Merge tag 'driver-core-3.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 [N_CPU] = { { [0] = 1UL } },
98 #endif /* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110 unsigned long dirty_balance_reserve __read_mostly;
111
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114
115 #ifdef CONFIG_PM_SLEEP
116 /*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
124
125 static gfp_t saved_gfp_mask;
126
127 void pm_restore_gfp_mask(void)
128 {
129 WARN_ON(!mutex_is_locked(&pm_mutex));
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
134 }
135
136 void pm_restrict_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
142 }
143
144 bool pm_suspended_storage(void)
145 {
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155
156 static void __free_pages_ok(struct page *page, unsigned int order);
157
158 /*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
168 */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 32,
178 #endif
179 32,
180 };
181
182 EXPORT_SYMBOL(totalram_pages);
183
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 "DMA32",
190 #endif
191 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 "HighMem",
194 #endif
195 "Movable",
196 };
197
198 int min_free_kbytes = 1024;
199
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
206 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __initdata required_kernelcore;
208 static unsigned long __initdata required_movablecore;
209 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
210
211 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 int movable_zone;
213 EXPORT_SYMBOL(movable_zone);
214 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
215
216 #if MAX_NUMNODES > 1
217 int nr_node_ids __read_mostly = MAX_NUMNODES;
218 int nr_online_nodes __read_mostly = 1;
219 EXPORT_SYMBOL(nr_node_ids);
220 EXPORT_SYMBOL(nr_online_nodes);
221 #endif
222
223 int page_group_by_mobility_disabled __read_mostly;
224
225 void set_pageblock_migratetype(struct page *page, int migratetype)
226 {
227
228 if (unlikely(page_group_by_mobility_disabled))
229 migratetype = MIGRATE_UNMOVABLE;
230
231 set_pageblock_flags_group(page, (unsigned long)migratetype,
232 PB_migrate, PB_migrate_end);
233 }
234
235 bool oom_killer_disabled __read_mostly;
236
237 #ifdef CONFIG_DEBUG_VM
238 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
239 {
240 int ret = 0;
241 unsigned seq;
242 unsigned long pfn = page_to_pfn(page);
243 unsigned long sp, start_pfn;
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 start_pfn = zone->zone_start_pfn;
248 sp = zone->spanned_pages;
249 if (!zone_spans_pfn(zone, pfn))
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 if (ret)
254 pr_err("page %lu outside zone [ %lu - %lu ]\n",
255 pfn, start_pfn, start_pfn + sp);
256
257 return ret;
258 }
259
260 static int page_is_consistent(struct zone *zone, struct page *page)
261 {
262 if (!pfn_valid_within(page_to_pfn(page)))
263 return 0;
264 if (zone != page_zone(page))
265 return 0;
266
267 return 1;
268 }
269 /*
270 * Temporary debugging check for pages not lying within a given zone.
271 */
272 static int bad_range(struct zone *zone, struct page *page)
273 {
274 if (page_outside_zone_boundaries(zone, page))
275 return 1;
276 if (!page_is_consistent(zone, page))
277 return 1;
278
279 return 0;
280 }
281 #else
282 static inline int bad_range(struct zone *zone, struct page *page)
283 {
284 return 0;
285 }
286 #endif
287
288 static void bad_page(struct page *page)
289 {
290 static unsigned long resume;
291 static unsigned long nr_shown;
292 static unsigned long nr_unshown;
293
294 /* Don't complain about poisoned pages */
295 if (PageHWPoison(page)) {
296 page_mapcount_reset(page); /* remove PageBuddy */
297 return;
298 }
299
300 /*
301 * Allow a burst of 60 reports, then keep quiet for that minute;
302 * or allow a steady drip of one report per second.
303 */
304 if (nr_shown == 60) {
305 if (time_before(jiffies, resume)) {
306 nr_unshown++;
307 goto out;
308 }
309 if (nr_unshown) {
310 printk(KERN_ALERT
311 "BUG: Bad page state: %lu messages suppressed\n",
312 nr_unshown);
313 nr_unshown = 0;
314 }
315 nr_shown = 0;
316 }
317 if (nr_shown++ == 0)
318 resume = jiffies + 60 * HZ;
319
320 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
321 current->comm, page_to_pfn(page));
322 dump_page(page);
323
324 print_modules();
325 dump_stack();
326 out:
327 /* Leave bad fields for debug, except PageBuddy could make trouble */
328 page_mapcount_reset(page); /* remove PageBuddy */
329 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
330 }
331
332 /*
333 * Higher-order pages are called "compound pages". They are structured thusly:
334 *
335 * The first PAGE_SIZE page is called the "head page".
336 *
337 * The remaining PAGE_SIZE pages are called "tail pages".
338 *
339 * All pages have PG_compound set. All tail pages have their ->first_page
340 * pointing at the head page.
341 *
342 * The first tail page's ->lru.next holds the address of the compound page's
343 * put_page() function. Its ->lru.prev holds the order of allocation.
344 * This usage means that zero-order pages may not be compound.
345 */
346
347 static void free_compound_page(struct page *page)
348 {
349 __free_pages_ok(page, compound_order(page));
350 }
351
352 void prep_compound_page(struct page *page, unsigned long order)
353 {
354 int i;
355 int nr_pages = 1 << order;
356
357 set_compound_page_dtor(page, free_compound_page);
358 set_compound_order(page, order);
359 __SetPageHead(page);
360 for (i = 1; i < nr_pages; i++) {
361 struct page *p = page + i;
362 __SetPageTail(p);
363 set_page_count(p, 0);
364 p->first_page = page;
365 }
366 }
367
368 /* update __split_huge_page_refcount if you change this function */
369 static int destroy_compound_page(struct page *page, unsigned long order)
370 {
371 int i;
372 int nr_pages = 1 << order;
373 int bad = 0;
374
375 if (unlikely(compound_order(page) != order)) {
376 bad_page(page);
377 bad++;
378 }
379
380 __ClearPageHead(page);
381
382 for (i = 1; i < nr_pages; i++) {
383 struct page *p = page + i;
384
385 if (unlikely(!PageTail(p) || (p->first_page != page))) {
386 bad_page(page);
387 bad++;
388 }
389 __ClearPageTail(p);
390 }
391
392 return bad;
393 }
394
395 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
396 {
397 int i;
398
399 /*
400 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
401 * and __GFP_HIGHMEM from hard or soft interrupt context.
402 */
403 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
404 for (i = 0; i < (1 << order); i++)
405 clear_highpage(page + i);
406 }
407
408 #ifdef CONFIG_DEBUG_PAGEALLOC
409 unsigned int _debug_guardpage_minorder;
410
411 static int __init debug_guardpage_minorder_setup(char *buf)
412 {
413 unsigned long res;
414
415 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
416 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
417 return 0;
418 }
419 _debug_guardpage_minorder = res;
420 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
421 return 0;
422 }
423 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
424
425 static inline void set_page_guard_flag(struct page *page)
426 {
427 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
428 }
429
430 static inline void clear_page_guard_flag(struct page *page)
431 {
432 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
433 }
434 #else
435 static inline void set_page_guard_flag(struct page *page) { }
436 static inline void clear_page_guard_flag(struct page *page) { }
437 #endif
438
439 static inline void set_page_order(struct page *page, int order)
440 {
441 set_page_private(page, order);
442 __SetPageBuddy(page);
443 }
444
445 static inline void rmv_page_order(struct page *page)
446 {
447 __ClearPageBuddy(page);
448 set_page_private(page, 0);
449 }
450
451 /*
452 * Locate the struct page for both the matching buddy in our
453 * pair (buddy1) and the combined O(n+1) page they form (page).
454 *
455 * 1) Any buddy B1 will have an order O twin B2 which satisfies
456 * the following equation:
457 * B2 = B1 ^ (1 << O)
458 * For example, if the starting buddy (buddy2) is #8 its order
459 * 1 buddy is #10:
460 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
461 *
462 * 2) Any buddy B will have an order O+1 parent P which
463 * satisfies the following equation:
464 * P = B & ~(1 << O)
465 *
466 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
467 */
468 static inline unsigned long
469 __find_buddy_index(unsigned long page_idx, unsigned int order)
470 {
471 return page_idx ^ (1 << order);
472 }
473
474 /*
475 * This function checks whether a page is free && is the buddy
476 * we can do coalesce a page and its buddy if
477 * (a) the buddy is not in a hole &&
478 * (b) the buddy is in the buddy system &&
479 * (c) a page and its buddy have the same order &&
480 * (d) a page and its buddy are in the same zone.
481 *
482 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
483 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
484 *
485 * For recording page's order, we use page_private(page).
486 */
487 static inline int page_is_buddy(struct page *page, struct page *buddy,
488 int order)
489 {
490 if (!pfn_valid_within(page_to_pfn(buddy)))
491 return 0;
492
493 if (page_zone_id(page) != page_zone_id(buddy))
494 return 0;
495
496 if (page_is_guard(buddy) && page_order(buddy) == order) {
497 VM_BUG_ON(page_count(buddy) != 0);
498 return 1;
499 }
500
501 if (PageBuddy(buddy) && page_order(buddy) == order) {
502 VM_BUG_ON(page_count(buddy) != 0);
503 return 1;
504 }
505 return 0;
506 }
507
508 /*
509 * Freeing function for a buddy system allocator.
510 *
511 * The concept of a buddy system is to maintain direct-mapped table
512 * (containing bit values) for memory blocks of various "orders".
513 * The bottom level table contains the map for the smallest allocatable
514 * units of memory (here, pages), and each level above it describes
515 * pairs of units from the levels below, hence, "buddies".
516 * At a high level, all that happens here is marking the table entry
517 * at the bottom level available, and propagating the changes upward
518 * as necessary, plus some accounting needed to play nicely with other
519 * parts of the VM system.
520 * At each level, we keep a list of pages, which are heads of continuous
521 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
522 * order is recorded in page_private(page) field.
523 * So when we are allocating or freeing one, we can derive the state of the
524 * other. That is, if we allocate a small block, and both were
525 * free, the remainder of the region must be split into blocks.
526 * If a block is freed, and its buddy is also free, then this
527 * triggers coalescing into a block of larger size.
528 *
529 * -- nyc
530 */
531
532 static inline void __free_one_page(struct page *page,
533 struct zone *zone, unsigned int order,
534 int migratetype)
535 {
536 unsigned long page_idx;
537 unsigned long combined_idx;
538 unsigned long uninitialized_var(buddy_idx);
539 struct page *buddy;
540
541 VM_BUG_ON(!zone_is_initialized(zone));
542
543 if (unlikely(PageCompound(page)))
544 if (unlikely(destroy_compound_page(page, order)))
545 return;
546
547 VM_BUG_ON(migratetype == -1);
548
549 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
550
551 VM_BUG_ON(page_idx & ((1 << order) - 1));
552 VM_BUG_ON(bad_range(zone, page));
553
554 while (order < MAX_ORDER-1) {
555 buddy_idx = __find_buddy_index(page_idx, order);
556 buddy = page + (buddy_idx - page_idx);
557 if (!page_is_buddy(page, buddy, order))
558 break;
559 /*
560 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
561 * merge with it and move up one order.
562 */
563 if (page_is_guard(buddy)) {
564 clear_page_guard_flag(buddy);
565 set_page_private(page, 0);
566 __mod_zone_freepage_state(zone, 1 << order,
567 migratetype);
568 } else {
569 list_del(&buddy->lru);
570 zone->free_area[order].nr_free--;
571 rmv_page_order(buddy);
572 }
573 combined_idx = buddy_idx & page_idx;
574 page = page + (combined_idx - page_idx);
575 page_idx = combined_idx;
576 order++;
577 }
578 set_page_order(page, order);
579
580 /*
581 * If this is not the largest possible page, check if the buddy
582 * of the next-highest order is free. If it is, it's possible
583 * that pages are being freed that will coalesce soon. In case,
584 * that is happening, add the free page to the tail of the list
585 * so it's less likely to be used soon and more likely to be merged
586 * as a higher order page
587 */
588 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
589 struct page *higher_page, *higher_buddy;
590 combined_idx = buddy_idx & page_idx;
591 higher_page = page + (combined_idx - page_idx);
592 buddy_idx = __find_buddy_index(combined_idx, order + 1);
593 higher_buddy = higher_page + (buddy_idx - combined_idx);
594 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
595 list_add_tail(&page->lru,
596 &zone->free_area[order].free_list[migratetype]);
597 goto out;
598 }
599 }
600
601 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
602 out:
603 zone->free_area[order].nr_free++;
604 }
605
606 static inline int free_pages_check(struct page *page)
607 {
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
610 (atomic_read(&page->_count) != 0) |
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
613 bad_page(page);
614 return 1;
615 }
616 page_nid_reset_last(page);
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
620 }
621
622 /*
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
635 {
636 int migratetype = 0;
637 int batch_free = 0;
638 int to_free = count;
639
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 while (to_free) {
645 struct page *page;
646 struct list_head *list;
647
648 /*
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
654 */
655 do {
656 batch_free++;
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
661
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
666 do {
667 int mt; /* migratetype of the to-be-freed page */
668
669 page = list_entry(list->prev, struct page, lru);
670 /* must delete as __free_one_page list manipulates */
671 list_del(&page->lru);
672 mt = get_freepage_migratetype(page);
673 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
674 __free_one_page(page, zone, 0, mt);
675 trace_mm_page_pcpu_drain(page, 0, mt);
676 if (likely(!is_migrate_isolate_page(page))) {
677 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
678 if (is_migrate_cma(mt))
679 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
680 }
681 } while (--to_free && --batch_free && !list_empty(list));
682 }
683 spin_unlock(&zone->lock);
684 }
685
686 static void free_one_page(struct zone *zone, struct page *page, int order,
687 int migratetype)
688 {
689 spin_lock(&zone->lock);
690 zone->all_unreclaimable = 0;
691 zone->pages_scanned = 0;
692
693 __free_one_page(page, zone, order, migratetype);
694 if (unlikely(!is_migrate_isolate(migratetype)))
695 __mod_zone_freepage_state(zone, 1 << order, migratetype);
696 spin_unlock(&zone->lock);
697 }
698
699 static bool free_pages_prepare(struct page *page, unsigned int order)
700 {
701 int i;
702 int bad = 0;
703
704 trace_mm_page_free(page, order);
705 kmemcheck_free_shadow(page, order);
706
707 if (PageAnon(page))
708 page->mapping = NULL;
709 for (i = 0; i < (1 << order); i++)
710 bad += free_pages_check(page + i);
711 if (bad)
712 return false;
713
714 if (!PageHighMem(page)) {
715 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
716 debug_check_no_obj_freed(page_address(page),
717 PAGE_SIZE << order);
718 }
719 arch_free_page(page, order);
720 kernel_map_pages(page, 1 << order, 0);
721
722 return true;
723 }
724
725 static void __free_pages_ok(struct page *page, unsigned int order)
726 {
727 unsigned long flags;
728 int migratetype;
729
730 if (!free_pages_prepare(page, order))
731 return;
732
733 local_irq_save(flags);
734 __count_vm_events(PGFREE, 1 << order);
735 migratetype = get_pageblock_migratetype(page);
736 set_freepage_migratetype(page, migratetype);
737 free_one_page(page_zone(page), page, order, migratetype);
738 local_irq_restore(flags);
739 }
740
741 /*
742 * Read access to zone->managed_pages is safe because it's unsigned long,
743 * but we still need to serialize writers. Currently all callers of
744 * __free_pages_bootmem() except put_page_bootmem() should only be used
745 * at boot time. So for shorter boot time, we shift the burden to
746 * put_page_bootmem() to serialize writers.
747 */
748 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
749 {
750 unsigned int nr_pages = 1 << order;
751 unsigned int loop;
752
753 prefetchw(page);
754 for (loop = 0; loop < nr_pages; loop++) {
755 struct page *p = &page[loop];
756
757 if (loop + 1 < nr_pages)
758 prefetchw(p + 1);
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
761 }
762
763 page_zone(page)->managed_pages += 1 << order;
764 set_page_refcounted(page);
765 __free_pages(page, order);
766 }
767
768 #ifdef CONFIG_CMA
769 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770 void __init init_cma_reserved_pageblock(struct page *page)
771 {
772 unsigned i = pageblock_nr_pages;
773 struct page *p = page;
774
775 do {
776 __ClearPageReserved(p);
777 set_page_count(p, 0);
778 } while (++p, --i);
779
780 set_page_refcounted(page);
781 set_pageblock_migratetype(page, MIGRATE_CMA);
782 __free_pages(page, pageblock_order);
783 totalram_pages += pageblock_nr_pages;
784 #ifdef CONFIG_HIGHMEM
785 if (PageHighMem(page))
786 totalhigh_pages += pageblock_nr_pages;
787 #endif
788 }
789 #endif
790
791 /*
792 * The order of subdivision here is critical for the IO subsystem.
793 * Please do not alter this order without good reasons and regression
794 * testing. Specifically, as large blocks of memory are subdivided,
795 * the order in which smaller blocks are delivered depends on the order
796 * they're subdivided in this function. This is the primary factor
797 * influencing the order in which pages are delivered to the IO
798 * subsystem according to empirical testing, and this is also justified
799 * by considering the behavior of a buddy system containing a single
800 * large block of memory acted on by a series of small allocations.
801 * This behavior is a critical factor in sglist merging's success.
802 *
803 * -- nyc
804 */
805 static inline void expand(struct zone *zone, struct page *page,
806 int low, int high, struct free_area *area,
807 int migratetype)
808 {
809 unsigned long size = 1 << high;
810
811 while (high > low) {
812 area--;
813 high--;
814 size >>= 1;
815 VM_BUG_ON(bad_range(zone, &page[size]));
816
817 #ifdef CONFIG_DEBUG_PAGEALLOC
818 if (high < debug_guardpage_minorder()) {
819 /*
820 * Mark as guard pages (or page), that will allow to
821 * merge back to allocator when buddy will be freed.
822 * Corresponding page table entries will not be touched,
823 * pages will stay not present in virtual address space
824 */
825 INIT_LIST_HEAD(&page[size].lru);
826 set_page_guard_flag(&page[size]);
827 set_page_private(&page[size], high);
828 /* Guard pages are not available for any usage */
829 __mod_zone_freepage_state(zone, -(1 << high),
830 migratetype);
831 continue;
832 }
833 #endif
834 list_add(&page[size].lru, &area->free_list[migratetype]);
835 area->nr_free++;
836 set_page_order(&page[size], high);
837 }
838 }
839
840 /*
841 * This page is about to be returned from the page allocator
842 */
843 static inline int check_new_page(struct page *page)
844 {
845 if (unlikely(page_mapcount(page) |
846 (page->mapping != NULL) |
847 (atomic_read(&page->_count) != 0) |
848 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
849 (mem_cgroup_bad_page_check(page)))) {
850 bad_page(page);
851 return 1;
852 }
853 return 0;
854 }
855
856 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
857 {
858 int i;
859
860 for (i = 0; i < (1 << order); i++) {
861 struct page *p = page + i;
862 if (unlikely(check_new_page(p)))
863 return 1;
864 }
865
866 set_page_private(page, 0);
867 set_page_refcounted(page);
868
869 arch_alloc_page(page, order);
870 kernel_map_pages(page, 1 << order, 1);
871
872 if (gfp_flags & __GFP_ZERO)
873 prep_zero_page(page, order, gfp_flags);
874
875 if (order && (gfp_flags & __GFP_COMP))
876 prep_compound_page(page, order);
877
878 return 0;
879 }
880
881 /*
882 * Go through the free lists for the given migratetype and remove
883 * the smallest available page from the freelists
884 */
885 static inline
886 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
887 int migratetype)
888 {
889 unsigned int current_order;
890 struct free_area * area;
891 struct page *page;
892
893 /* Find a page of the appropriate size in the preferred list */
894 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
895 area = &(zone->free_area[current_order]);
896 if (list_empty(&area->free_list[migratetype]))
897 continue;
898
899 page = list_entry(area->free_list[migratetype].next,
900 struct page, lru);
901 list_del(&page->lru);
902 rmv_page_order(page);
903 area->nr_free--;
904 expand(zone, page, order, current_order, area, migratetype);
905 return page;
906 }
907
908 return NULL;
909 }
910
911
912 /*
913 * This array describes the order lists are fallen back to when
914 * the free lists for the desirable migrate type are depleted
915 */
916 static int fallbacks[MIGRATE_TYPES][4] = {
917 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 #ifdef CONFIG_CMA
920 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
922 #else
923 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
924 #endif
925 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
926 #ifdef CONFIG_MEMORY_ISOLATION
927 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
928 #endif
929 };
930
931 /*
932 * Move the free pages in a range to the free lists of the requested type.
933 * Note that start_page and end_pages are not aligned on a pageblock
934 * boundary. If alignment is required, use move_freepages_block()
935 */
936 int move_freepages(struct zone *zone,
937 struct page *start_page, struct page *end_page,
938 int migratetype)
939 {
940 struct page *page;
941 unsigned long order;
942 int pages_moved = 0;
943
944 #ifndef CONFIG_HOLES_IN_ZONE
945 /*
946 * page_zone is not safe to call in this context when
947 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
948 * anyway as we check zone boundaries in move_freepages_block().
949 * Remove at a later date when no bug reports exist related to
950 * grouping pages by mobility
951 */
952 BUG_ON(page_zone(start_page) != page_zone(end_page));
953 #endif
954
955 for (page = start_page; page <= end_page;) {
956 /* Make sure we are not inadvertently changing nodes */
957 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
958
959 if (!pfn_valid_within(page_to_pfn(page))) {
960 page++;
961 continue;
962 }
963
964 if (!PageBuddy(page)) {
965 page++;
966 continue;
967 }
968
969 order = page_order(page);
970 list_move(&page->lru,
971 &zone->free_area[order].free_list[migratetype]);
972 set_freepage_migratetype(page, migratetype);
973 page += 1 << order;
974 pages_moved += 1 << order;
975 }
976
977 return pages_moved;
978 }
979
980 int move_freepages_block(struct zone *zone, struct page *page,
981 int migratetype)
982 {
983 unsigned long start_pfn, end_pfn;
984 struct page *start_page, *end_page;
985
986 start_pfn = page_to_pfn(page);
987 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
988 start_page = pfn_to_page(start_pfn);
989 end_page = start_page + pageblock_nr_pages - 1;
990 end_pfn = start_pfn + pageblock_nr_pages - 1;
991
992 /* Do not cross zone boundaries */
993 if (!zone_spans_pfn(zone, start_pfn))
994 start_page = page;
995 if (!zone_spans_pfn(zone, end_pfn))
996 return 0;
997
998 return move_freepages(zone, start_page, end_page, migratetype);
999 }
1000
1001 static void change_pageblock_range(struct page *pageblock_page,
1002 int start_order, int migratetype)
1003 {
1004 int nr_pageblocks = 1 << (start_order - pageblock_order);
1005
1006 while (nr_pageblocks--) {
1007 set_pageblock_migratetype(pageblock_page, migratetype);
1008 pageblock_page += pageblock_nr_pages;
1009 }
1010 }
1011
1012 /* Remove an element from the buddy allocator from the fallback list */
1013 static inline struct page *
1014 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1015 {
1016 struct free_area * area;
1017 int current_order;
1018 struct page *page;
1019 int migratetype, i;
1020
1021 /* Find the largest possible block of pages in the other list */
1022 for (current_order = MAX_ORDER-1; current_order >= order;
1023 --current_order) {
1024 for (i = 0;; i++) {
1025 migratetype = fallbacks[start_migratetype][i];
1026
1027 /* MIGRATE_RESERVE handled later if necessary */
1028 if (migratetype == MIGRATE_RESERVE)
1029 break;
1030
1031 area = &(zone->free_area[current_order]);
1032 if (list_empty(&area->free_list[migratetype]))
1033 continue;
1034
1035 page = list_entry(area->free_list[migratetype].next,
1036 struct page, lru);
1037 area->nr_free--;
1038
1039 /*
1040 * If breaking a large block of pages, move all free
1041 * pages to the preferred allocation list. If falling
1042 * back for a reclaimable kernel allocation, be more
1043 * aggressive about taking ownership of free pages
1044 *
1045 * On the other hand, never change migration
1046 * type of MIGRATE_CMA pageblocks nor move CMA
1047 * pages on different free lists. We don't
1048 * want unmovable pages to be allocated from
1049 * MIGRATE_CMA areas.
