mm/vmalloc: remove guard page from between vmap blocks
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/stop_machine.h>
45 #include <linux/sort.h>
46 #include <linux/pfn.h>
47 #include <linux/backing-dev.h>
48 #include <linux/fault-inject.h>
49 #include <linux/page-isolation.h>
50 #include <linux/page_cgroup.h>
51 #include <linux/debugobjects.h>
52 #include <linux/kmemleak.h>
53 #include <linux/memory.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
62 #include "internal.h"
63
64 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
65 DEFINE_PER_CPU(int, numa_node);
66 EXPORT_PER_CPU_SYMBOL(numa_node);
67 #endif
68
69 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
70 /*
71 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
72 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
73 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
74 * defined in <linux/topology.h>.
75 */
76 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
77 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
78 #endif
79
80 /*
81 * Array of node states.
82 */
83 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
84 [N_POSSIBLE] = NODE_MASK_ALL,
85 [N_ONLINE] = { { [0] = 1UL } },
86 #ifndef CONFIG_NUMA
87 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
88 #ifdef CONFIG_HIGHMEM
89 [N_HIGH_MEMORY] = { { [0] = 1UL } },
90 #endif
91 [N_CPU] = { { [0] = 1UL } },
92 #endif /* NUMA */
93 };
94 EXPORT_SYMBOL(node_states);
95
96 unsigned long totalram_pages __read_mostly;
97 unsigned long totalreserve_pages __read_mostly;
98 int percpu_pagelist_fraction;
99 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
100
101 #ifdef CONFIG_PM_SLEEP
102 /*
103 * The following functions are used by the suspend/hibernate code to temporarily
104 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
105 * while devices are suspended. To avoid races with the suspend/hibernate code,
106 * they should always be called with pm_mutex held (gfp_allowed_mask also should
107 * only be modified with pm_mutex held, unless the suspend/hibernate code is
108 * guaranteed not to run in parallel with that modification).
109 */
110
111 static gfp_t saved_gfp_mask;
112
113 void pm_restore_gfp_mask(void)
114 {
115 WARN_ON(!mutex_is_locked(&pm_mutex));
116 if (saved_gfp_mask) {
117 gfp_allowed_mask = saved_gfp_mask;
118 saved_gfp_mask = 0;
119 }
120 }
121
122 void pm_restrict_gfp_mask(void)
123 {
124 WARN_ON(!mutex_is_locked(&pm_mutex));
125 WARN_ON(saved_gfp_mask);
126 saved_gfp_mask = gfp_allowed_mask;
127 gfp_allowed_mask &= ~GFP_IOFS;
128 }
129 #endif /* CONFIG_PM_SLEEP */
130
131 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
132 int pageblock_order __read_mostly;
133 #endif
134
135 static void __free_pages_ok(struct page *page, unsigned int order);
136
137 /*
138 * results with 256, 32 in the lowmem_reserve sysctl:
139 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
140 * 1G machine -> (16M dma, 784M normal, 224M high)
141 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
142 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
143 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
144 *
145 * TBD: should special case ZONE_DMA32 machines here - in those we normally
146 * don't need any ZONE_NORMAL reservation
147 */
148 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
149 #ifdef CONFIG_ZONE_DMA
150 256,
151 #endif
152 #ifdef CONFIG_ZONE_DMA32
153 256,
154 #endif
155 #ifdef CONFIG_HIGHMEM
156 32,
157 #endif
158 32,
159 };
160
161 EXPORT_SYMBOL(totalram_pages);
162
163 static char * const zone_names[MAX_NR_ZONES] = {
164 #ifdef CONFIG_ZONE_DMA
165 "DMA",
166 #endif
167 #ifdef CONFIG_ZONE_DMA32
168 "DMA32",
169 #endif
170 "Normal",
171 #ifdef CONFIG_HIGHMEM
172 "HighMem",
173 #endif
174 "Movable",
175 };
176
177 int min_free_kbytes = 1024;
178
179 static unsigned long __meminitdata nr_kernel_pages;
180 static unsigned long __meminitdata nr_all_pages;
181 static unsigned long __meminitdata dma_reserve;
182
183 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
184 /*
185 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
186 * ranges of memory (RAM) that may be registered with add_active_range().
