mm, vmalloc: remove list management of vmlist after initializing vmalloc
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 [N_CPU] = { { [0] = 1UL } },
98 #endif /* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110 unsigned long dirty_balance_reserve __read_mostly;
111
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114
115 #ifdef CONFIG_PM_SLEEP
116 /*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
124
125 static gfp_t saved_gfp_mask;
126
127 void pm_restore_gfp_mask(void)
128 {
129 WARN_ON(!mutex_is_locked(&pm_mutex));
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
134 }
135
136 void pm_restrict_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
142 }
143
144 bool pm_suspended_storage(void)
145 {
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155
156 static void __free_pages_ok(struct page *page, unsigned int order);
157
158 /*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
168 */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 32,
178 #endif
179 32,
180 };
181
182 EXPORT_SYMBOL(totalram_pages);
183
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 "DMA32",
190 #endif
191 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 "HighMem",
194 #endif
195 "Movable",
196 };
197
198 int min_free_kbytes = 1024;
199
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __initdata required_kernelcore;
208 static unsigned long __initdata required_movablecore;
209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 int movable_zone;
213 EXPORT_SYMBOL(movable_zone);
214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
215
216 #if MAX_NUMNODES > 1
217 int nr_node_ids __read_mostly = MAX_NUMNODES;
218 int nr_online_nodes __read_mostly = 1;
219 EXPORT_SYMBOL(nr_node_ids);
220 EXPORT_SYMBOL(nr_online_nodes);
221 #endif
222
223 int page_group_by_mobility_disabled __read_mostly;
224
225 void set_pageblock_migratetype(struct page *page, int migratetype)
226 {
227
228 if (unlikely(page_group_by_mobility_disabled))
229 migratetype = MIGRATE_UNMOVABLE;
230
231 set_pageblock_flags_group(page, (unsigned long)migratetype,
232 PB_migrate, PB_migrate_end);
233 }
234
235 bool oom_killer_disabled __read_mostly;
236
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 {
240 int ret = 0;
241 unsigned seq;
242 unsigned long pfn = page_to_pfn(page);
243 unsigned long sp, start_pfn;
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 start_pfn = zone->zone_start_pfn;
248 sp = zone->spanned_pages;
249 if (!zone_spans_pfn(zone, pfn))
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 if (ret)
254 pr_err("page %lu outside zone [ %lu - %lu ]\n",
255 pfn, start_pfn, start_pfn + sp);
256
257 return ret;
258 }
259
260 static int page_is_consistent(struct zone *zone, struct page *page)
261 {
262 if (!pfn_valid_within(page_to_pfn(page)))
263 return 0;
264 if (zone != page_zone(page))
265 return 0;
266
267 return 1;
268 }
269 /*
270 * Temporary debugging check for pages not lying within a given zone.
271 */
272 static int bad_range(struct zone *zone, struct page *page)
273 {
274 if (page_outside_zone_boundaries(zone, page))
275 return 1;
276 if (!page_is_consistent(zone, page))
277 return 1;
278
279 return 0;
280 }
281 #else
282 static inline int bad_range(struct zone *zone, struct page *page)
283 {
284 return 0;
285 }
286 #endif
287
288 static void bad_page(struct page *page)
289 {
290 static unsigned long resume;
291 static unsigned long nr_shown;
292 static unsigned long nr_unshown;
293
294 /* Don't complain about poisoned pages */
295 if (PageHWPoison(page)) {
296 page_mapcount_reset(page); /* remove PageBuddy */
297 return;
298 }
299
300 /*
301 * Allow a burst of 60 reports, then keep quiet for that minute;
302 * or allow a steady drip of one report per second.
303 */
304 if (nr_shown == 60) {
305 if (time_before(jiffies, resume)) {
306 nr_unshown++;
307 goto out;
308 }
309 if (nr_unshown) {
310 printk(KERN_ALERT
311 "BUG: Bad page state: %lu messages suppressed\n",
312 nr_unshown);
313 nr_unshown = 0;
314 }
315 nr_shown = 0;
316 }
317 if (nr_shown++ == 0)
318 resume = jiffies + 60 * HZ;
319
320 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
321 current->comm, page_to_pfn(page));
322 dump_page(page);
323
324 print_modules();
325 dump_stack();
326 out:
327 /* Leave bad fields for debug, except PageBuddy could make trouble */
328 page_mapcount_reset(page); /* remove PageBuddy */
329 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
330 }
331
332 /*
333 * Higher-order pages are called "compound pages". They are structured thusly:
334 *
335 * The first PAGE_SIZE page is called the "head page".
336 *
337 * The remaining PAGE_SIZE pages are called "tail pages".
338 *
339 * All pages have PG_compound set. All tail pages have their ->first_page
340 * pointing at the head page.
341 *
342 * The first tail page's ->lru.next holds the address of the compound page's
343 * put_page() function. Its ->lru.prev holds the order of allocation.
344 * This usage means that zero-order pages may not be compound.
345 */
346
347 static void free_compound_page(struct page *page)
348 {
349 __free_pages_ok(page, compound_order(page));
350 }
351
352 void prep_compound_page(struct page *page, unsigned long order)
353 {
354 int i;
355 int nr_pages = 1 << order;
356
357 set_compound_page_dtor(page, free_compound_page);
358 set_compound_order(page, order);
359 __SetPageHead(page);
360 for (i = 1; i < nr_pages; i++) {
361 struct page *p = page + i;
362 __SetPageTail(p);
363 set_page_count(p, 0);
364 p->first_page = page;
365 }
366 }
367
368 /* update __split_huge_page_refcount if you change this function */
369 static int destroy_compound_page(struct page *page, unsigned long order)
370 {
371 int i;
372 int nr_pages = 1 << order;
373 int bad = 0;
374
375 if (unlikely(compound_order(page) != order)) {
376 bad_page(page);
377 bad++;
378 }
379
380 __ClearPageHead(page);
381
382 for (i = 1; i < nr_pages; i++) {
383 struct page *p = page + i;
384
385 if (unlikely(!PageTail(p) || (p->first_page != page))) {
386 bad_page(page);
387 bad++;
388 }
389 __ClearPageTail(p);
390 }
391
392 return bad;
393 }
394
395 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
396 {
397 int i;
398
399 /*
400 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
401 * and __GFP_HIGHMEM from hard or soft interrupt context.
402 */
403 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
404 for (i = 0; i < (1 << order); i++)
405 clear_highpage(page + i);
406 }
407
408 #ifdef CONFIG_DEBUG_PAGEALLOC
409 unsigned int _debug_guardpage_minorder;
410
411 static int __init debug_guardpage_minorder_setup(char *buf)
412 {
413 unsigned long res;
414
415 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
416 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
417 return 0;
418 }
419 _debug_guardpage_minorder = res;
420 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
421 return 0;
422 }
423 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
424
425 static inline void set_page_guard_flag(struct page *page)
426 {
427 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428 }
429
430 static inline void clear_page_guard_flag(struct page *page)
431 {
432 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
433 }
434 #else
435 static inline void set_page_guard_flag(struct page *page) { }
436 static inline void clear_page_guard_flag(struct page *page) { }
437 #endif
438
439 static inline void set_page_order(struct page *page, int order)
440 {
441 set_page_private(page, order);
442 __SetPageBuddy(page);
443 }
444
445 static inline void rmv_page_order(struct page *page)
446 {
447 __ClearPageBuddy(page);
448 set_page_private(page, 0);
449 }
450
451 /*
452 * Locate the struct page for both the matching buddy in our
453 * pair (buddy1) and the combined O(n+1) page they form (page).
454 *
455 * 1) Any buddy B1 will have an order O twin B2 which satisfies
456 * the following equation:
457 * B2 = B1 ^ (1 << O)
458 * For example, if the starting buddy (buddy2) is #8 its order
459 * 1 buddy is #10:
460 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
461 *
462 * 2) Any buddy B will have an order O+1 parent P which
463 * satisfies the following equation:
464 * P = B & ~(1 << O)
465 *
466 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
467 */
468 static inline unsigned long
469 __find_buddy_index(unsigned long page_idx, unsigned int order)
470 {
471 return page_idx ^ (1 << order);
472 }
473
474 /*
475 * This function checks whether a page is free && is the buddy
476 * we can do coalesce a page and its buddy if
477 * (a) the buddy is not in a hole &&
478 * (b) the buddy is in the buddy system &&
479 * (c) a page and its buddy have the same order &&
480 * (d) a page and its buddy are in the same zone.
481 *
482 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
483 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
484 *
485 * For recording page's order, we use page_private(page).
486 */
487 static inline int page_is_buddy(struct page *page, struct page *buddy,
488 int order)
489 {
490 if (!pfn_valid_within(page_to_pfn(buddy)))
491 return 0;
492
493 if (page_zone_id(page) != page_zone_id(buddy))
494 return 0;
495
496 if (page_is_guard(buddy) && page_order(buddy) == order) {
497 VM_BUG_ON(page_count(buddy) != 0);
498 return 1;
499 }
500
501 if (PageBuddy(buddy) && page_order(buddy) == order) {
502 VM_BUG_ON(page_count(buddy) != 0);
503 return 1;
504 }
505 return 0;
506 }
507
508 /*
509 * Freeing function for a buddy system allocator.
510 *
511 * The concept of a buddy system is to maintain direct-mapped table
512 * (containing bit values) for memory blocks of various "orders".
513 * The bottom level table contains the map for the smallest allocatable
514 * units of memory (here, pages), and each level above it describes
515 * pairs of units from the levels below, hence, "buddies".
516 * At a high level, all that happens here is marking the table entry
517 * at the bottom level available, and propagating the changes upward
518 * as necessary, plus some accounting needed to play nicely with other
519 * parts of the VM system.
520 * At each level, we keep a list of pages, which are heads of continuous
521 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
522 * order is recorded in page_private(page) field.
523 * So when we are allocating or freeing one, we can derive the state of the
524 * other. That is, if we allocate a small block, and both were
525 * free, the remainder of the region must be split into blocks.
526 * If a block is freed, and its buddy is also free, then this
527 * triggers coalescing into a block of larger size.
528 *
529 * -- nyc
530 */
531
532 static inline void __free_one_page(struct page *page,
533 struct zone *zone, unsigned int order,
534 int migratetype)
535 {
536 unsigned long page_idx;
537 unsigned long combined_idx;
538 unsigned long uninitialized_var(buddy_idx);
539 struct page *buddy;
540
541 VM_BUG_ON(!zone_is_initialized(zone));
542
543 if (unlikely(PageCompound(page)))
544 if (unlikely(destroy_compound_page(page, order)))
545 return;
546
547 VM_BUG_ON(migratetype == -1);
548
549 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
550
551 VM_BUG_ON(page_idx & ((1 << order) - 1));
552 VM_BUG_ON(bad_range(zone, page));
553
554 while (order < MAX_ORDER-1) {
555 buddy_idx = __find_buddy_index(page_idx, order);
556 buddy = page + (buddy_idx - page_idx);
557 if (!page_is_buddy(page, buddy, order))
558 break;
559 /*
560 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
561 * merge with it and move up one order.
562 */
563 if (page_is_guard(buddy)) {
564 clear_page_guard_flag(buddy);
565 set_page_private(page, 0);
566 __mod_zone_freepage_state(zone, 1 << order,
567 migratetype);
568 } else {
569 list_del(&buddy->lru);
570 zone->free_area[order].nr_free--;
571 rmv_page_order(buddy);
572 }
573 combined_idx = buddy_idx & page_idx;
574 page = page + (combined_idx - page_idx);
575 page_idx = combined_idx;
576 order++;
577 }
578 set_page_order(page, order);
579
580 /*
581 * If this is not the largest possible page, check if the buddy
582 * of the next-highest order is free. If it is, it's possible
583 * that pages are being freed that will coalesce soon. In case,
584 * that is happening, add the free page to the tail of the list
585 * so it's less likely to be used soon and more likely to be merged
586 * as a higher order page
587 */
588 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
589 struct page *higher_page, *higher_buddy;
590 combined_idx = buddy_idx & page_idx;
591 higher_page = page + (combined_idx - page_idx);
592 buddy_idx = __find_buddy_index(combined_idx, order + 1);
593 higher_buddy = higher_page + (buddy_idx - combined_idx);
594 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
595 list_add_tail(&page->lru,
596 &zone->free_area[order].free_list[migratetype]);
597 goto out;
598 }
599 }
600
601 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
602 out:
603 zone->free_area[order].nr_free++;
604 }
605
606 static inline int free_pages_check(struct page *page)
607 {
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
610 (atomic_read(&page->_count) != 0) |
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
613 bad_page(page);
614 return 1;
615 }
616 page_nid_reset_last(page);
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
620 }
621
622 /*
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
635 {
636 int migratetype = 0;
637 int batch_free = 0;
638 int to_free = count;
639
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 while (to_free) {
645 struct page *page;
646 struct list_head *list;
647
648 /*
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
654 */
655 do {
656 batch_free++;
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
661
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
666 do {
667 int mt; /* migratetype of the to-be-freed page */
668
669 page = list_entry(list->prev, struct page, lru);
670 /* must delete as __free_one_page list manipulates */
671 list_del(&page->lru);
672 mt = get_freepage_migratetype(page);
673 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
674 __free_one_page(page, zone, 0, mt);
675 trace_mm_page_pcpu_drain(page, 0, mt);
676 if (likely(!is_migrate_isolate_page(page))) {
677 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
678 if (is_migrate_cma(mt))
679 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
680 }
681 } while (--to_free && --batch_free && !list_empty(list));
682 }
683 spin_unlock(&zone->lock);
684 }
685
686 static void free_one_page(struct zone *zone, struct page *page, int order,
687 int migratetype)
688 {
689 spin_lock(&zone->lock);
690 zone->all_unreclaimable = 0;
691 zone->pages_scanned = 0;
692
693 __free_one_page(page, zone, order, migratetype);
694 if (unlikely(!is_migrate_isolate(migratetype)))
695 __mod_zone_freepage_state(zone, 1 << order, migratetype);
696 spin_unlock(&zone->lock);
697 }
698
699 static bool free_pages_prepare(struct page *page, unsigned int order)
700 {
701 int i;
702 int bad = 0;
703
704 trace_mm_page_free(page, order);
705 kmemcheck_free_shadow(page, order);
706
707 if (PageAnon(page))
708 page->mapping = NULL;
709 for (i = 0; i < (1 << order); i++)
710 bad += free_pages_check(page + i);
711 if (bad)
712 return false;
713
714 if (!PageHighMem(page)) {
715 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
716 debug_check_no_obj_freed(page_address(page),
717 PAGE_SIZE << order);
718 }
719 arch_free_page(page, order);
720 kernel_map_pages(page, 1 << order, 0);
721
722 return true;
723 }
724
725 static void __free_pages_ok(struct page *page, unsigned int order)
726 {
727 unsigned long flags;
728 int migratetype;
729
730 if (!free_pages_prepare(page, order))
731 return;
732
733 local_irq_save(flags);
734 __count_vm_events(PGFREE, 1 << order);
735 migratetype = get_pageblock_migratetype(page);
736 set_freepage_migratetype(page, migratetype);
737 free_one_page(page_zone(page), page, order, migratetype);
738 local_irq_restore(flags);
739 }
740
741 /*
742 * Read access to zone->managed_pages is safe because it's unsigned long,
743 * but we still need to serialize writers. Currently all callers of
744 * __free_pages_bootmem() except put_page_bootmem() should only be used
745 * at boot time. So for shorter boot time, we shift the burden to
746 * put_page_bootmem() to serialize writers.
747 */
748 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
749 {
750 unsigned int nr_pages = 1 << order;
751 unsigned int loop;
752
753 prefetchw(page);
754 for (loop = 0; loop < nr_pages; loop++) {
755 struct page *p = &page[loop];
756
757 if (loop + 1 < nr_pages)
758 prefetchw(p + 1);
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
761 }
762
763 page_zone(page)->managed_pages += 1 << order;
764 set_page_refcounted(page);
765 __free_pages(page, order);
766 }
767
768 #ifdef CONFIG_CMA
769 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770 void __init init_cma_reserved_pageblock(struct page *page)
771 {
772 unsigned i = pageblock_nr_pages;
773 struct page *p = page;
774
775 do {
776 __ClearPageReserved(p);
777 set_page_count(p, 0);
778 } while (++p, --i);
779
780 set_page_refcounted(page);
781 set_pageblock_migratetype(page, MIGRATE_CMA);
782 __free_pages(page, pageblock_order);
783 totalram_pages += pageblock_nr_pages;
784 #ifdef CONFIG_HIGHMEM
785 if (PageHighMem(page))
786 totalhigh_pages += pageblock_nr_pages;
787 #endif
788 }
789 #endif
790
791 /*
792 * The order of subdivision here is critical for the IO subsystem.
793 * Please do not alter this order without good reasons and regression
794 * testing. Specifically, as large blocks of memory are subdivided,
795 * the order in which smaller blocks are delivered depends on the order
796 * they're subdivided in this function. This is the primary factor
797 * influencing the order in which pages are delivered to the IO
798 * subsystem according to empirical testing, and this is also justified
799 * by considering the behavior of a buddy system containing a single
800 * large block of memory acted on by a series of small allocations.
801 * This behavior is a critical factor in sglist merging's success.
802 *
803 * -- nyc
804 */
805 static inline void expand(struct zone *zone, struct page *page,
806 int low, int high, struct free_area *area,
807 int migratetype)
808 {
809 unsigned long size = 1 << high;
810
811 while (high > low) {
812 area--;
813 high--;
814 size >>= 1;
815 VM_BUG_ON(bad_range(zone, &page[size]));
816
817 #ifdef CONFIG_DEBUG_PAGEALLOC
818 if (high < debug_guardpage_minorder()) {
819 /*
820 * Mark as guard pages (or page), that will allow to
821 * merge back to allocator when buddy will be freed.
822 * Corresponding page table entries will not be touched,
823 * pages will stay not present in virtual address space
824 */
825 INIT_LIST_HEAD(&page[size].lru);
826 set_page_guard_flag(&page[size]);
827 set_page_private(&page[size], high);
828 /* Guard pages are not available for any usage */
829 __mod_zone_freepage_state(zone, -(1 << high),
830 migratetype);
831 continue;
832 }
833 #endif
834 list_add(&page[size].lru, &area->free_list[migratetype]);
835 area->nr_free++;
836 set_page_order(&page[size], high);
837 }
838 }
839
840 /*
841 * This page is about to be returned from the page allocator
842 */
843 static inline int check_new_page(struct page *page)
844 {
845 if (unlikely(page_mapcount(page) |
846 (page->mapping != NULL) |
847 (atomic_read(&page->_count) != 0) |
848 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
849 (mem_cgroup_bad_page_check(page)))) {
850 bad_page(page);
851 return 1;
852 }
853 return 0;
854 }
855
856 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
857 {
858 int i;
859
860 for (i = 0; i < (1 << order); i++) {
861 struct page *p = page + i;
862 if (unlikely(check_new_page(p)))
863 return 1;
864 }
865
866 set_page_private(page, 0);
867 set_page_refcounted(page);
868
869 arch_alloc_page(page, order);
870 kernel_map_pages(page, 1 << order, 1);
871
872 if (gfp_flags & __GFP_ZERO)
873 prep_zero_page(page, order, gfp_flags);
874
875 if (order && (gfp_flags & __GFP_COMP))
876 prep_compound_page(page, order);
877
878 return 0;
879 }
880
881 /*
882 * Go through the free lists for the given migratetype and remove
883 * the smallest available page from the freelists
884 */
885 static inline
886 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
887 int migratetype)
888 {
889 unsigned int current_order;
890 struct free_area * area;
891 struct page *page;
892
893 /* Find a page of the appropriate size in the preferred list */
894 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
895 area = &(zone->free_area[current_order]);
896 if (list_empty(&area->free_list[migratetype]))
897 continue;
898
899 page = list_entry(area->free_list[migratetype].next,
900 struct page, lru);
901 list_del(&page->lru);
902 rmv_page_order(page);
903 area->nr_free--;
904 expand(zone, page, order, current_order, area, migratetype);
905 return page;
906 }
907
908 return NULL;
909 }
910
911
912 /*
913 * This array describes the order lists are fallen back to when
914 * the free lists for the desirable migrate type are depleted
915 */
916 static int fallbacks[MIGRATE_TYPES][4] = {
917 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 #ifdef CONFIG_CMA
920 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
922 #else
923 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
924 #endif
925 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
926 #ifdef CONFIG_MEMORY_ISOLATION
927 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
928 #endif
929 };
930
931 /*
932 * Move the free pages in a range to the free lists of the requested type.
933 * Note that start_page and end_pages are not aligned on a pageblock
934 * boundary. If alignment is required, use move_freepages_block()
935 */
936 int move_freepages(struct zone *zone,
937 struct page *start_page, struct page *end_page,
938 int migratetype)
939 {
940 struct page *page;
941 unsigned long order;
942 int pages_moved = 0;
943
944 #ifndef CONFIG_HOLES_IN_ZONE
945 /*
946 * page_zone is not safe to call in this context when
947 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
948 * anyway as we check zone boundaries in move_freepages_block().
949 * Remove at a later date when no bug reports exist related to
950 * grouping pages by mobility
951 */
952 BUG_ON(page_zone(start_page) != page_zone(end_page));
953 #endif
954
955 for (page = start_page; page <= end_page;) {
956 /* Make sure we are not inadvertently changing nodes */
957 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
958
959 if (!pfn_valid_within(page_to_pfn(page))) {
960 page++;
961 continue;
962 }
963
964 if (!PageBuddy(page)) {
965 page++;
966 continue;
967 }
968
969 order = page_order(page);
970 list_move(&page->lru,
971 &zone->free_area[order].free_list[migratetype]);
972 set_freepage_migratetype(page, migratetype);
973 page += 1 << order;
974 pages_moved += 1 << order;
975 }
976
977 return pages_moved;
978 }
979
980 int move_freepages_block(struct zone *zone, struct page *page,
981 int migratetype)
982 {
983 unsigned long start_pfn, end_pfn;
984 struct page *start_page, *end_page;
985
986 start_pfn = page_to_pfn(page);
987 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
988 start_page = pfn_to_page(start_pfn);
989 end_page = start_page + pageblock_nr_pages - 1;
990 end_pfn = start_pfn + pageblock_nr_pages - 1;
991
992 /* Do not cross zone boundaries */
993 if (!zone_spans_pfn(zone, start_pfn))
994 start_page = page;
995 if (!zone_spans_pfn(zone, end_pfn))
996 return 0;
997
998 return move_freepages(zone, start_page, end_page, migratetype);
999 }
1000
1001 static void change_pageblock_range(struct page *pageblock_page,
1002 int start_order, int migratetype)
1003 {
1004 int nr_pageblocks = 1 << (start_order - pageblock_order);
1005
1006 while (nr_pageblocks--) {
1007 set_pageblock_migratetype(pageblock_page, migratetype);
1008 pageblock_page += pageblock_nr_pages;
1009 }
1010 }
1011
1012 /* Remove an element from the buddy allocator from the fallback list */
1013 static inline struct page *
1014 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1015 {
1016 struct free_area * area;
1017 int current_order;
1018 struct page *page;
1019 int migratetype, i;
1020
1021 /* Find the largest possible block of pages in the other list */
1022 for (current_order = MAX_ORDER-1; current_order >= order;
1023 --current_order) {
1024 for (i = 0;; i++) {
1025 migratetype = fallbacks[start_migratetype][i];
1026
1027 /* MIGRATE_RESERVE handled later if necessary */
1028 if (migratetype == MIGRATE_RESERVE)
1029 break;
1030
1031 area = &(zone->free_area[current_order]);
1032 if (list_empty(&area->free_list[migratetype]))
1033 continue;
1034
1035 page = list_entry(area->free_list[migratetype].next,
1036 struct page, lru);
1037 area->nr_free--;
1038
1039 /*
1040 * If breaking a large block of pages, move all free
1041 * pages to the preferred allocation list. If falling
1042 * back for a reclaimable kernel allocation, be more
1043 * aggressive about taking ownership of free pages
1044 *
1045 * On the other hand, never change migration
1046 * type of MIGRATE_CMA pageblocks nor move CMA
1047 * pages on different free lists. We don't
1048 * want unmovable pages to be allocated from
1049 * MIGRATE_CMA areas.