1050 */
1051 if (!is_migrate_cma(migratetype) &&
1052 (unlikely(current_order >= pageblock_order / 2) ||
1053 start_migratetype == MIGRATE_RECLAIMABLE ||
1054 page_group_by_mobility_disabled)) {
1055 int pages;
1056 pages = move_freepages_block(zone, page,
1057 start_migratetype);
1058
1059 /* Claim the whole block if over half of it is free */
1060 if (pages >= (1 << (pageblock_order-1)) ||
1061 page_group_by_mobility_disabled)
1062 set_pageblock_migratetype(page,
1063 start_migratetype);
1064
1065 migratetype = start_migratetype;
1066 }
1067
1068 /* Remove the page from the freelists */
1069 list_del(&page->lru);
1070 rmv_page_order(page);
1071
1072 /* Take ownership for orders >= pageblock_order */
1073 if (current_order >= pageblock_order &&
1074 !is_migrate_cma(migratetype))
1075 change_pageblock_range(page, current_order,
1076 start_migratetype);
1077
1078 expand(zone, page, order, current_order, area,
1079 is_migrate_cma(migratetype)
1080 ? migratetype : start_migratetype);
1081
1082 trace_mm_page_alloc_extfrag(page, order, current_order,
1083 start_migratetype, migratetype);
1084
1085 return page;
1086 }
1087 }
1088
1089 return NULL;
1090 }
1091
1092 /*
1093 * Do the hard work of removing an element from the buddy allocator.
1094 * Call me with the zone->lock already held.
1095 */
1096 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1097 int migratetype)
1098 {
1099 struct page *page;
1100
1101 retry_reserve:
1102 page = __rmqueue_smallest(zone, order, migratetype);
1103
1104 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1105 page = __rmqueue_fallback(zone, order, migratetype);
1106
1107 /*
1108 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1109 * is used because __rmqueue_smallest is an inline function
1110 * and we want just one call site
1111 */
1112 if (!page) {
1113 migratetype = MIGRATE_RESERVE;
1114 goto retry_reserve;
1115 }
1116 }
1117
1118 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1119 return page;
1120 }
1121
1122 /*
1123 * Obtain a specified number of elements from the buddy allocator, all under
1124 * a single hold of the lock, for efficiency. Add them to the supplied list.
1125 * Returns the number of new pages which were placed at *list.
1126 */
1127 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1128 unsigned long count, struct list_head *list,
1129 int migratetype, int cold)
1130 {
1131 int mt = migratetype, i;
1132
1133 spin_lock(&zone->lock);
1134 for (i = 0; i < count; ++i) {
1135 struct page *page = __rmqueue(zone, order, migratetype);
1136 if (unlikely(page == NULL))
1137 break;
1138
1139 /*
1140 * Split buddy pages returned by expand() are received here
1141 * in physical page order. The page is added to the callers and
1142 * list and the list head then moves forward. From the callers
1143 * perspective, the linked list is ordered by page number in
1144 * some conditions. This is useful for IO devices that can
1145 * merge IO requests if the physical pages are ordered
1146 * properly.
1147 */
1148 if (likely(cold == 0))
1149 list_add(&page->lru, list);
1150 else
1151 list_add_tail(&page->lru, list);
1152 if (IS_ENABLED(CONFIG_CMA)) {
1153 mt = get_pageblock_migratetype(page);
1154 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1155 mt = migratetype;
1156 }
1157 set_freepage_migratetype(page, mt);
1158 list = &page->lru;
1159 if (is_migrate_cma(mt))
1160 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1161 -(1 << order));
1162 }
1163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1164 spin_unlock(&zone->lock);
1165 return i;
1166 }
1167
1168 #ifdef CONFIG_NUMA
1169 /*
1170 * Called from the vmstat counter updater to drain pagesets of this
1171 * currently executing processor on remote nodes after they have
1172 * expired.
1173 *
1174 * Note that this function must be called with the thread pinned to
1175 * a single processor.
1176 */
1177 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1178 {
1179 unsigned long flags;
1180 int to_drain;
1181
1182 local_irq_save(flags);
1183 if (pcp->count >= pcp->batch)
1184 to_drain = pcp->batch;
1185 else
1186 to_drain = pcp->count;
1187 if (to_drain > 0) {
1188 free_pcppages_bulk(zone, to_drain, pcp);
1189 pcp->count -= to_drain;
1190 }
1191 local_irq_restore(flags);
1192 }
1193 #endif
1194
1195 /*
1196 * Drain pages of the indicated processor.
1197 *
1198 * The processor must either be the current processor and the
1199 * thread pinned to the current processor or a processor that
1200 * is not online.
1201 */
1202 static void drain_pages(unsigned int cpu)
1203 {
1204 unsigned long flags;
1205 struct zone *zone;
1206
1207 for_each_populated_zone(zone) {
1208 struct per_cpu_pageset *pset;
1209 struct per_cpu_pages *pcp;
1210
1211 local_irq_save(flags);
1212 pset = per_cpu_ptr(zone->pageset, cpu);
1213
1214 pcp = &pset->pcp;
1215 if (pcp->count) {
1216 free_pcppages_bulk(zone, pcp->count, pcp);
1217 pcp->count = 0;
1218 }
1219 local_irq_restore(flags);
1220 }
1221 }
1222
1223 /*
1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1225 */
1226 void drain_local_pages(void *arg)
1227 {
1228 drain_pages(smp_processor_id());
1229 }
1230
1231 /*
1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1233 *
1234 * Note that this code is protected against sending an IPI to an offline
1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237 * nothing keeps CPUs from showing up after we populated the cpumask and
1238 * before the call to on_each_cpu_mask().
1239 */
1240 void drain_all_pages(void)
1241 {
1242 int cpu;
1243 struct per_cpu_pageset *pcp;
1244 struct zone *zone;
1245
1246 /*
1247 * Allocate in the BSS so we wont require allocation in
1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1249 */
1250 static cpumask_t cpus_with_pcps;
1251
1252 /*
1253 * We don't care about racing with CPU hotplug event
1254 * as offline notification will cause the notified
1255 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 * disables preemption as part of its processing
1257 */
1258 for_each_online_cpu(cpu) {
1259 bool has_pcps = false;
1260 for_each_populated_zone(zone) {
1261 pcp = per_cpu_ptr(zone->pageset, cpu);
1262 if (pcp->pcp.count) {
1263 has_pcps = true;
1264 break;
1265 }
1266 }
1267 if (has_pcps)
1268 cpumask_set_cpu(cpu, &cpus_with_pcps);
1269 else
1270 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1271 }
1272 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1273 }
1274
1275 #ifdef CONFIG_HIBERNATION
1276
1277 void mark_free_pages(struct zone *zone)
1278 {
1279 unsigned long pfn, max_zone_pfn;
1280 unsigned long flags;
1281 int order, t;
1282 struct list_head *curr;
1283
1284 if (!zone->spanned_pages)
1285 return;
1286
1287 spin_lock_irqsave(&zone->lock, flags);
1288
1289 max_zone_pfn = zone_end_pfn(zone);
1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1291 if (pfn_valid(pfn)) {
1292 struct page *page = pfn_to_page(pfn);
1293
1294 if (!swsusp_page_is_forbidden(page))
1295 swsusp_unset_page_free(page);
1296 }
1297
1298 for_each_migratetype_order(order, t) {
1299 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1300 unsigned long i;
1301
1302 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1303 for (i = 0; i < (1UL << order); i++)
1304 swsusp_set_page_free(pfn_to_page(pfn + i));
1305 }
1306 }
1307 spin_unlock_irqrestore(&zone->lock, flags);
1308 }
1309 #endif /* CONFIG_PM */
1310
1311 /*
1312 * Free a 0-order page
1313 * cold == 1 ? free a cold page : free a hot page
1314 */
1315 void free_hot_cold_page(struct page *page, int cold)
1316 {
1317 struct zone *zone = page_zone(page);
1318 struct per_cpu_pages *pcp;
1319 unsigned long flags;
1320 int migratetype;
1321
1322 if (!free_pages_prepare(page, 0))
1323 return;
1324
1325 migratetype = get_pageblock_migratetype(page);
1326 set_freepage_migratetype(page, migratetype);
1327 local_irq_save(flags);
1328 __count_vm_event(PGFREE);
1329
1330 /*
1331 * We only track unmovable, reclaimable and movable on pcp lists.
1332 * Free ISOLATE pages back to the allocator because they are being
1333 * offlined but treat RESERVE as movable pages so we can get those
1334 * areas back if necessary. Otherwise, we may have to free
1335 * excessively into the page allocator
1336 */
1337 if (migratetype >= MIGRATE_PCPTYPES) {
1338 if (unlikely(is_migrate_isolate(migratetype))) {
1339 free_one_page(zone, page, 0, migratetype);
1340 goto out;
1341 }
1342 migratetype = MIGRATE_MOVABLE;
1343 }
1344
1345 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1346 if (cold)
1347 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1348 else
1349 list_add(&page->lru, &pcp->lists[migratetype]);
1350 pcp->count++;
1351 if (pcp->count >= pcp->high) {
1352 free_pcppages_bulk(zone, pcp->batch, pcp);
1353 pcp->count -= pcp->batch;
1354 }
1355
1356 out:
1357 local_irq_restore(flags);
1358 }
1359
1360 /*
1361 * Free a list of 0-order pages
1362 */
1363 void free_hot_cold_page_list(struct list_head *list, int cold)
1364 {
1365 struct page *page, *next;
1366
1367 list_for_each_entry_safe(page, next, list, lru) {
1368 trace_mm_page_free_batched(page, cold);
1369 free_hot_cold_page(page, cold);
1370 }
1371 }
1372
1373 /*
1374 * split_page takes a non-compound higher-order page, and splits it into
1375 * n (1<<order) sub-pages: page[0..n]
1376 * Each sub-page must be freed individually.
1377 *
1378 * Note: this is probably too low level an operation for use in drivers.
1379 * Please consult with lkml before using this in your driver.
1380 */
1381 void split_page(struct page *page, unsigned int order)
1382 {
1383 int i;
1384
1385 VM_BUG_ON(PageCompound(page));
1386 VM_BUG_ON(!page_count(page));
1387
1388 #ifdef CONFIG_KMEMCHECK
1389 /*
1390 * Split shadow pages too, because free(page[0]) would
1391 * otherwise free the whole shadow.
1392 */
1393 if (kmemcheck_page_is_tracked(page))
1394 split_page(virt_to_page(page[0].shadow), order);
1395 #endif
1396
1397 for (i = 1; i < (1 << order); i++)
1398 set_page_refcounted(page + i);
1399 }
1400 EXPORT_SYMBOL_GPL(split_page);
1401
1402 static int __isolate_free_page(struct page *page, unsigned int order)
1403 {
1404 unsigned long watermark;
1405 struct zone *zone;
1406 int mt;
1407
1408 BUG_ON(!PageBuddy(page));
1409
1410 zone = page_zone(page);
1411 mt = get_pageblock_migratetype(page);
1412
1413 if (!is_migrate_isolate(mt)) {
1414 /* Obey watermarks as if the page was being allocated */
1415 watermark = low_wmark_pages(zone) + (1 << order);
1416 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1417 return 0;
1418
1419 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1420 }
1421
1422 /* Remove page from free list */
1423 list_del(&page->lru);
1424 zone->free_area[order].nr_free--;
1425 rmv_page_order(page);
1426
1427 /* Set the pageblock if the isolated page is at least a pageblock */
1428 if (order >= pageblock_order - 1) {
1429 struct page *endpage = page + (1 << order) - 1;
1430 for (; page < endpage; page += pageblock_nr_pages) {
1431 int mt = get_pageblock_migratetype(page);
1432 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1433 set_pageblock_migratetype(page,
1434 MIGRATE_MOVABLE);
1435 }
1436 }
1437
1438 return 1UL << order;
1439 }
1440
1441 /*
1442 * Similar to split_page except the page is already free. As this is only
1443 * being used for migration, the migratetype of the block also changes.
1444 * As this is called with interrupts disabled, the caller is responsible
1445 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1446 * are enabled.
1447 *
1448 * Note: this is probably too low level an operation for use in drivers.
1449 * Please consult with lkml before using this in your driver.
1450 */
1451 int split_free_page(struct page *page)
1452 {
1453 unsigned int order;
1454 int nr_pages;
1455
1456 order = page_order(page);
1457
1458 nr_pages = __isolate_free_page(page, order);
1459 if (!nr_pages)
1460 return 0;
1461
1462 /* Split into individual pages */
1463 set_page_refcounted(page);
1464 split_page(page, order);
1465 return nr_pages;
1466 }
1467
1468 /*
1469 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1470 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1471 * or two.
1472 */
1473 static inline
1474 struct page *buffered_rmqueue(struct zone *preferred_zone,
1475 struct zone *zone, int order, gfp_t gfp_flags,
1476 int migratetype)
1477 {
1478 unsigned long flags;
1479 struct page *page;
1480 int cold = !!(gfp_flags & __GFP_COLD);
1481
1482 again:
1483 if (likely(order == 0)) {
1484 struct per_cpu_pages *pcp;
1485 struct list_head *list;
1486
1487 local_irq_save(flags);
1488 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1489 list = &pcp->lists[migratetype];
1490 if (list_empty(list)) {
1491 pcp->count += rmqueue_bulk(zone, 0,
1492 pcp->batch, list,
1493 migratetype, cold);
1494 if (unlikely(list_empty(list)))
1495 goto failed;
1496 }
1497
1498 if (cold)
1499 page = list_entry(list->prev, struct page, lru);
1500 else
1501 page = list_entry(list->next, struct page, lru);
1502
1503 list_del(&page->lru);
1504 pcp->count--;
1505 } else {
1506 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1507 /*
1508 * __GFP_NOFAIL is not to be used in new code.
1509 *
1510 * All __GFP_NOFAIL callers should be fixed so that they
1511 * properly detect and handle allocation failures.
1512 *
1513 * We most definitely don't want callers attempting to
1514 * allocate greater than order-1 page units with
1515 * __GFP_NOFAIL.
1516 */
1517 WARN_ON_ONCE(order > 1);
1518 }
1519 spin_lock_irqsave(&zone->lock, flags);
1520 page = __rmqueue(zone, order, migratetype);
1521 spin_unlock(&zone->lock);
1522 if (!page)
1523 goto failed;
1524 __mod_zone_freepage_state(zone, -(1 << order),
1525 get_pageblock_migratetype(page));
1526 }
1527
1528 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1529 zone_statistics(preferred_zone, zone, gfp_flags);
1530 local_irq_restore(flags);
1531
1532 VM_BUG_ON(bad_range(zone, page));
1533 if (prep_new_page(page, order, gfp_flags))
1534 goto again;
1535 return page;
1536
1537 failed:
1538 local_irq_restore(flags);
1539 return NULL;
1540 }
1541
1542 #ifdef CONFIG_FAIL_PAGE_ALLOC
1543
1544 static struct {
1545 struct fault_attr attr;
1546
1547 u32 ignore_gfp_highmem;
1548 u32 ignore_gfp_wait;
1549 u32 min_order;
1550 } fail_page_alloc = {
1551 .attr = FAULT_ATTR_INITIALIZER,
1552 .ignore_gfp_wait = 1,
1553 .ignore_gfp_highmem = 1,
1554 .min_order = 1,
1555 };
1556
1557 static int __init setup_fail_page_alloc(char *str)
1558 {
1559 return setup_fault_attr(&fail_page_alloc.attr, str);
1560 }
1561 __setup("fail_page_alloc=", setup_fail_page_alloc);
1562
1563 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1564 {
1565 if (order < fail_page_alloc.min_order)
1566 return false;
1567 if (gfp_mask & __GFP_NOFAIL)
1568 return false;
1569 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1570 return false;
1571 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1572 return false;
1573
1574 return should_fail(&fail_page_alloc.attr, 1 << order);
1575 }
1576
1577 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1578
1579 static int __init fail_page_alloc_debugfs(void)
1580 {
1581 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1582 struct dentry *dir;
1583
1584 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1585 &fail_page_alloc.attr);
1586 if (IS_ERR(dir))
1587 return PTR_ERR(dir);
1588
1589 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1590 &fail_page_alloc.ignore_gfp_wait))
1591 goto fail;
1592 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1593 &fail_page_alloc.ignore_gfp_highmem))
1594 goto fail;
1595 if (!debugfs_create_u32("min-order", mode, dir,
1596 &fail_page_alloc.min_order))
1597 goto fail;
1598
1599 return 0;
1600 fail:
1601 debugfs_remove_recursive(dir);
1602
1603 return -ENOMEM;
1604 }
1605
1606 late_initcall(fail_page_alloc_debugfs);
1607
1608 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1609
1610 #else /* CONFIG_FAIL_PAGE_ALLOC */
1611
1612 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1613 {
1614 return false;
1615 }
1616
1617 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1618
1619 /*
1620 * Return true if free pages are above 'mark'. This takes into account the order
1621 * of the allocation.
1622 */
1623 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1624 int classzone_idx, int alloc_flags, long free_pages)
1625 {
1626 /* free_pages my go negative - that's OK */
1627 long min = mark;
1628 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1629 int o;
1630
1631 free_pages -= (1 << order) - 1;
1632 if (alloc_flags & ALLOC_HIGH)
1633 min -= min / 2;
1634 if (alloc_flags & ALLOC_HARDER)
1635 min -= min / 4;
1636 #ifdef CONFIG_CMA
1637 /* If allocation can't use CMA areas don't use free CMA pages */
1638 if (!(alloc_flags & ALLOC_CMA))
1639 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1640 #endif
1641 if (free_pages <= min + lowmem_reserve)
1642 return false;
1643 for (o = 0; o < order; o++) {
1644 /* At the next order, this order's pages become unavailable */
1645 free_pages -= z->free_area[o].nr_free << o;
1646
1647 /* Require fewer higher order pages to be free */
1648 min >>= 1;
1649
1650 if (free_pages <= min)
1651 return false;
1652 }
1653 return true;
1654 }
1655
1656 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1657 int classzone_idx, int alloc_flags)
1658 {
1659 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1660 zone_page_state(z, NR_FREE_PAGES));
1661 }
1662
1663 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1664 int classzone_idx, int alloc_flags)
1665 {
1666 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1667
1668 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1669 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1670
1671 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1672 free_pages);
1673 }
1674
1675 #ifdef CONFIG_NUMA
1676 /*
1677 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1678 * skip over zones that are not allowed by the cpuset, or that have
1679 * been recently (in last second) found to be nearly full. See further
1680 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1681 * that have to skip over a lot of full or unallowed zones.
1682 *
1683 * If the zonelist cache is present in the passed in zonelist, then
1684 * returns a pointer to the allowed node mask (either the current
1685 * tasks mems_allowed, or node_states[N_MEMORY].)
1686 *
1687 * If the zonelist cache is not available for this zonelist, does
1688 * nothing and returns NULL.
1689 *
1690 * If the fullzones BITMAP in the zonelist cache is stale (more than
1691 * a second since last zap'd) then we zap it out (clear its bits.)
1692 *
1693 * We hold off even calling zlc_setup, until after we've checked the
1694 * first zone in the zonelist, on the theory that most allocations will
1695 * be satisfied from that first zone, so best to examine that zone as
1696 * quickly as we can.
1697 */
1698 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1699 {
1700 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1701 nodemask_t *allowednodes; /* zonelist_cache approximation */
1702
1703 zlc = zonelist->zlcache_ptr;
1704 if (!zlc)
1705 return NULL;
1706
1707 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1708 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1709 zlc->last_full_zap = jiffies;
1710 }
1711
1712 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1713 &cpuset_current_mems_allowed :
1714 &node_states[N_MEMORY];
1715 return allowednodes;
1716 }
1717
1718 /*
1719 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1720 * if it is worth looking at further for free memory:
1721 * 1) Check that the zone isn't thought to be full (doesn't have its
1722 * bit set in the zonelist_cache fullzones BITMAP).
1723 * 2) Check that the zones node (obtained from the zonelist_cache
1724 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1725 * Return true (non-zero) if zone is worth looking at further, or
1726 * else return false (zero) if it is not.
1727 *
1728 * This check -ignores- the distinction between various watermarks,
1729 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1730 * found to be full for any variation of these watermarks, it will
1731 * be considered full for up to one second by all requests, unless
1732 * we are so low on memory on all allowed nodes that we are forced
1733 * into the second scan of the zonelist.
1734 *
1735 * In the second scan we ignore this zonelist cache and exactly
1736 * apply the watermarks to all zones, even it is slower to do so.
1737 * We are low on memory in the second scan, and should leave no stone
1738 * unturned looking for a free page.
1739 */
1740 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1741 nodemask_t *allowednodes)
1742 {
1743 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1744 int i; /* index of *z in zonelist zones */
1745 int n; /* node that zone *z is on */
1746
1747 zlc = zonelist->zlcache_ptr;
1748 if (!zlc)
1749 return 1;
1750
1751 i = z - zonelist->_zonerefs;
1752 n = zlc->z_to_n[i];
1753
1754 /* This zone is worth trying if it is allowed but not full */
1755 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1756 }
1757
1758 /*
1759 * Given 'z' scanning a zonelist, set the corresponding bit in
1760 * zlc->fullzones, so that subsequent attempts to allocate a page
1761 * from that zone don't waste time re-examining it.