187 * Ranges passed to add_active_range() will be merged if possible
188 * so the number of times add_active_range() can be called is
189 * related to the number of nodes and the number of holes
190 */
191 #ifdef CONFIG_MAX_ACTIVE_REGIONS
192 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
193 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
194 #else
195 #if MAX_NUMNODES >= 32
196 /* If there can be many nodes, allow up to 50 holes per node */
197 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
198 #else
199 /* By default, allow up to 256 distinct regions */
200 #define MAX_ACTIVE_REGIONS 256
201 #endif
202 #endif
203
204 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
205 static int __meminitdata nr_nodemap_entries;
206 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
207 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
208 static unsigned long __initdata required_kernelcore;
209 static unsigned long __initdata required_movablecore;
210 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
211
212 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
213 int movable_zone;
214 EXPORT_SYMBOL(movable_zone);
215 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
216
217 #if MAX_NUMNODES > 1
218 int nr_node_ids __read_mostly = MAX_NUMNODES;
219 int nr_online_nodes __read_mostly = 1;
220 EXPORT_SYMBOL(nr_node_ids);
221 EXPORT_SYMBOL(nr_online_nodes);
222 #endif
223
224 int page_group_by_mobility_disabled __read_mostly;
225
226 static void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 dump_stack();
321 out:
322 /* Leave bad fields for debug, except PageBuddy could make trouble */
323 reset_page_mapcount(page); /* remove PageBuddy */
324 add_taint(TAINT_BAD_PAGE);
325 }
326
327 /*
328 * Higher-order pages are called "compound pages". They are structured thusly:
329 *
330 * The first PAGE_SIZE page is called the "head page".
331 *
332 * The remaining PAGE_SIZE pages are called "tail pages".
333 *
334 * All pages have PG_compound set. All pages have their ->private pointing at
335 * the head page (even the head page has this).
336 *
337 * The first tail page's ->lru.next holds the address of the compound page's
338 * put_page() function. Its ->lru.prev holds the order of allocation.
339 * This usage means that zero-order pages may not be compound.
340 */
341
342 static void free_compound_page(struct page *page)
343 {
344 __free_pages_ok(page, compound_order(page));
345 }
346
347 void prep_compound_page(struct page *page, unsigned long order)
348 {
349 int i;
350 int nr_pages = 1 << order;
351
352 set_compound_page_dtor(page, free_compound_page);
353 set_compound_order(page, order);
354 __SetPageHead(page);
355 for (i = 1; i < nr_pages; i++) {
356 struct page *p = page + i;
357
358 __SetPageTail(p);
359 p->first_page = page;
360 }
361 }
362
363 /* update __split_huge_page_refcount if you change this function */
364 static int destroy_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368 int bad = 0;
369
370 if (unlikely(compound_order(page) != order) ||
371 unlikely(!PageHead(page))) {
372 bad_page(page);
373 bad++;
374 }
375
376 __ClearPageHead(page);
377
378 for (i = 1; i < nr_pages; i++) {
379 struct page *p = page + i;
380
381 if (unlikely(!PageTail(p) || (p->first_page != page))) {
382 bad_page(page);
383 bad++;
384 }
385 __ClearPageTail(p);
386 }
387
388 return bad;
389 }
390
391 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
392 {
393 int i;
394
395 /*
396 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
397 * and __GFP_HIGHMEM from hard or soft interrupt context.