1050 */
1051 if (!is_migrate_cma(migratetype) &&
1052 (unlikely(current_order >= pageblock_order / 2) ||
1053 start_migratetype == MIGRATE_RECLAIMABLE ||
1054 page_group_by_mobility_disabled)) {
1055 int pages;
1056 pages = move_freepages_block(zone, page,
1057 start_migratetype);
1058
1059 /* Claim the whole block if over half of it is free */
1060 if (pages >= (1 << (pageblock_order-1)) ||
1061 page_group_by_mobility_disabled)
1062 set_pageblock_migratetype(page,
1063 start_migratetype);
1064
1065 migratetype = start_migratetype;
1066 }
1067
1068 /* Remove the page from the freelists */
1069 list_del(&page->lru);
1070 rmv_page_order(page);
1071
1072 /* Take ownership for orders >= pageblock_order */
1073 if (current_order >= pageblock_order &&
1074 !is_migrate_cma(migratetype))
1075 change_pageblock_range(page, current_order,
1076 start_migratetype);
1077
1078 expand(zone, page, order, current_order, area,
1079 is_migrate_cma(migratetype)
1080 ? migratetype : start_migratetype);
1081
1082 trace_mm_page_alloc_extfrag(page, order, current_order,
1083 start_migratetype, migratetype);
1084
1085 return page;
1086 }
1087 }
1088
1089 return NULL;
1090 }
1091
1092 /*
1093 * Do the hard work of removing an element from the buddy allocator.
1094 * Call me with the zone->lock already held.
1095 */
1096 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1097 int migratetype)
1098 {
1099 struct page *page;
1100
1101 retry_reserve:
1102 page = __rmqueue_smallest(zone, order, migratetype);
1103
1104 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1105 page = __rmqueue_fallback(zone, order, migratetype);
1106
1107 /*
1108 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1109 * is used because __rmqueue_smallest is an inline function
1110 * and we want just one call site
1111 */
1112 if (!page) {
1113 migratetype = MIGRATE_RESERVE;
1114 goto retry_reserve;
1115 }
1116 }
1117
1118 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1119 return page;
1120 }
1121
1122 /*
1123 * Obtain a specified number of elements from the buddy allocator, all under
1124 * a single hold of the lock, for efficiency. Add them to the supplied list.
1125 * Returns the number of new pages which were placed at *list.
1126 */
1127 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1128 unsigned long count, struct list_head *list,
1129 int migratetype, int cold)
1130 {
1131 int mt = migratetype, i;
1132
1133 spin_lock(&zone->lock);
1134 for (i = 0; i < count; ++i) {
1135 struct page *page = __rmqueue(zone, order, migratetype);
1136 if (unlikely(page == NULL))
1137 break;
1138
1139 /*
1140 * Split buddy pages returned by expand() are received here
1141 * in physical page order. The page is added to the callers and
1142 * list and the list head then moves forward. From the callers
1143 * perspective, the linked list is ordered by page number in
1144 * some conditions. This is useful for IO devices that can
1145 * merge IO requests if the physical pages are ordered
1146 * properly.
1147 */
1148 if (likely(cold == 0))
1149 list_add(&page->lru, list);
1150 else
1151 list_add_tail(&page->lru, list);
1152 if (IS_ENABLED(CONFIG_CMA)) {
1153 mt = get_pageblock_migratetype(page);
1154 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1155 mt = migratetype;
1156 }
1157 set_freepage_migratetype(page, mt);
1158 list = &page->lru;
1159 if (is_migrate_cma(mt))
1160 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1161 -(1 << order));
1162 }
1163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1164 spin_unlock(&zone->lock);
1165 return i;
1166 }
1167
1168 #ifdef CONFIG_NUMA
1169 /*
1170 * Called from the vmstat counter updater to drain pagesets of this
1171 * currently executing processor on remote nodes after they have
1172 * expired.
1173 *
1174 * Note that this function must be called with the thread pinned to
1175 * a single processor.
1176 */
1177 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1178 {
1179 unsigned long flags;
1180 int to_drain;
1181
1182 local_irq_save(flags);
1183 if (pcp->count >= pcp->batch)
1184 to_drain = pcp->batch;
1185 else
1186 to_drain = pcp->count;
1187 if (to_drain > 0) {
1188 free_pcppages_bulk(zone, to_drain, pcp);
1189 pcp->count -= to_drain;
1190 }
1191 local_irq_restore(flags);
1192 }
1193 #endif
1194
1195 /*
1196 * Drain pages of the indicated processor.
1197 *
1198 * The processor must either be the current processor and the
1199 * thread pinned to the current processor or a processor that
1200 * is not online.
1201 */
1202 static void drain_pages(unsigned int cpu)
1203 {
1204 unsigned long flags;
1205 struct zone *zone;
1206
1207 for_each_populated_zone(zone) {
1208 struct per_cpu_pageset *pset;
1209 struct per_cpu_pages *pcp;
1210
1211 local_irq_save(flags);
1212 pset = per_cpu_ptr(zone->pageset, cpu);
1213
1214 pcp = &pset->pcp;
1215 if (pcp->count) {
1216 free_pcppages_bulk(zone, pcp->count, pcp);
1217 pcp->count = 0;
1218 }
1219 local_irq_restore(flags);
1220 }
1221 }
1222
1223 /*
1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1225 */
1226 void drain_local_pages(void *arg)
1227 {
1228 drain_pages(smp_processor_id());
1229 }
1230
1231 /*
1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1233 *
1234 * Note that this code is protected against sending an IPI to an offline
1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237 * nothing keeps CPUs from showing up after we populated the cpumask and
1238 * before the call to on_each_cpu_mask().
1239 */
1240 void drain_all_pages(void)
1241 {
1242 int cpu;
1243 struct per_cpu_pageset *pcp;
1244 struct zone *zone;
1245
1246 /*
1247 * Allocate in the BSS so we wont require allocation in
1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1249 */
1250 static cpumask_t cpus_with_pcps;
1251
1252 /*
1253 * We don't care about racing with CPU hotplug event
1254 * as offline notification will cause the notified
1255 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 * disables preemption as part of its processing
1257 */
1258 for_each_online_cpu(cpu) {
1259 bool has_pcps = false;
1260 for_each_populated_zone(zone) {
1261 pcp = per_cpu_ptr(zone->pageset, cpu);
1262 if (pcp->pcp.count) {
1263 has_pcps = true;
1264 break;
1265 }
1266 }
1267 if (has_pcps)
1268 cpumask_set_cpu(cpu, &cpus_with_pcps);
1269 else
1270 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1271 }
1272 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1273 }
1274
1275 #ifdef CONFIG_HIBERNATION
1276
1277 void mark_free_pages(struct zone *zone)
1278 {
1279 unsigned long pfn, max_zone_pfn;
1280 unsigned long flags;
1281 int order, t;
1282 struct list_head *curr;
1283
1284 if (!zone->spanned_pages)
1285 return;
1286
1287 spin_lock_irqsave(&zone->lock, flags);
1288
1289 max_zone_pfn = zone_end_pfn(zone);
1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1291 if (pfn_valid(pfn)) {
1292 struct page *page = pfn_to_page(pfn);
1293
1294 if (!swsusp_page_is_forbidden(page))
1295 swsusp_unset_page_free(page);
1296 }
1297
1298 for_each_migratetype_order(order, t) {
1299 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1300 unsigned long i;
1301
1302 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1303 for (i = 0; i < (1UL << order); i++)
1304 swsusp_set_page_free(pfn_to_page(pfn + i));
1305 }
1306 }
1307 spin_unlock_irqrestore(&zone->lock, flags);
1308 }
1309 #endif /* CONFIG_PM */
1310
1311 /*
1312 * Free a 0-order page
1313 * cold == 1 ? free a cold page : free a hot page
1314 */
1315 void free_hot_cold_page(struct page *page, int cold)
1316 {
1317 struct zone *zone = page_zone(page);
1318 struct per_cpu_pages *pcp;
1319 unsigned long flags;
1320 int migratetype;
1321
1322 if (!free_pages_prepare(page, 0))
1323 return;
1324
1325 migratetype = get_pageblock_migratetype(page);
1326 set_freepage_migratetype(page, migratetype);
1327 local_irq_save(flags);
1328 __count_vm_event(PGFREE);
1329
1330 /*
1331 * We only track unmovable, reclaimable and movable on pcp lists.
1332 * Free ISOLATE pages back to the allocator because they are being
1333 * offlined but treat RESERVE as movable pages so we can get those
1334 * areas back if necessary. Otherwise, we may have to free
1335 * excessively into the page allocator
1336 */
1337 if (migratetype >= MIGRATE_PCPTYPES) {
1338 if (unlikely(is_migrate_isolate(migratetype))) {
1339 free_one_page(zone, page, 0, migratetype);
1340 goto out;
1341 }
1342 migratetype = MIGRATE_MOVABLE;
1343 }
1344
1345 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1346 if (cold)
1347 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1348 else
1349 list_add(&page->lru, &pcp->lists[migratetype]);
1350 pcp->count++;
1351 if (pcp->count >= pcp->high) {
1352 free_pcppages_bulk(zone, pcp->batch, pcp);
1353 pcp->count -= pcp->batch;
1354 }
1355
1356 out:
1357 local_irq_restore(flags);
1358 }
1359
1360 /*
1361 * Free a list of 0-order pages
1362 */
1363 void free_hot_cold_page_list(struct list_head *list, int cold)
1364 {
1365 struct page *page, *next;
1366
1367 list_for_each_entry_safe(page, next, list, lru) {
1368 trace_mm_page_free_batched(page, cold);
1369 free_hot_cold_page(page, cold);
1370 }
1371 }
1372
1373 /*
1374 * split_page takes a non-compound higher-order page, and splits it into
1375 * n (1<<order) sub-pages: page[0..n]
1376 * Each sub-page must be freed individually.
1377 *
1378 * Note: this is probably too low level an operation for use in drivers.
1379 * Please consult with lkml before using this in your driver.
1380 */
1381 void split_page(struct page *page, unsigned int order)
1382 {
1383 int i;
1384
1385 VM_BUG_ON(PageCompound(page));
1386 VM_BUG_ON(!page_count(page));
1387
1388 #ifdef CONFIG_KMEMCHECK
1389 /*
1390 * Split shadow pages too, because free(page[0]) would
1391 * otherwise free the whole shadow.
1392 */
1393 if (kmemcheck_page_is_tracked(page))
1394 split_page(virt_to_page(page[0].shadow), order);
1395 #endif
1396
1397 for (i = 1; i < (1 << order); i++)
1398 set_page_refcounted(page + i);
1399 }
1400 EXPORT_SYMBOL_GPL(split_page);
1401
1402 static int __isolate_free_page(struct page *page, unsigned int order)
1403 {
1404 unsigned long watermark;
1405 struct zone *zone;
1406 int mt;
1407
1408 BUG_ON(!PageBuddy(page));
1409
1410 zone = page_zone(page);
1411 mt = get_pageblock_migratetype(page);
1412
1413 if (!is_migrate_isolate(mt)) {
1414 /* Obey watermarks as if the page was being allocated */
1415 watermark = low_wmark_pages(zone) + (1 << order);
1416 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1417 return 0;
1418
1419 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1420 }
1421
1422 /* Remove page from free list */
1423 list_del(&page->lru);
1424 zone->free_area[order].nr_free--;
1425 rmv_page_order(page);
1426
1427 /* Set the pageblock if the isolated page is at least a pageblock */
1428 if (order >= pageblock_order - 1) {
1429 struct page *endpage = page + (1 << order) - 1;
1430 for (; page < endpage; page += pageblock_nr_pages) {
1431 int mt = get_pageblock_migratetype(page);
1432 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1433 set_pageblock_migratetype(page,
1434 MIGRATE_MOVABLE);
1435 }
1436 }
1437
1438 return 1UL << order;
1439 }
1440
1441 /*
1442 * Similar to split_page except the page is already free. As this is only
1443 * being used for migration, the migratetype of the block also changes.
1444 * As this is called with interrupts disabled, the caller is responsible
1445 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1446 * are enabled.
1447 *
1448 * Note: this is probably too low level an operation for use in drivers.
1449 * Please consult with lkml before using this in your driver.
1450 */
1451 int split_free_page(struct page *page)
1452 {
1453 unsigned int order;
1454 int nr_pages;
1455
1456 order = page_order(page);
1457
1458 nr_pages = __isolate_free_page(page, order);
1459 if (!nr_pages)
1460 return 0;
1461
1462 /* Split into individual pages */
1463 set_page_refcounted(page);
1464 split_page(page, order);
1465 return nr_pages;
1466 }
1467
1468 /*
1469 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1470 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1471 * or two.
1472 */
1473 static inline
1474 struct page *buffered_rmqueue(struct zone *preferred_zone,
1475 struct zone *zone, int order, gfp_t gfp_flags,
1476 int migratetype)
1477 {
1478 unsigned long flags;
1479 struct page *page;
1480 int cold = !!(gfp_flags & __GFP_COLD);
1481
1482 again:
1483 if (likely(order == 0)) {
1484 struct per_cpu_pages *pcp;
1485 struct list_head *list;
1486
1487 local_irq_save(flags);
1488 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1489 list = &pcp->lists[migratetype];
1490 if (list_empty(list)) {
1491 pcp->count += rmqueue_bulk(zone, 0,
1492 pcp->batch, list,
1493 migratetype, cold);
1494 if (unlikely(list_empty(list)))
1495 goto failed;
1496 }
1497
1498 if (cold)
1499 page = list_entry(list->prev, struct page, lru);
1500 else
1501 page = list_entry(list->next, struct page, lru);
1502
1503 list_del(&page->lru);
1504 pcp->count--;
1505 } else {
1506 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1507 /*
1508 * __GFP_NOFAIL is not to be used in new code.
1509 *
1510 * All __GFP_NOFAIL callers should be fixed so that they
1511 * properly detect and handle allocation failures.
1512 *
1513 * We most definitely don't want callers attempting to
1514 * allocate greater than order-1 page units with
1515 * __GFP_NOFAIL.
1516 */
1517 WARN_ON_ONCE(order > 1);
1518 }
1519 spin_lock_irqsave(&zone->lock, flags);
1520 page = __rmqueue(zone, order, migratetype);
1521 spin_unlock(&zone->lock);
1522 if (!page)
1523 goto failed;
1524 __mod_zone_freepage_state(zone, -(1 << order),
1525 get_pageblock_migratetype(page));
1526 }
1527
1528 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1529 zone_statistics(preferred_zone, zone, gfp_flags);
1530 local_irq_restore(flags);
1531
1532 VM_BUG_ON(bad_range(zone, page));
1533 if (prep_new_page(page, order, gfp_flags))
1534 goto again;
1535 return page;
1536
1537 failed:
1538 local_irq_restore(flags);
1539 return NULL;
1540 }
1541
1542 #ifdef CONFIG_FAIL_PAGE_ALLOC
1543
1544 static struct {
1545 struct fault_attr attr;
1546
1547 u32 ignore_gfp_highmem;
1548 u32 ignore_gfp_wait;
1549 u32 min_order;
1550 } fail_page_alloc = {
1551 .attr = FAULT_ATTR_INITIALIZER,
1552 .ignore_gfp_wait = 1,
1553 .ignore_gfp_highmem = 1,
1554 .min_order = 1,
1555 };
1556
1557 static int __init setup_fail_page_alloc(char *str)
1558 {
1559 return setup_fault_attr(&fail_page_alloc.attr, str);
1560 }
1561 __setup("fail_page_alloc=", setup_fail_page_alloc);
1562
1563 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1564 {
1565 if (order < fail_page_alloc.min_order)
1566 return false;
1567 if (gfp_mask & __GFP_NOFAIL)
1568 return false;
1569 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1570 return false;
1571 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1572 return false;
1573
1574 return should_fail(&fail_page_alloc.attr, 1 << order);
1575 }
1576
1577 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1578
1579 static int __init fail_page_alloc_debugfs(void)
1580 {
1581 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1582 struct dentry *dir;
1583
1584 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1585 &fail_page_alloc.attr);
1586 if (IS_ERR(dir))
1587 return PTR_ERR(dir);
1588
1589 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1590 &fail_page_alloc.ignore_gfp_wait))
1591 goto fail;
1592 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1593 &fail_page_alloc.ignore_gfp_highmem))
1594 goto fail;
1595 if (!debugfs_create_u32("min-order", mode, dir,
1596 &fail_page_alloc.min_order))
1597 goto fail;
1598
1599 return 0;
1600 fail:
1601 debugfs_remove_recursive(dir);
1602
1603 return -ENOMEM;
1604 }
1605
1606 late_initcall(fail_page_alloc_debugfs);
1607
1608 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1609
1610 #else /* CONFIG_FAIL_PAGE_ALLOC */
1611
1612 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1613 {
1614 return false;
1615 }
1616
1617 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1618
1619 /*
1620 * Return true if free pages are above 'mark'. This takes into account the order
1621 * of the allocation.
1622 */
1623 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1624 int classzone_idx, int alloc_flags, long free_pages)
1625 {
1626 /* free_pages my go negative - that's OK */
1627 long min = mark;
1628 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1629 int o;
1630
1631 free_pages -= (1 << order) - 1;
1632 if (alloc_flags & ALLOC_HIGH)
1633 min -= min / 2;
1634 if (alloc_flags & ALLOC_HARDER)
1635 min -= min / 4;
1636 #ifdef CONFIG_CMA
1637 /* If allocation can't use CMA areas don't use free CMA pages */
1638 if (!(alloc_flags & ALLOC_CMA))
1639 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1640 #endif
1641 if (free_pages <= min + lowmem_reserve)
1642 return false;
1643 for (o = 0; o < order; o++) {
1644 /* At the next order, this order's pages become unavailable */
1645 free_pages -= z->free_area[o].nr_free << o;
1646
1647 /* Require fewer higher order pages to be free */
1648 min >>= 1;
1649
1650 if (free_pages <= min)
1651 return false;
1652 }
1653 return true;
1654 }
1655
1656 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1657 int classzone_idx, int alloc_flags)
1658 {
1659 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1660 zone_page_state(z, NR_FREE_PAGES));
1661 }
1662
1663 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1664 int classzone_idx, int alloc_flags)
1665 {
1666 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1667
1668 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1669 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1670
1671 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1672 free_pages);
1673 }
1674
1675 #ifdef CONFIG_NUMA
1676 /*
1677 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1678 * skip over zones that are not allowed by the cpuset, or that have
1679 * been recently (in last second) found to be nearly full. See further
1680 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1681 * that have to skip over a lot of full or unallowed zones.
1682 *
1683 * If the zonelist cache is present in the passed in zonelist, then
1684 * returns a pointer to the allowed node mask (either the current
1685 * tasks mems_allowed, or node_states[N_MEMORY].)
1686 *
1687 * If the zonelist cache is not available for this zonelist, does
1688 * nothing and returns NULL.
1689 *
1690 * If the fullzones BITMAP in the zonelist cache is stale (more than
1691 * a second since last zap'd) then we zap it out (clear its bits.)
1692 *
1693 * We hold off even calling zlc_setup, until after we've checked the
1694 * first zone in the zonelist, on the theory that most allocations will
1695 * be satisfied from that first zone, so best to examine that zone as
1696 * quickly as we can.
1697 */
1698 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1699 {
1700 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1701 nodemask_t *allowednodes; /* zonelist_cache approximation */
1702
1703 zlc = zonelist->zlcache_ptr;
1704 if (!zlc)
1705 return NULL;
1706
1707 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1708 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1709 zlc->last_full_zap = jiffies;
1710 }
1711
1712 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1713 &cpuset_current_mems_allowed :
1714 &node_states[N_MEMORY];
1715 return allowednodes;
1716 }
1717
1718 /*
1719 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1720 * if it is worth looking at further for free memory:
1721 * 1) Check that the zone isn't thought to be full (doesn't have its
1722 * bit set in the zonelist_cache fullzones BITMAP).
1723 * 2) Check that the zones node (obtained from the zonelist_cache
1724 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1725 * Return true (non-zero) if zone is worth looking at further, or
1726 * else return false (zero) if it is not.
1727 *
1728 * This check -ignores- the distinction between various watermarks,
1729 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1730 * found to be full for any variation of these watermarks, it will
1731 * be considered full for up to one second by all requests, unless
1732 * we are so low on memory on all allowed nodes that we are forced
1733 * into the second scan of the zonelist.
1734 *
1735 * In the second scan we ignore this zonelist cache and exactly
1736 * apply the watermarks to all zones, even it is slower to do so.
1737 * We are low on memory in the second scan, and should leave no stone
1738 * unturned looking for a free page.
1739 */
1740 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1741 nodemask_t *allowednodes)
1742 {
1743 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1744 int i; /* index of *z in zonelist zones */
1745 int n; /* node that zone *z is on */
1746
1747 zlc = zonelist->zlcache_ptr;
1748 if (!zlc)
1749 return 1;
1750
1751 i = z - zonelist->_zonerefs;
1752 n = zlc->z_to_n[i];
1753
1754 /* This zone is worth trying if it is allowed but not full */
1755 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1756 }
1757
1758 /*
1759 * Given 'z' scanning a zonelist, set the corresponding bit in
1760 * zlc->fullzones, so that subsequent attempts to allocate a page
1761 * from that zone don't waste time re-examining it.