1762 */
1763 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1764 {
1765 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1766 int i; /* index of *z in zonelist zones */
1767
1768 zlc = zonelist->zlcache_ptr;
1769 if (!zlc)
1770 return;
1771
1772 i = z - zonelist->_zonerefs;
1773
1774 set_bit(i, zlc->fullzones);
1775 }
1776
1777 /*
1778 * clear all zones full, called after direct reclaim makes progress so that
1779 * a zone that was recently full is not skipped over for up to a second
1780 */
1781 static void zlc_clear_zones_full(struct zonelist *zonelist)
1782 {
1783 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1784
1785 zlc = zonelist->zlcache_ptr;
1786 if (!zlc)
1787 return;
1788
1789 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1790 }
1791
1792 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1793 {
1794 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1795 }
1796
1797 static void __paginginit init_zone_allows_reclaim(int nid)
1798 {
1799 int i;
1800
1801 for_each_online_node(i)
1802 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1803 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1804 else
1805 zone_reclaim_mode = 1;
1806 }
1807
1808 #else /* CONFIG_NUMA */
1809
1810 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1811 {
1812 return NULL;
1813 }
1814
1815 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1816 nodemask_t *allowednodes)
1817 {
1818 return 1;
1819 }
1820
1821 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1822 {
1823 }
1824
1825 static void zlc_clear_zones_full(struct zonelist *zonelist)
1826 {
1827 }
1828
1829 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1830 {
1831 return true;
1832 }
1833
1834 static inline void init_zone_allows_reclaim(int nid)
1835 {
1836 }
1837 #endif /* CONFIG_NUMA */
1838
1839 /*
1840 * get_page_from_freelist goes through the zonelist trying to allocate
1841 * a page.
1842 */
1843 static struct page *
1844 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1845 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1846 struct zone *preferred_zone, int migratetype)
1847 {
1848 struct zoneref *z;
1849 struct page *page = NULL;
1850 int classzone_idx;
1851 struct zone *zone;
1852 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1853 int zlc_active = 0; /* set if using zonelist_cache */
1854 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1855
1856 classzone_idx = zone_idx(preferred_zone);
1857 zonelist_scan:
1858 /*
1859 * Scan zonelist, looking for a zone with enough free.
1860 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1861 */
1862 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1863 high_zoneidx, nodemask) {
1864 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1865 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1866 continue;
1867 if ((alloc_flags & ALLOC_CPUSET) &&
1868 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1869 continue;
1870 /*
1871 * When allocating a page cache page for writing, we
1872 * want to get it from a zone that is within its dirty
1873 * limit, such that no single zone holds more than its
1874 * proportional share of globally allowed dirty pages.
1875 * The dirty limits take into account the zone's
1876 * lowmem reserves and high watermark so that kswapd
1877 * should be able to balance it without having to
1878 * write pages from its LRU list.
1879 *
1880 * This may look like it could increase pressure on
1881 * lower zones by failing allocations in higher zones
1882 * before they are full. But the pages that do spill
1883 * over are limited as the lower zones are protected
1884 * by this very same mechanism. It should not become
1885 * a practical burden to them.
1886 *
1887 * XXX: For now, allow allocations to potentially
1888 * exceed the per-zone dirty limit in the slowpath
1889 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1890 * which is important when on a NUMA setup the allowed
1891 * zones are together not big enough to reach the
1892 * global limit. The proper fix for these situations
1893 * will require awareness of zones in the
1894 * dirty-throttling and the flusher threads.
1895 */
1896 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1897 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1898 goto this_zone_full;
1899
1900 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1901 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1902 unsigned long mark;
1903 int ret;
1904
1905 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1906 if (zone_watermark_ok(zone, order, mark,
1907 classzone_idx, alloc_flags))
1908 goto try_this_zone;
1909
1910 if (IS_ENABLED(CONFIG_NUMA) &&
1911 !did_zlc_setup && nr_online_nodes > 1) {
1912 /*
1913 * we do zlc_setup if there are multiple nodes
1914 * and before considering the first zone allowed
1915 * by the cpuset.
1916 */
1917 allowednodes = zlc_setup(zonelist, alloc_flags);
1918 zlc_active = 1;
1919 did_zlc_setup = 1;
1920 }
1921
1922 if (zone_reclaim_mode == 0 ||
1923 !zone_allows_reclaim(preferred_zone, zone))
1924 goto this_zone_full;
1925
1926 /*
1927 * As we may have just activated ZLC, check if the first
1928 * eligible zone has failed zone_reclaim recently.
1929 */
1930 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1931 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1932 continue;
1933
1934 ret = zone_reclaim(zone, gfp_mask, order);
1935 switch (ret) {
1936 case ZONE_RECLAIM_NOSCAN:
1937 /* did not scan */
1938 continue;
1939 case ZONE_RECLAIM_FULL:
1940 /* scanned but unreclaimable */
1941 continue;
1942 default:
1943 /* did we reclaim enough */
1944 if (!zone_watermark_ok(zone, order, mark,
1945 classzone_idx, alloc_flags))
1946 goto this_zone_full;
1947 }
1948 }
1949
1950 try_this_zone:
1951 page = buffered_rmqueue(preferred_zone, zone, order,
1952 gfp_mask, migratetype);
1953 if (page)
1954 break;
1955 this_zone_full:
1956 if (IS_ENABLED(CONFIG_NUMA))
1957 zlc_mark_zone_full(zonelist, z);
1958 }
1959
1960 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1961 /* Disable zlc cache for second zonelist scan */
1962 zlc_active = 0;
1963 goto zonelist_scan;
1964 }
1965
1966 if (page)
1967 /*
1968 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1969 * necessary to allocate the page. The expectation is
1970 * that the caller is taking steps that will free more
1971 * memory. The caller should avoid the page being used
1972 * for !PFMEMALLOC purposes.
1973 */
1974 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1975
1976 return page;
1977 }
1978
1979 /*
1980 * Large machines with many possible nodes should not always dump per-node
1981 * meminfo in irq context.
1982 */
1983 static inline bool should_suppress_show_mem(void)
1984 {
1985 bool ret = false;
1986
1987 #if NODES_SHIFT > 8
1988 ret = in_interrupt();
1989 #endif
1990 return ret;
1991 }
1992
1993 static DEFINE_RATELIMIT_STATE(nopage_rs,
1994 DEFAULT_RATELIMIT_INTERVAL,
1995 DEFAULT_RATELIMIT_BURST);
1996
1997 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1998 {
1999 unsigned int filter = SHOW_MEM_FILTER_NODES;
2000
2001 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2002 debug_guardpage_minorder() > 0)
2003 return;
2004
2005 /*
2006 * This documents exceptions given to allocations in certain
2007 * contexts that are allowed to allocate outside current's set
2008 * of allowed nodes.
2009 */
2010 if (!(gfp_mask & __GFP_NOMEMALLOC))
2011 if (test_thread_flag(TIF_MEMDIE) ||
2012 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2013 filter &= ~SHOW_MEM_FILTER_NODES;
2014 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2015 filter &= ~SHOW_MEM_FILTER_NODES;
2016
2017 if (fmt) {
2018 struct va_format vaf;
2019 va_list args;
2020
2021 va_start(args, fmt);
2022
2023 vaf.fmt = fmt;
2024 vaf.va = &args;
2025
2026 pr_warn("%pV", &vaf);
2027
2028 va_end(args);
2029 }
2030
2031 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2032 current->comm, order, gfp_mask);
2033
2034 dump_stack();
2035 if (!should_suppress_show_mem())
2036 show_mem(filter);
2037 }
2038
2039 static inline int
2040 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2041 unsigned long did_some_progress,
2042 unsigned long pages_reclaimed)
2043 {
2044 /* Do not loop if specifically requested */
2045 if (gfp_mask & __GFP_NORETRY)
2046 return 0;
2047
2048 /* Always retry if specifically requested */
2049 if (gfp_mask & __GFP_NOFAIL)
2050 return 1;
2051
2052 /*
2053 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2054 * making forward progress without invoking OOM. Suspend also disables
2055 * storage devices so kswapd will not help. Bail if we are suspending.
2056 */
2057 if (!did_some_progress && pm_suspended_storage())
2058 return 0;
2059
2060 /*
2061 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2062 * means __GFP_NOFAIL, but that may not be true in other
2063 * implementations.
2064 */
2065 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2066 return 1;
2067
2068 /*
2069 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2070 * specified, then we retry until we no longer reclaim any pages
2071 * (above), or we've reclaimed an order of pages at least as
2072 * large as the allocation's order. In both cases, if the
2073 * allocation still fails, we stop retrying.
2074 */
2075 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2076 return 1;
2077
2078 return 0;
2079 }
2080
2081 static inline struct page *
2082 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2083 struct zonelist *zonelist, enum zone_type high_zoneidx,
2084 nodemask_t *nodemask, struct zone *preferred_zone,
2085 int migratetype)
2086 {
2087 struct page *page;
2088
2089 /* Acquire the OOM killer lock for the zones in zonelist */
2090 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2091 schedule_timeout_uninterruptible(1);
2092 return NULL;
2093 }
2094
2095 /*
2096 * Go through the zonelist yet one more time, keep very high watermark
2097 * here, this is only to catch a parallel oom killing, we must fail if
2098 * we're still under heavy pressure.
2099 */
2100 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2101 order, zonelist, high_zoneidx,
2102 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2103 preferred_zone, migratetype);
2104 if (page)
2105 goto out;
2106
2107 if (!(gfp_mask & __GFP_NOFAIL)) {
2108 /* The OOM killer will not help higher order allocs */
2109 if (order > PAGE_ALLOC_COSTLY_ORDER)
2110 goto out;
2111 /* The OOM killer does not needlessly kill tasks for lowmem */
2112 if (high_zoneidx < ZONE_NORMAL)
2113 goto out;
2114 /*
2115 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2116 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2117 * The caller should handle page allocation failure by itself if
2118 * it specifies __GFP_THISNODE.
2119 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2120 */
2121 if (gfp_mask & __GFP_THISNODE)
2122 goto out;
2123 }
2124 /* Exhausted what can be done so it's blamo time */
2125 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2126
2127 out:
2128 clear_zonelist_oom(zonelist, gfp_mask);
2129 return page;
2130 }
2131
2132 #ifdef CONFIG_COMPACTION
2133 /* Try memory compaction for high-order allocations before reclaim */
2134 static struct page *
2135 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2136 struct zonelist *zonelist, enum zone_type high_zoneidx,
2137 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2138 int migratetype, bool sync_migration,
2139 bool *contended_compaction, bool *deferred_compaction,
2140 unsigned long *did_some_progress)
2141 {
2142 if (!order)
2143 return NULL;
2144
2145 if (compaction_deferred(preferred_zone, order)) {
2146 *deferred_compaction = true;
2147 return NULL;
2148 }
2149
2150 current->flags |= PF_MEMALLOC;
2151 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2152 nodemask, sync_migration,
2153 contended_compaction);
2154 current->flags &= ~PF_MEMALLOC;
2155
2156 if (*did_some_progress != COMPACT_SKIPPED) {
2157 struct page *page;
2158
2159 /* Page migration frees to the PCP lists but we want merging */
2160 drain_pages(get_cpu());
2161 put_cpu();
2162
2163 page = get_page_from_freelist(gfp_mask, nodemask,
2164 order, zonelist, high_zoneidx,
2165 alloc_flags & ~ALLOC_NO_WATERMARKS,
2166 preferred_zone, migratetype);
2167 if (page) {
2168 preferred_zone->compact_blockskip_flush = false;
2169 preferred_zone->compact_considered = 0;
2170 preferred_zone->compact_defer_shift = 0;
2171 if (order >= preferred_zone->compact_order_failed)
2172 preferred_zone->compact_order_failed = order + 1;
2173 count_vm_event(COMPACTSUCCESS);
2174 return page;
2175 }
2176
2177 /*
2178 * It's bad if compaction run occurs and fails.
2179 * The most likely reason is that pages exist,
2180 * but not enough to satisfy watermarks.
2181 */
2182 count_vm_event(COMPACTFAIL);
2183
2184 /*
2185 * As async compaction considers a subset of pageblocks, only
2186 * defer if the failure was a sync compaction failure.
2187 */
2188 if (sync_migration)
2189 defer_compaction(preferred_zone, order);
2190
2191 cond_resched();
2192 }
2193
2194 return NULL;
2195 }
2196 #else
2197 static inline struct page *
2198 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2199 struct zonelist *zonelist, enum zone_type high_zoneidx,
2200 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2201 int migratetype, bool sync_migration,
2202 bool *contended_compaction, bool *deferred_compaction,
2203 unsigned long *did_some_progress)
2204 {
2205 return NULL;
2206 }
2207 #endif /* CONFIG_COMPACTION */
2208
2209 /* Perform direct synchronous page reclaim */
2210 static int
2211 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2212 nodemask_t *nodemask)
2213 {
2214 struct reclaim_state reclaim_state;
2215 int progress;
2216
2217 cond_resched();
2218
2219 /* We now go into synchronous reclaim */
2220 cpuset_memory_pressure_bump();
2221 current->flags |= PF_MEMALLOC;
2222 lockdep_set_current_reclaim_state(gfp_mask);
2223 reclaim_state.reclaimed_slab = 0;
2224 current->reclaim_state = &reclaim_state;
2225
2226 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2227
2228 current->reclaim_state = NULL;
2229 lockdep_clear_current_reclaim_state();
2230 current->flags &= ~PF_MEMALLOC;
2231
2232 cond_resched();
2233
2234 return progress;
2235 }
2236
2237 /* The really slow allocator path where we enter direct reclaim */
2238 static inline struct page *
2239 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2240 struct zonelist *zonelist, enum zone_type high_zoneidx,
2241 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2242 int migratetype, unsigned long *did_some_progress)
2243 {
2244 struct page *page = NULL;
2245 bool drained = false;
2246
2247 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2248 nodemask);
2249 if (unlikely(!(*did_some_progress)))
2250 return NULL;
2251
2252 /* After successful reclaim, reconsider all zones for allocation */
2253 if (IS_ENABLED(CONFIG_NUMA))
2254 zlc_clear_zones_full(zonelist);
2255
2256 retry:
2257 page = get_page_from_freelist(gfp_mask, nodemask, order,
2258 zonelist, high_zoneidx,
2259 alloc_flags & ~ALLOC_NO_WATERMARKS,
2260 preferred_zone, migratetype);
2261
2262 /*
2263 * If an allocation failed after direct reclaim, it could be because
2264 * pages are pinned on the per-cpu lists. Drain them and try again
2265 */
2266 if (!page && !drained) {
2267 drain_all_pages();
2268 drained = true;
2269 goto retry;
2270 }
2271
2272 return page;
2273 }
2274
2275 /*
2276 * This is called in the allocator slow-path if the allocation request is of
2277 * sufficient urgency to ignore watermarks and take other desperate measures
2278 */
2279 static inline struct page *
2280 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2281 struct zonelist *zonelist, enum zone_type high_zoneidx,
2282 nodemask_t *nodemask, struct zone *preferred_zone,
2283 int migratetype)
2284 {
2285 struct page *page;
2286
2287 do {
2288 page = get_page_from_freelist(gfp_mask, nodemask, order,
2289 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2290 preferred_zone, migratetype);
2291
2292 if (!page && gfp_mask & __GFP_NOFAIL)
2293 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2294 } while (!page && (gfp_mask & __GFP_NOFAIL));
2295
2296 return page;
2297 }
2298
2299 static inline
2300 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2301 enum zone_type high_zoneidx,
2302 enum zone_type classzone_idx)
2303 {
2304 struct zoneref *z;
2305 struct zone *zone;
2306
2307 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2308 wakeup_kswapd(zone, order, classzone_idx);
2309 }
2310
2311 static inline int
2312 gfp_to_alloc_flags(gfp_t gfp_mask)
2313 {
2314 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2315 const gfp_t wait = gfp_mask & __GFP_WAIT;
2316
2317 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2318 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2319
2320 /*
2321 * The caller may dip into page reserves a bit more if the caller
2322 * cannot run direct reclaim, or if the caller has realtime scheduling
2323 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2324 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2325 */
2326 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2327
2328 if (!wait) {
2329 /*
2330 * Not worth trying to allocate harder for
2331 * __GFP_NOMEMALLOC even if it can't schedule.
2332 */
2333 if (!(gfp_mask & __GFP_NOMEMALLOC))
2334 alloc_flags |= ALLOC_HARDER;
2335 /*
2336 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2337 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2338 */
2339 alloc_flags &= ~ALLOC_CPUSET;
2340 } else if (unlikely(rt_task(current)) && !in_interrupt())
2341 alloc_flags |= ALLOC_HARDER;
2342
2343 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2344 if (gfp_mask & __GFP_MEMALLOC)
2345 alloc_flags |= ALLOC_NO_WATERMARKS;
2346 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2347 alloc_flags |= ALLOC_NO_WATERMARKS;
2348 else if (!in_interrupt() &&
2349 ((current->flags & PF_MEMALLOC) ||
2350 unlikely(test_thread_flag(TIF_MEMDIE))))
2351 alloc_flags |= ALLOC_NO_WATERMARKS;
2352 }
2353 #ifdef CONFIG_CMA
2354 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2355 alloc_flags |= ALLOC_CMA;
2356 #endif
2357 return alloc_flags;
2358 }
2359
2360 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2361 {
2362 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2363 }
2364
2365 static inline struct page *
2366 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2367 struct zonelist *zonelist, enum zone_type high_zoneidx,
2368 nodemask_t *nodemask, struct zone *preferred_zone,
2369 int migratetype)
2370 {
2371 const gfp_t wait = gfp_mask & __GFP_WAIT;
2372 struct page *page = NULL;
2373 int alloc_flags;
2374 unsigned long pages_reclaimed = 0;
2375 unsigned long did_some_progress;
2376 bool sync_migration = false;
2377 bool deferred_compaction = false;
2378 bool contended_compaction = false;
2379
2380 /*
2381 * In the slowpath, we sanity check order to avoid ever trying to
2382 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2383 * be using allocators in order of preference for an area that is
2384 * too large.
2385 */
2386 if (order >= MAX_ORDER) {
2387 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2388 return NULL;
2389 }
2390
2391 /*
2392 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2393 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2394 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2395 * using a larger set of nodes after it has established that the
2396 * allowed per node queues are empty and that nodes are
2397 * over allocated.
2398 */
2399 if (IS_ENABLED(CONFIG_NUMA) &&
2400 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2401 goto nopage;
2402
2403 restart:
2404 if (!(gfp_mask & __GFP_NO_KSWAPD))
2405 wake_all_kswapd(order, zonelist, high_zoneidx,
2406 zone_idx(preferred_zone));
2407
2408 /*
2409 * OK, we're below the kswapd watermark and have kicked background
2410 * reclaim. Now things get more complex, so set up alloc_flags according
2411 * to how we want to proceed.
2412 */
2413 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2414
2415 /*
2416 * Find the true preferred zone if the allocation is unconstrained by
2417 * cpusets.
2418 */
2419 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2420 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2421 &preferred_zone);
2422
2423 rebalance:
2424 /* This is the last chance, in general, before the goto nopage. */
2425 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2426 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2427 preferred_zone, migratetype);
2428 if (page)
2429 goto got_pg;
2430
2431 /* Allocate without watermarks if the context allows */
2432 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2433 /*
2434 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2435 * the allocation is high priority and these type of
2436 * allocations are system rather than user orientated
2437 */
2438 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2439
2440 page = __alloc_pages_high_priority(gfp_mask, order,
2441 zonelist, high_zoneidx, nodemask,
2442 preferred_zone, migratetype);
2443 if (page) {
2444 goto got_pg;
2445 }
2446 }
2447
2448 /* Atomic allocations - we can't balance anything */
2449 if (!wait)
2450 goto nopage;
2451
2452 /* Avoid recursion of direct reclaim */
2453 if (current->flags & PF_MEMALLOC)
2454 goto nopage;
2455
2456 /* Avoid allocations with no watermarks from looping endlessly */
2457 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2458 goto nopage;
2459
2460 /*
2461 * Try direct compaction. The first pass is asynchronous. Subsequent
2462 * attempts after direct reclaim are synchronous
2463 */
2464 page = __alloc_pages_direct_compact(gfp_mask, order,
2465 zonelist, high_zoneidx,
2466 nodemask,
2467 alloc_flags, preferred_zone,
2468 migratetype, sync_migration,
2469 &contended_compaction,
2470 &deferred_compaction,
2471 &did_some_progress);
2472 if (page)
2473 goto got_pg;
2474 sync_migration = true;
2475
2476 /*
2477 * If compaction is deferred for high-order allocations, it is because
2478 * sync compaction recently failed. In this is the case and the caller
2479 * requested a movable allocation that does not heavily disrupt the
2480 * system then fail the allocation instead of entering direct reclaim.
2481 */
2482 if ((deferred_compaction || contended_compaction) &&
2483 (gfp_mask & __GFP_NO_KSWAPD))
2484 goto nopage;
2485
2486 /* Try direct reclaim and then allocating */
2487 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2488 zonelist, high_zoneidx,
2489 nodemask,
2490 alloc_flags, preferred_zone,
2491 migratetype, &did_some_progress);
2492 if (page)
2493 goto got_pg;
2494
2495 /*
2496 * If we failed to make any progress reclaiming, then we are
2497 * running out of options and have to consider going OOM
2498 */
2499 if (!did_some_progress) {
2500 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2501 if (oom_killer_disabled)
2502 goto nopage;
2503 /* Coredumps can quickly deplete all memory reserves */
2504 if ((current->flags & PF_DUMPCORE) &&
2505 !(gfp_mask & __GFP_NOFAIL))
2506 goto nopage;
2507 page = __alloc_pages_may_oom(gfp_mask, order,
2508 zonelist, high_zoneidx,
2509 nodemask, preferred_zone,
2510 migratetype);
2511 if (page)
2512 goto got_pg;
2513
2514 if (!(gfp_mask & __GFP_NOFAIL)) {
2515 /*
2516 * The oom killer is not called for high-order
2517 * allocations that may fail, so if no progress
2518 * is being made, there are no other options and
2519 * retrying is unlikely to help.
2520 */
2521 if (order > PAGE_ALLOC_COSTLY_ORDER)
2522 goto nopage;
2523 /*
2524 * The oom killer is not called for lowmem
2525 * allocations to prevent needlessly killing
2526 * innocent tasks.