398 */
399 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
400 for (i = 0; i < (1 << order); i++)
401 clear_highpage(page + i);
402 }
403
404 static inline void set_page_order(struct page *page, int order)
405 {
406 set_page_private(page, order);
407 __SetPageBuddy(page);
408 }
409
410 static inline void rmv_page_order(struct page *page)
411 {
412 __ClearPageBuddy(page);
413 set_page_private(page, 0);
414 }
415
416 /*
417 * Locate the struct page for both the matching buddy in our
418 * pair (buddy1) and the combined O(n+1) page they form (page).
419 *
420 * 1) Any buddy B1 will have an order O twin B2 which satisfies
421 * the following equation:
422 * B2 = B1 ^ (1 << O)
423 * For example, if the starting buddy (buddy2) is #8 its order
424 * 1 buddy is #10:
425 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
426 *
427 * 2) Any buddy B will have an order O+1 parent P which
428 * satisfies the following equation:
429 * P = B & ~(1 << O)
430 *
431 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
432 */
433 static inline unsigned long
434 __find_buddy_index(unsigned long page_idx, unsigned int order)
435 {
436 return page_idx ^ (1 << order);
437 }
438
439 /*
440 * This function checks whether a page is free && is the buddy
441 * we can do coalesce a page and its buddy if
442 * (a) the buddy is not in a hole &&
443 * (b) the buddy is in the buddy system &&
444 * (c) a page and its buddy have the same order &&
445 * (d) a page and its buddy are in the same zone.
446 *
447 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
448 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
449 *
450 * For recording page's order, we use page_private(page).
451 */
452 static inline int page_is_buddy(struct page *page, struct page *buddy,
453 int order)
454 {
455 if (!pfn_valid_within(page_to_pfn(buddy)))
456 return 0;
457
458 if (page_zone_id(page) != page_zone_id(buddy))
459 return 0;
460
461 if (PageBuddy(buddy) && page_order(buddy) == order) {
462 VM_BUG_ON(page_count(buddy) != 0);
463 return 1;
464 }
465 return 0;
466 }
467
468 /*
469 * Freeing function for a buddy system allocator.
470 *
471 * The concept of a buddy system is to maintain direct-mapped table
472 * (containing bit values) for memory blocks of various "orders".
473 * The bottom level table contains the map for the smallest allocatable
474 * units of memory (here, pages), and each level above it describes
475 * pairs of units from the levels below, hence, "buddies".
476 * At a high level, all that happens here is marking the table entry
477 * at the bottom level available, and propagating the changes upward
478 * as necessary, plus some accounting needed to play nicely with other
479 * parts of the VM system.
480 * At each level, we keep a list of pages, which are heads of continuous
481 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
482 * order is recorded in page_private(page) field.
483 * So when we are allocating or freeing one, we can derive the state of the
484 * other. That is, if we allocate a small block, and both were
485 * free, the remainder of the region must be split into blocks.
486 * If a block is freed, and its buddy is also free, then this
487 * triggers coalescing into a block of larger size.