1762 */
1763 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1764 {
1765 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1766 int i; /* index of *z in zonelist zones */
1767
1768 zlc = zonelist->zlcache_ptr;
1769 if (!zlc)
1770 return;
1771
1772 i = z - zonelist->_zonerefs;
1773
1774 set_bit(i, zlc->fullzones);
1775 }
1776
1777 /*
1778 * clear all zones full, called after direct reclaim makes progress so that
1779 * a zone that was recently full is not skipped over for up to a second
1780 */
1781 static void zlc_clear_zones_full(struct zonelist *zonelist)
1782 {
1783 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1784
1785 zlc = zonelist->zlcache_ptr;
1786 if (!zlc)
1787 return;
1788
1789 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1790 }
1791
1792 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1793 {
1794 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1795 }
1796
1797 static void __paginginit init_zone_allows_reclaim(int nid)
1798 {
1799 int i;
1800
1801 for_each_online_node(i)
1802 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1803 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1804 else
1805 zone_reclaim_mode = 1;
1806 }
1807
1808 #else /* CONFIG_NUMA */
1809
1810 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1811 {
1812 return NULL;
1813 }
1814
1815 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1816 nodemask_t *allowednodes)
1817 {
1818 return 1;
1819 }
1820
1821 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1822 {
1823 }
1824
1825 static void zlc_clear_zones_full(struct zonelist *zonelist)
1826 {
1827 }
1828
1829 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1830 {
1831 return true;
1832 }
1833
1834 static inline void init_zone_allows_reclaim(int nid)
1835 {
1836 }
1837 #endif /* CONFIG_NUMA */
1838
1839 /*
1840 * get_page_from_freelist goes through the zonelist trying to allocate
1841 * a page.
1842 */
1843 static struct page *
1844 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1845 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1846 struct zone *preferred_zone, int migratetype)
1847 {
1848 struct zoneref *z;
1849 struct page *page = NULL;
1850 int classzone_idx;
1851 struct zone *zone;
1852 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1853 int zlc_active = 0; /* set if using zonelist_cache */
1854 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1855
1856 classzone_idx = zone_idx(preferred_zone);
1857 zonelist_scan:
1858 /*
1859 * Scan zonelist, looking for a zone with enough free.
1860 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1861 */
1862 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1863 high_zoneidx, nodemask) {
1864 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1865 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1866 continue;
1867 if ((alloc_flags & ALLOC_CPUSET) &&
1868 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1869 continue;
1870 /*
1871 * When allocating a page cache page for writing, we
1872 * want to get it from a zone that is within its dirty
1873 * limit, such that no single zone holds more than its
1874 * proportional share of globally allowed dirty pages.
1875 * The dirty limits take into account the zone's
1876 * lowmem reserves and high watermark so that kswapd
1877 * should be able to balance it without having to
1878 * write pages from its LRU list.
1879 *
1880 * This may look like it could increase pressure on
1881 * lower zones by failing allocations in higher zones
1882 * before they are full. But the pages that do spill
1883 * over are limited as the lower zones are protected
1884 * by this very same mechanism. It should not become
1885 * a practical burden to them.
1886 *
1887 * XXX: For now, allow allocations to potentially
1888 * exceed the per-zone dirty limit in the slowpath
1889 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1890 * which is important when on a NUMA setup the allowed
1891 * zones are together not big enough to reach the
1892 * global limit. The proper fix for these situations
1893 * will require awareness of zones in the
1894 * dirty-throttling and the flusher threads.
1895 */
1896 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1897 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1898 goto this_zone_full;
1899
1900 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1901 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1902 unsigned long mark;
1903 int ret;
1904
1905 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1906 if (zone_watermark_ok(zone, order, mark,
1907 classzone_idx, alloc_flags))
1908 goto try_this_zone;
1909
1910 if (IS_ENABLED(CONFIG_NUMA) &&
1911 !did_zlc_setup && nr_online_nodes > 1) {
1912 /*
1913 * we do zlc_setup if there are multiple nodes
1914 * and before considering the first zone allowed
1915 * by the cpuset.
1916 */
1917 allowednodes = zlc_setup(zonelist, alloc_flags);
1918 zlc_active = 1;
1919 did_zlc_setup = 1;
1920 }
1921
1922 if (zone_reclaim_mode == 0 ||
1923 !zone_allows_reclaim(preferred_zone, zone))
1924 goto this_zone_full;
1925
1926 /*
1927 * As we may have just activated ZLC, check if the first
1928 * eligible zone has failed zone_reclaim recently.
1929 */
1930 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1931 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1932 continue;
1933
1934 ret = zone_reclaim(zone, gfp_mask, order);
1935 switch (ret) {
1936 case ZONE_RECLAIM_NOSCAN:
1937 /* did not scan */
1938 continue;
1939 case ZONE_RECLAIM_FULL:
1940 /* scanned but unreclaimable */
1941 continue;
1942 default:
1943 /* did we reclaim enough */
1944 if (!zone_watermark_ok(zone, order, mark,
1945 classzone_idx, alloc_flags))
1946 goto this_zone_full;
1947 }
1948 }
1949
1950 try_this_zone:
1951 page = buffered_rmqueue(preferred_zone, zone, order,
1952 gfp_mask, migratetype);
1953 if (page)
1954 break;
1955 this_zone_full:
1956 if (IS_ENABLED(CONFIG_NUMA))
1957 zlc_mark_zone_full(zonelist, z);
1958 }
1959
1960 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1961 /* Disable zlc cache for second zonelist scan */
1962 zlc_active = 0;
1963 goto zonelist_scan;
1964 }
1965
1966 if (page)
1967 /*
1968 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1969 * necessary to allocate the page. The expectation is
1970 * that the caller is taking steps that will free more
1971 * memory. The caller should avoid the page being used
1972 * for !PFMEMALLOC purposes.
1973 */
1974 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1975
1976 return page;
1977 }
1978
1979 /*
1980 * Large machines with many possible nodes should not always dump per-node
1981 * meminfo in irq context.
1982 */
1983 static inline bool should_suppress_show_mem(void)
1984 {
1985 bool ret = false;
1986
1987 #if NODES_SHIFT > 8
1988 ret = in_interrupt();
1989 #endif
1990 return ret;
1991 }
1992
1993 static DEFINE_RATELIMIT_STATE(nopage_rs,
1994 DEFAULT_RATELIMIT_INTERVAL,
1995 DEFAULT_RATELIMIT_BURST);
1996
1997 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1998 {
1999 unsigned int filter = SHOW_MEM_FILTER_NODES;
2000
2001 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2002 debug_guardpage_minorder() > 0)
2003 return;
2004
2005 /*
2006 * Walking all memory to count page types is very expensive and should
2007 * be inhibited in non-blockable contexts.
2008 */
2009 if (!(gfp_mask & __GFP_WAIT))
2010 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2011
2012 /*
2013 * This documents exceptions given to allocations in certain
2014 * contexts that are allowed to allocate outside current's set
2015 * of allowed nodes.
2016 */
2017 if (!(gfp_mask & __GFP_NOMEMALLOC))
2018 if (test_thread_flag(TIF_MEMDIE) ||
2019 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2020 filter &= ~SHOW_MEM_FILTER_NODES;
2021 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2022 filter &= ~SHOW_MEM_FILTER_NODES;
2023
2024 if (fmt) {
2025 struct va_format vaf;
2026 va_list args;
2027
2028 va_start(args, fmt);
2029
2030 vaf.fmt = fmt;
2031 vaf.va = &args;
2032
2033 pr_warn("%pV", &vaf);
2034
2035 va_end(args);
2036 }
2037
2038 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2039 current->comm, order, gfp_mask);
2040
2041 dump_stack();
2042 if (!should_suppress_show_mem())
2043 show_mem(filter);
2044 }
2045
2046 static inline int
2047 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2048 unsigned long did_some_progress,
2049 unsigned long pages_reclaimed)
2050 {
2051 /* Do not loop if specifically requested */
2052 if (gfp_mask & __GFP_NORETRY)
2053 return 0;
2054
2055 /* Always retry if specifically requested */
2056 if (gfp_mask & __GFP_NOFAIL)
2057 return 1;
2058
2059 /*
2060 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2061 * making forward progress without invoking OOM. Suspend also disables
2062 * storage devices so kswapd will not help. Bail if we are suspending.
2063 */
2064 if (!did_some_progress && pm_suspended_storage())
2065 return 0;
2066
2067 /*
2068 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2069 * means __GFP_NOFAIL, but that may not be true in other
2070 * implementations.
2071 */
2072 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2073 return 1;
2074
2075 /*
2076 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2077 * specified, then we retry until we no longer reclaim any pages
2078 * (above), or we've reclaimed an order of pages at least as
2079 * large as the allocation's order. In both cases, if the
2080 * allocation still fails, we stop retrying.
2081 */
2082 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2083 return 1;
2084
2085 return 0;
2086 }
2087
2088 static inline struct page *
2089 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2090 struct zonelist *zonelist, enum zone_type high_zoneidx,
2091 nodemask_t *nodemask, struct zone *preferred_zone,
2092 int migratetype)
2093 {
2094 struct page *page;
2095
2096 /* Acquire the OOM killer lock for the zones in zonelist */
2097 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2098 schedule_timeout_uninterruptible(1);
2099 return NULL;
2100 }
2101
2102 /*
2103 * Go through the zonelist yet one more time, keep very high watermark
2104 * here, this is only to catch a parallel oom killing, we must fail if
2105 * we're still under heavy pressure.
2106 */
2107 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2108 order, zonelist, high_zoneidx,
2109 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2110 preferred_zone, migratetype);
2111 if (page)
2112 goto out;
2113
2114 if (!(gfp_mask & __GFP_NOFAIL)) {
2115 /* The OOM killer will not help higher order allocs */
2116 if (order > PAGE_ALLOC_COSTLY_ORDER)
2117 goto out;
2118 /* The OOM killer does not needlessly kill tasks for lowmem */
2119 if (high_zoneidx < ZONE_NORMAL)
2120 goto out;
2121 /*
2122 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2123 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2124 * The caller should handle page allocation failure by itself if
2125 * it specifies __GFP_THISNODE.
2126 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2127 */
2128 if (gfp_mask & __GFP_THISNODE)
2129 goto out;
2130 }
2131 /* Exhausted what can be done so it's blamo time */
2132 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2133
2134 out:
2135 clear_zonelist_oom(zonelist, gfp_mask);
2136 return page;
2137 }
2138
2139 #ifdef CONFIG_COMPACTION
2140 /* Try memory compaction for high-order allocations before reclaim */
2141 static struct page *
2142 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2143 struct zonelist *zonelist, enum zone_type high_zoneidx,
2144 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2145 int migratetype, bool sync_migration,
2146 bool *contended_compaction, bool *deferred_compaction,
2147 unsigned long *did_some_progress)
2148 {
2149 if (!order)
2150 return NULL;
2151
2152 if (compaction_deferred(preferred_zone, order)) {
2153 *deferred_compaction = true;
2154 return NULL;
2155 }
2156
2157 current->flags |= PF_MEMALLOC;
2158 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2159 nodemask, sync_migration,
2160 contended_compaction);
2161 current->flags &= ~PF_MEMALLOC;
2162
2163 if (*did_some_progress != COMPACT_SKIPPED) {
2164 struct page *page;
2165
2166 /* Page migration frees to the PCP lists but we want merging */
2167 drain_pages(get_cpu());
2168 put_cpu();
2169
2170 page = get_page_from_freelist(gfp_mask, nodemask,
2171 order, zonelist, high_zoneidx,
2172 alloc_flags & ~ALLOC_NO_WATERMARKS,
2173 preferred_zone, migratetype);
2174 if (page) {
2175 preferred_zone->compact_blockskip_flush = false;
2176 preferred_zone->compact_considered = 0;
2177 preferred_zone->compact_defer_shift = 0;
2178 if (order >= preferred_zone->compact_order_failed)
2179 preferred_zone->compact_order_failed = order + 1;
2180 count_vm_event(COMPACTSUCCESS);
2181 return page;
2182 }
2183
2184 /*
2185 * It's bad if compaction run occurs and fails.
2186 * The most likely reason is that pages exist,
2187 * but not enough to satisfy watermarks.
2188 */
2189 count_vm_event(COMPACTFAIL);
2190
2191 /*
2192 * As async compaction considers a subset of pageblocks, only
2193 * defer if the failure was a sync compaction failure.
2194 */
2195 if (sync_migration)
2196 defer_compaction(preferred_zone, order);
2197
2198 cond_resched();
2199 }
2200
2201 return NULL;
2202 }
2203 #else
2204 static inline struct page *
2205 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2206 struct zonelist *zonelist, enum zone_type high_zoneidx,
2207 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2208 int migratetype, bool sync_migration,
2209 bool *contended_compaction, bool *deferred_compaction,
2210 unsigned long *did_some_progress)
2211 {
2212 return NULL;
2213 }
2214 #endif /* CONFIG_COMPACTION */
2215
2216 /* Perform direct synchronous page reclaim */
2217 static int
2218 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2219 nodemask_t *nodemask)
2220 {
2221 struct reclaim_state reclaim_state;
2222 int progress;
2223
2224 cond_resched();
2225
2226 /* We now go into synchronous reclaim */
2227 cpuset_memory_pressure_bump();
2228 current->flags |= PF_MEMALLOC;
2229 lockdep_set_current_reclaim_state(gfp_mask);
2230 reclaim_state.reclaimed_slab = 0;
2231 current->reclaim_state = &reclaim_state;
2232
2233 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2234
2235 current->reclaim_state = NULL;
2236 lockdep_clear_current_reclaim_state();
2237 current->flags &= ~PF_MEMALLOC;
2238
2239 cond_resched();
2240
2241 return progress;
2242 }
2243
2244 /* The really slow allocator path where we enter direct reclaim */
2245 static inline struct page *
2246 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2247 struct zonelist *zonelist, enum zone_type high_zoneidx,
2248 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2249 int migratetype, unsigned long *did_some_progress)
2250 {
2251 struct page *page = NULL;
2252 bool drained = false;
2253
2254 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2255 nodemask);
2256 if (unlikely(!(*did_some_progress)))
2257 return NULL;
2258
2259 /* After successful reclaim, reconsider all zones for allocation */
2260 if (IS_ENABLED(CONFIG_NUMA))
2261 zlc_clear_zones_full(zonelist);
2262
2263 retry:
2264 page = get_page_from_freelist(gfp_mask, nodemask, order,
2265 zonelist, high_zoneidx,
2266 alloc_flags & ~ALLOC_NO_WATERMARKS,
2267 preferred_zone, migratetype);
2268
2269 /*
2270 * If an allocation failed after direct reclaim, it could be because
2271 * pages are pinned on the per-cpu lists. Drain them and try again
2272 */
2273 if (!page && !drained) {
2274 drain_all_pages();
2275 drained = true;
2276 goto retry;
2277 }
2278
2279 return page;
2280 }
2281
2282 /*
2283 * This is called in the allocator slow-path if the allocation request is of
2284 * sufficient urgency to ignore watermarks and take other desperate measures
2285 */
2286 static inline struct page *
2287 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2288 struct zonelist *zonelist, enum zone_type high_zoneidx,
2289 nodemask_t *nodemask, struct zone *preferred_zone,
2290 int migratetype)
2291 {
2292 struct page *page;
2293
2294 do {
2295 page = get_page_from_freelist(gfp_mask, nodemask, order,
2296 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2297 preferred_zone, migratetype);
2298
2299 if (!page && gfp_mask & __GFP_NOFAIL)
2300 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2301 } while (!page && (gfp_mask & __GFP_NOFAIL));
2302
2303 return page;
2304 }
2305
2306 static inline
2307 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2308 enum zone_type high_zoneidx,
2309 enum zone_type classzone_idx)
2310 {
2311 struct zoneref *z;
2312 struct zone *zone;
2313
2314 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2315 wakeup_kswapd(zone, order, classzone_idx);
2316 }
2317
2318 static inline int
2319 gfp_to_alloc_flags(gfp_t gfp_mask)
2320 {
2321 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2322 const gfp_t wait = gfp_mask & __GFP_WAIT;
2323
2324 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2325 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2326
2327 /*
2328 * The caller may dip into page reserves a bit more if the caller
2329 * cannot run direct reclaim, or if the caller has realtime scheduling
2330 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2331 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2332 */
2333 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2334
2335 if (!wait) {
2336 /*
2337 * Not worth trying to allocate harder for
2338 * __GFP_NOMEMALLOC even if it can't schedule.
2339 */
2340 if (!(gfp_mask & __GFP_NOMEMALLOC))
2341 alloc_flags |= ALLOC_HARDER;
2342 /*
2343 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2344 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2345 */
2346 alloc_flags &= ~ALLOC_CPUSET;
2347 } else if (unlikely(rt_task(current)) && !in_interrupt())
2348 alloc_flags |= ALLOC_HARDER;
2349
2350 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2351 if (gfp_mask & __GFP_MEMALLOC)
2352 alloc_flags |= ALLOC_NO_WATERMARKS;
2353 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2354 alloc_flags |= ALLOC_NO_WATERMARKS;
2355 else if (!in_interrupt() &&
2356 ((current->flags & PF_MEMALLOC) ||
2357 unlikely(test_thread_flag(TIF_MEMDIE))))
2358 alloc_flags |= ALLOC_NO_WATERMARKS;
2359 }
2360 #ifdef CONFIG_CMA
2361 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2362 alloc_flags |= ALLOC_CMA;
2363 #endif
2364 return alloc_flags;
2365 }
2366
2367 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2368 {
2369 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2370 }
2371
2372 static inline struct page *
2373 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2374 struct zonelist *zonelist, enum zone_type high_zoneidx,
2375 nodemask_t *nodemask, struct zone *preferred_zone,
2376 int migratetype)
2377 {
2378 const gfp_t wait = gfp_mask & __GFP_WAIT;
2379 struct page *page = NULL;
2380 int alloc_flags;
2381 unsigned long pages_reclaimed = 0;
2382 unsigned long did_some_progress;
2383 bool sync_migration = false;
2384 bool deferred_compaction = false;
2385 bool contended_compaction = false;
2386
2387 /*
2388 * In the slowpath, we sanity check order to avoid ever trying to
2389 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2390 * be using allocators in order of preference for an area that is
2391 * too large.
2392 */
2393 if (order >= MAX_ORDER) {
2394 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2395 return NULL;
2396 }
2397
2398 /*
2399 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2400 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2401 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2402 * using a larger set of nodes after it has established that the
2403 * allowed per node queues are empty and that nodes are
2404 * over allocated.
2405 */
2406 if (IS_ENABLED(CONFIG_NUMA) &&
2407 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2408 goto nopage;
2409
2410 restart:
2411 if (!(gfp_mask & __GFP_NO_KSWAPD))
2412 wake_all_kswapd(order, zonelist, high_zoneidx,
2413 zone_idx(preferred_zone));
2414
2415 /*
2416 * OK, we're below the kswapd watermark and have kicked background
2417 * reclaim. Now things get more complex, so set up alloc_flags according
2418 * to how we want to proceed.
2419 */
2420 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2421
2422 /*
2423 * Find the true preferred zone if the allocation is unconstrained by
2424 * cpusets.
2425 */
2426 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2427 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2428 &preferred_zone);
2429
2430 rebalance:
2431 /* This is the last chance, in general, before the goto nopage. */
2432 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2433 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2434 preferred_zone, migratetype);
2435 if (page)
2436 goto got_pg;
2437
2438 /* Allocate without watermarks if the context allows */
2439 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2440 /*
2441 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2442 * the allocation is high priority and these type of
2443 * allocations are system rather than user orientated
2444 */
2445 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2446
2447 page = __alloc_pages_high_priority(gfp_mask, order,
2448 zonelist, high_zoneidx, nodemask,
2449 preferred_zone, migratetype);
2450 if (page) {
2451 goto got_pg;
2452 }
2453 }
2454
2455 /* Atomic allocations - we can't balance anything */
2456 if (!wait)
2457 goto nopage;
2458
2459 /* Avoid recursion of direct reclaim */
2460 if (current->flags & PF_MEMALLOC)
2461 goto nopage;
2462
2463 /* Avoid allocations with no watermarks from looping endlessly */
2464 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2465 goto nopage;
2466
2467 /*
2468 * Try direct compaction. The first pass is asynchronous. Subsequent
2469 * attempts after direct reclaim are synchronous
2470 */
2471 page = __alloc_pages_direct_compact(gfp_mask, order,
2472 zonelist, high_zoneidx,
2473 nodemask,
2474 alloc_flags, preferred_zone,
2475 migratetype, sync_migration,
2476 &contended_compaction,
2477 &deferred_compaction,
2478 &did_some_progress);
2479 if (page)
2480 goto got_pg;
2481 sync_migration = true;
2482
2483 /*
2484 * If compaction is deferred for high-order allocations, it is because
2485 * sync compaction recently failed. In this is the case and the caller
2486 * requested a movable allocation that does not heavily disrupt the
2487 * system then fail the allocation instead of entering direct reclaim.
2488 */
2489 if ((deferred_compaction || contended_compaction) &&
2490 (gfp_mask & __GFP_NO_KSWAPD))
2491 goto nopage;
2492
2493 /* Try direct reclaim and then allocating */
2494 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2495 zonelist, high_zoneidx,
2496 nodemask,
2497 alloc_flags, preferred_zone,
2498 migratetype, &did_some_progress);
2499 if (page)
2500 goto got_pg;
2501
2502 /*
2503 * If we failed to make any progress reclaiming, then we are
2504 * running out of options and have to consider going OOM
2505 */
2506 if (!did_some_progress) {
2507 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2508 if (oom_killer_disabled)
2509 goto nopage;
2510 /* Coredumps can quickly deplete all memory reserves */
2511 if ((current->flags & PF_DUMPCORE) &&
2512 !(gfp_mask & __GFP_NOFAIL))
2513 goto nopage;
2514 page = __alloc_pages_may_oom(gfp_mask, order,
2515 zonelist, high_zoneidx,
2516 nodemask, preferred_zone,
2517 migratetype);
2518 if (page)
2519 goto got_pg;
2520
2521 if (!(gfp_mask & __GFP_NOFAIL)) {
2522 /*
2523 * The oom killer is not called for high-order
2524 * allocations that may fail, so if no progress
2525 * is being made, there are no other options and
2526 * retrying is unlikely to help.
2527 */
2528 if (order > PAGE_ALLOC_COSTLY_ORDER)
2529 goto nopage;
2530 /*
2531 * The oom killer is not called for lowmem
2532 * allocations to prevent needlessly killing
2533 * innocent tasks.
2534 */
2535 if (high_zoneidx < ZONE_NORMAL)
2536 goto nopage;
2537 }
2538
2539 goto restart;
2540 }
2541 }
2542
2543 /* Check if we should retry the allocation */
2544 pages_reclaimed += did_some_progress;
2545 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2546 pages_reclaimed)) {
2547 /* Wait for some write requests to complete then retry */
2548 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2549 goto rebalance;
2550 } else {
2551 /*
2552 * High-order allocations do not necessarily loop after
2553 * direct reclaim and reclaim/compaction depends on compaction
2554 * being called after reclaim so call directly if necessary
2555 */
2556 page = __alloc_pages_direct_compact(gfp_mask, order,
2557 zonelist, high_zoneidx,
2558 nodemask,
2559 alloc_flags, preferred_zone,
2560 migratetype, sync_migration,
2561 &contended_compaction,
2562 &deferred_compaction,
2563 &did_some_progress);
2564 if (page)
2565 goto got_pg;
2566 }
2567
2568 nopage:
2569 warn_alloc_failed(gfp_mask, order, NULL);
2570 return page;
2571 got_pg:
2572 if (kmemcheck_enabled)
2573 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2574
2575 return page;
2576 }
2577
2578 /*
2579 * This is the 'heart' of the zoned buddy allocator.