2527 */
2528 if (high_zoneidx < ZONE_NORMAL)
2529 goto nopage;
2530 }
2531
2532 goto restart;
2533 }
2534 }
2535
2536 /* Check if we should retry the allocation */
2537 pages_reclaimed += did_some_progress;
2538 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2539 pages_reclaimed)) {
2540 /* Wait for some write requests to complete then retry */
2541 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2542 goto rebalance;
2543 } else {
2544 /*
2545 * High-order allocations do not necessarily loop after
2546 * direct reclaim and reclaim/compaction depends on compaction
2547 * being called after reclaim so call directly if necessary
2548 */
2549 page = __alloc_pages_direct_compact(gfp_mask, order,
2550 zonelist, high_zoneidx,
2551 nodemask,
2552 alloc_flags, preferred_zone,
2553 migratetype, sync_migration,
2554 &contended_compaction,
2555 &deferred_compaction,
2556 &did_some_progress);
2557 if (page)
2558 goto got_pg;
2559 }
2560
2561 nopage:
2562 warn_alloc_failed(gfp_mask, order, NULL);
2563 return page;
2564 got_pg:
2565 if (kmemcheck_enabled)
2566 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2567
2568 return page;
2569 }
2570
2571 /*
2572 * This is the 'heart' of the zoned buddy allocator.
2573 */
2574 struct page *
2575 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2576 struct zonelist *zonelist, nodemask_t *nodemask)
2577 {
2578 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2579 struct zone *preferred_zone;
2580 struct page *page = NULL;
2581 int migratetype = allocflags_to_migratetype(gfp_mask);
2582 unsigned int cpuset_mems_cookie;
2583 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2584 struct mem_cgroup *memcg = NULL;
2585
2586 gfp_mask &= gfp_allowed_mask;
2587
2588 lockdep_trace_alloc(gfp_mask);
2589
2590 might_sleep_if(gfp_mask & __GFP_WAIT);
2591
2592 if (should_fail_alloc_page(gfp_mask, order))
2593 return NULL;
2594
2595 /*
2596 * Check the zones suitable for the gfp_mask contain at least one
2597 * valid zone. It's possible to have an empty zonelist as a result
2598 * of GFP_THISNODE and a memoryless node
2599 */
2600 if (unlikely(!zonelist->_zonerefs->zone))
2601 return NULL;
2602
2603 /*
2604 * Will only have any effect when __GFP_KMEMCG is set. This is
2605 * verified in the (always inline) callee
2606 */
2607 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2608 return NULL;
2609
2610 retry_cpuset:
2611 cpuset_mems_cookie = get_mems_allowed();
2612
2613 /* The preferred zone is used for statistics later */
2614 first_zones_zonelist(zonelist, high_zoneidx,
2615 nodemask ? : &cpuset_current_mems_allowed,
2616 &preferred_zone);
2617 if (!preferred_zone)
2618 goto out;
2619
2620 #ifdef CONFIG_CMA
2621 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2622 alloc_flags |= ALLOC_CMA;
2623 #endif
2624 /* First allocation attempt */
2625 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2626 zonelist, high_zoneidx, alloc_flags,
2627 preferred_zone, migratetype);
2628 if (unlikely(!page)) {
2629 /*
2630 * Runtime PM, block IO and its error handling path
2631 * can deadlock because I/O on the device might not
2632 * complete.
2633 */
2634 gfp_mask = memalloc_noio_flags(gfp_mask);
2635 page = __alloc_pages_slowpath(gfp_mask, order,
2636 zonelist, high_zoneidx, nodemask,
2637 preferred_zone, migratetype);
2638 }
2639
2640 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2641
2642 out:
2643 /*
2644 * When updating a task's mems_allowed, it is possible to race with
2645 * parallel threads in such a way that an allocation can fail while
2646 * the mask is being updated. If a page allocation is about to fail,
2647 * check if the cpuset changed during allocation and if so, retry.
2648 */
2649 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2650 goto retry_cpuset;
2651
2652 memcg_kmem_commit_charge(page, memcg, order);
2653
2654 return page;
2655 }
2656 EXPORT_SYMBOL(__alloc_pages_nodemask);
2657
2658 /*
2659 * Common helper functions.
2660 */
2661 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2662 {
2663 struct page *page;
2664
2665 /*
2666 * __get_free_pages() returns a 32-bit address, which cannot represent
2667 * a highmem page
2668 */
2669 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2670
2671 page = alloc_pages(gfp_mask, order);
2672 if (!page)
2673 return 0;
2674 return (unsigned long) page_address(page);
2675 }
2676 EXPORT_SYMBOL(__get_free_pages);
2677
2678 unsigned long get_zeroed_page(gfp_t gfp_mask)
2679 {
2680 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2681 }
2682 EXPORT_SYMBOL(get_zeroed_page);
2683
2684 void __free_pages(struct page *page, unsigned int order)
2685 {
2686 if (put_page_testzero(page)) {
2687 if (order == 0)
2688 free_hot_cold_page(page, 0);
2689 else
2690 __free_pages_ok(page, order);
2691 }
2692 }
2693
2694 EXPORT_SYMBOL(__free_pages);
2695
2696 void free_pages(unsigned long addr, unsigned int order)
2697 {
2698 if (addr != 0) {
2699 VM_BUG_ON(!virt_addr_valid((void *)addr));
2700 __free_pages(virt_to_page((void *)addr), order);
2701 }
2702 }
2703
2704 EXPORT_SYMBOL(free_pages);
2705
2706 /*
2707 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2708 * pages allocated with __GFP_KMEMCG.
2709 *
2710 * Those pages are accounted to a particular memcg, embedded in the
2711 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2712 * for that information only to find out that it is NULL for users who have no
2713 * interest in that whatsoever, we provide these functions.
2714 *
2715 * The caller knows better which flags it relies on.
2716 */
2717 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2718 {
2719 memcg_kmem_uncharge_pages(page, order);
2720 __free_pages(page, order);
2721 }
2722
2723 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2724 {
2725 if (addr != 0) {
2726 VM_BUG_ON(!virt_addr_valid((void *)addr));
2727 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2728 }
2729 }
2730
2731 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2732 {
2733 if (addr) {
2734 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2735 unsigned long used = addr + PAGE_ALIGN(size);
2736
2737 split_page(virt_to_page((void *)addr), order);
2738 while (used < alloc_end) {
2739 free_page(used);
2740 used += PAGE_SIZE;
2741 }
2742 }
2743 return (void *)addr;
2744 }
2745
2746 /**
2747 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2748 * @size: the number of bytes to allocate
2749 * @gfp_mask: GFP flags for the allocation
2750 *
2751 * This function is similar to alloc_pages(), except that it allocates the
2752 * minimum number of pages to satisfy the request. alloc_pages() can only
2753 * allocate memory in power-of-two pages.
2754 *
2755 * This function is also limited by MAX_ORDER.
2756 *
2757 * Memory allocated by this function must be released by free_pages_exact().
2758 */
2759 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2760 {
2761 unsigned int order = get_order(size);
2762 unsigned long addr;
2763
2764 addr = __get_free_pages(gfp_mask, order);
2765 return make_alloc_exact(addr, order, size);
2766 }
2767 EXPORT_SYMBOL(alloc_pages_exact);
2768
2769 /**
2770 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2771 * pages on a node.
2772 * @nid: the preferred node ID where memory should be allocated
2773 * @size: the number of bytes to allocate
2774 * @gfp_mask: GFP flags for the allocation
2775 *
2776 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2777 * back.
2778 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2779 * but is not exact.
2780 */
2781 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2782 {
2783 unsigned order = get_order(size);
2784 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2785 if (!p)
2786 return NULL;
2787 return make_alloc_exact((unsigned long)page_address(p), order, size);
2788 }
2789 EXPORT_SYMBOL(alloc_pages_exact_nid);
2790
2791 /**
2792 * free_pages_exact - release memory allocated via alloc_pages_exact()
2793 * @virt: the value returned by alloc_pages_exact.
2794 * @size: size of allocation, same value as passed to alloc_pages_exact().
2795 *
2796 * Release the memory allocated by a previous call to alloc_pages_exact.
2797 */
2798 void free_pages_exact(void *virt, size_t size)
2799 {
2800 unsigned long addr = (unsigned long)virt;
2801 unsigned long end = addr + PAGE_ALIGN(size);
2802
2803 while (addr < end) {
2804 free_page(addr);
2805 addr += PAGE_SIZE;
2806 }
2807 }
2808 EXPORT_SYMBOL(free_pages_exact);
2809
2810 /**
2811 * nr_free_zone_pages - count number of pages beyond high watermark
2812 * @offset: The zone index of the highest zone
2813 *
2814 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2815 * high watermark within all zones at or below a given zone index. For each
2816 * zone, the number of pages is calculated as:
2817 * present_pages - high_pages
2818 */
2819 static unsigned long nr_free_zone_pages(int offset)
2820 {
2821 struct zoneref *z;
2822 struct zone *zone;
2823
2824 /* Just pick one node, since fallback list is circular */
2825 unsigned long sum = 0;
2826
2827 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2828
2829 for_each_zone_zonelist(zone, z, zonelist, offset) {
2830 unsigned long size = zone->managed_pages;
2831 unsigned long high = high_wmark_pages(zone);
2832 if (size > high)
2833 sum += size - high;
2834 }
2835
2836 return sum;
2837 }
2838
2839 /**
2840 * nr_free_buffer_pages - count number of pages beyond high watermark
2841 *
2842 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2843 * watermark within ZONE_DMA and ZONE_NORMAL.
2844 */
2845 unsigned long nr_free_buffer_pages(void)
2846 {
2847 return nr_free_zone_pages(gfp_zone(GFP_USER));
2848 }
2849 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2850
2851 /**
2852 * nr_free_pagecache_pages - count number of pages beyond high watermark
2853 *
2854 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2855 * high watermark within all zones.
2856 */
2857 unsigned long nr_free_pagecache_pages(void)
2858 {
2859 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2860 }
2861
2862 static inline void show_node(struct zone *zone)
2863 {
2864 if (IS_ENABLED(CONFIG_NUMA))
2865 printk("Node %d ", zone_to_nid(zone));
2866 }
2867
2868 void si_meminfo(struct sysinfo *val)
2869 {
2870 val->totalram = totalram_pages;
2871 val->sharedram = 0;
2872 val->freeram = global_page_state(NR_FREE_PAGES);
2873 val->bufferram = nr_blockdev_pages();
2874 val->totalhigh = totalhigh_pages;
2875 val->freehigh = nr_free_highpages();
2876 val->mem_unit = PAGE_SIZE;
2877 }
2878
2879 EXPORT_SYMBOL(si_meminfo);
2880
2881 #ifdef CONFIG_NUMA
2882 void si_meminfo_node(struct sysinfo *val, int nid)
2883 {
2884 pg_data_t *pgdat = NODE_DATA(nid);
2885
2886 val->totalram = pgdat->node_present_pages;
2887 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2888 #ifdef CONFIG_HIGHMEM
2889 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2890 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2891 NR_FREE_PAGES);
2892 #else
2893 val->totalhigh = 0;
2894 val->freehigh = 0;
2895 #endif
2896 val->mem_unit = PAGE_SIZE;
2897 }
2898 #endif
2899
2900 /*
2901 * Determine whether the node should be displayed or not, depending on whether
2902 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2903 */
2904 bool skip_free_areas_node(unsigned int flags, int nid)
2905 {
2906 bool ret = false;
2907 unsigned int cpuset_mems_cookie;
2908
2909 if (!(flags & SHOW_MEM_FILTER_NODES))
2910 goto out;
2911
2912 do {
2913 cpuset_mems_cookie = get_mems_allowed();
2914 ret = !node_isset(nid, cpuset_current_mems_allowed);
2915 } while (!put_mems_allowed(cpuset_mems_cookie));
2916 out:
2917 return ret;
2918 }
2919
2920 #define K(x) ((x) << (PAGE_SHIFT-10))
2921
2922 static void show_migration_types(unsigned char type)
2923 {
2924 static const char types[MIGRATE_TYPES] = {
2925 [MIGRATE_UNMOVABLE] = 'U',
2926 [MIGRATE_RECLAIMABLE] = 'E',
2927 [MIGRATE_MOVABLE] = 'M',
2928 [MIGRATE_RESERVE] = 'R',
2929 #ifdef CONFIG_CMA
2930 [MIGRATE_CMA] = 'C',
2931 #endif
2932 #ifdef CONFIG_MEMORY_ISOLATION
2933 [MIGRATE_ISOLATE] = 'I',
2934 #endif
2935 };
2936 char tmp[MIGRATE_TYPES + 1];
2937 char *p = tmp;
2938 int i;
2939
2940 for (i = 0; i < MIGRATE_TYPES; i++) {
2941 if (type & (1 << i))
2942 *p++ = types[i];
2943 }
2944
2945 *p = '\0';
2946 printk("(%s) ", tmp);
2947 }
2948
2949 /*
2950 * Show free area list (used inside shift_scroll-lock stuff)
2951 * We also calculate the percentage fragmentation. We do this by counting the
2952 * memory on each free list with the exception of the first item on the list.
2953 * Suppresses nodes that are not allowed by current's cpuset if
2954 * SHOW_MEM_FILTER_NODES is passed.
2955 */
2956 void show_free_areas(unsigned int filter)
2957 {
2958 int cpu;
2959 struct zone *zone;
2960
2961 for_each_populated_zone(zone) {
2962 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2963 continue;
2964 show_node(zone);
2965 printk("%s per-cpu:\n", zone->name);
2966
2967 for_each_online_cpu(cpu) {
2968 struct per_cpu_pageset *pageset;
2969
2970 pageset = per_cpu_ptr(zone->pageset, cpu);
2971
2972 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2973 cpu, pageset->pcp.high,
2974 pageset->pcp.batch, pageset->pcp.count);
2975 }
2976 }
2977
2978 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2979 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2980 " unevictable:%lu"
2981 " dirty:%lu writeback:%lu unstable:%lu\n"
2982 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2983 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2984 " free_cma:%lu\n",
2985 global_page_state(NR_ACTIVE_ANON),
2986 global_page_state(NR_INACTIVE_ANON),
2987 global_page_state(NR_ISOLATED_ANON),
2988 global_page_state(NR_ACTIVE_FILE),
2989 global_page_state(NR_INACTIVE_FILE),
2990 global_page_state(NR_ISOLATED_FILE),
2991 global_page_state(NR_UNEVICTABLE),
2992 global_page_state(NR_FILE_DIRTY),
2993 global_page_state(NR_WRITEBACK),
2994 global_page_state(NR_UNSTABLE_NFS),
2995 global_page_state(NR_FREE_PAGES),
2996 global_page_state(NR_SLAB_RECLAIMABLE),
2997 global_page_state(NR_SLAB_UNRECLAIMABLE),
2998 global_page_state(NR_FILE_MAPPED),
2999 global_page_state(NR_SHMEM),
3000 global_page_state(NR_PAGETABLE),
3001 global_page_state(NR_BOUNCE),
3002 global_page_state(NR_FREE_CMA_PAGES));
3003
3004 for_each_populated_zone(zone) {
3005 int i;
3006
3007 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3008 continue;
3009 show_node(zone);
3010 printk("%s"
3011 " free:%lukB"
3012 " min:%lukB"
3013 " low:%lukB"
3014 " high:%lukB"
3015 " active_anon:%lukB"
3016 " inactive_anon:%lukB"
3017 " active_file:%lukB"
3018 " inactive_file:%lukB"
3019 " unevictable:%lukB"
3020 " isolated(anon):%lukB"
3021 " isolated(file):%lukB"
3022 " present:%lukB"
3023 " managed:%lukB"
3024 " mlocked:%lukB"
3025 " dirty:%lukB"
3026 " writeback:%lukB"
3027 " mapped:%lukB"
3028 " shmem:%lukB"
3029 " slab_reclaimable:%lukB"
3030 " slab_unreclaimable:%lukB"
3031 " kernel_stack:%lukB"
3032 " pagetables:%lukB"
3033 " unstable:%lukB"
3034 " bounce:%lukB"
3035 " free_cma:%lukB"
3036 " writeback_tmp:%lukB"
3037 " pages_scanned:%lu"
3038 " all_unreclaimable? %s"
3039 "\n",
3040 zone->name,
3041 K(zone_page_state(zone, NR_FREE_PAGES)),
3042 K(min_wmark_pages(zone)),
3043 K(low_wmark_pages(zone)),
3044 K(high_wmark_pages(zone)),
3045 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3046 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3047 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3048 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3049 K(zone_page_state(zone, NR_UNEVICTABLE)),
3050 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3051 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3052 K(zone->present_pages),
3053 K(zone->managed_pages),
3054 K(zone_page_state(zone, NR_MLOCK)),
3055 K(zone_page_state(zone, NR_FILE_DIRTY)),
3056 K(zone_page_state(zone, NR_WRITEBACK)),
3057 K(zone_page_state(zone, NR_FILE_MAPPED)),
3058 K(zone_page_state(zone, NR_SHMEM)),
3059 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3060 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3061 zone_page_state(zone, NR_KERNEL_STACK) *
3062 THREAD_SIZE / 1024,
3063 K(zone_page_state(zone, NR_PAGETABLE)),
3064 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3065 K(zone_page_state(zone, NR_BOUNCE)),
3066 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3067 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3068 zone->pages_scanned,
3069 (zone->all_unreclaimable ? "yes" : "no")
3070 );
3071 printk("lowmem_reserve[]:");
3072 for (i = 0; i < MAX_NR_ZONES; i++)
3073 printk(" %lu", zone->lowmem_reserve[i]);
3074 printk("\n");
3075 }
3076
3077 for_each_populated_zone(zone) {
3078 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3079 unsigned char types[MAX_ORDER];
3080
3081 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3082 continue;
3083 show_node(zone);
3084 printk("%s: ", zone->name);
3085
3086 spin_lock_irqsave(&zone->lock, flags);
3087 for (order = 0; order < MAX_ORDER; order++) {
3088 struct free_area *area = &zone->free_area[order];
3089 int type;
3090
3091 nr[order] = area->nr_free;
3092 total += nr[order] << order;
3093
3094 types[order] = 0;
3095 for (type = 0; type < MIGRATE_TYPES; type++) {
3096 if (!list_empty(&area->free_list[type]))
3097 types[order] |= 1 << type;
3098 }
3099 }
3100 spin_unlock_irqrestore(&zone->lock, flags);
3101 for (order = 0; order < MAX_ORDER; order++) {
3102 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3103 if (nr[order])
3104 show_migration_types(types[order]);
3105 }
3106 printk("= %lukB\n", K(total));
3107 }
3108
3109 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3110
3111 show_swap_cache_info();
3112 }
3113
3114 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3115 {
3116 zoneref->zone = zone;
3117 zoneref->zone_idx = zone_idx(zone);
3118 }
3119
3120 /*
3121 * Builds allocation fallback zone lists.
3122 *
3123 * Add all populated zones of a node to the zonelist.
3124 */
3125 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3126 int nr_zones, enum zone_type zone_type)
3127 {
3128 struct zone *zone;
3129
3130 BUG_ON(zone_type >= MAX_NR_ZONES);
3131 zone_type++;
3132
3133 do {
3134 zone_type--;
3135 zone = pgdat->node_zones + zone_type;
3136 if (populated_zone(zone)) {
3137 zoneref_set_zone(zone,
3138 &zonelist->_zonerefs[nr_zones++]);
3139 check_highest_zone(zone_type);
3140 }
3141
3142 } while (zone_type);
3143 return nr_zones;
3144 }
3145
3146
3147 /*
3148 * zonelist_order:
3149 * 0 = automatic detection of better ordering.
3150 * 1 = order by ([node] distance, -zonetype)
3151 * 2 = order by (-zonetype, [node] distance)
3152 *
3153 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3154 * the same zonelist. So only NUMA can configure this param.
3155 */
3156 #define ZONELIST_ORDER_DEFAULT 0
3157 #define ZONELIST_ORDER_NODE 1
3158 #define ZONELIST_ORDER_ZONE 2
3159
3160 /* zonelist order in the kernel.
3161 * set_zonelist_order() will set this to NODE or ZONE.
3162 */
3163 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3164 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3165
3166
3167 #ifdef CONFIG_NUMA
3168 /* The value user specified ....changed by config */
3169 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3170 /* string for sysctl */
3171 #define NUMA_ZONELIST_ORDER_LEN 16
3172 char numa_zonelist_order[16] = "default";
3173
3174 /*
3175 * interface for configure zonelist ordering.
3176 * command line option "numa_zonelist_order"
3177 * = "[dD]efault - default, automatic configuration.
3178 * = "[nN]ode - order by node locality, then by zone within node
3179 * = "[zZ]one - order by zone, then by locality within zone
3180 */
3181
3182 static int __parse_numa_zonelist_order(char *s)
3183 {
3184 if (*s == 'd' || *s == 'D') {
3185 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3186 } else if (*s == 'n' || *s == 'N') {
3187 user_zonelist_order = ZONELIST_ORDER_NODE;
3188 } else if (*s == 'z' || *s == 'Z') {
3189 user_zonelist_order = ZONELIST_ORDER_ZONE;
3190 } else {
3191 printk(KERN_WARNING
3192 "Ignoring invalid numa_zonelist_order value: "
3193 "%s\n", s);
3194 return -EINVAL;
3195 }
3196 return 0;
3197 }
3198
3199 static __init int setup_numa_zonelist_order(char *s)
3200 {
3201 int ret;
3202
3203 if (!s)
3204 return 0;
3205
3206 ret = __parse_numa_zonelist_order(s);
3207 if (ret == 0)
3208 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3209
3210 return ret;
3211 }
3212 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3213
3214 /*
3215 * sysctl handler for numa_zonelist_order
3216 */
3217 int numa_zonelist_order_handler(ctl_table *table, int write,
3218 void __user *buffer, size_t *length,
3219 loff_t *ppos)
3220 {
3221 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3222 int ret;
3223 static DEFINE_MUTEX(zl_order_mutex);
3224
3225 mutex_lock(&zl_order_mutex);
3226 if (write)
3227 strcpy(saved_string, (char*)table->data);
3228 ret = proc_dostring(table, write, buffer, length, ppos);
3229 if (ret)
3230 goto out;
3231 if (write) {
3232 int oldval = user_zonelist_order;
3233 if (__parse_numa_zonelist_order((char*)table->data)) {
3234 /*
3235 * bogus value. restore saved string
3236 */
3237 strncpy((char*)table->data, saved_string,
3238 NUMA_ZONELIST_ORDER_LEN);
3239 user_zonelist_order = oldval;
3240 } else if (oldval != user_zonelist_order) {
3241 mutex_lock(&zonelists_mutex);
3242 build_all_zonelists(NULL, NULL);
3243 mutex_unlock(&zonelists_mutex);
3244 }
3245 }
3246 out:
3247 mutex_unlock(&zl_order_mutex);
3248 return ret;
3249 }
3250
3251
3252 #define MAX_NODE_LOAD (nr_online_nodes)
3253 static int node_load[MAX_NUMNODES];
3254
3255 /**
3256 * find_next_best_node - find the next node that should appear in a given node's fallback list
3257 * @node: node whose fallback list we're appending
3258 * @used_node_mask: nodemask_t of already used nodes
3259 *
3260 * We use a number of factors to determine which is the next node that should
3261 * appear on a given node's fallback list. The node should not have appeared
3262 * already in @node's fallback list, and it should be the next closest node
3263 * according to the distance array (which contains arbitrary distance values
3264 * from each node to each node in the system), and should also prefer nodes
3265 * with no CPUs, since presumably they'll have very little allocation pressure
3266 * on them otherwise.