488 *
489 * -- wli
490 */
491
492 static inline void __free_one_page(struct page *page,
493 struct zone *zone, unsigned int order,
494 int migratetype)
495 {
496 unsigned long page_idx;
497 unsigned long combined_idx;
498 unsigned long uninitialized_var(buddy_idx);
499 struct page *buddy;
500
501 if (unlikely(PageCompound(page)))
502 if (unlikely(destroy_compound_page(page, order)))
503 return;
504
505 VM_BUG_ON(migratetype == -1);
506
507 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
508
509 VM_BUG_ON(page_idx & ((1 << order) - 1));
510 VM_BUG_ON(bad_range(zone, page));
511
512 while (order < MAX_ORDER-1) {
513 buddy_idx = __find_buddy_index(page_idx, order);
514 buddy = page + (buddy_idx - page_idx);
515 if (!page_is_buddy(page, buddy, order))
516 break;
517
518 /* Our buddy is free, merge with it and move up one order. */
519 list_del(&buddy->lru);
520 zone->free_area[order].nr_free--;
521 rmv_page_order(buddy);
522 combined_idx = buddy_idx & page_idx;
523 page = page + (combined_idx - page_idx);
524 page_idx = combined_idx;
525 order++;
526 }
527 set_page_order(page, order);
528
529 /*
530 * If this is not the largest possible page, check if the buddy
531 * of the next-highest order is free. If it is, it's possible
532 * that pages are being freed that will coalesce soon. In case,
533 * that is happening, add the free page to the tail of the list
534 * so it's less likely to be used soon and more likely to be merged
535 * as a higher order page
536 */
537 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
538 struct page *higher_page, *higher_buddy;
539 combined_idx = buddy_idx & page_idx;
540 higher_page = page + (combined_idx - page_idx);
541 buddy_idx = __find_buddy_index(combined_idx, order + 1);
542 higher_buddy = page + (buddy_idx - combined_idx);
543 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
544 list_add_tail(&page->lru,
545 &zone->free_area[order].free_list[migratetype]);
546 goto out;
547 }
548 }
549
550 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
551 out:
552 zone->free_area[order].nr_free++;
553 }
554
555 /*
556 * free_page_mlock() -- clean up attempts to free and mlocked() page.
557 * Page should not be on lru, so no need to fix that up.
558 * free_pages_check() will verify...
559 */
560 static inline void free_page_mlock(struct page *page)
561 {
562 __dec_zone_page_state(page, NR_MLOCK);
563 __count_vm_event(UNEVICTABLE_MLOCKFREED);
564 }
565
566 static inline int free_pages_check(struct page *page)
567 {
568 if (unlikely(page_mapcount(page) |
569 (page->mapping != NULL) |
570 (atomic_read(&page->_count) != 0) |
571 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
572 (mem_cgroup_bad_page_check(page)))) {
573 bad_page(page);
574 return 1;
575 }
576 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
577 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
578 return 0;
579 }
580
581 /*
582 * Frees a number of pages from the PCP lists
583 * Assumes all pages on list are in same zone, and of same order.
584 * count is the number of pages to free.
585 *
586 * If the zone was previously in an "all pages pinned" state then look to
587 * see if this freeing clears that state.
588 *
589 * And clear the zone's pages_scanned counter, to hold off the "all pages are
590 * pinned" detection logic.
591 */
592 static void free_pcppages_bulk(struct zone *zone, int count,
593 struct per_cpu_pages *pcp)
594 {
595 int migratetype = 0;
596 int batch_free = 0;
597 int to_free = count;
598
599 spin_lock(&zone->lock);
600 zone->all_unreclaimable = 0;
601 zone->pages_scanned = 0;
602
603 while (to_free) {
604 struct page *page;
605 struct list_head *list;
606
607 /*
608 * Remove pages from lists in a round-robin fashion. A
609 * batch_free count is maintained that is incremented when an
