vmscan: second chance replacement for anonymous pages
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 long nr_swap_pages;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 void *pc = page_get_page_cgroup(page);
227
228 printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
229 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
230 current->comm, page, (int)(2*sizeof(unsigned long)),
231 (unsigned long)page->flags, page->mapping,
232 page_mapcount(page), page_count(page));
233 if (pc) {
234 printk(KERN_EMERG "cgroup:%p\n", pc);
235 page_reset_bad_cgroup(page);
236 }
237 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
238 KERN_EMERG "Backtrace:\n");
239 dump_stack();
240 page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
245 }
246
247 /*
248 * Higher-order pages are called "compound pages". They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262 static void free_compound_page(struct page *page)
263 {
264 __free_pages_ok(page, compound_order(page));
265 }
266
267 void prep_compound_page(struct page *page, unsigned long order)
268 {
269 int i;
270 int nr_pages = 1 << order;
271 struct page *p = page + 1;
272
273 set_compound_page_dtor(page, free_compound_page);
274 set_compound_order(page, order);
275 __SetPageHead(page);
276 for (i = 1; i < nr_pages; i++, p++) {
277 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
278 p = pfn_to_page(page_to_pfn(page) + i);
279 __SetPageTail(p);
280 p->first_page = page;
281 }
282 }
283
284 static void destroy_compound_page(struct page *page, unsigned long order)
285 {
286 int i;
287 int nr_pages = 1 << order;
288 struct page *p = page + 1;
289
290 if (unlikely(compound_order(page) != order))
291 bad_page(page);
292
293 if (unlikely(!PageHead(page)))
294 bad_page(page);
295 __ClearPageHead(page);
296 for (i = 1; i < nr_pages; i++, p++) {
297 if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
298 p = pfn_to_page(page_to_pfn(page) + i);
299
300 if (unlikely(!PageTail(p) |
301 (p->first_page != page)))
302 bad_page(page);
303 __ClearPageTail(p);
304 }
305 }
306
307 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
308 {
309 int i;
310
311 /*
312 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
313 * and __GFP_HIGHMEM from hard or soft interrupt context.
314 */
315 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
316 for (i = 0; i < (1 << order); i++)
317 clear_highpage(page + i);
318 }
319
320 static inline void set_page_order(struct page *page, int order)
321 {
322 set_page_private(page, order);
323 __SetPageBuddy(page);
324 }
325
326 static inline void rmv_page_order(struct page *page)
327 {
328 __ClearPageBuddy(page);
329 set_page_private(page, 0);
330 }
331
332 /*
333 * Locate the struct page for both the matching buddy in our
334 * pair (buddy1) and the combined O(n+1) page they form (page).
335 *
336 * 1) Any buddy B1 will have an order O twin B2 which satisfies
337 * the following equation:
338 * B2 = B1 ^ (1 << O)
339 * For example, if the starting buddy (buddy2) is #8 its order
340 * 1 buddy is #10:
341 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
342 *
343 * 2) Any buddy B will have an order O+1 parent P which
344 * satisfies the following equation:
345 * P = B & ~(1 << O)
346 *
347 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
348 */
349 static inline struct page *
350 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
351 {
352 unsigned long buddy_idx = page_idx ^ (1 << order);
353
354 return page + (buddy_idx - page_idx);
355 }
356
357 static inline unsigned long
358 __find_combined_index(unsigned long page_idx, unsigned int order)
359 {
360 return (page_idx & ~(1 << order));
361 }
362
363 /*
364 * This function checks whether a page is free && is the buddy
365 * we can do coalesce a page and its buddy if
366 * (a) the buddy is not in a hole &&
367 * (b) the buddy is in the buddy system &&
368 * (c) a page and its buddy have the same order &&
369 * (d) a page and its buddy are in the same zone.
370 *
371 * For recording whether a page is in the buddy system, we use PG_buddy.
372 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
373 *
374 * For recording page's order, we use page_private(page).
375 */
376 static inline int page_is_buddy(struct page *page, struct page *buddy,
377 int order)
378 {
379 if (!pfn_valid_within(page_to_pfn(buddy)))
380 return 0;
381
382 if (page_zone_id(page) != page_zone_id(buddy))
383 return 0;
384
385 if (PageBuddy(buddy) && page_order(buddy) == order) {
386 BUG_ON(page_count(buddy) != 0);
387 return 1;
388 }
389 return 0;
390 }
391
392 /*
393 * Freeing function for a buddy system allocator.
394 *
395 * The concept of a buddy system is to maintain direct-mapped table
396 * (containing bit values) for memory blocks of various "orders".
397 * The bottom level table contains the map for the smallest allocatable
398 * units of memory (here, pages), and each level above it describes
399 * pairs of units from the levels below, hence, "buddies".
400 * At a high level, all that happens here is marking the table entry
401 * at the bottom level available, and propagating the changes upward
402 * as necessary, plus some accounting needed to play nicely with other
403 * parts of the VM system.
404 * At each level, we keep a list of pages, which are heads of continuous
405 * free pages of length of (1 << order) and marked with PG_buddy. Page's
406 * order is recorded in page_private(page) field.
407 * So when we are allocating or freeing one, we can derive the state of the
408 * other. That is, if we allocate a small block, and both were
409 * free, the remainder of the region must be split into blocks.
410 * If a block is freed, and its buddy is also free, then this
411 * triggers coalescing into a block of larger size.
412 *
413 * -- wli
414 */
415
416 static inline void __free_one_page(struct page *page,
417 struct zone *zone, unsigned int order)
418 {
419 unsigned long page_idx;
420 int order_size = 1 << order;
421 int migratetype = get_pageblock_migratetype(page);
422
423 if (unlikely(PageCompound(page)))
424 destroy_compound_page(page, order);
425
426 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
427
428 VM_BUG_ON(page_idx & (order_size - 1));
429 VM_BUG_ON(bad_range(zone, page));
430
431 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
432 while (order < MAX_ORDER-1) {
433 unsigned long combined_idx;
434 struct page *buddy;
435
436 buddy = __page_find_buddy(page, page_idx, order);
437 if (!page_is_buddy(page, buddy, order))
438 break;
439
440 /* Our buddy is free, merge with it and move up one order. */
441 list_del(&buddy->lru);
442 zone->free_area[order].nr_free--;
443 rmv_page_order(buddy);
444 combined_idx = __find_combined_index(page_idx, order);
445 page = page + (combined_idx - page_idx);
446 page_idx = combined_idx;
447 order++;
448 }
449 set_page_order(page, order);
450 list_add(&page->lru,
451 &zone->free_area[order].free_list[migratetype]);
452 zone->free_area[order].nr_free++;
453 }
454
455 static inline int free_pages_check(struct page *page)
456 {
457 if (unlikely(page_mapcount(page) |
458 (page->mapping != NULL) |
459 (page_get_page_cgroup(page) != NULL) |
460 (page_count(page) != 0) |
461 (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
462 bad_page(page);
463 if (PageDirty(page))
464 __ClearPageDirty(page);
465 if (PageSwapBacked(page))
466 __ClearPageSwapBacked(page);
467 /*
468 * For now, we report if PG_reserved was found set, but do not
469 * clear it, and do not free the page. But we shall soon need
470 * to do more, for when the ZERO_PAGE count wraps negative.
471 */
472 return PageReserved(page);
473 }
474
475 /*
476 * Frees a list of pages.
477 * Assumes all pages on list are in same zone, and of same order.
478 * count is the number of pages to free.
479 *
480 * If the zone was previously in an "all pages pinned" state then look to
481 * see if this freeing clears that state.
482 *
483 * And clear the zone's pages_scanned counter, to hold off the "all pages are
484 * pinned" detection logic.
485 */
486 static void free_pages_bulk(struct zone *zone, int count,
487 struct list_head *list, int order)
488 {
489 spin_lock(&zone->lock);
490 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
491 zone->pages_scanned = 0;
492 while (count--) {
493 struct page *page;
494
495 VM_BUG_ON(list_empty(list));
496 page = list_entry(list->prev, struct page, lru);
497 /* have to delete it as __free_one_page list manipulates */
498 list_del(&page->lru);
499 __free_one_page(page, zone, order);
500 }
501 spin_unlock(&zone->lock);
502 }
503
504 static void free_one_page(struct zone *zone, struct page *page, int order)
505 {
506 spin_lock(&zone->lock);
507 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
508 zone->pages_scanned = 0;
509 __free_one_page(page, zone, order);
510 spin_unlock(&zone->lock);
511 }
512
513 static void __free_pages_ok(struct page *page, unsigned int order)
514 {
515 unsigned long flags;
516 int i;
517 int reserved = 0;
518
519 for (i = 0 ; i < (1 << order) ; ++i)
520 reserved += free_pages_check(page + i);
521 if (reserved)
522 return;
523
524 if (!PageHighMem(page)) {
525 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
526 debug_check_no_obj_freed(page_address(page),
527 PAGE_SIZE << order);
528 }
529 arch_free_page(page, order);
530 kernel_map_pages(page, 1 << order, 0);
531
532 local_irq_save(flags);
533 __count_vm_events(PGFREE, 1 << order);
534 free_one_page(page_zone(page), page, order);
535 local_irq_restore(flags);
536 }
537
538 /*
539 * permit the bootmem allocator to evade page validation on high-order frees
540 */
541 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
542 {
543 if (order == 0) {
544 __ClearPageReserved(page);
545 set_page_count(page, 0);
546 set_page_refcounted(page);
547 __free_page(page);
548 } else {
549 int loop;
550
551 prefetchw(page);
552 for (loop = 0; loop < BITS_PER_LONG; loop++) {
553 struct page *p = &page[loop];
554
555 if (loop + 1 < BITS_PER_LONG)
556 prefetchw(p + 1);
557 __ClearPageReserved(p);
558 set_page_count(p, 0);
559 }
560
561 set_page_refcounted(page);
562 __free_pages(page, order);
563 }
564 }
565
566
567 /*
568 * The order of subdivision here is critical for the IO subsystem.
569 * Please do not alter this order without good reasons and regression
570 * testing. Specifically, as large blocks of memory are subdivided,
571 * the order in which smaller blocks are delivered depends on the order
572 * they're subdivided in this function. This is the primary factor
573 * influencing the order in which pages are delivered to the IO
574 * subsystem according to empirical testing, and this is also justified
575 * by considering the behavior of a buddy system containing a single
576 * large block of memory acted on by a series of small allocations.
577 * This behavior is a critical factor in sglist merging's success.
578 *
579 * -- wli
580 */
581 static inline void expand(struct zone *zone, struct page *page,
582 int low, int high, struct free_area *area,
583 int migratetype)
584 {
585 unsigned long size = 1 << high;
586
587 while (high > low) {
588 area--;
589 high--;
590 size >>= 1;
591 VM_BUG_ON(bad_range(zone, &page[size]));
592 list_add(&page[size].lru, &area->free_list[migratetype]);
593 area->nr_free++;
594 set_page_order(&page[size], high);
595 }
596 }
597
598 /*
599 * This page is about to be returned from the page allocator
600 */
601 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
602 {
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (page_get_page_cgroup(page) != NULL) |
606 (page_count(page) != 0) |
607 (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
608 bad_page(page);
609
610 /*
611 * For now, we report if PG_reserved was found set, but do not
612 * clear it, and do not allocate the page: as a safety net.
613 */
614 if (PageReserved(page))
615 return 1;
616
617 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
618 1 << PG_referenced | 1 << PG_arch_1 |
619 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
620 set_page_private(page, 0);
621 set_page_refcounted(page);
622
623 arch_alloc_page(page, order);
624 kernel_map_pages(page, 1 << order, 1);
625
626 if (gfp_flags & __GFP_ZERO)
627 prep_zero_page(page, order, gfp_flags);
628
629 if (order && (gfp_flags & __GFP_COMP))
630 prep_compound_page(page, order);
631
632 return 0;
633 }
634
635 /*
636 * Go through the free lists for the given migratetype and remove
637 * the smallest available page from the freelists
638 */
639 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
640 int migratetype)
641 {
642 unsigned int current_order;
643 struct free_area * area;
644 struct page *page;
645
646 /* Find a page of the appropriate size in the preferred list */
647 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
648 area = &(zone->free_area[current_order]);
649 if (list_empty(&area->free_list[migratetype]))
650 continue;
651
652 page = list_entry(area->free_list[migratetype].next,
653 struct page, lru);
654 list_del(&page->lru);
655 rmv_page_order(page);
656 area->nr_free--;
657 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
658 expand(zone, page, order, current_order, area, migratetype);
659 return page;
660 }
661
662 return NULL;
663 }
664
665
666 /*
667 * This array describes the order lists are fallen back to when
668 * the free lists for the desirable migrate type are depleted
669 */
670 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
671 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
672 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
673 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
674 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
675 };
676
677 /*
678 * Move the free pages in a range to the free lists of the requested type.
679 * Note that start_page and end_pages are not aligned on a pageblock
680 * boundary. If alignment is required, use move_freepages_block()
681 */
682 static int move_freepages(struct zone *zone,
683 struct page *start_page, struct page *end_page,
684 int migratetype)
685 {
686 struct page *page;
687 unsigned long order;
688 int pages_moved = 0;
689
690 #ifndef CONFIG_HOLES_IN_ZONE
691 /*
692 * page_zone is not safe to call in this context when
693 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
694 * anyway as we check zone boundaries in move_freepages_block().
695 * Remove at a later date when no bug reports exist related to
696 * grouping pages by mobility
697 */
698 BUG_ON(page_zone(start_page) != page_zone(end_page));
699 #endif
700
701 for (page = start_page; page <= end_page;) {
702 /* Make sure we are not inadvertently changing nodes */
703 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
704
705 if (!pfn_valid_within(page_to_pfn(page))) {
706 page++;
707 continue;
708 }
709
710 if (!PageBuddy(page)) {
711 page++;
712 continue;
713 }
714
715 order = page_order(page);
716 list_del(&page->lru);
717 list_add(&page->lru,
718 &zone->free_area[order].free_list[migratetype]);
719 page += 1 << order;
720 pages_moved += 1 << order;
721 }
722
723 return pages_moved;
724 }
725
726 static int move_freepages_block(struct zone *zone, struct page *page,
727 int migratetype)
728 {
729 unsigned long start_pfn, end_pfn;
730 struct page *start_page, *end_page;
731
732 start_pfn = page_to_pfn(page);
733 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
734 start_page = pfn_to_page(start_pfn);
735 end_page = start_page + pageblock_nr_pages - 1;
736 end_pfn = start_pfn + pageblock_nr_pages - 1;
737
738 /* Do not cross zone boundaries */
739 if (start_pfn < zone->zone_start_pfn)
740 start_page = page;
741 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
742 return 0;
743
744 return move_freepages(zone, start_page, end_page, migratetype);
745 }
746
747 /* Remove an element from the buddy allocator from the fallback list */
748 static struct page *__rmqueue_fallback(struct zone *zone, int order,
749 int start_migratetype)
750 {
751 struct free_area * area;
752 int current_order;
753 struct page *page;
754 int migratetype, i;
755
756 /* Find the largest possible block of pages in the other list */
757 for (current_order = MAX_ORDER-1; current_order >= order;
758 --current_order) {
759 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
760 migratetype = fallbacks[start_migratetype][i];
761
762 /* MIGRATE_RESERVE handled later if necessary */
763 if (migratetype == MIGRATE_RESERVE)
764 continue;
765
766 area = &(zone->free_area[current_order]);
767 if (list_empty(&area->free_list[migratetype]))
768 continue;
769
770 page = list_entry(area->free_list[migratetype].next,
771 struct page, lru);
772 area->nr_free--;
773
774 /*
775 * If breaking a large block of pages, move all free
776 * pages to the preferred allocation list. If falling
777 * back for a reclaimable kernel allocation, be more
778 * agressive about taking ownership of free pages
779 */
780 if (unlikely(current_order >= (pageblock_order >> 1)) ||
781 start_migratetype == MIGRATE_RECLAIMABLE) {
782 unsigned long pages;
783 pages = move_freepages_block(zone, page,
784 start_migratetype);
785
786 /* Claim the whole block if over half of it is free */
787 if (pages >= (1 << (pageblock_order-1)))
788 set_pageblock_migratetype(page,
789 start_migratetype);
790
791 migratetype = start_migratetype;
792 }
793
794 /* Remove the page from the freelists */
795 list_del(&page->lru);
796 rmv_page_order(page);
797 __mod_zone_page_state(zone, NR_FREE_PAGES,
798 -(1UL << order));
799
800 if (current_order == pageblock_order)
801 set_pageblock_migratetype(page,
802 start_migratetype);
803
804 expand(zone, page, order, current_order, area, migratetype);
805 return page;
806 }
807 }
808
809 /* Use MIGRATE_RESERVE rather than fail an allocation */
810 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
811 }
812
813 /*
814 * Do the hard work of removing an element from the buddy allocator.
815 * Call me with the zone->lock already held.
816 */
817 static struct page *__rmqueue(struct zone *zone, unsigned int order,
818 int migratetype)
819 {
820 struct page *page;
821
822 page = __rmqueue_smallest(zone, order, migratetype);
823
824 if (unlikely(!page))
825 page = __rmqueue_fallback(zone, order, migratetype);
826
827 return page;
828 }
829
830 /*
831 * Obtain a specified number of elements from the buddy allocator, all under
832 * a single hold of the lock, for efficiency. Add them to the supplied list.