2580 */
2581 struct page *
2582 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2583 struct zonelist *zonelist, nodemask_t *nodemask)
2584 {
2585 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2586 struct zone *preferred_zone;
2587 struct page *page = NULL;
2588 int migratetype = allocflags_to_migratetype(gfp_mask);
2589 unsigned int cpuset_mems_cookie;
2590 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2591 struct mem_cgroup *memcg = NULL;
2592
2593 gfp_mask &= gfp_allowed_mask;
2594
2595 lockdep_trace_alloc(gfp_mask);
2596
2597 might_sleep_if(gfp_mask & __GFP_WAIT);
2598
2599 if (should_fail_alloc_page(gfp_mask, order))
2600 return NULL;
2601
2602 /*
2603 * Check the zones suitable for the gfp_mask contain at least one
2604 * valid zone. It's possible to have an empty zonelist as a result
2605 * of GFP_THISNODE and a memoryless node
2606 */
2607 if (unlikely(!zonelist->_zonerefs->zone))
2608 return NULL;
2609
2610 /*
2611 * Will only have any effect when __GFP_KMEMCG is set. This is
2612 * verified in the (always inline) callee
2613 */
2614 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2615 return NULL;
2616
2617 retry_cpuset:
2618 cpuset_mems_cookie = get_mems_allowed();
2619
2620 /* The preferred zone is used for statistics later */
2621 first_zones_zonelist(zonelist, high_zoneidx,
2622 nodemask ? : &cpuset_current_mems_allowed,
2623 &preferred_zone);
2624 if (!preferred_zone)
2625 goto out;
2626
2627 #ifdef CONFIG_CMA
2628 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2629 alloc_flags |= ALLOC_CMA;
2630 #endif
2631 /* First allocation attempt */
2632 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2633 zonelist, high_zoneidx, alloc_flags,
2634 preferred_zone, migratetype);
2635 if (unlikely(!page)) {
2636 /*
2637 * Runtime PM, block IO and its error handling path
2638 * can deadlock because I/O on the device might not
2639 * complete.
2640 */
2641 gfp_mask = memalloc_noio_flags(gfp_mask);
2642 page = __alloc_pages_slowpath(gfp_mask, order,
2643 zonelist, high_zoneidx, nodemask,
2644 preferred_zone, migratetype);
2645 }
2646
2647 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2648
2649 out:
2650 /*
2651 * When updating a task's mems_allowed, it is possible to race with
2652 * parallel threads in such a way that an allocation can fail while
2653 * the mask is being updated. If a page allocation is about to fail,
2654 * check if the cpuset changed during allocation and if so, retry.
2655 */
2656 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2657 goto retry_cpuset;
2658
2659 memcg_kmem_commit_charge(page, memcg, order);
2660
2661 return page;
2662 }
2663 EXPORT_SYMBOL(__alloc_pages_nodemask);
2664
2665 /*
2666 * Common helper functions.
2667 */
2668 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2669 {
2670 struct page *page;
2671
2672 /*
2673 * __get_free_pages() returns a 32-bit address, which cannot represent
2674 * a highmem page
2675 */
2676 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2677
2678 page = alloc_pages(gfp_mask, order);
2679 if (!page)
2680 return 0;
2681 return (unsigned long) page_address(page);
2682 }
2683 EXPORT_SYMBOL(__get_free_pages);
2684
2685 unsigned long get_zeroed_page(gfp_t gfp_mask)
2686 {
2687 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2688 }
2689 EXPORT_SYMBOL(get_zeroed_page);
2690
2691 void __free_pages(struct page *page, unsigned int order)
2692 {
2693 if (put_page_testzero(page)) {
2694 if (order == 0)
2695 free_hot_cold_page(page, 0);
2696 else
2697 __free_pages_ok(page, order);
2698 }
2699 }
2700
2701 EXPORT_SYMBOL(__free_pages);
2702
2703 void free_pages(unsigned long addr, unsigned int order)
2704 {
2705 if (addr != 0) {
2706 VM_BUG_ON(!virt_addr_valid((void *)addr));
2707 __free_pages(virt_to_page((void *)addr), order);
2708 }
2709 }
2710
2711 EXPORT_SYMBOL(free_pages);
2712
2713 /*
2714 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2715 * pages allocated with __GFP_KMEMCG.
2716 *
2717 * Those pages are accounted to a particular memcg, embedded in the
2718 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2719 * for that information only to find out that it is NULL for users who have no
2720 * interest in that whatsoever, we provide these functions.
2721 *
2722 * The caller knows better which flags it relies on.
2723 */
2724 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2725 {
2726 memcg_kmem_uncharge_pages(page, order);
2727 __free_pages(page, order);
2728 }
2729
2730 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2731 {
2732 if (addr != 0) {
2733 VM_BUG_ON(!virt_addr_valid((void *)addr));
2734 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2735 }
2736 }
2737
2738 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2739 {
2740 if (addr) {
2741 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2742 unsigned long used = addr + PAGE_ALIGN(size);
2743
2744 split_page(virt_to_page((void *)addr), order);
2745 while (used < alloc_end) {
2746 free_page(used);
2747 used += PAGE_SIZE;
2748 }
2749 }
2750 return (void *)addr;
2751 }
2752
2753 /**
2754 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2755 * @size: the number of bytes to allocate
2756 * @gfp_mask: GFP flags for the allocation
2757 *
2758 * This function is similar to alloc_pages(), except that it allocates the
2759 * minimum number of pages to satisfy the request. alloc_pages() can only
2760 * allocate memory in power-of-two pages.
2761 *
2762 * This function is also limited by MAX_ORDER.
2763 *
2764 * Memory allocated by this function must be released by free_pages_exact().
2765 */
2766 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2767 {
2768 unsigned int order = get_order(size);
2769 unsigned long addr;
2770
2771 addr = __get_free_pages(gfp_mask, order);
2772 return make_alloc_exact(addr, order, size);
2773 }
2774 EXPORT_SYMBOL(alloc_pages_exact);
2775
2776 /**
2777 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2778 * pages on a node.
2779 * @nid: the preferred node ID where memory should be allocated
2780 * @size: the number of bytes to allocate
2781 * @gfp_mask: GFP flags for the allocation
2782 *
2783 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2784 * back.
2785 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2786 * but is not exact.
2787 */
2788 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2789 {
2790 unsigned order = get_order(size);
2791 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2792 if (!p)
2793 return NULL;
2794 return make_alloc_exact((unsigned long)page_address(p), order, size);
2795 }
2796 EXPORT_SYMBOL(alloc_pages_exact_nid);
2797
2798 /**
2799 * free_pages_exact - release memory allocated via alloc_pages_exact()
2800 * @virt: the value returned by alloc_pages_exact.
2801 * @size: size of allocation, same value as passed to alloc_pages_exact().
2802 *
2803 * Release the memory allocated by a previous call to alloc_pages_exact.
2804 */
2805 void free_pages_exact(void *virt, size_t size)
2806 {
2807 unsigned long addr = (unsigned long)virt;
2808 unsigned long end = addr + PAGE_ALIGN(size);
2809
2810 while (addr < end) {
2811 free_page(addr);
2812 addr += PAGE_SIZE;
2813 }
2814 }
2815 EXPORT_SYMBOL(free_pages_exact);
2816
2817 /**
2818 * nr_free_zone_pages - count number of pages beyond high watermark
2819 * @offset: The zone index of the highest zone
2820 *
2821 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2822 * high watermark within all zones at or below a given zone index. For each
2823 * zone, the number of pages is calculated as:
2824 * present_pages - high_pages
2825 */
2826 static unsigned long nr_free_zone_pages(int offset)
2827 {
2828 struct zoneref *z;
2829 struct zone *zone;
2830
2831 /* Just pick one node, since fallback list is circular */
2832 unsigned long sum = 0;
2833
2834 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2835
2836 for_each_zone_zonelist(zone, z, zonelist, offset) {
2837 unsigned long size = zone->managed_pages;
2838 unsigned long high = high_wmark_pages(zone);
2839 if (size > high)
2840 sum += size - high;
2841 }
2842
2843 return sum;
2844 }
2845
2846 /**
2847 * nr_free_buffer_pages - count number of pages beyond high watermark
2848 *
2849 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2850 * watermark within ZONE_DMA and ZONE_NORMAL.
2851 */
2852 unsigned long nr_free_buffer_pages(void)
2853 {
2854 return nr_free_zone_pages(gfp_zone(GFP_USER));
2855 }
2856 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2857
2858 /**
2859 * nr_free_pagecache_pages - count number of pages beyond high watermark
2860 *
2861 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2862 * high watermark within all zones.
2863 */
2864 unsigned long nr_free_pagecache_pages(void)
2865 {
2866 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2867 }
2868
2869 static inline void show_node(struct zone *zone)
2870 {
2871 if (IS_ENABLED(CONFIG_NUMA))
2872 printk("Node %d ", zone_to_nid(zone));
2873 }
2874
2875 void si_meminfo(struct sysinfo *val)
2876 {
2877 val->totalram = totalram_pages;
2878 val->sharedram = 0;
2879 val->freeram = global_page_state(NR_FREE_PAGES);
2880 val->bufferram = nr_blockdev_pages();
2881 val->totalhigh = totalhigh_pages;
2882 val->freehigh = nr_free_highpages();
2883 val->mem_unit = PAGE_SIZE;
2884 }
2885
2886 EXPORT_SYMBOL(si_meminfo);
2887
2888 #ifdef CONFIG_NUMA
2889 void si_meminfo_node(struct sysinfo *val, int nid)
2890 {
2891 pg_data_t *pgdat = NODE_DATA(nid);
2892
2893 val->totalram = pgdat->node_present_pages;
2894 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2895 #ifdef CONFIG_HIGHMEM
2896 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2897 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2898 NR_FREE_PAGES);
2899 #else
2900 val->totalhigh = 0;
2901 val->freehigh = 0;
2902 #endif
2903 val->mem_unit = PAGE_SIZE;
2904 }
2905 #endif
2906
2907 /*
2908 * Determine whether the node should be displayed or not, depending on whether
2909 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2910 */
2911 bool skip_free_areas_node(unsigned int flags, int nid)
2912 {
2913 bool ret = false;
2914 unsigned int cpuset_mems_cookie;
2915
2916 if (!(flags & SHOW_MEM_FILTER_NODES))
2917 goto out;
2918
2919 do {
2920 cpuset_mems_cookie = get_mems_allowed();
2921 ret = !node_isset(nid, cpuset_current_mems_allowed);
2922 } while (!put_mems_allowed(cpuset_mems_cookie));
2923 out:
2924 return ret;
2925 }
2926
2927 #define K(x) ((x) << (PAGE_SHIFT-10))
2928
2929 static void show_migration_types(unsigned char type)
2930 {
2931 static const char types[MIGRATE_TYPES] = {
2932 [MIGRATE_UNMOVABLE] = 'U',
2933 [MIGRATE_RECLAIMABLE] = 'E',
2934 [MIGRATE_MOVABLE] = 'M',
2935 [MIGRATE_RESERVE] = 'R',
2936 #ifdef CONFIG_CMA
2937 [MIGRATE_CMA] = 'C',
2938 #endif
2939 #ifdef CONFIG_MEMORY_ISOLATION
2940 [MIGRATE_ISOLATE] = 'I',
2941 #endif
2942 };
2943 char tmp[MIGRATE_TYPES + 1];
2944 char *p = tmp;
2945 int i;
2946
2947 for (i = 0; i < MIGRATE_TYPES; i++) {
2948 if (type & (1 << i))
2949 *p++ = types[i];
2950 }
2951
2952 *p = '\0';
2953 printk("(%s) ", tmp);
2954 }
2955
2956 /*
2957 * Show free area list (used inside shift_scroll-lock stuff)
2958 * We also calculate the percentage fragmentation. We do this by counting the
2959 * memory on each free list with the exception of the first item on the list.
2960 * Suppresses nodes that are not allowed by current's cpuset if
2961 * SHOW_MEM_FILTER_NODES is passed.
2962 */
2963 void show_free_areas(unsigned int filter)
2964 {
2965 int cpu;
2966 struct zone *zone;
2967
2968 for_each_populated_zone(zone) {
2969 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2970 continue;
2971 show_node(zone);
2972 printk("%s per-cpu:\n", zone->name);
2973
2974 for_each_online_cpu(cpu) {
2975 struct per_cpu_pageset *pageset;
2976
2977 pageset = per_cpu_ptr(zone->pageset, cpu);
2978
2979 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2980 cpu, pageset->pcp.high,
2981 pageset->pcp.batch, pageset->pcp.count);
2982 }
2983 }
2984
2985 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2986 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2987 " unevictable:%lu"
2988 " dirty:%lu writeback:%lu unstable:%lu\n"
2989 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2990 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2991 " free_cma:%lu\n",
2992 global_page_state(NR_ACTIVE_ANON),
2993 global_page_state(NR_INACTIVE_ANON),
2994 global_page_state(NR_ISOLATED_ANON),
2995 global_page_state(NR_ACTIVE_FILE),
2996 global_page_state(NR_INACTIVE_FILE),
2997 global_page_state(NR_ISOLATED_FILE),
2998 global_page_state(NR_UNEVICTABLE),
2999 global_page_state(NR_FILE_DIRTY),
3000 global_page_state(NR_WRITEBACK),
3001 global_page_state(NR_UNSTABLE_NFS),
3002 global_page_state(NR_FREE_PAGES),
3003 global_page_state(NR_SLAB_RECLAIMABLE),
3004 global_page_state(NR_SLAB_UNRECLAIMABLE),
3005 global_page_state(NR_FILE_MAPPED),
3006 global_page_state(NR_SHMEM),
3007 global_page_state(NR_PAGETABLE),
3008 global_page_state(NR_BOUNCE),
3009 global_page_state(NR_FREE_CMA_PAGES));
3010
3011 for_each_populated_zone(zone) {
3012 int i;
3013
3014 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3015 continue;
3016 show_node(zone);
3017 printk("%s"
3018 " free:%lukB"
3019 " min:%lukB"
3020 " low:%lukB"
3021 " high:%lukB"
3022 " active_anon:%lukB"
3023 " inactive_anon:%lukB"
3024 " active_file:%lukB"
3025 " inactive_file:%lukB"
3026 " unevictable:%lukB"
3027 " isolated(anon):%lukB"
3028 " isolated(file):%lukB"
3029 " present:%lukB"
3030 " managed:%lukB"
3031 " mlocked:%lukB"
3032 " dirty:%lukB"
3033 " writeback:%lukB"
3034 " mapped:%lukB"
3035 " shmem:%lukB"
3036 " slab_reclaimable:%lukB"
3037 " slab_unreclaimable:%lukB"
3038 " kernel_stack:%lukB"
3039 " pagetables:%lukB"
3040 " unstable:%lukB"
3041 " bounce:%lukB"
3042 " free_cma:%lukB"
3043 " writeback_tmp:%lukB"
3044 " pages_scanned:%lu"
3045 " all_unreclaimable? %s"
3046 "\n",
3047 zone->name,
3048 K(zone_page_state(zone, NR_FREE_PAGES)),
3049 K(min_wmark_pages(zone)),
3050 K(low_wmark_pages(zone)),
3051 K(high_wmark_pages(zone)),
3052 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3053 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3054 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3055 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3056 K(zone_page_state(zone, NR_UNEVICTABLE)),
3057 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3058 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3059 K(zone->present_pages),
3060 K(zone->managed_pages),
3061 K(zone_page_state(zone, NR_MLOCK)),
3062 K(zone_page_state(zone, NR_FILE_DIRTY)),
3063 K(zone_page_state(zone, NR_WRITEBACK)),
3064 K(zone_page_state(zone, NR_FILE_MAPPED)),
3065 K(zone_page_state(zone, NR_SHMEM)),
3066 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3067 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3068 zone_page_state(zone, NR_KERNEL_STACK) *
3069 THREAD_SIZE / 1024,
3070 K(zone_page_state(zone, NR_PAGETABLE)),
3071 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3072 K(zone_page_state(zone, NR_BOUNCE)),
3073 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3074 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3075 zone->pages_scanned,
3076 (zone->all_unreclaimable ? "yes" : "no")
3077 );
3078 printk("lowmem_reserve[]:");
3079 for (i = 0; i < MAX_NR_ZONES; i++)
3080 printk(" %lu", zone->lowmem_reserve[i]);
3081 printk("\n");
3082 }
3083
3084 for_each_populated_zone(zone) {
3085 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3086 unsigned char types[MAX_ORDER];
3087
3088 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3089 continue;
3090 show_node(zone);
3091 printk("%s: ", zone->name);
3092
3093 spin_lock_irqsave(&zone->lock, flags);
3094 for (order = 0; order < MAX_ORDER; order++) {
3095 struct free_area *area = &zone->free_area[order];
3096 int type;
3097
3098 nr[order] = area->nr_free;
3099 total += nr[order] << order;
3100
3101 types[order] = 0;
3102 for (type = 0; type < MIGRATE_TYPES; type++) {
3103 if (!list_empty(&area->free_list[type]))
3104 types[order] |= 1 << type;
3105 }
3106 }
3107 spin_unlock_irqrestore(&zone->lock, flags);
3108 for (order = 0; order < MAX_ORDER; order++) {
3109 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3110 if (nr[order])
3111 show_migration_types(types[order]);
3112 }
3113 printk("= %lukB\n", K(total));
3114 }
3115
3116 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3117
3118 show_swap_cache_info();
3119 }
3120
3121 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3122 {
3123 zoneref->zone = zone;
3124 zoneref->zone_idx = zone_idx(zone);
3125 }
3126
3127 /*
3128 * Builds allocation fallback zone lists.
3129 *
3130 * Add all populated zones of a node to the zonelist.
3131 */
3132 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3133 int nr_zones, enum zone_type zone_type)
3134 {
3135 struct zone *zone;
3136
3137 BUG_ON(zone_type >= MAX_NR_ZONES);
3138 zone_type++;
3139
3140 do {
3141 zone_type--;
3142 zone = pgdat->node_zones + zone_type;
3143 if (populated_zone(zone)) {
3144 zoneref_set_zone(zone,
3145 &zonelist->_zonerefs[nr_zones++]);
3146 check_highest_zone(zone_type);
3147 }
3148
3149 } while (zone_type);
3150 return nr_zones;
3151 }
3152
3153
3154 /*
3155 * zonelist_order:
3156 * 0 = automatic detection of better ordering.
3157 * 1 = order by ([node] distance, -zonetype)
3158 * 2 = order by (-zonetype, [node] distance)
3159 *
3160 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3161 * the same zonelist. So only NUMA can configure this param.
3162 */
3163 #define ZONELIST_ORDER_DEFAULT 0
3164 #define ZONELIST_ORDER_NODE 1
3165 #define ZONELIST_ORDER_ZONE 2
3166
3167 /* zonelist order in the kernel.
3168 * set_zonelist_order() will set this to NODE or ZONE.
3169 */
3170 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3171 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3172
3173
3174 #ifdef CONFIG_NUMA
3175 /* The value user specified ....changed by config */
3176 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3177 /* string for sysctl */
3178 #define NUMA_ZONELIST_ORDER_LEN 16
3179 char numa_zonelist_order[16] = "default";
3180
3181 /*
3182 * interface for configure zonelist ordering.
3183 * command line option "numa_zonelist_order"
3184 * = "[dD]efault - default, automatic configuration.
3185 * = "[nN]ode - order by node locality, then by zone within node
3186 * = "[zZ]one - order by zone, then by locality within zone
3187 */
3188
3189 static int __parse_numa_zonelist_order(char *s)
3190 {
3191 if (*s == 'd' || *s == 'D') {
3192 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3193 } else if (*s == 'n' || *s == 'N') {
3194 user_zonelist_order = ZONELIST_ORDER_NODE;
3195 } else if (*s == 'z' || *s == 'Z') {
3196 user_zonelist_order = ZONELIST_ORDER_ZONE;
3197 } else {
3198 printk(KERN_WARNING
3199 "Ignoring invalid numa_zonelist_order value: "
3200 "%s\n", s);
3201 return -EINVAL;
3202 }
3203 return 0;
3204 }
3205
3206 static __init int setup_numa_zonelist_order(char *s)
3207 {
3208 int ret;
3209
3210 if (!s)
3211 return 0;
3212
3213 ret = __parse_numa_zonelist_order(s);
3214 if (ret == 0)
3215 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3216
3217 return ret;
3218 }
3219 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3220
3221 /*
3222 * sysctl handler for numa_zonelist_order
3223 */
3224 int numa_zonelist_order_handler(ctl_table *table, int write,
3225 void __user *buffer, size_t *length,
3226 loff_t *ppos)
3227 {
3228 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3229 int ret;
3230 static DEFINE_MUTEX(zl_order_mutex);
3231
3232 mutex_lock(&zl_order_mutex);
3233 if (write)
3234 strcpy(saved_string, (char*)table->data);
3235 ret = proc_dostring(table, write, buffer, length, ppos);
3236 if (ret)
3237 goto out;
3238 if (write) {
3239 int oldval = user_zonelist_order;
3240 if (__parse_numa_zonelist_order((char*)table->data)) {
3241 /*
3242 * bogus value. restore saved string
3243 */
3244 strncpy((char*)table->data, saved_string,
3245 NUMA_ZONELIST_ORDER_LEN);
3246 user_zonelist_order = oldval;
3247 } else if (oldval != user_zonelist_order) {
3248 mutex_lock(&zonelists_mutex);
3249 build_all_zonelists(NULL, NULL);
3250 mutex_unlock(&zonelists_mutex);
3251 }
3252 }
3253 out:
3254 mutex_unlock(&zl_order_mutex);
3255 return ret;
3256 }
3257
3258
3259 #define MAX_NODE_LOAD (nr_online_nodes)
3260 static int node_load[MAX_NUMNODES];
3261
3262 /**
3263 * find_next_best_node - find the next node that should appear in a given node's fallback list
3264 * @node: node whose fallback list we're appending
3265 * @used_node_mask: nodemask_t of already used nodes
3266 *
3267 * We use a number of factors to determine which is the next node that should
3268 * appear on a given node's fallback list. The node should not have appeared
3269 * already in @node's fallback list, and it should be the next closest node
3270 * according to the distance array (which contains arbitrary distance values
3271 * from each node to each node in the system), and should also prefer nodes
3272 * with no CPUs, since presumably they'll have very little allocation pressure
3273 * on them otherwise.
3274 * It returns -1 if no node is found.