3267 * It returns -1 if no node is found.
3268 */
3269 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3270 {
3271 int n, val;
3272 int min_val = INT_MAX;
3273 int best_node = NUMA_NO_NODE;
3274 const struct cpumask *tmp = cpumask_of_node(0);
3275
3276 /* Use the local node if we haven't already */
3277 if (!node_isset(node, *used_node_mask)) {
3278 node_set(node, *used_node_mask);
3279 return node;
3280 }
3281
3282 for_each_node_state(n, N_MEMORY) {
3283
3284 /* Don't want a node to appear more than once */
3285 if (node_isset(n, *used_node_mask))
3286 continue;
3287
3288 /* Use the distance array to find the distance */
3289 val = node_distance(node, n);
3290
3291 /* Penalize nodes under us ("prefer the next node") */
3292 val += (n < node);
3293
3294 /* Give preference to headless and unused nodes */
3295 tmp = cpumask_of_node(n);
3296 if (!cpumask_empty(tmp))
3297 val += PENALTY_FOR_NODE_WITH_CPUS;
3298
3299 /* Slight preference for less loaded node */
3300 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3301 val += node_load[n];
3302
3303 if (val < min_val) {
3304 min_val = val;
3305 best_node = n;
3306 }
3307 }
3308
3309 if (best_node >= 0)
3310 node_set(best_node, *used_node_mask);
3311
3312 return best_node;
3313 }
3314
3315
3316 /*
3317 * Build zonelists ordered by node and zones within node.
3318 * This results in maximum locality--normal zone overflows into local
3319 * DMA zone, if any--but risks exhausting DMA zone.
3320 */
3321 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3322 {
3323 int j;
3324 struct zonelist *zonelist;
3325
3326 zonelist = &pgdat->node_zonelists[0];
3327 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3328 ;
3329 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3330 MAX_NR_ZONES - 1);
3331 zonelist->_zonerefs[j].zone = NULL;
3332 zonelist->_zonerefs[j].zone_idx = 0;
3333 }
3334
3335 /*
3336 * Build gfp_thisnode zonelists
3337 */
3338 static void build_thisnode_zonelists(pg_data_t *pgdat)
3339 {
3340 int j;
3341 struct zonelist *zonelist;
3342
3343 zonelist = &pgdat->node_zonelists[1];
3344 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3345 zonelist->_zonerefs[j].zone = NULL;
3346 zonelist->_zonerefs[j].zone_idx = 0;
3347 }
3348
3349 /*
3350 * Build zonelists ordered by zone and nodes within zones.
3351 * This results in conserving DMA zone[s] until all Normal memory is
3352 * exhausted, but results in overflowing to remote node while memory
3353 * may still exist in local DMA zone.
3354 */
3355 static int node_order[MAX_NUMNODES];
3356
3357 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3358 {
3359 int pos, j, node;
3360 int zone_type; /* needs to be signed */
3361 struct zone *z;
3362 struct zonelist *zonelist;
3363
3364 zonelist = &pgdat->node_zonelists[0];
3365 pos = 0;
3366 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3367 for (j = 0; j < nr_nodes; j++) {
3368 node = node_order[j];
3369 z = &NODE_DATA(node)->node_zones[zone_type];
3370 if (populated_zone(z)) {
3371 zoneref_set_zone(z,
3372 &zonelist->_zonerefs[pos++]);
3373 check_highest_zone(zone_type);
3374 }
3375 }
3376 }
3377 zonelist->_zonerefs[pos].zone = NULL;
3378 zonelist->_zonerefs[pos].zone_idx = 0;
3379 }
3380
3381 static int default_zonelist_order(void)
3382 {
3383 int nid, zone_type;
3384 unsigned long low_kmem_size,total_size;
3385 struct zone *z;
3386 int average_size;
3387 /*
3388 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3389 * If they are really small and used heavily, the system can fall
3390 * into OOM very easily.
3391 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3392 */
3393 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3394 low_kmem_size = 0;
3395 total_size = 0;
3396 for_each_online_node(nid) {
3397 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3398 z = &NODE_DATA(nid)->node_zones[zone_type];
3399 if (populated_zone(z)) {
3400 if (zone_type < ZONE_NORMAL)
3401 low_kmem_size += z->present_pages;
3402 total_size += z->present_pages;
3403 } else if (zone_type == ZONE_NORMAL) {
3404 /*
3405 * If any node has only lowmem, then node order
3406 * is preferred to allow kernel allocations
3407 * locally; otherwise, they can easily infringe
3408 * on other nodes when there is an abundance of
3409 * lowmem available to allocate from.
3410 */
3411 return ZONELIST_ORDER_NODE;
3412 }
3413 }
3414 }
3415 if (!low_kmem_size || /* there are no DMA area. */
3416 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3417 return ZONELIST_ORDER_NODE;
3418 /*
3419 * look into each node's config.
3420 * If there is a node whose DMA/DMA32 memory is very big area on
3421 * local memory, NODE_ORDER may be suitable.
3422 */
3423 average_size = total_size /
3424 (nodes_weight(node_states[N_MEMORY]) + 1);
3425 for_each_online_node(nid) {
3426 low_kmem_size = 0;
3427 total_size = 0;
3428 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3429 z = &NODE_DATA(nid)->node_zones[zone_type];
3430 if (populated_zone(z)) {
3431 if (zone_type < ZONE_NORMAL)
3432 low_kmem_size += z->present_pages;
3433 total_size += z->present_pages;
3434 }
3435 }
3436 if (low_kmem_size &&
3437 total_size > average_size && /* ignore small node */
3438 low_kmem_size > total_size * 70/100)
3439 return ZONELIST_ORDER_NODE;
3440 }
3441 return ZONELIST_ORDER_ZONE;
3442 }
3443
3444 static void set_zonelist_order(void)
3445 {
3446 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3447 current_zonelist_order = default_zonelist_order();
3448 else
3449 current_zonelist_order = user_zonelist_order;
3450 }
3451
3452 static void build_zonelists(pg_data_t *pgdat)
3453 {
3454 int j, node, load;
3455 enum zone_type i;
3456 nodemask_t used_mask;
3457 int local_node, prev_node;
3458 struct zonelist *zonelist;
3459 int order = current_zonelist_order;
3460
3461 /* initialize zonelists */
3462 for (i = 0; i < MAX_ZONELISTS; i++) {
3463 zonelist = pgdat->node_zonelists + i;
3464 zonelist->_zonerefs[0].zone = NULL;
3465 zonelist->_zonerefs[0].zone_idx = 0;
3466 }
3467
3468 /* NUMA-aware ordering of nodes */
3469 local_node = pgdat->node_id;
3470 load = nr_online_nodes;
3471 prev_node = local_node;
3472 nodes_clear(used_mask);
3473
3474 memset(node_order, 0, sizeof(node_order));
3475 j = 0;
3476
3477 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3478 /*
3479 * We don't want to pressure a particular node.
3480 * So adding penalty to the first node in same
3481 * distance group to make it round-robin.
3482 */
3483 if (node_distance(local_node, node) !=
3484 node_distance(local_node, prev_node))
3485 node_load[node] = load;
3486
3487 prev_node = node;
3488 load--;
3489 if (order == ZONELIST_ORDER_NODE)
3490 build_zonelists_in_node_order(pgdat, node);
3491 else
3492 node_order[j++] = node; /* remember order */
3493 }
3494
3495 if (order == ZONELIST_ORDER_ZONE) {
3496 /* calculate node order -- i.e., DMA last! */
3497 build_zonelists_in_zone_order(pgdat, j);
3498 }
3499
3500 build_thisnode_zonelists(pgdat);
3501 }
3502
3503 /* Construct the zonelist performance cache - see further mmzone.h */
3504 static void build_zonelist_cache(pg_data_t *pgdat)
3505 {
3506 struct zonelist *zonelist;
3507 struct zonelist_cache *zlc;
3508 struct zoneref *z;
3509
3510 zonelist = &pgdat->node_zonelists[0];
3511 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3512 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3513 for (z = zonelist->_zonerefs; z->zone; z++)
3514 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3515 }
3516
3517 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3518 /*
3519 * Return node id of node used for "local" allocations.
3520 * I.e., first node id of first zone in arg node's generic zonelist.
3521 * Used for initializing percpu 'numa_mem', which is used primarily
3522 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3523 */
3524 int local_memory_node(int node)
3525 {
3526 struct zone *zone;
3527
3528 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3529 gfp_zone(GFP_KERNEL),
3530 NULL,
3531 &zone);
3532 return zone->node;
3533 }
3534 #endif
3535
3536 #else /* CONFIG_NUMA */
3537
3538 static void set_zonelist_order(void)
3539 {
3540 current_zonelist_order = ZONELIST_ORDER_ZONE;
3541 }
3542
3543 static void build_zonelists(pg_data_t *pgdat)
3544 {
3545 int node, local_node;
3546 enum zone_type j;
3547 struct zonelist *zonelist;
3548
3549 local_node = pgdat->node_id;
3550
3551 zonelist = &pgdat->node_zonelists[0];
3552 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3553
3554 /*
3555 * Now we build the zonelist so that it contains the zones
3556 * of all the other nodes.
3557 * We don't want to pressure a particular node, so when
3558 * building the zones for node N, we make sure that the
3559 * zones coming right after the local ones are those from
3560 * node N+1 (modulo N)
3561 */
3562 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3563 if (!node_online(node))
3564 continue;
3565 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3566 MAX_NR_ZONES - 1);
3567 }
3568 for (node = 0; node < local_node; node++) {
3569 if (!node_online(node))
3570 continue;
3571 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3572 MAX_NR_ZONES - 1);
3573 }
3574
3575 zonelist->_zonerefs[j].zone = NULL;
3576 zonelist->_zonerefs[j].zone_idx = 0;
3577 }
3578
3579 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3580 static void build_zonelist_cache(pg_data_t *pgdat)
3581 {
3582 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3583 }
3584
3585 #endif /* CONFIG_NUMA */
3586
3587 /*
3588 * Boot pageset table. One per cpu which is going to be used for all
3589 * zones and all nodes. The parameters will be set in such a way
3590 * that an item put on a list will immediately be handed over to
3591 * the buddy list. This is safe since pageset manipulation is done
3592 * with interrupts disabled.
3593 *
3594 * The boot_pagesets must be kept even after bootup is complete for
3595 * unused processors and/or zones. They do play a role for bootstrapping
3596 * hotplugged processors.
3597 *
3598 * zoneinfo_show() and maybe other functions do
3599 * not check if the processor is online before following the pageset pointer.
3600 * Other parts of the kernel may not check if the zone is available.
3601 */
3602 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3603 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3604 static void setup_zone_pageset(struct zone *zone);
3605
3606 /*
3607 * Global mutex to protect against size modification of zonelists
3608 * as well as to serialize pageset setup for the new populated zone.
3609 */
3610 DEFINE_MUTEX(zonelists_mutex);
3611
3612 /* return values int ....just for stop_machine() */
3613 static int __build_all_zonelists(void *data)
3614 {
3615 int nid;
3616 int cpu;
3617 pg_data_t *self = data;
3618
3619 #ifdef CONFIG_NUMA
3620 memset(node_load, 0, sizeof(node_load));
3621 #endif
3622
3623 if (self && !node_online(self->node_id)) {
3624 build_zonelists(self);
3625 build_zonelist_cache(self);
3626 }
3627
3628 for_each_online_node(nid) {
3629 pg_data_t *pgdat = NODE_DATA(nid);
3630
3631 build_zonelists(pgdat);
3632 build_zonelist_cache(pgdat);
3633 }
3634
3635 /*
3636 * Initialize the boot_pagesets that are going to be used
3637 * for bootstrapping processors. The real pagesets for
3638 * each zone will be allocated later when the per cpu
3639 * allocator is available.
3640 *
3641 * boot_pagesets are used also for bootstrapping offline
3642 * cpus if the system is already booted because the pagesets
3643 * are needed to initialize allocators on a specific cpu too.
3644 * F.e. the percpu allocator needs the page allocator which
3645 * needs the percpu allocator in order to allocate its pagesets
3646 * (a chicken-egg dilemma).
3647 */
3648 for_each_possible_cpu(cpu) {
3649 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3650
3651 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3652 /*
3653 * We now know the "local memory node" for each node--
3654 * i.e., the node of the first zone in the generic zonelist.
3655 * Set up numa_mem percpu variable for on-line cpus. During
3656 * boot, only the boot cpu should be on-line; we'll init the
3657 * secondary cpus' numa_mem as they come on-line. During
3658 * node/memory hotplug, we'll fixup all on-line cpus.
3659 */
3660 if (cpu_online(cpu))
3661 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3662 #endif
3663 }
3664
3665 return 0;
3666 }
3667
3668 /*
3669 * Called with zonelists_mutex held always
3670 * unless system_state == SYSTEM_BOOTING.
3671 */
3672 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3673 {
3674 set_zonelist_order();
3675
3676 if (system_state == SYSTEM_BOOTING) {
3677 __build_all_zonelists(NULL);
3678 mminit_verify_zonelist();
3679 cpuset_init_current_mems_allowed();
3680 } else {
3681 /* we have to stop all cpus to guarantee there is no user
3682 of zonelist */
3683 #ifdef CONFIG_MEMORY_HOTPLUG
3684 if (zone)
3685 setup_zone_pageset(zone);
3686 #endif
3687 stop_machine(__build_all_zonelists, pgdat, NULL);
3688 /* cpuset refresh routine should be here */
3689 }
3690 vm_total_pages = nr_free_pagecache_pages();
3691 /*
3692 * Disable grouping by mobility if the number of pages in the
3693 * system is too low to allow the mechanism to work. It would be
3694 * more accurate, but expensive to check per-zone. This check is
3695 * made on memory-hotadd so a system can start with mobility
3696 * disabled and enable it later
3697 */
3698 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3699 page_group_by_mobility_disabled = 1;
3700 else
3701 page_group_by_mobility_disabled = 0;
3702
3703 printk("Built %i zonelists in %s order, mobility grouping %s. "
3704 "Total pages: %ld\n",
3705 nr_online_nodes,
3706 zonelist_order_name[current_zonelist_order],
3707 page_group_by_mobility_disabled ? "off" : "on",
3708 vm_total_pages);
3709 #ifdef CONFIG_NUMA
3710 printk("Policy zone: %s\n", zone_names[policy_zone]);
3711 #endif
3712 }
3713
3714 /*
3715 * Helper functions to size the waitqueue hash table.
3716 * Essentially these want to choose hash table sizes sufficiently
3717 * large so that collisions trying to wait on pages are rare.
3718 * But in fact, the number of active page waitqueues on typical
3719 * systems is ridiculously low, less than 200. So this is even
3720 * conservative, even though it seems large.
3721 *
3722 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3723 * waitqueues, i.e. the size of the waitq table given the number of pages.
3724 */
3725 #define PAGES_PER_WAITQUEUE 256
3726
3727 #ifndef CONFIG_MEMORY_HOTPLUG
3728 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3729 {
3730 unsigned long size = 1;
3731
3732 pages /= PAGES_PER_WAITQUEUE;
3733
3734 while (size < pages)
3735 size <<= 1;
3736
3737 /*
3738 * Once we have dozens or even hundreds of threads sleeping
3739 * on IO we've got bigger problems than wait queue collision.
3740 * Limit the size of the wait table to a reasonable size.
3741 */
3742 size = min(size, 4096UL);
3743
3744 return max(size, 4UL);
3745 }
3746 #else
3747 /*
3748 * A zone's size might be changed by hot-add, so it is not possible to determine
3749 * a suitable size for its wait_table. So we use the maximum size now.
3750 *
3751 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3752 *
3753 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3754 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3755 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3756 *
3757 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3758 * or more by the traditional way. (See above). It equals:
3759 *
3760 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3761 * ia64(16K page size) : = ( 8G + 4M)byte.
3762 * powerpc (64K page size) : = (32G +16M)byte.
3763 */
3764 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3765 {
3766 return 4096UL;
3767 }
3768 #endif
3769
3770 /*
3771 * This is an integer logarithm so that shifts can be used later
3772 * to extract the more random high bits from the multiplicative
3773 * hash function before the remainder is taken.
3774 */
3775 static inline unsigned long wait_table_bits(unsigned long size)
3776 {
3777 return ffz(~size);
3778 }
3779
3780 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3781
3782 /*
3783 * Check if a pageblock contains reserved pages
3784 */
3785 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3786 {
3787 unsigned long pfn;
3788
3789 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3790 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3791 return 1;
3792 }
3793 return 0;
3794 }
3795
3796 /*
3797 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3798 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3799 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3800 * higher will lead to a bigger reserve which will get freed as contiguous
3801 * blocks as reclaim kicks in
3802 */
3803 static void setup_zone_migrate_reserve(struct zone *zone)
3804 {
3805 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3806 struct page *page;
3807 unsigned long block_migratetype;
3808 int reserve;
3809
3810 /*
3811 * Get the start pfn, end pfn and the number of blocks to reserve
3812 * We have to be careful to be aligned to pageblock_nr_pages to
3813 * make sure that we always check pfn_valid for the first page in
3814 * the block.
3815 */
3816 start_pfn = zone->zone_start_pfn;
3817 end_pfn = zone_end_pfn(zone);
3818 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3819 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3820 pageblock_order;
3821
3822 /*
3823 * Reserve blocks are generally in place to help high-order atomic
3824 * allocations that are short-lived. A min_free_kbytes value that
3825 * would result in more than 2 reserve blocks for atomic allocations
3826 * is assumed to be in place to help anti-fragmentation for the
3827 * future allocation of hugepages at runtime.
3828 */
3829 reserve = min(2, reserve);
3830
3831 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3832 if (!pfn_valid(pfn))
3833 continue;
3834 page = pfn_to_page(pfn);
3835
3836 /* Watch out for overlapping nodes */
3837 if (page_to_nid(page) != zone_to_nid(zone))
3838 continue;
3839
3840 block_migratetype = get_pageblock_migratetype(page);
3841
3842 /* Only test what is necessary when the reserves are not met */
3843 if (reserve > 0) {
3844 /*
3845 * Blocks with reserved pages will never free, skip
3846 * them.
3847 */
3848 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3849 if (pageblock_is_reserved(pfn, block_end_pfn))
3850 continue;
3851
3852 /* If this block is reserved, account for it */
3853 if (block_migratetype == MIGRATE_RESERVE) {
3854 reserve--;
3855 continue;
3856 }
3857
3858 /* Suitable for reserving if this block is movable */
3859 if (block_migratetype == MIGRATE_MOVABLE) {
3860 set_pageblock_migratetype(page,
3861 MIGRATE_RESERVE);
3862 move_freepages_block(zone, page,
3863 MIGRATE_RESERVE);
3864 reserve--;
3865 continue;
3866 }
3867 }
3868
3869 /*
3870 * If the reserve is met and this is a previous reserved block,
3871 * take it back
3872 */
3873 if (block_migratetype == MIGRATE_RESERVE) {
3874 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3875 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3876 }
3877 }
3878 }
3879
3880 /*
3881 * Initially all pages are reserved - free ones are freed
3882 * up by free_all_bootmem() once the early boot process is
3883 * done. Non-atomic initialization, single-pass.
3884 */
3885 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3886 unsigned long start_pfn, enum memmap_context context)
3887 {
3888 struct page *page;
3889 unsigned long end_pfn = start_pfn + size;
3890 unsigned long pfn;
3891 struct zone *z;
3892
3893 if (highest_memmap_pfn < end_pfn - 1)
3894 highest_memmap_pfn = end_pfn - 1;
3895
3896 z = &NODE_DATA(nid)->node_zones[zone];
3897 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3898 /*
3899 * There can be holes in boot-time mem_map[]s
3900 * handed to this function. They do not
3901 * exist on hotplugged memory.
3902 */
3903 if (context == MEMMAP_EARLY) {
3904 if (!early_pfn_valid(pfn))
3905 continue;
3906 if (!early_pfn_in_nid(pfn, nid))
3907 continue;
3908 }
3909 page = pfn_to_page(pfn);
3910 set_page_links(page, zone, nid, pfn);
3911 mminit_verify_page_links(page, zone, nid, pfn);
3912 init_page_count(page);
3913 page_mapcount_reset(page);
3914 page_nid_reset_last(page);
3915 SetPageReserved(page);
3916 /*
3917 * Mark the block movable so that blocks are reserved for
3918 * movable at startup. This will force kernel allocations
3919 * to reserve their blocks rather than leaking throughout
3920 * the address space during boot when many long-lived
3921 * kernel allocations are made. Later some blocks near
3922 * the start are marked MIGRATE_RESERVE by
3923 * setup_zone_migrate_reserve()
3924 *
3925 * bitmap is created for zone's valid pfn range. but memmap
3926 * can be created for invalid pages (for alignment)
3927 * check here not to call set_pageblock_migratetype() against
3928 * pfn out of zone.
3929 */
3930 if ((z->zone_start_pfn <= pfn)
3931 && (pfn < zone_end_pfn(z))
3932 && !(pfn & (pageblock_nr_pages - 1)))
3933 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3934
3935 INIT_LIST_HEAD(&page->lru);
3936 #ifdef WANT_PAGE_VIRTUAL
3937 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3938 if (!is_highmem_idx(zone))
3939 set_page_address(page, __va(pfn << PAGE_SHIFT));
3940 #endif
3941 }
3942 }
3943
3944 static void __meminit zone_init_free_lists(struct zone *zone)
3945 {
3946 int order, t;
3947 for_each_migratetype_order(order, t) {
3948 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3949 zone->free_area[order].nr_free = 0;
3950 }
3951 }
3952
3953 #ifndef __HAVE_ARCH_MEMMAP_INIT
3954 #define memmap_init(size, nid, zone, start_pfn) \
3955 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3956 #endif
3957
3958 static int __meminit zone_batchsize(struct zone *zone)
3959 {
3960 #ifdef CONFIG_MMU
3961 int batch;
3962
3963 /*
3964 * The per-cpu-pages pools are set to around 1000th of the
3965 * size of the zone. But no more than 1/2 of a meg.
3966 *
3967 * OK, so we don't know how big the cache is. So guess.
3968 */
3969 batch = zone->managed_pages / 1024;
3970 if (batch * PAGE_SIZE > 512 * 1024)
3971 batch = (512 * 1024) / PAGE_SIZE;
3972 batch /= 4; /* We effectively *= 4 below */
3973 if (batch < 1)
3974 batch = 1;
3975
3976 /*
3977 * Clamp the batch to a 2^n - 1 value. Having a power
3978 * of 2 value was found to be more likely to have
3979 * suboptimal cache aliasing properties in some cases.