833 * Returns the number of new pages which were placed at *list.
834 */
835 static int rmqueue_bulk(struct zone *zone, unsigned int order,
836 unsigned long count, struct list_head *list,
837 int migratetype)
838 {
839 int i;
840
841 spin_lock(&zone->lock);
842 for (i = 0; i < count; ++i) {
843 struct page *page = __rmqueue(zone, order, migratetype);
844 if (unlikely(page == NULL))
845 break;
846
847 /*
848 * Split buddy pages returned by expand() are received here
849 * in physical page order. The page is added to the callers and
850 * list and the list head then moves forward. From the callers
851 * perspective, the linked list is ordered by page number in
852 * some conditions. This is useful for IO devices that can
853 * merge IO requests if the physical pages are ordered
854 * properly.
855 */
856 list_add(&page->lru, list);
857 set_page_private(page, migratetype);
858 list = &page->lru;
859 }
860 spin_unlock(&zone->lock);
861 return i;
862 }
863
864 #ifdef CONFIG_NUMA
865 /*
866 * Called from the vmstat counter updater to drain pagesets of this
867 * currently executing processor on remote nodes after they have
868 * expired.
869 *
870 * Note that this function must be called with the thread pinned to
871 * a single processor.
872 */
873 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
874 {
875 unsigned long flags;
876 int to_drain;
877
878 local_irq_save(flags);
879 if (pcp->count >= pcp->batch)
880 to_drain = pcp->batch;
881 else
882 to_drain = pcp->count;
883 free_pages_bulk(zone, to_drain, &pcp->list, 0);
884 pcp->count -= to_drain;
885 local_irq_restore(flags);
886 }
887 #endif
888
889 /*
890 * Drain pages of the indicated processor.
891 *
892 * The processor must either be the current processor and the
893 * thread pinned to the current processor or a processor that
894 * is not online.
895 */
896 static void drain_pages(unsigned int cpu)
897 {
898 unsigned long flags;
899 struct zone *zone;
900
901 for_each_zone(zone) {
902 struct per_cpu_pageset *pset;
903 struct per_cpu_pages *pcp;
904
905 if (!populated_zone(zone))
906 continue;
907
908 pset = zone_pcp(zone, cpu);
909
910 pcp = &pset->pcp;
911 local_irq_save(flags);
912 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
913 pcp->count = 0;
914 local_irq_restore(flags);
915 }
916 }
917
918 /*
919 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
920 */
921 void drain_local_pages(void *arg)
922 {
923 drain_pages(smp_processor_id());
924 }
925
926 /*
927 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
928 */
929 void drain_all_pages(void)
930 {
931 on_each_cpu(drain_local_pages, NULL, 1);
932 }
933
934 #ifdef CONFIG_HIBERNATION
935
936 void mark_free_pages(struct zone *zone)
937 {
938 unsigned long pfn, max_zone_pfn;
939 unsigned long flags;
940 int order, t;
941 struct list_head *curr;
942
943 if (!zone->spanned_pages)
944 return;
945
946 spin_lock_irqsave(&zone->lock, flags);
947
948 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
949 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
950 if (pfn_valid(pfn)) {
951 struct page *page = pfn_to_page(pfn);
952
953 if (!swsusp_page_is_forbidden(page))
954 swsusp_unset_page_free(page);
955 }
956
957 for_each_migratetype_order(order, t) {
958 list_for_each(curr, &zone->free_area[order].free_list[t]) {
959 unsigned long i;
960
961 pfn = page_to_pfn(list_entry(curr, struct page, lru));
962 for (i = 0; i < (1UL << order); i++)
963 swsusp_set_page_free(pfn_to_page(pfn + i));
964 }
965 }
966 spin_unlock_irqrestore(&zone->lock, flags);
967 }
968 #endif /* CONFIG_PM */
969
970 /*
971 * Free a 0-order page
972 */
973 static void free_hot_cold_page(struct page *page, int cold)
974 {
975 struct zone *zone = page_zone(page);
976 struct per_cpu_pages *pcp;
977 unsigned long flags;
978
979 if (PageAnon(page))
980 page->mapping = NULL;
981 if (free_pages_check(page))
982 return;
983
984 if (!PageHighMem(page)) {
985 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
986 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
987 }
988 arch_free_page(page, 0);
989 kernel_map_pages(page, 1, 0);
990
991 pcp = &zone_pcp(zone, get_cpu())->pcp;
992 local_irq_save(flags);
993 __count_vm_event(PGFREE);
994 if (cold)
995 list_add_tail(&page->lru, &pcp->list);
996 else
997 list_add(&page->lru, &pcp->list);
998 set_page_private(page, get_pageblock_migratetype(page));
999 pcp->count++;
1000 if (pcp->count >= pcp->high) {
1001 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1002 pcp->count -= pcp->batch;
1003 }
1004 local_irq_restore(flags);
1005 put_cpu();
1006 }
1007
1008 void free_hot_page(struct page *page)
1009 {
1010 free_hot_cold_page(page, 0);
1011 }
1012
1013 void free_cold_page(struct page *page)
1014 {
1015 free_hot_cold_page(page, 1);
1016 }
1017
1018 /*
1019 * split_page takes a non-compound higher-order page, and splits it into
1020 * n (1<<order) sub-pages: page[0..n]
1021 * Each sub-page must be freed individually.
1022 *
1023 * Note: this is probably too low level an operation for use in drivers.
1024 * Please consult with lkml before using this in your driver.
1025 */
1026 void split_page(struct page *page, unsigned int order)
1027 {
1028 int i;
1029
1030 VM_BUG_ON(PageCompound(page));
1031 VM_BUG_ON(!page_count(page));
1032 for (i = 1; i < (1 << order); i++)
1033 set_page_refcounted(page + i);
1034 }
1035
1036 /*
1037 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1038 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1039 * or two.
1040 */
1041 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1042 struct zone *zone, int order, gfp_t gfp_flags)
1043 {
1044 unsigned long flags;
1045 struct page *page;
1046 int cold = !!(gfp_flags & __GFP_COLD);
1047 int cpu;
1048 int migratetype = allocflags_to_migratetype(gfp_flags);
1049
1050 again:
1051 cpu = get_cpu();
1052 if (likely(order == 0)) {
1053 struct per_cpu_pages *pcp;
1054
1055 pcp = &zone_pcp(zone, cpu)->pcp;
1056 local_irq_save(flags);
1057 if (!pcp->count) {
1058 pcp->count = rmqueue_bulk(zone, 0,
1059 pcp->batch, &pcp->list, migratetype);
1060 if (unlikely(!pcp->count))
1061 goto failed;
1062 }
1063
1064 /* Find a page of the appropriate migrate type */
1065 if (cold) {
1066 list_for_each_entry_reverse(page, &pcp->list, lru)
1067 if (page_private(page) == migratetype)
1068 break;
1069 } else {
1070 list_for_each_entry(page, &pcp->list, lru)
1071 if (page_private(page) == migratetype)
1072 break;
1073 }
1074
1075 /* Allocate more to the pcp list if necessary */
1076 if (unlikely(&page->lru == &pcp->list)) {
1077 pcp->count += rmqueue_bulk(zone, 0,
1078 pcp->batch, &pcp->list, migratetype);
1079 page = list_entry(pcp->list.next, struct page, lru);
1080 }
1081
1082 list_del(&page->lru);
1083 pcp->count--;
1084 } else {
1085 spin_lock_irqsave(&zone->lock, flags);
1086 page = __rmqueue(zone, order, migratetype);
1087 spin_unlock(&zone->lock);
1088 if (!page)
1089 goto failed;
1090 }
1091
1092 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1093 zone_statistics(preferred_zone, zone);
1094 local_irq_restore(flags);
1095 put_cpu();
1096
1097 VM_BUG_ON(bad_range(zone, page));
1098 if (prep_new_page(page, order, gfp_flags))
1099 goto again;
1100 return page;
1101
1102 failed:
1103 local_irq_restore(flags);
1104 put_cpu();
1105 return NULL;
1106 }
1107
1108 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1109 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1110 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1111 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1112 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1113 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1114 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1115
1116 #ifdef CONFIG_FAIL_PAGE_ALLOC
1117
1118 static struct fail_page_alloc_attr {
1119 struct fault_attr attr;
1120
1121 u32 ignore_gfp_highmem;
1122 u32 ignore_gfp_wait;
1123 u32 min_order;
1124
1125 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1126
1127 struct dentry *ignore_gfp_highmem_file;
1128 struct dentry *ignore_gfp_wait_file;
1129 struct dentry *min_order_file;
1130
1131 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1132
1133 } fail_page_alloc = {
1134 .attr = FAULT_ATTR_INITIALIZER,
1135 .ignore_gfp_wait = 1,
1136 .ignore_gfp_highmem = 1,
1137 .min_order = 1,
1138 };
1139
1140 static int __init setup_fail_page_alloc(char *str)
1141 {
1142 return setup_fault_attr(&fail_page_alloc.attr, str);
1143 }
1144 __setup("fail_page_alloc=", setup_fail_page_alloc);
1145
1146 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1147 {
1148 if (order < fail_page_alloc.min_order)
1149 return 0;
1150 if (gfp_mask & __GFP_NOFAIL)
1151 return 0;
1152 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1153 return 0;
1154 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1155 return 0;
1156
1157 return should_fail(&fail_page_alloc.attr, 1 << order);
1158 }
1159
1160 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1161
1162 static int __init fail_page_alloc_debugfs(void)
1163 {
1164 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1165 struct dentry *dir;
1166 int err;
1167
1168 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1169 "fail_page_alloc");
1170 if (err)
1171 return err;
1172 dir = fail_page_alloc.attr.dentries.dir;
1173
1174 fail_page_alloc.ignore_gfp_wait_file =
1175 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1176 &fail_page_alloc.ignore_gfp_wait);
1177
1178 fail_page_alloc.ignore_gfp_highmem_file =
1179 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1180 &fail_page_alloc.ignore_gfp_highmem);
1181 fail_page_alloc.min_order_file =
1182 debugfs_create_u32("min-order", mode, dir,
1183 &fail_page_alloc.min_order);
1184
1185 if (!fail_page_alloc.ignore_gfp_wait_file ||
1186 !fail_page_alloc.ignore_gfp_highmem_file ||
1187 !fail_page_alloc.min_order_file) {
1188 err = -ENOMEM;
1189 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1190 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1191 debugfs_remove(fail_page_alloc.min_order_file);
1192 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1193 }
1194
1195 return err;
1196 }
1197
1198 late_initcall(fail_page_alloc_debugfs);
1199
1200 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1201
1202 #else /* CONFIG_FAIL_PAGE_ALLOC */
1203
1204 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1205 {
1206 return 0;
1207 }
1208
1209 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1210
1211 /*
1212 * Return 1 if free pages are above 'mark'. This takes into account the order
1213 * of the allocation.
1214 */
1215 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1216 int classzone_idx, int alloc_flags)
1217 {
1218 /* free_pages my go negative - that's OK */
1219 long min = mark;
1220 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1221 int o;
1222
1223 if (alloc_flags & ALLOC_HIGH)
1224 min -= min / 2;
1225 if (alloc_flags & ALLOC_HARDER)
1226 min -= min / 4;
1227
1228 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1229 return 0;
1230 for (o = 0; o < order; o++) {
1231 /* At the next order, this order's pages become unavailable */
1232 free_pages -= z->free_area[o].nr_free << o;
1233
1234 /* Require fewer higher order pages to be free */
1235 min >>= 1;
1236
1237 if (free_pages <= min)
1238 return 0;
1239 }
1240 return 1;
1241 }
1242
1243 #ifdef CONFIG_NUMA
1244 /*
1245 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1246 * skip over zones that are not allowed by the cpuset, or that have
1247 * been recently (in last second) found to be nearly full. See further
1248 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1249 * that have to skip over a lot of full or unallowed zones.
1250 *
1251 * If the zonelist cache is present in the passed in zonelist, then
1252 * returns a pointer to the allowed node mask (either the current
1253 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1254 *
1255 * If the zonelist cache is not available for this zonelist, does
1256 * nothing and returns NULL.
1257 *
1258 * If the fullzones BITMAP in the zonelist cache is stale (more than
1259 * a second since last zap'd) then we zap it out (clear its bits.)
1260 *
1261 * We hold off even calling zlc_setup, until after we've checked the
1262 * first zone in the zonelist, on the theory that most allocations will
1263 * be satisfied from that first zone, so best to examine that zone as
1264 * quickly as we can.
1265 */
1266 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1267 {
1268 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1269 nodemask_t *allowednodes; /* zonelist_cache approximation */
1270
1271 zlc = zonelist->zlcache_ptr;
1272 if (!zlc)
1273 return NULL;
1274
1275 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1276 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1277 zlc->last_full_zap = jiffies;
1278 }
1279
1280 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1281 &cpuset_current_mems_allowed :
1282 &node_states[N_HIGH_MEMORY];
1283 return allowednodes;
1284 }
1285
1286 /*
1287 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1288 * if it is worth looking at further for free memory:
1289 * 1) Check that the zone isn't thought to be full (doesn't have its
1290 * bit set in the zonelist_cache fullzones BITMAP).
1291 * 2) Check that the zones node (obtained from the zonelist_cache
1292 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1293 * Return true (non-zero) if zone is worth looking at further, or
1294 * else return false (zero) if it is not.
1295 *
1296 * This check -ignores- the distinction between various watermarks,
1297 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1298 * found to be full for any variation of these watermarks, it will
1299 * be considered full for up to one second by all requests, unless
1300 * we are so low on memory on all allowed nodes that we are forced
1301 * into the second scan of the zonelist.
1302 *
1303 * In the second scan we ignore this zonelist cache and exactly
1304 * apply the watermarks to all zones, even it is slower to do so.
1305 * We are low on memory in the second scan, and should leave no stone
1306 * unturned looking for a free page.
1307 */
1308 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1309 nodemask_t *allowednodes)
1310 {
1311 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1312 int i; /* index of *z in zonelist zones */
1313 int n; /* node that zone *z is on */
1314
1315 zlc = zonelist->zlcache_ptr;
1316 if (!zlc)
1317 return 1;
1318
1319 i = z - zonelist->_zonerefs;
1320 n = zlc->z_to_n[i];
1321
1322 /* This zone is worth trying if it is allowed but not full */
1323 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1324 }
1325
1326 /*
1327 * Given 'z' scanning a zonelist, set the corresponding bit in
1328 * zlc->fullzones, so that subsequent attempts to allocate a page
1329 * from that zone don't waste time re-examining it.
1330 */
1331 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1332 {
1333 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1334 int i; /* index of *z in zonelist zones */
1335
1336 zlc = zonelist->zlcache_ptr;
1337 if (!zlc)
1338 return;
1339
1340 i = z - zonelist->_zonerefs;
1341
1342 set_bit(i, zlc->fullzones);
1343 }
1344
1345 #else /* CONFIG_NUMA */
1346
1347 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1348 {
1349 return NULL;
1350 }
1351
1352 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1353 nodemask_t *allowednodes)
1354 {
1355 return 1;
1356 }
1357
1358 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1359 {
1360 }
1361 #endif /* CONFIG_NUMA */
1362
1363 /*
1364 * get_page_from_freelist goes through the zonelist trying to allocate
1365 * a page.
1366 */
1367 static struct page *
1368 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1369 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1370 {
1371 struct zoneref *z;
1372 struct page *page = NULL;
1373 int classzone_idx;
1374 struct zone *zone, *preferred_zone;
1375 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1376 int zlc_active = 0; /* set if using zonelist_cache */
1377 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1378
1379 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1380 &preferred_zone);
1381 if (!preferred_zone)
1382 return NULL;
1383
1384 classzone_idx = zone_idx(preferred_zone);
1385
1386 zonelist_scan:
1387 /*
1388 * Scan zonelist, looking for a zone with enough free.
1389 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1390 */
1391 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1392 high_zoneidx, nodemask) {
1393 if (NUMA_BUILD && zlc_active &&
1394 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1395 continue;
1396 if ((alloc_flags & ALLOC_CPUSET) &&
1397 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1398 goto try_next_zone;
1399
1400 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1401 unsigned long mark;
1402 if (alloc_flags & ALLOC_WMARK_MIN)
1403 mark = zone->pages_min;
1404 else if (alloc_flags & ALLOC_WMARK_LOW)
1405 mark = zone->pages_low;
1406 else
1407 mark = zone->pages_high;
1408 if (!zone_watermark_ok(zone, order, mark,
1409 classzone_idx, alloc_flags)) {
1410 if (!zone_reclaim_mode ||
1411 !zone_reclaim(zone, gfp_mask, order))
1412 goto this_zone_full;
1413 }
1414 }
1415
1416 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1417 if (page)
1418 break;
1419 this_zone_full:
1420 if (NUMA_BUILD)
1421 zlc_mark_zone_full(zonelist, z);
1422 try_next_zone:
1423 if (NUMA_BUILD && !did_zlc_setup) {
1424 /* we do zlc_setup after the first zone is tried */
1425 allowednodes = zlc_setup(zonelist, alloc_flags);
1426 zlc_active = 1;
1427 did_zlc_setup = 1;
1428 }
1429 }
1430
1431 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1432 /* Disable zlc cache for second zonelist scan */
1433 zlc_active = 0;
1434 goto zonelist_scan;
1435 }
1436 return page;
1437 }
1438
1439 /*
1440 * This is the 'heart' of the zoned buddy allocator.