610 * empty list is encountered. This is so more pages are freed
611 * off fuller lists instead of spinning excessively around empty
612 * lists
613 */
614 do {
615 batch_free++;
616 if (++migratetype == MIGRATE_PCPTYPES)
617 migratetype = 0;
618 list = &pcp->lists[migratetype];
619 } while (list_empty(list));
620
621 /* This is the only non-empty list. Free them all. */
622 if (batch_free == MIGRATE_PCPTYPES)
623 batch_free = to_free;
624
625 do {
626 page = list_entry(list->prev, struct page, lru);
627 /* must delete as __free_one_page list manipulates */
628 list_del(&page->lru);
629 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
630 __free_one_page(page, zone, 0, page_private(page));
631 trace_mm_page_pcpu_drain(page, 0, page_private(page));
632 } while (--to_free && --batch_free && !list_empty(list));
633 }
634 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
635 spin_unlock(&zone->lock);
636 }
637
638 static void free_one_page(struct zone *zone, struct page *page, int order,
639 int migratetype)
640 {
641 spin_lock(&zone->lock);
642 zone->all_unreclaimable = 0;
643 zone->pages_scanned = 0;
644
645 __free_one_page(page, zone, order, migratetype);
646 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
647 spin_unlock(&zone->lock);
648 }
649
650 static bool free_pages_prepare(struct page *page, unsigned int order)
651 {
652 int i;
653 int bad = 0;
654
655 trace_mm_page_free_direct(page, order);
656 kmemcheck_free_shadow(page, order);
657
658 if (PageAnon(page))
659 page->mapping = NULL;
660 for (i = 0; i < (1 << order); i++)
661 bad += free_pages_check(page + i);
662 if (bad)
663 return false;
664
665 if (!PageHighMem(page)) {
666 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
667 debug_check_no_obj_freed(page_address(page),
668 PAGE_SIZE << order);
669 }
670 arch_free_page(page, order);
671 kernel_map_pages(page, 1 << order, 0);
672
673 return true;
674 }
675
676 static void __free_pages_ok(struct page *page, unsigned int order)
677 {
678 unsigned long flags;
679 int wasMlocked = __TestClearPageMlocked(page);
680
681 if (!free_pages_prepare(page, order))
682 return;
683
684 local_irq_save(flags);
685 if (unlikely(wasMlocked))
686 free_page_mlock(page);
687 __count_vm_events(PGFREE, 1 << order);
688 free_one_page(page_zone(page), page, order,
689 get_pageblock_migratetype(page));
690 local_irq_restore(flags);
691 }
692
693 /*
694 * permit the bootmem allocator to evade page validation on high-order frees
695 */
696 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
697 {
698 if (order == 0) {
699 __ClearPageReserved(page);
700 set_page_count(page, 0);
701 set_page_refcounted(page);
702 __free_page(page);
703 } else {
704 int loop;
705
706 prefetchw(page);
707 for (loop = 0; loop < BITS_PER_LONG; loop++) {
708 struct page *p = &page[loop];
709
710 if (loop + 1 < BITS_PER_LONG)
711 prefetchw(p + 1);
712 __ClearPageReserved(p);
713 set_page_count(p, 0);
714 }
715
716 set_page_refcounted(page);
717 __free_pages(page, order);
718 }
719 }
720
721
722 /*
723 * The order of subdivision here is critical for the IO subsystem.
724 * Please do not alter this order without good reasons and regression
725 * testing. Specifically, as large blocks of memory are subdivided,
726 * the order in which smaller blocks are delivered depends on the order
727 * they're subdivided in this function. This is the primary factor
728 * influencing the order in which pages are delivered to the IO
729 * subsystem according to empirical testing, and this is also justified
730 * by considering the behavior of a buddy system containing a single
731 * large block of memory acted on by a series of small allocations.
732 * This behavior is a critical factor in sglist merging's success.