3980 *
3981 * For example if 2 tasks are alternately allocating
3982 * batches of pages, one task can end up with a lot
3983 * of pages of one half of the possible page colors
3984 * and the other with pages of the other colors.
3985 */
3986 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3987
3988 return batch;
3989
3990 #else
3991 /* The deferral and batching of frees should be suppressed under NOMMU
3992 * conditions.
3993 *
3994 * The problem is that NOMMU needs to be able to allocate large chunks
3995 * of contiguous memory as there's no hardware page translation to
3996 * assemble apparent contiguous memory from discontiguous pages.
3997 *
3998 * Queueing large contiguous runs of pages for batching, however,
3999 * causes the pages to actually be freed in smaller chunks. As there
4000 * can be a significant delay between the individual batches being
4001 * recycled, this leads to the once large chunks of space being
4002 * fragmented and becoming unavailable for high-order allocations.
4003 */
4004 return 0;
4005 #endif
4006 }
4007
4008 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4009 {
4010 struct per_cpu_pages *pcp;
4011 int migratetype;
4012
4013 memset(p, 0, sizeof(*p));
4014
4015 pcp = &p->pcp;
4016 pcp->count = 0;
4017 pcp->high = 6 * batch;
4018 pcp->batch = max(1UL, 1 * batch);
4019 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4020 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4021 }
4022
4023 /*
4024 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4025 * to the value high for the pageset p.
4026 */
4027
4028 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4029 unsigned long high)
4030 {
4031 struct per_cpu_pages *pcp;
4032
4033 pcp = &p->pcp;
4034 pcp->high = high;
4035 pcp->batch = max(1UL, high/4);
4036 if ((high/4) > (PAGE_SHIFT * 8))
4037 pcp->batch = PAGE_SHIFT * 8;
4038 }
4039
4040 static void __meminit setup_zone_pageset(struct zone *zone)
4041 {
4042 int cpu;
4043
4044 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4045
4046 for_each_possible_cpu(cpu) {
4047 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4048
4049 setup_pageset(pcp, zone_batchsize(zone));
4050
4051 if (percpu_pagelist_fraction)
4052 setup_pagelist_highmark(pcp,
4053 (zone->managed_pages /
4054 percpu_pagelist_fraction));
4055 }
4056 }
4057
4058 /*
4059 * Allocate per cpu pagesets and initialize them.
4060 * Before this call only boot pagesets were available.
4061 */
4062 void __init setup_per_cpu_pageset(void)
4063 {
4064 struct zone *zone;
4065
4066 for_each_populated_zone(zone)
4067 setup_zone_pageset(zone);
4068 }
4069
4070 static noinline __init_refok
4071 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4072 {
4073 int i;
4074 struct pglist_data *pgdat = zone->zone_pgdat;
4075 size_t alloc_size;
4076
4077 /*
4078 * The per-page waitqueue mechanism uses hashed waitqueues
4079 * per zone.
4080 */
4081 zone->wait_table_hash_nr_entries =
4082 wait_table_hash_nr_entries(zone_size_pages);
4083 zone->wait_table_bits =
4084 wait_table_bits(zone->wait_table_hash_nr_entries);
4085 alloc_size = zone->wait_table_hash_nr_entries
4086 * sizeof(wait_queue_head_t);
4087
4088 if (!slab_is_available()) {
4089 zone->wait_table = (wait_queue_head_t *)
4090 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4091 } else {
4092 /*
4093 * This case means that a zone whose size was 0 gets new memory
4094 * via memory hot-add.
4095 * But it may be the case that a new node was hot-added. In
4096 * this case vmalloc() will not be able to use this new node's
4097 * memory - this wait_table must be initialized to use this new
4098 * node itself as well.
4099 * To use this new node's memory, further consideration will be
4100 * necessary.
4101 */
4102 zone->wait_table = vmalloc(alloc_size);
4103 }
4104 if (!zone->wait_table)
4105 return -ENOMEM;
4106
4107 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4108 init_waitqueue_head(zone->wait_table + i);
4109
4110 return 0;
4111 }
4112
4113 static __meminit void zone_pcp_init(struct zone *zone)
4114 {
4115 /*
4116 * per cpu subsystem is not up at this point. The following code
4117 * relies on the ability of the linker to provide the
4118 * offset of a (static) per cpu variable into the per cpu area.
4119 */
4120 zone->pageset = &boot_pageset;
4121
4122 if (zone->present_pages)
4123 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4124 zone->name, zone->present_pages,
4125 zone_batchsize(zone));
4126 }
4127
4128 int __meminit init_currently_empty_zone(struct zone *zone,
4129 unsigned long zone_start_pfn,
4130 unsigned long size,
4131 enum memmap_context context)
4132 {
4133 struct pglist_data *pgdat = zone->zone_pgdat;
4134 int ret;
4135 ret = zone_wait_table_init(zone, size);
4136 if (ret)
4137 return ret;
4138 pgdat->nr_zones = zone_idx(zone) + 1;
4139
4140 zone->zone_start_pfn = zone_start_pfn;
4141
4142 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4143 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4144 pgdat->node_id,
4145 (unsigned long)zone_idx(zone),
4146 zone_start_pfn, (zone_start_pfn + size));
4147
4148 zone_init_free_lists(zone);
4149
4150 return 0;
4151 }
4152
4153 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4154 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4155 /*
4156 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4157 * Architectures may implement their own version but if add_active_range()
4158 * was used and there are no special requirements, this is a convenient
4159 * alternative
4160 */
4161 int __meminit __early_pfn_to_nid(unsigned long pfn)
4162 {
4163 unsigned long start_pfn, end_pfn;
4164 int i, nid;
4165
4166 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4167 if (start_pfn <= pfn && pfn < end_pfn)
4168 return nid;
4169 /* This is a memory hole */
4170 return -1;
4171 }
4172 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4173
4174 int __meminit early_pfn_to_nid(unsigned long pfn)
4175 {
4176 int nid;
4177
4178 nid = __early_pfn_to_nid(pfn);
4179 if (nid >= 0)
4180 return nid;
4181 /* just returns 0 */
4182 return 0;
4183 }
4184
4185 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4186 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4187 {
4188 int nid;
4189
4190 nid = __early_pfn_to_nid(pfn);
4191 if (nid >= 0 && nid != node)
4192 return false;
4193 return true;
4194 }
4195 #endif
4196
4197 /**
4198 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4199 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4200 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4201 *
4202 * If an architecture guarantees that all ranges registered with
4203 * add_active_ranges() contain no holes and may be freed, this
4204 * this function may be used instead of calling free_bootmem() manually.
4205 */
4206 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4207 {
4208 unsigned long start_pfn, end_pfn;
4209 int i, this_nid;
4210
4211 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4212 start_pfn = min(start_pfn, max_low_pfn);
4213 end_pfn = min(end_pfn, max_low_pfn);
4214
4215 if (start_pfn < end_pfn)
4216 free_bootmem_node(NODE_DATA(this_nid),
4217 PFN_PHYS(start_pfn),
4218 (end_pfn - start_pfn) << PAGE_SHIFT);
4219 }
4220 }
4221
4222 /**
4223 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4224 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4225 *
4226 * If an architecture guarantees that all ranges registered with
4227 * add_active_ranges() contain no holes and may be freed, this
4228 * function may be used instead of calling memory_present() manually.
4229 */
4230 void __init sparse_memory_present_with_active_regions(int nid)
4231 {
4232 unsigned long start_pfn, end_pfn;
4233 int i, this_nid;
4234
4235 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4236 memory_present(this_nid, start_pfn, end_pfn);
4237 }
4238
4239 /**
4240 * get_pfn_range_for_nid - Return the start and end page frames for a node
4241 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4242 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4243 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4244 *
4245 * It returns the start and end page frame of a node based on information
4246 * provided by an arch calling add_active_range(). If called for a node
4247 * with no available memory, a warning is printed and the start and end
4248 * PFNs will be 0.
4249 */
4250 void __meminit get_pfn_range_for_nid(unsigned int nid,
4251 unsigned long *start_pfn, unsigned long *end_pfn)
4252 {
4253 unsigned long this_start_pfn, this_end_pfn;
4254 int i;
4255
4256 *start_pfn = -1UL;
4257 *end_pfn = 0;
4258
4259 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4260 *start_pfn = min(*start_pfn, this_start_pfn);
4261 *end_pfn = max(*end_pfn, this_end_pfn);
4262 }
4263
4264 if (*start_pfn == -1UL)
4265 *start_pfn = 0;
4266 }
4267
4268 /*
4269 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4270 * assumption is made that zones within a node are ordered in monotonic
4271 * increasing memory addresses so that the "highest" populated zone is used
4272 */
4273 static void __init find_usable_zone_for_movable(void)
4274 {
4275 int zone_index;
4276 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4277 if (zone_index == ZONE_MOVABLE)
4278 continue;
4279
4280 if (arch_zone_highest_possible_pfn[zone_index] >
4281 arch_zone_lowest_possible_pfn[zone_index])
4282 break;
4283 }
4284
4285 VM_BUG_ON(zone_index == -1);
4286 movable_zone = zone_index;
4287 }
4288
4289 /*
4290 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4291 * because it is sized independent of architecture. Unlike the other zones,
4292 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4293 * in each node depending on the size of each node and how evenly kernelcore
4294 * is distributed. This helper function adjusts the zone ranges
4295 * provided by the architecture for a given node by using the end of the
4296 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4297 * zones within a node are in order of monotonic increases memory addresses
4298 */
4299 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4300 unsigned long zone_type,
4301 unsigned long node_start_pfn,
4302 unsigned long node_end_pfn,
4303 unsigned long *zone_start_pfn,
4304 unsigned long *zone_end_pfn)
4305 {
4306 /* Only adjust if ZONE_MOVABLE is on this node */
4307 if (zone_movable_pfn[nid]) {
4308 /* Size ZONE_MOVABLE */
4309 if (zone_type == ZONE_MOVABLE) {
4310 *zone_start_pfn = zone_movable_pfn[nid];
4311 *zone_end_pfn = min(node_end_pfn,
4312 arch_zone_highest_possible_pfn[movable_zone]);
4313
4314 /* Adjust for ZONE_MOVABLE starting within this range */
4315 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4316 *zone_end_pfn > zone_movable_pfn[nid]) {
4317 *zone_end_pfn = zone_movable_pfn[nid];
4318
4319 /* Check if this whole range is within ZONE_MOVABLE */
4320 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4321 *zone_start_pfn = *zone_end_pfn;
4322 }
4323 }
4324
4325 /*
4326 * Return the number of pages a zone spans in a node, including holes
4327 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4328 */
4329 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4330 unsigned long zone_type,
4331 unsigned long *ignored)
4332 {
4333 unsigned long node_start_pfn, node_end_pfn;
4334 unsigned long zone_start_pfn, zone_end_pfn;
4335
4336 /* Get the start and end of the node and zone */
4337 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4338 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4339 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4340 adjust_zone_range_for_zone_movable(nid, zone_type,
4341 node_start_pfn, node_end_pfn,
4342 &zone_start_pfn, &zone_end_pfn);
4343
4344 /* Check that this node has pages within the zone's required range */
4345 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4346 return 0;
4347
4348 /* Move the zone boundaries inside the node if necessary */
4349 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4350 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4351
4352 /* Return the spanned pages */
4353 return zone_end_pfn - zone_start_pfn;
4354 }
4355
4356 /*
4357 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4358 * then all holes in the requested range will be accounted for.
4359 */
4360 unsigned long __meminit __absent_pages_in_range(int nid,
4361 unsigned long range_start_pfn,
4362 unsigned long range_end_pfn)
4363 {
4364 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4365 unsigned long start_pfn, end_pfn;
4366 int i;
4367
4368 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4369 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4370 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4371 nr_absent -= end_pfn - start_pfn;
4372 }
4373 return nr_absent;
4374 }
4375
4376 /**
4377 * absent_pages_in_range - Return number of page frames in holes within a range
4378 * @start_pfn: The start PFN to start searching for holes
4379 * @end_pfn: The end PFN to stop searching for holes
4380 *
4381 * It returns the number of pages frames in memory holes within a range.
4382 */
4383 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4384 unsigned long end_pfn)
4385 {
4386 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4387 }
4388
4389 /* Return the number of page frames in holes in a zone on a node */
4390 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4391 unsigned long zone_type,
4392 unsigned long *ignored)
4393 {
4394 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4395 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4396 unsigned long node_start_pfn, node_end_pfn;
4397 unsigned long zone_start_pfn, zone_end_pfn;
4398
4399 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4400 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4401 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4402
4403 adjust_zone_range_for_zone_movable(nid, zone_type,
4404 node_start_pfn, node_end_pfn,
4405 &zone_start_pfn, &zone_end_pfn);
4406 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4407 }
4408
4409 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4410 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4411 unsigned long zone_type,
4412 unsigned long *zones_size)
4413 {
4414 return zones_size[zone_type];
4415 }
4416
4417 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4418 unsigned long zone_type,
4419 unsigned long *zholes_size)
4420 {
4421 if (!zholes_size)
4422 return 0;
4423
4424 return zholes_size[zone_type];
4425 }
4426
4427 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4428
4429 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4430 unsigned long *zones_size, unsigned long *zholes_size)
4431 {
4432 unsigned long realtotalpages, totalpages = 0;
4433 enum zone_type i;
4434
4435 for (i = 0; i < MAX_NR_ZONES; i++)
4436 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4437 zones_size);
4438 pgdat->node_spanned_pages = totalpages;
4439
4440 realtotalpages = totalpages;
4441 for (i = 0; i < MAX_NR_ZONES; i++)
4442 realtotalpages -=
4443 zone_absent_pages_in_node(pgdat->node_id, i,
4444 zholes_size);
4445 pgdat->node_present_pages = realtotalpages;
4446 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4447 realtotalpages);
4448 }
4449
4450 #ifndef CONFIG_SPARSEMEM
4451 /*
4452 * Calculate the size of the zone->blockflags rounded to an unsigned long
4453 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4454 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4455 * round what is now in bits to nearest long in bits, then return it in
4456 * bytes.
4457 */
4458 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4459 {
4460 unsigned long usemapsize;
4461
4462 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4463 usemapsize = roundup(zonesize, pageblock_nr_pages);
4464 usemapsize = usemapsize >> pageblock_order;
4465 usemapsize *= NR_PAGEBLOCK_BITS;
4466 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4467
4468 return usemapsize / 8;
4469 }
4470
4471 static void __init setup_usemap(struct pglist_data *pgdat,
4472 struct zone *zone,
4473 unsigned long zone_start_pfn,
4474 unsigned long zonesize)
4475 {
4476 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4477 zone->pageblock_flags = NULL;
4478 if (usemapsize)
4479 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4480 usemapsize);
4481 }
4482 #else
4483 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4484 unsigned long zone_start_pfn, unsigned long zonesize) {}
4485 #endif /* CONFIG_SPARSEMEM */
4486
4487 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4488
4489 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4490 void __init set_pageblock_order(void)
4491 {
4492 unsigned int order;
4493
4494 /* Check that pageblock_nr_pages has not already been setup */
4495 if (pageblock_order)
4496 return;
4497
4498 if (HPAGE_SHIFT > PAGE_SHIFT)
4499 order = HUGETLB_PAGE_ORDER;
4500 else
4501 order = MAX_ORDER - 1;
4502
4503 /*
4504 * Assume the largest contiguous order of interest is a huge page.
4505 * This value may be variable depending on boot parameters on IA64 and
4506 * powerpc.
4507 */
4508 pageblock_order = order;
4509 }
4510 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4511
4512 /*
4513 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4514 * is unused as pageblock_order is set at compile-time. See
4515 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4516 * the kernel config
4517 */
4518 void __init set_pageblock_order(void)
4519 {
4520 }
4521
4522 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4523
4524 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4525 unsigned long present_pages)
4526 {
4527 unsigned long pages = spanned_pages;
4528
4529 /*
4530 * Provide a more accurate estimation if there are holes within
4531 * the zone and SPARSEMEM is in use. If there are holes within the
4532 * zone, each populated memory region may cost us one or two extra
4533 * memmap pages due to alignment because memmap pages for each
4534 * populated regions may not naturally algined on page boundary.
4535 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4536 */
4537 if (spanned_pages > present_pages + (present_pages >> 4) &&
4538 IS_ENABLED(CONFIG_SPARSEMEM))
4539 pages = present_pages;
4540
4541 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4542 }
4543
4544 /*
4545 * Set up the zone data structures:
4546 * - mark all pages reserved
4547 * - mark all memory queues empty
4548 * - clear the memory bitmaps
4549 *
4550 * NOTE: pgdat should get zeroed by caller.
4551 */
4552 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4553 unsigned long *zones_size, unsigned long *zholes_size)
4554 {
4555 enum zone_type j;
4556 int nid = pgdat->node_id;
4557 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4558 int ret;
4559
4560 pgdat_resize_init(pgdat);
4561 #ifdef CONFIG_NUMA_BALANCING
4562 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4563 pgdat->numabalancing_migrate_nr_pages = 0;
4564 pgdat->numabalancing_migrate_next_window = jiffies;
4565 #endif
4566 init_waitqueue_head(&pgdat->kswapd_wait);
4567 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4568 pgdat_page_cgroup_init(pgdat);
4569
4570 for (j = 0; j < MAX_NR_ZONES; j++) {
4571 struct zone *zone = pgdat->node_zones + j;
4572 unsigned long size, realsize, freesize, memmap_pages;
4573
4574 size = zone_spanned_pages_in_node(nid, j, zones_size);
4575 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4576 zholes_size);
4577
4578 /*
4579 * Adjust freesize so that it accounts for how much memory
4580 * is used by this zone for memmap. This affects the watermark
4581 * and per-cpu initialisations
4582 */
4583 memmap_pages = calc_memmap_size(size, realsize);
4584 if (freesize >= memmap_pages) {
4585 freesize -= memmap_pages;
4586 if (memmap_pages)
4587 printk(KERN_DEBUG
4588 " %s zone: %lu pages used for memmap\n",
4589 zone_names[j], memmap_pages);
4590 } else
4591 printk(KERN_WARNING
4592 " %s zone: %lu pages exceeds freesize %lu\n",
4593 zone_names[j], memmap_pages, freesize);
4594
4595 /* Account for reserved pages */
4596 if (j == 0 && freesize > dma_reserve) {
4597 freesize -= dma_reserve;
4598 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4599 zone_names[0], dma_reserve);
4600 }
4601
4602 if (!is_highmem_idx(j))
4603 nr_kernel_pages += freesize;
4604 /* Charge for highmem memmap if there are enough kernel pages */
4605 else if (nr_kernel_pages > memmap_pages * 2)
4606 nr_kernel_pages -= memmap_pages;
4607 nr_all_pages += freesize;
4608
4609 zone->spanned_pages = size;
4610 zone->present_pages = realsize;
4611 /*
4612 * Set an approximate value for lowmem here, it will be adjusted
4613 * when the bootmem allocator frees pages into the buddy system.
4614 * And all highmem pages will be managed by the buddy system.
4615 */
4616 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4617 #ifdef CONFIG_NUMA
4618 zone->node = nid;
4619 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4620 / 100;
4621 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4622 #endif
4623 zone->name = zone_names[j];
4624 spin_lock_init(&zone->lock);
4625 spin_lock_init(&zone->lru_lock);
4626 zone_seqlock_init(zone);
4627 zone->zone_pgdat = pgdat;
4628
4629 zone_pcp_init(zone);
4630 lruvec_init(&zone->lruvec);
4631 if (!size)
4632 continue;
4633
4634 set_pageblock_order();
4635 setup_usemap(pgdat, zone, zone_start_pfn, size);
4636 ret = init_currently_empty_zone(zone, zone_start_pfn,
4637 size, MEMMAP_EARLY);
4638 BUG_ON(ret);
4639 memmap_init(size, nid, j, zone_start_pfn);
4640 zone_start_pfn += size;
4641 }
4642 }
4643
4644 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4645 {
4646 /* Skip empty nodes */
4647 if (!pgdat->node_spanned_pages)
4648 return;
4649
4650 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4651 /* ia64 gets its own node_mem_map, before this, without bootmem */
4652 if (!pgdat->node_mem_map) {
4653 unsigned long size, start, end;
4654 struct page *map;
4655
4656 /*
4657 * The zone's endpoints aren't required to be MAX_ORDER
4658 * aligned but the node_mem_map endpoints must be in order
4659 * for the buddy allocator to function correctly.
4660 */
4661 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4662 end = pgdat_end_pfn(pgdat);
4663 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4664 size = (end - start) * sizeof(struct page);
4665 map = alloc_remap(pgdat->node_id, size);
4666 if (!map)
4667 map = alloc_bootmem_node_nopanic(pgdat, size);
4668 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4669 }
4670 #ifndef CONFIG_NEED_MULTIPLE_NODES
4671 /*
4672 * With no DISCONTIG, the global mem_map is just set as node 0's
4673 */
4674 if (pgdat == NODE_DATA(0)) {
4675 mem_map = NODE_DATA(0)->node_mem_map;
4676 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4677 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4678 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4679 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4680 }
4681 #endif
4682 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4683 }
4684
4685 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4686 unsigned long node_start_pfn, unsigned long *zholes_size)
4687 {
4688 pg_data_t *pgdat = NODE_DATA(nid);
4689
4690 /* pg_data_t should be reset to zero when it's allocated */
4691 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4692
4693 pgdat->node_id = nid;
4694 pgdat->node_start_pfn = node_start_pfn;
4695 init_zone_allows_reclaim(nid);
4696 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4697
4698 alloc_node_mem_map(pgdat);
4699 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4700 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4701 nid, (unsigned long)pgdat,
4702 (unsigned long)pgdat->node_mem_map);
4703 #endif
4704
4705 free_area_init_core(pgdat, zones_size, zholes_size);
4706 }
4707
4708 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4709
4710 #if MAX_NUMNODES > 1
4711 /*
4712 * Figure out the number of possible node ids.
4713 */
4714 static void __init setup_nr_node_ids(void)
4715 {
4716 unsigned int node;
4717 unsigned int highest = 0;
4718
4719 for_each_node_mask(node, node_possible_map)
4720 highest = node;
4721 nr_node_ids = highest + 1;
4722 }
4723 #else
4724 static inline void setup_nr_node_ids(void)
4725 {
4726 }
4727 #endif
4728
4729 /**
4730 * node_map_pfn_alignment - determine the maximum internode alignment
4731 *
4732 * This function should be called after node map is populated and sorted.
4733 * It calculates the maximum power of two alignment which can distinguish
4734 * all the nodes.
4735 *
4736 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4737 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4738 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4739 * shifted, 1GiB is enough and this function will indicate so.
4740 *
4741 * This is used to test whether pfn -> nid mapping of the chosen memory
4742 * model has fine enough granularity to avoid incorrect mapping for the
4743 * populated node map.