1441 */
1442 struct page *
1443 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1444 struct zonelist *zonelist, nodemask_t *nodemask)
1445 {
1446 const gfp_t wait = gfp_mask & __GFP_WAIT;
1447 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1448 struct zoneref *z;
1449 struct zone *zone;
1450 struct page *page;
1451 struct reclaim_state reclaim_state;
1452 struct task_struct *p = current;
1453 int do_retry;
1454 int alloc_flags;
1455 unsigned long did_some_progress;
1456 unsigned long pages_reclaimed = 0;
1457
1458 might_sleep_if(wait);
1459
1460 if (should_fail_alloc_page(gfp_mask, order))
1461 return NULL;
1462
1463 restart:
1464 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1465
1466 if (unlikely(!z->zone)) {
1467 /*
1468 * Happens if we have an empty zonelist as a result of
1469 * GFP_THISNODE being used on a memoryless node
1470 */
1471 return NULL;
1472 }
1473
1474 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1475 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1476 if (page)
1477 goto got_pg;
1478
1479 /*
1480 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1481 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1482 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1483 * using a larger set of nodes after it has established that the
1484 * allowed per node queues are empty and that nodes are
1485 * over allocated.
1486 */
1487 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1488 goto nopage;
1489
1490 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1491 wakeup_kswapd(zone, order);
1492
1493 /*
1494 * OK, we're below the kswapd watermark and have kicked background
1495 * reclaim. Now things get more complex, so set up alloc_flags according
1496 * to how we want to proceed.
1497 *
1498 * The caller may dip into page reserves a bit more if the caller
1499 * cannot run direct reclaim, or if the caller has realtime scheduling
1500 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1501 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1502 */
1503 alloc_flags = ALLOC_WMARK_MIN;
1504 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1505 alloc_flags |= ALLOC_HARDER;
1506 if (gfp_mask & __GFP_HIGH)
1507 alloc_flags |= ALLOC_HIGH;
1508 if (wait)
1509 alloc_flags |= ALLOC_CPUSET;
1510
1511 /*
1512 * Go through the zonelist again. Let __GFP_HIGH and allocations
1513 * coming from realtime tasks go deeper into reserves.
1514 *
1515 * This is the last chance, in general, before the goto nopage.
1516 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1517 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1518 */
1519 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1520 high_zoneidx, alloc_flags);
1521 if (page)
1522 goto got_pg;
1523
1524 /* This allocation should allow future memory freeing. */
1525
1526 rebalance:
1527 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1528 && !in_interrupt()) {
1529 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1530 nofail_alloc:
1531 /* go through the zonelist yet again, ignoring mins */
1532 page = get_page_from_freelist(gfp_mask, nodemask, order,
1533 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1534 if (page)
1535 goto got_pg;
1536 if (gfp_mask & __GFP_NOFAIL) {
1537 congestion_wait(WRITE, HZ/50);
1538 goto nofail_alloc;
1539 }
1540 }
1541 goto nopage;
1542 }
1543
1544 /* Atomic allocations - we can't balance anything */
1545 if (!wait)
1546 goto nopage;
1547
1548 cond_resched();
1549
1550 /* We now go into synchronous reclaim */
1551 cpuset_memory_pressure_bump();
1552 p->flags |= PF_MEMALLOC;
1553 reclaim_state.reclaimed_slab = 0;
1554 p->reclaim_state = &reclaim_state;
1555
1556 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1557
1558 p->reclaim_state = NULL;
1559 p->flags &= ~PF_MEMALLOC;
1560
1561 cond_resched();
1562
1563 if (order != 0)
1564 drain_all_pages();
1565
1566 if (likely(did_some_progress)) {
1567 page = get_page_from_freelist(gfp_mask, nodemask, order,
1568 zonelist, high_zoneidx, alloc_flags);
1569 if (page)
1570 goto got_pg;
1571 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1572 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1573 schedule_timeout_uninterruptible(1);
1574 goto restart;
1575 }
1576
1577 /*
1578 * Go through the zonelist yet one more time, keep
1579 * very high watermark here, this is only to catch
1580 * a parallel oom killing, we must fail if we're still
1581 * under heavy pressure.
1582 */
1583 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1584 order, zonelist, high_zoneidx,
1585 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1586 if (page) {
1587 clear_zonelist_oom(zonelist, gfp_mask);
1588 goto got_pg;
1589 }
1590
1591 /* The OOM killer will not help higher order allocs so fail */
1592 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1593 clear_zonelist_oom(zonelist, gfp_mask);
1594 goto nopage;
1595 }
1596
1597 out_of_memory(zonelist, gfp_mask, order);
1598 clear_zonelist_oom(zonelist, gfp_mask);
1599 goto restart;
1600 }
1601
1602 /*
1603 * Don't let big-order allocations loop unless the caller explicitly
1604 * requests that. Wait for some write requests to complete then retry.
1605 *
1606 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1607 * means __GFP_NOFAIL, but that may not be true in other
1608 * implementations.
1609 *
1610 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1611 * specified, then we retry until we no longer reclaim any pages
1612 * (above), or we've reclaimed an order of pages at least as
1613 * large as the allocation's order. In both cases, if the
1614 * allocation still fails, we stop retrying.
1615 */
1616 pages_reclaimed += did_some_progress;
1617 do_retry = 0;
1618 if (!(gfp_mask & __GFP_NORETRY)) {
1619 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1620 do_retry = 1;
1621 } else {
1622 if (gfp_mask & __GFP_REPEAT &&
1623 pages_reclaimed < (1 << order))
1624 do_retry = 1;
1625 }
1626 if (gfp_mask & __GFP_NOFAIL)
1627 do_retry = 1;
1628 }
1629 if (do_retry) {
1630 congestion_wait(WRITE, HZ/50);
1631 goto rebalance;
1632 }
1633
1634 nopage:
1635 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1636 printk(KERN_WARNING "%s: page allocation failure."
1637 " order:%d, mode:0x%x\n",
1638 p->comm, order, gfp_mask);
1639 dump_stack();
1640 show_mem();
1641 }
1642 got_pg:
1643 return page;
1644 }
1645 EXPORT_SYMBOL(__alloc_pages_internal);
1646
1647 /*
1648 * Common helper functions.
1649 */
1650 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1651 {
1652 struct page * page;
1653 page = alloc_pages(gfp_mask, order);
1654 if (!page)
1655 return 0;
1656 return (unsigned long) page_address(page);
1657 }
1658
1659 EXPORT_SYMBOL(__get_free_pages);
1660
1661 unsigned long get_zeroed_page(gfp_t gfp_mask)
1662 {
1663 struct page * page;
1664
1665 /*
1666 * get_zeroed_page() returns a 32-bit address, which cannot represent
1667 * a highmem page
1668 */
1669 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1670
1671 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1672 if (page)
1673 return (unsigned long) page_address(page);
1674 return 0;
1675 }
1676
1677 EXPORT_SYMBOL(get_zeroed_page);
1678
1679 void __pagevec_free(struct pagevec *pvec)
1680 {
1681 int i = pagevec_count(pvec);
1682
1683 while (--i >= 0)
1684 free_hot_cold_page(pvec->pages[i], pvec->cold);
1685 }
1686
1687 void __free_pages(struct page *page, unsigned int order)
1688 {
1689 if (put_page_testzero(page)) {
1690 if (order == 0)
1691 free_hot_page(page);
1692 else
1693 __free_pages_ok(page, order);
1694 }
1695 }
1696
1697 EXPORT_SYMBOL(__free_pages);
1698
1699 void free_pages(unsigned long addr, unsigned int order)
1700 {
1701 if (addr != 0) {
1702 VM_BUG_ON(!virt_addr_valid((void *)addr));
1703 __free_pages(virt_to_page((void *)addr), order);
1704 }
1705 }
1706
1707 EXPORT_SYMBOL(free_pages);
1708
1709 /**
1710 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1711 * @size: the number of bytes to allocate
1712 * @gfp_mask: GFP flags for the allocation
1713 *
1714 * This function is similar to alloc_pages(), except that it allocates the
1715 * minimum number of pages to satisfy the request. alloc_pages() can only
1716 * allocate memory in power-of-two pages.
1717 *
1718 * This function is also limited by MAX_ORDER.
1719 *
1720 * Memory allocated by this function must be released by free_pages_exact().
1721 */
1722 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1723 {
1724 unsigned int order = get_order(size);
1725 unsigned long addr;
1726
1727 addr = __get_free_pages(gfp_mask, order);
1728 if (addr) {
1729 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1730 unsigned long used = addr + PAGE_ALIGN(size);
1731
1732 split_page(virt_to_page(addr), order);
1733 while (used < alloc_end) {
1734 free_page(used);
1735 used += PAGE_SIZE;
1736 }
1737 }
1738
1739 return (void *)addr;
1740 }
1741 EXPORT_SYMBOL(alloc_pages_exact);
1742
1743 /**
1744 * free_pages_exact - release memory allocated via alloc_pages_exact()
1745 * @virt: the value returned by alloc_pages_exact.
1746 * @size: size of allocation, same value as passed to alloc_pages_exact().
1747 *
1748 * Release the memory allocated by a previous call to alloc_pages_exact.
1749 */
1750 void free_pages_exact(void *virt, size_t size)
1751 {
1752 unsigned long addr = (unsigned long)virt;
1753 unsigned long end = addr + PAGE_ALIGN(size);
1754
1755 while (addr < end) {
1756 free_page(addr);
1757 addr += PAGE_SIZE;
1758 }
1759 }
1760 EXPORT_SYMBOL(free_pages_exact);
1761
1762 static unsigned int nr_free_zone_pages(int offset)
1763 {
1764 struct zoneref *z;
1765 struct zone *zone;
1766
1767 /* Just pick one node, since fallback list is circular */
1768 unsigned int sum = 0;
1769
1770 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1771
1772 for_each_zone_zonelist(zone, z, zonelist, offset) {
1773 unsigned long size = zone->present_pages;
1774 unsigned long high = zone->pages_high;
1775 if (size > high)
1776 sum += size - high;
1777 }
1778
1779 return sum;
1780 }
1781
1782 /*
1783 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1784 */
1785 unsigned int nr_free_buffer_pages(void)
1786 {
1787 return nr_free_zone_pages(gfp_zone(GFP_USER));
1788 }
1789 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1790
1791 /*
1792 * Amount of free RAM allocatable within all zones
1793 */
1794 unsigned int nr_free_pagecache_pages(void)
1795 {
1796 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1797 }
1798
1799 static inline void show_node(struct zone *zone)
1800 {
1801 if (NUMA_BUILD)
1802 printk("Node %d ", zone_to_nid(zone));
1803 }
1804
1805 void si_meminfo(struct sysinfo *val)
1806 {
1807 val->totalram = totalram_pages;
1808 val->sharedram = 0;
1809 val->freeram = global_page_state(NR_FREE_PAGES);
1810 val->bufferram = nr_blockdev_pages();
1811 val->totalhigh = totalhigh_pages;
1812 val->freehigh = nr_free_highpages();
1813 val->mem_unit = PAGE_SIZE;
1814 }
1815
1816 EXPORT_SYMBOL(si_meminfo);
1817
1818 #ifdef CONFIG_NUMA
1819 void si_meminfo_node(struct sysinfo *val, int nid)
1820 {
1821 pg_data_t *pgdat = NODE_DATA(nid);
1822
1823 val->totalram = pgdat->node_present_pages;
1824 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1825 #ifdef CONFIG_HIGHMEM
1826 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1827 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1828 NR_FREE_PAGES);
1829 #else
1830 val->totalhigh = 0;
1831 val->freehigh = 0;
1832 #endif
1833 val->mem_unit = PAGE_SIZE;
1834 }
1835 #endif
1836
1837 #define K(x) ((x) << (PAGE_SHIFT-10))
1838
1839 /*
1840 * Show free area list (used inside shift_scroll-lock stuff)
1841 * We also calculate the percentage fragmentation. We do this by counting the
1842 * memory on each free list with the exception of the first item on the list.
1843 */
1844 void show_free_areas(void)
1845 {
1846 int cpu;
1847 struct zone *zone;
1848
1849 for_each_zone(zone) {
1850 if (!populated_zone(zone))
1851 continue;
1852
1853 show_node(zone);
1854 printk("%s per-cpu:\n", zone->name);
1855
1856 for_each_online_cpu(cpu) {
1857 struct per_cpu_pageset *pageset;
1858
1859 pageset = zone_pcp(zone, cpu);
1860
1861 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1862 cpu, pageset->pcp.high,
1863 pageset->pcp.batch, pageset->pcp.count);
1864 }
1865 }
1866
1867 printk("Active_anon:%lu active_file:%lu inactive_anon%lu\n"
1868 " inactive_file:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1869 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1870 global_page_state(NR_ACTIVE_ANON),
1871 global_page_state(NR_ACTIVE_FILE),
1872 global_page_state(NR_INACTIVE_ANON),
1873 global_page_state(NR_INACTIVE_FILE),
1874 global_page_state(NR_FILE_DIRTY),
1875 global_page_state(NR_WRITEBACK),
1876 global_page_state(NR_UNSTABLE_NFS),
1877 global_page_state(NR_FREE_PAGES),
1878 global_page_state(NR_SLAB_RECLAIMABLE) +
1879 global_page_state(NR_SLAB_UNRECLAIMABLE),
1880 global_page_state(NR_FILE_MAPPED),
1881 global_page_state(NR_PAGETABLE),
1882 global_page_state(NR_BOUNCE));
1883
1884 for_each_zone(zone) {
1885 int i;
1886
1887 if (!populated_zone(zone))
1888 continue;
1889
1890 show_node(zone);
1891 printk("%s"
1892 " free:%lukB"
1893 " min:%lukB"
1894 " low:%lukB"
1895 " high:%lukB"
1896 " active_anon:%lukB"
1897 " inactive_anon:%lukB"
1898 " active_file:%lukB"
1899 " inactive_file:%lukB"
1900 " present:%lukB"
1901 " pages_scanned:%lu"
1902 " all_unreclaimable? %s"
1903 "\n",
1904 zone->name,
1905 K(zone_page_state(zone, NR_FREE_PAGES)),
1906 K(zone->pages_min),
1907 K(zone->pages_low),
1908 K(zone->pages_high),
1909 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1910 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1911 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1912 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1913 K(zone->present_pages),
1914 zone->pages_scanned,
1915 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1916 );
1917 printk("lowmem_reserve[]:");
1918 for (i = 0; i < MAX_NR_ZONES; i++)
1919 printk(" %lu", zone->lowmem_reserve[i]);
1920 printk("\n");
1921 }
1922
1923 for_each_zone(zone) {
1924 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1925
1926 if (!populated_zone(zone))
1927 continue;
1928
1929 show_node(zone);
1930 printk("%s: ", zone->name);
1931
1932 spin_lock_irqsave(&zone->lock, flags);
1933 for (order = 0; order < MAX_ORDER; order++) {
1934 nr[order] = zone->free_area[order].nr_free;
1935 total += nr[order] << order;
1936 }
1937 spin_unlock_irqrestore(&zone->lock, flags);
1938 for (order = 0; order < MAX_ORDER; order++)
1939 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1940 printk("= %lukB\n", K(total));
1941 }
1942
1943 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1944
1945 show_swap_cache_info();
1946 }
1947
1948 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1949 {
1950 zoneref->zone = zone;
1951 zoneref->zone_idx = zone_idx(zone);
1952 }
1953
1954 /*
1955 * Builds allocation fallback zone lists.
1956 *
1957 * Add all populated zones of a node to the zonelist.
1958 */
1959 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1960 int nr_zones, enum zone_type zone_type)
1961 {
1962 struct zone *zone;
1963
1964 BUG_ON(zone_type >= MAX_NR_ZONES);
1965 zone_type++;
1966
1967 do {
1968 zone_type--;
1969 zone = pgdat->node_zones + zone_type;
1970 if (populated_zone(zone)) {
1971 zoneref_set_zone(zone,
1972 &zonelist->_zonerefs[nr_zones++]);
1973 check_highest_zone(zone_type);
1974 }
1975
1976 } while (zone_type);
1977 return nr_zones;
1978 }
1979
1980
1981 /*
1982 * zonelist_order:
1983 * 0 = automatic detection of better ordering.
1984 * 1 = order by ([node] distance, -zonetype)
1985 * 2 = order by (-zonetype, [node] distance)
1986 *
1987 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1988 * the same zonelist. So only NUMA can configure this param.
1989 */
1990 #define ZONELIST_ORDER_DEFAULT 0
1991 #define ZONELIST_ORDER_NODE 1
1992 #define ZONELIST_ORDER_ZONE 2
1993
1994 /* zonelist order in the kernel.
1995 * set_zonelist_order() will set this to NODE or ZONE.