3275 */
3276 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3277 {
3278 int n, val;
3279 int min_val = INT_MAX;
3280 int best_node = NUMA_NO_NODE;
3281 const struct cpumask *tmp = cpumask_of_node(0);
3282
3283 /* Use the local node if we haven't already */
3284 if (!node_isset(node, *used_node_mask)) {
3285 node_set(node, *used_node_mask);
3286 return node;
3287 }
3288
3289 for_each_node_state(n, N_MEMORY) {
3290
3291 /* Don't want a node to appear more than once */
3292 if (node_isset(n, *used_node_mask))
3293 continue;
3294
3295 /* Use the distance array to find the distance */
3296 val = node_distance(node, n);
3297
3298 /* Penalize nodes under us ("prefer the next node") */
3299 val += (n < node);
3300
3301 /* Give preference to headless and unused nodes */
3302 tmp = cpumask_of_node(n);
3303 if (!cpumask_empty(tmp))
3304 val += PENALTY_FOR_NODE_WITH_CPUS;
3305
3306 /* Slight preference for less loaded node */
3307 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3308 val += node_load[n];
3309
3310 if (val < min_val) {
3311 min_val = val;
3312 best_node = n;
3313 }
3314 }
3315
3316 if (best_node >= 0)
3317 node_set(best_node, *used_node_mask);
3318
3319 return best_node;
3320 }
3321
3322
3323 /*
3324 * Build zonelists ordered by node and zones within node.
3325 * This results in maximum locality--normal zone overflows into local
3326 * DMA zone, if any--but risks exhausting DMA zone.
3327 */
3328 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3329 {
3330 int j;
3331 struct zonelist *zonelist;
3332
3333 zonelist = &pgdat->node_zonelists[0];
3334 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3335 ;
3336 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3337 MAX_NR_ZONES - 1);
3338 zonelist->_zonerefs[j].zone = NULL;
3339 zonelist->_zonerefs[j].zone_idx = 0;
3340 }
3341
3342 /*
3343 * Build gfp_thisnode zonelists
3344 */
3345 static void build_thisnode_zonelists(pg_data_t *pgdat)
3346 {
3347 int j;
3348 struct zonelist *zonelist;
3349
3350 zonelist = &pgdat->node_zonelists[1];
3351 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3352 zonelist->_zonerefs[j].zone = NULL;
3353 zonelist->_zonerefs[j].zone_idx = 0;
3354 }
3355
3356 /*
3357 * Build zonelists ordered by zone and nodes within zones.
3358 * This results in conserving DMA zone[s] until all Normal memory is
3359 * exhausted, but results in overflowing to remote node while memory
3360 * may still exist in local DMA zone.
3361 */
3362 static int node_order[MAX_NUMNODES];
3363
3364 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3365 {
3366 int pos, j, node;
3367 int zone_type; /* needs to be signed */
3368 struct zone *z;
3369 struct zonelist *zonelist;
3370
3371 zonelist = &pgdat->node_zonelists[0];
3372 pos = 0;
3373 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3374 for (j = 0; j < nr_nodes; j++) {
3375 node = node_order[j];
3376 z = &NODE_DATA(node)->node_zones[zone_type];
3377 if (populated_zone(z)) {
3378 zoneref_set_zone(z,
3379 &zonelist->_zonerefs[pos++]);
3380 check_highest_zone(zone_type);
3381 }
3382 }
3383 }
3384 zonelist->_zonerefs[pos].zone = NULL;
3385 zonelist->_zonerefs[pos].zone_idx = 0;
3386 }
3387
3388 static int default_zonelist_order(void)
3389 {
3390 int nid, zone_type;
3391 unsigned long low_kmem_size,total_size;
3392 struct zone *z;
3393 int average_size;
3394 /*
3395 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3396 * If they are really small and used heavily, the system can fall
3397 * into OOM very easily.
3398 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3399 */
3400 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3401 low_kmem_size = 0;
3402 total_size = 0;
3403 for_each_online_node(nid) {
3404 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3405 z = &NODE_DATA(nid)->node_zones[zone_type];
3406 if (populated_zone(z)) {
3407 if (zone_type < ZONE_NORMAL)
3408 low_kmem_size += z->present_pages;
3409 total_size += z->present_pages;
3410 } else if (zone_type == ZONE_NORMAL) {
3411 /*
3412 * If any node has only lowmem, then node order
3413 * is preferred to allow kernel allocations
3414 * locally; otherwise, they can easily infringe
3415 * on other nodes when there is an abundance of
3416 * lowmem available to allocate from.
3417 */
3418 return ZONELIST_ORDER_NODE;
3419 }
3420 }
3421 }
3422 if (!low_kmem_size || /* there are no DMA area. */
3423 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3424 return ZONELIST_ORDER_NODE;
3425 /*
3426 * look into each node's config.
3427 * If there is a node whose DMA/DMA32 memory is very big area on
3428 * local memory, NODE_ORDER may be suitable.
3429 */
3430 average_size = total_size /
3431 (nodes_weight(node_states[N_MEMORY]) + 1);
3432 for_each_online_node(nid) {
3433 low_kmem_size = 0;
3434 total_size = 0;
3435 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3436 z = &NODE_DATA(nid)->node_zones[zone_type];
3437 if (populated_zone(z)) {
3438 if (zone_type < ZONE_NORMAL)
3439 low_kmem_size += z->present_pages;
3440 total_size += z->present_pages;
3441 }
3442 }
3443 if (low_kmem_size &&
3444 total_size > average_size && /* ignore small node */
3445 low_kmem_size > total_size * 70/100)
3446 return ZONELIST_ORDER_NODE;
3447 }
3448 return ZONELIST_ORDER_ZONE;
3449 }
3450
3451 static void set_zonelist_order(void)
3452 {
3453 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3454 current_zonelist_order = default_zonelist_order();
3455 else
3456 current_zonelist_order = user_zonelist_order;
3457 }
3458
3459 static void build_zonelists(pg_data_t *pgdat)
3460 {
3461 int j, node, load;
3462 enum zone_type i;
3463 nodemask_t used_mask;
3464 int local_node, prev_node;
3465 struct zonelist *zonelist;
3466 int order = current_zonelist_order;
3467
3468 /* initialize zonelists */
3469 for (i = 0; i < MAX_ZONELISTS; i++) {
3470 zonelist = pgdat->node_zonelists + i;
3471 zonelist->_zonerefs[0].zone = NULL;
3472 zonelist->_zonerefs[0].zone_idx = 0;
3473 }
3474
3475 /* NUMA-aware ordering of nodes */
3476 local_node = pgdat->node_id;
3477 load = nr_online_nodes;
3478 prev_node = local_node;
3479 nodes_clear(used_mask);
3480
3481 memset(node_order, 0, sizeof(node_order));
3482 j = 0;
3483
3484 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3485 /*
3486 * We don't want to pressure a particular node.
3487 * So adding penalty to the first node in same
3488 * distance group to make it round-robin.
3489 */
3490 if (node_distance(local_node, node) !=
3491 node_distance(local_node, prev_node))
3492 node_load[node] = load;
3493
3494 prev_node = node;
3495 load--;
3496 if (order == ZONELIST_ORDER_NODE)
3497 build_zonelists_in_node_order(pgdat, node);
3498 else
3499 node_order[j++] = node; /* remember order */
3500 }
3501
3502 if (order == ZONELIST_ORDER_ZONE) {
3503 /* calculate node order -- i.e., DMA last! */
3504 build_zonelists_in_zone_order(pgdat, j);
3505 }
3506
3507 build_thisnode_zonelists(pgdat);
3508 }
3509
3510 /* Construct the zonelist performance cache - see further mmzone.h */
3511 static void build_zonelist_cache(pg_data_t *pgdat)
3512 {
3513 struct zonelist *zonelist;
3514 struct zonelist_cache *zlc;
3515 struct zoneref *z;
3516
3517 zonelist = &pgdat->node_zonelists[0];
3518 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3519 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3520 for (z = zonelist->_zonerefs; z->zone; z++)
3521 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3522 }
3523
3524 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3525 /*
3526 * Return node id of node used for "local" allocations.
3527 * I.e., first node id of first zone in arg node's generic zonelist.
3528 * Used for initializing percpu 'numa_mem', which is used primarily
3529 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3530 */
3531 int local_memory_node(int node)
3532 {
3533 struct zone *zone;
3534
3535 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3536 gfp_zone(GFP_KERNEL),
3537 NULL,
3538 &zone);
3539 return zone->node;
3540 }
3541 #endif
3542
3543 #else /* CONFIG_NUMA */
3544
3545 static void set_zonelist_order(void)
3546 {
3547 current_zonelist_order = ZONELIST_ORDER_ZONE;
3548 }
3549
3550 static void build_zonelists(pg_data_t *pgdat)
3551 {
3552 int node, local_node;
3553 enum zone_type j;
3554 struct zonelist *zonelist;
3555
3556 local_node = pgdat->node_id;
3557
3558 zonelist = &pgdat->node_zonelists[0];
3559 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3560
3561 /*
3562 * Now we build the zonelist so that it contains the zones
3563 * of all the other nodes.
3564 * We don't want to pressure a particular node, so when
3565 * building the zones for node N, we make sure that the
3566 * zones coming right after the local ones are those from
3567 * node N+1 (modulo N)
3568 */
3569 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3570 if (!node_online(node))
3571 continue;
3572 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3573 MAX_NR_ZONES - 1);
3574 }
3575 for (node = 0; node < local_node; node++) {
3576 if (!node_online(node))
3577 continue;
3578 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3579 MAX_NR_ZONES - 1);
3580 }
3581
3582 zonelist->_zonerefs[j].zone = NULL;
3583 zonelist->_zonerefs[j].zone_idx = 0;
3584 }
3585
3586 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3587 static void build_zonelist_cache(pg_data_t *pgdat)
3588 {
3589 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3590 }
3591
3592 #endif /* CONFIG_NUMA */
3593
3594 /*
3595 * Boot pageset table. One per cpu which is going to be used for all
3596 * zones and all nodes. The parameters will be set in such a way
3597 * that an item put on a list will immediately be handed over to
3598 * the buddy list. This is safe since pageset manipulation is done
3599 * with interrupts disabled.
3600 *
3601 * The boot_pagesets must be kept even after bootup is complete for
3602 * unused processors and/or zones. They do play a role for bootstrapping
3603 * hotplugged processors.
3604 *
3605 * zoneinfo_show() and maybe other functions do
3606 * not check if the processor is online before following the pageset pointer.
3607 * Other parts of the kernel may not check if the zone is available.
3608 */
3609 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3610 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3611 static void setup_zone_pageset(struct zone *zone);
3612
3613 /*
3614 * Global mutex to protect against size modification of zonelists
3615 * as well as to serialize pageset setup for the new populated zone.
3616 */
3617 DEFINE_MUTEX(zonelists_mutex);
3618
3619 /* return values int ....just for stop_machine() */
3620 static int __build_all_zonelists(void *data)
3621 {
3622 int nid;
3623 int cpu;
3624 pg_data_t *self = data;
3625
3626 #ifdef CONFIG_NUMA
3627 memset(node_load, 0, sizeof(node_load));
3628 #endif
3629
3630 if (self && !node_online(self->node_id)) {
3631 build_zonelists(self);
3632 build_zonelist_cache(self);
3633 }
3634
3635 for_each_online_node(nid) {
3636 pg_data_t *pgdat = NODE_DATA(nid);
3637
3638 build_zonelists(pgdat);
3639 build_zonelist_cache(pgdat);
3640 }
3641
3642 /*
3643 * Initialize the boot_pagesets that are going to be used
3644 * for bootstrapping processors. The real pagesets for
3645 * each zone will be allocated later when the per cpu
3646 * allocator is available.
3647 *
3648 * boot_pagesets are used also for bootstrapping offline
3649 * cpus if the system is already booted because the pagesets
3650 * are needed to initialize allocators on a specific cpu too.
3651 * F.e. the percpu allocator needs the page allocator which
3652 * needs the percpu allocator in order to allocate its pagesets
3653 * (a chicken-egg dilemma).
3654 */
3655 for_each_possible_cpu(cpu) {
3656 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3657
3658 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3659 /*
3660 * We now know the "local memory node" for each node--
3661 * i.e., the node of the first zone in the generic zonelist.
3662 * Set up numa_mem percpu variable for on-line cpus. During
3663 * boot, only the boot cpu should be on-line; we'll init the
3664 * secondary cpus' numa_mem as they come on-line. During
3665 * node/memory hotplug, we'll fixup all on-line cpus.
3666 */
3667 if (cpu_online(cpu))
3668 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3669 #endif
3670 }
3671
3672 return 0;
3673 }
3674
3675 /*
3676 * Called with zonelists_mutex held always
3677 * unless system_state == SYSTEM_BOOTING.
3678 */
3679 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3680 {
3681 set_zonelist_order();
3682
3683 if (system_state == SYSTEM_BOOTING) {
3684 __build_all_zonelists(NULL);
3685 mminit_verify_zonelist();
3686 cpuset_init_current_mems_allowed();
3687 } else {
3688 /* we have to stop all cpus to guarantee there is no user
3689 of zonelist */
3690 #ifdef CONFIG_MEMORY_HOTPLUG
3691 if (zone)
3692 setup_zone_pageset(zone);
3693 #endif
3694 stop_machine(__build_all_zonelists, pgdat, NULL);
3695 /* cpuset refresh routine should be here */
3696 }
3697 vm_total_pages = nr_free_pagecache_pages();
3698 /*
3699 * Disable grouping by mobility if the number of pages in the
3700 * system is too low to allow the mechanism to work. It would be
3701 * more accurate, but expensive to check per-zone. This check is
3702 * made on memory-hotadd so a system can start with mobility
3703 * disabled and enable it later
3704 */
3705 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3706 page_group_by_mobility_disabled = 1;
3707 else
3708 page_group_by_mobility_disabled = 0;
3709
3710 printk("Built %i zonelists in %s order, mobility grouping %s. "
3711 "Total pages: %ld\n",
3712 nr_online_nodes,
3713 zonelist_order_name[current_zonelist_order],
3714 page_group_by_mobility_disabled ? "off" : "on",
3715 vm_total_pages);
3716 #ifdef CONFIG_NUMA
3717 printk("Policy zone: %s\n", zone_names[policy_zone]);
3718 #endif
3719 }
3720
3721 /*
3722 * Helper functions to size the waitqueue hash table.
3723 * Essentially these want to choose hash table sizes sufficiently
3724 * large so that collisions trying to wait on pages are rare.
3725 * But in fact, the number of active page waitqueues on typical
3726 * systems is ridiculously low, less than 200. So this is even
3727 * conservative, even though it seems large.
3728 *
3729 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3730 * waitqueues, i.e. the size of the waitq table given the number of pages.
3731 */
3732 #define PAGES_PER_WAITQUEUE 256
3733
3734 #ifndef CONFIG_MEMORY_HOTPLUG
3735 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3736 {
3737 unsigned long size = 1;
3738
3739 pages /= PAGES_PER_WAITQUEUE;
3740
3741 while (size < pages)
3742 size <<= 1;
3743
3744 /*
3745 * Once we have dozens or even hundreds of threads sleeping
3746 * on IO we've got bigger problems than wait queue collision.
3747 * Limit the size of the wait table to a reasonable size.
3748 */
3749 size = min(size, 4096UL);
3750
3751 return max(size, 4UL);
3752 }
3753 #else
3754 /*
3755 * A zone's size might be changed by hot-add, so it is not possible to determine
3756 * a suitable size for its wait_table. So we use the maximum size now.
3757 *
3758 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3759 *
3760 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3761 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3762 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3763 *
3764 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3765 * or more by the traditional way. (See above). It equals:
3766 *
3767 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3768 * ia64(16K page size) : = ( 8G + 4M)byte.
3769 * powerpc (64K page size) : = (32G +16M)byte.
3770 */
3771 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3772 {
3773 return 4096UL;
3774 }
3775 #endif
3776
3777 /*
3778 * This is an integer logarithm so that shifts can be used later
3779 * to extract the more random high bits from the multiplicative
3780 * hash function before the remainder is taken.
3781 */
3782 static inline unsigned long wait_table_bits(unsigned long size)
3783 {
3784 return ffz(~size);
3785 }
3786
3787 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3788
3789 /*
3790 * Check if a pageblock contains reserved pages
3791 */
3792 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3793 {
3794 unsigned long pfn;
3795
3796 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3797 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3798 return 1;
3799 }
3800 return 0;
3801 }
3802
3803 /*
3804 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3805 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3806 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3807 * higher will lead to a bigger reserve which will get freed as contiguous
3808 * blocks as reclaim kicks in
3809 */
3810 static void setup_zone_migrate_reserve(struct zone *zone)
3811 {
3812 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3813 struct page *page;
3814 unsigned long block_migratetype;
3815 int reserve;
3816
3817 /*
3818 * Get the start pfn, end pfn and the number of blocks to reserve
3819 * We have to be careful to be aligned to pageblock_nr_pages to
3820 * make sure that we always check pfn_valid for the first page in
3821 * the block.
3822 */
3823 start_pfn = zone->zone_start_pfn;
3824 end_pfn = zone_end_pfn(zone);
3825 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3826 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3827 pageblock_order;
3828
3829 /*
3830 * Reserve blocks are generally in place to help high-order atomic
3831 * allocations that are short-lived. A min_free_kbytes value that
3832 * would result in more than 2 reserve blocks for atomic allocations
3833 * is assumed to be in place to help anti-fragmentation for the
3834 * future allocation of hugepages at runtime.
3835 */
3836 reserve = min(2, reserve);
3837
3838 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3839 if (!pfn_valid(pfn))
3840 continue;
3841 page = pfn_to_page(pfn);
3842
3843 /* Watch out for overlapping nodes */
3844 if (page_to_nid(page) != zone_to_nid(zone))
3845 continue;
3846
3847 block_migratetype = get_pageblock_migratetype(page);
3848
3849 /* Only test what is necessary when the reserves are not met */
3850 if (reserve > 0) {
3851 /*
3852 * Blocks with reserved pages will never free, skip
3853 * them.
3854 */
3855 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3856 if (pageblock_is_reserved(pfn, block_end_pfn))
3857 continue;
3858
3859 /* If this block is reserved, account for it */
3860 if (block_migratetype == MIGRATE_RESERVE) {
3861 reserve--;
3862 continue;
3863 }
3864
3865 /* Suitable for reserving if this block is movable */
3866 if (block_migratetype == MIGRATE_MOVABLE) {
3867 set_pageblock_migratetype(page,
3868 MIGRATE_RESERVE);
3869 move_freepages_block(zone, page,
3870 MIGRATE_RESERVE);
3871 reserve--;
3872 continue;
3873 }
3874 }
3875
3876 /*
3877 * If the reserve is met and this is a previous reserved block,
3878 * take it back
3879 */
3880 if (block_migratetype == MIGRATE_RESERVE) {
3881 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3882 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3883 }
3884 }
3885 }
3886
3887 /*
3888 * Initially all pages are reserved - free ones are freed
3889 * up by free_all_bootmem() once the early boot process is
3890 * done. Non-atomic initialization, single-pass.
3891 */
3892 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3893 unsigned long start_pfn, enum memmap_context context)
3894 {
3895 struct page *page;
3896 unsigned long end_pfn = start_pfn + size;
3897 unsigned long pfn;
3898 struct zone *z;
3899
3900 if (highest_memmap_pfn < end_pfn - 1)
3901 highest_memmap_pfn = end_pfn - 1;
3902
3903 z = &NODE_DATA(nid)->node_zones[zone];
3904 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3905 /*
3906 * There can be holes in boot-time mem_map[]s
3907 * handed to this function. They do not
3908 * exist on hotplugged memory.
3909 */
3910 if (context == MEMMAP_EARLY) {
3911 if (!early_pfn_valid(pfn))
3912 continue;
3913 if (!early_pfn_in_nid(pfn, nid))
3914 continue;
3915 }
3916 page = pfn_to_page(pfn);
3917 set_page_links(page, zone, nid, pfn);
3918 mminit_verify_page_links(page, zone, nid, pfn);
3919 init_page_count(page);
3920 page_mapcount_reset(page);
3921 page_nid_reset_last(page);
3922 SetPageReserved(page);
3923 /*
3924 * Mark the block movable so that blocks are reserved for
3925 * movable at startup. This will force kernel allocations
3926 * to reserve their blocks rather than leaking throughout
3927 * the address space during boot when many long-lived
3928 * kernel allocations are made. Later some blocks near
3929 * the start are marked MIGRATE_RESERVE by
3930 * setup_zone_migrate_reserve()
3931 *
3932 * bitmap is created for zone's valid pfn range. but memmap
3933 * can be created for invalid pages (for alignment)
3934 * check here not to call set_pageblock_migratetype() against
3935 * pfn out of zone.
3936 */
3937 if ((z->zone_start_pfn <= pfn)
3938 && (pfn < zone_end_pfn(z))
3939 && !(pfn & (pageblock_nr_pages - 1)))
3940 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3941
3942 INIT_LIST_HEAD(&page->lru);
3943 #ifdef WANT_PAGE_VIRTUAL
3944 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3945 if (!is_highmem_idx(zone))
3946 set_page_address(page, __va(pfn << PAGE_SHIFT));
3947 #endif
3948 }
3949 }
3950
3951 static void __meminit zone_init_free_lists(struct zone *zone)
3952 {
3953 int order, t;
3954 for_each_migratetype_order(order, t) {
3955 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3956 zone->free_area[order].nr_free = 0;
3957 }
3958 }
3959
3960 #ifndef __HAVE_ARCH_MEMMAP_INIT
3961 #define memmap_init(size, nid, zone, start_pfn) \
3962 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3963 #endif
3964
3965 static int __meminit zone_batchsize(struct zone *zone)
3966 {
3967 #ifdef CONFIG_MMU
3968 int batch;
3969
3970 /*
3971 * The per-cpu-pages pools are set to around 1000th of the
3972 * size of the zone. But no more than 1/2 of a meg.
3973 *
3974 * OK, so we don't know how big the cache is. So guess.
3975 */
3976 batch = zone->managed_pages / 1024;
3977 if (batch * PAGE_SIZE > 512 * 1024)
3978 batch = (512 * 1024) / PAGE_SIZE;
3979 batch /= 4; /* We effectively *= 4 below */
3980 if (batch < 1)
3981 batch = 1;
3982
3983 /*
3984 * Clamp the batch to a 2^n - 1 value. Having a power
3985 * of 2 value was found to be more likely to have
3986 * suboptimal cache aliasing properties in some cases.
3987 *
3988 * For example if 2 tasks are alternately allocating
3989 * batches of pages, one task can end up with a lot
3990 * of pages of one half of the possible page colors
3991 * and the other with pages of the other colors.
3992 */
3993 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3994
3995 return batch;
3996
3997 #else
3998 /* The deferral and batching of frees should be suppressed under NOMMU
3999 * conditions.
4000 *
4001 * The problem is that NOMMU needs to be able to allocate large chunks
4002 * of contiguous memory as there's no hardware page translation to
4003 * assemble apparent contiguous memory from discontiguous pages.