4744 *
4745 * Returns the determined alignment in pfn's. 0 if there is no alignment
4746 * requirement (single node).
4747 */
4748 unsigned long __init node_map_pfn_alignment(void)
4749 {
4750 unsigned long accl_mask = 0, last_end = 0;
4751 unsigned long start, end, mask;
4752 int last_nid = -1;
4753 int i, nid;
4754
4755 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4756 if (!start || last_nid < 0 || last_nid == nid) {
4757 last_nid = nid;
4758 last_end = end;
4759 continue;
4760 }
4761
4762 /*
4763 * Start with a mask granular enough to pin-point to the
4764 * start pfn and tick off bits one-by-one until it becomes
4765 * too coarse to separate the current node from the last.
4766 */
4767 mask = ~((1 << __ffs(start)) - 1);
4768 while (mask && last_end <= (start & (mask << 1)))
4769 mask <<= 1;
4770
4771 /* accumulate all internode masks */
4772 accl_mask |= mask;
4773 }
4774
4775 /* convert mask to number of pages */
4776 return ~accl_mask + 1;
4777 }
4778
4779 /* Find the lowest pfn for a node */
4780 static unsigned long __init find_min_pfn_for_node(int nid)
4781 {
4782 unsigned long min_pfn = ULONG_MAX;
4783 unsigned long start_pfn;
4784 int i;
4785
4786 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4787 min_pfn = min(min_pfn, start_pfn);
4788
4789 if (min_pfn == ULONG_MAX) {
4790 printk(KERN_WARNING
4791 "Could not find start_pfn for node %d\n", nid);
4792 return 0;
4793 }
4794
4795 return min_pfn;
4796 }
4797
4798 /**
4799 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4800 *
4801 * It returns the minimum PFN based on information provided via
4802 * add_active_range().
4803 */
4804 unsigned long __init find_min_pfn_with_active_regions(void)
4805 {
4806 return find_min_pfn_for_node(MAX_NUMNODES);
4807 }
4808
4809 /*
4810 * early_calculate_totalpages()
4811 * Sum pages in active regions for movable zone.
4812 * Populate N_MEMORY for calculating usable_nodes.
4813 */
4814 static unsigned long __init early_calculate_totalpages(void)
4815 {
4816 unsigned long totalpages = 0;
4817 unsigned long start_pfn, end_pfn;
4818 int i, nid;
4819
4820 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4821 unsigned long pages = end_pfn - start_pfn;
4822
4823 totalpages += pages;
4824 if (pages)
4825 node_set_state(nid, N_MEMORY);
4826 }
4827 return totalpages;
4828 }
4829
4830 /*
4831 * Find the PFN the Movable zone begins in each node. Kernel memory
4832 * is spread evenly between nodes as long as the nodes have enough
4833 * memory. When they don't, some nodes will have more kernelcore than
4834 * others
4835 */
4836 static void __init find_zone_movable_pfns_for_nodes(void)
4837 {
4838 int i, nid;
4839 unsigned long usable_startpfn;
4840 unsigned long kernelcore_node, kernelcore_remaining;
4841 /* save the state before borrow the nodemask */
4842 nodemask_t saved_node_state = node_states[N_MEMORY];
4843 unsigned long totalpages = early_calculate_totalpages();
4844 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4845
4846 /*
4847 * If movablecore was specified, calculate what size of
4848 * kernelcore that corresponds so that memory usable for
4849 * any allocation type is evenly spread. If both kernelcore
4850 * and movablecore are specified, then the value of kernelcore
4851 * will be used for required_kernelcore if it's greater than
4852 * what movablecore would have allowed.
4853 */
4854 if (required_movablecore) {
4855 unsigned long corepages;
4856
4857 /*
4858 * Round-up so that ZONE_MOVABLE is at least as large as what
4859 * was requested by the user
4860 */
4861 required_movablecore =
4862 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4863 corepages = totalpages - required_movablecore;
4864
4865 required_kernelcore = max(required_kernelcore, corepages);
4866 }
4867
4868 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4869 if (!required_kernelcore)
4870 goto out;
4871
4872 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4873 find_usable_zone_for_movable();
4874 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4875
4876 restart:
4877 /* Spread kernelcore memory as evenly as possible throughout nodes */
4878 kernelcore_node = required_kernelcore / usable_nodes;
4879 for_each_node_state(nid, N_MEMORY) {
4880 unsigned long start_pfn, end_pfn;
4881
4882 /*
4883 * Recalculate kernelcore_node if the division per node
4884 * now exceeds what is necessary to satisfy the requested
4885 * amount of memory for the kernel
4886 */
4887 if (required_kernelcore < kernelcore_node)
4888 kernelcore_node = required_kernelcore / usable_nodes;
4889
4890 /*
4891 * As the map is walked, we track how much memory is usable
4892 * by the kernel using kernelcore_remaining. When it is
4893 * 0, the rest of the node is usable by ZONE_MOVABLE
4894 */
4895 kernelcore_remaining = kernelcore_node;
4896
4897 /* Go through each range of PFNs within this node */
4898 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4899 unsigned long size_pages;
4900
4901 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4902 if (start_pfn >= end_pfn)
4903 continue;
4904
4905 /* Account for what is only usable for kernelcore */
4906 if (start_pfn < usable_startpfn) {
4907 unsigned long kernel_pages;
4908 kernel_pages = min(end_pfn, usable_startpfn)
4909 - start_pfn;
4910
4911 kernelcore_remaining -= min(kernel_pages,
4912 kernelcore_remaining);
4913 required_kernelcore -= min(kernel_pages,
4914 required_kernelcore);
4915
4916 /* Continue if range is now fully accounted */
4917 if (end_pfn <= usable_startpfn) {
4918
4919 /*
4920 * Push zone_movable_pfn to the end so
4921 * that if we have to rebalance
4922 * kernelcore across nodes, we will
4923 * not double account here
4924 */
4925 zone_movable_pfn[nid] = end_pfn;
4926 continue;
4927 }
4928 start_pfn = usable_startpfn;
4929 }
4930
4931 /*
4932 * The usable PFN range for ZONE_MOVABLE is from
4933 * start_pfn->end_pfn. Calculate size_pages as the
4934 * number of pages used as kernelcore
4935 */
4936 size_pages = end_pfn - start_pfn;
4937 if (size_pages > kernelcore_remaining)
4938 size_pages = kernelcore_remaining;
4939 zone_movable_pfn[nid] = start_pfn + size_pages;
4940
4941 /*
4942 * Some kernelcore has been met, update counts and
4943 * break if the kernelcore for this node has been
4944 * satisified
4945 */
4946 required_kernelcore -= min(required_kernelcore,
4947 size_pages);
4948 kernelcore_remaining -= size_pages;
4949 if (!kernelcore_remaining)
4950 break;
4951 }
4952 }
4953
4954 /*
4955 * If there is still required_kernelcore, we do another pass with one
4956 * less node in the count. This will push zone_movable_pfn[nid] further
4957 * along on the nodes that still have memory until kernelcore is
4958 * satisified
4959 */
4960 usable_nodes--;
4961 if (usable_nodes && required_kernelcore > usable_nodes)
4962 goto restart;
4963
4964 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4965 for (nid = 0; nid < MAX_NUMNODES; nid++)
4966 zone_movable_pfn[nid] =
4967 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4968
4969 out:
4970 /* restore the node_state */
4971 node_states[N_MEMORY] = saved_node_state;
4972 }
4973
4974 /* Any regular or high memory on that node ? */
4975 static void check_for_memory(pg_data_t *pgdat, int nid)
4976 {
4977 enum zone_type zone_type;
4978
4979 if (N_MEMORY == N_NORMAL_MEMORY)
4980 return;
4981
4982 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
4983 struct zone *zone = &pgdat->node_zones[zone_type];
4984 if (zone->present_pages) {
4985 node_set_state(nid, N_HIGH_MEMORY);
4986 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
4987 zone_type <= ZONE_NORMAL)
4988 node_set_state(nid, N_NORMAL_MEMORY);
4989 break;
4990 }
4991 }
4992 }
4993
4994 /**
4995 * free_area_init_nodes - Initialise all pg_data_t and zone data
4996 * @max_zone_pfn: an array of max PFNs for each zone
4997 *
4998 * This will call free_area_init_node() for each active node in the system.
4999 * Using the page ranges provided by add_active_range(), the size of each
5000 * zone in each node and their holes is calculated. If the maximum PFN
5001 * between two adjacent zones match, it is assumed that the zone is empty.
5002 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5003 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5004 * starts where the previous one ended. For example, ZONE_DMA32 starts
5005 * at arch_max_dma_pfn.
5006 */
5007 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5008 {
5009 unsigned long start_pfn, end_pfn;
5010 int i, nid;
5011
5012 /* Record where the zone boundaries are */
5013 memset(arch_zone_lowest_possible_pfn, 0,
5014 sizeof(arch_zone_lowest_possible_pfn));
5015 memset(arch_zone_highest_possible_pfn, 0,
5016 sizeof(arch_zone_highest_possible_pfn));
5017 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5018 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5019 for (i = 1; i < MAX_NR_ZONES; i++) {
5020 if (i == ZONE_MOVABLE)
5021 continue;
5022 arch_zone_lowest_possible_pfn[i] =
5023 arch_zone_highest_possible_pfn[i-1];
5024 arch_zone_highest_possible_pfn[i] =
5025 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5026 }
5027 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5028 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5029
5030 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5031 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5032 find_zone_movable_pfns_for_nodes();
5033
5034 /* Print out the zone ranges */
5035 printk("Zone ranges:\n");
5036 for (i = 0; i < MAX_NR_ZONES; i++) {
5037 if (i == ZONE_MOVABLE)
5038 continue;
5039 printk(KERN_CONT " %-8s ", zone_names[i]);
5040 if (arch_zone_lowest_possible_pfn[i] ==
5041 arch_zone_highest_possible_pfn[i])
5042 printk(KERN_CONT "empty\n");
5043 else
5044 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5045 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5046 (arch_zone_highest_possible_pfn[i]
5047 << PAGE_SHIFT) - 1);
5048 }
5049
5050 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5051 printk("Movable zone start for each node\n");
5052 for (i = 0; i < MAX_NUMNODES; i++) {
5053 if (zone_movable_pfn[i])
5054 printk(" Node %d: %#010lx\n", i,
5055 zone_movable_pfn[i] << PAGE_SHIFT);
5056 }
5057
5058 /* Print out the early node map */
5059 printk("Early memory node ranges\n");
5060 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5061 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5062 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5063
5064 /* Initialise every node */
5065 mminit_verify_pageflags_layout();
5066 setup_nr_node_ids();
5067 for_each_online_node(nid) {
5068 pg_data_t *pgdat = NODE_DATA(nid);
5069 free_area_init_node(nid, NULL,
5070 find_min_pfn_for_node(nid), NULL);
5071
5072 /* Any memory on that node */
5073 if (pgdat->node_present_pages)
5074 node_set_state(nid, N_MEMORY);
5075 check_for_memory(pgdat, nid);
5076 }
5077 }
5078
5079 static int __init cmdline_parse_core(char *p, unsigned long *core)
5080 {
5081 unsigned long long coremem;
5082 if (!p)
5083 return -EINVAL;
5084
5085 coremem = memparse(p, &p);
5086 *core = coremem >> PAGE_SHIFT;
5087
5088 /* Paranoid check that UL is enough for the coremem value */
5089 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5090
5091 return 0;
5092 }
5093
5094 /*
5095 * kernelcore=size sets the amount of memory for use for allocations that
5096 * cannot be reclaimed or migrated.
5097 */
5098 static int __init cmdline_parse_kernelcore(char *p)
5099 {
5100 return cmdline_parse_core(p, &required_kernelcore);
5101 }
5102
5103 /*
5104 * movablecore=size sets the amount of memory for use for allocations that
5105 * can be reclaimed or migrated.
5106 */
5107 static int __init cmdline_parse_movablecore(char *p)
5108 {
5109 return cmdline_parse_core(p, &required_movablecore);
5110 }
5111
5112 early_param("kernelcore", cmdline_parse_kernelcore);
5113 early_param("movablecore", cmdline_parse_movablecore);
5114
5115 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5116
5117 /**
5118 * set_dma_reserve - set the specified number of pages reserved in the first zone
5119 * @new_dma_reserve: The number of pages to mark reserved
5120 *
5121 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5122 * In the DMA zone, a significant percentage may be consumed by kernel image
5123 * and other unfreeable allocations which can skew the watermarks badly. This
5124 * function may optionally be used to account for unfreeable pages in the
5125 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5126 * smaller per-cpu batchsize.
5127 */
5128 void __init set_dma_reserve(unsigned long new_dma_reserve)
5129 {
5130 dma_reserve = new_dma_reserve;
5131 }
5132
5133 void __init free_area_init(unsigned long *zones_size)
5134 {
5135 free_area_init_node(0, zones_size,
5136 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5137 }
5138
5139 static int page_alloc_cpu_notify(struct notifier_block *self,
5140 unsigned long action, void *hcpu)
5141 {
5142 int cpu = (unsigned long)hcpu;
5143
5144 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5145 lru_add_drain_cpu(cpu);
5146 drain_pages(cpu);
5147
5148 /*
5149 * Spill the event counters of the dead processor
5150 * into the current processors event counters.
5151 * This artificially elevates the count of the current
5152 * processor.
5153 */
5154 vm_events_fold_cpu(cpu);
5155
5156 /*
5157 * Zero the differential counters of the dead processor
5158 * so that the vm statistics are consistent.
5159 *
5160 * This is only okay since the processor is dead and cannot
5161 * race with what we are doing.
5162 */
5163 refresh_cpu_vm_stats(cpu);
5164 }
5165 return NOTIFY_OK;
5166 }
5167
5168 void __init page_alloc_init(void)
5169 {
5170 hotcpu_notifier(page_alloc_cpu_notify, 0);
5171 }
5172
5173 /*
5174 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5175 * or min_free_kbytes changes.
5176 */
5177 static void calculate_totalreserve_pages(void)
5178 {
5179 struct pglist_data *pgdat;
5180 unsigned long reserve_pages = 0;
5181 enum zone_type i, j;
5182
5183 for_each_online_pgdat(pgdat) {
5184 for (i = 0; i < MAX_NR_ZONES; i++) {
5185 struct zone *zone = pgdat->node_zones + i;
5186 unsigned long max = 0;
5187
5188 /* Find valid and maximum lowmem_reserve in the zone */
5189 for (j = i; j < MAX_NR_ZONES; j++) {
5190 if (zone->lowmem_reserve[j] > max)
5191 max = zone->lowmem_reserve[j];
5192 }
5193
5194 /* we treat the high watermark as reserved pages. */
5195 max += high_wmark_pages(zone);
5196
5197 if (max > zone->managed_pages)
5198 max = zone->managed_pages;
5199 reserve_pages += max;
5200 /*
5201 * Lowmem reserves are not available to
5202 * GFP_HIGHUSER page cache allocations and
5203 * kswapd tries to balance zones to their high
5204 * watermark. As a result, neither should be
5205 * regarded as dirtyable memory, to prevent a
5206 * situation where reclaim has to clean pages
5207 * in order to balance the zones.
5208 */
5209 zone->dirty_balance_reserve = max;
5210 }
5211 }
5212 dirty_balance_reserve = reserve_pages;
5213 totalreserve_pages = reserve_pages;
5214 }
5215
5216 /*
5217 * setup_per_zone_lowmem_reserve - called whenever
5218 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5219 * has a correct pages reserved value, so an adequate number of
5220 * pages are left in the zone after a successful __alloc_pages().
5221 */
5222 static void setup_per_zone_lowmem_reserve(void)
5223 {
5224 struct pglist_data *pgdat;
5225 enum zone_type j, idx;
5226
5227 for_each_online_pgdat(pgdat) {
5228 for (j = 0; j < MAX_NR_ZONES; j++) {
5229 struct zone *zone = pgdat->node_zones + j;
5230 unsigned long managed_pages = zone->managed_pages;
5231
5232 zone->lowmem_reserve[j] = 0;
5233
5234 idx = j;
5235 while (idx) {
5236 struct zone *lower_zone;
5237
5238 idx--;
5239
5240 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5241 sysctl_lowmem_reserve_ratio[idx] = 1;
5242
5243 lower_zone = pgdat->node_zones + idx;
5244 lower_zone->lowmem_reserve[j] = managed_pages /
5245 sysctl_lowmem_reserve_ratio[idx];
5246 managed_pages += lower_zone->managed_pages;
5247 }
5248 }
5249 }
5250
5251 /* update totalreserve_pages */
5252 calculate_totalreserve_pages();
5253 }
5254
5255 static void __setup_per_zone_wmarks(void)
5256 {
5257 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5258 unsigned long lowmem_pages = 0;
5259 struct zone *zone;
5260 unsigned long flags;
5261
5262 /* Calculate total number of !ZONE_HIGHMEM pages */
5263 for_each_zone(zone) {
5264 if (!is_highmem(zone))
5265 lowmem_pages += zone->managed_pages;
5266 }
5267
5268 for_each_zone(zone) {
5269 u64 tmp;
5270
5271 spin_lock_irqsave(&zone->lock, flags);
5272 tmp = (u64)pages_min * zone->managed_pages;
5273 do_div(tmp, lowmem_pages);
5274 if (is_highmem(zone)) {
5275 /*
5276 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5277 * need highmem pages, so cap pages_min to a small
5278 * value here.
5279 *
5280 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5281 * deltas controls asynch page reclaim, and so should
5282 * not be capped for highmem.
5283 */
5284 unsigned long min_pages;
5285
5286 min_pages = zone->managed_pages / 1024;
5287 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5288 zone->watermark[WMARK_MIN] = min_pages;
5289 } else {
5290 /*
5291 * If it's a lowmem zone, reserve a number of pages
5292 * proportionate to the zone's size.
5293 */
5294 zone->watermark[WMARK_MIN] = tmp;
5295 }
5296
5297 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5298 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5299
5300 setup_zone_migrate_reserve(zone);
5301 spin_unlock_irqrestore(&zone->lock, flags);
5302 }
5303
5304 /* update totalreserve_pages */
5305 calculate_totalreserve_pages();
5306 }
5307
5308 /**
5309 * setup_per_zone_wmarks - called when min_free_kbytes changes
5310 * or when memory is hot-{added|removed}
5311 *
5312 * Ensures that the watermark[min,low,high] values for each zone are set
5313 * correctly with respect to min_free_kbytes.
5314 */
5315 void setup_per_zone_wmarks(void)
5316 {
5317 mutex_lock(&zonelists_mutex);
5318 __setup_per_zone_wmarks();
5319 mutex_unlock(&zonelists_mutex);
5320 }
5321
5322 /*
5323 * The inactive anon list should be small enough that the VM never has to
5324 * do too much work, but large enough that each inactive page has a chance
5325 * to be referenced again before it is swapped out.
5326 *
5327 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5328 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5329 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5330 * the anonymous pages are kept on the inactive list.
5331 *
5332 * total target max
5333 * memory ratio inactive anon
5334 * -------------------------------------
5335 * 10MB 1 5MB
5336 * 100MB 1 50MB
5337 * 1GB 3 250MB
5338 * 10GB 10 0.9GB
5339 * 100GB 31 3GB
5340 * 1TB 101 10GB
5341 * 10TB 320 32GB
5342 */
5343 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5344 {
5345 unsigned int gb, ratio;
5346
5347 /* Zone size in gigabytes */
5348 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5349 if (gb)
5350 ratio = int_sqrt(10 * gb);
5351 else
5352 ratio = 1;
5353
5354 zone->inactive_ratio = ratio;
5355 }
5356
5357 static void __meminit setup_per_zone_inactive_ratio(void)
5358 {
5359 struct zone *zone;
5360
5361 for_each_zone(zone)
5362 calculate_zone_inactive_ratio(zone);
5363 }
5364
5365 /*
5366 * Initialise min_free_kbytes.
5367 *
5368 * For small machines we want it small (128k min). For large machines
5369 * we want it large (64MB max). But it is not linear, because network
5370 * bandwidth does not increase linearly with machine size. We use
5371 *
5372 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5373 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5374 *
5375 * which yields
5376 *
5377 * 16MB: 512k
5378 * 32MB: 724k
5379 * 64MB: 1024k
5380 * 128MB: 1448k
5381 * 256MB: 2048k
5382 * 512MB: 2896k
5383 * 1024MB: 4096k
5384 * 2048MB: 5792k
5385 * 4096MB: 8192k
5386 * 8192MB: 11584k
5387 * 16384MB: 16384k
5388 */
5389 int __meminit init_per_zone_wmark_min(void)
5390 {
5391 unsigned long lowmem_kbytes;
5392
5393 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5394
5395 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5396 if (min_free_kbytes < 128)
5397 min_free_kbytes = 128;
5398 if (min_free_kbytes > 65536)
5399 min_free_kbytes = 65536;
5400 setup_per_zone_wmarks();
5401 refresh_zone_stat_thresholds();
5402 setup_per_zone_lowmem_reserve();
5403 setup_per_zone_inactive_ratio();
5404 return 0;
5405 }
5406 module_init(init_per_zone_wmark_min)
5407
5408 /*
5409 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5410 * that we can call two helper functions whenever min_free_kbytes
5411 * changes.
5412 */
5413 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5414 void __user *buffer, size_t *length, loff_t *ppos)
5415 {
5416 proc_dointvec(table, write, buffer, length, ppos);
5417 if (write)
5418 setup_per_zone_wmarks();
5419 return 0;
5420 }
5421
5422 #ifdef CONFIG_NUMA
5423 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5424 void __user *buffer, size_t *length, loff_t *ppos)
5425 {
5426 struct zone *zone;
5427 int rc;
5428
5429 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5430 if (rc)
5431 return rc;
5432
5433 for_each_zone(zone)
5434 zone->min_unmapped_pages = (zone->managed_pages *
5435 sysctl_min_unmapped_ratio) / 100;
5436 return 0;
5437 }
5438
5439 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5440 void __user *buffer, size_t *length, loff_t *ppos)
5441 {
5442 struct zone *zone;
5443 int rc;
5444
5445 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5446 if (rc)
5447 return rc;
5448
5449 for_each_zone(zone)
5450 zone->min_slab_pages = (zone->managed_pages *
5451 sysctl_min_slab_ratio) / 100;
5452 return 0;
5453 }
5454 #endif
5455
5456 /*
5457 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5458 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5459 * whenever sysctl_lowmem_reserve_ratio changes.
5460 *
5461 * The reserve ratio obviously has absolutely no relation with the
5462 * minimum watermarks. The lowmem reserve ratio can only make sense
5463 * if in function of the boot time zone sizes.
5464 */
5465 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5466 void __user *buffer, size_t *length, loff_t *ppos)
5467 {
5468 proc_dointvec_minmax(table, write, buffer, length, ppos);
5469 setup_per_zone_lowmem_reserve();
5470 return 0;
5471 }
5472
5473 /*
5474 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5475 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5476 * can have before it gets flushed back to buddy allocator.
