }
1448
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
1452
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1457
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1463 }
1464
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
1467 struct page *page = NULL;
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
1471
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1478
1479 for (; pfn < end_pfn; pfn++) {
1480 if (!pfn_valid_within(pfn))
1481 goto free_range;
1482
1483 /*
1484 * Ensure pfn_valid is checked every
1485 * MAX_ORDER_NR_PAGES for memory holes
1486 */
1487 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
1490 goto free_range;
1491 }
1492 }
1493
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1501 page++;
1502 } else {
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1511 }
1512
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
1515 goto free_range;
1516 }
1517
1518 __init_single_page(page, pfn, zid, nid);
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1523 }
1524 nr_to_free++;
1525
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528 free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
1535 }
1536
1537 first_init_pfn = max(end_pfn, first_init_pfn);
1538 }
1539
1540 /* Sanity check that the next zone really is unpopulated */
1541 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1542
1543 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1544 jiffies_to_msecs(jiffies - start));
1545
1546 pgdat_init_report_one_done();
1547 return 0;
1548 }
1549 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1550
1551 void __init page_alloc_init_late(void)
1552 {
1553 struct zone *zone;
1554
1555 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1556 int nid;
1557
1558 /* There will be num_node_state(N_MEMORY) threads */
1559 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1560 for_each_node_state(nid, N_MEMORY) {
1561 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1562 }
1563
1564 /* Block until all are initialised */
1565 wait_for_completion(&pgdat_init_all_done_comp);
1566
1567 /* Reinit limits that are based on free pages after the kernel is up */
1568 files_maxfiles_init();
1569 #endif
1570
1571 for_each_populated_zone(zone)
1572 set_zone_contiguous(zone);
1573 }
1574
1575 #ifdef CONFIG_CMA
1576 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1577 void __init init_cma_reserved_pageblock(struct page *page)
1578 {
1579 unsigned i = pageblock_nr_pages;
1580 struct page *p = page;
1581
1582 do {
1583 __ClearPageReserved(p);
1584 set_page_count(p, 0);
1585 } while (++p, --i);
1586
1587 set_pageblock_migratetype(page, MIGRATE_CMA);
1588
1589 if (pageblock_order >= MAX_ORDER) {
1590 i = pageblock_nr_pages;
1591 p = page;
1592 do {
1593 set_page_refcounted(p);
1594 __free_pages(p, MAX_ORDER - 1);
1595 p += MAX_ORDER_NR_PAGES;
1596 } while (i -= MAX_ORDER_NR_PAGES);
1597 } else {
1598 set_page_refcounted(page);
1599 __free_pages(page, pageblock_order);
1600 }
1601
1602 adjust_managed_page_count(page, pageblock_nr_pages);
1603 }
1604 #endif
1605
1606 /*
1607 * The order of subdivision here is critical for the IO subsystem.
1608 * Please do not alter this order without good reasons and regression
1609 * testing. Specifically, as large blocks of memory are subdivided,
1610 * the order in which smaller blocks are delivered depends on the order
1611 * they're subdivided in this function. This is the primary factor
1612 * influencing the order in which pages are delivered to the IO
1613 * subsystem according to empirical testing, and this is also justified
1614 * by considering the behavior of a buddy system containing a single
1615 * large block of memory acted on by a series of small allocations.
1616 * This behavior is a critical factor in sglist merging's success.
1617 *
1618 * -- nyc
1619 */
1620 static inline void expand(struct zone *zone, struct page *page,
1621 int low, int high, struct free_area *area,
1622 int migratetype)
1623 {
1624 unsigned long size = 1 << high;
1625
1626 while (high > low) {
1627 area--;
1628 high--;
1629 size >>= 1;
1630 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1631
1632 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1633 debug_guardpage_enabled() &&
1634 high < debug_guardpage_minorder()) {
1635 /*
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1640 */
1641 set_page_guard(zone, &page[size], high, migratetype);
1642 continue;
1643 }
1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1647 }
1648 }
1649
1650 static void check_new_page_bad(struct page *page)
1651 {
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
1654
1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
1659 if (unlikely(page_ref_count(page) != 0))
1660 bad_reason = "nonzero _count";
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
1664 /* Don't complain about hwpoisoned pages */
1665 page_mapcount_reset(page); /* remove PageBuddy */
1666 return;
1667 }
1668 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1669 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1670 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1671 }
1672 #ifdef CONFIG_MEMCG
1673 if (unlikely(page->mem_cgroup))
1674 bad_reason = "page still charged to cgroup";
1675 #endif
1676 bad_page(page, bad_reason, bad_flags);
1677 }
1678
1679 /*
1680 * This page is about to be returned from the page allocator
1681 */
1682 static inline int check_new_page(struct page *page)
1683 {
1684 if (likely(page_expected_state(page,
1685 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1686 return 0;
1687
1688 check_new_page_bad(page);
1689 return 1;
1690 }
1691
1692 static inline bool free_pages_prezeroed(bool poisoned)
1693 {
1694 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1695 page_poisoning_enabled() && poisoned;
1696 }
1697
1698 #ifdef CONFIG_DEBUG_VM
1699 static bool check_pcp_refill(struct page *page)
1700 {
1701 return false;
1702 }
1703
1704 static bool check_new_pcp(struct page *page)
1705 {
1706 return check_new_page(page);
1707 }
1708 #else
1709 static bool check_pcp_refill(struct page *page)
1710 {
1711 return check_new_page(page);
1712 }
1713 static bool check_new_pcp(struct page *page)
1714 {
1715 return false;
1716 }
1717 #endif /* CONFIG_DEBUG_VM */
1718
1719 static bool check_new_pages(struct page *page, unsigned int order)
1720 {
1721 int i;
1722 for (i = 0; i < (1 << order); i++) {
1723 struct page *p = page + i;
1724
1725 if (unlikely(check_new_page(p)))
1726 return true;
1727 }
1728
1729 return false;
1730 }
1731
1732 inline void post_alloc_hook(struct page *page, unsigned int order,
1733 gfp_t gfp_flags)
1734 {
1735 set_page_private(page, 0);
1736 set_page_refcounted(page);
1737
1738 arch_alloc_page(page, order);
1739 kernel_map_pages(page, 1 << order, 1);
1740 kernel_poison_pages(page, 1 << order, 1);
1741 kasan_alloc_pages(page, order);
1742 set_page_owner(page, order, gfp_flags);
1743 }
1744
1745 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1746 unsigned int alloc_flags)
1747 {
1748 int i;
1749 bool poisoned = true;
1750
1751 for (i = 0; i < (1 << order); i++) {
1752 struct page *p = page + i;
1753 if (poisoned)
1754 poisoned &= page_is_poisoned(p);
1755 }
1756
1757 post_alloc_hook(page, order, gfp_flags);
1758
1759 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1760 for (i = 0; i < (1 << order); i++)
1761 clear_highpage(page + i);
1762
1763 if (order && (gfp_flags & __GFP_COMP))
1764 prep_compound_page(page, order);
1765
1766 /*
1767 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1768 * allocate the page. The expectation is that the caller is taking
1769 * steps that will free more memory. The caller should avoid the page
1770 * being used for !PFMEMALLOC purposes.
1771 */
1772 if (alloc_flags & ALLOC_NO_WATERMARKS)
1773 set_page_pfmemalloc(page);
1774 else
1775 clear_page_pfmemalloc(page);
1776 }
1777
1778 /*
1779 * Go through the free lists for the given migratetype and remove
1780 * the smallest available page from the freelists
1781 */
1782 static inline
1783 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1784 int migratetype)
1785 {
1786 unsigned int current_order;
1787 struct free_area *area;
1788 struct page *page;
1789
1790 /* Find a page of the appropriate size in the preferred list */
1791 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1792 area = &(zone->free_area[current_order]);
1793 page = list_first_entry_or_null(&area->free_list[migratetype],
1794 struct page, lru);
1795 if (!page)
1796 continue;
1797 list_del(&page->lru);
1798 rmv_page_order(page);
1799 area->nr_free--;
1800 expand(zone, page, order, current_order, area, migratetype);
1801 set_pcppage_migratetype(page, migratetype);
1802 return page;
1803 }
1804
1805 return NULL;
1806 }
1807
1808
1809 /*
1810 * This array describes the order lists are fallen back to when
1811 * the free lists for the desirable migrate type are depleted
1812 */
1813 static int fallbacks[MIGRATE_TYPES][4] = {
1814 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1815 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1817 #ifdef CONFIG_CMA
1818 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1819 #endif
1820 #ifdef CONFIG_MEMORY_ISOLATION
1821 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1822 #endif
1823 };
1824
1825 #ifdef CONFIG_CMA
1826 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 unsigned int order)
1828 {
1829 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1830 }
1831 #else
1832 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order) { return NULL; }
1834 #endif
1835
1836 /*
1837 * Move the free pages in a range to the free lists of the requested type.
1838 * Note that start_page and end_pages are not aligned on a pageblock
1839 * boundary. If alignment is required, use move_freepages_block()
1840 */
1841 int move_freepages(struct zone *zone,
1842 struct page *start_page, struct page *end_page,
1843 int migratetype)
1844 {
1845 struct page *page;
1846 unsigned int order;
1847 int pages_moved = 0;
1848
1849 #ifndef CONFIG_HOLES_IN_ZONE
1850 /*
1851 * page_zone is not safe to call in this context when
1852 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1853 * anyway as we check zone boundaries in move_freepages_block().
1854 * Remove at a later date when no bug reports exist related to
1855 * grouping pages by mobility
1856 */
1857 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1858 #endif
1859
1860 for (page = start_page; page <= end_page;) {
1861 /* Make sure we are not inadvertently changing nodes */
1862 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1863
1864 if (!pfn_valid_within(page_to_pfn(page))) {
1865 page++;
1866 continue;
1867 }
1868
1869 if (!PageBuddy(page)) {
1870 page++;
1871 continue;
1872 }
1873
1874 order = page_order(page);
1875 list_move(&page->lru,
1876 &zone->free_area[order].free_list[migratetype]);
1877 page += 1 << order;
1878 pages_moved += 1 << order;
1879 }
1880
1881 return pages_moved;
1882 }
1883
1884 int move_freepages_block(struct zone *zone, struct page *page,
1885 int migratetype)
1886 {
1887 unsigned long start_pfn, end_pfn;
1888 struct page *start_page, *end_page;
1889
1890 start_pfn = page_to_pfn(page);
1891 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1892 start_page = pfn_to_page(start_pfn);
1893 end_page = start_page + pageblock_nr_pages - 1;
1894 end_pfn = start_pfn + pageblock_nr_pages - 1;
1895
1896 /* Do not cross zone boundaries */
1897 if (!zone_spans_pfn(zone, start_pfn))
1898 start_page = page;
1899 if (!zone_spans_pfn(zone, end_pfn))
1900 return 0;
1901
1902 return move_freepages(zone, start_page, end_page, migratetype);
1903 }
1904
1905 static void change_pageblock_range(struct page *pageblock_page,
1906 int start_order, int migratetype)
1907 {
1908 int nr_pageblocks = 1 << (start_order - pageblock_order);
1909
1910 while (nr_pageblocks--) {
1911 set_pageblock_migratetype(pageblock_page, migratetype);
1912 pageblock_page += pageblock_nr_pages;
1913 }
1914 }
1915
1916 /*
1917 * When we are falling back to another migratetype during allocation, try to
1918 * steal extra free pages from the same pageblocks to satisfy further
1919 * allocations, instead of polluting multiple pageblocks.
1920 *
1921 * If we are stealing a relatively large buddy page, it is likely there will
1922 * be more free pages in the pageblock, so try to steal them all. For
1923 * reclaimable and unmovable allocations, we steal regardless of page size,
1924 * as fragmentation caused by those allocations polluting movable pageblocks
1925 * is worse than movable allocations stealing from unmovable and reclaimable
1926 * pageblocks.
1927 */
1928 static bool can_steal_fallback(unsigned int order, int start_mt)
1929 {
1930 /*
1931 * Leaving this order check is intended, although there is
1932 * relaxed order check in next check. The reason is that
1933 * we can actually steal whole pageblock if this condition met,
1934 * but, below check doesn't guarantee it and that is just heuristic
1935 * so could be changed anytime.
1936 */
1937 if (order >= pageblock_order)
1938 return true;
1939
1940 if (order >= pageblock_order / 2 ||
1941 start_mt == MIGRATE_RECLAIMABLE ||
1942 start_mt == MIGRATE_UNMOVABLE ||
1943 page_group_by_mobility_disabled)
1944 return true;
1945
1946 return false;
1947 }
1948
1949 /*
1950 * This function implements actual steal behaviour. If order is large enough,
1951 * we can steal whole pageblock. If not, we first move freepages in this
1952 * pageblock and check whether half of pages are moved or not. If half of
1953 * pages are moved, we can change migratetype of pageblock and permanently
1954 * use it's pages as requested migratetype in the future.
1955 */
1956 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1957 int start_type)
1958 {
1959 unsigned int current_order = page_order(page);
1960 int pages;
1961
1962 /* Take ownership for orders >= pageblock_order */
1963 if (current_order >= pageblock_order) {
1964 change_pageblock_range(page, current_order, start_type);
1965 return;
1966 }
1967
1968 pages = move_freepages_block(zone, page, start_type);
1969
1970 /* Claim the whole block if over half of it is free */
1971 if (pages >= (1 << (pageblock_order-1)) ||
1972 page_group_by_mobility_disabled)
1973 set_pageblock_migratetype(page, start_type);
1974 }
1975
1976 /*
1977 * Check whether there is a suitable fallback freepage with requested order.
1978 * If only_stealable is true, this function returns fallback_mt only if
1979 * we can steal other freepages all together. This would help to reduce
1980 * fragmentation due to mixed migratetype pages in one pageblock.
1981 */
1982 int find_suitable_fallback(struct free_area *area, unsigned int order,
1983 int migratetype, bool only_stealable, bool *can_steal)
1984 {
1985 int i;
1986 int fallback_mt;
1987
1988 if (area->nr_free == 0)
1989 return -1;
1990
1991 *can_steal = false;
1992 for (i = 0;; i++) {
1993 fallback_mt = fallbacks[migratetype][i];
1994 if (fallback_mt == MIGRATE_TYPES)
1995 break;
1996
1997 if (list_empty(&area->free_list[fallback_mt]))
1998 continue;
1999
2000 if (can_steal_fallback(order, migratetype))
2001 *can_steal = true;
2002
2003 if (!only_stealable)
2004 return fallback_mt;
2005
2006 if (*can_steal)
2007 return fallback_mt;
2008 }
2009
2010 return -1;
2011 }
2012
2013 /*
2014 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2015 * there are no empty page blocks that contain a page with a suitable order
2016 */
2017 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2018 unsigned int alloc_order)
2019 {
2020 int mt;
2021 unsigned long max_managed, flags;
2022
2023 /*
2024 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2025 * Check is race-prone but harmless.
2026 */
2027 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2028 if (zone->nr_reserved_highatomic >= max_managed)
2029 return;
2030
2031 spin_lock_irqsave(&zone->lock, flags);
2032
2033 /* Recheck the nr_reserved_highatomic limit under the lock */
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 goto out_unlock;
2036
2037 /* Yoink! */
2038 mt = get_pageblock_migratetype(page);
2039 if (mt != MIGRATE_HIGHATOMIC &&
2040 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2041 zone->nr_reserved_highatomic += pageblock_nr_pages;
2042 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2043 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2044 }
2045
2046 out_unlock:
2047 spin_unlock_irqrestore(&zone->lock, flags);
2048 }
2049
2050 /*
2051 * Used when an allocation is about to fail under memory pressure. This
2052 * potentially hurts the reliability of high-order allocations when under
2053 * intense memory pressure but failed atomic allocations should be easier
2054 * to recover from than an OOM.
2055 */
2056 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2057 {
2058 struct zonelist *zonelist = ac->zonelist;
2059 unsigned long flags;
2060 struct zoneref *z;
2061 struct zone *zone;
2062 struct page *page;
2063 int order;
2064
2065 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2066 ac->nodemask) {
2067 /* Preserve at least one pageblock */
2068 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2069 continue;
2070
2071 spin_lock_irqsave(&zone->lock, flags);
2072 for (order = 0; order < MAX_ORDER; order++) {
2073 struct free_area *area = &(zone->free_area[order]);
2074
2075 page = list_first_entry_or_null(
2076 &area->free_list[MIGRATE_HIGHATOMIC],
2077 struct page, lru);
2078 if (!page)
2079 continue;
2080
2081 /*
2082 * It should never happen but changes to locking could
2083 * inadvertently allow a per-cpu drain to add pages
2084 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2085 * and watch for underflows.
2086 */
2087 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2088 zone->nr_reserved_highatomic);
2089
2090 /*
2091 * Convert to ac->migratetype and avoid the normal
2092 * pageblock stealing heuristics. Minimally, the caller
2093 * is doing the work and needs the pages. More
2094 * importantly, if the block was always converted to
2095 * MIGRATE_UNMOVABLE or another type then the number
2096 * of pageblocks that cannot be completely freed
2097 * may increase.
2098 */
2099 set_pageblock_migratetype(page, ac->migratetype);
2100 move_freepages_block(zone, page, ac->migratetype);
2101 spin_unlock_irqrestore(&zone->lock, flags);
2102 return;
2103 }
2104 spin_unlock_irqrestore(&zone->lock, flags);
2105 }
2106 }
2107
2108 /* Remove an element from the buddy allocator from the fallback list */
2109 static inline struct page *
2110 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2111 {
2112 struct free_area *area;
2113 unsigned int current_order;
2114 struct page *page;
2115 int fallback_mt;
2116 bool can_steal;
2117
2118 /* Find the largest possible block of pages in the other list */
2119 for (current_order = MAX_ORDER-1;
2120 current_order >= order && current_order <= MAX_ORDER-1;
2121 --current_order) {
2122 area = &(zone->free_area[current_order]);
2123 fallback_mt = find_suitable_fallback(area, current_order,
2124 start_migratetype, false, &can_steal);
2125 if (fallback_mt == -1)
2126 continue;
2127
2128 page = list_first_entry(&area->free_list[fallback_mt],
2129 struct page, lru);
2130 if (can_steal)
2131 steal_suitable_fallback(zone, page, start_migratetype);
2132
2133 /* Remove the page from the freelists */
2134 area->nr_free--;
2135 list_del(&page->lru);
2136 rmv_page_order(page);
2137
2138 expand(zone, page, order, current_order, area,
2139 start_migratetype);
2140 /*
2141 * The pcppage_migratetype may differ from pageblock's
2142 * migratetype depending on the decisions in
2143 * find_suitable_fallback(). This is OK as long as it does not
2144 * differ for MIGRATE_CMA pageblocks. Those can be used as
2145 * fallback only via special __rmqueue_cma_fallback() function
2146 */
2147 set_pcppage_migratetype(page, start_migratetype);
2148
2149 trace_mm_page_alloc_extfrag(page, order, current_order,
2150 start_migratetype, fallback_mt);
2151
2152 return page;
2153 }
2154
2155 return NULL;
2156 }
2157
2158 /*
2159 * Do the hard work of removing an element from the buddy allocator.
2160 * Call me with the zone->lock already held.
2161 */
2162 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2163 int migratetype)
2164 {
2165 struct page *page;
2166
2167 page = __rmqueue_smallest(zone, order, migratetype);
2168 if (unlikely(!page)) {
2169 if (migratetype == MIGRATE_MOVABLE)
2170 page = __rmqueue_cma_fallback(zone, order);
2171
2172 if (!page)
2173 page = __rmqueue_fallback(zone, order, migratetype);
2174 }
2175
2176 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2177 return page;
2178 }
2179
2180 /*
2181 * Obtain a specified number of elements from the buddy allocator, all under
2182 * a single hold of the lock, for efficiency. Add them to the supplied list.
2183 * Returns the number of new pages which were placed at *list.
2184 */
2185 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2186 unsigned long count, struct list_head *list,
2187 int migratetype, bool cold)
2188 {
2189 int i;
2190
2191 spin_lock(&zone->lock);
2192 for (i = 0; i < count; ++i) {
2193 struct page *page = __rmqueue(zone, order, migratetype);
2194 if (unlikely(page == NULL))
2195 break;
2196
2197 if (unlikely(check_pcp_refill(page)))
2198 continue;
2199
2200 /*
2201 * Split buddy pages returned by expand() are received here
2202 * in physical page order. The page is added to the callers and
2203 * list and the list head then moves forward. From the callers
2204 * perspective, the linked list is ordered by page number in
2205 * some conditions. This is useful for IO devices that can
2206 * merge IO requests if the physical pages are ordered
2207 * properly.
2208 */
2209 if (likely(!cold))
2210 list_add(&page->lru, list);
2211 else
2212 list_add_tail(&page->lru, list);
2213 list = &page->lru;
2214 if (is_migrate_cma(get_pcppage_migratetype(page)))
2215 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2216 -(1 << order));
2217 }
2218 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2219 spin_unlock(&zone->lock);
2220 return i;
2221 }
2222
2223 #ifdef CONFIG_NUMA
2224 /*
2225 * Called from the vmstat counter updater to drain pagesets of this
2226 * currently executing processor on remote nodes after they have
2227 * expired.
2228 *
2229 * Note that this function must be called with the thread pinned to
2230 * a single processor.
2231 */
2232 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2233 {
2234 unsigned long flags;
2235 int to_drain, batch;
2236
2237 local_irq_save(flags);
2238 batch = READ_ONCE(pcp->batch);
2239 to_drain = min(pcp->count, batch);
2240 if (to_drain > 0) {
2241 free_pcppages_bulk(zone, to_drain, pcp);
2242 pcp->count -= to_drain;
2243 }
2244 local_irq_restore(flags);
2245 }
2246 #endif
2247
2248 /*
2249 * Drain pcplists of the indicated processor and zone.
2250 *
2251 * The processor must either be the current processor and the
2252 * thread pinned to the current processor or a processor that
2253 * is not online.
2254 */
2255 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2256 {
2257 unsigned long flags;
2258 struct per_cpu_pageset *pset;
2259 struct per_cpu_pages *pcp;
2260
2261 local_irq_save(flags);
2262 pset = per_cpu_ptr(zone->pageset, cpu);
2263
2264 pcp = &pset->pcp;
2265 if (pcp->count) {
2266 free_pcppages_bulk(zone, pcp->count, pcp);
2267 pcp->count = 0;
2268 }
2269 local_irq_restore(flags);
2270 }
2271
2272 /*
2273 * Drain pcplists of all zones on the indicated processor.
2274 *
2275 * The processor must either be the current processor and the
2276 * thread pinned to the current processor or a processor that
2277 * is not online.
2278 */
2279 static void drain_pages(unsigned int cpu)
2280 {
2281 struct zone *zone;
2282
2283 for_each_populated_zone(zone) {
2284 drain_pages_zone(cpu, zone);
2285 }
2286 }
2287
2288 /*
2289 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2290 *
2291 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2292 * the single zone's pages.