4004 *
4005 * Queueing large contiguous runs of pages for batching, however,
4006 * causes the pages to actually be freed in smaller chunks. As there
4007 * can be a significant delay between the individual batches being
4008 * recycled, this leads to the once large chunks of space being
4009 * fragmented and becoming unavailable for high-order allocations.
4010 */
4011 return 0;
4012 #endif
4013 }
4014
4015 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4016 {
4017 struct per_cpu_pages *pcp;
4018 int migratetype;
4019
4020 memset(p, 0, sizeof(*p));
4021
4022 pcp = &p->pcp;
4023 pcp->count = 0;
4024 pcp->high = 6 * batch;
4025 pcp->batch = max(1UL, 1 * batch);
4026 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4027 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4028 }
4029
4030 /*
4031 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4032 * to the value high for the pageset p.
4033 */
4034
4035 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4036 unsigned long high)
4037 {
4038 struct per_cpu_pages *pcp;
4039
4040 pcp = &p->pcp;
4041 pcp->high = high;
4042 pcp->batch = max(1UL, high/4);
4043 if ((high/4) > (PAGE_SHIFT * 8))
4044 pcp->batch = PAGE_SHIFT * 8;
4045 }
4046
4047 static void __meminit setup_zone_pageset(struct zone *zone)
4048 {
4049 int cpu;
4050
4051 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4052
4053 for_each_possible_cpu(cpu) {
4054 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4055
4056 setup_pageset(pcp, zone_batchsize(zone));
4057
4058 if (percpu_pagelist_fraction)
4059 setup_pagelist_highmark(pcp,
4060 (zone->managed_pages /
4061 percpu_pagelist_fraction));
4062 }
4063 }
4064
4065 /*
4066 * Allocate per cpu pagesets and initialize them.
4067 * Before this call only boot pagesets were available.
4068 */
4069 void __init setup_per_cpu_pageset(void)
4070 {
4071 struct zone *zone;
4072
4073 for_each_populated_zone(zone)
4074 setup_zone_pageset(zone);
4075 }
4076
4077 static noinline __init_refok
4078 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4079 {
4080 int i;
4081 struct pglist_data *pgdat = zone->zone_pgdat;
4082 size_t alloc_size;
4083
4084 /*
4085 * The per-page waitqueue mechanism uses hashed waitqueues
4086 * per zone.
4087 */
4088 zone->wait_table_hash_nr_entries =
4089 wait_table_hash_nr_entries(zone_size_pages);
4090 zone->wait_table_bits =
4091 wait_table_bits(zone->wait_table_hash_nr_entries);
4092 alloc_size = zone->wait_table_hash_nr_entries
4093 * sizeof(wait_queue_head_t);
4094
4095 if (!slab_is_available()) {
4096 zone->wait_table = (wait_queue_head_t *)
4097 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4098 } else {
4099 /*
4100 * This case means that a zone whose size was 0 gets new memory
4101 * via memory hot-add.
4102 * But it may be the case that a new node was hot-added. In
4103 * this case vmalloc() will not be able to use this new node's
4104 * memory - this wait_table must be initialized to use this new
4105 * node itself as well.
4106 * To use this new node's memory, further consideration will be
4107 * necessary.
4108 */
4109 zone->wait_table = vmalloc(alloc_size);
4110 }
4111 if (!zone->wait_table)
4112 return -ENOMEM;
4113
4114 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4115 init_waitqueue_head(zone->wait_table + i);
4116
4117 return 0;
4118 }
4119
4120 static __meminit void zone_pcp_init(struct zone *zone)
4121 {
4122 /*
4123 * per cpu subsystem is not up at this point. The following code
4124 * relies on the ability of the linker to provide the
4125 * offset of a (static) per cpu variable into the per cpu area.
4126 */
4127 zone->pageset = &boot_pageset;
4128
4129 if (zone->present_pages)
4130 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4131 zone->name, zone->present_pages,
4132 zone_batchsize(zone));
4133 }
4134
4135 int __meminit init_currently_empty_zone(struct zone *zone,
4136 unsigned long zone_start_pfn,
4137 unsigned long size,
4138 enum memmap_context context)
4139 {
4140 struct pglist_data *pgdat = zone->zone_pgdat;
4141 int ret;
4142 ret = zone_wait_table_init(zone, size);
4143 if (ret)
4144 return ret;
4145 pgdat->nr_zones = zone_idx(zone) + 1;
4146
4147 zone->zone_start_pfn = zone_start_pfn;
4148
4149 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4150 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4151 pgdat->node_id,
4152 (unsigned long)zone_idx(zone),
4153 zone_start_pfn, (zone_start_pfn + size));
4154
4155 zone_init_free_lists(zone);
4156
4157 return 0;
4158 }
4159
4160 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4161 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4162 /*
4163 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4164 * Architectures may implement their own version but if add_active_range()
4165 * was used and there are no special requirements, this is a convenient
4166 * alternative
4167 */
4168 int __meminit __early_pfn_to_nid(unsigned long pfn)
4169 {
4170 unsigned long start_pfn, end_pfn;
4171 int i, nid;
4172
4173 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4174 if (start_pfn <= pfn && pfn < end_pfn)
4175 return nid;
4176 /* This is a memory hole */
4177 return -1;
4178 }
4179 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4180
4181 int __meminit early_pfn_to_nid(unsigned long pfn)
4182 {
4183 int nid;
4184
4185 nid = __early_pfn_to_nid(pfn);
4186 if (nid >= 0)
4187 return nid;
4188 /* just returns 0 */
4189 return 0;
4190 }
4191
4192 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4193 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4194 {
4195 int nid;
4196
4197 nid = __early_pfn_to_nid(pfn);
4198 if (nid >= 0 && nid != node)
4199 return false;
4200 return true;
4201 }
4202 #endif
4203
4204 /**
4205 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4206 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4207 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4208 *
4209 * If an architecture guarantees that all ranges registered with
4210 * add_active_ranges() contain no holes and may be freed, this
4211 * this function may be used instead of calling free_bootmem() manually.
4212 */
4213 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4214 {
4215 unsigned long start_pfn, end_pfn;
4216 int i, this_nid;
4217
4218 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4219 start_pfn = min(start_pfn, max_low_pfn);
4220 end_pfn = min(end_pfn, max_low_pfn);
4221
4222 if (start_pfn < end_pfn)
4223 free_bootmem_node(NODE_DATA(this_nid),
4224 PFN_PHYS(start_pfn),
4225 (end_pfn - start_pfn) << PAGE_SHIFT);
4226 }
4227 }
4228
4229 /**
4230 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4231 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4232 *
4233 * If an architecture guarantees that all ranges registered with
4234 * add_active_ranges() contain no holes and may be freed, this
4235 * function may be used instead of calling memory_present() manually.
4236 */
4237 void __init sparse_memory_present_with_active_regions(int nid)
4238 {
4239 unsigned long start_pfn, end_pfn;
4240 int i, this_nid;
4241
4242 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4243 memory_present(this_nid, start_pfn, end_pfn);
4244 }
4245
4246 /**
4247 * get_pfn_range_for_nid - Return the start and end page frames for a node
4248 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4249 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4250 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4251 *
4252 * It returns the start and end page frame of a node based on information
4253 * provided by an arch calling add_active_range(). If called for a node
4254 * with no available memory, a warning is printed and the start and end
4255 * PFNs will be 0.
4256 */
4257 void __meminit get_pfn_range_for_nid(unsigned int nid,
4258 unsigned long *start_pfn, unsigned long *end_pfn)
4259 {
4260 unsigned long this_start_pfn, this_end_pfn;
4261 int i;
4262
4263 *start_pfn = -1UL;
4264 *end_pfn = 0;
4265
4266 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4267 *start_pfn = min(*start_pfn, this_start_pfn);
4268 *end_pfn = max(*end_pfn, this_end_pfn);
4269 }
4270
4271 if (*start_pfn == -1UL)
4272 *start_pfn = 0;
4273 }
4274
4275 /*
4276 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4277 * assumption is made that zones within a node are ordered in monotonic
4278 * increasing memory addresses so that the "highest" populated zone is used
4279 */
4280 static void __init find_usable_zone_for_movable(void)
4281 {
4282 int zone_index;
4283 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4284 if (zone_index == ZONE_MOVABLE)
4285 continue;
4286
4287 if (arch_zone_highest_possible_pfn[zone_index] >
4288 arch_zone_lowest_possible_pfn[zone_index])
4289 break;
4290 }
4291
4292 VM_BUG_ON(zone_index == -1);
4293 movable_zone = zone_index;
4294 }
4295
4296 /*
4297 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4298 * because it is sized independent of architecture. Unlike the other zones,
4299 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4300 * in each node depending on the size of each node and how evenly kernelcore
4301 * is distributed. This helper function adjusts the zone ranges
4302 * provided by the architecture for a given node by using the end of the
4303 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4304 * zones within a node are in order of monotonic increases memory addresses
4305 */
4306 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4307 unsigned long zone_type,
4308 unsigned long node_start_pfn,
4309 unsigned long node_end_pfn,
4310 unsigned long *zone_start_pfn,
4311 unsigned long *zone_end_pfn)
4312 {
4313 /* Only adjust if ZONE_MOVABLE is on this node */
4314 if (zone_movable_pfn[nid]) {
4315 /* Size ZONE_MOVABLE */
4316 if (zone_type == ZONE_MOVABLE) {
4317 *zone_start_pfn = zone_movable_pfn[nid];
4318 *zone_end_pfn = min(node_end_pfn,
4319 arch_zone_highest_possible_pfn[movable_zone]);
4320
4321 /* Adjust for ZONE_MOVABLE starting within this range */
4322 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4323 *zone_end_pfn > zone_movable_pfn[nid]) {
4324 *zone_end_pfn = zone_movable_pfn[nid];
4325
4326 /* Check if this whole range is within ZONE_MOVABLE */
4327 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4328 *zone_start_pfn = *zone_end_pfn;
4329 }
4330 }
4331
4332 /*
4333 * Return the number of pages a zone spans in a node, including holes
4334 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4335 */
4336 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4337 unsigned long zone_type,
4338 unsigned long *ignored)
4339 {
4340 unsigned long node_start_pfn, node_end_pfn;
4341 unsigned long zone_start_pfn, zone_end_pfn;
4342
4343 /* Get the start and end of the node and zone */
4344 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4345 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4346 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4347 adjust_zone_range_for_zone_movable(nid, zone_type,
4348 node_start_pfn, node_end_pfn,
4349 &zone_start_pfn, &zone_end_pfn);
4350
4351 /* Check that this node has pages within the zone's required range */
4352 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4353 return 0;
4354
4355 /* Move the zone boundaries inside the node if necessary */
4356 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4357 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4358
4359 /* Return the spanned pages */
4360 return zone_end_pfn - zone_start_pfn;
4361 }
4362
4363 /*
4364 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4365 * then all holes in the requested range will be accounted for.
4366 */
4367 unsigned long __meminit __absent_pages_in_range(int nid,
4368 unsigned long range_start_pfn,
4369 unsigned long range_end_pfn)
4370 {
4371 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4372 unsigned long start_pfn, end_pfn;
4373 int i;
4374
4375 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4376 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4377 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4378 nr_absent -= end_pfn - start_pfn;
4379 }
4380 return nr_absent;
4381 }
4382
4383 /**
4384 * absent_pages_in_range - Return number of page frames in holes within a range
4385 * @start_pfn: The start PFN to start searching for holes
4386 * @end_pfn: The end PFN to stop searching for holes
4387 *
4388 * It returns the number of pages frames in memory holes within a range.
4389 */
4390 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4391 unsigned long end_pfn)
4392 {
4393 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4394 }
4395
4396 /* Return the number of page frames in holes in a zone on a node */
4397 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4398 unsigned long zone_type,
4399 unsigned long *ignored)
4400 {
4401 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4402 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4403 unsigned long node_start_pfn, node_end_pfn;
4404 unsigned long zone_start_pfn, zone_end_pfn;
4405
4406 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4407 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4408 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4409
4410 adjust_zone_range_for_zone_movable(nid, zone_type,
4411 node_start_pfn, node_end_pfn,
4412 &zone_start_pfn, &zone_end_pfn);
4413 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4414 }
4415
4416 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4417 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4418 unsigned long zone_type,
4419 unsigned long *zones_size)
4420 {
4421 return zones_size[zone_type];
4422 }
4423
4424 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4425 unsigned long zone_type,
4426 unsigned long *zholes_size)
4427 {
4428 if (!zholes_size)
4429 return 0;
4430
4431 return zholes_size[zone_type];
4432 }
4433
4434 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4435
4436 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4437 unsigned long *zones_size, unsigned long *zholes_size)
4438 {
4439 unsigned long realtotalpages, totalpages = 0;
4440 enum zone_type i;
4441
4442 for (i = 0; i < MAX_NR_ZONES; i++)
4443 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4444 zones_size);
4445 pgdat->node_spanned_pages = totalpages;
4446
4447 realtotalpages = totalpages;
4448 for (i = 0; i < MAX_NR_ZONES; i++)
4449 realtotalpages -=
4450 zone_absent_pages_in_node(pgdat->node_id, i,
4451 zholes_size);
4452 pgdat->node_present_pages = realtotalpages;
4453 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4454 realtotalpages);
4455 }
4456
4457 #ifndef CONFIG_SPARSEMEM
4458 /*
4459 * Calculate the size of the zone->blockflags rounded to an unsigned long
4460 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4461 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4462 * round what is now in bits to nearest long in bits, then return it in
4463 * bytes.
4464 */
4465 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4466 {
4467 unsigned long usemapsize;
4468
4469 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4470 usemapsize = roundup(zonesize, pageblock_nr_pages);
4471 usemapsize = usemapsize >> pageblock_order;
4472 usemapsize *= NR_PAGEBLOCK_BITS;
4473 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4474
4475 return usemapsize / 8;
4476 }
4477
4478 static void __init setup_usemap(struct pglist_data *pgdat,
4479 struct zone *zone,
4480 unsigned long zone_start_pfn,
4481 unsigned long zonesize)
4482 {
4483 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4484 zone->pageblock_flags = NULL;
4485 if (usemapsize)
4486 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4487 usemapsize);
4488 }
4489 #else
4490 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4491 unsigned long zone_start_pfn, unsigned long zonesize) {}
4492 #endif /* CONFIG_SPARSEMEM */
4493
4494 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4495
4496 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4497 void __init set_pageblock_order(void)
4498 {
4499 unsigned int order;
4500
4501 /* Check that pageblock_nr_pages has not already been setup */
4502 if (pageblock_order)
4503 return;
4504
4505 if (HPAGE_SHIFT > PAGE_SHIFT)
4506 order = HUGETLB_PAGE_ORDER;
4507 else
4508 order = MAX_ORDER - 1;
4509
4510 /*
4511 * Assume the largest contiguous order of interest is a huge page.
4512 * This value may be variable depending on boot parameters on IA64 and
4513 * powerpc.
4514 */
4515 pageblock_order = order;
4516 }
4517 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4518
4519 /*
4520 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4521 * is unused as pageblock_order is set at compile-time. See
4522 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4523 * the kernel config
4524 */
4525 void __init set_pageblock_order(void)
4526 {
4527 }
4528
4529 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4530
4531 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4532 unsigned long present_pages)
4533 {
4534 unsigned long pages = spanned_pages;
4535
4536 /*
4537 * Provide a more accurate estimation if there are holes within
4538 * the zone and SPARSEMEM is in use. If there are holes within the
4539 * zone, each populated memory region may cost us one or two extra
4540 * memmap pages due to alignment because memmap pages for each
4541 * populated regions may not naturally algined on page boundary.
4542 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4543 */
4544 if (spanned_pages > present_pages + (present_pages >> 4) &&
4545 IS_ENABLED(CONFIG_SPARSEMEM))
4546 pages = present_pages;
4547
4548 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4549 }
4550
4551 /*
4552 * Set up the zone data structures:
4553 * - mark all pages reserved
4554 * - mark all memory queues empty
4555 * - clear the memory bitmaps
4556 *
4557 * NOTE: pgdat should get zeroed by caller.
4558 */
4559 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4560 unsigned long *zones_size, unsigned long *zholes_size)
4561 {
4562 enum zone_type j;
4563 int nid = pgdat->node_id;
4564 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4565 int ret;
4566
4567 pgdat_resize_init(pgdat);
4568 #ifdef CONFIG_NUMA_BALANCING
4569 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4570 pgdat->numabalancing_migrate_nr_pages = 0;
4571 pgdat->numabalancing_migrate_next_window = jiffies;
4572 #endif
4573 init_waitqueue_head(&pgdat->kswapd_wait);
4574 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4575 pgdat_page_cgroup_init(pgdat);
4576
4577 for (j = 0; j < MAX_NR_ZONES; j++) {
4578 struct zone *zone = pgdat->node_zones + j;
4579 unsigned long size, realsize, freesize, memmap_pages;
4580
4581 size = zone_spanned_pages_in_node(nid, j, zones_size);
4582 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4583 zholes_size);
4584
4585 /*
4586 * Adjust freesize so that it accounts for how much memory
4587 * is used by this zone for memmap. This affects the watermark
4588 * and per-cpu initialisations
4589 */
4590 memmap_pages = calc_memmap_size(size, realsize);
4591 if (freesize >= memmap_pages) {
4592 freesize -= memmap_pages;
4593 if (memmap_pages)
4594 printk(KERN_DEBUG
4595 " %s zone: %lu pages used for memmap\n",
4596 zone_names[j], memmap_pages);
4597 } else
4598 printk(KERN_WARNING
4599 " %s zone: %lu pages exceeds freesize %lu\n",
4600 zone_names[j], memmap_pages, freesize);
4601
4602 /* Account for reserved pages */
4603 if (j == 0 && freesize > dma_reserve) {
4604 freesize -= dma_reserve;
4605 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4606 zone_names[0], dma_reserve);
4607 }
4608
4609 if (!is_highmem_idx(j))
4610 nr_kernel_pages += freesize;
4611 /* Charge for highmem memmap if there are enough kernel pages */
4612 else if (nr_kernel_pages > memmap_pages * 2)
4613 nr_kernel_pages -= memmap_pages;
4614 nr_all_pages += freesize;
4615
4616 zone->spanned_pages = size;
4617 zone->present_pages = realsize;
4618 /*
4619 * Set an approximate value for lowmem here, it will be adjusted
4620 * when the bootmem allocator frees pages into the buddy system.
4621 * And all highmem pages will be managed by the buddy system.
4622 */
4623 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4624 #ifdef CONFIG_NUMA
4625 zone->node = nid;
4626 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4627 / 100;
4628 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4629 #endif
4630 zone->name = zone_names[j];
4631 spin_lock_init(&zone->lock);
4632 spin_lock_init(&zone->lru_lock);
4633 zone_seqlock_init(zone);
4634 zone->zone_pgdat = pgdat;
4635
4636 zone_pcp_init(zone);
4637 lruvec_init(&zone->lruvec);
4638 if (!size)
4639 continue;
4640
4641 set_pageblock_order();
4642 setup_usemap(pgdat, zone, zone_start_pfn, size);
4643 ret = init_currently_empty_zone(zone, zone_start_pfn,
4644 size, MEMMAP_EARLY);
4645 BUG_ON(ret);
4646 memmap_init(size, nid, j, zone_start_pfn);
4647 zone_start_pfn += size;
4648 }
4649 }
4650
4651 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4652 {
4653 /* Skip empty nodes */
4654 if (!pgdat->node_spanned_pages)
4655 return;
4656
4657 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4658 /* ia64 gets its own node_mem_map, before this, without bootmem */
4659 if (!pgdat->node_mem_map) {
4660 unsigned long size, start, end;
4661 struct page *map;
4662
4663 /*
4664 * The zone's endpoints aren't required to be MAX_ORDER
4665 * aligned but the node_mem_map endpoints must be in order
4666 * for the buddy allocator to function correctly.
4667 */
4668 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4669 end = pgdat_end_pfn(pgdat);
4670 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4671 size = (end - start) * sizeof(struct page);
4672 map = alloc_remap(pgdat->node_id, size);
4673 if (!map)
4674 map = alloc_bootmem_node_nopanic(pgdat, size);
4675 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4676 }
4677 #ifndef CONFIG_NEED_MULTIPLE_NODES
4678 /*
4679 * With no DISCONTIG, the global mem_map is just set as node 0's
4680 */
4681 if (pgdat == NODE_DATA(0)) {
4682 mem_map = NODE_DATA(0)->node_mem_map;
4683 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4684 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4685 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4686 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4687 }
4688 #endif
4689 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4690 }
4691
4692 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4693 unsigned long node_start_pfn, unsigned long *zholes_size)
4694 {
4695 pg_data_t *pgdat = NODE_DATA(nid);
4696
4697 /* pg_data_t should be reset to zero when it's allocated */
4698 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4699
4700 pgdat->node_id = nid;
4701 pgdat->node_start_pfn = node_start_pfn;
4702 init_zone_allows_reclaim(nid);
4703 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4704
4705 alloc_node_mem_map(pgdat);
4706 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4707 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4708 nid, (unsigned long)pgdat,
4709 (unsigned long)pgdat->node_mem_map);
4710 #endif
4711
4712 free_area_init_core(pgdat, zones_size, zholes_size);
4713 }
4714
4715 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4716
4717 #if MAX_NUMNODES > 1
4718 /*
4719 * Figure out the number of possible node ids.
4720 */
4721 static void __init setup_nr_node_ids(void)
4722 {
4723 unsigned int node;
4724 unsigned int highest = 0;
4725
4726 for_each_node_mask(node, node_possible_map)
4727 highest = node;
4728 nr_node_ids = highest + 1;
4729 }
4730 #else
4731 static inline void setup_nr_node_ids(void)
4732 {
4733 }
4734 #endif
4735
4736 /**
4737 * node_map_pfn_alignment - determine the maximum internode alignment
4738 *
4739 * This function should be called after node map is populated and sorted.
4740 * It calculates the maximum power of two alignment which can distinguish
4741 * all the nodes.
4742 *
4743 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4744 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4745 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4746 * shifted, 1GiB is enough and this function will indicate so.
4747 *
4748 * This is used to test whether pfn -> nid mapping of the chosen memory
4749 * model has fine enough granularity to avoid incorrect mapping for the
4750 * populated node map.
4751 *
4752 * Returns the determined alignment in pfn's. 0 if there is no alignment
4753 * requirement (single node).
4754 */
4755 unsigned long __init node_map_pfn_alignment(void)
4756 {
4757 unsigned long accl_mask = 0, last_end = 0;
4758 unsigned long start, end, mask;
4759 int last_nid = -1;
4760 int i, nid;
4761
4762 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4763 if (!start || last_nid < 0 || last_nid == nid) {
4764 last_nid = nid;
4765 last_end = end;
4766 continue;
4767 }
4768
4769 /*
4770 * Start with a mask granular enough to pin-point to the
4771 * start pfn and tick off bits one-by-one until it becomes
4772 * too coarse to separate the current node from the last.