1996 */
1997 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1998 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1999
2000
2001 #ifdef CONFIG_NUMA
2002 /* The value user specified ....changed by config */
2003 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2004 /* string for sysctl */
2005 #define NUMA_ZONELIST_ORDER_LEN 16
2006 char numa_zonelist_order[16] = "default";
2007
2008 /*
2009 * interface for configure zonelist ordering.
2010 * command line option "numa_zonelist_order"
2011 * = "[dD]efault - default, automatic configuration.
2012 * = "[nN]ode - order by node locality, then by zone within node
2013 * = "[zZ]one - order by zone, then by locality within zone
2014 */
2015
2016 static int __parse_numa_zonelist_order(char *s)
2017 {
2018 if (*s == 'd' || *s == 'D') {
2019 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2020 } else if (*s == 'n' || *s == 'N') {
2021 user_zonelist_order = ZONELIST_ORDER_NODE;
2022 } else if (*s == 'z' || *s == 'Z') {
2023 user_zonelist_order = ZONELIST_ORDER_ZONE;
2024 } else {
2025 printk(KERN_WARNING
2026 "Ignoring invalid numa_zonelist_order value: "
2027 "%s\n", s);
2028 return -EINVAL;
2029 }
2030 return 0;
2031 }
2032
2033 static __init int setup_numa_zonelist_order(char *s)
2034 {
2035 if (s)
2036 return __parse_numa_zonelist_order(s);
2037 return 0;
2038 }
2039 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2040
2041 /*
2042 * sysctl handler for numa_zonelist_order
2043 */
2044 int numa_zonelist_order_handler(ctl_table *table, int write,
2045 struct file *file, void __user *buffer, size_t *length,
2046 loff_t *ppos)
2047 {
2048 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2049 int ret;
2050
2051 if (write)
2052 strncpy(saved_string, (char*)table->data,
2053 NUMA_ZONELIST_ORDER_LEN);
2054 ret = proc_dostring(table, write, file, buffer, length, ppos);
2055 if (ret)
2056 return ret;
2057 if (write) {
2058 int oldval = user_zonelist_order;
2059 if (__parse_numa_zonelist_order((char*)table->data)) {
2060 /*
2061 * bogus value. restore saved string
2062 */
2063 strncpy((char*)table->data, saved_string,
2064 NUMA_ZONELIST_ORDER_LEN);
2065 user_zonelist_order = oldval;
2066 } else if (oldval != user_zonelist_order)
2067 build_all_zonelists();
2068 }
2069 return 0;
2070 }
2071
2072
2073 #define MAX_NODE_LOAD (num_online_nodes())
2074 static int node_load[MAX_NUMNODES];
2075
2076 /**
2077 * find_next_best_node - find the next node that should appear in a given node's fallback list
2078 * @node: node whose fallback list we're appending
2079 * @used_node_mask: nodemask_t of already used nodes
2080 *
2081 * We use a number of factors to determine which is the next node that should
2082 * appear on a given node's fallback list. The node should not have appeared
2083 * already in @node's fallback list, and it should be the next closest node
2084 * according to the distance array (which contains arbitrary distance values
2085 * from each node to each node in the system), and should also prefer nodes
2086 * with no CPUs, since presumably they'll have very little allocation pressure
2087 * on them otherwise.
2088 * It returns -1 if no node is found.
2089 */
2090 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2091 {
2092 int n, val;
2093 int min_val = INT_MAX;
2094 int best_node = -1;
2095 node_to_cpumask_ptr(tmp, 0);
2096
2097 /* Use the local node if we haven't already */
2098 if (!node_isset(node, *used_node_mask)) {
2099 node_set(node, *used_node_mask);
2100 return node;
2101 }
2102
2103 for_each_node_state(n, N_HIGH_MEMORY) {
2104
2105 /* Don't want a node to appear more than once */
2106 if (node_isset(n, *used_node_mask))
2107 continue;
2108
2109 /* Use the distance array to find the distance */
2110 val = node_distance(node, n);
2111
2112 /* Penalize nodes under us ("prefer the next node") */
2113 val += (n < node);
2114
2115 /* Give preference to headless and unused nodes */
2116 node_to_cpumask_ptr_next(tmp, n);
2117 if (!cpus_empty(*tmp))
2118 val += PENALTY_FOR_NODE_WITH_CPUS;
2119
2120 /* Slight preference for less loaded node */
2121 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2122 val += node_load[n];
2123
2124 if (val < min_val) {
2125 min_val = val;
2126 best_node = n;
2127 }
2128 }
2129
2130 if (best_node >= 0)
2131 node_set(best_node, *used_node_mask);
2132
2133 return best_node;
2134 }
2135
2136
2137 /*
2138 * Build zonelists ordered by node and zones within node.
2139 * This results in maximum locality--normal zone overflows into local
2140 * DMA zone, if any--but risks exhausting DMA zone.
2141 */
2142 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2143 {
2144 int j;
2145 struct zonelist *zonelist;
2146
2147 zonelist = &pgdat->node_zonelists[0];
2148 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2149 ;
2150 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2151 MAX_NR_ZONES - 1);
2152 zonelist->_zonerefs[j].zone = NULL;
2153 zonelist->_zonerefs[j].zone_idx = 0;
2154 }
2155
2156 /*
2157 * Build gfp_thisnode zonelists
2158 */
2159 static void build_thisnode_zonelists(pg_data_t *pgdat)
2160 {
2161 int j;
2162 struct zonelist *zonelist;
2163
2164 zonelist = &pgdat->node_zonelists[1];
2165 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2166 zonelist->_zonerefs[j].zone = NULL;
2167 zonelist->_zonerefs[j].zone_idx = 0;
2168 }
2169
2170 /*
2171 * Build zonelists ordered by zone and nodes within zones.
2172 * This results in conserving DMA zone[s] until all Normal memory is
2173 * exhausted, but results in overflowing to remote node while memory
2174 * may still exist in local DMA zone.
2175 */
2176 static int node_order[MAX_NUMNODES];
2177
2178 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2179 {
2180 int pos, j, node;
2181 int zone_type; /* needs to be signed */
2182 struct zone *z;
2183 struct zonelist *zonelist;
2184
2185 zonelist = &pgdat->node_zonelists[0];
2186 pos = 0;
2187 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2188 for (j = 0; j < nr_nodes; j++) {
2189 node = node_order[j];
2190 z = &NODE_DATA(node)->node_zones[zone_type];
2191 if (populated_zone(z)) {
2192 zoneref_set_zone(z,
2193 &zonelist->_zonerefs[pos++]);
2194 check_highest_zone(zone_type);
2195 }
2196 }
2197 }
2198 zonelist->_zonerefs[pos].zone = NULL;
2199 zonelist->_zonerefs[pos].zone_idx = 0;
2200 }
2201
2202 static int default_zonelist_order(void)
2203 {
2204 int nid, zone_type;
2205 unsigned long low_kmem_size,total_size;
2206 struct zone *z;
2207 int average_size;
2208 /*
2209 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2210 * If they are really small and used heavily, the system can fall
2211 * into OOM very easily.
2212 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2213 */
2214 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2215 low_kmem_size = 0;
2216 total_size = 0;
2217 for_each_online_node(nid) {
2218 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2219 z = &NODE_DATA(nid)->node_zones[zone_type];
2220 if (populated_zone(z)) {
2221 if (zone_type < ZONE_NORMAL)
2222 low_kmem_size += z->present_pages;
2223 total_size += z->present_pages;
2224 }
2225 }
2226 }
2227 if (!low_kmem_size || /* there are no DMA area. */
2228 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2229 return ZONELIST_ORDER_NODE;
2230 /*
2231 * look into each node's config.
2232 * If there is a node whose DMA/DMA32 memory is very big area on
2233 * local memory, NODE_ORDER may be suitable.
2234 */
2235 average_size = total_size /
2236 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2237 for_each_online_node(nid) {
2238 low_kmem_size = 0;
2239 total_size = 0;
2240 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2241 z = &NODE_DATA(nid)->node_zones[zone_type];
2242 if (populated_zone(z)) {
2243 if (zone_type < ZONE_NORMAL)
2244 low_kmem_size += z->present_pages;
2245 total_size += z->present_pages;
2246 }
2247 }
2248 if (low_kmem_size &&
2249 total_size > average_size && /* ignore small node */
2250 low_kmem_size > total_size * 70/100)
2251 return ZONELIST_ORDER_NODE;
2252 }
2253 return ZONELIST_ORDER_ZONE;
2254 }
2255
2256 static void set_zonelist_order(void)
2257 {
2258 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2259 current_zonelist_order = default_zonelist_order();
2260 else
2261 current_zonelist_order = user_zonelist_order;
2262 }
2263
2264 static void build_zonelists(pg_data_t *pgdat)
2265 {
2266 int j, node, load;
2267 enum zone_type i;
2268 nodemask_t used_mask;
2269 int local_node, prev_node;
2270 struct zonelist *zonelist;
2271 int order = current_zonelist_order;
2272
2273 /* initialize zonelists */
2274 for (i = 0; i < MAX_ZONELISTS; i++) {
2275 zonelist = pgdat->node_zonelists + i;
2276 zonelist->_zonerefs[0].zone = NULL;
2277 zonelist->_zonerefs[0].zone_idx = 0;
2278 }
2279
2280 /* NUMA-aware ordering of nodes */
2281 local_node = pgdat->node_id;
2282 load = num_online_nodes();
2283 prev_node = local_node;
2284 nodes_clear(used_mask);
2285
2286 memset(node_load, 0, sizeof(node_load));
2287 memset(node_order, 0, sizeof(node_order));
2288 j = 0;
2289
2290 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2291 int distance = node_distance(local_node, node);
2292
2293 /*
2294 * If another node is sufficiently far away then it is better
2295 * to reclaim pages in a zone before going off node.
2296 */
2297 if (distance > RECLAIM_DISTANCE)
2298 zone_reclaim_mode = 1;
2299
2300 /*
2301 * We don't want to pressure a particular node.
2302 * So adding penalty to the first node in same
2303 * distance group to make it round-robin.
2304 */
2305 if (distance != node_distance(local_node, prev_node))
2306 node_load[node] = load;
2307
2308 prev_node = node;
2309 load--;
2310 if (order == ZONELIST_ORDER_NODE)
2311 build_zonelists_in_node_order(pgdat, node);
2312 else
2313 node_order[j++] = node; /* remember order */
2314 }
2315
2316 if (order == ZONELIST_ORDER_ZONE) {
2317 /* calculate node order -- i.e., DMA last! */
2318 build_zonelists_in_zone_order(pgdat, j);
2319 }
2320
2321 build_thisnode_zonelists(pgdat);
2322 }
2323
2324 /* Construct the zonelist performance cache - see further mmzone.h */
2325 static void build_zonelist_cache(pg_data_t *pgdat)
2326 {
2327 struct zonelist *zonelist;
2328 struct zonelist_cache *zlc;
2329 struct zoneref *z;
2330
2331 zonelist = &pgdat->node_zonelists[0];
2332 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2333 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2334 for (z = zonelist->_zonerefs; z->zone; z++)
2335 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2336 }
2337
2338
2339 #else /* CONFIG_NUMA */
2340
2341 static void set_zonelist_order(void)
2342 {
2343 current_zonelist_order = ZONELIST_ORDER_ZONE;
2344 }
2345
2346 static void build_zonelists(pg_data_t *pgdat)
2347 {
2348 int node, local_node;
2349 enum zone_type j;
2350 struct zonelist *zonelist;
2351
2352 local_node = pgdat->node_id;
2353
2354 zonelist = &pgdat->node_zonelists[0];
2355 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2356
2357 /*
2358 * Now we build the zonelist so that it contains the zones
2359 * of all the other nodes.
2360 * We don't want to pressure a particular node, so when
2361 * building the zones for node N, we make sure that the
2362 * zones coming right after the local ones are those from
2363 * node N+1 (modulo N)
2364 */
2365 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2366 if (!node_online(node))
2367 continue;
2368 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2369 MAX_NR_ZONES - 1);
2370 }
2371 for (node = 0; node < local_node; node++) {
2372 if (!node_online(node))
2373 continue;
2374 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2375 MAX_NR_ZONES - 1);
2376 }
2377
2378 zonelist->_zonerefs[j].zone = NULL;
2379 zonelist->_zonerefs[j].zone_idx = 0;
2380 }
2381
2382 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2383 static void build_zonelist_cache(pg_data_t *pgdat)
2384 {
2385 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2386 }
2387
2388 #endif /* CONFIG_NUMA */
2389
2390 /* return values int ....just for stop_machine() */
2391 static int __build_all_zonelists(void *dummy)
2392 {
2393 int nid;
2394
2395 for_each_online_node(nid) {
2396 pg_data_t *pgdat = NODE_DATA(nid);
2397
2398 build_zonelists(pgdat);
2399 build_zonelist_cache(pgdat);
2400 }
2401 return 0;
2402 }
2403
2404 void build_all_zonelists(void)
2405 {
2406 set_zonelist_order();
2407
2408 if (system_state == SYSTEM_BOOTING) {
2409 __build_all_zonelists(NULL);
2410 mminit_verify_zonelist();
2411 cpuset_init_current_mems_allowed();
2412 } else {
2413 /* we have to stop all cpus to guarantee there is no user
2414 of zonelist */
2415 stop_machine(__build_all_zonelists, NULL, NULL);
2416 /* cpuset refresh routine should be here */
2417 }
2418 vm_total_pages = nr_free_pagecache_pages();
2419 /*
2420 * Disable grouping by mobility if the number of pages in the
2421 * system is too low to allow the mechanism to work. It would be
2422 * more accurate, but expensive to check per-zone. This check is
2423 * made on memory-hotadd so a system can start with mobility
2424 * disabled and enable it later
2425 */
2426 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2427 page_group_by_mobility_disabled = 1;
2428 else
2429 page_group_by_mobility_disabled = 0;
2430
2431 printk("Built %i zonelists in %s order, mobility grouping %s. "
2432 "Total pages: %ld\n",
2433 num_online_nodes(),
2434 zonelist_order_name[current_zonelist_order],
2435 page_group_by_mobility_disabled ? "off" : "on",
2436 vm_total_pages);
2437 #ifdef CONFIG_NUMA
2438 printk("Policy zone: %s\n", zone_names[policy_zone]);
2439 #endif
2440 }
2441
2442 /*
2443 * Helper functions to size the waitqueue hash table.
2444 * Essentially these want to choose hash table sizes sufficiently
2445 * large so that collisions trying to wait on pages are rare.
2446 * But in fact, the number of active page waitqueues on typical
2447 * systems is ridiculously low, less than 200. So this is even
2448 * conservative, even though it seems large.
2449 *
2450 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2451 * waitqueues, i.e. the size of the waitq table given the number of pages.
2452 */
2453 #define PAGES_PER_WAITQUEUE 256
2454
2455 #ifndef CONFIG_MEMORY_HOTPLUG
2456 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2457 {
2458 unsigned long size = 1;
2459
2460 pages /= PAGES_PER_WAITQUEUE;
2461
2462 while (size < pages)
2463 size <<= 1;
2464
2465 /*
2466 * Once we have dozens or even hundreds of threads sleeping
2467 * on IO we've got bigger problems than wait queue collision.
2468 * Limit the size of the wait table to a reasonable size.
2469 */
2470 size = min(size, 4096UL);
2471
2472 return max(size, 4UL);
2473 }
2474 #else
2475 /*
2476 * A zone's size might be changed by hot-add, so it is not possible to determine
2477 * a suitable size for its wait_table. So we use the maximum size now.
2478 *
2479 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2480 *
2481 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2482 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2483 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2484 *
2485 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2486 * or more by the traditional way. (See above). It equals:
2487 *
2488 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2489 * ia64(16K page size) : = ( 8G + 4M)byte.
2490 * powerpc (64K page size) : = (32G +16M)byte.
2491 */
2492 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2493 {
2494 return 4096UL;
2495 }
2496 #endif
2497
2498 /*
2499 * This is an integer logarithm so that shifts can be used later
2500 * to extract the more random high bits from the multiplicative
2501 * hash function before the remainder is taken.
2502 */
2503 static inline unsigned long wait_table_bits(unsigned long size)
2504 {
2505 return ffz(~size);
2506 }
2507
2508 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2509
2510 /*
2511 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2512 * of blocks reserved is based on zone->pages_min. The memory within the
2513 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2514 * higher will lead to a bigger reserve which will get freed as contiguous
2515 * blocks as reclaim kicks in
2516 */
2517 static void setup_zone_migrate_reserve(struct zone *zone)
2518 {
2519 unsigned long start_pfn, pfn, end_pfn;
2520 struct page *page;
2521 unsigned long reserve, block_migratetype;
2522
2523 /* Get the start pfn, end pfn and the number of blocks to reserve */
2524 start_pfn = zone->zone_start_pfn;
2525 end_pfn = start_pfn + zone->spanned_pages;
2526 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2527 pageblock_order;
2528
2529 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2530 if (!pfn_valid(pfn))
2531 continue;
2532 page = pfn_to_page(pfn);
2533
2534 /* Watch out for overlapping nodes */
2535 if (page_to_nid(page) != zone_to_nid(zone))
2536 continue;
2537
2538 /* Blocks with reserved pages will never free, skip them. */
2539 if (PageReserved(page))
2540 continue;
2541
2542 block_migratetype = get_pageblock_migratetype(page);
2543
2544 /* If this block is reserved, account for it */
2545 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2546 reserve--;
2547 continue;
2548 }
2549
2550 /* Suitable for reserving if this block is movable */
2551 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2552 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2553 move_freepages_block(zone, page, MIGRATE_RESERVE);
2554 reserve--;
2555 continue;
2556 }
2557
2558 /*
2559 * If the reserve is met and this is a previous reserved block,
2560 * take it back
2561 */
2562 if (block_migratetype == MIGRATE_RESERVE) {
2563 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2564 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2565 }
2566 }
2567 }
2568
2569 /*
2570 * Initially all pages are reserved - free ones are freed
2571 * up by free_all_bootmem() once the early boot process is
2572 * done. Non-atomic initialization, single-pass.