2293 */
2294 void drain_local_pages(struct zone *zone)
2295 {
2296 int cpu = smp_processor_id();
2297
2298 if (zone)
2299 drain_pages_zone(cpu, zone);
2300 else
2301 drain_pages(cpu);
2302 }
2303
2304 /*
2305 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2306 *
2307 * When zone parameter is non-NULL, spill just the single zone's pages.
2308 *
2309 * Note that this code is protected against sending an IPI to an offline
2310 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2311 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2312 * nothing keeps CPUs from showing up after we populated the cpumask and
2313 * before the call to on_each_cpu_mask().
2314 */
2315 void drain_all_pages(struct zone *zone)
2316 {
2317 int cpu;
2318
2319 /*
2320 * Allocate in the BSS so we wont require allocation in
2321 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2322 */
2323 static cpumask_t cpus_with_pcps;
2324
2325 /*
2326 * We don't care about racing with CPU hotplug event
2327 * as offline notification will cause the notified
2328 * cpu to drain that CPU pcps and on_each_cpu_mask
2329 * disables preemption as part of its processing
2330 */
2331 for_each_online_cpu(cpu) {
2332 struct per_cpu_pageset *pcp;
2333 struct zone *z;
2334 bool has_pcps = false;
2335
2336 if (zone) {
2337 pcp = per_cpu_ptr(zone->pageset, cpu);
2338 if (pcp->pcp.count)
2339 has_pcps = true;
2340 } else {
2341 for_each_populated_zone(z) {
2342 pcp = per_cpu_ptr(z->pageset, cpu);
2343 if (pcp->pcp.count) {
2344 has_pcps = true;
2345 break;
2346 }
2347 }
2348 }
2349
2350 if (has_pcps)
2351 cpumask_set_cpu(cpu, &cpus_with_pcps);
2352 else
2353 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2354 }
2355 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2356 zone, 1);
2357 }
2358
2359 #ifdef CONFIG_HIBERNATION
2360
2361 void mark_free_pages(struct zone *zone)
2362 {
2363 unsigned long pfn, max_zone_pfn;
2364 unsigned long flags;
2365 unsigned int order, t;
2366 struct page *page;
2367
2368 if (zone_is_empty(zone))
2369 return;
2370
2371 spin_lock_irqsave(&zone->lock, flags);
2372
2373 max_zone_pfn = zone_end_pfn(zone);
2374 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2375 if (pfn_valid(pfn)) {
2376 page = pfn_to_page(pfn);
2377
2378 if (page_zone(page) != zone)
2379 continue;
2380
2381 if (!swsusp_page_is_forbidden(page))
2382 swsusp_unset_page_free(page);
2383 }
2384
2385 for_each_migratetype_order(order, t) {
2386 list_for_each_entry(page,
2387 &zone->free_area[order].free_list[t], lru) {
2388 unsigned long i;
2389
2390 pfn = page_to_pfn(page);
2391 for (i = 0; i < (1UL << order); i++)
2392 swsusp_set_page_free(pfn_to_page(pfn + i));
2393 }
2394 }
2395 spin_unlock_irqrestore(&zone->lock, flags);
2396 }
2397 #endif /* CONFIG_PM */
2398
2399 /*
2400 * Free a 0-order page
2401 * cold == true ? free a cold page : free a hot page
2402 */
2403 void free_hot_cold_page(struct page *page, bool cold)
2404 {
2405 struct zone *zone = page_zone(page);
2406 struct per_cpu_pages *pcp;
2407 unsigned long flags;
2408 unsigned long pfn = page_to_pfn(page);
2409 int migratetype;
2410
2411 if (!free_pcp_prepare(page))
2412 return;
2413
2414 migratetype = get_pfnblock_migratetype(page, pfn);
2415 set_pcppage_migratetype(page, migratetype);
2416 local_irq_save(flags);
2417 __count_vm_event(PGFREE);
2418
2419 /*
2420 * We only track unmovable, reclaimable and movable on pcp lists.
2421 * Free ISOLATE pages back to the allocator because they are being
2422 * offlined but treat RESERVE as movable pages so we can get those
2423 * areas back if necessary. Otherwise, we may have to free
2424 * excessively into the page allocator
2425 */
2426 if (migratetype >= MIGRATE_PCPTYPES) {
2427 if (unlikely(is_migrate_isolate(migratetype))) {
2428 free_one_page(zone, page, pfn, 0, migratetype);
2429 goto out;
2430 }
2431 migratetype = MIGRATE_MOVABLE;
2432 }
2433
2434 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2435 if (!cold)
2436 list_add(&page->lru, &pcp->lists[migratetype]);
2437 else
2438 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2439 pcp->count++;
2440 if (pcp->count >= pcp->high) {
2441 unsigned long batch = READ_ONCE(pcp->batch);
2442 free_pcppages_bulk(zone, batch, pcp);
2443 pcp->count -= batch;
2444 }
2445
2446 out:
2447 local_irq_restore(flags);
2448 }
2449
2450 /*
2451 * Free a list of 0-order pages
2452 */
2453 void free_hot_cold_page_list(struct list_head *list, bool cold)
2454 {
2455 struct page *page, *next;
2456
2457 list_for_each_entry_safe(page, next, list, lru) {
2458 trace_mm_page_free_batched(page, cold);
2459 free_hot_cold_page(page, cold);
2460 }
2461 }
2462
2463 /*
2464 * split_page takes a non-compound higher-order page, and splits it into
2465 * n (1<<order) sub-pages: page[0..n]
2466 * Each sub-page must be freed individually.
2467 *
2468 * Note: this is probably too low level an operation for use in drivers.
2469 * Please consult with lkml before using this in your driver.
2470 */
2471 void split_page(struct page *page, unsigned int order)
2472 {
2473 int i;
2474
2475 VM_BUG_ON_PAGE(PageCompound(page), page);
2476 VM_BUG_ON_PAGE(!page_count(page), page);
2477
2478 #ifdef CONFIG_KMEMCHECK
2479 /*
2480 * Split shadow pages too, because free(page[0]) would
2481 * otherwise free the whole shadow.
2482 */
2483 if (kmemcheck_page_is_tracked(page))
2484 split_page(virt_to_page(page[0].shadow), order);
2485 #endif
2486
2487 for (i = 1; i < (1 << order); i++)
2488 set_page_refcounted(page + i);
2489 split_page_owner(page, order);
2490 }
2491 EXPORT_SYMBOL_GPL(split_page);
2492
2493 int __isolate_free_page(struct page *page, unsigned int order)
2494 {
2495 unsigned long watermark;
2496 struct zone *zone;
2497 int mt;
2498
2499 BUG_ON(!PageBuddy(page));
2500
2501 zone = page_zone(page);
2502 mt = get_pageblock_migratetype(page);
2503
2504 if (!is_migrate_isolate(mt)) {
2505 /* Obey watermarks as if the page was being allocated */
2506 watermark = low_wmark_pages(zone) + (1 << order);
2507 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2508 return 0;
2509
2510 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2511 }
2512
2513 /* Remove page from free list */
2514 list_del(&page->lru);
2515 zone->free_area[order].nr_free--;
2516 rmv_page_order(page);
2517
2518 /* Set the pageblock if the isolated page is at least a pageblock */
2519 if (order >= pageblock_order - 1) {
2520 struct page *endpage = page + (1 << order) - 1;
2521 for (; page < endpage; page += pageblock_nr_pages) {
2522 int mt = get_pageblock_migratetype(page);
2523 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2524 set_pageblock_migratetype(page,
2525 MIGRATE_MOVABLE);
2526 }
2527 }
2528
2529
2530 return 1UL << order;
2531 }
2532
2533 /*
2534 * Update NUMA hit/miss statistics
2535 *
2536 * Must be called with interrupts disabled.
2537 *
2538 * When __GFP_OTHER_NODE is set assume the node of the preferred
2539 * zone is the local node. This is useful for daemons who allocate
2540 * memory on behalf of other processes.
2541 */
2542 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2543 gfp_t flags)
2544 {
2545 #ifdef CONFIG_NUMA
2546 int local_nid = numa_node_id();
2547 enum zone_stat_item local_stat = NUMA_LOCAL;
2548
2549 if (unlikely(flags & __GFP_OTHER_NODE)) {
2550 local_stat = NUMA_OTHER;
2551 local_nid = preferred_zone->node;
2552 }
2553
2554 if (z->node == local_nid) {
2555 __inc_zone_state(z, NUMA_HIT);
2556 __inc_zone_state(z, local_stat);
2557 } else {
2558 __inc_zone_state(z, NUMA_MISS);
2559 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2560 }
2561 #endif
2562 }
2563
2564 /*
2565 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2566 */
2567 static inline
2568 struct page *buffered_rmqueue(struct zone *preferred_zone,
2569 struct zone *zone, unsigned int order,
2570 gfp_t gfp_flags, unsigned int alloc_flags,
2571 int migratetype)
2572 {
2573 unsigned long flags;
2574 struct page *page;
2575 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2576
2577 if (likely(order == 0)) {
2578 struct per_cpu_pages *pcp;
2579 struct list_head *list;
2580
2581 local_irq_save(flags);
2582 do {
2583 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2584 list = &pcp->lists[migratetype];
2585 if (list_empty(list)) {
2586 pcp->count += rmqueue_bulk(zone, 0,
2587 pcp->batch, list,
2588 migratetype, cold);
2589 if (unlikely(list_empty(list)))
2590 goto failed;
2591 }
2592
2593 if (cold)
2594 page = list_last_entry(list, struct page, lru);
2595 else
2596 page = list_first_entry(list, struct page, lru);
2597
2598 __dec_zone_state(zone, NR_ALLOC_BATCH);
2599 list_del(&page->lru);
2600 pcp->count--;
2601
2602 } while (check_new_pcp(page));
2603 } else {
2604 /*
2605 * We most definitely don't want callers attempting to
2606 * allocate greater than order-1 page units with __GFP_NOFAIL.
2607 */
2608 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2609 spin_lock_irqsave(&zone->lock, flags);
2610
2611 do {
2612 page = NULL;
2613 if (alloc_flags & ALLOC_HARDER) {
2614 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2615 if (page)
2616 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2617 }
2618 if (!page)
2619 page = __rmqueue(zone, order, migratetype);
2620 } while (page && check_new_pages(page, order));
2621 spin_unlock(&zone->lock);
2622 if (!page)
2623 goto failed;
2624 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2625 __mod_zone_freepage_state(zone, -(1 << order),
2626 get_pcppage_migratetype(page));
2627 }
2628
2629 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2630 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2631 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2632
2633 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2634 zone_statistics(preferred_zone, zone, gfp_flags);
2635 local_irq_restore(flags);
2636
2637 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2638 return page;
2639
2640 failed:
2641 local_irq_restore(flags);
2642 return NULL;
2643 }
2644
2645 #ifdef CONFIG_FAIL_PAGE_ALLOC
2646
2647 static struct {
2648 struct fault_attr attr;
2649
2650 bool ignore_gfp_highmem;
2651 bool ignore_gfp_reclaim;
2652 u32 min_order;
2653 } fail_page_alloc = {
2654 .attr = FAULT_ATTR_INITIALIZER,
2655 .ignore_gfp_reclaim = true,
2656 .ignore_gfp_highmem = true,
2657 .min_order = 1,
2658 };
2659
2660 static int __init setup_fail_page_alloc(char *str)
2661 {
2662 return setup_fault_attr(&fail_page_alloc.attr, str);
2663 }
2664 __setup("fail_page_alloc=", setup_fail_page_alloc);
2665
2666 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2667 {
2668 if (order < fail_page_alloc.min_order)
2669 return false;
2670 if (gfp_mask & __GFP_NOFAIL)
2671 return false;
2672 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2673 return false;
2674 if (fail_page_alloc.ignore_gfp_reclaim &&
2675 (gfp_mask & __GFP_DIRECT_RECLAIM))
2676 return false;
2677
2678 return should_fail(&fail_page_alloc.attr, 1 << order);
2679 }
2680
2681 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2682
2683 static int __init fail_page_alloc_debugfs(void)
2684 {
2685 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2686 struct dentry *dir;
2687
2688 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2689 &fail_page_alloc.attr);
2690 if (IS_ERR(dir))
2691 return PTR_ERR(dir);
2692
2693 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2694 &fail_page_alloc.ignore_gfp_reclaim))
2695 goto fail;
2696 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2697 &fail_page_alloc.ignore_gfp_highmem))
2698 goto fail;
2699 if (!debugfs_create_u32("min-order", mode, dir,
2700 &fail_page_alloc.min_order))
2701 goto fail;
2702
2703 return 0;
2704 fail:
2705 debugfs_remove_recursive(dir);
2706
2707 return -ENOMEM;
2708 }
2709
2710 late_initcall(fail_page_alloc_debugfs);
2711
2712 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2713
2714 #else /* CONFIG_FAIL_PAGE_ALLOC */
2715
2716 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2717 {
2718 return false;
2719 }
2720
2721 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2722
2723 /*
2724 * Return true if free base pages are above 'mark'. For high-order checks it
2725 * will return true of the order-0 watermark is reached and there is at least
2726 * one free page of a suitable size. Checking now avoids taking the zone lock
2727 * to check in the allocation paths if no pages are free.
2728 */
2729 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2730 int classzone_idx, unsigned int alloc_flags,
2731 long free_pages)
2732 {
2733 long min = mark;
2734 int o;
2735 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2736
2737 /* free_pages may go negative - that's OK */
2738 free_pages -= (1 << order) - 1;
2739
2740 if (alloc_flags & ALLOC_HIGH)
2741 min -= min / 2;
2742
2743 /*
2744 * If the caller does not have rights to ALLOC_HARDER then subtract
2745 * the high-atomic reserves. This will over-estimate the size of the
2746 * atomic reserve but it avoids a search.
2747 */
2748 if (likely(!alloc_harder))
2749 free_pages -= z->nr_reserved_highatomic;
2750 else
2751 min -= min / 4;
2752
2753 #ifdef CONFIG_CMA
2754 /* If allocation can't use CMA areas don't use free CMA pages */
2755 if (!(alloc_flags & ALLOC_CMA))
2756 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2757 #endif
2758
2759 /*
2760 * Check watermarks for an order-0 allocation request. If these
2761 * are not met, then a high-order request also cannot go ahead
2762 * even if a suitable page happened to be free.
2763 */
2764 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2765 return false;
2766
2767 /* If this is an order-0 request then the watermark is fine */
2768 if (!order)
2769 return true;
2770
2771 /* For a high-order request, check at least one suitable page is free */
2772 for (o = order; o < MAX_ORDER; o++) {
2773 struct free_area *area = &z->free_area[o];
2774 int mt;
2775
2776 if (!area->nr_free)
2777 continue;
2778
2779 if (alloc_harder)
2780 return true;
2781
2782 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2783 if (!list_empty(&area->free_list[mt]))
2784 return true;
2785 }
2786
2787 #ifdef CONFIG_CMA
2788 if ((alloc_flags & ALLOC_CMA) &&
2789 !list_empty(&area->free_list[MIGRATE_CMA])) {
2790 return true;
2791 }
2792 #endif
2793 }
2794 return false;
2795 }
2796
2797 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2798 int classzone_idx, unsigned int alloc_flags)
2799 {
2800 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2801 zone_page_state(z, NR_FREE_PAGES));
2802 }
2803
2804 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2805 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2806 {
2807 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2808 long cma_pages = 0;
2809
2810 #ifdef CONFIG_CMA
2811 /* If allocation can't use CMA areas don't use free CMA pages */
2812 if (!(alloc_flags & ALLOC_CMA))
2813 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2814 #endif
2815
2816 /*
2817 * Fast check for order-0 only. If this fails then the reserves
2818 * need to be calculated. There is a corner case where the check
2819 * passes but only the high-order atomic reserve are free. If
2820 * the caller is !atomic then it'll uselessly search the free
2821 * list. That corner case is then slower but it is harmless.
2822 */
2823 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2824 return true;
2825
2826 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2827 free_pages);
2828 }
2829
2830 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2831 unsigned long mark, int classzone_idx)
2832 {
2833 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2834
2835 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2836 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2837
2838 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2839 free_pages);
2840 }
2841
2842 #ifdef CONFIG_NUMA
2843 static bool zone_local(struct zone *local_zone, struct zone *zone)
2844 {
2845 return local_zone->node == zone->node;
2846 }
2847
2848 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2849 {
2850 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2851 RECLAIM_DISTANCE;
2852 }
2853 #else /* CONFIG_NUMA */
2854 static bool zone_local(struct zone *local_zone, struct zone *zone)
2855 {
2856 return true;
2857 }
2858
2859 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2860 {
2861 return true;
2862 }
2863 #endif /* CONFIG_NUMA */
2864
2865 static void reset_alloc_batches(struct zone *preferred_zone)
2866 {
2867 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2868
2869 do {
2870 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2871 high_wmark_pages(zone) - low_wmark_pages(zone) -
2872 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2873 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2874 } while (zone++ != preferred_zone);
2875 }
2876
2877 /*
2878 * get_page_from_freelist goes through the zonelist trying to allocate
2879 * a page.
2880 */
2881 static struct page *
2882 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2883 const struct alloc_context *ac)
2884 {
2885 struct zoneref *z = ac->preferred_zoneref;
2886 struct zone *zone;
2887 bool fair_skipped = false;
2888 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2889
2890 zonelist_scan:
2891 /*
2892 * Scan zonelist, looking for a zone with enough free.
2893 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2894 */
2895 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2896 ac->nodemask) {
2897 struct page *page;
2898 unsigned long mark;
2899
2900 if (cpusets_enabled() &&
2901 (alloc_flags & ALLOC_CPUSET) &&
2902 !__cpuset_zone_allowed(zone, gfp_mask))
2903 continue;
2904 /*
2905 * Distribute pages in proportion to the individual
2906 * zone size to ensure fair page aging. The zone a
2907 * page was allocated in should have no effect on the
2908 * time the page has in memory before being reclaimed.
2909 */
2910 if (apply_fair) {
2911 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2912 fair_skipped = true;
2913 continue;
2914 }
2915 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2916 if (fair_skipped)
2917 goto reset_fair;
2918 apply_fair = false;
2919 }
2920 }
2921 /*
2922 * When allocating a page cache page for writing, we
2923 * want to get it from a zone that is within its dirty
2924 * limit, such that no single zone holds more than its
2925 * proportional share of globally allowed dirty pages.
2926 * The dirty limits take into account the zone's
2927 * lowmem reserves and high watermark so that kswapd
2928 * should be able to balance it without having to
2929 * write pages from its LRU list.
2930 *
2931 * This may look like it could increase pressure on
2932 * lower zones by failing allocations in higher zones
2933 * before they are full. But the pages that do spill
2934 * over are limited as the lower zones are protected
2935 * by this very same mechanism. It should not become
2936 * a practical burden to them.
2937 *
2938 * XXX: For now, allow allocations to potentially
2939 * exceed the per-zone dirty limit in the slowpath
2940 * (spread_dirty_pages unset) before going into reclaim,
2941 * which is important when on a NUMA setup the allowed
2942 * zones are together not big enough to reach the
2943 * global limit. The proper fix for these situations
2944 * will require awareness of zones in the
2945 * dirty-throttling and the flusher threads.
2946 */
2947 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2948 continue;
2949
2950 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2951 if (!zone_watermark_fast(zone, order, mark,
2952 ac_classzone_idx(ac), alloc_flags)) {
2953 int ret;
2954
2955 /* Checked here to keep the fast path fast */
2956 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2957 if (alloc_flags & ALLOC_NO_WATERMARKS)
2958 goto try_this_zone;
2959
2960 if (zone_reclaim_mode == 0 ||
2961 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2962 continue;
2963
2964 ret = zone_reclaim(zone, gfp_mask, order);
2965 switch (ret) {
2966 case ZONE_RECLAIM_NOSCAN:
2967 /* did not scan */
2968 continue;
2969 case ZONE_RECLAIM_FULL:
2970 /* scanned but unreclaimable */
2971 continue;
2972 default:
2973 /* did we reclaim enough */
2974 if (zone_watermark_ok(zone, order, mark,
2975 ac_classzone_idx(ac), alloc_flags))
2976 goto try_this_zone;
2977
2978 continue;
2979 }
2980 }
2981
2982 try_this_zone:
2983 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2984 gfp_mask, alloc_flags, ac->migratetype);
2985 if (page) {
2986 prep_new_page(page, order, gfp_mask, alloc_flags);
2987
2988 /*
2989 * If this is a high-order atomic allocation then check
2990 * if the pageblock should be reserved for the future
2991 */
2992 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2993 reserve_highatomic_pageblock(page, zone, order);
2994
2995 return page;
2996 }
2997 }
2998
2999 /*
3000 * The first pass makes sure allocations are spread fairly within the
3001 * local node. However, the local node might have free pages left
3002 * after the fairness batches are exhausted, and remote zones haven't
3003 * even been considered yet. Try once more without fairness, and
3004 * include remote zones now, before entering the slowpath and waking
3005 * kswapd: prefer spilling to a remote zone over swapping locally.
3006 */
3007 if (fair_skipped) {
3008 reset_fair:
3009 apply_fair = false;
3010 fair_skipped = false;
3011 reset_alloc_batches(ac->preferred_zoneref->zone);
3012 z = ac->preferred_zoneref;
3013 goto zonelist_scan;
3014 }
3015
3016 return NULL;
3017 }
3018
3019 /*
3020 * Large machines with many possible nodes should not always dump per-node
3021 * meminfo in irq context.
3022 */
3023 static inline bool should_suppress_show_mem(void)
3024 {
3025 bool ret = false;
3026
3027 #if NODES_SHIFT > 8
3028 ret = in_interrupt();
3029 #endif
3030 return ret;
3031 }
3032
3033 static DEFINE_RATELIMIT_STATE(nopage_rs,
3034 DEFAULT_RATELIMIT_INTERVAL,
3035 DEFAULT_RATELIMIT_BURST);
3036
3037 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3038 {
3039 unsigned int filter = SHOW_MEM_FILTER_NODES;
3040
3041 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3042 debug_guardpage_minorder() > 0)
3043 return;
3044
3045 /*
3046 * This documents exceptions given to allocations in certain
3047 * contexts that are allowed to allocate outside current's set
3048 * of allowed nodes.
3049 */
3050 if (!(gfp_mask & __GFP_NOMEMALLOC))
3051 if (test_thread_flag(TIF_MEMDIE) ||
3052 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3053 filter &= ~SHOW_MEM_FILTER_NODES;
3054 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3055 filter &= ~SHOW_MEM_FILTER_NODES;
3056
3057 if (fmt) {
3058 struct va_format vaf;
3059 va_list args;
3060
3061 va_start(args, fmt);
3062
3063 vaf.fmt = fmt;
3064 vaf.va = &args;
3065
3066 pr_warn("%pV", &vaf);
3067
3068 va_end(args);
3069 }
3070
3071 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3072 current->comm, order, gfp_mask, &gfp_mask);
3073 dump_stack();
3074 if (!should_suppress_show_mem())
3075 show_mem(filter);
3076 }
3077
3078 static inline struct page *
3079 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3080 const struct alloc_context *ac, unsigned long *did_some_progress)
3081 {
3082 struct oom_control oc = {
3083 .zonelist = ac->zonelist,
3084 .nodemask = ac->nodemask,
3085 .memcg = NULL,
3086 .gfp_mask = gfp_mask,
3087 .order = order,
3088 };
3089 struct page *page;
3090
3091 *did_some_progress = 0;
3092
3093 /*
3094 * Acquire the oom lock. If that fails, somebody else is
3095 * making progress for us.