4773 */
4774 mask = ~((1 << __ffs(start)) - 1);
4775 while (mask && last_end <= (start & (mask << 1)))
4776 mask <<= 1;
4777
4778 /* accumulate all internode masks */
4779 accl_mask |= mask;
4780 }
4781
4782 /* convert mask to number of pages */
4783 return ~accl_mask + 1;
4784 }
4785
4786 /* Find the lowest pfn for a node */
4787 static unsigned long __init find_min_pfn_for_node(int nid)
4788 {
4789 unsigned long min_pfn = ULONG_MAX;
4790 unsigned long start_pfn;
4791 int i;
4792
4793 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4794 min_pfn = min(min_pfn, start_pfn);
4795
4796 if (min_pfn == ULONG_MAX) {
4797 printk(KERN_WARNING
4798 "Could not find start_pfn for node %d\n", nid);
4799 return 0;
4800 }
4801
4802 return min_pfn;
4803 }
4804
4805 /**
4806 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4807 *
4808 * It returns the minimum PFN based on information provided via
4809 * add_active_range().
4810 */
4811 unsigned long __init find_min_pfn_with_active_regions(void)
4812 {
4813 return find_min_pfn_for_node(MAX_NUMNODES);
4814 }
4815
4816 /*
4817 * early_calculate_totalpages()
4818 * Sum pages in active regions for movable zone.
4819 * Populate N_MEMORY for calculating usable_nodes.
4820 */
4821 static unsigned long __init early_calculate_totalpages(void)
4822 {
4823 unsigned long totalpages = 0;
4824 unsigned long start_pfn, end_pfn;
4825 int i, nid;
4826
4827 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4828 unsigned long pages = end_pfn - start_pfn;
4829
4830 totalpages += pages;
4831 if (pages)
4832 node_set_state(nid, N_MEMORY);
4833 }
4834 return totalpages;
4835 }
4836
4837 /*
4838 * Find the PFN the Movable zone begins in each node. Kernel memory
4839 * is spread evenly between nodes as long as the nodes have enough
4840 * memory. When they don't, some nodes will have more kernelcore than
4841 * others
4842 */
4843 static void __init find_zone_movable_pfns_for_nodes(void)
4844 {
4845 int i, nid;
4846 unsigned long usable_startpfn;
4847 unsigned long kernelcore_node, kernelcore_remaining;
4848 /* save the state before borrow the nodemask */
4849 nodemask_t saved_node_state = node_states[N_MEMORY];
4850 unsigned long totalpages = early_calculate_totalpages();
4851 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4852
4853 /*
4854 * If movablecore was specified, calculate what size of
4855 * kernelcore that corresponds so that memory usable for
4856 * any allocation type is evenly spread. If both kernelcore
4857 * and movablecore are specified, then the value of kernelcore
4858 * will be used for required_kernelcore if it's greater than
4859 * what movablecore would have allowed.
4860 */
4861 if (required_movablecore) {
4862 unsigned long corepages;
4863
4864 /*
4865 * Round-up so that ZONE_MOVABLE is at least as large as what
4866 * was requested by the user
4867 */
4868 required_movablecore =
4869 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4870 corepages = totalpages - required_movablecore;
4871
4872 required_kernelcore = max(required_kernelcore, corepages);
4873 }
4874
4875 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4876 if (!required_kernelcore)
4877 goto out;
4878
4879 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4880 find_usable_zone_for_movable();
4881 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4882
4883 restart:
4884 /* Spread kernelcore memory as evenly as possible throughout nodes */
4885 kernelcore_node = required_kernelcore / usable_nodes;
4886 for_each_node_state(nid, N_MEMORY) {
4887 unsigned long start_pfn, end_pfn;
4888
4889 /*
4890 * Recalculate kernelcore_node if the division per node
4891 * now exceeds what is necessary to satisfy the requested
4892 * amount of memory for the kernel
4893 */
4894 if (required_kernelcore < kernelcore_node)
4895 kernelcore_node = required_kernelcore / usable_nodes;
4896
4897 /*
4898 * As the map is walked, we track how much memory is usable
4899 * by the kernel using kernelcore_remaining. When it is
4900 * 0, the rest of the node is usable by ZONE_MOVABLE
4901 */
4902 kernelcore_remaining = kernelcore_node;
4903
4904 /* Go through each range of PFNs within this node */
4905 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4906 unsigned long size_pages;
4907
4908 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4909 if (start_pfn >= end_pfn)
4910 continue;
4911
4912 /* Account for what is only usable for kernelcore */
4913 if (start_pfn < usable_startpfn) {
4914 unsigned long kernel_pages;
4915 kernel_pages = min(end_pfn, usable_startpfn)
4916 - start_pfn;
4917
4918 kernelcore_remaining -= min(kernel_pages,
4919 kernelcore_remaining);
4920 required_kernelcore -= min(kernel_pages,
4921 required_kernelcore);
4922
4923 /* Continue if range is now fully accounted */
4924 if (end_pfn <= usable_startpfn) {
4925
4926 /*
4927 * Push zone_movable_pfn to the end so
4928 * that if we have to rebalance
4929 * kernelcore across nodes, we will
4930 * not double account here
4931 */
4932 zone_movable_pfn[nid] = end_pfn;
4933 continue;
4934 }
4935 start_pfn = usable_startpfn;
4936 }
4937
4938 /*
4939 * The usable PFN range for ZONE_MOVABLE is from
4940 * start_pfn->end_pfn. Calculate size_pages as the
4941 * number of pages used as kernelcore
4942 */
4943 size_pages = end_pfn - start_pfn;
4944 if (size_pages > kernelcore_remaining)
4945 size_pages = kernelcore_remaining;
4946 zone_movable_pfn[nid] = start_pfn + size_pages;
4947
4948 /*
4949 * Some kernelcore has been met, update counts and
4950 * break if the kernelcore for this node has been
4951 * satisified
4952 */
4953 required_kernelcore -= min(required_kernelcore,
4954 size_pages);
4955 kernelcore_remaining -= size_pages;
4956 if (!kernelcore_remaining)
4957 break;
4958 }
4959 }
4960
4961 /*
4962 * If there is still required_kernelcore, we do another pass with one
4963 * less node in the count. This will push zone_movable_pfn[nid] further
4964 * along on the nodes that still have memory until kernelcore is
4965 * satisified
4966 */
4967 usable_nodes--;
4968 if (usable_nodes && required_kernelcore > usable_nodes)
4969 goto restart;
4970
4971 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4972 for (nid = 0; nid < MAX_NUMNODES; nid++)
4973 zone_movable_pfn[nid] =
4974 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4975
4976 out:
4977 /* restore the node_state */
4978 node_states[N_MEMORY] = saved_node_state;
4979 }
4980
4981 /* Any regular or high memory on that node ? */
4982 static void check_for_memory(pg_data_t *pgdat, int nid)
4983 {
4984 enum zone_type zone_type;
4985
4986 if (N_MEMORY == N_NORMAL_MEMORY)
4987 return;
4988
4989 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4990 struct zone *zone = &pgdat->node_zones[zone_type];
4991 if (zone->present_pages) {
4992 node_set_state(nid, N_HIGH_MEMORY);
4993 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4994 zone_type <= ZONE_NORMAL)
4995 node_set_state(nid, N_NORMAL_MEMORY);
4996 break;
4997 }
4998 }
4999 }
5000
5001 /**
5002 * free_area_init_nodes - Initialise all pg_data_t and zone data
5003 * @max_zone_pfn: an array of max PFNs for each zone
5004 *
5005 * This will call free_area_init_node() for each active node in the system.
5006 * Using the page ranges provided by add_active_range(), the size of each
5007 * zone in each node and their holes is calculated. If the maximum PFN
5008 * between two adjacent zones match, it is assumed that the zone is empty.
5009 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5010 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5011 * starts where the previous one ended. For example, ZONE_DMA32 starts
5012 * at arch_max_dma_pfn.
5013 */
5014 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5015 {
5016 unsigned long start_pfn, end_pfn;
5017 int i, nid;
5018
5019 /* Record where the zone boundaries are */
5020 memset(arch_zone_lowest_possible_pfn, 0,
5021 sizeof(arch_zone_lowest_possible_pfn));
5022 memset(arch_zone_highest_possible_pfn, 0,
5023 sizeof(arch_zone_highest_possible_pfn));
5024 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5025 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5026 for (i = 1; i < MAX_NR_ZONES; i++) {
5027 if (i == ZONE_MOVABLE)
5028 continue;
5029 arch_zone_lowest_possible_pfn[i] =
5030 arch_zone_highest_possible_pfn[i-1];
5031 arch_zone_highest_possible_pfn[i] =
5032 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5033 }
5034 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5035 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5036
5037 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5038 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5039 find_zone_movable_pfns_for_nodes();
5040
5041 /* Print out the zone ranges */
5042 printk("Zone ranges:\n");
5043 for (i = 0; i < MAX_NR_ZONES; i++) {
5044 if (i == ZONE_MOVABLE)
5045 continue;
5046 printk(KERN_CONT " %-8s ", zone_names[i]);
5047 if (arch_zone_lowest_possible_pfn[i] ==
5048 arch_zone_highest_possible_pfn[i])
5049 printk(KERN_CONT "empty\n");
5050 else
5051 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5052 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5053 (arch_zone_highest_possible_pfn[i]
5054 << PAGE_SHIFT) - 1);
5055 }
5056
5057 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5058 printk("Movable zone start for each node\n");
5059 for (i = 0; i < MAX_NUMNODES; i++) {
5060 if (zone_movable_pfn[i])
5061 printk(" Node %d: %#010lx\n", i,
5062 zone_movable_pfn[i] << PAGE_SHIFT);
5063 }
5064
5065 /* Print out the early node map */
5066 printk("Early memory node ranges\n");
5067 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5068 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5069 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5070
5071 /* Initialise every node */
5072 mminit_verify_pageflags_layout();
5073 setup_nr_node_ids();
5074 for_each_online_node(nid) {
5075 pg_data_t *pgdat = NODE_DATA(nid);
5076 free_area_init_node(nid, NULL,
5077 find_min_pfn_for_node(nid), NULL);
5078
5079 /* Any memory on that node */
5080 if (pgdat->node_present_pages)
5081 node_set_state(nid, N_MEMORY);
5082 check_for_memory(pgdat, nid);
5083 }
5084 }
5085
5086 static int __init cmdline_parse_core(char *p, unsigned long *core)
5087 {
5088 unsigned long long coremem;
5089 if (!p)
5090 return -EINVAL;
5091
5092 coremem = memparse(p, &p);
5093 *core = coremem >> PAGE_SHIFT;
5094
5095 /* Paranoid check that UL is enough for the coremem value */
5096 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5097
5098 return 0;
5099 }
5100
5101 /*
5102 * kernelcore=size sets the amount of memory for use for allocations that
5103 * cannot be reclaimed or migrated.
5104 */
5105 static int __init cmdline_parse_kernelcore(char *p)
5106 {
5107 return cmdline_parse_core(p, &required_kernelcore);
5108 }
5109
5110 /*
5111 * movablecore=size sets the amount of memory for use for allocations that
5112 * can be reclaimed or migrated.
5113 */
5114 static int __init cmdline_parse_movablecore(char *p)
5115 {
5116 return cmdline_parse_core(p, &required_movablecore);
5117 }
5118
5119 early_param("kernelcore", cmdline_parse_kernelcore);
5120 early_param("movablecore", cmdline_parse_movablecore);
5121
5122 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5123
5124 unsigned long free_reserved_area(unsigned long start, unsigned long end,
5125 int poison, char *s)
5126 {
5127 unsigned long pages, pos;
5128
5129 pos = start = PAGE_ALIGN(start);
5130 end &= PAGE_MASK;
5131 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5132 if (poison)
5133 memset((void *)pos, poison, PAGE_SIZE);
5134 free_reserved_page(virt_to_page(pos));
5135 }
5136
5137 if (pages && s)
5138 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5139 s, pages << (PAGE_SHIFT - 10), start, end);
5140
5141 return pages;
5142 }
5143
5144 #ifdef CONFIG_HIGHMEM
5145 void free_highmem_page(struct page *page)
5146 {
5147 __free_reserved_page(page);
5148 totalram_pages++;
5149 totalhigh_pages++;
5150 }
5151 #endif
5152
5153 /**
5154 * set_dma_reserve - set the specified number of pages reserved in the first zone
5155 * @new_dma_reserve: The number of pages to mark reserved
5156 *
5157 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5158 * In the DMA zone, a significant percentage may be consumed by kernel image
5159 * and other unfreeable allocations which can skew the watermarks badly. This
5160 * function may optionally be used to account for unfreeable pages in the
5161 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5162 * smaller per-cpu batchsize.
5163 */
5164 void __init set_dma_reserve(unsigned long new_dma_reserve)
5165 {
5166 dma_reserve = new_dma_reserve;
5167 }
5168
5169 void __init free_area_init(unsigned long *zones_size)
5170 {
5171 free_area_init_node(0, zones_size,
5172 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5173 }
5174
5175 static int page_alloc_cpu_notify(struct notifier_block *self,
5176 unsigned long action, void *hcpu)
5177 {
5178 int cpu = (unsigned long)hcpu;
5179
5180 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5181 lru_add_drain_cpu(cpu);
5182 drain_pages(cpu);
5183
5184 /*
5185 * Spill the event counters of the dead processor
5186 * into the current processors event counters.
5187 * This artificially elevates the count of the current
5188 * processor.
5189 */
5190 vm_events_fold_cpu(cpu);
5191
5192 /*
5193 * Zero the differential counters of the dead processor
5194 * so that the vm statistics are consistent.
5195 *
5196 * This is only okay since the processor is dead and cannot
5197 * race with what we are doing.
5198 */
5199 refresh_cpu_vm_stats(cpu);
5200 }
5201 return NOTIFY_OK;
5202 }
5203
5204 void __init page_alloc_init(void)
5205 {
5206 hotcpu_notifier(page_alloc_cpu_notify, 0);
5207 }
5208
5209 /*
5210 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5211 * or min_free_kbytes changes.
5212 */
5213 static void calculate_totalreserve_pages(void)
5214 {
5215 struct pglist_data *pgdat;
5216 unsigned long reserve_pages = 0;
5217 enum zone_type i, j;
5218
5219 for_each_online_pgdat(pgdat) {
5220 for (i = 0; i < MAX_NR_ZONES; i++) {
5221 struct zone *zone = pgdat->node_zones + i;
5222 unsigned long max = 0;
5223
5224 /* Find valid and maximum lowmem_reserve in the zone */
5225 for (j = i; j < MAX_NR_ZONES; j++) {
5226 if (zone->lowmem_reserve[j] > max)
5227 max = zone->lowmem_reserve[j];
5228 }
5229
5230 /* we treat the high watermark as reserved pages. */
5231 max += high_wmark_pages(zone);
5232
5233 if (max > zone->managed_pages)
5234 max = zone->managed_pages;
5235 reserve_pages += max;
5236 /*
5237 * Lowmem reserves are not available to
5238 * GFP_HIGHUSER page cache allocations and
5239 * kswapd tries to balance zones to their high
5240 * watermark. As a result, neither should be
5241 * regarded as dirtyable memory, to prevent a
5242 * situation where reclaim has to clean pages
5243 * in order to balance the zones.
5244 */
5245 zone->dirty_balance_reserve = max;
5246 }
5247 }
5248 dirty_balance_reserve = reserve_pages;
5249 totalreserve_pages = reserve_pages;
5250 }
5251
5252 /*
5253 * setup_per_zone_lowmem_reserve - called whenever
5254 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5255 * has a correct pages reserved value, so an adequate number of
5256 * pages are left in the zone after a successful __alloc_pages().
5257 */
5258 static void setup_per_zone_lowmem_reserve(void)
5259 {
5260 struct pglist_data *pgdat;
5261 enum zone_type j, idx;
5262
5263 for_each_online_pgdat(pgdat) {
5264 for (j = 0; j < MAX_NR_ZONES; j++) {
5265 struct zone *zone = pgdat->node_zones + j;
5266 unsigned long managed_pages = zone->managed_pages;
5267
5268 zone->lowmem_reserve[j] = 0;
5269
5270 idx = j;
5271 while (idx) {
5272 struct zone *lower_zone;
5273
5274 idx--;
5275
5276 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5277 sysctl_lowmem_reserve_ratio[idx] = 1;
5278
5279 lower_zone = pgdat->node_zones + idx;
5280 lower_zone->lowmem_reserve[j] = managed_pages /
5281 sysctl_lowmem_reserve_ratio[idx];
5282 managed_pages += lower_zone->managed_pages;
5283 }
5284 }
5285 }
5286
5287 /* update totalreserve_pages */
5288 calculate_totalreserve_pages();
5289 }
5290
5291 static void __setup_per_zone_wmarks(void)
5292 {
5293 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5294 unsigned long lowmem_pages = 0;
5295 struct zone *zone;
5296 unsigned long flags;
5297
5298 /* Calculate total number of !ZONE_HIGHMEM pages */
5299 for_each_zone(zone) {
5300 if (!is_highmem(zone))
5301 lowmem_pages += zone->managed_pages;
5302 }
5303
5304 for_each_zone(zone) {
5305 u64 tmp;
5306
5307 spin_lock_irqsave(&zone->lock, flags);
5308 tmp = (u64)pages_min * zone->managed_pages;
5309 do_div(tmp, lowmem_pages);
5310 if (is_highmem(zone)) {
5311 /*
5312 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5313 * need highmem pages, so cap pages_min to a small
5314 * value here.
5315 *
5316 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5317 * deltas controls asynch page reclaim, and so should
5318 * not be capped for highmem.
5319 */
5320 unsigned long min_pages;
5321
5322 min_pages = zone->managed_pages / 1024;
5323 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5324 zone->watermark[WMARK_MIN] = min_pages;
5325 } else {
5326 /*
5327 * If it's a lowmem zone, reserve a number of pages
5328 * proportionate to the zone's size.
5329 */
5330 zone->watermark[WMARK_MIN] = tmp;
5331 }
5332
5333 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5334 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5335
5336 setup_zone_migrate_reserve(zone);
5337 spin_unlock_irqrestore(&zone->lock, flags);
5338 }
5339
5340 /* update totalreserve_pages */
5341 calculate_totalreserve_pages();
5342 }
5343
5344 /**
5345 * setup_per_zone_wmarks - called when min_free_kbytes changes
5346 * or when memory is hot-{added|removed}
5347 *
5348 * Ensures that the watermark[min,low,high] values for each zone are set
5349 * correctly with respect to min_free_kbytes.
5350 */
5351 void setup_per_zone_wmarks(void)
5352 {
5353 mutex_lock(&zonelists_mutex);
5354 __setup_per_zone_wmarks();
5355 mutex_unlock(&zonelists_mutex);
5356 }
5357
5358 /*
5359 * The inactive anon list should be small enough that the VM never has to
5360 * do too much work, but large enough that each inactive page has a chance
5361 * to be referenced again before it is swapped out.
5362 *
5363 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5364 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5365 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5366 * the anonymous pages are kept on the inactive list.
5367 *
5368 * total target max
5369 * memory ratio inactive anon
5370 * -------------------------------------
5371 * 10MB 1 5MB
5372 * 100MB 1 50MB
5373 * 1GB 3 250MB
5374 * 10GB 10 0.9GB
5375 * 100GB 31 3GB
5376 * 1TB 101 10GB
5377 * 10TB 320 32GB
5378 */
5379 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5380 {
5381 unsigned int gb, ratio;
5382
5383 /* Zone size in gigabytes */
5384 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5385 if (gb)
5386 ratio = int_sqrt(10 * gb);
5387 else
5388 ratio = 1;
5389
5390 zone->inactive_ratio = ratio;
5391 }
5392
5393 static void __meminit setup_per_zone_inactive_ratio(void)
5394 {
5395 struct zone *zone;
5396
5397 for_each_zone(zone)
5398 calculate_zone_inactive_ratio(zone);
5399 }
5400
5401 /*
5402 * Initialise min_free_kbytes.
5403 *
5404 * For small machines we want it small (128k min). For large machines
5405 * we want it large (64MB max). But it is not linear, because network
5406 * bandwidth does not increase linearly with machine size. We use
5407 *
5408 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5409 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5410 *
5411 * which yields
5412 *
5413 * 16MB: 512k
5414 * 32MB: 724k
5415 * 64MB: 1024k
5416 * 128MB: 1448k
5417 * 256MB: 2048k
5418 * 512MB: 2896k
5419 * 1024MB: 4096k
5420 * 2048MB: 5792k
5421 * 4096MB: 8192k
5422 * 8192MB: 11584k
5423 * 16384MB: 16384k
5424 */
5425 int __meminit init_per_zone_wmark_min(void)
5426 {
5427 unsigned long lowmem_kbytes;
5428
5429 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5430
5431 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5432 if (min_free_kbytes < 128)
5433 min_free_kbytes = 128;
5434 if (min_free_kbytes > 65536)
5435 min_free_kbytes = 65536;
5436 setup_per_zone_wmarks();
5437 refresh_zone_stat_thresholds();
5438 setup_per_zone_lowmem_reserve();
5439 setup_per_zone_inactive_ratio();
5440 return 0;
5441 }
5442 module_init(init_per_zone_wmark_min)
5443
5444 /*
5445 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5446 * that we can call two helper functions whenever min_free_kbytes
5447 * changes.
5448 */
5449 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5450 void __user *buffer, size_t *length, loff_t *ppos)
5451 {
5452 proc_dointvec(table, write, buffer, length, ppos);
5453 if (write)
5454 setup_per_zone_wmarks();
5455 return 0;
5456 }
5457
5458 #ifdef CONFIG_NUMA
5459 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5460 void __user *buffer, size_t *length, loff_t *ppos)
5461 {
5462 struct zone *zone;
5463 int rc;
5464
5465 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5466 if (rc)
5467 return rc;
5468
5469 for_each_zone(zone)
5470 zone->min_unmapped_pages = (zone->managed_pages *
5471 sysctl_min_unmapped_ratio) / 100;
5472 return 0;
5473 }
5474
5475 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5476 void __user *buffer, size_t *length, loff_t *ppos)
5477 {
5478 struct zone *zone;
5479 int rc;
5480
5481 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5482 if (rc)
5483 return rc;
5484
5485 for_each_zone(zone)
5486 zone->min_slab_pages = (zone->managed_pages *
5487 sysctl_min_slab_ratio) / 100;
5488 return 0;
5489 }
5490 #endif
5491
5492 /*
5493 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5494 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5495 * whenever sysctl_lowmem_reserve_ratio changes.
5496 *
5497 * The reserve ratio obviously has absolutely no relation with the
5498 * minimum watermarks. The lowmem reserve ratio can only make sense
5499 * if in function of the boot time zone sizes.