2573 */
2574 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2575 unsigned long start_pfn, enum memmap_context context)
2576 {
2577 struct page *page;
2578 unsigned long end_pfn = start_pfn + size;
2579 unsigned long pfn;
2580 struct zone *z;
2581
2582 z = &NODE_DATA(nid)->node_zones[zone];
2583 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2584 /*
2585 * There can be holes in boot-time mem_map[]s
2586 * handed to this function. They do not
2587 * exist on hotplugged memory.
2588 */
2589 if (context == MEMMAP_EARLY) {
2590 if (!early_pfn_valid(pfn))
2591 continue;
2592 if (!early_pfn_in_nid(pfn, nid))
2593 continue;
2594 }
2595 page = pfn_to_page(pfn);
2596 set_page_links(page, zone, nid, pfn);
2597 mminit_verify_page_links(page, zone, nid, pfn);
2598 init_page_count(page);
2599 reset_page_mapcount(page);
2600 SetPageReserved(page);
2601 /*
2602 * Mark the block movable so that blocks are reserved for
2603 * movable at startup. This will force kernel allocations
2604 * to reserve their blocks rather than leaking throughout
2605 * the address space during boot when many long-lived
2606 * kernel allocations are made. Later some blocks near
2607 * the start are marked MIGRATE_RESERVE by
2608 * setup_zone_migrate_reserve()
2609 *
2610 * bitmap is created for zone's valid pfn range. but memmap
2611 * can be created for invalid pages (for alignment)
2612 * check here not to call set_pageblock_migratetype() against
2613 * pfn out of zone.
2614 */
2615 if ((z->zone_start_pfn <= pfn)
2616 && (pfn < z->zone_start_pfn + z->spanned_pages)
2617 && !(pfn & (pageblock_nr_pages - 1)))
2618 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2619
2620 INIT_LIST_HEAD(&page->lru);
2621 #ifdef WANT_PAGE_VIRTUAL
2622 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2623 if (!is_highmem_idx(zone))
2624 set_page_address(page, __va(pfn << PAGE_SHIFT));
2625 #endif
2626 }
2627 }
2628
2629 static void __meminit zone_init_free_lists(struct zone *zone)
2630 {
2631 int order, t;
2632 for_each_migratetype_order(order, t) {
2633 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2634 zone->free_area[order].nr_free = 0;
2635 }
2636 }
2637
2638 #ifndef __HAVE_ARCH_MEMMAP_INIT
2639 #define memmap_init(size, nid, zone, start_pfn) \
2640 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2641 #endif
2642
2643 static int zone_batchsize(struct zone *zone)
2644 {
2645 int batch;
2646
2647 /*
2648 * The per-cpu-pages pools are set to around 1000th of the
2649 * size of the zone. But no more than 1/2 of a meg.
2650 *
2651 * OK, so we don't know how big the cache is. So guess.
2652 */
2653 batch = zone->present_pages / 1024;
2654 if (batch * PAGE_SIZE > 512 * 1024)
2655 batch = (512 * 1024) / PAGE_SIZE;
2656 batch /= 4; /* We effectively *= 4 below */
2657 if (batch < 1)
2658 batch = 1;
2659
2660 /*
2661 * Clamp the batch to a 2^n - 1 value. Having a power
2662 * of 2 value was found to be more likely to have
2663 * suboptimal cache aliasing properties in some cases.
2664 *
2665 * For example if 2 tasks are alternately allocating
2666 * batches of pages, one task can end up with a lot
2667 * of pages of one half of the possible page colors
2668 * and the other with pages of the other colors.
2669 */
2670 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2671
2672 return batch;
2673 }
2674
2675 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2676 {
2677 struct per_cpu_pages *pcp;
2678
2679 memset(p, 0, sizeof(*p));
2680
2681 pcp = &p->pcp;
2682 pcp->count = 0;
2683 pcp->high = 6 * batch;
2684 pcp->batch = max(1UL, 1 * batch);
2685 INIT_LIST_HEAD(&pcp->list);
2686 }
2687
2688 /*
2689 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2690 * to the value high for the pageset p.
2691 */
2692
2693 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2694 unsigned long high)
2695 {
2696 struct per_cpu_pages *pcp;
2697
2698 pcp = &p->pcp;
2699 pcp->high = high;
2700 pcp->batch = max(1UL, high/4);
2701 if ((high/4) > (PAGE_SHIFT * 8))
2702 pcp->batch = PAGE_SHIFT * 8;
2703 }
2704
2705
2706 #ifdef CONFIG_NUMA
2707 /*
2708 * Boot pageset table. One per cpu which is going to be used for all
2709 * zones and all nodes. The parameters will be set in such a way
2710 * that an item put on a list will immediately be handed over to
2711 * the buddy list. This is safe since pageset manipulation is done
2712 * with interrupts disabled.
2713 *
2714 * Some NUMA counter updates may also be caught by the boot pagesets.
2715 *
2716 * The boot_pagesets must be kept even after bootup is complete for
2717 * unused processors and/or zones. They do play a role for bootstrapping
2718 * hotplugged processors.
2719 *
2720 * zoneinfo_show() and maybe other functions do
2721 * not check if the processor is online before following the pageset pointer.
2722 * Other parts of the kernel may not check if the zone is available.
2723 */
2724 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2725
2726 /*
2727 * Dynamically allocate memory for the
2728 * per cpu pageset array in struct zone.
2729 */
2730 static int __cpuinit process_zones(int cpu)
2731 {
2732 struct zone *zone, *dzone;
2733 int node = cpu_to_node(cpu);
2734
2735 node_set_state(node, N_CPU); /* this node has a cpu */
2736
2737 for_each_zone(zone) {
2738
2739 if (!populated_zone(zone))
2740 continue;
2741
2742 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2743 GFP_KERNEL, node);
2744 if (!zone_pcp(zone, cpu))
2745 goto bad;
2746
2747 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2748
2749 if (percpu_pagelist_fraction)
2750 setup_pagelist_highmark(zone_pcp(zone, cpu),
2751 (zone->present_pages / percpu_pagelist_fraction));
2752 }
2753
2754 return 0;
2755 bad:
2756 for_each_zone(dzone) {
2757 if (!populated_zone(dzone))
2758 continue;
2759 if (dzone == zone)
2760 break;
2761 kfree(zone_pcp(dzone, cpu));
2762 zone_pcp(dzone, cpu) = NULL;
2763 }
2764 return -ENOMEM;
2765 }
2766
2767 static inline void free_zone_pagesets(int cpu)
2768 {
2769 struct zone *zone;
2770
2771 for_each_zone(zone) {
2772 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2773
2774 /* Free per_cpu_pageset if it is slab allocated */
2775 if (pset != &boot_pageset[cpu])
2776 kfree(pset);
2777 zone_pcp(zone, cpu) = NULL;
2778 }
2779 }
2780
2781 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2782 unsigned long action,
2783 void *hcpu)
2784 {
2785 int cpu = (long)hcpu;
2786 int ret = NOTIFY_OK;
2787
2788 switch (action) {
2789 case CPU_UP_PREPARE:
2790 case CPU_UP_PREPARE_FROZEN:
2791 if (process_zones(cpu))
2792 ret = NOTIFY_BAD;
2793 break;
2794 case CPU_UP_CANCELED:
2795 case CPU_UP_CANCELED_FROZEN:
2796 case CPU_DEAD:
2797 case CPU_DEAD_FROZEN:
2798 free_zone_pagesets(cpu);
2799 break;
2800 default:
2801 break;
2802 }
2803 return ret;
2804 }
2805
2806 static struct notifier_block __cpuinitdata pageset_notifier =
2807 { &pageset_cpuup_callback, NULL, 0 };
2808
2809 void __init setup_per_cpu_pageset(void)
2810 {
2811 int err;
2812
2813 /* Initialize per_cpu_pageset for cpu 0.
2814 * A cpuup callback will do this for every cpu
2815 * as it comes online
2816 */
2817 err = process_zones(smp_processor_id());
2818 BUG_ON(err);
2819 register_cpu_notifier(&pageset_notifier);
2820 }
2821
2822 #endif
2823
2824 static noinline __init_refok
2825 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2826 {
2827 int i;
2828 struct pglist_data *pgdat = zone->zone_pgdat;
2829 size_t alloc_size;
2830
2831 /*
2832 * The per-page waitqueue mechanism uses hashed waitqueues
2833 * per zone.
2834 */
2835 zone->wait_table_hash_nr_entries =
2836 wait_table_hash_nr_entries(zone_size_pages);
2837 zone->wait_table_bits =
2838 wait_table_bits(zone->wait_table_hash_nr_entries);
2839 alloc_size = zone->wait_table_hash_nr_entries
2840 * sizeof(wait_queue_head_t);
2841
2842 if (!slab_is_available()) {
2843 zone->wait_table = (wait_queue_head_t *)
2844 alloc_bootmem_node(pgdat, alloc_size);
2845 } else {
2846 /*
2847 * This case means that a zone whose size was 0 gets new memory
2848 * via memory hot-add.
2849 * But it may be the case that a new node was hot-added. In
2850 * this case vmalloc() will not be able to use this new node's
2851 * memory - this wait_table must be initialized to use this new
2852 * node itself as well.
2853 * To use this new node's memory, further consideration will be
2854 * necessary.
2855 */
2856 zone->wait_table = vmalloc(alloc_size);
2857 }
2858 if (!zone->wait_table)
2859 return -ENOMEM;
2860
2861 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2862 init_waitqueue_head(zone->wait_table + i);
2863
2864 return 0;
2865 }
2866
2867 static __meminit void zone_pcp_init(struct zone *zone)
2868 {
2869 int cpu;
2870 unsigned long batch = zone_batchsize(zone);
2871
2872 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2873 #ifdef CONFIG_NUMA
2874 /* Early boot. Slab allocator not functional yet */
2875 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2876 setup_pageset(&boot_pageset[cpu],0);
2877 #else
2878 setup_pageset(zone_pcp(zone,cpu), batch);
2879 #endif
2880 }
2881 if (zone->present_pages)
2882 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2883 zone->name, zone->present_pages, batch);
2884 }
2885
2886 __meminit int init_currently_empty_zone(struct zone *zone,
2887 unsigned long zone_start_pfn,
2888 unsigned long size,
2889 enum memmap_context context)
2890 {
2891 struct pglist_data *pgdat = zone->zone_pgdat;
2892 int ret;
2893 ret = zone_wait_table_init(zone, size);
2894 if (ret)
2895 return ret;
2896 pgdat->nr_zones = zone_idx(zone) + 1;
2897
2898 zone->zone_start_pfn = zone_start_pfn;
2899
2900 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2901 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2902 pgdat->node_id,
2903 (unsigned long)zone_idx(zone),
2904 zone_start_pfn, (zone_start_pfn + size));
2905
2906 zone_init_free_lists(zone);
2907
2908 return 0;
2909 }
2910
2911 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2912 /*
2913 * Basic iterator support. Return the first range of PFNs for a node
2914 * Note: nid == MAX_NUMNODES returns first region regardless of node
2915 */
2916 static int __meminit first_active_region_index_in_nid(int nid)
2917 {
2918 int i;
2919
2920 for (i = 0; i < nr_nodemap_entries; i++)
2921 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2922 return i;
2923
2924 return -1;
2925 }
2926
2927 /*
2928 * Basic iterator support. Return the next active range of PFNs for a node
2929 * Note: nid == MAX_NUMNODES returns next region regardless of node
2930 */
2931 static int __meminit next_active_region_index_in_nid(int index, int nid)
2932 {
2933 for (index = index + 1; index < nr_nodemap_entries; index++)
2934 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2935 return index;
2936
2937 return -1;
2938 }
2939
2940 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2941 /*
2942 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2943 * Architectures may implement their own version but if add_active_range()
2944 * was used and there are no special requirements, this is a convenient
2945 * alternative
2946 */
2947 int __meminit early_pfn_to_nid(unsigned long pfn)
2948 {
2949 int i;
2950
2951 for (i = 0; i < nr_nodemap_entries; i++) {
2952 unsigned long start_pfn = early_node_map[i].start_pfn;
2953 unsigned long end_pfn = early_node_map[i].end_pfn;
2954
2955 if (start_pfn <= pfn && pfn < end_pfn)
2956 return early_node_map[i].nid;
2957 }
2958
2959 return 0;
2960 }
2961 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2962
2963 /* Basic iterator support to walk early_node_map[] */
2964 #define for_each_active_range_index_in_nid(i, nid) \
2965 for (i = first_active_region_index_in_nid(nid); i != -1; \
2966 i = next_active_region_index_in_nid(i, nid))
2967
2968 /**
2969 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2970 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2971 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2972 *
2973 * If an architecture guarantees that all ranges registered with
2974 * add_active_ranges() contain no holes and may be freed, this
2975 * this function may be used instead of calling free_bootmem() manually.
2976 */
2977 void __init free_bootmem_with_active_regions(int nid,
2978 unsigned long max_low_pfn)
2979 {
2980 int i;
2981
2982 for_each_active_range_index_in_nid(i, nid) {
2983 unsigned long size_pages = 0;
2984 unsigned long end_pfn = early_node_map[i].end_pfn;
2985
2986 if (early_node_map[i].start_pfn >= max_low_pfn)
2987 continue;
2988
2989 if (end_pfn > max_low_pfn)
2990 end_pfn = max_low_pfn;
2991
2992 size_pages = end_pfn - early_node_map[i].start_pfn;
2993 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2994 PFN_PHYS(early_node_map[i].start_pfn),
2995 size_pages << PAGE_SHIFT);
2996 }
2997 }
2998
2999 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3000 {
3001 int i;
3002 int ret;
3003
3004 for_each_active_range_index_in_nid(i, nid) {
3005 ret = work_fn(early_node_map[i].start_pfn,
3006 early_node_map[i].end_pfn, data);
3007 if (ret)
3008 break;
3009 }
3010 }
3011 /**
3012 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3013 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3014 *
3015 * If an architecture guarantees that all ranges registered with
3016 * add_active_ranges() contain no holes and may be freed, this
3017 * function may be used instead of calling memory_present() manually.
3018 */
3019 void __init sparse_memory_present_with_active_regions(int nid)
3020 {
3021 int i;
3022
3023 for_each_active_range_index_in_nid(i, nid)
3024 memory_present(early_node_map[i].nid,
3025 early_node_map[i].start_pfn,
3026 early_node_map[i].end_pfn);
3027 }
3028
3029 /**
3030 * push_node_boundaries - Push node boundaries to at least the requested boundary
3031 * @nid: The nid of the node to push the boundary for
3032 * @start_pfn: The start pfn of the node
3033 * @end_pfn: The end pfn of the node
3034 *
3035 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3036 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3037 * be hotplugged even though no physical memory exists. This function allows
3038 * an arch to push out the node boundaries so mem_map is allocated that can
3039 * be used later.
3040 */
3041 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3042 void __init push_node_boundaries(unsigned int nid,
3043 unsigned long start_pfn, unsigned long end_pfn)
3044 {
3045 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3046 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3047 nid, start_pfn, end_pfn);
3048
3049 /* Initialise the boundary for this node if necessary */
3050 if (node_boundary_end_pfn[nid] == 0)
3051 node_boundary_start_pfn[nid] = -1UL;
3052
3053 /* Update the boundaries */
3054 if (node_boundary_start_pfn[nid] > start_pfn)
3055 node_boundary_start_pfn[nid] = start_pfn;
3056 if (node_boundary_end_pfn[nid] < end_pfn)
3057 node_boundary_end_pfn[nid] = end_pfn;
3058 }
3059
3060 /* If necessary, push the node boundary out for reserve hotadd */
3061 static void __meminit account_node_boundary(unsigned int nid,
3062 unsigned long *start_pfn, unsigned long *end_pfn)
3063 {
3064 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3065 "Entering account_node_boundary(%u, %lu, %lu)\n",
3066 nid, *start_pfn, *end_pfn);
3067
3068 /* Return if boundary information has not been provided */
3069 if (node_boundary_end_pfn[nid] == 0)
3070 return;
3071
3072 /* Check the boundaries and update if necessary */
3073 if (node_boundary_start_pfn[nid] < *start_pfn)
3074 *start_pfn = node_boundary_start_pfn[nid];
3075 if (node_boundary_end_pfn[nid] > *end_pfn)
3076 *end_pfn = node_boundary_end_pfn[nid];
3077 }
3078 #else
3079 void __init push_node_boundaries(unsigned int nid,
3080 unsigned long start_pfn, unsigned long end_pfn) {}
3081
3082 static void __meminit account_node_boundary(unsigned int nid,
3083 unsigned long *start_pfn, unsigned long *end_pfn) {}
3084 #endif
3085
3086
3087 /**
3088 * get_pfn_range_for_nid - Return the start and end page frames for a node
3089 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3090 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3091 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3092 *
3093 * It returns the start and end page frame of a node based on information
3094 * provided by an arch calling add_active_range(). If called for a node
3095 * with no available memory, a warning is printed and the start and end
3096 * PFNs will be 0.