3096 */
3097 if (!mutex_trylock(&oom_lock)) {
3098 *did_some_progress = 1;
3099 schedule_timeout_uninterruptible(1);
3100 return NULL;
3101 }
3102
3103 /*
3104 * Go through the zonelist yet one more time, keep very high watermark
3105 * here, this is only to catch a parallel oom killing, we must fail if
3106 * we're still under heavy pressure.
3107 */
3108 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3109 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3110 if (page)
3111 goto out;
3112
3113 if (!(gfp_mask & __GFP_NOFAIL)) {
3114 /* Coredumps can quickly deplete all memory reserves */
3115 if (current->flags & PF_DUMPCORE)
3116 goto out;
3117 /* The OOM killer will not help higher order allocs */
3118 if (order > PAGE_ALLOC_COSTLY_ORDER)
3119 goto out;
3120 /* The OOM killer does not needlessly kill tasks for lowmem */
3121 if (ac->high_zoneidx < ZONE_NORMAL)
3122 goto out;
3123 if (pm_suspended_storage())
3124 goto out;
3125 /*
3126 * XXX: GFP_NOFS allocations should rather fail than rely on
3127 * other request to make a forward progress.
3128 * We are in an unfortunate situation where out_of_memory cannot
3129 * do much for this context but let's try it to at least get
3130 * access to memory reserved if the current task is killed (see
3131 * out_of_memory). Once filesystems are ready to handle allocation
3132 * failures more gracefully we should just bail out here.
3133 */
3134
3135 /* The OOM killer may not free memory on a specific node */
3136 if (gfp_mask & __GFP_THISNODE)
3137 goto out;
3138 }
3139 /* Exhausted what can be done so it's blamo time */
3140 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3141 *did_some_progress = 1;
3142
3143 if (gfp_mask & __GFP_NOFAIL) {
3144 page = get_page_from_freelist(gfp_mask, order,
3145 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3146 /*
3147 * fallback to ignore cpuset restriction if our nodes
3148 * are depleted
3149 */
3150 if (!page)
3151 page = get_page_from_freelist(gfp_mask, order,
3152 ALLOC_NO_WATERMARKS, ac);
3153 }
3154 }
3155 out:
3156 mutex_unlock(&oom_lock);
3157 return page;
3158 }
3159
3160
3161 /*
3162 * Maximum number of compaction retries wit a progress before OOM
3163 * killer is consider as the only way to move forward.
3164 */
3165 #define MAX_COMPACT_RETRIES 16
3166
3167 #ifdef CONFIG_COMPACTION
3168 /* Try memory compaction for high-order allocations before reclaim */
3169 static struct page *
3170 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3171 unsigned int alloc_flags, const struct alloc_context *ac,
3172 enum migrate_mode mode, enum compact_result *compact_result)
3173 {
3174 struct page *page;
3175 int contended_compaction;
3176
3177 if (!order)
3178 return NULL;
3179
3180 current->flags |= PF_MEMALLOC;
3181 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3182 mode, &contended_compaction);
3183 current->flags &= ~PF_MEMALLOC;
3184
3185 if (*compact_result <= COMPACT_INACTIVE)
3186 return NULL;
3187
3188 /*
3189 * At least in one zone compaction wasn't deferred or skipped, so let's
3190 * count a compaction stall
3191 */
3192 count_vm_event(COMPACTSTALL);
3193
3194 page = get_page_from_freelist(gfp_mask, order,
3195 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3196
3197 if (page) {
3198 struct zone *zone = page_zone(page);
3199
3200 zone->compact_blockskip_flush = false;
3201 compaction_defer_reset(zone, order, true);
3202 count_vm_event(COMPACTSUCCESS);
3203 return page;
3204 }
3205
3206 /*
3207 * It's bad if compaction run occurs and fails. The most likely reason
3208 * is that pages exist, but not enough to satisfy watermarks.
3209 */
3210 count_vm_event(COMPACTFAIL);
3211
3212 /*
3213 * In all zones where compaction was attempted (and not
3214 * deferred or skipped), lock contention has been detected.
3215 * For THP allocation we do not want to disrupt the others
3216 * so we fallback to base pages instead.
3217 */
3218 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3219 *compact_result = COMPACT_CONTENDED;
3220
3221 /*
3222 * If compaction was aborted due to need_resched(), we do not
3223 * want to further increase allocation latency, unless it is
3224 * khugepaged trying to collapse.
3225 */
3226 if (contended_compaction == COMPACT_CONTENDED_SCHED
3227 && !(current->flags & PF_KTHREAD))
3228 *compact_result = COMPACT_CONTENDED;
3229
3230 cond_resched();
3231
3232 return NULL;
3233 }
3234
3235 static inline bool
3236 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3237 enum compact_result compact_result, enum migrate_mode *migrate_mode,
3238 int compaction_retries)
3239 {
3240 int max_retries = MAX_COMPACT_RETRIES;
3241
3242 if (!order)
3243 return false;
3244
3245 /*
3246 * compaction considers all the zone as desperately out of memory
3247 * so it doesn't really make much sense to retry except when the
3248 * failure could be caused by weak migration mode.
3249 */
3250 if (compaction_failed(compact_result)) {
3251 if (*migrate_mode == MIGRATE_ASYNC) {
3252 *migrate_mode = MIGRATE_SYNC_LIGHT;
3253 return true;
3254 }
3255 return false;
3256 }
3257
3258 /*
3259 * make sure the compaction wasn't deferred or didn't bail out early
3260 * due to locks contention before we declare that we should give up.
3261 * But do not retry if the given zonelist is not suitable for
3262 * compaction.
3263 */
3264 if (compaction_withdrawn(compact_result))
3265 return compaction_zonelist_suitable(ac, order, alloc_flags);
3266
3267 /*
3268 * !costly requests are much more important than __GFP_REPEAT
3269 * costly ones because they are de facto nofail and invoke OOM
3270 * killer to move on while costly can fail and users are ready
3271 * to cope with that. 1/4 retries is rather arbitrary but we
3272 * would need much more detailed feedback from compaction to
3273 * make a better decision.
3274 */
3275 if (order > PAGE_ALLOC_COSTLY_ORDER)
3276 max_retries /= 4;
3277 if (compaction_retries <= max_retries)
3278 return true;
3279
3280 return false;
3281 }
3282 #else
3283 static inline struct page *
3284 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3285 unsigned int alloc_flags, const struct alloc_context *ac,
3286 enum migrate_mode mode, enum compact_result *compact_result)
3287 {
3288 *compact_result = COMPACT_SKIPPED;
3289 return NULL;
3290 }
3291
3292 static inline bool
3293 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3294 enum compact_result compact_result,
3295 enum migrate_mode *migrate_mode,
3296 int compaction_retries)
3297 {
3298 struct zone *zone;
3299 struct zoneref *z;
3300
3301 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3302 return false;
3303
3304 /*
3305 * There are setups with compaction disabled which would prefer to loop
3306 * inside the allocator rather than hit the oom killer prematurely.
3307 * Let's give them a good hope and keep retrying while the order-0
3308 * watermarks are OK.
3309 */
3310 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3311 ac->nodemask) {
3312 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3313 ac_classzone_idx(ac), alloc_flags))
3314 return true;
3315 }
3316 return false;
3317 }
3318 #endif /* CONFIG_COMPACTION */
3319
3320 /* Perform direct synchronous page reclaim */
3321 static int
3322 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3323 const struct alloc_context *ac)
3324 {
3325 struct reclaim_state reclaim_state;
3326 int progress;
3327
3328 cond_resched();
3329
3330 /* We now go into synchronous reclaim */
3331 cpuset_memory_pressure_bump();
3332 current->flags |= PF_MEMALLOC;
3333 lockdep_set_current_reclaim_state(gfp_mask);
3334 reclaim_state.reclaimed_slab = 0;
3335 current->reclaim_state = &reclaim_state;
3336
3337 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3338 ac->nodemask);
3339
3340 current->reclaim_state = NULL;
3341 lockdep_clear_current_reclaim_state();
3342 current->flags &= ~PF_MEMALLOC;
3343
3344 cond_resched();
3345
3346 return progress;
3347 }
3348
3349 /* The really slow allocator path where we enter direct reclaim */
3350 static inline struct page *
3351 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3352 unsigned int alloc_flags, const struct alloc_context *ac,
3353 unsigned long *did_some_progress)
3354 {
3355 struct page *page = NULL;
3356 bool drained = false;
3357
3358 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3359 if (unlikely(!(*did_some_progress)))
3360 return NULL;
3361
3362 retry:
3363 page = get_page_from_freelist(gfp_mask, order,
3364 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3365
3366 /*
3367 * If an allocation failed after direct reclaim, it could be because
3368 * pages are pinned on the per-cpu lists or in high alloc reserves.
3369 * Shrink them them and try again
3370 */
3371 if (!page && !drained) {
3372 unreserve_highatomic_pageblock(ac);
3373 drain_all_pages(NULL);
3374 drained = true;
3375 goto retry;
3376 }
3377
3378 return page;
3379 }
3380
3381 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3382 {
3383 struct zoneref *z;
3384 struct zone *zone;
3385
3386 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3387 ac->high_zoneidx, ac->nodemask)
3388 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3389 }
3390
3391 static inline unsigned int
3392 gfp_to_alloc_flags(gfp_t gfp_mask)
3393 {
3394 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3395
3396 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3397 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3398
3399 /*
3400 * The caller may dip into page reserves a bit more if the caller
3401 * cannot run direct reclaim, or if the caller has realtime scheduling
3402 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3403 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3404 */
3405 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3406
3407 if (gfp_mask & __GFP_ATOMIC) {
3408 /*
3409 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3410 * if it can't schedule.
3411 */
3412 if (!(gfp_mask & __GFP_NOMEMALLOC))
3413 alloc_flags |= ALLOC_HARDER;
3414 /*
3415 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3416 * comment for __cpuset_node_allowed().
3417 */
3418 alloc_flags &= ~ALLOC_CPUSET;
3419 } else if (unlikely(rt_task(current)) && !in_interrupt())
3420 alloc_flags |= ALLOC_HARDER;
3421
3422 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3423 if (gfp_mask & __GFP_MEMALLOC)
3424 alloc_flags |= ALLOC_NO_WATERMARKS;
3425 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3426 alloc_flags |= ALLOC_NO_WATERMARKS;
3427 else if (!in_interrupt() &&
3428 ((current->flags & PF_MEMALLOC) ||
3429 unlikely(test_thread_flag(TIF_MEMDIE))))
3430 alloc_flags |= ALLOC_NO_WATERMARKS;
3431 }
3432 #ifdef CONFIG_CMA
3433 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3434 alloc_flags |= ALLOC_CMA;
3435 #endif
3436 return alloc_flags;
3437 }
3438
3439 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3440 {
3441 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3442 }
3443
3444 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3445 {
3446 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3447 }
3448
3449 /*
3450 * Maximum number of reclaim retries without any progress before OOM killer
3451 * is consider as the only way to move forward.
3452 */
3453 #define MAX_RECLAIM_RETRIES 16
3454
3455 /*
3456 * Checks whether it makes sense to retry the reclaim to make a forward progress
3457 * for the given allocation request.
3458 * The reclaim feedback represented by did_some_progress (any progress during
3459 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3460 * any progress in a row) is considered as well as the reclaimable pages on the
3461 * applicable zone list (with a backoff mechanism which is a function of
3462 * no_progress_loops).
3463 *
3464 * Returns true if a retry is viable or false to enter the oom path.
3465 */
3466 static inline bool
3467 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3468 struct alloc_context *ac, int alloc_flags,
3469 bool did_some_progress, int no_progress_loops)
3470 {
3471 struct zone *zone;
3472 struct zoneref *z;
3473
3474 /*
3475 * Make sure we converge to OOM if we cannot make any progress
3476 * several times in the row.
3477 */
3478 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3479 return false;
3480
3481 /*
3482 * Keep reclaiming pages while there is a chance this will lead somewhere.
3483 * If none of the target zones can satisfy our allocation request even
3484 * if all reclaimable pages are considered then we are screwed and have
3485 * to go OOM.
3486 */
3487 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3488 ac->nodemask) {
3489 unsigned long available;
3490 unsigned long reclaimable;
3491
3492 available = reclaimable = zone_reclaimable_pages(zone);
3493 available -= DIV_ROUND_UP(no_progress_loops * available,
3494 MAX_RECLAIM_RETRIES);
3495 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3496
3497 /*
3498 * Would the allocation succeed if we reclaimed the whole
3499 * available?
3500 */
3501 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3502 ac_classzone_idx(ac), alloc_flags, available)) {
3503 /*
3504 * If we didn't make any progress and have a lot of
3505 * dirty + writeback pages then we should wait for
3506 * an IO to complete to slow down the reclaim and
3507 * prevent from pre mature OOM
3508 */
3509 if (!did_some_progress) {
3510 unsigned long writeback;
3511 unsigned long dirty;
3512
3513 writeback = zone_page_state_snapshot(zone,
3514 NR_WRITEBACK);
3515 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3516
3517 if (2*(writeback + dirty) > reclaimable) {
3518 congestion_wait(BLK_RW_ASYNC, HZ/10);
3519 return true;
3520 }
3521 }
3522
3523 /*
3524 * Memory allocation/reclaim might be called from a WQ
3525 * context and the current implementation of the WQ
3526 * concurrency control doesn't recognize that
3527 * a particular WQ is congested if the worker thread is
3528 * looping without ever sleeping. Therefore we have to
3529 * do a short sleep here rather than calling
3530 * cond_resched().
3531 */
3532 if (current->flags & PF_WQ_WORKER)
3533 schedule_timeout_uninterruptible(1);
3534 else
3535 cond_resched();
3536
3537 return true;
3538 }
3539 }
3540
3541 return false;
3542 }
3543
3544 static inline struct page *
3545 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3546 struct alloc_context *ac)
3547 {
3548 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3549 struct page *page = NULL;
3550 unsigned int alloc_flags;
3551 unsigned long did_some_progress;
3552 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3553 enum compact_result compact_result;
3554 int compaction_retries = 0;
3555 int no_progress_loops = 0;
3556
3557 /*
3558 * In the slowpath, we sanity check order to avoid ever trying to
3559 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3560 * be using allocators in order of preference for an area that is
3561 * too large.
3562 */
3563 if (order >= MAX_ORDER) {
3564 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3565 return NULL;
3566 }
3567
3568 /*
3569 * We also sanity check to catch abuse of atomic reserves being used by
3570 * callers that are not in atomic context.
3571 */
3572 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3573 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3574 gfp_mask &= ~__GFP_ATOMIC;
3575
3576 retry:
3577 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3578 wake_all_kswapds(order, ac);
3579
3580 /*
3581 * OK, we're below the kswapd watermark and have kicked background
3582 * reclaim. Now things get more complex, so set up alloc_flags according
3583 * to how we want to proceed.
3584 */
3585 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3586
3587 /*
3588 * Reset the zonelist iterators if memory policies can be ignored.
3589 * These allocations are high priority and system rather than user
3590 * orientated.
3591 */
3592 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3593 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3594 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3595 ac->high_zoneidx, ac->nodemask);
3596 }
3597
3598 /* This is the last chance, in general, before the goto nopage. */
3599 page = get_page_from_freelist(gfp_mask, order,
3600 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3601 if (page)
3602 goto got_pg;
3603
3604 /* Allocate without watermarks if the context allows */
3605 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3606 page = get_page_from_freelist(gfp_mask, order,
3607 ALLOC_NO_WATERMARKS, ac);
3608 if (page)
3609 goto got_pg;
3610 }
3611
3612 /* Caller is not willing to reclaim, we can't balance anything */
3613 if (!can_direct_reclaim) {
3614 /*
3615 * All existing users of the __GFP_NOFAIL are blockable, so warn
3616 * of any new users that actually allow this type of allocation
3617 * to fail.
3618 */
3619 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3620 goto nopage;
3621 }
3622
3623 /* Avoid recursion of direct reclaim */
3624 if (current->flags & PF_MEMALLOC) {
3625 /*
3626 * __GFP_NOFAIL request from this context is rather bizarre
3627 * because we cannot reclaim anything and only can loop waiting
3628 * for somebody to do a work for us.
3629 */
3630 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3631 cond_resched();
3632 goto retry;
3633 }
3634 goto nopage;
3635 }
3636
3637 /* Avoid allocations with no watermarks from looping endlessly */
3638 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3639 goto nopage;
3640
3641 /*
3642 * Try direct compaction. The first pass is asynchronous. Subsequent
3643 * attempts after direct reclaim are synchronous
3644 */
3645 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3646 migration_mode,
3647 &compact_result);
3648 if (page)
3649 goto got_pg;
3650
3651 /* Checks for THP-specific high-order allocations */
3652 if (is_thp_gfp_mask(gfp_mask)) {
3653 /*
3654 * If compaction is deferred for high-order allocations, it is
3655 * because sync compaction recently failed. If this is the case
3656 * and the caller requested a THP allocation, we do not want
3657 * to heavily disrupt the system, so we fail the allocation
3658 * instead of entering direct reclaim.
3659 */
3660 if (compact_result == COMPACT_DEFERRED)
3661 goto nopage;
3662
3663 /*
3664 * Compaction is contended so rather back off than cause
3665 * excessive stalls.
3666 */
3667 if(compact_result == COMPACT_CONTENDED)
3668 goto nopage;
3669 }
3670
3671 if (order && compaction_made_progress(compact_result))
3672 compaction_retries++;
3673
3674 /* Try direct reclaim and then allocating */
3675 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3676 &did_some_progress);
3677 if (page)
3678 goto got_pg;
3679
3680 /* Do not loop if specifically requested */
3681 if (gfp_mask & __GFP_NORETRY)
3682 goto noretry;
3683
3684 /*
3685 * Do not retry costly high order allocations unless they are
3686 * __GFP_REPEAT
3687 */
3688 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3689 goto noretry;
3690
3691 /*
3692 * Costly allocations might have made a progress but this doesn't mean
3693 * their order will become available due to high fragmentation so
3694 * always increment the no progress counter for them
3695 */
3696 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3697 no_progress_loops = 0;
3698 else
3699 no_progress_loops++;
3700
3701 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3702 did_some_progress > 0, no_progress_loops))
3703 goto retry;
3704
3705 /*
3706 * It doesn't make any sense to retry for the compaction if the order-0
3707 * reclaim is not able to make any progress because the current
3708 * implementation of the compaction depends on the sufficient amount
3709 * of free memory (see __compaction_suitable)
3710 */
3711 if (did_some_progress > 0 &&
3712 should_compact_retry(ac, order, alloc_flags,
3713 compact_result, &migration_mode,
3714 compaction_retries))
3715 goto retry;
3716
3717 /* Reclaim has failed us, start killing things */
3718 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3719 if (page)
3720 goto got_pg;
3721
3722 /* Retry as long as the OOM killer is making progress */
3723 if (did_some_progress) {
3724 no_progress_loops = 0;
3725 goto retry;
3726 }
3727
3728 noretry:
3729 /*
3730 * High-order allocations do not necessarily loop after direct reclaim
3731 * and reclaim/compaction depends on compaction being called after
3732 * reclaim so call directly if necessary.
3733 * It can become very expensive to allocate transparent hugepages at
3734 * fault, so use asynchronous memory compaction for THP unless it is
3735 * khugepaged trying to collapse. All other requests should tolerate
3736 * at least light sync migration.
3737 */
3738 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3739 migration_mode = MIGRATE_ASYNC;
3740 else
3741 migration_mode = MIGRATE_SYNC_LIGHT;
3742 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3743 ac, migration_mode,
3744 &compact_result);
3745 if (page)
3746 goto got_pg;
3747 nopage:
3748 warn_alloc_failed(gfp_mask, order, NULL);
3749 got_pg:
3750 return page;
3751 }
3752
3753 /*
3754 * This is the 'heart' of the zoned buddy allocator.
3755 */
3756 struct page *
3757 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3758 struct zonelist *zonelist, nodemask_t *nodemask)
3759 {
3760 struct page *page;
3761 unsigned int cpuset_mems_cookie;
3762 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3763 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3764 struct alloc_context ac = {
3765 .high_zoneidx = gfp_zone(gfp_mask),
3766 .zonelist = zonelist,
3767 .nodemask = nodemask,
3768 .migratetype = gfpflags_to_migratetype(gfp_mask),
3769 };
3770
3771 if (cpusets_enabled()) {
3772 alloc_mask |= __GFP_HARDWALL;
3773 alloc_flags |= ALLOC_CPUSET;
3774 if (!ac.nodemask)
3775 ac.nodemask = &cpuset_current_mems_allowed;
3776 }
3777
3778 gfp_mask &= gfp_allowed_mask;
3779
3780 lockdep_trace_alloc(gfp_mask);
3781
3782 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3783
3784 if (should_fail_alloc_page(gfp_mask, order))
3785 return NULL;
3786
3787 /*
3788 * Check the zones suitable for the gfp_mask contain at least one
3789 * valid zone. It's possible to have an empty zonelist as a result
3790 * of __GFP_THISNODE and a memoryless node
3791 */
3792 if (unlikely(!zonelist->_zonerefs->zone))
3793 return NULL;
3794
3795 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3796 alloc_flags |= ALLOC_CMA;
3797
3798 retry_cpuset:
3799 cpuset_mems_cookie = read_mems_allowed_begin();
3800
3801 /* Dirty zone balancing only done in the fast path */
3802 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3803
3804 /*
3805 * The preferred zone is used for statistics but crucially it is
3806 * also used as the starting point for the zonelist iterator. It
3807 * may get reset for allocations that ignore memory policies.
3808 */
3809 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3810 ac.high_zoneidx, ac.nodemask);
3811 if (!ac.preferred_zoneref) {
3812 page = NULL;
3813 goto no_zone;
3814 }
3815
3816 /* First allocation attempt */
3817 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3818 if (likely(page))
3819 goto out;
3820
3821 /*
3822 * Runtime PM, block IO and its error handling path can deadlock
3823 * because I/O on the device might not complete.
3824 */
3825 alloc_mask = memalloc_noio_flags(gfp_mask);
3826 ac.spread_dirty_pages = false;
3827
3828 /*
3829 * Restore the original nodemask if it was potentially replaced with
3830 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3831 */
3832 if (cpusets_enabled())
3833 ac.nodemask = nodemask;
3834 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3835
3836 no_zone:
3837 /*
3838 * When updating a task's mems_allowed, it is possible to race with
3839 * parallel threads in such a way that an allocation can fail while
3840 * the mask is being updated. If a page allocation is about to fail,
3841 * check if the cpuset changed during allocation and if so, retry.