5500 */
5501 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5502 void __user *buffer, size_t *length, loff_t *ppos)
5503 {
5504 proc_dointvec_minmax(table, write, buffer, length, ppos);
5505 setup_per_zone_lowmem_reserve();
5506 return 0;
5507 }
5508
5509 /*
5510 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5511 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5512 * can have before it gets flushed back to buddy allocator.
5513 */
5514
5515 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5516 void __user *buffer, size_t *length, loff_t *ppos)
5517 {
5518 struct zone *zone;
5519 unsigned int cpu;
5520 int ret;
5521
5522 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5523 if (!write || (ret < 0))
5524 return ret;
5525 for_each_populated_zone(zone) {
5526 for_each_possible_cpu(cpu) {
5527 unsigned long high;
5528 high = zone->managed_pages / percpu_pagelist_fraction;
5529 setup_pagelist_highmark(
5530 per_cpu_ptr(zone->pageset, cpu), high);
5531 }
5532 }
5533 return 0;
5534 }
5535
5536 int hashdist = HASHDIST_DEFAULT;
5537
5538 #ifdef CONFIG_NUMA
5539 static int __init set_hashdist(char *str)
5540 {
5541 if (!str)
5542 return 0;
5543 hashdist = simple_strtoul(str, &str, 0);
5544 return 1;
5545 }
5546 __setup("hashdist=", set_hashdist);
5547 #endif
5548
5549 /*
5550 * allocate a large system hash table from bootmem
5551 * - it is assumed that the hash table must contain an exact power-of-2
5552 * quantity of entries
5553 * - limit is the number of hash buckets, not the total allocation size
5554 */
5555 void *__init alloc_large_system_hash(const char *tablename,
5556 unsigned long bucketsize,
5557 unsigned long numentries,
5558 int scale,
5559 int flags,
5560 unsigned int *_hash_shift,
5561 unsigned int *_hash_mask,
5562 unsigned long low_limit,
5563 unsigned long high_limit)
5564 {
5565 unsigned long long max = high_limit;
5566 unsigned long log2qty, size;
5567 void *table = NULL;
5568
5569 /* allow the kernel cmdline to have a say */
5570 if (!numentries) {
5571 /* round applicable memory size up to nearest megabyte */
5572 numentries = nr_kernel_pages;
5573 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5574 numentries >>= 20 - PAGE_SHIFT;
5575 numentries <<= 20 - PAGE_SHIFT;
5576
5577 /* limit to 1 bucket per 2^scale bytes of low memory */
5578 if (scale > PAGE_SHIFT)
5579 numentries >>= (scale - PAGE_SHIFT);
5580 else
5581 numentries <<= (PAGE_SHIFT - scale);
5582
5583 /* Make sure we've got at least a 0-order allocation.. */
5584 if (unlikely(flags & HASH_SMALL)) {
5585 /* Makes no sense without HASH_EARLY */
5586 WARN_ON(!(flags & HASH_EARLY));
5587 if (!(numentries >> *_hash_shift)) {
5588 numentries = 1UL << *_hash_shift;
5589 BUG_ON(!numentries);
5590 }
5591 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5592 numentries = PAGE_SIZE / bucketsize;
5593 }
5594 numentries = roundup_pow_of_two(numentries);
5595
5596 /* limit allocation size to 1/16 total memory by default */
5597 if (max == 0) {
5598 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5599 do_div(max, bucketsize);
5600 }
5601 max = min(max, 0x80000000ULL);
5602
5603 if (numentries < low_limit)
5604 numentries = low_limit;
5605 if (numentries > max)
5606 numentries = max;
5607
5608 log2qty = ilog2(numentries);
5609
5610 do {
5611 size = bucketsize << log2qty;
5612 if (flags & HASH_EARLY)
5613 table = alloc_bootmem_nopanic(size);
5614 else if (hashdist)
5615 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5616 else {
5617 /*
5618 * If bucketsize is not a power-of-two, we may free
5619 * some pages at the end of hash table which
5620 * alloc_pages_exact() automatically does
5621 */
5622 if (get_order(size) < MAX_ORDER) {
5623 table = alloc_pages_exact(size, GFP_ATOMIC);
5624 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5625 }
5626 }
5627 } while (!table && size > PAGE_SIZE && --log2qty);
5628
5629 if (!table)
5630 panic("Failed to allocate %s hash table\n", tablename);
5631
5632 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5633 tablename,
5634 (1UL << log2qty),
5635 ilog2(size) - PAGE_SHIFT,
5636 size);
5637
5638 if (_hash_shift)
5639 *_hash_shift = log2qty;
5640 if (_hash_mask)
5641 *_hash_mask = (1 << log2qty) - 1;
5642
5643 return table;
5644 }
5645
5646 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5647 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5648 unsigned long pfn)
5649 {
5650 #ifdef CONFIG_SPARSEMEM
5651 return __pfn_to_section(pfn)->pageblock_flags;
5652 #else
5653 return zone->pageblock_flags;
5654 #endif /* CONFIG_SPARSEMEM */
5655 }
5656
5657 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5658 {
5659 #ifdef CONFIG_SPARSEMEM
5660 pfn &= (PAGES_PER_SECTION-1);
5661 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5662 #else
5663 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5664 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5665 #endif /* CONFIG_SPARSEMEM */
5666 }
5667
5668 /**
5669 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5670 * @page: The page within the block of interest
5671 * @start_bitidx: The first bit of interest to retrieve
5672 * @end_bitidx: The last bit of interest
5673 * returns pageblock_bits flags
5674 */
5675 unsigned long get_pageblock_flags_group(struct page *page,
5676 int start_bitidx, int end_bitidx)
5677 {
5678 struct zone *zone;
5679 unsigned long *bitmap;
5680 unsigned long pfn, bitidx;
5681 unsigned long flags = 0;
5682 unsigned long value = 1;
5683
5684 zone = page_zone(page);
5685 pfn = page_to_pfn(page);
5686 bitmap = get_pageblock_bitmap(zone, pfn);
5687 bitidx = pfn_to_bitidx(zone, pfn);
5688
5689 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5690 if (test_bit(bitidx + start_bitidx, bitmap))
5691 flags |= value;
5692
5693 return flags;
5694 }
5695
5696 /**
5697 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5698 * @page: The page within the block of interest
5699 * @start_bitidx: The first bit of interest
5700 * @end_bitidx: The last bit of interest
5701 * @flags: The flags to set
5702 */
5703 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5704 int start_bitidx, int end_bitidx)
5705 {
5706 struct zone *zone;
5707 unsigned long *bitmap;
5708 unsigned long pfn, bitidx;
5709 unsigned long value = 1;
5710
5711 zone = page_zone(page);
5712 pfn = page_to_pfn(page);
5713 bitmap = get_pageblock_bitmap(zone, pfn);
5714 bitidx = pfn_to_bitidx(zone, pfn);
5715 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5716
5717 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5718 if (flags & value)
5719 __set_bit(bitidx + start_bitidx, bitmap);
5720 else
5721 __clear_bit(bitidx + start_bitidx, bitmap);
5722 }
5723
5724 /*
5725 * This function checks whether pageblock includes unmovable pages or not.
5726 * If @count is not zero, it is okay to include less @count unmovable pages
5727 *
5728 * PageLRU check wihtout isolation or lru_lock could race so that
5729 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5730 * expect this function should be exact.
5731 */
5732 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5733 bool skip_hwpoisoned_pages)
5734 {
5735 unsigned long pfn, iter, found;
5736 int mt;
5737
5738 /*
5739 * For avoiding noise data, lru_add_drain_all() should be called
5740 * If ZONE_MOVABLE, the zone never contains unmovable pages
5741 */
5742 if (zone_idx(zone) == ZONE_MOVABLE)
5743 return false;
5744 mt = get_pageblock_migratetype(page);
5745 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5746 return false;
5747
5748 pfn = page_to_pfn(page);
5749 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5750 unsigned long check = pfn + iter;
5751
5752 if (!pfn_valid_within(check))
5753 continue;
5754
5755 page = pfn_to_page(check);
5756 /*
5757 * We can't use page_count without pin a page
5758 * because another CPU can free compound page.
5759 * This check already skips compound tails of THP
5760 * because their page->_count is zero at all time.
5761 */
5762 if (!atomic_read(&page->_count)) {
5763 if (PageBuddy(page))
5764 iter += (1 << page_order(page)) - 1;
5765 continue;
5766 }
5767
5768 /*
5769 * The HWPoisoned page may be not in buddy system, and
5770 * page_count() is not 0.
5771 */
5772 if (skip_hwpoisoned_pages && PageHWPoison(page))
5773 continue;
5774
5775 if (!PageLRU(page))
5776 found++;
5777 /*
5778 * If there are RECLAIMABLE pages, we need to check it.
5779 * But now, memory offline itself doesn't call shrink_slab()
5780 * and it still to be fixed.
5781 */
5782 /*
5783 * If the page is not RAM, page_count()should be 0.
5784 * we don't need more check. This is an _used_ not-movable page.
5785 *
5786 * The problematic thing here is PG_reserved pages. PG_reserved
5787 * is set to both of a memory hole page and a _used_ kernel
5788 * page at boot.
5789 */
5790 if (found > count)
5791 return true;
5792 }
5793 return false;
5794 }
5795
5796 bool is_pageblock_removable_nolock(struct page *page)
5797 {
5798 struct zone *zone;
5799 unsigned long pfn;
5800
5801 /*
5802 * We have to be careful here because we are iterating over memory
5803 * sections which are not zone aware so we might end up outside of
5804 * the zone but still within the section.
5805 * We have to take care about the node as well. If the node is offline
5806 * its NODE_DATA will be NULL - see page_zone.
5807 */
5808 if (!node_online(page_to_nid(page)))
5809 return false;
5810
5811 zone = page_zone(page);
5812 pfn = page_to_pfn(page);
5813 if (!zone_spans_pfn(zone, pfn))
5814 return false;
5815
5816 return !has_unmovable_pages(zone, page, 0, true);
5817 }
5818
5819 #ifdef CONFIG_CMA
5820
5821 static unsigned long pfn_max_align_down(unsigned long pfn)
5822 {
5823 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5824 pageblock_nr_pages) - 1);
5825 }
5826
5827 static unsigned long pfn_max_align_up(unsigned long pfn)
5828 {
5829 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5830 pageblock_nr_pages));
5831 }
5832
5833 /* [start, end) must belong to a single zone. */
5834 static int __alloc_contig_migrate_range(struct compact_control *cc,
5835 unsigned long start, unsigned long end)
5836 {
5837 /* This function is based on compact_zone() from compaction.c. */
5838 unsigned long nr_reclaimed;
5839 unsigned long pfn = start;
5840 unsigned int tries = 0;
5841 int ret = 0;
5842
5843 migrate_prep();
5844
5845 while (pfn < end || !list_empty(&cc->migratepages)) {
5846 if (fatal_signal_pending(current)) {
5847 ret = -EINTR;
5848 break;
5849 }
5850
5851 if (list_empty(&cc->migratepages)) {
5852 cc->nr_migratepages = 0;
5853 pfn = isolate_migratepages_range(cc->zone, cc,
5854 pfn, end, true);
5855 if (!pfn) {
5856 ret = -EINTR;
5857 break;
5858 }
5859 tries = 0;
5860 } else if (++tries == 5) {
5861 ret = ret < 0 ? ret : -EBUSY;
5862 break;
5863 }
5864
5865 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5866 &cc->migratepages);
5867 cc->nr_migratepages -= nr_reclaimed;
5868
5869 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5870 0, MIGRATE_SYNC, MR_CMA);
5871 }
5872 if (ret < 0) {
5873 putback_movable_pages(&cc->migratepages);
5874 return ret;
5875 }
5876 return 0;
5877 }
5878
5879 /**
5880 * alloc_contig_range() -- tries to allocate given range of pages
5881 * @start: start PFN to allocate
5882 * @end: one-past-the-last PFN to allocate
5883 * @migratetype: migratetype of the underlaying pageblocks (either
5884 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5885 * in range must have the same migratetype and it must
5886 * be either of the two.
5887 *
5888 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5889 * aligned, however it's the caller's responsibility to guarantee that
5890 * we are the only thread that changes migrate type of pageblocks the
5891 * pages fall in.
5892 *
5893 * The PFN range must belong to a single zone.
5894 *
5895 * Returns zero on success or negative error code. On success all
5896 * pages which PFN is in [start, end) are allocated for the caller and
5897 * need to be freed with free_contig_range().
5898 */
5899 int alloc_contig_range(unsigned long start, unsigned long end,
5900 unsigned migratetype)
5901 {
5902 unsigned long outer_start, outer_end;
5903 int ret = 0, order;
5904
5905 struct compact_control cc = {
5906 .nr_migratepages = 0,
5907 .order = -1,
5908 .zone = page_zone(pfn_to_page(start)),
5909 .sync = true,
5910 .ignore_skip_hint = true,
5911 };
5912 INIT_LIST_HEAD(&cc.migratepages);
5913
5914 /*
5915 * What we do here is we mark all pageblocks in range as
5916 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5917 * have different sizes, and due to the way page allocator
5918 * work, we align the range to biggest of the two pages so
5919 * that page allocator won't try to merge buddies from
5920 * different pageblocks and change MIGRATE_ISOLATE to some
5921 * other migration type.
5922 *
5923 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5924 * migrate the pages from an unaligned range (ie. pages that
5925 * we are interested in). This will put all the pages in
5926 * range back to page allocator as MIGRATE_ISOLATE.
5927 *
5928 * When this is done, we take the pages in range from page
5929 * allocator removing them from the buddy system. This way
5930 * page allocator will never consider using them.
5931 *
5932 * This lets us mark the pageblocks back as
5933 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5934 * aligned range but not in the unaligned, original range are
5935 * put back to page allocator so that buddy can use them.
5936 */
5937
5938 ret = start_isolate_page_range(pfn_max_align_down(start),
5939 pfn_max_align_up(end), migratetype,
5940 false);
5941 if (ret)
5942 return ret;
5943
5944 ret = __alloc_contig_migrate_range(&cc, start, end);
5945 if (ret)
5946 goto done;
5947
5948 /*
5949 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5950 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5951 * more, all pages in [start, end) are free in page allocator.
5952 * What we are going to do is to allocate all pages from
5953 * [start, end) (that is remove them from page allocator).
5954 *
5955 * The only problem is that pages at the beginning and at the
5956 * end of interesting range may be not aligned with pages that
5957 * page allocator holds, ie. they can be part of higher order
5958 * pages. Because of this, we reserve the bigger range and
5959 * once this is done free the pages we are not interested in.
5960 *
5961 * We don't have to hold zone->lock here because the pages are
5962 * isolated thus they won't get removed from buddy.
5963 */
5964
5965 lru_add_drain_all();
5966 drain_all_pages();
5967
5968 order = 0;
5969 outer_start = start;
5970 while (!PageBuddy(pfn_to_page(outer_start))) {
5971 if (++order >= MAX_ORDER) {
5972 ret = -EBUSY;
5973 goto done;
5974 }
5975 outer_start &= ~0UL << order;
5976 }
5977
5978 /* Make sure the range is really isolated. */
5979 if (test_pages_isolated(outer_start, end, false)) {
5980 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5981 outer_start, end);
5982 ret = -EBUSY;
5983 goto done;
5984 }
5985
5986
5987 /* Grab isolated pages from freelists. */
5988 outer_end = isolate_freepages_range(&cc, outer_start, end);
5989 if (!outer_end) {
5990 ret = -EBUSY;
5991 goto done;
5992 }
5993
5994 /* Free head and tail (if any) */
5995 if (start != outer_start)
5996 free_contig_range(outer_start, start - outer_start);
5997 if (end != outer_end)
5998 free_contig_range(end, outer_end - end);
5999
6000 done:
6001 undo_isolate_page_range(pfn_max_align_down(start),
6002 pfn_max_align_up(end), migratetype);
6003 return ret;
6004 }
6005
6006 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6007 {
6008 unsigned int count = 0;
6009
6010 for (; nr_pages--; pfn++) {
6011 struct page *page = pfn_to_page(pfn);
6012
6013 count += page_count(page) != 1;
6014 __free_page(page);
6015 }
6016 WARN(count != 0, "%d pages are still in use!\n", count);
6017 }
6018 #endif
6019
6020 #ifdef CONFIG_MEMORY_HOTPLUG
6021 static int __meminit __zone_pcp_update(void *data)
6022 {
6023 struct zone *zone = data;
6024 int cpu;
6025 unsigned long batch = zone_batchsize(zone), flags;
6026
6027 for_each_possible_cpu(cpu) {
6028 struct per_cpu_pageset *pset;
6029 struct per_cpu_pages *pcp;
6030
6031 pset = per_cpu_ptr(zone->pageset, cpu);
6032 pcp = &pset->pcp;
6033
6034 local_irq_save(flags);
6035 if (pcp->count > 0)
6036 free_pcppages_bulk(zone, pcp->count, pcp);
6037 drain_zonestat(zone, pset);
6038 setup_pageset(pset, batch);
6039 local_irq_restore(flags);
6040 }
6041 return 0;
6042 }
6043
6044 void __meminit zone_pcp_update(struct zone *zone)
6045 {
6046 stop_machine(__zone_pcp_update, zone, NULL);
6047 }
6048 #endif
6049
6050 void zone_pcp_reset(struct zone *zone)
6051 {
6052 unsigned long flags;
6053 int cpu;
6054 struct per_cpu_pageset *pset;
6055
6056 /* avoid races with drain_pages() */
6057 local_irq_save(flags);
6058 if (zone->pageset != &boot_pageset) {
6059 for_each_online_cpu(cpu) {
6060 pset = per_cpu_ptr(zone->pageset, cpu);
6061 drain_zonestat(zone, pset);
6062 }
6063 free_percpu(zone->pageset);
6064 zone->pageset = &boot_pageset;
6065 }
6066 local_irq_restore(flags);
6067 }
6068
6069 #ifdef CONFIG_MEMORY_HOTREMOVE
6070 /*
6071 * All pages in the range must be isolated before calling this.
6072 */
6073 void
6074 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6075 {
6076 struct page *page;
6077 struct zone *zone;
6078 int order, i;
6079 unsigned long pfn;
6080 unsigned long flags;
6081 /* find the first valid pfn */
6082 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6083 if (pfn_valid(pfn))
6084 break;
6085 if (pfn == end_pfn)
6086 return;
6087 zone = page_zone(pfn_to_page(pfn));
6088 spin_lock_irqsave(&zone->lock, flags);
6089 pfn = start_pfn;
6090 while (pfn < end_pfn) {
6091 if (!pfn_valid(pfn)) {
6092 pfn++;
6093 continue;
6094 }
6095 page = pfn_to_page(pfn);
6096 /*
6097 * The HWPoisoned page may be not in buddy system, and
6098 * page_count() is not 0.
6099 */
6100 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6101 pfn++;
6102 SetPageReserved(page);
6103 continue;
6104 }
6105
6106 BUG_ON(page_count(page));
6107 BUG_ON(!PageBuddy(page));
6108 order = page_order(page);
6109 #ifdef CONFIG_DEBUG_VM
6110 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6111 pfn, 1 << order, end_pfn);
6112 #endif
6113 list_del(&page->lru);
6114 rmv_page_order(page);
6115 zone->free_area[order].nr_free--;
6116 for (i = 0; i < (1 << order); i++)
6117 SetPageReserved((page+i));
6118 pfn += (1 << order);
6119 }
6120 spin_unlock_irqrestore(&zone->lock, flags);
6121 }
6122 #endif
6123
6124 #ifdef CONFIG_MEMORY_FAILURE
6125 bool is_free_buddy_page(struct page *page)
6126 {
6127 struct zone *zone = page_zone(page);
6128 unsigned long pfn = page_to_pfn(page);
6129 unsigned long flags;
6130 int order;
6131
6132 spin_lock_irqsave(&zone->lock, flags);
6133 for (order = 0; order < MAX_ORDER; order++) {
6134 struct page *page_head = page - (pfn & ((1 << order) - 1));
6135
6136 if (PageBuddy(page_head) && page_order(page_head) >= order)
6137 break;
6138 }
6139 spin_unlock_irqrestore(&zone->lock, flags);
6140
6141 return order < MAX_ORDER;
6142 }
6143 #endif
6144
6145 static const struct trace_print_flags pageflag_names[] = {
6146 {1UL << PG_locked, "locked" },
6147 {1UL << PG_error, "error" },
6148 {1UL << PG_referenced, "referenced" },
6149 {1UL << PG_uptodate, "uptodate" },
6150 {1UL << PG_dirty, "dirty" },
6151 {1UL << PG_lru, "lru" },
6152 {1UL << PG_active, "active" },
6153 {1UL << PG_slab, "slab" },
6154 {1UL << PG_owner_priv_1, "owner_priv_1" },
6155 {1UL << PG_arch_1, "arch_1" },
6156 {1UL << PG_reserved, "reserved" },
6157 {1UL << PG_private, "private" },
6158 {1UL << PG_private_2, "private_2" },
6159 {1UL << PG_writeback, "writeback" },
6160 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6161 {1UL << PG_head, "head" },
6162 {1UL << PG_tail, "tail" },
6163 #else
6164 {1UL << PG_compound, "compound" },
6165 #endif
6166 {1UL << PG_swapcache, "swapcache" },
6167 {1UL << PG_mappedtodisk, "mappedtodisk" },
6168 {1UL << PG_reclaim, "reclaim" },
6169 {1UL << PG_swapbacked, "swapbacked" },
6170 {1UL << PG_unevictable, "unevictable" },
6171 #ifdef CONFIG_MMU
6172 {1UL << PG_mlocked, "mlocked" },
6173 #endif
6174 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6175 {1UL << PG_uncached, "uncached" },
6176 #endif
6177 #ifdef CONFIG_MEMORY_FAILURE
6178 {1UL << PG_hwpoison, "hwpoison" },
6179 #endif
6180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6181 {1UL << PG_compound_lock, "compound_lock" },
6182 #endif
6183 };
6184
6185 static void dump_page_flags(unsigned long flags)
6186 {
6187 const char *delim = "";
6188 unsigned long mask;
6189 int i;
6190
6191 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6192
6193 printk(KERN_ALERT "page flags: %#lx(", flags);
6194
6195 /* remove zone id */
6196 flags &= (1UL << NR_PAGEFLAGS) - 1;
6197
6198 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6199
6200 mask = pageflag_names[i].mask;
6201 if ((flags & mask) != mask)
6202 continue;
6203
6204 flags &= ~mask;
6205 printk("%s%s", delim, pageflag_names[i].name);
6206 delim = "|";
6207 }
6208
6209 /* check for left over flags */
6210 if (flags)
6211 printk("%s%#lx", delim, flags);
6212
6213 printk(")\n");
6214 }
6215
6216 void dump_page(struct page *page)
6217 {
6218 printk(KERN_ALERT
6219 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6220 page, atomic_read(&page->_count), page_mapcount(page),
6221 page->mapping, page->index);
6222 dump_page_flags(page->flags);
6223 mem_cgroup_print_bad_page(page);
6224 }
This page took 0.233996 seconds and 5 git commands to generate.