3097 */
3098 void __meminit get_pfn_range_for_nid(unsigned int nid,
3099 unsigned long *start_pfn, unsigned long *end_pfn)
3100 {
3101 int i;
3102 *start_pfn = -1UL;
3103 *end_pfn = 0;
3104
3105 for_each_active_range_index_in_nid(i, nid) {
3106 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3107 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3108 }
3109
3110 if (*start_pfn == -1UL)
3111 *start_pfn = 0;
3112
3113 /* Push the node boundaries out if requested */
3114 account_node_boundary(nid, start_pfn, end_pfn);
3115 }
3116
3117 /*
3118 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3119 * assumption is made that zones within a node are ordered in monotonic
3120 * increasing memory addresses so that the "highest" populated zone is used
3121 */
3122 static void __init find_usable_zone_for_movable(void)
3123 {
3124 int zone_index;
3125 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3126 if (zone_index == ZONE_MOVABLE)
3127 continue;
3128
3129 if (arch_zone_highest_possible_pfn[zone_index] >
3130 arch_zone_lowest_possible_pfn[zone_index])
3131 break;
3132 }
3133
3134 VM_BUG_ON(zone_index == -1);
3135 movable_zone = zone_index;
3136 }
3137
3138 /*
3139 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3140 * because it is sized independant of architecture. Unlike the other zones,
3141 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3142 * in each node depending on the size of each node and how evenly kernelcore
3143 * is distributed. This helper function adjusts the zone ranges
3144 * provided by the architecture for a given node by using the end of the
3145 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3146 * zones within a node are in order of monotonic increases memory addresses
3147 */
3148 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3149 unsigned long zone_type,
3150 unsigned long node_start_pfn,
3151 unsigned long node_end_pfn,
3152 unsigned long *zone_start_pfn,
3153 unsigned long *zone_end_pfn)
3154 {
3155 /* Only adjust if ZONE_MOVABLE is on this node */
3156 if (zone_movable_pfn[nid]) {
3157 /* Size ZONE_MOVABLE */
3158 if (zone_type == ZONE_MOVABLE) {
3159 *zone_start_pfn = zone_movable_pfn[nid];
3160 *zone_end_pfn = min(node_end_pfn,
3161 arch_zone_highest_possible_pfn[movable_zone]);
3162
3163 /* Adjust for ZONE_MOVABLE starting within this range */
3164 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3165 *zone_end_pfn > zone_movable_pfn[nid]) {
3166 *zone_end_pfn = zone_movable_pfn[nid];
3167
3168 /* Check if this whole range is within ZONE_MOVABLE */
3169 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3170 *zone_start_pfn = *zone_end_pfn;
3171 }
3172 }
3173
3174 /*
3175 * Return the number of pages a zone spans in a node, including holes
3176 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3177 */
3178 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3179 unsigned long zone_type,
3180 unsigned long *ignored)
3181 {
3182 unsigned long node_start_pfn, node_end_pfn;
3183 unsigned long zone_start_pfn, zone_end_pfn;
3184
3185 /* Get the start and end of the node and zone */
3186 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3187 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3188 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3189 adjust_zone_range_for_zone_movable(nid, zone_type,
3190 node_start_pfn, node_end_pfn,
3191 &zone_start_pfn, &zone_end_pfn);
3192
3193 /* Check that this node has pages within the zone's required range */
3194 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3195 return 0;
3196
3197 /* Move the zone boundaries inside the node if necessary */
3198 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3199 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3200
3201 /* Return the spanned pages */
3202 return zone_end_pfn - zone_start_pfn;
3203 }
3204
3205 /*
3206 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3207 * then all holes in the requested range will be accounted for.
3208 */
3209 static unsigned long __meminit __absent_pages_in_range(int nid,
3210 unsigned long range_start_pfn,
3211 unsigned long range_end_pfn)
3212 {
3213 int i = 0;
3214 unsigned long prev_end_pfn = 0, hole_pages = 0;
3215 unsigned long start_pfn;
3216
3217 /* Find the end_pfn of the first active range of pfns in the node */
3218 i = first_active_region_index_in_nid(nid);
3219 if (i == -1)
3220 return 0;
3221
3222 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3223
3224 /* Account for ranges before physical memory on this node */
3225 if (early_node_map[i].start_pfn > range_start_pfn)
3226 hole_pages = prev_end_pfn - range_start_pfn;
3227
3228 /* Find all holes for the zone within the node */
3229 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3230
3231 /* No need to continue if prev_end_pfn is outside the zone */
3232 if (prev_end_pfn >= range_end_pfn)
3233 break;
3234
3235 /* Make sure the end of the zone is not within the hole */
3236 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3237 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3238
3239 /* Update the hole size cound and move on */
3240 if (start_pfn > range_start_pfn) {
3241 BUG_ON(prev_end_pfn > start_pfn);
3242 hole_pages += start_pfn - prev_end_pfn;
3243 }
3244 prev_end_pfn = early_node_map[i].end_pfn;
3245 }
3246
3247 /* Account for ranges past physical memory on this node */
3248 if (range_end_pfn > prev_end_pfn)
3249 hole_pages += range_end_pfn -
3250 max(range_start_pfn, prev_end_pfn);
3251
3252 return hole_pages;
3253 }
3254
3255 /**
3256 * absent_pages_in_range - Return number of page frames in holes within a range
3257 * @start_pfn: The start PFN to start searching for holes
3258 * @end_pfn: The end PFN to stop searching for holes
3259 *
3260 * It returns the number of pages frames in memory holes within a range.
3261 */
3262 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3263 unsigned long end_pfn)
3264 {
3265 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3266 }
3267
3268 /* Return the number of page frames in holes in a zone on a node */
3269 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3270 unsigned long zone_type,
3271 unsigned long *ignored)
3272 {
3273 unsigned long node_start_pfn, node_end_pfn;
3274 unsigned long zone_start_pfn, zone_end_pfn;
3275
3276 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3277 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3278 node_start_pfn);
3279 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3280 node_end_pfn);
3281
3282 adjust_zone_range_for_zone_movable(nid, zone_type,
3283 node_start_pfn, node_end_pfn,
3284 &zone_start_pfn, &zone_end_pfn);
3285 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3286 }
3287
3288 #else
3289 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3290 unsigned long zone_type,
3291 unsigned long *zones_size)
3292 {
3293 return zones_size[zone_type];
3294 }
3295
3296 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3297 unsigned long zone_type,
3298 unsigned long *zholes_size)
3299 {
3300 if (!zholes_size)
3301 return 0;
3302
3303 return zholes_size[zone_type];
3304 }
3305
3306 #endif
3307
3308 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3309 unsigned long *zones_size, unsigned long *zholes_size)
3310 {
3311 unsigned long realtotalpages, totalpages = 0;
3312 enum zone_type i;
3313
3314 for (i = 0; i < MAX_NR_ZONES; i++)
3315 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3316 zones_size);
3317 pgdat->node_spanned_pages = totalpages;
3318
3319 realtotalpages = totalpages;
3320 for (i = 0; i < MAX_NR_ZONES; i++)
3321 realtotalpages -=
3322 zone_absent_pages_in_node(pgdat->node_id, i,
3323 zholes_size);
3324 pgdat->node_present_pages = realtotalpages;
3325 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3326 realtotalpages);
3327 }
3328
3329 #ifndef CONFIG_SPARSEMEM
3330 /*
3331 * Calculate the size of the zone->blockflags rounded to an unsigned long
3332 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3333 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3334 * round what is now in bits to nearest long in bits, then return it in
3335 * bytes.
3336 */
3337 static unsigned long __init usemap_size(unsigned long zonesize)
3338 {
3339 unsigned long usemapsize;
3340
3341 usemapsize = roundup(zonesize, pageblock_nr_pages);
3342 usemapsize = usemapsize >> pageblock_order;
3343 usemapsize *= NR_PAGEBLOCK_BITS;
3344 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3345
3346 return usemapsize / 8;
3347 }
3348
3349 static void __init setup_usemap(struct pglist_data *pgdat,
3350 struct zone *zone, unsigned long zonesize)
3351 {
3352 unsigned long usemapsize = usemap_size(zonesize);
3353 zone->pageblock_flags = NULL;
3354 if (usemapsize) {
3355 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3356 memset(zone->pageblock_flags, 0, usemapsize);
3357 }
3358 }
3359 #else
3360 static void inline setup_usemap(struct pglist_data *pgdat,
3361 struct zone *zone, unsigned long zonesize) {}
3362 #endif /* CONFIG_SPARSEMEM */
3363
3364 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3365
3366 /* Return a sensible default order for the pageblock size. */
3367 static inline int pageblock_default_order(void)
3368 {
3369 if (HPAGE_SHIFT > PAGE_SHIFT)
3370 return HUGETLB_PAGE_ORDER;
3371
3372 return MAX_ORDER-1;
3373 }
3374
3375 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3376 static inline void __init set_pageblock_order(unsigned int order)
3377 {
3378 /* Check that pageblock_nr_pages has not already been setup */
3379 if (pageblock_order)
3380 return;
3381
3382 /*
3383 * Assume the largest contiguous order of interest is a huge page.
3384 * This value may be variable depending on boot parameters on IA64
3385 */
3386 pageblock_order = order;
3387 }
3388 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3389
3390 /*
3391 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3392 * and pageblock_default_order() are unused as pageblock_order is set
3393 * at compile-time. See include/linux/pageblock-flags.h for the values of
3394 * pageblock_order based on the kernel config
3395 */
3396 static inline int pageblock_default_order(unsigned int order)
3397 {
3398 return MAX_ORDER-1;
3399 }
3400 #define set_pageblock_order(x) do {} while (0)
3401
3402 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3403
3404 /*
3405 * Set up the zone data structures:
3406 * - mark all pages reserved
3407 * - mark all memory queues empty
3408 * - clear the memory bitmaps
3409 */
3410 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3411 unsigned long *zones_size, unsigned long *zholes_size)
3412 {
3413 enum zone_type j;
3414 int nid = pgdat->node_id;
3415 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3416 int ret;
3417
3418 pgdat_resize_init(pgdat);
3419 pgdat->nr_zones = 0;
3420 init_waitqueue_head(&pgdat->kswapd_wait);
3421 pgdat->kswapd_max_order = 0;
3422
3423 for (j = 0; j < MAX_NR_ZONES; j++) {
3424 struct zone *zone = pgdat->node_zones + j;
3425 unsigned long size, realsize, memmap_pages;
3426 enum lru_list l;
3427
3428 size = zone_spanned_pages_in_node(nid, j, zones_size);
3429 realsize = size - zone_absent_pages_in_node(nid, j,
3430 zholes_size);
3431
3432 /*
3433 * Adjust realsize so that it accounts for how much memory
3434 * is used by this zone for memmap. This affects the watermark
3435 * and per-cpu initialisations
3436 */
3437 memmap_pages =
3438 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3439 if (realsize >= memmap_pages) {
3440 realsize -= memmap_pages;
3441 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3442 "%s zone: %lu pages used for memmap\n",
3443 zone_names[j], memmap_pages);
3444 } else
3445 printk(KERN_WARNING
3446 " %s zone: %lu pages exceeds realsize %lu\n",
3447 zone_names[j], memmap_pages, realsize);
3448
3449 /* Account for reserved pages */
3450 if (j == 0 && realsize > dma_reserve) {
3451 realsize -= dma_reserve;
3452 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3453 "%s zone: %lu pages reserved\n",
3454 zone_names[0], dma_reserve);
3455 }
3456
3457 if (!is_highmem_idx(j))
3458 nr_kernel_pages += realsize;
3459 nr_all_pages += realsize;
3460
3461 zone->spanned_pages = size;
3462 zone->present_pages = realsize;
3463 #ifdef CONFIG_NUMA
3464 zone->node = nid;
3465 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3466 / 100;
3467 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3468 #endif
3469 zone->name = zone_names[j];
3470 spin_lock_init(&zone->lock);
3471 spin_lock_init(&zone->lru_lock);
3472 zone_seqlock_init(zone);
3473 zone->zone_pgdat = pgdat;
3474
3475 zone->prev_priority = DEF_PRIORITY;
3476
3477 zone_pcp_init(zone);
3478 for_each_lru(l) {
3479 INIT_LIST_HEAD(&zone->lru[l].list);
3480 zone->lru[l].nr_scan = 0;
3481 }
3482 zone->recent_rotated[0] = 0;
3483 zone->recent_rotated[1] = 0;
3484 zone->recent_scanned[0] = 0;
3485 zone->recent_scanned[1] = 0;
3486 zap_zone_vm_stats(zone);
3487 zone->flags = 0;
3488 if (!size)
3489 continue;
3490
3491 set_pageblock_order(pageblock_default_order());
3492 setup_usemap(pgdat, zone, size);
3493 ret = init_currently_empty_zone(zone, zone_start_pfn,
3494 size, MEMMAP_EARLY);
3495 BUG_ON(ret);
3496 memmap_init(size, nid, j, zone_start_pfn);
3497 zone_start_pfn += size;
3498 }
3499 }
3500
3501 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3502 {
3503 /* Skip empty nodes */
3504 if (!pgdat->node_spanned_pages)
3505 return;
3506
3507 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3508 /* ia64 gets its own node_mem_map, before this, without bootmem */
3509 if (!pgdat->node_mem_map) {
3510 unsigned long size, start, end;
3511 struct page *map;
3512
3513 /*
3514 * The zone's endpoints aren't required to be MAX_ORDER
3515 * aligned but the node_mem_map endpoints must be in order
3516 * for the buddy allocator to function correctly.
3517 */
3518 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3519 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3520 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3521 size = (end - start) * sizeof(struct page);
3522 map = alloc_remap(pgdat->node_id, size);
3523 if (!map)
3524 map = alloc_bootmem_node(pgdat, size);
3525 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3526 }
3527 #ifndef CONFIG_NEED_MULTIPLE_NODES
3528 /*
3529 * With no DISCONTIG, the global mem_map is just set as node 0's
3530 */
3531 if (pgdat == NODE_DATA(0)) {
3532 mem_map = NODE_DATA(0)->node_mem_map;
3533 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3534 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3535 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3536 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3537 }
3538 #endif
3539 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3540 }
3541
3542 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3543 unsigned long node_start_pfn, unsigned long *zholes_size)
3544 {
3545 pg_data_t *pgdat = NODE_DATA(nid);
3546
3547 pgdat->node_id = nid;
3548 pgdat->node_start_pfn = node_start_pfn;
3549 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3550
3551 alloc_node_mem_map(pgdat);
3552 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3553 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3554 nid, (unsigned long)pgdat,
3555 (unsigned long)pgdat->node_mem_map);
3556 #endif
3557
3558 free_area_init_core(pgdat, zones_size, zholes_size);
3559 }
3560
3561 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3562
3563 #if MAX_NUMNODES > 1
3564 /*
3565 * Figure out the number of possible node ids.
3566 */
3567 static void __init setup_nr_node_ids(void)
3568 {
3569 unsigned int node;
3570 unsigned int highest = 0;
3571
3572 for_each_node_mask(node, node_possible_map)
3573 highest = node;
3574 nr_node_ids = highest + 1;
3575 }
3576 #else
3577 static inline void setup_nr_node_ids(void)
3578 {
3579 }
3580 #endif
3581
3582 /**
3583 * add_active_range - Register a range of PFNs backed by physical memory
3584 * @nid: The node ID the range resides on
3585 * @start_pfn: The start PFN of the available physical memory
3586 * @end_pfn: The end PFN of the available physical memory
3587 *
3588 * These ranges are stored in an early_node_map[] and later used by
3589 * free_area_init_nodes() to calculate zone sizes and holes. If the
3590 * range spans a memory hole, it is up to the architecture to ensure
3591 * the memory is not freed by the bootmem allocator. If possible
3592 * the range being registered will be merged with existing ranges.