733 *
734 * -- wli
735 */
736 static inline void expand(struct zone *zone, struct page *page,
737 int low, int high, struct free_area *area,
738 int migratetype)
739 {
740 unsigned long size = 1 << high;
741
742 while (high > low) {
743 area--;
744 high--;
745 size >>= 1;
746 VM_BUG_ON(bad_range(zone, &page[size]));
747 list_add(&page[size].lru, &area->free_list[migratetype]);
748 area->nr_free++;
749 set_page_order(&page[size], high);
750 }
751 }
752
753 /*
754 * This page is about to be returned from the page allocator
755 */
756 static inline int check_new_page(struct page *page)
757 {
758 if (unlikely(page_mapcount(page) |
759 (page->mapping != NULL) |
760 (atomic_read(&page->_count) != 0) |
761 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
762 (mem_cgroup_bad_page_check(page)))) {
763 bad_page(page);
764 return 1;
765 }
766 return 0;
767 }
768
769 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
770 {
771 int i;
772
773 for (i = 0; i < (1 << order); i++) {
774 struct page *p = page + i;
775 if (unlikely(check_new_page(p)))
776 return 1;
777 }
778
779 set_page_private(page, 0);
780 set_page_refcounted(page);
781
782 arch_alloc_page(page, order);
783 kernel_map_pages(page, 1 << order, 1);
784
785 if (gfp_flags & __GFP_ZERO)
786 prep_zero_page(page, order, gfp_flags);
787
788 if (order && (gfp_flags & __GFP_COMP))
789 prep_compound_page(page, order);
790
791 return 0;
792 }
793
794 /*
795 * Go through the free lists for the given migratetype and remove
796 * the smallest available page from the freelists
797 */
798 static inline
799 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
800 int migratetype)
801 {
802 unsigned int current_order;
803 struct free_area * area;
804 struct page *page;
805
806 /* Find a page of the appropriate size in the preferred list */
807 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
808 area = &(zone->free_area[current_order]);
809 if (list_empty(&area->free_list[migratetype]))
810 continue;
811
812 page = list_entry(area->free_list[migratetype].next,
813 struct page, lru);
814 list_del(&page->lru);
815 rmv_page_order(page);
816 area->nr_free--;
817 expand(zone, page, order, current_order, area, migratetype);
818 return page;
819 }
820
821 return NULL;
822 }
823
824
825 /*
826 * This array describes the order lists are fallen back to when
827 * the free lists for the desirable migrate type are depleted
828 */
829 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
830 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
832 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
833 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
834 };
835
836 /*
837 * Move the free pages in a range to the free lists of the requested type.
838 * Note that start_page and end_pages are not aligned on a pageblock
839 * boundary. If alignment is required, use move_freepages_block()
840 */
841 static int move_freepages(struct zone *zone,
842 struct page *start_page, struct page *end_page,
843 int migratetype)
844 {
845 struct page *page;
846 unsigned long order;
847 int pages_moved = 0;
848
849 #ifndef CONFIG_HOLES_IN_ZONE
850 /*
851 * page_zone is not safe to call in this context when
852 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
853 * anyway as we check zone boundaries in move_freepages_block().
854 * Remove at a later date when no bug reports exist related to
855 * grouping pages by mobility
856 */
857 BUG_ON(page_zone(start_page) != page_zone(end_page));
858 #endif
859
860 for (page = start_page; page <= end_page;) {
861 /* Make sure we are not inadvertently changing nodes */
862 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
863
864 if (!pfn_valid_within(page_to_pfn(page))) {
865 page++;
866 continue;
867 }
868
869 if (!PageBuddy(page)) {
870 page++;
871 continue;
872 }
873
874 order = page_order(page);
875 list_move(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 page += 1 << order;
878 pages_moved += 1 << order;
879 }
880
881 return pages_moved;
882 }
883
884 static int move_freepages_block(struct zone *zone, struct page *page,
885 int migratetype)
886 {
887 unsigned long start_pfn, end_pfn;
888 struct page *start_page, *end_page;
889
890 start_pfn = page_to_pfn(page);
891 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
892 start_page = pfn_to_page(start_pfn);
893 end_page = start_page + pageblock_nr_pages - 1;
894 end_pfn = start_pfn + pageblock_nr_pages - 1;
895
896 /* Do not cross zone boundaries */