3842 */
3843 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3844 alloc_mask = gfp_mask;
3845 goto retry_cpuset;
3846 }
3847
3848 out:
3849 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3850 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3851 __free_pages(page, order);
3852 page = NULL;
3853 } else
3854 __SetPageKmemcg(page);
3855 }
3856
3857 if (kmemcheck_enabled && page)
3858 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3859
3860 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3861
3862 return page;
3863 }
3864 EXPORT_SYMBOL(__alloc_pages_nodemask);
3865
3866 /*
3867 * Common helper functions.
3868 */
3869 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3870 {
3871 struct page *page;
3872
3873 /*
3874 * __get_free_pages() returns a 32-bit address, which cannot represent
3875 * a highmem page
3876 */
3877 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3878
3879 page = alloc_pages(gfp_mask, order);
3880 if (!page)
3881 return 0;
3882 return (unsigned long) page_address(page);
3883 }
3884 EXPORT_SYMBOL(__get_free_pages);
3885
3886 unsigned long get_zeroed_page(gfp_t gfp_mask)
3887 {
3888 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3889 }
3890 EXPORT_SYMBOL(get_zeroed_page);
3891
3892 void __free_pages(struct page *page, unsigned int order)
3893 {
3894 if (put_page_testzero(page)) {
3895 if (order == 0)
3896 free_hot_cold_page(page, false);
3897 else
3898 __free_pages_ok(page, order);
3899 }
3900 }
3901
3902 EXPORT_SYMBOL(__free_pages);
3903
3904 void free_pages(unsigned long addr, unsigned int order)
3905 {
3906 if (addr != 0) {
3907 VM_BUG_ON(!virt_addr_valid((void *)addr));
3908 __free_pages(virt_to_page((void *)addr), order);
3909 }
3910 }
3911
3912 EXPORT_SYMBOL(free_pages);
3913
3914 /*
3915 * Page Fragment:
3916 * An arbitrary-length arbitrary-offset area of memory which resides
3917 * within a 0 or higher order page. Multiple fragments within that page
3918 * are individually refcounted, in the page's reference counter.
3919 *
3920 * The page_frag functions below provide a simple allocation framework for
3921 * page fragments. This is used by the network stack and network device
3922 * drivers to provide a backing region of memory for use as either an
3923 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3924 */
3925 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3926 gfp_t gfp_mask)
3927 {
3928 struct page *page = NULL;
3929 gfp_t gfp = gfp_mask;
3930
3931 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3932 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3933 __GFP_NOMEMALLOC;
3934 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3935 PAGE_FRAG_CACHE_MAX_ORDER);
3936 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3937 #endif
3938 if (unlikely(!page))
3939 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3940
3941 nc->va = page ? page_address(page) : NULL;
3942
3943 return page;
3944 }
3945
3946 void *__alloc_page_frag(struct page_frag_cache *nc,
3947 unsigned int fragsz, gfp_t gfp_mask)
3948 {
3949 unsigned int size = PAGE_SIZE;
3950 struct page *page;
3951 int offset;
3952
3953 if (unlikely(!nc->va)) {
3954 refill:
3955 page = __page_frag_refill(nc, gfp_mask);
3956 if (!page)
3957 return NULL;
3958
3959 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3960 /* if size can vary use size else just use PAGE_SIZE */
3961 size = nc->size;
3962 #endif
3963 /* Even if we own the page, we do not use atomic_set().
3964 * This would break get_page_unless_zero() users.
3965 */
3966 page_ref_add(page, size - 1);
3967
3968 /* reset page count bias and offset to start of new frag */
3969 nc->pfmemalloc = page_is_pfmemalloc(page);
3970 nc->pagecnt_bias = size;
3971 nc->offset = size;
3972 }
3973
3974 offset = nc->offset - fragsz;
3975 if (unlikely(offset < 0)) {
3976 page = virt_to_page(nc->va);
3977
3978 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3979 goto refill;
3980
3981 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3982 /* if size can vary use size else just use PAGE_SIZE */
3983 size = nc->size;
3984 #endif
3985 /* OK, page count is 0, we can safely set it */
3986 set_page_count(page, size);
3987
3988 /* reset page count bias and offset to start of new frag */
3989 nc->pagecnt_bias = size;
3990 offset = size - fragsz;
3991 }
3992
3993 nc->pagecnt_bias--;
3994 nc->offset = offset;
3995
3996 return nc->va + offset;
3997 }
3998 EXPORT_SYMBOL(__alloc_page_frag);
3999
4000 /*
4001 * Frees a page fragment allocated out of either a compound or order 0 page.
4002 */
4003 void __free_page_frag(void *addr)
4004 {
4005 struct page *page = virt_to_head_page(addr);
4006
4007 if (unlikely(put_page_testzero(page)))
4008 __free_pages_ok(page, compound_order(page));
4009 }
4010 EXPORT_SYMBOL(__free_page_frag);
4011
4012 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4013 size_t size)
4014 {
4015 if (addr) {
4016 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4017 unsigned long used = addr + PAGE_ALIGN(size);
4018
4019 split_page(virt_to_page((void *)addr), order);
4020 while (used < alloc_end) {
4021 free_page(used);
4022 used += PAGE_SIZE;
4023 }
4024 }
4025 return (void *)addr;
4026 }
4027
4028 /**
4029 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4030 * @size: the number of bytes to allocate
4031 * @gfp_mask: GFP flags for the allocation
4032 *
4033 * This function is similar to alloc_pages(), except that it allocates the
4034 * minimum number of pages to satisfy the request. alloc_pages() can only
4035 * allocate memory in power-of-two pages.
4036 *
4037 * This function is also limited by MAX_ORDER.
4038 *
4039 * Memory allocated by this function must be released by free_pages_exact().
4040 */
4041 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4042 {
4043 unsigned int order = get_order(size);
4044 unsigned long addr;
4045
4046 addr = __get_free_pages(gfp_mask, order);
4047 return make_alloc_exact(addr, order, size);
4048 }
4049 EXPORT_SYMBOL(alloc_pages_exact);
4050
4051 /**
4052 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4053 * pages on a node.
4054 * @nid: the preferred node ID where memory should be allocated
4055 * @size: the number of bytes to allocate
4056 * @gfp_mask: GFP flags for the allocation
4057 *
4058 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4059 * back.
4060 */
4061 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4062 {
4063 unsigned int order = get_order(size);
4064 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4065 if (!p)
4066 return NULL;
4067 return make_alloc_exact((unsigned long)page_address(p), order, size);
4068 }
4069
4070 /**
4071 * free_pages_exact - release memory allocated via alloc_pages_exact()
4072 * @virt: the value returned by alloc_pages_exact.
4073 * @size: size of allocation, same value as passed to alloc_pages_exact().
4074 *
4075 * Release the memory allocated by a previous call to alloc_pages_exact.
4076 */
4077 void free_pages_exact(void *virt, size_t size)
4078 {
4079 unsigned long addr = (unsigned long)virt;
4080 unsigned long end = addr + PAGE_ALIGN(size);
4081
4082 while (addr < end) {
4083 free_page(addr);
4084 addr += PAGE_SIZE;
4085 }
4086 }
4087 EXPORT_SYMBOL(free_pages_exact);
4088
4089 /**
4090 * nr_free_zone_pages - count number of pages beyond high watermark
4091 * @offset: The zone index of the highest zone
4092 *
4093 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4094 * high watermark within all zones at or below a given zone index. For each
4095 * zone, the number of pages is calculated as:
4096 * managed_pages - high_pages
4097 */
4098 static unsigned long nr_free_zone_pages(int offset)
4099 {
4100 struct zoneref *z;
4101 struct zone *zone;
4102
4103 /* Just pick one node, since fallback list is circular */
4104 unsigned long sum = 0;
4105
4106 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4107
4108 for_each_zone_zonelist(zone, z, zonelist, offset) {
4109 unsigned long size = zone->managed_pages;
4110 unsigned long high = high_wmark_pages(zone);
4111 if (size > high)
4112 sum += size - high;
4113 }
4114
4115 return sum;
4116 }
4117
4118 /**
4119 * nr_free_buffer_pages - count number of pages beyond high watermark
4120 *
4121 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4122 * watermark within ZONE_DMA and ZONE_NORMAL.
4123 */
4124 unsigned long nr_free_buffer_pages(void)
4125 {
4126 return nr_free_zone_pages(gfp_zone(GFP_USER));
4127 }
4128 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4129
4130 /**
4131 * nr_free_pagecache_pages - count number of pages beyond high watermark
4132 *
4133 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4134 * high watermark within all zones.
4135 */
4136 unsigned long nr_free_pagecache_pages(void)
4137 {
4138 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4139 }
4140
4141 static inline void show_node(struct zone *zone)
4142 {
4143 if (IS_ENABLED(CONFIG_NUMA))
4144 printk("Node %d ", zone_to_nid(zone));
4145 }
4146
4147 long si_mem_available(void)
4148 {
4149 long available;
4150 unsigned long pagecache;
4151 unsigned long wmark_low = 0;
4152 unsigned long pages[NR_LRU_LISTS];
4153 struct zone *zone;
4154 int lru;
4155
4156 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4157 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4158
4159 for_each_zone(zone)
4160 wmark_low += zone->watermark[WMARK_LOW];
4161
4162 /*
4163 * Estimate the amount of memory available for userspace allocations,
4164 * without causing swapping.
4165 */
4166 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4167
4168 /*
4169 * Not all the page cache can be freed, otherwise the system will
4170 * start swapping. Assume at least half of the page cache, or the
4171 * low watermark worth of cache, needs to stay.
4172 */
4173 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4174 pagecache -= min(pagecache / 2, wmark_low);
4175 available += pagecache;
4176
4177 /*
4178 * Part of the reclaimable slab consists of items that are in use,
4179 * and cannot be freed. Cap this estimate at the low watermark.
4180 */
4181 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4182 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4183
4184 if (available < 0)
4185 available = 0;
4186 return available;
4187 }
4188 EXPORT_SYMBOL_GPL(si_mem_available);
4189
4190 void si_meminfo(struct sysinfo *val)
4191 {
4192 val->totalram = totalram_pages;
4193 val->sharedram = global_page_state(NR_SHMEM);
4194 val->freeram = global_page_state(NR_FREE_PAGES);
4195 val->bufferram = nr_blockdev_pages();
4196 val->totalhigh = totalhigh_pages;
4197 val->freehigh = nr_free_highpages();
4198 val->mem_unit = PAGE_SIZE;
4199 }
4200
4201 EXPORT_SYMBOL(si_meminfo);
4202
4203 #ifdef CONFIG_NUMA
4204 void si_meminfo_node(struct sysinfo *val, int nid)
4205 {
4206 int zone_type; /* needs to be signed */
4207 unsigned long managed_pages = 0;
4208 unsigned long managed_highpages = 0;
4209 unsigned long free_highpages = 0;
4210 pg_data_t *pgdat = NODE_DATA(nid);
4211
4212 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4213 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4214 val->totalram = managed_pages;
4215 val->sharedram = node_page_state(nid, NR_SHMEM);
4216 val->freeram = node_page_state(nid, NR_FREE_PAGES);
4217 #ifdef CONFIG_HIGHMEM
4218 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4219 struct zone *zone = &pgdat->node_zones[zone_type];
4220
4221 if (is_highmem(zone)) {
4222 managed_highpages += zone->managed_pages;
4223 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4224 }
4225 }
4226 val->totalhigh = managed_highpages;
4227 val->freehigh = free_highpages;
4228 #else
4229 val->totalhigh = managed_highpages;
4230 val->freehigh = free_highpages;
4231 #endif
4232 val->mem_unit = PAGE_SIZE;
4233 }
4234 #endif
4235
4236 /*
4237 * Determine whether the node should be displayed or not, depending on whether
4238 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4239 */
4240 bool skip_free_areas_node(unsigned int flags, int nid)
4241 {
4242 bool ret = false;
4243 unsigned int cpuset_mems_cookie;
4244
4245 if (!(flags & SHOW_MEM_FILTER_NODES))
4246 goto out;
4247
4248 do {
4249 cpuset_mems_cookie = read_mems_allowed_begin();
4250 ret = !node_isset(nid, cpuset_current_mems_allowed);
4251 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4252 out:
4253 return ret;
4254 }
4255
4256 #define K(x) ((x) << (PAGE_SHIFT-10))
4257
4258 static void show_migration_types(unsigned char type)
4259 {
4260 static const char types[MIGRATE_TYPES] = {
4261 [MIGRATE_UNMOVABLE] = 'U',
4262 [MIGRATE_MOVABLE] = 'M',
4263 [MIGRATE_RECLAIMABLE] = 'E',
4264 [MIGRATE_HIGHATOMIC] = 'H',
4265 #ifdef CONFIG_CMA
4266 [MIGRATE_CMA] = 'C',
4267 #endif
4268 #ifdef CONFIG_MEMORY_ISOLATION
4269 [MIGRATE_ISOLATE] = 'I',
4270 #endif
4271 };
4272 char tmp[MIGRATE_TYPES + 1];
4273 char *p = tmp;
4274 int i;
4275
4276 for (i = 0; i < MIGRATE_TYPES; i++) {
4277 if (type & (1 << i))
4278 *p++ = types[i];
4279 }
4280
4281 *p = '\0';
4282 printk("(%s) ", tmp);
4283 }
4284
4285 /*
4286 * Show free area list (used inside shift_scroll-lock stuff)
4287 * We also calculate the percentage fragmentation. We do this by counting the
4288 * memory on each free list with the exception of the first item on the list.
4289 *
4290 * Bits in @filter:
4291 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4292 * cpuset.
4293 */
4294 void show_free_areas(unsigned int filter)
4295 {
4296 unsigned long free_pcp = 0;
4297 int cpu;
4298 struct zone *zone;
4299
4300 for_each_populated_zone(zone) {
4301 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4302 continue;
4303
4304 for_each_online_cpu(cpu)
4305 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4306 }
4307
4308 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4309 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4310 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4311 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4312 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4313 " free:%lu free_pcp:%lu free_cma:%lu\n",
4314 global_page_state(NR_ACTIVE_ANON),
4315 global_page_state(NR_INACTIVE_ANON),
4316 global_page_state(NR_ISOLATED_ANON),
4317 global_page_state(NR_ACTIVE_FILE),
4318 global_page_state(NR_INACTIVE_FILE),
4319 global_page_state(NR_ISOLATED_FILE),
4320 global_page_state(NR_UNEVICTABLE),
4321 global_page_state(NR_FILE_DIRTY),
4322 global_page_state(NR_WRITEBACK),
4323 global_page_state(NR_UNSTABLE_NFS),
4324 global_page_state(NR_SLAB_RECLAIMABLE),
4325 global_page_state(NR_SLAB_UNRECLAIMABLE),
4326 global_page_state(NR_FILE_MAPPED),
4327 global_page_state(NR_SHMEM),
4328 global_page_state(NR_PAGETABLE),
4329 global_page_state(NR_BOUNCE),
4330 global_page_state(NR_FREE_PAGES),
4331 free_pcp,
4332 global_page_state(NR_FREE_CMA_PAGES));
4333
4334 for_each_populated_zone(zone) {
4335 int i;
4336
4337 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4338 continue;
4339
4340 free_pcp = 0;
4341 for_each_online_cpu(cpu)
4342 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4343
4344 show_node(zone);
4345 printk("%s"
4346 " free:%lukB"
4347 " min:%lukB"
4348 " low:%lukB"
4349 " high:%lukB"
4350 " active_anon:%lukB"
4351 " inactive_anon:%lukB"
4352 " active_file:%lukB"
4353 " inactive_file:%lukB"
4354 " unevictable:%lukB"
4355 " isolated(anon):%lukB"
4356 " isolated(file):%lukB"
4357 " present:%lukB"
4358 " managed:%lukB"
4359 " mlocked:%lukB"
4360 " dirty:%lukB"
4361 " writeback:%lukB"
4362 " mapped:%lukB"
4363 " shmem:%lukB"
4364 " slab_reclaimable:%lukB"
4365 " slab_unreclaimable:%lukB"
4366 " kernel_stack:%lukB"
4367 " pagetables:%lukB"
4368 " unstable:%lukB"
4369 " bounce:%lukB"
4370 " free_pcp:%lukB"
4371 " local_pcp:%ukB"
4372 " free_cma:%lukB"
4373 " writeback_tmp:%lukB"
4374 " pages_scanned:%lu"
4375 " all_unreclaimable? %s"
4376 "\n",
4377 zone->name,
4378 K(zone_page_state(zone, NR_FREE_PAGES)),
4379 K(min_wmark_pages(zone)),
4380 K(low_wmark_pages(zone)),
4381 K(high_wmark_pages(zone)),
4382 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4383 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4384 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4385 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4386 K(zone_page_state(zone, NR_UNEVICTABLE)),
4387 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4388 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4389 K(zone->present_pages),
4390 K(zone->managed_pages),
4391 K(zone_page_state(zone, NR_MLOCK)),
4392 K(zone_page_state(zone, NR_FILE_DIRTY)),
4393 K(zone_page_state(zone, NR_WRITEBACK)),
4394 K(zone_page_state(zone, NR_FILE_MAPPED)),
4395 K(zone_page_state(zone, NR_SHMEM)),
4396 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4397 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4398 zone_page_state(zone, NR_KERNEL_STACK) *
4399 THREAD_SIZE / 1024,
4400 K(zone_page_state(zone, NR_PAGETABLE)),
4401 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4402 K(zone_page_state(zone, NR_BOUNCE)),
4403 K(free_pcp),
4404 K(this_cpu_read(zone->pageset->pcp.count)),
4405 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4406 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4407 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4408 (!zone_reclaimable(zone) ? "yes" : "no")
4409 );
4410 printk("lowmem_reserve[]:");
4411 for (i = 0; i < MAX_NR_ZONES; i++)
4412 printk(" %ld", zone->lowmem_reserve[i]);
4413 printk("\n");
4414 }
4415
4416 for_each_populated_zone(zone) {
4417 unsigned int order;
4418 unsigned long nr[MAX_ORDER], flags, total = 0;
4419 unsigned char types[MAX_ORDER];
4420
4421 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4422 continue;
4423 show_node(zone);
4424 printk("%s: ", zone->name);
4425
4426 spin_lock_irqsave(&zone->lock, flags);
4427 for (order = 0; order < MAX_ORDER; order++) {
4428 struct free_area *area = &zone->free_area[order];
4429 int type;
4430
4431 nr[order] = area->nr_free;
4432 total += nr[order] << order;
4433
4434 types[order] = 0;
4435 for (type = 0; type < MIGRATE_TYPES; type++) {
4436 if (!list_empty(&area->free_list[type]))
4437 types[order] |= 1 << type;
4438 }
4439 }
4440 spin_unlock_irqrestore(&zone->lock, flags);
4441 for (order = 0; order < MAX_ORDER; order++) {
4442 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4443 if (nr[order])
4444 show_migration_types(types[order]);
4445 }
4446 printk("= %lukB\n", K(total));
4447 }
4448
4449 hugetlb_show_meminfo();
4450
4451 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4452
4453 show_swap_cache_info();
4454 }
4455
4456 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4457 {
4458 zoneref->zone = zone;
4459 zoneref->zone_idx = zone_idx(zone);
4460 }
4461
4462 /*
4463 * Builds allocation fallback zone lists.
4464 *
4465 * Add all populated zones of a node to the zonelist.
4466 */
4467 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4468 int nr_zones)
4469 {
4470 struct zone *zone;
4471 enum zone_type zone_type = MAX_NR_ZONES;
4472
4473 do {
4474 zone_type--;
4475 zone = pgdat->node_zones + zone_type;
4476 if (populated_zone(zone)) {
4477 zoneref_set_zone(zone,
4478 &zonelist->_zonerefs[nr_zones++]);
4479 check_highest_zone(zone_type);
4480 }
4481 } while (zone_type);
4482
4483 return nr_zones;
4484 }
4485
4486
4487 /*
4488 * zonelist_order:
4489 * 0 = automatic detection of better ordering.
4490 * 1 = order by ([node] distance, -zonetype)
4491 * 2 = order by (-zonetype, [node] distance)
4492 *
4493 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4494 * the same zonelist. So only NUMA can configure this param.
4495 */
4496 #define ZONELIST_ORDER_DEFAULT 0
4497 #define ZONELIST_ORDER_NODE 1
4498 #define ZONELIST_ORDER_ZONE 2
4499
4500 /* zonelist order in the kernel.
4501 * set_zonelist_order() will set this to NODE or ZONE.
4502 */
4503 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4504 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4505
4506
4507 #ifdef CONFIG_NUMA
4508 /* The value user specified ....changed by config */
4509 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4510 /* string for sysctl */
4511 #define NUMA_ZONELIST_ORDER_LEN 16
4512 char numa_zonelist_order[16] = "default";
4513
4514 /*
4515 * interface for configure zonelist ordering.
4516 * command line option "numa_zonelist_order"
4517 * = "[dD]efault - default, automatic configuration.
4518 * = "[nN]ode - order by node locality, then by zone within node
4519 * = "[zZ]one - order by zone, then by locality within zone
4520 */
4521
4522 static int __parse_numa_zonelist_order(char *s)
4523 {
4524 if (*s == 'd' || *s == 'D') {
4525 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4526 } else if (*s == 'n' || *s == 'N') {
4527 user_zonelist_order = ZONELIST_ORDER_NODE;
4528 } else if (*s == 'z' || *s == 'Z') {
4529 user_zonelist_order = ZONELIST_ORDER_ZONE;
4530 } else {
4531 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4532 return -EINVAL;
4533 }
4534 return 0;
4535 }
4536
4537 static __init int setup_numa_zonelist_order(char *s)
4538 {
4539 int ret;
4540
4541 if (!s)
4542 return 0;
4543
4544 ret = __parse_numa_zonelist_order(s);
4545 if (ret == 0)
4546 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4547
4548 return ret;
4549 }
4550 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4551
4552 /*
4553 * sysctl handler for numa_zonelist_order
4554 */
4555 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4556 void __user *buffer, size_t *length,
4557 loff_t *ppos)
4558 {
4559 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4560 int ret;
4561 static DEFINE_MUTEX(zl_order_mutex);
4562
4563 mutex_lock(&zl_order_mutex);
4564 if (write) {
4565 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4566 ret = -EINVAL;
4567 goto out;
4568 }
4569 strcpy(saved_string, (char *)table->data);
4570 }
4571 ret = proc_dostring(table, write, buffer, length, ppos);
4572 if (ret)
4573 goto out;
4574 if (write) {
4575 int oldval = user_zonelist_order;
4576
4577 ret = __parse_numa_zonelist_order((char *)table->data);
4578 if (ret) {
4579 /*
4580 * bogus value. restore saved string
4581 */
4582 strncpy((char *)table->data, saved_string,
4583 NUMA_ZONELIST_ORDER_LEN);
4584 user_zonelist_order = oldval;
4585 } else if (oldval != user_zonelist_order) {
4586 mutex_lock(&zonelists_mutex);
4587 build_all_zonelists(NULL, NULL);
4588 mutex_unlock(&zonelists_mutex);
4589 }
4590 }
4591 out:
4592 mutex_unlock(&zl_order_mutex);
4593 return ret;
4594 }
4595
4596
4597 #define MAX_NODE_LOAD (nr_online_nodes)
4598 static int node_load[MAX_NUMNODES];
4599
4600 /**
4601 * find_next_best_node - find the next node that should appear in a given node's fallback list
4602 * @node: node whose fallback list we're appending
4603 * @used_node_mask: nodemask_t of already used nodes
4604 *
4605 * We use a number of factors to determine which is the next node that should
4606 * appear on a given node's fallback list. The node should not have appeared
4607 * already in @node's fallback list, and it should be the next closest node
4608 * according to the distance array (which contains arbitrary distance values
4609 * from each node to each node in the system), and should also prefer nodes
4610 * with no CPUs, since presumably they'll have very little allocation pressure
4611 * on them otherwise.