3593 */
3594 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3595 unsigned long end_pfn)
3596 {
3597 int i;
3598
3599 mminit_dprintk(MMINIT_TRACE, "memory_register",
3600 "Entering add_active_range(%d, %#lx, %#lx) "
3601 "%d entries of %d used\n",
3602 nid, start_pfn, end_pfn,
3603 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3604
3605 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3606
3607 /* Merge with existing active regions if possible */
3608 for (i = 0; i < nr_nodemap_entries; i++) {
3609 if (early_node_map[i].nid != nid)
3610 continue;
3611
3612 /* Skip if an existing region covers this new one */
3613 if (start_pfn >= early_node_map[i].start_pfn &&
3614 end_pfn <= early_node_map[i].end_pfn)
3615 return;
3616
3617 /* Merge forward if suitable */
3618 if (start_pfn <= early_node_map[i].end_pfn &&
3619 end_pfn > early_node_map[i].end_pfn) {
3620 early_node_map[i].end_pfn = end_pfn;
3621 return;
3622 }
3623
3624 /* Merge backward if suitable */
3625 if (start_pfn < early_node_map[i].end_pfn &&
3626 end_pfn >= early_node_map[i].start_pfn) {
3627 early_node_map[i].start_pfn = start_pfn;
3628 return;
3629 }
3630 }
3631
3632 /* Check that early_node_map is large enough */
3633 if (i >= MAX_ACTIVE_REGIONS) {
3634 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3635 MAX_ACTIVE_REGIONS);
3636 return;
3637 }
3638
3639 early_node_map[i].nid = nid;
3640 early_node_map[i].start_pfn = start_pfn;
3641 early_node_map[i].end_pfn = end_pfn;
3642 nr_nodemap_entries = i + 1;
3643 }
3644
3645 /**
3646 * remove_active_range - Shrink an existing registered range of PFNs
3647 * @nid: The node id the range is on that should be shrunk
3648 * @start_pfn: The new PFN of the range
3649 * @end_pfn: The new PFN of the range
3650 *
3651 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3652 * The map is kept near the end physical page range that has already been
3653 * registered. This function allows an arch to shrink an existing registered
3654 * range.
3655 */
3656 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3657 unsigned long end_pfn)
3658 {
3659 int i, j;
3660 int removed = 0;
3661
3662 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3663 nid, start_pfn, end_pfn);
3664
3665 /* Find the old active region end and shrink */
3666 for_each_active_range_index_in_nid(i, nid) {
3667 if (early_node_map[i].start_pfn >= start_pfn &&
3668 early_node_map[i].end_pfn <= end_pfn) {
3669 /* clear it */
3670 early_node_map[i].start_pfn = 0;
3671 early_node_map[i].end_pfn = 0;
3672 removed = 1;
3673 continue;
3674 }
3675 if (early_node_map[i].start_pfn < start_pfn &&
3676 early_node_map[i].end_pfn > start_pfn) {
3677 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3678 early_node_map[i].end_pfn = start_pfn;
3679 if (temp_end_pfn > end_pfn)
3680 add_active_range(nid, end_pfn, temp_end_pfn);
3681 continue;
3682 }
3683 if (early_node_map[i].start_pfn >= start_pfn &&
3684 early_node_map[i].end_pfn > end_pfn &&
3685 early_node_map[i].start_pfn < end_pfn) {
3686 early_node_map[i].start_pfn = end_pfn;
3687 continue;
3688 }
3689 }
3690
3691 if (!removed)
3692 return;
3693
3694 /* remove the blank ones */
3695 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3696 if (early_node_map[i].nid != nid)
3697 continue;
3698 if (early_node_map[i].end_pfn)
3699 continue;
3700 /* we found it, get rid of it */
3701 for (j = i; j < nr_nodemap_entries - 1; j++)
3702 memcpy(&early_node_map[j], &early_node_map[j+1],
3703 sizeof(early_node_map[j]));
3704 j = nr_nodemap_entries - 1;
3705 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3706 nr_nodemap_entries--;
3707 }
3708 }
3709
3710 /**
3711 * remove_all_active_ranges - Remove all currently registered regions
3712 *
3713 * During discovery, it may be found that a table like SRAT is invalid
3714 * and an alternative discovery method must be used. This function removes
3715 * all currently registered regions.
3716 */
3717 void __init remove_all_active_ranges(void)
3718 {
3719 memset(early_node_map, 0, sizeof(early_node_map));
3720 nr_nodemap_entries = 0;
3721 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3722 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3723 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3724 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3725 }
3726
3727 /* Compare two active node_active_regions */
3728 static int __init cmp_node_active_region(const void *a, const void *b)
3729 {
3730 struct node_active_region *arange = (struct node_active_region *)a;
3731 struct node_active_region *brange = (struct node_active_region *)b;
3732
3733 /* Done this way to avoid overflows */
3734 if (arange->start_pfn > brange->start_pfn)
3735 return 1;
3736 if (arange->start_pfn < brange->start_pfn)
3737 return -1;
3738
3739 return 0;
3740 }
3741
3742 /* sort the node_map by start_pfn */
3743 static void __init sort_node_map(void)
3744 {
3745 sort(early_node_map, (size_t)nr_nodemap_entries,
3746 sizeof(struct node_active_region),
3747 cmp_node_active_region, NULL);
3748 }
3749
3750 /* Find the lowest pfn for a node */
3751 static unsigned long __init find_min_pfn_for_node(int nid)
3752 {
3753 int i;
3754 unsigned long min_pfn = ULONG_MAX;
3755
3756 /* Assuming a sorted map, the first range found has the starting pfn */
3757 for_each_active_range_index_in_nid(i, nid)
3758 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3759
3760 if (min_pfn == ULONG_MAX) {
3761 printk(KERN_WARNING
3762 "Could not find start_pfn for node %d\n", nid);
3763 return 0;
3764 }
3765
3766 return min_pfn;
3767 }
3768
3769 /**
3770 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3771 *
3772 * It returns the minimum PFN based on information provided via
3773 * add_active_range().
3774 */
3775 unsigned long __init find_min_pfn_with_active_regions(void)
3776 {
3777 return find_min_pfn_for_node(MAX_NUMNODES);
3778 }
3779
3780 /*
3781 * early_calculate_totalpages()
3782 * Sum pages in active regions for movable zone.
3783 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3784 */
3785 static unsigned long __init early_calculate_totalpages(void)
3786 {
3787 int i;
3788 unsigned long totalpages = 0;
3789
3790 for (i = 0; i < nr_nodemap_entries; i++) {
3791 unsigned long pages = early_node_map[i].end_pfn -
3792 early_node_map[i].start_pfn;
3793 totalpages += pages;
3794 if (pages)
3795 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3796 }
3797 return totalpages;
3798 }
3799
3800 /*
3801 * Find the PFN the Movable zone begins in each node. Kernel memory
3802 * is spread evenly between nodes as long as the nodes have enough
3803 * memory. When they don't, some nodes will have more kernelcore than
3804 * others
3805 */
3806 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3807 {
3808 int i, nid;
3809 unsigned long usable_startpfn;
3810 unsigned long kernelcore_node, kernelcore_remaining;
3811 unsigned long totalpages = early_calculate_totalpages();
3812 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3813
3814 /*
3815 * If movablecore was specified, calculate what size of
3816 * kernelcore that corresponds so that memory usable for
3817 * any allocation type is evenly spread. If both kernelcore
3818 * and movablecore are specified, then the value of kernelcore
3819 * will be used for required_kernelcore if it's greater than
3820 * what movablecore would have allowed.
3821 */
3822 if (required_movablecore) {
3823 unsigned long corepages;
3824
3825 /*
3826 * Round-up so that ZONE_MOVABLE is at least as large as what
3827 * was requested by the user
3828 */
3829 required_movablecore =
3830 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3831 corepages = totalpages - required_movablecore;
3832
3833 required_kernelcore = max(required_kernelcore, corepages);
3834 }
3835
3836 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3837 if (!required_kernelcore)
3838 return;
3839
3840 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3841 find_usable_zone_for_movable();
3842 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3843
3844 restart:
3845 /* Spread kernelcore memory as evenly as possible throughout nodes */
3846 kernelcore_node = required_kernelcore / usable_nodes;
3847 for_each_node_state(nid, N_HIGH_MEMORY) {
3848 /*
3849 * Recalculate kernelcore_node if the division per node
3850 * now exceeds what is necessary to satisfy the requested
3851 * amount of memory for the kernel
3852 */
3853 if (required_kernelcore < kernelcore_node)
3854 kernelcore_node = required_kernelcore / usable_nodes;
3855
3856 /*
3857 * As the map is walked, we track how much memory is usable
3858 * by the kernel using kernelcore_remaining. When it is
3859 * 0, the rest of the node is usable by ZONE_MOVABLE
3860 */
3861 kernelcore_remaining = kernelcore_node;
3862
3863 /* Go through each range of PFNs within this node */
3864 for_each_active_range_index_in_nid(i, nid) {
3865 unsigned long start_pfn, end_pfn;
3866 unsigned long size_pages;
3867
3868 start_pfn = max(early_node_map[i].start_pfn,
3869 zone_movable_pfn[nid]);
3870 end_pfn = early_node_map[i].end_pfn;
3871 if (start_pfn >= end_pfn)
3872 continue;
3873
3874 /* Account for what is only usable for kernelcore */
3875 if (start_pfn < usable_startpfn) {
3876 unsigned long kernel_pages;
3877 kernel_pages = min(end_pfn, usable_startpfn)
3878 - start_pfn;
3879
3880 kernelcore_remaining -= min(kernel_pages,
3881 kernelcore_remaining);
3882 required_kernelcore -= min(kernel_pages,
3883 required_kernelcore);
3884
3885 /* Continue if range is now fully accounted */
3886 if (end_pfn <= usable_startpfn) {
3887
3888 /*
3889 * Push zone_movable_pfn to the end so
3890 * that if we have to rebalance
3891 * kernelcore across nodes, we will
3892 * not double account here
3893 */
3894 zone_movable_pfn[nid] = end_pfn;
3895 continue;
3896 }
3897 start_pfn = usable_startpfn;
3898 }
3899
3900 /*
3901 * The usable PFN range for ZONE_MOVABLE is from
3902 * start_pfn->end_pfn. Calculate size_pages as the
3903 * number of pages used as kernelcore
3904 */
3905 size_pages = end_pfn - start_pfn;
3906 if (size_pages > kernelcore_remaining)
3907 size_pages = kernelcore_remaining;
3908 zone_movable_pfn[nid] = start_pfn + size_pages;
3909
3910 /*
3911 * Some kernelcore has been met, update counts and
3912 * break if the kernelcore for this node has been
3913 * satisified
3914 */
3915 required_kernelcore -= min(required_kernelcore,
3916 size_pages);
3917 kernelcore_remaining -= size_pages;
3918 if (!kernelcore_remaining)
3919 break;
3920 }
3921 }
3922
3923 /*
3924 * If there is still required_kernelcore, we do another pass with one
3925 * less node in the count. This will push zone_movable_pfn[nid] further
3926 * along on the nodes that still have memory until kernelcore is
3927 * satisified
3928 */
3929 usable_nodes--;
3930 if (usable_nodes && required_kernelcore > usable_nodes)
3931 goto restart;
3932
3933 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3934 for (nid = 0; nid < MAX_NUMNODES; nid++)
3935 zone_movable_pfn[nid] =
3936 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3937 }
3938
3939 /* Any regular memory on that node ? */
3940 static void check_for_regular_memory(pg_data_t *pgdat)
3941 {
3942 #ifdef CONFIG_HIGHMEM
3943 enum zone_type zone_type;
3944
3945 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3946 struct zone *zone = &pgdat->node_zones[zone_type];
3947 if (zone->present_pages)
3948 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3949 }
3950 #endif
3951 }
3952
3953 /**
3954 * free_area_init_nodes - Initialise all pg_data_t and zone data
3955 * @max_zone_pfn: an array of max PFNs for each zone
3956 *
3957 * This will call free_area_init_node() for each active node in the system.
3958 * Using the page ranges provided by add_active_range(), the size of each
3959 * zone in each node and their holes is calculated. If the maximum PFN
3960 * between two adjacent zones match, it is assumed that the zone is empty.
3961 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3962 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3963 * starts where the previous one ended. For example, ZONE_DMA32 starts
3964 * at arch_max_dma_pfn.
3965 */
3966 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3967 {
3968 unsigned long nid;
3969 int i;
3970
3971 /* Sort early_node_map as initialisation assumes it is sorted */
3972 sort_node_map();
3973
3974 /* Record where the zone boundaries are */
3975 memset(arch_zone_lowest_possible_pfn, 0,
3976 sizeof(arch_zone_lowest_possible_pfn));
3977 memset(arch_zone_highest_possible_pfn, 0,
3978 sizeof(arch_zone_highest_possible_pfn));
3979 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3980 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3981 for (i = 1; i < MAX_NR_ZONES; i++) {
3982 if (i == ZONE_MOVABLE)
3983 continue;
3984 arch_zone_lowest_possible_pfn[i] =
3985 arch_zone_highest_possible_pfn[i-1];
3986 arch_zone_highest_possible_pfn[i] =
3987 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3988 }
3989 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3990 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3991
3992 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3993 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3994 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3995
3996 /* Print out the zone ranges */
3997 printk("Zone PFN ranges:\n");
3998 for (i = 0; i < MAX_NR_ZONES; i++) {
3999 if (i == ZONE_MOVABLE)
4000 continue;
4001 printk(" %-8s %0#10lx -> %0#10lx\n",
4002 zone_names[i],
4003 arch_zone_lowest_possible_pfn[i],
4004 arch_zone_highest_possible_pfn[i]);
4005 }
4006
4007 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4008 printk("Movable zone start PFN for each node\n");
4009 for (i = 0; i < MAX_NUMNODES; i++) {
4010 if (zone_movable_pfn[i])
4011 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4012 }
4013
4014 /* Print out the early_node_map[] */
4015 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4016 for (i = 0; i < nr_nodemap_entries; i++)
4017 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4018 early_node_map[i].start_pfn,
4019 early_node_map[i].end_pfn);
4020
4021 /* Initialise every node */
4022 mminit_verify_pageflags_layout();
4023 setup_nr_node_ids();
4024 for_each_online_node(nid) {
4025 pg_data_t *pgdat = NODE_DATA(nid);
4026 free_area_init_node(nid, NULL,
4027 find_min_pfn_for_node(nid), NULL);
4028
4029 /* Any memory on that node */
4030 if (pgdat->node_present_pages)
4031 node_set_state(nid, N_HIGH_MEMORY);
4032 check_for_regular_memory(pgdat);
4033 }
4034 }
4035
4036 static int __init cmdline_parse_core(char *p, unsigned long *core)
4037 {
4038 unsigned long long coremem;
4039 if (!p)
4040 return -EINVAL;
4041
4042 coremem = memparse(p, &p);
4043 *core = coremem >> PAGE_SHIFT;
4044
4045 /* Paranoid check that UL is enough for the coremem value */
4046 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4047
4048 return 0;
4049 }
4050
4051 /*
4052 * kernelcore=size sets the amount of memory for use for allocations that
4053 * cannot be reclaimed or migrated.
4054 */
4055 static int __init cmdline_parse_kernelcore(char *p)
4056 {
4057 return cmdline_parse_core(p, &required_kernelcore);
4058 }
4059
4060 /*
4061 * movablecore=size sets the amount of memory for use for allocations that
4062 * can be reclaimed or migrated.
4063 */
4064 static int __init cmdline_parse_movablecore(char *p)
4065 {
4066 return cmdline_parse_core(p, &required_movablecore);
4067 }
4068
4069 early_param("kernelcore", cmdline_parse_kernelcore);
4070 early_param("movablecore", cmdline_parse_movablecore);
4071
4072 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4073
4074 /**
4075 * set_dma_reserve - set the specified number of pages reserved in the first zone
4076 * @new_dma_reserve: The number of pages to mark reserved
4077 *
4078 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4079 * In the DMA zone, a significant percentage may be consumed by kernel image
4080 * and other unfreeable allocations which can skew the watermarks badly. This
4081 * function may optionally be used to account for unfreeable pages in the
4082 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4083 * smaller per-cpu batchsize.
4084 */
4085 void __init set_dma_reserve(unsigned long new_dma_reserve)
4086 {
4087 dma_reserve = new_dma_reserve;
4088 }
4089
4090 #ifndef CONFIG_NEED_MULTIPLE_NODES
4091 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4092 EXPORT_SYMBOL(contig_page_data);
4093 #endif
4094
4095 void __init free_area_init(unsigned long *zones_size)
4096 {
4097 free_area_init_node(0, zones_size,
4098 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4099 }
4100
4101 static int page_alloc_cpu_notify(struct notifier_block *self,
4102 unsigned long action, void *hcpu)
4103 {
4104 int cpu = (unsigned long)hcpu;
4105
4106 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4107 drain_pages(cpu);
4108
4109 /*
4110 * Spill the event counters of the dead processor
4111 * into the current processors event counters.
4112 * This artificially elevates the count of the current
4113 * processor.
4114 */
4115 vm_events_fold_cpu(cpu);
4116
4117 /*
4118 * Zero the differential counters of the dead processor
4119 * so that the vm statistics are consistent.
4120 *
4121 * This is only okay since the processor is dead and cannot
4122 * race with what we are doing.
4123 */
4124 refresh_cpu_vm_stats(cpu);
4125 }
4126 return NOTIFY_OK;
4127 }
4128
4129 void __init page_alloc_init(void)
4130 {
4131 hotcpu_notifier(page_alloc_cpu_notify, 0);
4132 }
4133
4134 /*
4135 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4136 * or min_free_kbytes changes.