897 if (start_pfn < zone->zone_start_pfn)
898 start_page = page;
899 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
900 return 0;
901
902 return move_freepages(zone, start_page, end_page, migratetype);
903 }
904
905 static void change_pageblock_range(struct page *pageblock_page,
906 int start_order, int migratetype)
907 {
908 int nr_pageblocks = 1 << (start_order - pageblock_order);
909
910 while (nr_pageblocks--) {
911 set_pageblock_migratetype(pageblock_page, migratetype);
912 pageblock_page += pageblock_nr_pages;
913 }
914 }
915
916 /* Remove an element from the buddy allocator from the fallback list */
917 static inline struct page *
918 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
919 {
920 struct free_area * area;
921 int current_order;
922 struct page *page;
923 int migratetype, i;
924
925 /* Find the largest possible block of pages in the other list */
926 for (current_order = MAX_ORDER-1; current_order >= order;
927 --current_order) {
928 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
929 migratetype = fallbacks[start_migratetype][i];
930
931 /* MIGRATE_RESERVE handled later if necessary */
932 if (migratetype == MIGRATE_RESERVE)
933 continue;
934
935 area = &(zone->free_area[current_order]);
936 if (list_empty(&area->free_list[migratetype]))
937 continue;
938
939 page = list_entry(area->free_list[migratetype].next,
940 struct page, lru);
941 area->nr_free--;
942
943 /*
944 * If breaking a large block of pages, move all free
945 * pages to the preferred allocation list. If falling
946 * back for a reclaimable kernel allocation, be more
947 * aggressive about taking ownership of free pages
948 */
949 if (unlikely(current_order >= (pageblock_order >> 1)) ||
950 start_migratetype == MIGRATE_RECLAIMABLE ||
951 page_group_by_mobility_disabled) {
952 unsigned long pages;
953 pages = move_freepages_block(zone, page,
954 start_migratetype);
955
956 /* Claim the whole block if over half of it is free */
957 if (pages >= (1 << (pageblock_order-1)) ||
958 page_group_by_mobility_disabled)
959 set_pageblock_migratetype(page,
960 start_migratetype);
961
962 migratetype = start_migratetype;
963 }
964
965 /* Remove the page from the freelists */
966 list_del(&page->lru);
967 rmv_page_order(page);
968
969 /* Take ownership for orders >= pageblock_order */
970 if (current_order >= pageblock_order)
971 change_pageblock_range(page, current_order,
972 start_migratetype);
973
974 expand(zone, page, order, current_order, area, migratetype);
975
976 trace_mm_page_alloc_extfrag(page, order, current_order,
977 start_migratetype, migratetype);
978
979 return page;
980 }
981 }
982
983 return NULL;
984 }
985
986 /*
987 * Do the hard work of removing an element from the buddy allocator.
988 * Call me with the zone->lock already held.
989 */
990 static struct page *__rmqueue(struct zone *zone, unsigned int order,
991 int migratetype)
992 {
993 struct page *page;
994
995 retry_reserve:
996 page = __rmqueue_smallest(zone, order, migratetype);
997
998 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
999 page = __rmqueue_fallback(zone, order, migratetype);
1000
1001 /*
1002 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1003 * is used because __rmqueue_smallest is an inline function
1004 * and we want just one call site
1005 */
1006 if (!page) {
1007 migratetype = MIGRATE_RESERVE;
1008 goto retry_reserve;
1009 }
1010 }
1011
1012 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1013 return page;
1014 }
1015
1016 /*
1017 * Obtain a specified number of elements from the buddy allocator, all under
1018 * a single hold of the lock, for efficiency. Add them to the supplied list.
1019 * Returns the number of new pages which were placed at *list.
1020 */
1021 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1022 unsigned long count, struct list_head *list,
1023 int migratetype, int cold)
1024 {
1025 int i;
1026
1027 spin_lock(&zone->lock);
1028 for (i = 0; i < count; ++i) {
1029 struct page *page = __rmqueue(zone, order, migratetype);
1030 if (unlikely(page == NULL))
1031 break;
1032
1033 /*
1034 * Split buddy pages returned by expand() are received here
1035 * in physical page order. The page is added to the callers and
1036 * list and the list head then moves forward. From the callers
1037 * perspective, the linked list is ordered by page number in
1038 * some conditions. This is useful for IO devices that can
1039 * merge IO requests if the physical pages are ordered
1040 * properly.