4612 * It returns -1 if no node is found.
4613 */
4614 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4615 {
4616 int n, val;
4617 int min_val = INT_MAX;
4618 int best_node = NUMA_NO_NODE;
4619 const struct cpumask *tmp = cpumask_of_node(0);
4620
4621 /* Use the local node if we haven't already */
4622 if (!node_isset(node, *used_node_mask)) {
4623 node_set(node, *used_node_mask);
4624 return node;
4625 }
4626
4627 for_each_node_state(n, N_MEMORY) {
4628
4629 /* Don't want a node to appear more than once */
4630 if (node_isset(n, *used_node_mask))
4631 continue;
4632
4633 /* Use the distance array to find the distance */
4634 val = node_distance(node, n);
4635
4636 /* Penalize nodes under us ("prefer the next node") */
4637 val += (n < node);
4638
4639 /* Give preference to headless and unused nodes */
4640 tmp = cpumask_of_node(n);
4641 if (!cpumask_empty(tmp))
4642 val += PENALTY_FOR_NODE_WITH_CPUS;
4643
4644 /* Slight preference for less loaded node */
4645 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4646 val += node_load[n];
4647
4648 if (val < min_val) {
4649 min_val = val;
4650 best_node = n;
4651 }
4652 }
4653
4654 if (best_node >= 0)
4655 node_set(best_node, *used_node_mask);
4656
4657 return best_node;
4658 }
4659
4660
4661 /*
4662 * Build zonelists ordered by node and zones within node.
4663 * This results in maximum locality--normal zone overflows into local
4664 * DMA zone, if any--but risks exhausting DMA zone.
4665 */
4666 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4667 {
4668 int j;
4669 struct zonelist *zonelist;
4670
4671 zonelist = &pgdat->node_zonelists[0];
4672 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4673 ;
4674 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4675 zonelist->_zonerefs[j].zone = NULL;
4676 zonelist->_zonerefs[j].zone_idx = 0;
4677 }
4678
4679 /*
4680 * Build gfp_thisnode zonelists
4681 */
4682 static void build_thisnode_zonelists(pg_data_t *pgdat)
4683 {
4684 int j;
4685 struct zonelist *zonelist;
4686
4687 zonelist = &pgdat->node_zonelists[1];
4688 j = build_zonelists_node(pgdat, zonelist, 0);
4689 zonelist->_zonerefs[j].zone = NULL;
4690 zonelist->_zonerefs[j].zone_idx = 0;
4691 }
4692
4693 /*
4694 * Build zonelists ordered by zone and nodes within zones.
4695 * This results in conserving DMA zone[s] until all Normal memory is
4696 * exhausted, but results in overflowing to remote node while memory
4697 * may still exist in local DMA zone.
4698 */
4699 static int node_order[MAX_NUMNODES];
4700
4701 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4702 {
4703 int pos, j, node;
4704 int zone_type; /* needs to be signed */
4705 struct zone *z;
4706 struct zonelist *zonelist;
4707
4708 zonelist = &pgdat->node_zonelists[0];
4709 pos = 0;
4710 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4711 for (j = 0; j < nr_nodes; j++) {
4712 node = node_order[j];
4713 z = &NODE_DATA(node)->node_zones[zone_type];
4714 if (populated_zone(z)) {
4715 zoneref_set_zone(z,
4716 &zonelist->_zonerefs[pos++]);
4717 check_highest_zone(zone_type);
4718 }
4719 }
4720 }
4721 zonelist->_zonerefs[pos].zone = NULL;
4722 zonelist->_zonerefs[pos].zone_idx = 0;
4723 }
4724
4725 #if defined(CONFIG_64BIT)
4726 /*
4727 * Devices that require DMA32/DMA are relatively rare and do not justify a
4728 * penalty to every machine in case the specialised case applies. Default
4729 * to Node-ordering on 64-bit NUMA machines
4730 */
4731 static int default_zonelist_order(void)
4732 {
4733 return ZONELIST_ORDER_NODE;
4734 }
4735 #else
4736 /*
4737 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4738 * by the kernel. If processes running on node 0 deplete the low memory zone
4739 * then reclaim will occur more frequency increasing stalls and potentially
4740 * be easier to OOM if a large percentage of the zone is under writeback or
4741 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4742 * Hence, default to zone ordering on 32-bit.
4743 */
4744 static int default_zonelist_order(void)
4745 {
4746 return ZONELIST_ORDER_ZONE;
4747 }
4748 #endif /* CONFIG_64BIT */
4749
4750 static void set_zonelist_order(void)
4751 {
4752 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4753 current_zonelist_order = default_zonelist_order();
4754 else
4755 current_zonelist_order = user_zonelist_order;
4756 }
4757
4758 static void build_zonelists(pg_data_t *pgdat)
4759 {
4760 int i, node, load;
4761 nodemask_t used_mask;
4762 int local_node, prev_node;
4763 struct zonelist *zonelist;
4764 unsigned int order = current_zonelist_order;
4765
4766 /* initialize zonelists */
4767 for (i = 0; i < MAX_ZONELISTS; i++) {
4768 zonelist = pgdat->node_zonelists + i;
4769 zonelist->_zonerefs[0].zone = NULL;
4770 zonelist->_zonerefs[0].zone_idx = 0;
4771 }
4772
4773 /* NUMA-aware ordering of nodes */
4774 local_node = pgdat->node_id;
4775 load = nr_online_nodes;
4776 prev_node = local_node;
4777 nodes_clear(used_mask);
4778
4779 memset(node_order, 0, sizeof(node_order));
4780 i = 0;
4781
4782 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4783 /*
4784 * We don't want to pressure a particular node.
4785 * So adding penalty to the first node in same
4786 * distance group to make it round-robin.
4787 */
4788 if (node_distance(local_node, node) !=
4789 node_distance(local_node, prev_node))
4790 node_load[node] = load;
4791
4792 prev_node = node;
4793 load--;
4794 if (order == ZONELIST_ORDER_NODE)
4795 build_zonelists_in_node_order(pgdat, node);
4796 else
4797 node_order[i++] = node; /* remember order */
4798 }
4799
4800 if (order == ZONELIST_ORDER_ZONE) {
4801 /* calculate node order -- i.e., DMA last! */
4802 build_zonelists_in_zone_order(pgdat, i);
4803 }
4804
4805 build_thisnode_zonelists(pgdat);
4806 }
4807
4808 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4809 /*
4810 * Return node id of node used for "local" allocations.
4811 * I.e., first node id of first zone in arg node's generic zonelist.
4812 * Used for initializing percpu 'numa_mem', which is used primarily
4813 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4814 */
4815 int local_memory_node(int node)
4816 {
4817 struct zoneref *z;
4818
4819 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4820 gfp_zone(GFP_KERNEL),
4821 NULL);
4822 return z->zone->node;
4823 }
4824 #endif
4825
4826 #else /* CONFIG_NUMA */
4827
4828 static void set_zonelist_order(void)
4829 {
4830 current_zonelist_order = ZONELIST_ORDER_ZONE;
4831 }
4832
4833 static void build_zonelists(pg_data_t *pgdat)
4834 {
4835 int node, local_node;
4836 enum zone_type j;
4837 struct zonelist *zonelist;
4838
4839 local_node = pgdat->node_id;
4840
4841 zonelist = &pgdat->node_zonelists[0];
4842 j = build_zonelists_node(pgdat, zonelist, 0);
4843
4844 /*
4845 * Now we build the zonelist so that it contains the zones
4846 * of all the other nodes.
4847 * We don't want to pressure a particular node, so when
4848 * building the zones for node N, we make sure that the
4849 * zones coming right after the local ones are those from
4850 * node N+1 (modulo N)
4851 */
4852 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4853 if (!node_online(node))
4854 continue;
4855 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4856 }
4857 for (node = 0; node < local_node; node++) {
4858 if (!node_online(node))
4859 continue;
4860 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4861 }
4862
4863 zonelist->_zonerefs[j].zone = NULL;
4864 zonelist->_zonerefs[j].zone_idx = 0;
4865 }
4866
4867 #endif /* CONFIG_NUMA */
4868
4869 /*
4870 * Boot pageset table. One per cpu which is going to be used for all
4871 * zones and all nodes. The parameters will be set in such a way
4872 * that an item put on a list will immediately be handed over to
4873 * the buddy list. This is safe since pageset manipulation is done
4874 * with interrupts disabled.
4875 *
4876 * The boot_pagesets must be kept even after bootup is complete for
4877 * unused processors and/or zones. They do play a role for bootstrapping
4878 * hotplugged processors.
4879 *
4880 * zoneinfo_show() and maybe other functions do
4881 * not check if the processor is online before following the pageset pointer.
4882 * Other parts of the kernel may not check if the zone is available.
4883 */
4884 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4885 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4886 static void setup_zone_pageset(struct zone *zone);
4887
4888 /*
4889 * Global mutex to protect against size modification of zonelists
4890 * as well as to serialize pageset setup for the new populated zone.
4891 */
4892 DEFINE_MUTEX(zonelists_mutex);
4893
4894 /* return values int ....just for stop_machine() */
4895 static int __build_all_zonelists(void *data)
4896 {
4897 int nid;
4898 int cpu;
4899 pg_data_t *self = data;
4900
4901 #ifdef CONFIG_NUMA
4902 memset(node_load, 0, sizeof(node_load));
4903 #endif
4904
4905 if (self && !node_online(self->node_id)) {
4906 build_zonelists(self);
4907 }
4908
4909 for_each_online_node(nid) {
4910 pg_data_t *pgdat = NODE_DATA(nid);
4911
4912 build_zonelists(pgdat);
4913 }
4914
4915 /*
4916 * Initialize the boot_pagesets that are going to be used
4917 * for bootstrapping processors. The real pagesets for
4918 * each zone will be allocated later when the per cpu
4919 * allocator is available.
4920 *
4921 * boot_pagesets are used also for bootstrapping offline
4922 * cpus if the system is already booted because the pagesets
4923 * are needed to initialize allocators on a specific cpu too.
4924 * F.e. the percpu allocator needs the page allocator which
4925 * needs the percpu allocator in order to allocate its pagesets
4926 * (a chicken-egg dilemma).
4927 */
4928 for_each_possible_cpu(cpu) {
4929 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4930
4931 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4932 /*
4933 * We now know the "local memory node" for each node--
4934 * i.e., the node of the first zone in the generic zonelist.
4935 * Set up numa_mem percpu variable for on-line cpus. During
4936 * boot, only the boot cpu should be on-line; we'll init the
4937 * secondary cpus' numa_mem as they come on-line. During
4938 * node/memory hotplug, we'll fixup all on-line cpus.
4939 */
4940 if (cpu_online(cpu))
4941 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4942 #endif
4943 }
4944
4945 return 0;
4946 }
4947
4948 static noinline void __init
4949 build_all_zonelists_init(void)
4950 {
4951 __build_all_zonelists(NULL);
4952 mminit_verify_zonelist();
4953 cpuset_init_current_mems_allowed();
4954 }
4955
4956 /*
4957 * Called with zonelists_mutex held always
4958 * unless system_state == SYSTEM_BOOTING.
4959 *
4960 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4961 * [we're only called with non-NULL zone through __meminit paths] and
4962 * (2) call of __init annotated helper build_all_zonelists_init
4963 * [protected by SYSTEM_BOOTING].
4964 */
4965 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4966 {
4967 set_zonelist_order();
4968
4969 if (system_state == SYSTEM_BOOTING) {
4970 build_all_zonelists_init();
4971 } else {
4972 #ifdef CONFIG_MEMORY_HOTPLUG
4973 if (zone)
4974 setup_zone_pageset(zone);
4975 #endif
4976 /* we have to stop all cpus to guarantee there is no user
4977 of zonelist */
4978 stop_machine(__build_all_zonelists, pgdat, NULL);
4979 /* cpuset refresh routine should be here */
4980 }
4981 vm_total_pages = nr_free_pagecache_pages();
4982 /*
4983 * Disable grouping by mobility if the number of pages in the
4984 * system is too low to allow the mechanism to work. It would be
4985 * more accurate, but expensive to check per-zone. This check is
4986 * made on memory-hotadd so a system can start with mobility
4987 * disabled and enable it later
4988 */
4989 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4990 page_group_by_mobility_disabled = 1;
4991 else
4992 page_group_by_mobility_disabled = 0;
4993
4994 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4995 nr_online_nodes,
4996 zonelist_order_name[current_zonelist_order],
4997 page_group_by_mobility_disabled ? "off" : "on",
4998 vm_total_pages);
4999 #ifdef CONFIG_NUMA
5000 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5001 #endif
5002 }
5003
5004 /*
5005 * Helper functions to size the waitqueue hash table.
5006 * Essentially these want to choose hash table sizes sufficiently
5007 * large so that collisions trying to wait on pages are rare.
5008 * But in fact, the number of active page waitqueues on typical
5009 * systems is ridiculously low, less than 200. So this is even
5010 * conservative, even though it seems large.
5011 *
5012 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5013 * waitqueues, i.e. the size of the waitq table given the number of pages.
5014 */
5015 #define PAGES_PER_WAITQUEUE 256
5016
5017 #ifndef CONFIG_MEMORY_HOTPLUG
5018 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5019 {
5020 unsigned long size = 1;
5021
5022 pages /= PAGES_PER_WAITQUEUE;
5023
5024 while (size < pages)
5025 size <<= 1;
5026
5027 /*
5028 * Once we have dozens or even hundreds of threads sleeping
5029 * on IO we've got bigger problems than wait queue collision.
5030 * Limit the size of the wait table to a reasonable size.
5031 */
5032 size = min(size, 4096UL);
5033
5034 return max(size, 4UL);
5035 }
5036 #else
5037 /*
5038 * A zone's size might be changed by hot-add, so it is not possible to determine
5039 * a suitable size for its wait_table. So we use the maximum size now.
5040 *
5041 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5042 *
5043 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5044 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5045 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5046 *
5047 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5048 * or more by the traditional way. (See above). It equals:
5049 *
5050 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5051 * ia64(16K page size) : = ( 8G + 4M)byte.
5052 * powerpc (64K page size) : = (32G +16M)byte.
5053 */
5054 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5055 {
5056 return 4096UL;
5057 }
5058 #endif
5059
5060 /*
5061 * This is an integer logarithm so that shifts can be used later
5062 * to extract the more random high bits from the multiplicative
5063 * hash function before the remainder is taken.
5064 */
5065 static inline unsigned long wait_table_bits(unsigned long size)
5066 {
5067 return ffz(~size);
5068 }
5069
5070 /*
5071 * Initially all pages are reserved - free ones are freed
5072 * up by free_all_bootmem() once the early boot process is
5073 * done. Non-atomic initialization, single-pass.
5074 */
5075 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5076 unsigned long start_pfn, enum memmap_context context)
5077 {
5078 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5079 unsigned long end_pfn = start_pfn + size;
5080 pg_data_t *pgdat = NODE_DATA(nid);
5081 unsigned long pfn;
5082 unsigned long nr_initialised = 0;
5083 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5084 struct memblock_region *r = NULL, *tmp;
5085 #endif
5086
5087 if (highest_memmap_pfn < end_pfn - 1)
5088 highest_memmap_pfn = end_pfn - 1;
5089
5090 /*
5091 * Honor reservation requested by the driver for this ZONE_DEVICE
5092 * memory
5093 */
5094 if (altmap && start_pfn == altmap->base_pfn)
5095 start_pfn += altmap->reserve;
5096
5097 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5098 /*
5099 * There can be holes in boot-time mem_map[]s handed to this
5100 * function. They do not exist on hotplugged memory.
5101 */
5102 if (context != MEMMAP_EARLY)
5103 goto not_early;
5104
5105 if (!early_pfn_valid(pfn))
5106 continue;
5107 if (!early_pfn_in_nid(pfn, nid))
5108 continue;
5109 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5110 break;
5111
5112 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5113 /*
5114 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5115 * from zone_movable_pfn[nid] to end of each node should be
5116 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5117 */
5118 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5119 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5120 continue;
5121
5122 /*
5123 * Check given memblock attribute by firmware which can affect
5124 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5125 * mirrored, it's an overlapped memmap init. skip it.
5126 */
5127 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5128 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5129 for_each_memblock(memory, tmp)
5130 if (pfn < memblock_region_memory_end_pfn(tmp))
5131 break;
5132 r = tmp;
5133 }
5134 if (pfn >= memblock_region_memory_base_pfn(r) &&
5135 memblock_is_mirror(r)) {
5136 /* already initialized as NORMAL */
5137 pfn = memblock_region_memory_end_pfn(r);
5138 continue;
5139 }
5140 }
5141 #endif
5142
5143 not_early:
5144 /*
5145 * Mark the block movable so that blocks are reserved for
5146 * movable at startup. This will force kernel allocations
5147 * to reserve their blocks rather than leaking throughout
5148 * the address space during boot when many long-lived
5149 * kernel allocations are made.
5150 *
5151 * bitmap is created for zone's valid pfn range. but memmap
5152 * can be created for invalid pages (for alignment)
5153 * check here not to call set_pageblock_migratetype() against
5154 * pfn out of zone.
5155 */
5156 if (!(pfn & (pageblock_nr_pages - 1))) {
5157 struct page *page = pfn_to_page(pfn);
5158
5159 __init_single_page(page, pfn, zone, nid);
5160 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5161 } else {
5162 __init_single_pfn(pfn, zone, nid);
5163 }
5164 }
5165 }
5166
5167 static void __meminit zone_init_free_lists(struct zone *zone)
5168 {
5169 unsigned int order, t;
5170 for_each_migratetype_order(order, t) {
5171 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5172 zone->free_area[order].nr_free = 0;
5173 }
5174 }
5175
5176 #ifndef __HAVE_ARCH_MEMMAP_INIT
5177 #define memmap_init(size, nid, zone, start_pfn) \
5178 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5179 #endif
5180
5181 static int zone_batchsize(struct zone *zone)
5182 {
5183 #ifdef CONFIG_MMU
5184 int batch;
5185
5186 /*
5187 * The per-cpu-pages pools are set to around 1000th of the
5188 * size of the zone. But no more than 1/2 of a meg.
5189 *
5190 * OK, so we don't know how big the cache is. So guess.
5191 */
5192 batch = zone->managed_pages / 1024;
5193 if (batch * PAGE_SIZE > 512 * 1024)
5194 batch = (512 * 1024) / PAGE_SIZE;
5195 batch /= 4; /* We effectively *= 4 below */
5196 if (batch < 1)
5197 batch = 1;
5198
5199 /*
5200 * Clamp the batch to a 2^n - 1 value. Having a power
5201 * of 2 value was found to be more likely to have
5202 * suboptimal cache aliasing properties in some cases.
5203 *
5204 * For example if 2 tasks are alternately allocating
5205 * batches of pages, one task can end up with a lot
5206 * of pages of one half of the possible page colors
5207 * and the other with pages of the other colors.
5208 */
5209 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5210
5211 return batch;
5212
5213 #else
5214 /* The deferral and batching of frees should be suppressed under NOMMU
5215 * conditions.
5216 *
5217 * The problem is that NOMMU needs to be able to allocate large chunks
5218 * of contiguous memory as there's no hardware page translation to
5219 * assemble apparent contiguous memory from discontiguous pages.
5220 *
5221 * Queueing large contiguous runs of pages for batching, however,
5222 * causes the pages to actually be freed in smaller chunks. As there
5223 * can be a significant delay between the individual batches being
5224 * recycled, this leads to the once large chunks of space being
5225 * fragmented and becoming unavailable for high-order allocations.
5226 */
5227 return 0;
5228 #endif
5229 }
5230
5231 /*
5232 * pcp->high and pcp->batch values are related and dependent on one another:
5233 * ->batch must never be higher then ->high.
5234 * The following function updates them in a safe manner without read side
5235 * locking.
5236 *
5237 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5238 * those fields changing asynchronously (acording the the above rule).
5239 *
5240 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5241 * outside of boot time (or some other assurance that no concurrent updaters
5242 * exist).
5243 */
5244 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5245 unsigned long batch)
5246 {
5247 /* start with a fail safe value for batch */
5248 pcp->batch = 1;
5249 smp_wmb();
5250
5251 /* Update high, then batch, in order */
5252 pcp->high = high;
5253 smp_wmb();
5254
5255 pcp->batch = batch;
5256 }
5257
5258 /* a companion to pageset_set_high() */
5259 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5260 {
5261 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5262 }
5263
5264 static void pageset_init(struct per_cpu_pageset *p)
5265 {
5266 struct per_cpu_pages *pcp;
5267 int migratetype;
5268
5269 memset(p, 0, sizeof(*p));
5270
5271 pcp = &p->pcp;
5272 pcp->count = 0;
5273 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5274 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5275 }
5276
5277 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5278 {
5279 pageset_init(p);
5280 pageset_set_batch(p, batch);
5281 }
5282
5283 /*
5284 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5285 * to the value high for the pageset p.
5286 */
5287 static void pageset_set_high(struct per_cpu_pageset *p,
5288 unsigned long high)
5289 {
5290 unsigned long batch = max(1UL, high / 4);
5291 if ((high / 4) > (PAGE_SHIFT * 8))
5292 batch = PAGE_SHIFT * 8;
5293
5294 pageset_update(&p->pcp, high, batch);
5295 }
5296
5297 static void pageset_set_high_and_batch(struct zone *zone,
5298 struct per_cpu_pageset *pcp)
5299 {
5300 if (percpu_pagelist_fraction)
5301 pageset_set_high(pcp,
5302 (zone->managed_pages /
5303 percpu_pagelist_fraction));
5304 else
5305 pageset_set_batch(pcp, zone_batchsize(zone));
5306 }
5307
5308 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5309 {
5310 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5311
5312 pageset_init(pcp);
5313 pageset_set_high_and_batch(zone, pcp);
5314 }
5315
5316 static void __meminit setup_zone_pageset(struct zone *zone)
5317 {
5318 int cpu;
5319 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5320 for_each_possible_cpu(cpu)
5321 zone_pageset_init(zone, cpu);
5322 }
5323
5324 /*
5325 * Allocate per cpu pagesets and initialize them.
5326 * Before this call only boot pagesets were available.