4137 */
4138 static void calculate_totalreserve_pages(void)
4139 {
4140 struct pglist_data *pgdat;
4141 unsigned long reserve_pages = 0;
4142 enum zone_type i, j;
4143
4144 for_each_online_pgdat(pgdat) {
4145 for (i = 0; i < MAX_NR_ZONES; i++) {
4146 struct zone *zone = pgdat->node_zones + i;
4147 unsigned long max = 0;
4148
4149 /* Find valid and maximum lowmem_reserve in the zone */
4150 for (j = i; j < MAX_NR_ZONES; j++) {
4151 if (zone->lowmem_reserve[j] > max)
4152 max = zone->lowmem_reserve[j];
4153 }
4154
4155 /* we treat pages_high as reserved pages. */
4156 max += zone->pages_high;
4157
4158 if (max > zone->present_pages)
4159 max = zone->present_pages;
4160 reserve_pages += max;
4161 }
4162 }
4163 totalreserve_pages = reserve_pages;
4164 }
4165
4166 /*
4167 * setup_per_zone_lowmem_reserve - called whenever
4168 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4169 * has a correct pages reserved value, so an adequate number of
4170 * pages are left in the zone after a successful __alloc_pages().
4171 */
4172 static void setup_per_zone_lowmem_reserve(void)
4173 {
4174 struct pglist_data *pgdat;
4175 enum zone_type j, idx;
4176
4177 for_each_online_pgdat(pgdat) {
4178 for (j = 0; j < MAX_NR_ZONES; j++) {
4179 struct zone *zone = pgdat->node_zones + j;
4180 unsigned long present_pages = zone->present_pages;
4181
4182 zone->lowmem_reserve[j] = 0;
4183
4184 idx = j;
4185 while (idx) {
4186 struct zone *lower_zone;
4187
4188 idx--;
4189
4190 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4191 sysctl_lowmem_reserve_ratio[idx] = 1;
4192
4193 lower_zone = pgdat->node_zones + idx;
4194 lower_zone->lowmem_reserve[j] = present_pages /
4195 sysctl_lowmem_reserve_ratio[idx];
4196 present_pages += lower_zone->present_pages;
4197 }
4198 }
4199 }
4200
4201 /* update totalreserve_pages */
4202 calculate_totalreserve_pages();
4203 }
4204
4205 /**
4206 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4207 *
4208 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4209 * with respect to min_free_kbytes.
4210 */
4211 void setup_per_zone_pages_min(void)
4212 {
4213 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4214 unsigned long lowmem_pages = 0;
4215 struct zone *zone;
4216 unsigned long flags;
4217
4218 /* Calculate total number of !ZONE_HIGHMEM pages */
4219 for_each_zone(zone) {
4220 if (!is_highmem(zone))
4221 lowmem_pages += zone->present_pages;
4222 }
4223
4224 for_each_zone(zone) {
4225 u64 tmp;
4226
4227 spin_lock_irqsave(&zone->lru_lock, flags);
4228 tmp = (u64)pages_min * zone->present_pages;
4229 do_div(tmp, lowmem_pages);
4230 if (is_highmem(zone)) {
4231 /*
4232 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4233 * need highmem pages, so cap pages_min to a small
4234 * value here.
4235 *
4236 * The (pages_high-pages_low) and (pages_low-pages_min)
4237 * deltas controls asynch page reclaim, and so should
4238 * not be capped for highmem.
4239 */
4240 int min_pages;
4241
4242 min_pages = zone->present_pages / 1024;
4243 if (min_pages < SWAP_CLUSTER_MAX)
4244 min_pages = SWAP_CLUSTER_MAX;
4245 if (min_pages > 128)
4246 min_pages = 128;
4247 zone->pages_min = min_pages;
4248 } else {
4249 /*
4250 * If it's a lowmem zone, reserve a number of pages
4251 * proportionate to the zone's size.
4252 */
4253 zone->pages_min = tmp;
4254 }
4255
4256 zone->pages_low = zone->pages_min + (tmp >> 2);
4257 zone->pages_high = zone->pages_min + (tmp >> 1);
4258 setup_zone_migrate_reserve(zone);
4259 spin_unlock_irqrestore(&zone->lru_lock, flags);
4260 }
4261
4262 /* update totalreserve_pages */
4263 calculate_totalreserve_pages();
4264 }
4265
4266 /**
4267 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4268 *
4269 * The inactive anon list should be small enough that the VM never has to
4270 * do too much work, but large enough that each inactive page has a chance
4271 * to be referenced again before it is swapped out.
4272 *
4273 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4274 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4275 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4276 * the anonymous pages are kept on the inactive list.
4277 *
4278 * total target max
4279 * memory ratio inactive anon
4280 * -------------------------------------
4281 * 10MB 1 5MB
4282 * 100MB 1 50MB
4283 * 1GB 3 250MB
4284 * 10GB 10 0.9GB
4285 * 100GB 31 3GB
4286 * 1TB 101 10GB
4287 * 10TB 320 32GB
4288 */
4289 void setup_per_zone_inactive_ratio(void)
4290 {
4291 struct zone *zone;
4292
4293 for_each_zone(zone) {
4294 unsigned int gb, ratio;
4295
4296 /* Zone size in gigabytes */
4297 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4298 ratio = int_sqrt(10 * gb);
4299 if (!ratio)
4300 ratio = 1;
4301
4302 zone->inactive_ratio = ratio;
4303 }
4304 }
4305
4306 /*
4307 * Initialise min_free_kbytes.
4308 *
4309 * For small machines we want it small (128k min). For large machines
4310 * we want it large (64MB max). But it is not linear, because network
4311 * bandwidth does not increase linearly with machine size. We use
4312 *
4313 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4314 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4315 *
4316 * which yields
4317 *
4318 * 16MB: 512k
4319 * 32MB: 724k
4320 * 64MB: 1024k
4321 * 128MB: 1448k
4322 * 256MB: 2048k
4323 * 512MB: 2896k
4324 * 1024MB: 4096k
4325 * 2048MB: 5792k
4326 * 4096MB: 8192k
4327 * 8192MB: 11584k
4328 * 16384MB: 16384k
4329 */
4330 static int __init init_per_zone_pages_min(void)
4331 {
4332 unsigned long lowmem_kbytes;
4333
4334 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4335
4336 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4337 if (min_free_kbytes < 128)
4338 min_free_kbytes = 128;
4339 if (min_free_kbytes > 65536)
4340 min_free_kbytes = 65536;
4341 setup_per_zone_pages_min();
4342 setup_per_zone_lowmem_reserve();
4343 setup_per_zone_inactive_ratio();
4344 return 0;
4345 }
4346 module_init(init_per_zone_pages_min)
4347
4348 /*
4349 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4350 * that we can call two helper functions whenever min_free_kbytes
4351 * changes.
4352 */
4353 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4354 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4355 {
4356 proc_dointvec(table, write, file, buffer, length, ppos);
4357 if (write)
4358 setup_per_zone_pages_min();
4359 return 0;
4360 }
4361
4362 #ifdef CONFIG_NUMA
4363 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4364 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4365 {
4366 struct zone *zone;
4367 int rc;
4368
4369 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4370 if (rc)
4371 return rc;
4372
4373 for_each_zone(zone)
4374 zone->min_unmapped_pages = (zone->present_pages *
4375 sysctl_min_unmapped_ratio) / 100;
4376 return 0;
4377 }
4378
4379 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4380 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4381 {
4382 struct zone *zone;
4383 int rc;
4384
4385 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4386 if (rc)
4387 return rc;
4388
4389 for_each_zone(zone)
4390 zone->min_slab_pages = (zone->present_pages *
4391 sysctl_min_slab_ratio) / 100;
4392 return 0;
4393 }
4394 #endif
4395
4396 /*
4397 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4398 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4399 * whenever sysctl_lowmem_reserve_ratio changes.
4400 *
4401 * The reserve ratio obviously has absolutely no relation with the
4402 * pages_min watermarks. The lowmem reserve ratio can only make sense
4403 * if in function of the boot time zone sizes.
4404 */
4405 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4406 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4407 {
4408 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4409 setup_per_zone_lowmem_reserve();
4410 return 0;
4411 }
4412
4413 /*
4414 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4415 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4416 * can have before it gets flushed back to buddy allocator.
4417 */
4418
4419 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4420 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4421 {
4422 struct zone *zone;
4423 unsigned int cpu;
4424 int ret;
4425
4426 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4427 if (!write || (ret == -EINVAL))
4428 return ret;
4429 for_each_zone(zone) {
4430 for_each_online_cpu(cpu) {
4431 unsigned long high;
4432 high = zone->present_pages / percpu_pagelist_fraction;
4433 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4434 }
4435 }
4436 return 0;
4437 }
4438
4439 int hashdist = HASHDIST_DEFAULT;
4440
4441 #ifdef CONFIG_NUMA
4442 static int __init set_hashdist(char *str)
4443 {
4444 if (!str)
4445 return 0;
4446 hashdist = simple_strtoul(str, &str, 0);
4447 return 1;
4448 }
4449 __setup("hashdist=", set_hashdist);
4450 #endif
4451
4452 /*
4453 * allocate a large system hash table from bootmem
4454 * - it is assumed that the hash table must contain an exact power-of-2
4455 * quantity of entries
4456 * - limit is the number of hash buckets, not the total allocation size
4457 */
4458 void *__init alloc_large_system_hash(const char *tablename,
4459 unsigned long bucketsize,
4460 unsigned long numentries,
4461 int scale,
4462 int flags,
4463 unsigned int *_hash_shift,
4464 unsigned int *_hash_mask,
4465 unsigned long limit)
4466 {
4467 unsigned long long max = limit;
4468 unsigned long log2qty, size;
4469 void *table = NULL;
4470
4471 /* allow the kernel cmdline to have a say */
4472 if (!numentries) {
4473 /* round applicable memory size up to nearest megabyte */
4474 numentries = nr_kernel_pages;
4475 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4476 numentries >>= 20 - PAGE_SHIFT;
4477 numentries <<= 20 - PAGE_SHIFT;
4478
4479 /* limit to 1 bucket per 2^scale bytes of low memory */
4480 if (scale > PAGE_SHIFT)
4481 numentries >>= (scale - PAGE_SHIFT);
4482 else
4483 numentries <<= (PAGE_SHIFT - scale);
4484
4485 /* Make sure we've got at least a 0-order allocation.. */
4486 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4487 numentries = PAGE_SIZE / bucketsize;
4488 }
4489 numentries = roundup_pow_of_two(numentries);
4490
4491 /* limit allocation size to 1/16 total memory by default */
4492 if (max == 0) {
4493 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4494 do_div(max, bucketsize);
4495 }
4496
4497 if (numentries > max)
4498 numentries = max;
4499
4500 log2qty = ilog2(numentries);
4501
4502 do {
4503 size = bucketsize << log2qty;
4504 if (flags & HASH_EARLY)
4505 table = alloc_bootmem_nopanic(size);
4506 else if (hashdist)
4507 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4508 else {
4509 unsigned long order = get_order(size);
4510 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4511 /*
4512 * If bucketsize is not a power-of-two, we may free
4513 * some pages at the end of hash table.
4514 */
4515 if (table) {
4516 unsigned long alloc_end = (unsigned long)table +
4517 (PAGE_SIZE << order);
4518 unsigned long used = (unsigned long)table +
4519 PAGE_ALIGN(size);
4520 split_page(virt_to_page(table), order);
4521 while (used < alloc_end) {
4522 free_page(used);
4523 used += PAGE_SIZE;
4524 }
4525 }
4526 }
4527 } while (!table && size > PAGE_SIZE && --log2qty);
4528
4529 if (!table)
4530 panic("Failed to allocate %s hash table\n", tablename);
4531
4532 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4533 tablename,
4534 (1U << log2qty),
4535 ilog2(size) - PAGE_SHIFT,
4536 size);
4537
4538 if (_hash_shift)
4539 *_hash_shift = log2qty;
4540 if (_hash_mask)
4541 *_hash_mask = (1 << log2qty) - 1;
4542
4543 return table;
4544 }
4545
4546 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4547 struct page *pfn_to_page(unsigned long pfn)
4548 {
4549 return __pfn_to_page(pfn);
4550 }
4551 unsigned long page_to_pfn(struct page *page)
4552 {
4553 return __page_to_pfn(page);
4554 }
4555 EXPORT_SYMBOL(pfn_to_page);
4556 EXPORT_SYMBOL(page_to_pfn);
4557 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4558
4559 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4560 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4561 unsigned long pfn)
4562 {
4563 #ifdef CONFIG_SPARSEMEM
4564 return __pfn_to_section(pfn)->pageblock_flags;
4565 #else
4566 return zone->pageblock_flags;
4567 #endif /* CONFIG_SPARSEMEM */
4568 }
4569
4570 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4571 {
4572 #ifdef CONFIG_SPARSEMEM
4573 pfn &= (PAGES_PER_SECTION-1);
4574 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4575 #else
4576 pfn = pfn - zone->zone_start_pfn;
4577 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4578 #endif /* CONFIG_SPARSEMEM */
4579 }
4580
4581 /**
4582 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4583 * @page: The page within the block of interest
4584 * @start_bitidx: The first bit of interest to retrieve
4585 * @end_bitidx: The last bit of interest
4586 * returns pageblock_bits flags
4587 */
4588 unsigned long get_pageblock_flags_group(struct page *page,
4589 int start_bitidx, int end_bitidx)
4590 {
4591 struct zone *zone;
4592 unsigned long *bitmap;
4593 unsigned long pfn, bitidx;
4594 unsigned long flags = 0;
4595 unsigned long value = 1;
4596
4597 zone = page_zone(page);
4598 pfn = page_to_pfn(page);
4599 bitmap = get_pageblock_bitmap(zone, pfn);
4600 bitidx = pfn_to_bitidx(zone, pfn);
4601
4602 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4603 if (test_bit(bitidx + start_bitidx, bitmap))
4604 flags |= value;
4605
4606 return flags;
4607 }
4608
4609 /**
4610 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4611 * @page: The page within the block of interest
4612 * @start_bitidx: The first bit of interest
4613 * @end_bitidx: The last bit of interest
4614 * @flags: The flags to set
4615 */
4616 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4617 int start_bitidx, int end_bitidx)
4618 {
4619 struct zone *zone;
4620 unsigned long *bitmap;
4621 unsigned long pfn, bitidx;
4622 unsigned long value = 1;
4623
4624 zone = page_zone(page);
4625 pfn = page_to_pfn(page);
4626 bitmap = get_pageblock_bitmap(zone, pfn);
4627 bitidx = pfn_to_bitidx(zone, pfn);
4628 VM_BUG_ON(pfn < zone->zone_start_pfn);
4629 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4630
4631 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4632 if (flags & value)
4633 __set_bit(bitidx + start_bitidx, bitmap);
4634 else
4635 __clear_bit(bitidx + start_bitidx, bitmap);
4636 }
4637
4638 /*
4639 * This is designed as sub function...plz see page_isolation.c also.
4640 * set/clear page block's type to be ISOLATE.
4641 * page allocater never alloc memory from ISOLATE block.
4642 */
4643
4644 int set_migratetype_isolate(struct page *page)
4645 {
4646 struct zone *zone;
4647 unsigned long flags;
4648 int ret = -EBUSY;
4649
4650 zone = page_zone(page);
4651 spin_lock_irqsave(&zone->lock, flags);
4652 /*
4653 * In future, more migrate types will be able to be isolation target.
4654 */
4655 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4656 goto out;
4657 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4658 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4659 ret = 0;
4660 out:
4661 spin_unlock_irqrestore(&zone->lock, flags);
4662 if (!ret)
4663 drain_all_pages();
4664 return ret;
4665 }
4666
4667 void unset_migratetype_isolate(struct page *page)
4668 {
4669 struct zone *zone;
4670 unsigned long flags;
4671 zone = page_zone(page);
4672 spin_lock_irqsave(&zone->lock, flags);
4673 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4674 goto out;
4675 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4676 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4677 out:
4678 spin_unlock_irqrestore(&zone->lock, flags);
4679 }
4680
4681 #ifdef CONFIG_MEMORY_HOTREMOVE
4682 /*
4683 * All pages in the range must be isolated before calling this.
4684 */
4685 void
4686 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4687 {
4688 struct page *page;
4689 struct zone *zone;
4690 int order, i;
4691 unsigned long pfn;
4692 unsigned long flags;
4693 /* find the first valid pfn */
4694 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4695 if (pfn_valid(pfn))
4696 break;
4697 if (pfn == end_pfn)
4698 return;
4699 zone = page_zone(pfn_to_page(pfn));
4700 spin_lock_irqsave(&zone->lock, flags);
4701 pfn = start_pfn;
4702 while (pfn < end_pfn) {
4703 if (!pfn_valid(pfn)) {
4704 pfn++;
4705 continue;
4706 }
4707 page = pfn_to_page(pfn);
4708 BUG_ON(page_count(page));
4709 BUG_ON(!PageBuddy(page));
4710 order = page_order(page);
4711 #ifdef CONFIG_DEBUG_VM
4712 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4713 pfn, 1 << order, end_pfn);
4714 #endif
4715 list_del(&page->lru);
4716 rmv_page_order(page);
4717 zone->free_area[order].nr_free--;
4718 __mod_zone_page_state(zone, NR_FREE_PAGES,
4719 - (1UL << order));
4720 for (i = 0; i < (1 << order); i++)
4721 SetPageReserved((page+i));
4722 pfn += (1 << order);
4723 }
4724 spin_unlock_irqrestore(&zone->lock, flags);
4725 }
4726 #endif
This page took 0.134501 seconds and 5 git commands to generate.