5477 */
5478
5479 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5480 void __user *buffer, size_t *length, loff_t *ppos)
5481 {
5482 struct zone *zone;
5483 unsigned int cpu;
5484 int ret;
5485
5486 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5487 if (!write || (ret < 0))
5488 return ret;
5489 for_each_populated_zone(zone) {
5490 for_each_possible_cpu(cpu) {
5491 unsigned long high;
5492 high = zone->managed_pages / percpu_pagelist_fraction;
5493 setup_pagelist_highmark(
5494 per_cpu_ptr(zone->pageset, cpu), high);
5495 }
5496 }
5497 return 0;
5498 }
5499
5500 int hashdist = HASHDIST_DEFAULT;
5501
5502 #ifdef CONFIG_NUMA
5503 static int __init set_hashdist(char *str)
5504 {
5505 if (!str)
5506 return 0;
5507 hashdist = simple_strtoul(str, &str, 0);
5508 return 1;
5509 }
5510 __setup("hashdist=", set_hashdist);
5511 #endif
5512
5513 /*
5514 * allocate a large system hash table from bootmem
5515 * - it is assumed that the hash table must contain an exact power-of-2
5516 * quantity of entries
5517 * - limit is the number of hash buckets, not the total allocation size
5518 */
5519 void *__init alloc_large_system_hash(const char *tablename,
5520 unsigned long bucketsize,
5521 unsigned long numentries,
5522 int scale,
5523 int flags,
5524 unsigned int *_hash_shift,
5525 unsigned int *_hash_mask,
5526 unsigned long low_limit,
5527 unsigned long high_limit)
5528 {
5529 unsigned long long max = high_limit;
5530 unsigned long log2qty, size;
5531 void *table = NULL;
5532
5533 /* allow the kernel cmdline to have a say */
5534 if (!numentries) {
5535 /* round applicable memory size up to nearest megabyte */
5536 numentries = nr_kernel_pages;
5537 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5538 numentries >>= 20 - PAGE_SHIFT;
5539 numentries <<= 20 - PAGE_SHIFT;
5540
5541 /* limit to 1 bucket per 2^scale bytes of low memory */
5542 if (scale > PAGE_SHIFT)
5543 numentries >>= (scale - PAGE_SHIFT);
5544 else
5545 numentries <<= (PAGE_SHIFT - scale);
5546
5547 /* Make sure we've got at least a 0-order allocation.. */
5548 if (unlikely(flags & HASH_SMALL)) {
5549 /* Makes no sense without HASH_EARLY */
5550 WARN_ON(!(flags & HASH_EARLY));
5551 if (!(numentries >> *_hash_shift)) {
5552 numentries = 1UL << *_hash_shift;
5553 BUG_ON(!numentries);
5554 }
5555 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5556 numentries = PAGE_SIZE / bucketsize;
5557 }
5558 numentries = roundup_pow_of_two(numentries);
5559
5560 /* limit allocation size to 1/16 total memory by default */
5561 if (max == 0) {
5562 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5563 do_div(max, bucketsize);
5564 }
5565 max = min(max, 0x80000000ULL);
5566
5567 if (numentries < low_limit)
5568 numentries = low_limit;
5569 if (numentries > max)
5570 numentries = max;
5571
5572 log2qty = ilog2(numentries);
5573
5574 do {
5575 size = bucketsize << log2qty;
5576 if (flags & HASH_EARLY)
5577 table = alloc_bootmem_nopanic(size);
5578 else if (hashdist)
5579 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5580 else {
5581 /*
5582 * If bucketsize is not a power-of-two, we may free
5583 * some pages at the end of hash table which
5584 * alloc_pages_exact() automatically does
5585 */
5586 if (get_order(size) < MAX_ORDER) {
5587 table = alloc_pages_exact(size, GFP_ATOMIC);
5588 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5589 }
5590 }
5591 } while (!table && size > PAGE_SIZE && --log2qty);
5592
5593 if (!table)
5594 panic("Failed to allocate %s hash table\n", tablename);
5595
5596 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5597 tablename,
5598 (1UL << log2qty),
5599 ilog2(size) - PAGE_SHIFT,
5600 size);
5601
5602 if (_hash_shift)
5603 *_hash_shift = log2qty;
5604 if (_hash_mask)
5605 *_hash_mask = (1 << log2qty) - 1;
5606
5607 return table;
5608 }
5609
5610 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5611 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5612 unsigned long pfn)
5613 {
5614 #ifdef CONFIG_SPARSEMEM
5615 return __pfn_to_section(pfn)->pageblock_flags;
5616 #else
5617 return zone->pageblock_flags;
5618 #endif /* CONFIG_SPARSEMEM */
5619 }
5620
5621 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5622 {
5623 #ifdef CONFIG_SPARSEMEM
5624 pfn &= (PAGES_PER_SECTION-1);
5625 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5626 #else
5627 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5628 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5629 #endif /* CONFIG_SPARSEMEM */
5630 }
5631
5632 /**
5633 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5634 * @page: The page within the block of interest
5635 * @start_bitidx: The first bit of interest to retrieve
5636 * @end_bitidx: The last bit of interest
5637 * returns pageblock_bits flags
5638 */
5639 unsigned long get_pageblock_flags_group(struct page *page,
5640 int start_bitidx, int end_bitidx)
5641 {
5642 struct zone *zone;
5643 unsigned long *bitmap;
5644 unsigned long pfn, bitidx;
5645 unsigned long flags = 0;
5646 unsigned long value = 1;
5647
5648 zone = page_zone(page);
5649 pfn = page_to_pfn(page);
5650 bitmap = get_pageblock_bitmap(zone, pfn);
5651 bitidx = pfn_to_bitidx(zone, pfn);
5652
5653 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5654 if (test_bit(bitidx + start_bitidx, bitmap))
5655 flags |= value;
5656
5657 return flags;
5658 }
5659
5660 /**
5661 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5662 * @page: The page within the block of interest
5663 * @start_bitidx: The first bit of interest
5664 * @end_bitidx: The last bit of interest
5665 * @flags: The flags to set
5666 */
5667 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5668 int start_bitidx, int end_bitidx)
5669 {
5670 struct zone *zone;
5671 unsigned long *bitmap;
5672 unsigned long pfn, bitidx;
5673 unsigned long value = 1;
5674
5675 zone = page_zone(page);
5676 pfn = page_to_pfn(page);
5677 bitmap = get_pageblock_bitmap(zone, pfn);
5678 bitidx = pfn_to_bitidx(zone, pfn);
5679 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5680
5681 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5682 if (flags & value)
5683 __set_bit(bitidx + start_bitidx, bitmap);
5684 else
5685 __clear_bit(bitidx + start_bitidx, bitmap);
5686 }
5687
5688 /*
5689 * This function checks whether pageblock includes unmovable pages or not.
5690 * If @count is not zero, it is okay to include less @count unmovable pages
5691 *
5692 * PageLRU check wihtout isolation or lru_lock could race so that
5693 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5694 * expect this function should be exact.
5695 */
5696 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5697 bool skip_hwpoisoned_pages)
5698 {
5699 unsigned long pfn, iter, found;
5700 int mt;
5701
5702 /*
5703 * For avoiding noise data, lru_add_drain_all() should be called
5704 * If ZONE_MOVABLE, the zone never contains unmovable pages
5705 */
5706 if (zone_idx(zone) == ZONE_MOVABLE)
5707 return false;
5708 mt = get_pageblock_migratetype(page);
5709 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5710 return false;
5711
5712 pfn = page_to_pfn(page);
5713 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5714 unsigned long check = pfn + iter;
5715
5716 if (!pfn_valid_within(check))
5717 continue;
5718
5719 page = pfn_to_page(check);
5720 /*
5721 * We can't use page_count without pin a page
5722 * because another CPU can free compound page.
5723 * This check already skips compound tails of THP
5724 * because their page->_count is zero at all time.
5725 */
5726 if (!atomic_read(&page->_count)) {
5727 if (PageBuddy(page))
5728 iter += (1 << page_order(page)) - 1;
5729 continue;
5730 }
5731
5732 /*
5733 * The HWPoisoned page may be not in buddy system, and
5734 * page_count() is not 0.
5735 */
5736 if (skip_hwpoisoned_pages && PageHWPoison(page))
5737 continue;
5738
5739 if (!PageLRU(page))
5740 found++;
5741 /*
5742 * If there are RECLAIMABLE pages, we need to check it.
5743 * But now, memory offline itself doesn't call shrink_slab()
5744 * and it still to be fixed.
5745 */
5746 /*
5747 * If the page is not RAM, page_count()should be 0.
5748 * we don't need more check. This is an _used_ not-movable page.
5749 *
5750 * The problematic thing here is PG_reserved pages. PG_reserved
5751 * is set to both of a memory hole page and a _used_ kernel
5752 * page at boot.
5753 */
5754 if (found > count)
5755 return true;
5756 }
5757 return false;
5758 }
5759
5760 bool is_pageblock_removable_nolock(struct page *page)
5761 {
5762 struct zone *zone;
5763 unsigned long pfn;
5764
5765 /*
5766 * We have to be careful here because we are iterating over memory
5767 * sections which are not zone aware so we might end up outside of
5768 * the zone but still within the section.
5769 * We have to take care about the node as well. If the node is offline
5770 * its NODE_DATA will be NULL - see page_zone.
5771 */
5772 if (!node_online(page_to_nid(page)))
5773 return false;
5774
5775 zone = page_zone(page);
5776 pfn = page_to_pfn(page);
5777 if (!zone_spans_pfn(zone, pfn))
5778 return false;
5779
5780 return !has_unmovable_pages(zone, page, 0, true);
5781 }
5782
5783 #ifdef CONFIG_CMA
5784
5785 static unsigned long pfn_max_align_down(unsigned long pfn)
5786 {
5787 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5788 pageblock_nr_pages) - 1);
5789 }
5790
5791 static unsigned long pfn_max_align_up(unsigned long pfn)
5792 {
5793 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5794 pageblock_nr_pages));
5795 }
5796
5797 /* [start, end) must belong to a single zone. */
5798 static int __alloc_contig_migrate_range(struct compact_control *cc,
5799 unsigned long start, unsigned long end)
5800 {
5801 /* This function is based on compact_zone() from compaction.c. */
5802 unsigned long nr_reclaimed;
5803 unsigned long pfn = start;
5804 unsigned int tries = 0;
5805 int ret = 0;
5806
5807 migrate_prep();
5808
5809 while (pfn < end || !list_empty(&cc->migratepages)) {
5810 if (fatal_signal_pending(current)) {
5811 ret = -EINTR;
5812 break;
5813 }
5814
5815 if (list_empty(&cc->migratepages)) {
5816 cc->nr_migratepages = 0;
5817 pfn = isolate_migratepages_range(cc->zone, cc,
5818 pfn, end, true);
5819 if (!pfn) {
5820 ret = -EINTR;
5821 break;
5822 }
5823 tries = 0;
5824 } else if (++tries == 5) {
5825 ret = ret < 0 ? ret : -EBUSY;
5826 break;
5827 }
5828
5829 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5830 &cc->migratepages);
5831 cc->nr_migratepages -= nr_reclaimed;
5832
5833 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5834 0, MIGRATE_SYNC, MR_CMA);
5835 }
5836 if (ret < 0) {
5837 putback_movable_pages(&cc->migratepages);
5838 return ret;
5839 }
5840 return 0;
5841 }
5842
5843 /**
5844 * alloc_contig_range() -- tries to allocate given range of pages
5845 * @start: start PFN to allocate
5846 * @end: one-past-the-last PFN to allocate
5847 * @migratetype: migratetype of the underlaying pageblocks (either
5848 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5849 * in range must have the same migratetype and it must
5850 * be either of the two.
5851 *
5852 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5853 * aligned, however it's the caller's responsibility to guarantee that
5854 * we are the only thread that changes migrate type of pageblocks the
5855 * pages fall in.
5856 *
5857 * The PFN range must belong to a single zone.
5858 *
5859 * Returns zero on success or negative error code. On success all
5860 * pages which PFN is in [start, end) are allocated for the caller and
5861 * need to be freed with free_contig_range().
5862 */
5863 int alloc_contig_range(unsigned long start, unsigned long end,
5864 unsigned migratetype)
5865 {
5866 unsigned long outer_start, outer_end;
5867 int ret = 0, order;
5868
5869 struct compact_control cc = {
5870 .nr_migratepages = 0,
5871 .order = -1,
5872 .zone = page_zone(pfn_to_page(start)),
5873 .sync = true,
5874 .ignore_skip_hint = true,
5875 };
5876 INIT_LIST_HEAD(&cc.migratepages);
5877
5878 /*
5879 * What we do here is we mark all pageblocks in range as
5880 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5881 * have different sizes, and due to the way page allocator
5882 * work, we align the range to biggest of the two pages so
5883 * that page allocator won't try to merge buddies from
5884 * different pageblocks and change MIGRATE_ISOLATE to some
5885 * other migration type.
5886 *
5887 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5888 * migrate the pages from an unaligned range (ie. pages that
5889 * we are interested in). This will put all the pages in
5890 * range back to page allocator as MIGRATE_ISOLATE.
5891 *
5892 * When this is done, we take the pages in range from page
5893 * allocator removing them from the buddy system. This way
5894 * page allocator will never consider using them.
5895 *
5896 * This lets us mark the pageblocks back as
5897 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5898 * aligned range but not in the unaligned, original range are
5899 * put back to page allocator so that buddy can use them.
5900 */
5901
5902 ret = start_isolate_page_range(pfn_max_align_down(start),
5903 pfn_max_align_up(end), migratetype,
5904 false);
5905 if (ret)
5906 return ret;
5907
5908 ret = __alloc_contig_migrate_range(&cc, start, end);
5909 if (ret)
5910 goto done;
5911
5912 /*
5913 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5914 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5915 * more, all pages in [start, end) are free in page allocator.
5916 * What we are going to do is to allocate all pages from
5917 * [start, end) (that is remove them from page allocator).
5918 *
5919 * The only problem is that pages at the beginning and at the
5920 * end of interesting range may be not aligned with pages that
5921 * page allocator holds, ie. they can be part of higher order
5922 * pages. Because of this, we reserve the bigger range and
5923 * once this is done free the pages we are not interested in.
5924 *
5925 * We don't have to hold zone->lock here because the pages are
5926 * isolated thus they won't get removed from buddy.
5927 */
5928
5929 lru_add_drain_all();
5930 drain_all_pages();
5931
5932 order = 0;
5933 outer_start = start;
5934 while (!PageBuddy(pfn_to_page(outer_start))) {
5935 if (++order >= MAX_ORDER) {
5936 ret = -EBUSY;
5937 goto done;
5938 }
5939 outer_start &= ~0UL << order;
5940 }
5941
5942 /* Make sure the range is really isolated. */
5943 if (test_pages_isolated(outer_start, end, false)) {
5944 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5945 outer_start, end);
5946 ret = -EBUSY;
5947 goto done;
5948 }
5949
5950
5951 /* Grab isolated pages from freelists. */
5952 outer_end = isolate_freepages_range(&cc, outer_start, end);
5953 if (!outer_end) {
5954 ret = -EBUSY;
5955 goto done;
5956 }
5957
5958 /* Free head and tail (if any) */
5959 if (start != outer_start)
5960 free_contig_range(outer_start, start - outer_start);
5961 if (end != outer_end)
5962 free_contig_range(end, outer_end - end);
5963
5964 done:
5965 undo_isolate_page_range(pfn_max_align_down(start),
5966 pfn_max_align_up(end), migratetype);
5967 return ret;
5968 }
5969
5970 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5971 {
5972 unsigned int count = 0;
5973
5974 for (; nr_pages--; pfn++) {
5975 struct page *page = pfn_to_page(pfn);
5976
5977 count += page_count(page) != 1;
5978 __free_page(page);
5979 }
5980 WARN(count != 0, "%d pages are still in use!\n", count);
5981 }
5982 #endif
5983
5984 #ifdef CONFIG_MEMORY_HOTPLUG
5985 static int __meminit __zone_pcp_update(void *data)
5986 {
5987 struct zone *zone = data;
5988 int cpu;
5989 unsigned long batch = zone_batchsize(zone), flags;
5990
5991 for_each_possible_cpu(cpu) {
5992 struct per_cpu_pageset *pset;
5993 struct per_cpu_pages *pcp;
5994
5995 pset = per_cpu_ptr(zone->pageset, cpu);
5996 pcp = &pset->pcp;
5997
5998 local_irq_save(flags);
5999 if (pcp->count > 0)
6000 free_pcppages_bulk(zone, pcp->count, pcp);
6001 drain_zonestat(zone, pset);
6002 setup_pageset(pset, batch);
6003 local_irq_restore(flags);
6004 }
6005 return 0;
6006 }
6007
6008 void __meminit zone_pcp_update(struct zone *zone)
6009 {
6010 stop_machine(__zone_pcp_update, zone, NULL);
6011 }
6012 #endif
6013
6014 void zone_pcp_reset(struct zone *zone)
6015 {
6016 unsigned long flags;
6017 int cpu;
6018 struct per_cpu_pageset *pset;
6019
6020 /* avoid races with drain_pages() */
6021 local_irq_save(flags);
6022 if (zone->pageset != &boot_pageset) {
6023 for_each_online_cpu(cpu) {
6024 pset = per_cpu_ptr(zone->pageset, cpu);
6025 drain_zonestat(zone, pset);
6026 }
6027 free_percpu(zone->pageset);
6028 zone->pageset = &boot_pageset;
6029 }
6030 local_irq_restore(flags);
6031 }
6032
6033 #ifdef CONFIG_MEMORY_HOTREMOVE
6034 /*
6035 * All pages in the range must be isolated before calling this.
6036 */
6037 void
6038 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6039 {
6040 struct page *page;
6041 struct zone *zone;
6042 int order, i;
6043 unsigned long pfn;
6044 unsigned long flags;
6045 /* find the first valid pfn */
6046 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6047 if (pfn_valid(pfn))
6048 break;
6049 if (pfn == end_pfn)
6050 return;
6051 zone = page_zone(pfn_to_page(pfn));
6052 spin_lock_irqsave(&zone->lock, flags);
6053 pfn = start_pfn;
6054 while (pfn < end_pfn) {
6055 if (!pfn_valid(pfn)) {
6056 pfn++;
6057 continue;
6058 }
6059 page = pfn_to_page(pfn);
6060 /*
6061 * The HWPoisoned page may be not in buddy system, and
6062 * page_count() is not 0.
6063 */
6064 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6065 pfn++;
6066 SetPageReserved(page);
6067 continue;
6068 }
6069
6070 BUG_ON(page_count(page));
6071 BUG_ON(!PageBuddy(page));
6072 order = page_order(page);
6073 #ifdef CONFIG_DEBUG_VM
6074 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6075 pfn, 1 << order, end_pfn);
6076 #endif
6077 list_del(&page->lru);
6078 rmv_page_order(page);
6079 zone->free_area[order].nr_free--;
6080 for (i = 0; i < (1 << order); i++)
6081 SetPageReserved((page+i));
6082 pfn += (1 << order);
6083 }
6084 spin_unlock_irqrestore(&zone->lock, flags);
6085 }
6086 #endif
6087
6088 #ifdef CONFIG_MEMORY_FAILURE
6089 bool is_free_buddy_page(struct page *page)
6090 {
6091 struct zone *zone = page_zone(page);
6092 unsigned long pfn = page_to_pfn(page);
6093 unsigned long flags;
6094 int order;
6095
6096 spin_lock_irqsave(&zone->lock, flags);
6097 for (order = 0; order < MAX_ORDER; order++) {
6098 struct page *page_head = page - (pfn & ((1 << order) - 1));
6099
6100 if (PageBuddy(page_head) && page_order(page_head) >= order)
6101 break;
6102 }
6103 spin_unlock_irqrestore(&zone->lock, flags);
6104
6105 return order < MAX_ORDER;
6106 }
6107 #endif
6108
6109 static const struct trace_print_flags pageflag_names[] = {
6110 {1UL << PG_locked, "locked" },
6111 {1UL << PG_error, "error" },
6112 {1UL << PG_referenced, "referenced" },
6113 {1UL << PG_uptodate, "uptodate" },
6114 {1UL << PG_dirty, "dirty" },
6115 {1UL << PG_lru, "lru" },
6116 {1UL << PG_active, "active" },
6117 {1UL << PG_slab, "slab" },
6118 {1UL << PG_owner_priv_1, "owner_priv_1" },
6119 {1UL << PG_arch_1, "arch_1" },
6120 {1UL << PG_reserved, "reserved" },
6121 {1UL << PG_private, "private" },
6122 {1UL << PG_private_2, "private_2" },
6123 {1UL << PG_writeback, "writeback" },
6124 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6125 {1UL << PG_head, "head" },
6126 {1UL << PG_tail, "tail" },
6127 #else
6128 {1UL << PG_compound, "compound" },
6129 #endif
6130 {1UL << PG_swapcache, "swapcache" },
6131 {1UL << PG_mappedtodisk, "mappedtodisk" },
6132 {1UL << PG_reclaim, "reclaim" },
6133 {1UL << PG_swapbacked, "swapbacked" },
6134 {1UL << PG_unevictable, "unevictable" },
6135 #ifdef CONFIG_MMU
6136 {1UL << PG_mlocked, "mlocked" },
6137 #endif
6138 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6139 {1UL << PG_uncached, "uncached" },
6140 #endif
6141 #ifdef CONFIG_MEMORY_FAILURE
6142 {1UL << PG_hwpoison, "hwpoison" },
6143 #endif
6144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6145 {1UL << PG_compound_lock, "compound_lock" },
6146 #endif
6147 };
6148
6149 static void dump_page_flags(unsigned long flags)
6150 {
6151 const char *delim = "";
6152 unsigned long mask;
6153 int i;
6154
6155 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6156
6157 printk(KERN_ALERT "page flags: %#lx(", flags);
6158
6159 /* remove zone id */
6160 flags &= (1UL << NR_PAGEFLAGS) - 1;
6161
6162 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6163
6164 mask = pageflag_names[i].mask;
6165 if ((flags & mask) != mask)
6166 continue;
6167
6168 flags &= ~mask;
6169 printk("%s%s", delim, pageflag_names[i].name);
6170 delim = "|";
6171 }
6172
6173 /* check for left over flags */
6174 if (flags)
6175 printk("%s%#lx", delim, flags);
6176
6177 printk(")\n");
6178 }
6179
6180 void dump_page(struct page *page)
6181 {
6182 printk(KERN_ALERT
6183 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6184 page, atomic_read(&page->_count), page_mapcount(page),
6185 page->mapping, page->index);
6186 dump_page_flags(page->flags);
6187 mem_cgroup_print_bad_page(page);
6188 }
This page took 0.162892 seconds and 5 git commands to generate.