5327 */
5328 void __init setup_per_cpu_pageset(void)
5329 {
5330 struct zone *zone;
5331
5332 for_each_populated_zone(zone)
5333 setup_zone_pageset(zone);
5334 }
5335
5336 static noinline __init_refok
5337 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5338 {
5339 int i;
5340 size_t alloc_size;
5341
5342 /*
5343 * The per-page waitqueue mechanism uses hashed waitqueues
5344 * per zone.
5345 */
5346 zone->wait_table_hash_nr_entries =
5347 wait_table_hash_nr_entries(zone_size_pages);
5348 zone->wait_table_bits =
5349 wait_table_bits(zone->wait_table_hash_nr_entries);
5350 alloc_size = zone->wait_table_hash_nr_entries
5351 * sizeof(wait_queue_head_t);
5352
5353 if (!slab_is_available()) {
5354 zone->wait_table = (wait_queue_head_t *)
5355 memblock_virt_alloc_node_nopanic(
5356 alloc_size, zone->zone_pgdat->node_id);
5357 } else {
5358 /*
5359 * This case means that a zone whose size was 0 gets new memory
5360 * via memory hot-add.
5361 * But it may be the case that a new node was hot-added. In
5362 * this case vmalloc() will not be able to use this new node's
5363 * memory - this wait_table must be initialized to use this new
5364 * node itself as well.
5365 * To use this new node's memory, further consideration will be
5366 * necessary.
5367 */
5368 zone->wait_table = vmalloc(alloc_size);
5369 }
5370 if (!zone->wait_table)
5371 return -ENOMEM;
5372
5373 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5374 init_waitqueue_head(zone->wait_table + i);
5375
5376 return 0;
5377 }
5378
5379 static __meminit void zone_pcp_init(struct zone *zone)
5380 {
5381 /*
5382 * per cpu subsystem is not up at this point. The following code
5383 * relies on the ability of the linker to provide the
5384 * offset of a (static) per cpu variable into the per cpu area.
5385 */
5386 zone->pageset = &boot_pageset;
5387
5388 if (populated_zone(zone))
5389 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5390 zone->name, zone->present_pages,
5391 zone_batchsize(zone));
5392 }
5393
5394 int __meminit init_currently_empty_zone(struct zone *zone,
5395 unsigned long zone_start_pfn,
5396 unsigned long size)
5397 {
5398 struct pglist_data *pgdat = zone->zone_pgdat;
5399 int ret;
5400 ret = zone_wait_table_init(zone, size);
5401 if (ret)
5402 return ret;
5403 pgdat->nr_zones = zone_idx(zone) + 1;
5404
5405 zone->zone_start_pfn = zone_start_pfn;
5406
5407 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5408 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5409 pgdat->node_id,
5410 (unsigned long)zone_idx(zone),
5411 zone_start_pfn, (zone_start_pfn + size));
5412
5413 zone_init_free_lists(zone);
5414
5415 return 0;
5416 }
5417
5418 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5419 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5420
5421 /*
5422 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5423 */
5424 int __meminit __early_pfn_to_nid(unsigned long pfn,
5425 struct mminit_pfnnid_cache *state)
5426 {
5427 unsigned long start_pfn, end_pfn;
5428 int nid;
5429
5430 if (state->last_start <= pfn && pfn < state->last_end)
5431 return state->last_nid;
5432
5433 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5434 if (nid != -1) {
5435 state->last_start = start_pfn;
5436 state->last_end = end_pfn;
5437 state->last_nid = nid;
5438 }
5439
5440 return nid;
5441 }
5442 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5443
5444 /**
5445 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5446 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5447 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5448 *
5449 * If an architecture guarantees that all ranges registered contain no holes
5450 * and may be freed, this this function may be used instead of calling
5451 * memblock_free_early_nid() manually.
5452 */
5453 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5454 {
5455 unsigned long start_pfn, end_pfn;
5456 int i, this_nid;
5457
5458 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5459 start_pfn = min(start_pfn, max_low_pfn);
5460 end_pfn = min(end_pfn, max_low_pfn);
5461
5462 if (start_pfn < end_pfn)
5463 memblock_free_early_nid(PFN_PHYS(start_pfn),
5464 (end_pfn - start_pfn) << PAGE_SHIFT,
5465 this_nid);
5466 }
5467 }
5468
5469 /**
5470 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5471 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5472 *
5473 * If an architecture guarantees that all ranges registered contain no holes and may
5474 * be freed, this function may be used instead of calling memory_present() manually.
5475 */
5476 void __init sparse_memory_present_with_active_regions(int nid)
5477 {
5478 unsigned long start_pfn, end_pfn;
5479 int i, this_nid;
5480
5481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5482 memory_present(this_nid, start_pfn, end_pfn);
5483 }
5484
5485 /**
5486 * get_pfn_range_for_nid - Return the start and end page frames for a node
5487 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5488 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5489 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5490 *
5491 * It returns the start and end page frame of a node based on information
5492 * provided by memblock_set_node(). If called for a node
5493 * with no available memory, a warning is printed and the start and end
5494 * PFNs will be 0.
5495 */
5496 void __meminit get_pfn_range_for_nid(unsigned int nid,
5497 unsigned long *start_pfn, unsigned long *end_pfn)
5498 {
5499 unsigned long this_start_pfn, this_end_pfn;
5500 int i;
5501
5502 *start_pfn = -1UL;
5503 *end_pfn = 0;
5504
5505 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5506 *start_pfn = min(*start_pfn, this_start_pfn);
5507 *end_pfn = max(*end_pfn, this_end_pfn);
5508 }
5509
5510 if (*start_pfn == -1UL)
5511 *start_pfn = 0;
5512 }
5513
5514 /*
5515 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5516 * assumption is made that zones within a node are ordered in monotonic
5517 * increasing memory addresses so that the "highest" populated zone is used
5518 */
5519 static void __init find_usable_zone_for_movable(void)
5520 {
5521 int zone_index;
5522 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5523 if (zone_index == ZONE_MOVABLE)
5524 continue;
5525
5526 if (arch_zone_highest_possible_pfn[zone_index] >
5527 arch_zone_lowest_possible_pfn[zone_index])
5528 break;
5529 }
5530
5531 VM_BUG_ON(zone_index == -1);
5532 movable_zone = zone_index;
5533 }
5534
5535 /*
5536 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5537 * because it is sized independent of architecture. Unlike the other zones,
5538 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5539 * in each node depending on the size of each node and how evenly kernelcore
5540 * is distributed. This helper function adjusts the zone ranges
5541 * provided by the architecture for a given node by using the end of the
5542 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5543 * zones within a node are in order of monotonic increases memory addresses
5544 */
5545 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5546 unsigned long zone_type,
5547 unsigned long node_start_pfn,
5548 unsigned long node_end_pfn,
5549 unsigned long *zone_start_pfn,
5550 unsigned long *zone_end_pfn)
5551 {
5552 /* Only adjust if ZONE_MOVABLE is on this node */
5553 if (zone_movable_pfn[nid]) {
5554 /* Size ZONE_MOVABLE */
5555 if (zone_type == ZONE_MOVABLE) {
5556 *zone_start_pfn = zone_movable_pfn[nid];
5557 *zone_end_pfn = min(node_end_pfn,
5558 arch_zone_highest_possible_pfn[movable_zone]);
5559
5560 /* Check if this whole range is within ZONE_MOVABLE */
5561 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5562 *zone_start_pfn = *zone_end_pfn;
5563 }
5564 }
5565
5566 /*
5567 * Return the number of pages a zone spans in a node, including holes
5568 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5569 */
5570 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5571 unsigned long zone_type,
5572 unsigned long node_start_pfn,
5573 unsigned long node_end_pfn,
5574 unsigned long *zone_start_pfn,
5575 unsigned long *zone_end_pfn,
5576 unsigned long *ignored)
5577 {
5578 /* When hotadd a new node from cpu_up(), the node should be empty */
5579 if (!node_start_pfn && !node_end_pfn)
5580 return 0;
5581
5582 /* Get the start and end of the zone */
5583 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5584 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5585 adjust_zone_range_for_zone_movable(nid, zone_type,
5586 node_start_pfn, node_end_pfn,
5587 zone_start_pfn, zone_end_pfn);
5588
5589 /* Check that this node has pages within the zone's required range */
5590 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5591 return 0;
5592
5593 /* Move the zone boundaries inside the node if necessary */
5594 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5595 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5596
5597 /* Return the spanned pages */
5598 return *zone_end_pfn - *zone_start_pfn;
5599 }
5600
5601 /*
5602 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5603 * then all holes in the requested range will be accounted for.
5604 */
5605 unsigned long __meminit __absent_pages_in_range(int nid,
5606 unsigned long range_start_pfn,
5607 unsigned long range_end_pfn)
5608 {
5609 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5610 unsigned long start_pfn, end_pfn;
5611 int i;
5612
5613 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5614 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5615 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5616 nr_absent -= end_pfn - start_pfn;
5617 }
5618 return nr_absent;
5619 }
5620
5621 /**
5622 * absent_pages_in_range - Return number of page frames in holes within a range
5623 * @start_pfn: The start PFN to start searching for holes
5624 * @end_pfn: The end PFN to stop searching for holes
5625 *
5626 * It returns the number of pages frames in memory holes within a range.
5627 */
5628 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5629 unsigned long end_pfn)
5630 {
5631 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5632 }
5633
5634 /* Return the number of page frames in holes in a zone on a node */
5635 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5636 unsigned long zone_type,
5637 unsigned long node_start_pfn,
5638 unsigned long node_end_pfn,
5639 unsigned long *ignored)
5640 {
5641 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5642 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5643 unsigned long zone_start_pfn, zone_end_pfn;
5644 unsigned long nr_absent;
5645
5646 /* When hotadd a new node from cpu_up(), the node should be empty */
5647 if (!node_start_pfn && !node_end_pfn)
5648 return 0;
5649
5650 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5651 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5652
5653 adjust_zone_range_for_zone_movable(nid, zone_type,
5654 node_start_pfn, node_end_pfn,
5655 &zone_start_pfn, &zone_end_pfn);
5656 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5657
5658 /*
5659 * ZONE_MOVABLE handling.
5660 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5661 * and vice versa.
5662 */
5663 if (zone_movable_pfn[nid]) {
5664 if (mirrored_kernelcore) {
5665 unsigned long start_pfn, end_pfn;
5666 struct memblock_region *r;
5667
5668 for_each_memblock(memory, r) {
5669 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5670 zone_start_pfn, zone_end_pfn);
5671 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5672 zone_start_pfn, zone_end_pfn);
5673
5674 if (zone_type == ZONE_MOVABLE &&
5675 memblock_is_mirror(r))
5676 nr_absent += end_pfn - start_pfn;
5677
5678 if (zone_type == ZONE_NORMAL &&
5679 !memblock_is_mirror(r))
5680 nr_absent += end_pfn - start_pfn;
5681 }
5682 } else {
5683 if (zone_type == ZONE_NORMAL)
5684 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5685 }
5686 }
5687
5688 return nr_absent;
5689 }
5690
5691 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5692 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5693 unsigned long zone_type,
5694 unsigned long node_start_pfn,
5695 unsigned long node_end_pfn,
5696 unsigned long *zone_start_pfn,
5697 unsigned long *zone_end_pfn,
5698 unsigned long *zones_size)
5699 {
5700 unsigned int zone;
5701
5702 *zone_start_pfn = node_start_pfn;
5703 for (zone = 0; zone < zone_type; zone++)
5704 *zone_start_pfn += zones_size[zone];
5705
5706 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5707
5708 return zones_size[zone_type];
5709 }
5710
5711 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5712 unsigned long zone_type,
5713 unsigned long node_start_pfn,
5714 unsigned long node_end_pfn,
5715 unsigned long *zholes_size)
5716 {
5717 if (!zholes_size)
5718 return 0;
5719
5720 return zholes_size[zone_type];
5721 }
5722
5723 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5724
5725 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5726 unsigned long node_start_pfn,
5727 unsigned long node_end_pfn,
5728 unsigned long *zones_size,
5729 unsigned long *zholes_size)
5730 {
5731 unsigned long realtotalpages = 0, totalpages = 0;
5732 enum zone_type i;
5733
5734 for (i = 0; i < MAX_NR_ZONES; i++) {
5735 struct zone *zone = pgdat->node_zones + i;
5736 unsigned long zone_start_pfn, zone_end_pfn;
5737 unsigned long size, real_size;
5738
5739 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5740 node_start_pfn,
5741 node_end_pfn,
5742 &zone_start_pfn,
5743 &zone_end_pfn,
5744 zones_size);
5745 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5746 node_start_pfn, node_end_pfn,
5747 zholes_size);
5748 if (size)
5749 zone->zone_start_pfn = zone_start_pfn;
5750 else
5751 zone->zone_start_pfn = 0;
5752 zone->spanned_pages = size;
5753 zone->present_pages = real_size;
5754
5755 totalpages += size;
5756 realtotalpages += real_size;
5757 }
5758
5759 pgdat->node_spanned_pages = totalpages;
5760 pgdat->node_present_pages = realtotalpages;
5761 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5762 realtotalpages);
5763 }
5764
5765 #ifndef CONFIG_SPARSEMEM
5766 /*
5767 * Calculate the size of the zone->blockflags rounded to an unsigned long
5768 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5769 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5770 * round what is now in bits to nearest long in bits, then return it in
5771 * bytes.
5772 */
5773 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5774 {
5775 unsigned long usemapsize;
5776
5777 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5778 usemapsize = roundup(zonesize, pageblock_nr_pages);
5779 usemapsize = usemapsize >> pageblock_order;
5780 usemapsize *= NR_PAGEBLOCK_BITS;
5781 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5782
5783 return usemapsize / 8;
5784 }
5785
5786 static void __init setup_usemap(struct pglist_data *pgdat,
5787 struct zone *zone,
5788 unsigned long zone_start_pfn,
5789 unsigned long zonesize)
5790 {
5791 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5792 zone->pageblock_flags = NULL;
5793 if (usemapsize)
5794 zone->pageblock_flags =
5795 memblock_virt_alloc_node_nopanic(usemapsize,
5796 pgdat->node_id);
5797 }
5798 #else
5799 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5800 unsigned long zone_start_pfn, unsigned long zonesize) {}
5801 #endif /* CONFIG_SPARSEMEM */
5802
5803 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5804
5805 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5806 void __paginginit set_pageblock_order(void)
5807 {
5808 unsigned int order;
5809
5810 /* Check that pageblock_nr_pages has not already been setup */
5811 if (pageblock_order)
5812 return;
5813
5814 if (HPAGE_SHIFT > PAGE_SHIFT)
5815 order = HUGETLB_PAGE_ORDER;
5816 else
5817 order = MAX_ORDER - 1;
5818
5819 /*
5820 * Assume the largest contiguous order of interest is a huge page.
5821 * This value may be variable depending on boot parameters on IA64 and
5822 * powerpc.
5823 */
5824 pageblock_order = order;
5825 }
5826 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5827
5828 /*
5829 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5830 * is unused as pageblock_order is set at compile-time. See
5831 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5832 * the kernel config
5833 */
5834 void __paginginit set_pageblock_order(void)
5835 {
5836 }
5837
5838 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5839
5840 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5841 unsigned long present_pages)
5842 {
5843 unsigned long pages = spanned_pages;
5844
5845 /*
5846 * Provide a more accurate estimation if there are holes within
5847 * the zone and SPARSEMEM is in use. If there are holes within the
5848 * zone, each populated memory region may cost us one or two extra
5849 * memmap pages due to alignment because memmap pages for each
5850 * populated regions may not naturally algined on page boundary.
5851 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5852 */
5853 if (spanned_pages > present_pages + (present_pages >> 4) &&
5854 IS_ENABLED(CONFIG_SPARSEMEM))
5855 pages = present_pages;
5856
5857 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5858 }
5859
5860 /*
5861 * Set up the zone data structures:
5862 * - mark all pages reserved
5863 * - mark all memory queues empty
5864 * - clear the memory bitmaps
5865 *
5866 * NOTE: pgdat should get zeroed by caller.
5867 */
5868 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5869 {
5870 enum zone_type j;
5871 int nid = pgdat->node_id;
5872 int ret;
5873
5874 pgdat_resize_init(pgdat);
5875 #ifdef CONFIG_NUMA_BALANCING
5876 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5877 pgdat->numabalancing_migrate_nr_pages = 0;
5878 pgdat->numabalancing_migrate_next_window = jiffies;
5879 #endif
5880 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5881 spin_lock_init(&pgdat->split_queue_lock);
5882 INIT_LIST_HEAD(&pgdat->split_queue);
5883 pgdat->split_queue_len = 0;
5884 #endif
5885 init_waitqueue_head(&pgdat->kswapd_wait);
5886 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5887 #ifdef CONFIG_COMPACTION
5888 init_waitqueue_head(&pgdat->kcompactd_wait);
5889 #endif
5890 pgdat_page_ext_init(pgdat);
5891
5892 for (j = 0; j < MAX_NR_ZONES; j++) {
5893 struct zone *zone = pgdat->node_zones + j;
5894 unsigned long size, realsize, freesize, memmap_pages;
5895 unsigned long zone_start_pfn = zone->zone_start_pfn;
5896
5897 size = zone->spanned_pages;
5898 realsize = freesize = zone->present_pages;
5899
5900 /*
5901 * Adjust freesize so that it accounts for how much memory
5902 * is used by this zone for memmap. This affects the watermark
5903 * and per-cpu initialisations
5904 */
5905 memmap_pages = calc_memmap_size(size, realsize);
5906 if (!is_highmem_idx(j)) {
5907 if (freesize >= memmap_pages) {
5908 freesize -= memmap_pages;
5909 if (memmap_pages)
5910 printk(KERN_DEBUG
5911 " %s zone: %lu pages used for memmap\n",
5912 zone_names[j], memmap_pages);
5913 } else
5914 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5915 zone_names[j], memmap_pages, freesize);
5916 }
5917
5918 /* Account for reserved pages */
5919 if (j == 0 && freesize > dma_reserve) {
5920 freesize -= dma_reserve;
5921 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5922 zone_names[0], dma_reserve);
5923 }
5924
5925 if (!is_highmem_idx(j))
5926 nr_kernel_pages += freesize;
5927 /* Charge for highmem memmap if there are enough kernel pages */
5928 else if (nr_kernel_pages > memmap_pages * 2)
5929 nr_kernel_pages -= memmap_pages;
5930 nr_all_pages += freesize;
5931
5932 /*
5933 * Set an approximate value for lowmem here, it will be adjusted
5934 * when the bootmem allocator frees pages into the buddy system.
5935 * And all highmem pages will be managed by the buddy system.
5936 */
5937 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5938 #ifdef CONFIG_NUMA
5939 zone->node = nid;
5940 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5941 / 100;
5942 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5943 #endif
5944 zone->name = zone_names[j];
5945 spin_lock_init(&zone->lock);
5946 spin_lock_init(&zone->lru_lock);
5947 zone_seqlock_init(zone);
5948 zone->zone_pgdat = pgdat;
5949 zone_pcp_init(zone);
5950
5951 /* For bootup, initialized properly in watermark setup */
5952 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5953
5954 lruvec_init(&zone->lruvec);
5955 if (!size)
5956 continue;
5957
5958 set_pageblock_order();
5959 setup_usemap(pgdat, zone, zone_start_pfn, size);
5960 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5961 BUG_ON(ret);
5962 memmap_init(size, nid, j, zone_start_pfn);
5963 }
5964 }
5965
5966 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5967 {
5968 unsigned long __maybe_unused start = 0;
5969 unsigned long __maybe_unused offset = 0;
5970
5971 /* Skip empty nodes */
5972 if (!pgdat->node_spanned_pages)
5973 return;
5974
5975 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5976 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5977 offset = pgdat->node_start_pfn - start;
5978 /* ia64 gets its own node_mem_map, before this, without bootmem */
5979 if (!pgdat->node_mem_map) {
5980 unsigned long size, end;
5981 struct page *map;
5982
5983 /*
5984 * The zone's endpoints aren't required to be MAX_ORDER
5985 * aligned but the node_mem_map endpoints must be in order
5986 * for the buddy allocator to function correctly.
5987 */
5988 end = pgdat_end_pfn(pgdat);
5989 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5990 size = (end - start) * sizeof(struct page);
5991 map = alloc_remap(pgdat->node_id, size);
5992 if (!map)
5993 map = memblock_virt_alloc_node_nopanic(size,
5994 pgdat->node_id);
5995 pgdat->node_mem_map = map + offset;
5996 }
5997 #ifndef CONFIG_NEED_MULTIPLE_NODES
5998 /*
5999 * With no DISCONTIG, the global mem_map is just set as node 0's
6000 */
6001 if (pgdat == NODE_DATA(0)) {
6002 mem_map = NODE_DATA(0)->node_mem_map;
6003 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6004 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6005 mem_map -= offset;
6006 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6007 }
6008 #endif
6009 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6010 }
6011
6012 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6013 unsigned long node_start_pfn, unsigned long *zholes_size)
6014 {
6015 pg_data_t *pgdat = NODE_DATA(nid);
6016 unsigned long start_pfn = 0;
6017 unsigned long end_pfn = 0;
6018
6019 /* pg_data_t should be reset to zero when it's allocated */
6020 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
6021
6022 reset_deferred_meminit(pgdat);
6023 pgdat->node_id = nid;
6024 pgdat->node_start_pfn = node_start_pfn;
6025 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6026 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6027 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6028 (u64)start_pfn << PAGE_SHIFT,
6029 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6030 #else
6031 start_pfn = node_start_pfn;
6032 #endif
6033 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6034 zones_size, zholes_size);
6035
6036 alloc_node_mem_map(pgdat);
6037 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6038 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6039 nid, (unsigned long)pgdat,
6040 (unsigned long)pgdat->node_mem_map);
6041 #endif
6042
6043 free_area_init_core(pgdat);
6044 }
6045
6046 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6047
6048 #if MAX_NUMNODES > 1
6049 /*
6050 * Figure out the number of possible node ids.
6051 */
6052 void __init setup_nr_node_ids(void)
6053 {
6054 unsigned int highest;
6055
6056 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6057 nr_node_ids = highest + 1;
6058 }
6059 #endif
6060
6061 /**
6062 * node_map_pfn_alignment - determine the maximum internode alignment
6063 *
6064 * This function should be called after node map is populated and sorted.
6065 * It calculates the maximum power of two alignment which can distinguish
6066 * all the nodes.
6067 *
6068 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6069 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6070 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6071 * shifted, 1GiB is enough and this function will indicate so.
6072 *
6073 * This is used to test whether pfn -> nid mapping of the chosen memory
6074 * model has fine enough granularity to avoid incorrect mapping for the
6075 * populated node map.
6076 *
6077 * Returns the determined alignment in pfn's. 0 if there is no alignment
6078 * requirement (single node).
6079 */
6080 unsigned long __init node_map_pfn_alignment(void)
6081 {
6082 unsigned long accl_mask = 0, last_end = 0;
6083 unsigned long start, end, mask;
6084 int last_nid = -1;
6085 int i, nid;
6086
6087 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6088 if (!start || last_nid < 0 || last_nid == nid) {
6089 last_nid = nid;
6090 last_end = end;
6091 continue;
6092 }
6093
6094 /*
6095 * Start with a mask granular enough to pin-point to the
6096 * start pfn and tick off bits one-by-one until it becomes
6097 * too coarse to separate the current node from the last.
6098 */
6099 mask = ~((1 << __ffs(start)) - 1);
6100 while (mask && last_end <= (start & (mask << 1)))
6101 mask <<= 1;
6102
6103 /* accumulate all internode masks */
6104 accl_mask |= mask;
6105 }
6106
6107 /* convert mask to number of pages */
6108 return ~accl_mask + 1;
6109 }
6110
6111 /* Find the lowest pfn for a node */
6112 static unsigned long __init find_min_pfn_for_node(int nid)
6113 {
6114 unsigned long min_pfn = ULONG_MAX;
6115 unsigned long start_pfn;
6116 int i;
6117
6118 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6119 min_pfn = min(min_pfn, start_pfn);
6120
6121 if (min_pfn == ULONG_MAX) {
6122 pr_warn("Could not find start_pfn for node %d\n", nid);
6123 return 0;
6124 }
6125
6126 return min_pfn;
6127 }
6128
6129 /**
6130 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6131 *
6132 * It returns the minimum PFN based on information provided via
6133 * memblock_set_node().
6134 */
6135 unsigned long __init find_min_pfn_with_active_regions(void)
6136 {
6137 return find_min_pfn_for_node(MAX_NUMNODES);
6138 }
6139
6140 /*
6141 * early_calculate_totalpages()
6142 * Sum pages in active regions for movable zone.
6143 * Populate N_MEMORY for calculating usable_nodes.
6144 */
6145 static unsigned long __init early_calculate_totalpages(void)
6146 {
6147 unsigned long totalpages = 0;
6148 unsigned long start_pfn, end_pfn;
6149 int i, nid;
6150
6151 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6152 unsigned long pages = end_pfn - start_pfn;
6153
6154 totalpages += pages;
6155 if (pages)
6156 node_set_state(nid, N_MEMORY);
6157 }
6158 return totalpages;
6159 }
6160
6161 /*
6162 * Find the PFN the Movable zone begins in each node. Kernel memory
6163 * is spread evenly between nodes as long as the nodes have enough
6164 * memory. When they don't, some nodes will have more kernelcore than
6165 * others
6166 */
6167 static void __init find_zone_movable_pfns_for_nodes(void)
6168 {
6169 int i, nid;
6170 unsigned long usable_startpfn;
6171 unsigned long kernelcore_node, kernelcore_remaining;
6172 /* save the state before borrow the nodemask */
6173 nodemask_t saved_node_state = node_states[N_MEMORY];
6174 unsigned long totalpages = early_calculate_totalpages();
6175 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6176 struct memblock_region *r;
6177
6178 /* Need to find movable_zone earlier when movable_node is specified. */
6179 find_usable_zone_for_movable();
6180
6181 /*
6182 * If movable_node is specified, ignore kernelcore and movablecore
6183 * options.
6184 */
6185 if (movable_node_is_enabled()) {
6186 for_each_memblock(memory, r) {
6187 if (!memblock_is_hotpluggable(r))
6188 continue;
6189
6190 nid = r->nid;
6191
6192 usable_startpfn = PFN_DOWN(r->base);
6193 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6194 min(usable_startpfn, zone_movable_pfn[nid]) :
6195 usable_startpfn;
6196 }
6197
6198 goto out2;
6199 }
6200
6201 /*
6202 * If kernelcore=mirror is specified, ignore movablecore option
6203 */
6204 if (mirrored_kernelcore) {
6205 bool mem_below_4gb_not_mirrored = false;
6206
6207 for_each_memblock(memory, r) {
6208 if (memblock_is_mirror(r))
6209 continue;
6210
6211 nid = r->nid;
6212
6213 usable_startpfn = memblock_region_memory_base_pfn(r);
6214
6215 if (usable_startpfn < 0x100000) {
6216 mem_below_4gb_not_mirrored = true;
6217 continue;
6218 }
6219
6220 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6221 min(usable_startpfn, zone_movable_pfn[nid]) :
6222 usable_startpfn;
6223 }
6224
6225 if (mem_below_4gb_not_mirrored)
6226 pr_warn("This configuration results in unmirrored kernel memory.");
6227
6228 goto out2;
6229 }
6230
6231 /*
6232 * If movablecore=nn[KMG] was specified, calculate what size of
6233 * kernelcore that corresponds so that memory usable for
6234 * any allocation type is evenly spread. If both kernelcore
6235 * and movablecore are specified, then the value of kernelcore
6236 * will be used for required_kernelcore if it's greater than
6237 * what movablecore would have allowed.
6238 */
6239 if (required_movablecore) {
6240 unsigned long corepages;
6241
6242 /*
6243 * Round-up so that ZONE_MOVABLE is at least as large as what
6244 * was requested by the user
6245 */
6246 required_movablecore =
6247 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6248 required_movablecore = min(totalpages, required_movablecore);
6249 corepages = totalpages - required_movablecore;
6250
6251 required_kernelcore = max(required_kernelcore, corepages);
6252 }
6253
6254 /*
6255 * If kernelcore was not specified or kernelcore size is larger
6256 * than totalpages, there is no ZONE_MOVABLE.
6257 */
6258 if (!required_kernelcore || required_kernelcore >= totalpages)
6259 goto out;
6260
6261 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6262 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6263
6264 restart:
6265 /* Spread kernelcore memory as evenly as possible throughout nodes */
6266 kernelcore_node = required_kernelcore / usable_nodes;
6267 for_each_node_state(nid, N_MEMORY) {
6268 unsigned long start_pfn, end_pfn;
6269
6270 /*
6271 * Recalculate kernelcore_node if the division per node
6272 * now exceeds what is necessary to satisfy the requested
6273 * amount of memory for the kernel
6274 */
6275 if (required_kernelcore < kernelcore_node)
6276 kernelcore_node = required_kernelcore / usable_nodes;
6277
6278 /*
6279 * As the map is walked, we track how much memory is usable
6280 * by the kernel using kernelcore_remaining. When it is
6281 * 0, the rest of the node is usable by ZONE_MOVABLE
6282 */
6283 kernelcore_remaining = kernelcore_node;
6284
6285 /* Go through each range of PFNs within this node */
6286 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6287 unsigned long size_pages;
6288
6289 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6290 if (start_pfn >= end_pfn)
6291 continue;
6292
6293 /* Account for what is only usable for kernelcore */
6294 if (start_pfn < usable_startpfn) {
6295 unsigned long kernel_pages;
6296 kernel_pages = min(end_pfn, usable_startpfn)
6297 - start_pfn;
6298
6299 kernelcore_remaining -= min(kernel_pages,
6300 kernelcore_remaining);
6301 required_kernelcore -= min(kernel_pages,
6302 required_kernelcore);
6303
6304 /* Continue if range is now fully accounted */
6305 if (end_pfn <= usable_startpfn) {
6306
6307 /*
6308 * Push zone_movable_pfn to the end so
6309 * that if we have to rebalance
6310 * kernelcore across nodes, we will
6311 * not double account here
6312 */
6313 zone_movable_pfn[nid] = end_pfn;
6314 continue;
6315 }
6316 start_pfn = usable_startpfn;
6317 }
6318
6319 /*
6320 * The usable PFN range for ZONE_MOVABLE is from
6321 * start_pfn->end_pfn. Calculate size_pages as the
6322 * number of pages used as kernelcore
6323 */
6324 size_pages = end_pfn - start_pfn;
6325 if (size_pages > kernelcore_remaining)
6326 size_pages = kernelcore_remaining;
6327 zone_movable_pfn[nid] = start_pfn + size_pages;
6328
6329 /*
6330 * Some kernelcore has been met, update counts and
6331 * break if the kernelcore for this node has been
6332 * satisfied
6333 */
6334 required_kernelcore -= min(required_kernelcore,
6335 size_pages);
6336 kernelcore_remaining -= size_pages;
6337 if (!kernelcore_remaining)
6338 break;
6339 }
6340 }
6341
6342 /*
6343 * If there is still required_kernelcore, we do another pass with one
6344 * less node in the count. This will push zone_movable_pfn[nid] further
6345 * along on the nodes that still have memory until kernelcore is
6346 * satisfied
6347 */
6348 usable_nodes--;
6349 if (usable_nodes && required_kernelcore > usable_nodes)
6350 goto restart;
6351
6352 out2:
6353 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6354 for (nid = 0; nid < MAX_NUMNODES; nid++)
6355 zone_movable_pfn[nid] =
6356 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6357
6358 out:
6359 /* restore the node_state */
6360 node_states[N_MEMORY] = saved_node_state;
6361 }
6362
6363 /* Any regular or high memory on that node ? */
6364 static void check_for_memory(pg_data_t *pgdat, int nid)
6365 {
6366 enum zone_type zone_type;
6367
6368 if (N_MEMORY == N_NORMAL_MEMORY)
6369 return;
6370
6371 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6372 struct zone *zone = &pgdat->node_zones[zone_type];
6373 if (populated_zone(zone)) {
6374 node_set_state(nid, N_HIGH_MEMORY);
6375 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6376 zone_type <= ZONE_NORMAL)
6377 node_set_state(nid, N_NORMAL_MEMORY);
6378 break;
6379 }
6380 }
6381 }
6382
6383 /**
6384 * free_area_init_nodes - Initialise all pg_data_t and zone data
6385 * @max_zone_pfn: an array of max PFNs for each zone
6386 *
6387 * This will call free_area_init_node() for each active node in the system.
6388 * Using the page ranges provided by memblock_set_node(), the size of each
6389 * zone in each node and their holes is calculated. If the maximum PFN
6390 * between two adjacent zones match, it is assumed that the zone is empty.
6391 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6392 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6393 * starts where the previous one ended. For example, ZONE_DMA32 starts
6394 * at arch_max_dma_pfn.
6395 */
6396 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6397 {
6398 unsigned long start_pfn, end_pfn;
6399 int i, nid;
6400
6401 /* Record where the zone boundaries are */
6402 memset(arch_zone_lowest_possible_pfn, 0,
6403 sizeof(arch_zone_lowest_possible_pfn));
6404 memset(arch_zone_highest_possible_pfn, 0,
6405 sizeof(arch_zone_highest_possible_pfn));
6406
6407 start_pfn = find_min_pfn_with_active_regions();
6408
6409 for (i = 0; i < MAX_NR_ZONES; i++) {
6410 if (i == ZONE_MOVABLE)
6411 continue;
6412
6413 end_pfn = max(max_zone_pfn[i], start_pfn);
6414 arch_zone_lowest_possible_pfn[i] = start_pfn;
6415 arch_zone_highest_possible_pfn[i] = end_pfn;
6416
6417 start_pfn = end_pfn;
6418 }
6419 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6420 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6421
6422 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6423 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6424 find_zone_movable_pfns_for_nodes();
6425
6426 /* Print out the zone ranges */
6427 pr_info("Zone ranges:\n");
6428 for (i = 0; i < MAX_NR_ZONES; i++) {
6429 if (i == ZONE_MOVABLE)
6430 continue;
6431 pr_info(" %-8s ", zone_names[i]);
6432 if (arch_zone_lowest_possible_pfn[i] ==
6433 arch_zone_highest_possible_pfn[i])
6434 pr_cont("empty\n");
6435 else
6436 pr_cont("[mem %#018Lx-%#018Lx]\n",
6437 (u64)arch_zone_lowest_possible_pfn[i]
6438 << PAGE_SHIFT,
6439 ((u64)arch_zone_highest_possible_pfn[i]
6440 << PAGE_SHIFT) - 1);
6441 }
6442
6443 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6444 pr_info("Movable zone start for each node\n");
6445 for (i = 0; i < MAX_NUMNODES; i++) {
6446 if (zone_movable_pfn[i])
6447 pr_info(" Node %d: %#018Lx\n", i,
6448 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6449 }
6450
6451 /* Print out the early node map */
6452 pr_info("Early memory node ranges\n");
6453 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6454 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6455 (u64)start_pfn << PAGE_SHIFT,
6456 ((u64)end_pfn << PAGE_SHIFT) - 1);
6457
6458 /* Initialise every node */
6459 mminit_verify_pageflags_layout();
6460 setup_nr_node_ids();
6461 for_each_online_node(nid) {
6462 pg_data_t *pgdat = NODE_DATA(nid);
6463 free_area_init_node(nid, NULL,
6464 find_min_pfn_for_node(nid), NULL);
6465
6466 /* Any memory on that node */
6467 if (pgdat->node_present_pages)
6468 node_set_state(nid, N_MEMORY);
6469 check_for_memory(pgdat, nid);
6470 }
6471 }
6472
6473 static int __init cmdline_parse_core(char *p, unsigned long *core)
6474 {
6475 unsigned long long coremem;
6476 if (!p)
6477 return -EINVAL;
6478
6479 coremem = memparse(p, &p);
6480 *core = coremem >> PAGE_SHIFT;
6481
6482 /* Paranoid check that UL is enough for the coremem value */
6483 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6484
6485 return 0;
6486 }
6487
6488 /*
6489 * kernelcore=size sets the amount of memory for use for allocations that
6490 * cannot be reclaimed or migrated.
6491 */
6492 static int __init cmdline_parse_kernelcore(char *p)
6493 {
6494 /* parse kernelcore=mirror */
6495 if (parse_option_str(p, "mirror")) {
6496 mirrored_kernelcore = true;
6497 return 0;
6498 }
6499
6500 return cmdline_parse_core(p, &required_kernelcore);
6501 }
6502
6503 /*
6504 * movablecore=size sets the amount of memory for use for allocations that
6505 * can be reclaimed or migrated.
6506 */
6507 static int __init cmdline_parse_movablecore(char *p)
6508 {
6509 return cmdline_parse_core(p, &required_movablecore);
6510 }
6511
6512 early_param("kernelcore", cmdline_parse_kernelcore);
6513 early_param("movablecore", cmdline_parse_movablecore);
6514
6515 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6516
6517 void adjust_managed_page_count(struct page *page, long count)
6518 {
6519 spin_lock(&managed_page_count_lock);
6520 page_zone(page)->managed_pages += count;
6521 totalram_pages += count;
6522 #ifdef CONFIG_HIGHMEM
6523 if (PageHighMem(page))
6524 totalhigh_pages += count;
6525 #endif
6526 spin_unlock(&managed_page_count_lock);
6527 }
6528 EXPORT_SYMBOL(adjust_managed_page_count);
6529
6530 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6531 {
6532 void *pos;
6533 unsigned long pages = 0;
6534
6535 start = (void *)PAGE_ALIGN((unsigned long)start);
6536 end = (void *)((unsigned long)end & PAGE_MASK);
6537 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6538 if ((unsigned int)poison <= 0xFF)
6539 memset(pos, poison, PAGE_SIZE);
6540 free_reserved_page(virt_to_page(pos));
6541 }
6542
6543 if (pages && s)
6544 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6545 s, pages << (PAGE_SHIFT - 10), start, end);
6546
6547 return pages;
6548 }
6549 EXPORT_SYMBOL(free_reserved_area);
6550
6551 #ifdef CONFIG_HIGHMEM
6552 void free_highmem_page(struct page *page)
6553 {
6554 __free_reserved_page(page);
6555 totalram_pages++;
6556 page_zone(page)->managed_pages++;
6557 totalhigh_pages++;
6558 }
6559 #endif
6560
6561
6562 void __init mem_init_print_info(const char *str)
6563 {
6564 unsigned long physpages, codesize, datasize, rosize, bss_size;
6565 unsigned long init_code_size, init_data_size;
6566
6567 physpages = get_num_physpages();
6568 codesize = _etext - _stext;
6569 datasize = _edata - _sdata;
6570 rosize = __end_rodata - __start_rodata;
6571 bss_size = __bss_stop - __bss_start;
6572 init_data_size = __init_end - __init_begin;
6573 init_code_size = _einittext - _sinittext;
6574
6575 /*
6576 * Detect special cases and adjust section sizes accordingly:
6577 * 1) .init.* may be embedded into .data sections
6578 * 2) .init.text.* may be out of [__init_begin, __init_end],
6579 * please refer to arch/tile/kernel/vmlinux.lds.S.
6580 * 3) .rodata.* may be embedded into .text or .data sections.
6581 */
6582 #define adj_init_size(start, end, size, pos, adj) \
6583 do { \
6584 if (start <= pos && pos < end && size > adj) \
6585 size -= adj; \
6586 } while (0)
6587
6588 adj_init_size(__init_begin, __init_end, init_data_size,
6589 _sinittext, init_code_size);
6590 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6591 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6592 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6593 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6594
6595 #undef adj_init_size
6596
6597 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6598 #ifdef CONFIG_HIGHMEM
6599 ", %luK highmem"
6600 #endif
6601 "%s%s)\n",
6602 nr_free_pages() << (PAGE_SHIFT - 10),
6603 physpages << (PAGE_SHIFT - 10),
6604 codesize >> 10, datasize >> 10, rosize >> 10,
6605 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6606 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6607 totalcma_pages << (PAGE_SHIFT - 10),
6608 #ifdef CONFIG_HIGHMEM
6609 totalhigh_pages << (PAGE_SHIFT - 10),
6610 #endif
6611 str ? ", " : "", str ? str : "");
6612 }
6613
6614 /**
6615 * set_dma_reserve - set the specified number of pages reserved in the first zone
6616 * @new_dma_reserve: The number of pages to mark reserved
6617 *
6618 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6619 * In the DMA zone, a significant percentage may be consumed by kernel image
6620 * and other unfreeable allocations which can skew the watermarks badly. This
6621 * function may optionally be used to account for unfreeable pages in the
6622 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6623 * smaller per-cpu batchsize.
6624 */
6625 void __init set_dma_reserve(unsigned long new_dma_reserve)
6626 {
6627 dma_reserve = new_dma_reserve;
6628 }
6629
6630 void __init free_area_init(unsigned long *zones_size)
6631 {
6632 free_area_init_node(0, zones_size,
6633 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6634 }
6635
6636 static int page_alloc_cpu_notify(struct notifier_block *self,
6637 unsigned long action, void *hcpu)
6638 {
6639 int cpu = (unsigned long)hcpu;
6640
6641 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6642 lru_add_drain_cpu(cpu);
6643 drain_pages(cpu);
6644
6645 /*
6646 * Spill the event counters of the dead processor
6647 * into the current processors event counters.
6648 * This artificially elevates the count of the current
6649 * processor.
6650 */
6651 vm_events_fold_cpu(cpu);
6652
6653 /*
6654 * Zero the differential counters of the dead processor
6655 * so that the vm statistics are consistent.
6656 *
6657 * This is only okay since the processor is dead and cannot
6658 * race with what we are doing.
6659 */
6660 cpu_vm_stats_fold(cpu);
6661 }
6662 return NOTIFY_OK;
6663 }
6664
6665 void __init page_alloc_init(void)
6666 {
6667 hotcpu_notifier(page_alloc_cpu_notify, 0);
6668 }
6669
6670 /*
6671 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6672 * or min_free_kbytes changes.
6673 */
6674 static void calculate_totalreserve_pages(void)
6675 {
6676 struct pglist_data *pgdat;
6677 unsigned long reserve_pages = 0;
6678 enum zone_type i, j;
6679
6680 for_each_online_pgdat(pgdat) {
6681 for (i = 0; i < MAX_NR_ZONES; i++) {
6682 struct zone *zone = pgdat->node_zones + i;
6683 long max = 0;
6684
6685 /* Find valid and maximum lowmem_reserve in the zone */
6686 for (j = i; j < MAX_NR_ZONES; j++) {
6687 if (zone->lowmem_reserve[j] > max)
6688 max = zone->lowmem_reserve[j];
6689 }
6690
6691 /* we treat the high watermark as reserved pages. */
6692 max += high_wmark_pages(zone);
6693
6694 if (max > zone->managed_pages)
6695 max = zone->managed_pages;
6696
6697 zone->totalreserve_pages = max;
6698
6699 reserve_pages += max;
6700 }
6701 }
6702 totalreserve_pages = reserve_pages;
6703 }
6704
6705 /*
6706 * setup_per_zone_lowmem_reserve - called whenever
6707 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6708 * has a correct pages reserved value, so an adequate number of
6709 * pages are left in the zone after a successful __alloc_pages().
6710 */
6711 static void setup_per_zone_lowmem_reserve(void)
6712 {
6713 struct pglist_data *pgdat;
6714 enum zone_type j, idx;
6715
6716 for_each_online_pgdat(pgdat) {
6717 for (j = 0; j < MAX_NR_ZONES; j++) {
6718 struct zone *zone = pgdat->node_zones + j;
6719 unsigned long managed_pages = zone->managed_pages;
6720
6721 zone->lowmem_reserve[j] = 0;
6722
6723 idx = j;
6724 while (idx) {
6725 struct zone *lower_zone;
6726
6727 idx--;
6728
6729 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6730 sysctl_lowmem_reserve_ratio[idx] = 1;
6731
6732 lower_zone = pgdat->node_zones + idx;
6733 lower_zone->lowmem_reserve[j] = managed_pages /
6734 sysctl_lowmem_reserve_ratio[idx];
6735 managed_pages += lower_zone->managed_pages;
6736 }
6737 }
6738 }
6739
6740 /* update totalreserve_pages */
6741 calculate_totalreserve_pages();
6742 }
6743
6744 static void __setup_per_zone_wmarks(void)
6745 {
6746 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6747 unsigned long lowmem_pages = 0;
6748 struct zone *zone;
6749 unsigned long flags;
6750
6751 /* Calculate total number of !ZONE_HIGHMEM pages */
6752 for_each_zone(zone) {
6753 if (!is_highmem(zone))
6754 lowmem_pages += zone->managed_pages;
6755 }
6756
6757 for_each_zone(zone) {
6758 u64 tmp;
6759
6760 spin_lock_irqsave(&zone->lock, flags);
6761 tmp = (u64)pages_min * zone->managed_pages;
6762 do_div(tmp, lowmem_pages);
6763 if (is_highmem(zone)) {
6764 /*
6765 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6766 * need highmem pages, so cap pages_min to a small
6767 * value here.
6768 *
6769 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6770 * deltas control asynch page reclaim, and so should
6771 * not be capped for highmem.
6772 */
6773 unsigned long min_pages;
6774
6775 min_pages = zone->managed_pages / 1024;
6776 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6777 zone->watermark[WMARK_MIN] = min_pages;
6778 } else {
6779 /*
6780 * If it's a lowmem zone, reserve a number of pages
6781 * proportionate to the zone's size.
6782 */
6783 zone->watermark[WMARK_MIN] = tmp;
6784 }
6785
6786 /*
6787 * Set the kswapd watermarks distance according to the
6788 * scale factor in proportion to available memory, but
6789 * ensure a minimum size on small systems.
6790 */
6791 tmp = max_t(u64, tmp >> 2,
6792 mult_frac(zone->managed_pages,
6793 watermark_scale_factor, 10000));
6794
6795 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6796 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6797
6798 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6799 high_wmark_pages(zone) - low_wmark_pages(zone) -
6800 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6801
6802 spin_unlock_irqrestore(&zone->lock, flags);
6803 }
6804
6805 /* update totalreserve_pages */
6806 calculate_totalreserve_pages();
6807 }
6808
6809 /**
6810 * setup_per_zone_wmarks - called when min_free_kbytes changes
6811 * or when memory is hot-{added|removed}
6812 *
6813 * Ensures that the watermark[min,low,high] values for each zone are set
6814 * correctly with respect to min_free_kbytes.
6815 */
6816 void setup_per_zone_wmarks(void)
6817 {
6818 mutex_lock(&zonelists_mutex);
6819 __setup_per_zone_wmarks();
6820 mutex_unlock(&zonelists_mutex);
6821 }
6822
6823 /*
6824 * Initialise min_free_kbytes.
6825 *
6826 * For small machines we want it small (128k min). For large machines
6827 * we want it large (64MB max). But it is not linear, because network
6828 * bandwidth does not increase linearly with machine size. We use
6829 *
6830 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6831 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6832 *
6833 * which yields
6834 *
6835 * 16MB: 512k
6836 * 32MB: 724k
6837 * 64MB: 1024k
6838 * 128MB: 1448k
6839 * 256MB: 2048k
6840 * 512MB: 2896k
6841 * 1024MB: 4096k
6842 * 2048MB: 5792k
6843 * 4096MB: 8192k
6844 * 8192MB: 11584k
6845 * 16384MB: 16384k
6846 */
6847 int __meminit init_per_zone_wmark_min(void)
6848 {
6849 unsigned long lowmem_kbytes;
6850 int new_min_free_kbytes;
6851
6852 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6853 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6854
6855 if (new_min_free_kbytes > user_min_free_kbytes) {
6856 min_free_kbytes = new_min_free_kbytes;
6857 if (min_free_kbytes < 128)
6858 min_free_kbytes = 128;
6859 if (min_free_kbytes > 65536)
6860 min_free_kbytes = 65536;
6861 } else {
6862 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6863 new_min_free_kbytes, user_min_free_kbytes);
6864 }
6865 setup_per_zone_wmarks();
6866 refresh_zone_stat_thresholds();
6867 setup_per_zone_lowmem_reserve();
6868 return 0;
6869 }
6870 core_initcall(init_per_zone_wmark_min)
6871
6872 /*
6873 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6874 * that we can call two helper functions whenever min_free_kbytes
6875 * changes.
6876 */
6877 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6878 void __user *buffer, size_t *length, loff_t *ppos)
6879 {
6880 int rc;
6881
6882 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6883 if (rc)
6884 return rc;
6885
6886 if (write) {
6887 user_min_free_kbytes = min_free_kbytes;
6888 setup_per_zone_wmarks();
6889 }
6890 return 0;
6891 }
6892
6893 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6894 void __user *buffer, size_t *length, loff_t *ppos)
6895 {
6896 int rc;
6897
6898 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6899 if (rc)
6900 return rc;
6901
6902 if (write)
6903 setup_per_zone_wmarks();
6904
6905 return 0;
6906 }
6907
6908 #ifdef CONFIG_NUMA
6909 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6910 void __user *buffer, size_t *length, loff_t *ppos)
6911 {
6912 struct zone *zone;
6913 int rc;
6914
6915 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6916 if (rc)
6917 return rc;
6918
6919 for_each_zone(zone)
6920 zone->min_unmapped_pages = (zone->managed_pages *
6921 sysctl_min_unmapped_ratio) / 100;
6922 return 0;
6923 }
6924
6925 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6926 void __user *buffer, size_t *length, loff_t *ppos)
6927 {
6928 struct zone *zone;
6929 int rc;
6930
6931 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6932 if (rc)
6933 return rc;
6934
6935 for_each_zone(zone)
6936 zone->min_slab_pages = (zone->managed_pages *
6937 sysctl_min_slab_ratio) / 100;
6938 return 0;
6939 }
6940 #endif
6941
6942 /*
6943 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6944 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6945 * whenever sysctl_lowmem_reserve_ratio changes.
6946 *
6947 * The reserve ratio obviously has absolutely no relation with the
6948 * minimum watermarks. The lowmem reserve ratio can only make sense
6949 * if in function of the boot time zone sizes.
6950 */
6951 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6952 void __user *buffer, size_t *length, loff_t *ppos)
6953 {
6954 proc_dointvec_minmax(table, write, buffer, length, ppos);
6955 setup_per_zone_lowmem_reserve();
6956 return 0;
6957 }
6958
6959 /*
6960 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6961 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6962 * pagelist can have before it gets flushed back to buddy allocator.
6963 */
6964 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6965 void __user *buffer, size_t *length, loff_t *ppos)
6966 {
6967 struct zone *zone;
6968 int old_percpu_pagelist_fraction;
6969 int ret;
6970
6971 mutex_lock(&pcp_batch_high_lock);
6972 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6973
6974 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6975 if (!write || ret < 0)
6976 goto out;
6977
6978 /* Sanity checking to avoid pcp imbalance */
6979 if (percpu_pagelist_fraction &&
6980 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6981 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6982 ret = -EINVAL;
6983 goto out;
6984 }
6985
6986 /* No change? */
6987 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6988 goto out;
6989
6990 for_each_populated_zone(zone) {
6991 unsigned int cpu;
6992
6993 for_each_possible_cpu(cpu)
6994 pageset_set_high_and_batch(zone,
6995 per_cpu_ptr(zone->pageset, cpu));
6996 }
6997 out:
6998 mutex_unlock(&pcp_batch_high_lock);
6999 return ret;
7000 }
7001
7002 #ifdef CONFIG_NUMA
7003 int hashdist = HASHDIST_DEFAULT;
7004
7005 static int __init set_hashdist(char *str)
7006 {
7007 if (!str)
7008 return 0;
7009 hashdist = simple_strtoul(str, &str, 0);
7010 return 1;
7011 }
7012 __setup("hashdist=", set_hashdist);
7013 #endif
7014
7015 /*
7016 * allocate a large system hash table from bootmem
7017 * - it is assumed that the hash table must contain an exact power-of-2
7018 * quantity of entries
7019 * - limit is the number of hash buckets, not the total allocation size
7020 */
7021 void *__init alloc_large_system_hash(const char *tablename,
7022 unsigned long bucketsize,
7023 unsigned long numentries,
7024 int scale,
7025 int flags,
7026 unsigned int *_hash_shift,
7027 unsigned int *_hash_mask,
7028 unsigned long low_limit,
7029 unsigned long high_limit)
7030 {
7031 unsigned long long max = high_limit;
7032 unsigned long log2qty, size;
7033 void *table = NULL;
7034
7035 /* allow the kernel cmdline to have a say */
7036 if (!numentries) {
7037 /* round applicable memory size up to nearest megabyte */
7038 numentries = nr_kernel_pages;
7039
7040 /* It isn't necessary when PAGE_SIZE >= 1MB */
7041 if (PAGE_SHIFT < 20)
7042 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7043
7044 /* limit to 1 bucket per 2^scale bytes of low memory */
7045 if (scale > PAGE_SHIFT)
7046 numentries >>= (scale - PAGE_SHIFT);
7047 else
7048 numentries <<= (PAGE_SHIFT - scale);
7049
7050 /* Make sure we've got at least a 0-order allocation.. */
7051 if (unlikely(flags & HASH_SMALL)) {
7052 /* Makes no sense without HASH_EARLY */
7053 WARN_ON(!(flags & HASH_EARLY));
7054 if (!(numentries >> *_hash_shift)) {
7055 numentries = 1UL << *_hash_shift;
7056 BUG_ON(!numentries);
7057 }
7058 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7059 numentries = PAGE_SIZE / bucketsize;
7060 }
7061 numentries = roundup_pow_of_two(numentries);
7062
7063 /* limit allocation size to 1/16 total memory by default */
7064 if (max == 0) {
7065 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7066 do_div(max, bucketsize);
7067 }
7068 max = min(max, 0x80000000ULL);
7069
7070 if (numentries < low_limit)
7071 numentries = low_limit;
7072 if (numentries > max)
7073 numentries = max;
7074
7075 log2qty = ilog2(numentries);
7076
7077 do {
7078 size = bucketsize << log2qty;
7079 if (flags & HASH_EARLY)
7080 table = memblock_virt_alloc_nopanic(size, 0);
7081 else if (hashdist)
7082 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7083 else {
7084 /*
7085 * If bucketsize is not a power-of-two, we may free
7086 * some pages at the end of hash table which
7087 * alloc_pages_exact() automatically does
7088 */
7089 if (get_order(size) < MAX_ORDER) {
7090 table = alloc_pages_exact(size, GFP_ATOMIC);
7091 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7092 }
7093 }
7094 } while (!table && size > PAGE_SIZE && --log2qty);
7095
7096 if (!table)
7097 panic("Failed to allocate %s hash table\n", tablename);
7098
7099 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7100 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7101
7102 if (_hash_shift)
7103 *_hash_shift = log2qty;
7104 if (_hash_mask)
7105 *_hash_mask = (1 << log2qty) - 1;
7106
7107 return table;
7108 }
7109
7110 /*
7111 * This function checks whether pageblock includes unmovable pages or not.
7112 * If @count is not zero, it is okay to include less @count unmovable pages
7113 *
7114 * PageLRU check without isolation or lru_lock could race so that
7115 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7116 * expect this function should be exact.
7117 */
7118 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7119 bool skip_hwpoisoned_pages)
7120 {
7121 unsigned long pfn, iter, found;
7122 int mt;
7123
7124 /*
7125 * For avoiding noise data, lru_add_drain_all() should be called
7126 * If ZONE_MOVABLE, the zone never contains unmovable pages
7127 */
7128 if (zone_idx(zone) == ZONE_MOVABLE)
7129 return false;
7130 mt = get_pageblock_migratetype(page);
7131 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7132 return false;
7133
7134 pfn = page_to_pfn(page);
7135 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7136 unsigned long check = pfn + iter;
7137
7138 if (!pfn_valid_within(check))
7139 continue;
7140
7141 page = pfn_to_page(check);
7142
7143 /*
7144 * Hugepages are not in LRU lists, but they're movable.
7145 * We need not scan over tail pages bacause we don't
7146 * handle each tail page individually in migration.
7147 */
7148 if (PageHuge(page)) {
7149 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7150 continue;
7151 }
7152
7153 /*
7154 * We can't use page_count without pin a page
7155 * because another CPU can free compound page.
7156 * This check already skips compound tails of THP
7157 * because their page->_refcount is zero at all time.
7158 */
7159 if (!page_ref_count(page)) {
7160 if (PageBuddy(page))
7161 iter += (1 << page_order(page)) - 1;
7162 continue;
7163 }
7164
7165 /*
7166 * The HWPoisoned page may be not in buddy system, and
7167 * page_count() is not 0.
7168 */
7169 if (skip_hwpoisoned_pages && PageHWPoison(page))
7170 continue;
7171
7172 if (!PageLRU(page))
7173 found++;
7174 /*
7175 * If there are RECLAIMABLE pages, we need to check
7176 * it. But now, memory offline itself doesn't call
7177 * shrink_node_slabs() and it still to be fixed.
7178 */
7179 /*
7180 * If the page is not RAM, page_count()should be 0.
7181 * we don't need more check. This is an _used_ not-movable page.
7182 *
7183 * The problematic thing here is PG_reserved pages. PG_reserved
7184 * is set to both of a memory hole page and a _used_ kernel
7185 * page at boot.
7186 */
7187 if (found > count)
7188 return true;
7189 }
7190 return false;
7191 }
7192
7193 bool is_pageblock_removable_nolock(struct page *page)
7194 {
7195 struct zone *zone;
7196 unsigned long pfn;
7197
7198 /*
7199 * We have to be careful here because we are iterating over memory
7200 * sections which are not zone aware so we might end up outside of
7201 * the zone but still within the section.
7202 * We have to take care about the node as well. If the node is offline
7203 * its NODE_DATA will be NULL - see page_zone.
7204 */
7205 if (!node_online(page_to_nid(page)))
7206 return false;
7207
7208 zone = page_zone(page);
7209 pfn = page_to_pfn(page);
7210 if (!zone_spans_pfn(zone, pfn))
7211 return false;
7212
7213 return !has_unmovable_pages(zone, page, 0, true);
7214 }
7215
7216 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7217
7218 static unsigned long pfn_max_align_down(unsigned long pfn)
7219 {
7220 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7221 pageblock_nr_pages) - 1);
7222 }
7223
7224 static unsigned long pfn_max_align_up(unsigned long pfn)
7225 {
7226 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7227 pageblock_nr_pages));
7228 }
7229
7230 /* [start, end) must belong to a single zone. */
7231 static int __alloc_contig_migrate_range(struct compact_control *cc,
7232 unsigned long start, unsigned long end)
7233 {
7234 /* This function is based on compact_zone() from compaction.c. */
7235 unsigned long nr_reclaimed;
7236 unsigned long pfn = start;
7237 unsigned int tries = 0;
7238 int ret = 0;
7239
7240 migrate_prep();
7241
7242 while (pfn < end || !list_empty(&cc->migratepages)) {
7243 if (fatal_signal_pending(current)) {
7244 ret = -EINTR;
7245 break;
7246 }
7247
7248 if (list_empty(&cc->migratepages)) {
7249 cc->nr_migratepages = 0;
7250 pfn = isolate_migratepages_range(cc, pfn, end);
7251 if (!pfn) {
7252 ret = -EINTR;
7253 break;
7254 }
7255 tries = 0;
7256 } else if (++tries == 5) {
7257 ret = ret < 0 ? ret : -EBUSY;
7258 break;
7259 }
7260
7261 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7262 &cc->migratepages);
7263 cc->nr_migratepages -= nr_reclaimed;
7264
7265 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7266 NULL, 0, cc->mode, MR_CMA);
7267 }
7268 if (ret < 0) {
7269 putback_movable_pages(&cc->migratepages);
7270 return ret;
7271 }
7272 return 0;
7273 }
7274
7275 /**
7276 * alloc_contig_range() -- tries to allocate given range of pages
7277 * @start: start PFN to allocate
7278 * @end: one-past-the-last PFN to allocate
7279 * @migratetype: migratetype of the underlaying pageblocks (either
7280 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7281 * in range must have the same migratetype and it must
7282 * be either of the two.
7283 *
7284 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7285 * aligned, however it's the caller's responsibility to guarantee that
7286 * we are the only thread that changes migrate type of pageblocks the
7287 * pages fall in.
7288 *
7289 * The PFN range must belong to a single zone.
7290 *
7291 * Returns zero on success or negative error code. On success all
7292 * pages which PFN is in [start, end) are allocated for the caller and
7293 * need to be freed with free_contig_range().
7294 */
7295 int alloc_contig_range(unsigned long start, unsigned long end,
7296 unsigned migratetype)
7297 {
7298 unsigned long outer_start, outer_end;
7299 unsigned int order;
7300 int ret = 0;
7301
7302 struct compact_control cc = {
7303 .nr_migratepages = 0,
7304 .order = -1,
7305 .zone = page_zone(pfn_to_page(start)),
7306 .mode = MIGRATE_SYNC,
7307 .ignore_skip_hint = true,
7308 };
7309 INIT_LIST_HEAD(&cc.migratepages);
7310
7311 /*
7312 * What we do here is we mark all pageblocks in range as
7313 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7314 * have different sizes, and due to the way page allocator
7315 * work, we align the range to biggest of the two pages so
7316 * that page allocator won't try to merge buddies from
7317 * different pageblocks and change MIGRATE_ISOLATE to some
7318 * other migration type.
7319 *
7320 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7321 * migrate the pages from an unaligned range (ie. pages that
7322 * we are interested in). This will put all the pages in
7323 * range back to page allocator as MIGRATE_ISOLATE.
7324 *
7325 * When this is done, we take the pages in range from page
7326 * allocator removing them from the buddy system. This way
7327 * page allocator will never consider using them.
7328 *
7329 * This lets us mark the pageblocks back as
7330 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7331 * aligned range but not in the unaligned, original range are
7332 * put back to page allocator so that buddy can use them.
7333 */
7334
7335 ret = start_isolate_page_range(pfn_max_align_down(start),
7336 pfn_max_align_up(end), migratetype,
7337 false);
7338 if (ret)
7339 return ret;
7340
7341 /*
7342 * In case of -EBUSY, we'd like to know which page causes problem.
7343 * So, just fall through. We will check it in test_pages_isolated().
7344 */
7345 ret = __alloc_contig_migrate_range(&cc, start, end);
7346 if (ret && ret != -EBUSY)
7347 goto done;
7348
7349 /*
7350 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7351 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7352 * more, all pages in [start, end) are free in page allocator.
7353 * What we are going to do is to allocate all pages from
7354 * [start, end) (that is remove them from page allocator).
7355 *
7356 * The only problem is that pages at the beginning and at the
7357 * end of interesting range may be not aligned with pages that
7358 * page allocator holds, ie. they can be part of higher order
7359 * pages. Because of this, we reserve the bigger range and
7360 * once this is done free the pages we are not interested in.
7361 *
7362 * We don't have to hold zone->lock here because the pages are
7363 * isolated thus they won't get removed from buddy.
7364 */
7365
7366 lru_add_drain_all();
7367 drain_all_pages(cc.zone);
7368
7369 order = 0;
7370 outer_start = start;
7371 while (!PageBuddy(pfn_to_page(outer_start))) {
7372 if (++order >= MAX_ORDER) {
7373 outer_start = start;
7374 break;
7375 }
7376 outer_start &= ~0UL << order;
7377 }
7378
7379 if (outer_start != start) {
7380 order = page_order(pfn_to_page(outer_start));
7381
7382 /*
7383 * outer_start page could be small order buddy page and
7384 * it doesn't include start page. Adjust outer_start
7385 * in this case to report failed page properly
7386 * on tracepoint in test_pages_isolated()
7387 */
7388 if (outer_start + (1UL << order) <= start)
7389 outer_start = start;
7390 }
7391
7392 /* Make sure the range is really isolated. */
7393 if (test_pages_isolated(outer_start, end, false)) {
7394 pr_info("%s: [%lx, %lx) PFNs busy\n",
7395 __func__, outer_start, end);
7396 ret = -EBUSY;
7397 goto done;
7398 }
7399
7400 /* Grab isolated pages from freelists. */
7401 outer_end = isolate_freepages_range(&cc, outer_start, end);
7402 if (!outer_end) {
7403 ret = -EBUSY;
7404 goto done;
7405 }
7406
7407 /* Free head and tail (if any) */
7408 if (start != outer_start)
7409 free_contig_range(outer_start, start - outer_start);
7410 if (end != outer_end)
7411 free_contig_range(end, outer_end - end);
7412
7413 done:
7414 undo_isolate_page_range(pfn_max_align_down(start),
7415 pfn_max_align_up(end), migratetype);
7416 return ret;
7417 }
7418
7419 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7420 {
7421 unsigned int count = 0;
7422
7423 for (; nr_pages--; pfn++) {
7424 struct page *page = pfn_to_page(pfn);
7425
7426 count += page_count(page) != 1;
7427 __free_page(page);
7428 }
7429 WARN(count != 0, "%d pages are still in use!\n", count);
7430 }
7431 #endif
7432
7433 #ifdef CONFIG_MEMORY_HOTPLUG
7434 /*
7435 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7436 * page high values need to be recalulated.
7437 */
7438 void __meminit zone_pcp_update(struct zone *zone)
7439 {
7440 unsigned cpu;
7441 mutex_lock(&pcp_batch_high_lock);
7442 for_each_possible_cpu(cpu)
7443 pageset_set_high_and_batch(zone,
7444 per_cpu_ptr(zone->pageset, cpu));
7445 mutex_unlock(&pcp_batch_high_lock);
7446 }
7447 #endif
7448
7449 void zone_pcp_reset(struct zone *zone)
7450 {
7451 unsigned long flags;
7452 int cpu;
7453 struct per_cpu_pageset *pset;
7454
7455 /* avoid races with drain_pages() */
7456 local_irq_save(flags);
7457 if (zone->pageset != &boot_pageset) {
7458 for_each_online_cpu(cpu) {
7459 pset = per_cpu_ptr(zone->pageset, cpu);
7460 drain_zonestat(zone, pset);
7461 }
7462 free_percpu(zone->pageset);
7463 zone->pageset = &boot_pageset;
7464 }
7465 local_irq_restore(flags);
7466 }
7467
7468 #ifdef CONFIG_MEMORY_HOTREMOVE
7469 /*
7470 * All pages in the range must be in a single zone and isolated
7471 * before calling this.
7472 */
7473 void
7474 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7475 {
7476 struct page *page;
7477 struct zone *zone;
7478 unsigned int order, i;
7479 unsigned long pfn;
7480 unsigned long flags;
7481 /* find the first valid pfn */
7482 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7483 if (pfn_valid(pfn))
7484 break;
7485 if (pfn == end_pfn)
7486 return;
7487 zone = page_zone(pfn_to_page(pfn));
7488 spin_lock_irqsave(&zone->lock, flags);
7489 pfn = start_pfn;
7490 while (pfn < end_pfn) {
7491 if (!pfn_valid(pfn)) {
7492 pfn++;
7493 continue;
7494 }
7495 page = pfn_to_page(pfn);
7496 /*
7497 * The HWPoisoned page may be not in buddy system, and
7498 * page_count() is not 0.
7499 */
7500 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7501 pfn++;
7502 SetPageReserved(page);
7503 continue;
7504 }
7505
7506 BUG_ON(page_count(page));
7507 BUG_ON(!PageBuddy(page));
7508 order = page_order(page);
7509 #ifdef CONFIG_DEBUG_VM
7510 pr_info("remove from free list %lx %d %lx\n",
7511 pfn, 1 << order, end_pfn);
7512 #endif
7513 list_del(&page->lru);
7514 rmv_page_order(page);
7515 zone->free_area[order].nr_free--;
7516 for (i = 0; i < (1 << order); i++)
7517 SetPageReserved((page+i));
7518 pfn += (1 << order);
7519 }
7520 spin_unlock_irqrestore(&zone->lock, flags);
7521 }
7522 #endif
7523
7524 bool is_free_buddy_page(struct page *page)
7525 {
7526 struct zone *zone = page_zone(page);
7527 unsigned long pfn = page_to_pfn(page);
7528 unsigned long flags;
7529 unsigned int order;
7530
7531 spin_lock_irqsave(&zone->lock, flags);
7532 for (order = 0; order < MAX_ORDER; order++) {
7533 struct page *page_head = page - (pfn & ((1 << order) - 1));
7534
7535 if (PageBuddy(page_head) && page_order(page_head) >= order)
7536 break;
7537 }
7538 spin_unlock_irqrestore(&zone->lock, flags);
7539
7540 return order < MAX_ORDER;
7541 }
This page took 0.200049 seconds and 5 git commands to generate.