1041 */
1042 if (likely(cold == 0))
1043 list_add(&page->lru, list);
1044 else
1045 list_add_tail(&page->lru, list);
1046 set_page_private(page, migratetype);
1047 list = &page->lru;
1048 }
1049 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1050 spin_unlock(&zone->lock);
1051 return i;
1052 }
1053
1054 #ifdef CONFIG_NUMA
1055 /*
1056 * Called from the vmstat counter updater to drain pagesets of this
1057 * currently executing processor on remote nodes after they have
1058 * expired.
1059 *
1060 * Note that this function must be called with the thread pinned to
1061 * a single processor.
1062 */
1063 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1064 {
1065 unsigned long flags;
1066 int to_drain;
1067
1068 local_irq_save(flags);
1069 if (pcp->count >= pcp->batch)
1070 to_drain = pcp->batch;
1071 else
1072 to_drain = pcp->count;
1073 free_pcppages_bulk(zone, to_drain, pcp);
1074 pcp->count -= to_drain;
1075 local_irq_restore(flags);
1076 }
1077 #endif
1078
1079 /*
1080 * Drain pages of the indicated processor.
1081 *
1082 * The processor must either be the current processor and the
1083 * thread pinned to the current processor or a processor that
1084 * is not online.
1085 */
1086 static void drain_pages(unsigned int cpu)
1087 {
1088 unsigned long flags;
1089 struct zone *zone;
1090
1091 for_each_populated_zone(zone) {
1092 struct per_cpu_pageset *pset;
1093 struct per_cpu_pages *pcp;
1094
1095 local_irq_save(flags);
1096 pset = per_cpu_ptr(zone->pageset, cpu);
1097
1098 pcp = &pset->pcp;
1099 if (pcp->count) {
1100 free_pcppages_bulk(zone, pcp->count, pcp);
1101 pcp->count = 0;
1102 }
1103 local_irq_restore(flags);
1104 }
1105 }
1106
1107 /*
1108 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1109 */
1110 void drain_local_pages(void *arg)
1111 {
1112 drain_pages(smp_processor_id());
1113 }
1114
1115 /*
1116 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1117 */
1118 void drain_all_pages(void)
1119 {
1120 on_each_cpu(drain_local_pages, NULL, 1);
1121 }
1122
1123 #ifdef CONFIG_HIBERNATION
1124
1125 void mark_free_pages(struct zone *zone)
1126 {
1127 unsigned long pfn, max_zone_pfn;
1128 unsigned long flags;
1129 int order, t;
1130 struct list_head *curr;
1131
1132 if (!zone->spanned_pages)
1133 return;
1134
1135 spin_lock_irqsave(&zone->lock, flags);
1136
1137 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1138 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1139 if (pfn_valid(pfn)) {
1140 struct page *page = pfn_to_page(pfn);
1141
1142 if (!swsusp_page_is_forbidden(page))
1143 swsusp_unset_page_free(page);
1144 }
1145
1146 for_each_migratetype_order(order, t) {
1147 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1148 unsigned long i;
1149
1150 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1151 for (i = 0; i < (1UL << order); i++)
1152 swsusp_set_page_free(pfn_to_page(pfn + i));
1153 }
1154 }
1155 spin_unlock_irqrestore(&zone->lock, flags);
1156 }
1157 #endif /* CONFIG_PM */
1158
1159 /*
1160 * Free a 0-order page
1161 * cold == 1 ? free a cold page : free a hot page
1162 */
1163 void free_hot_cold_page(struct page *page, int cold)
1164 {
1165 struct zone *zone = page_zone(page);
1166 struct per_cpu_pages *pcp;
1167 unsigned long flags;
1168 int migratetype;
1169 int wasMlocked = __TestClearPageMlocked(page);
1170
1171 if (!free_pages_prepare(page, 0))
1172 return;
1173
1174 migratetype = get_pageblock_migratetype(page);
1175 set_page_private(page, migratetype);
1176 local_irq_save(flags);
1177 if (unlikely(wasMlocked))
1178 free_page_mlock(page);
1179 __count_vm_event(PGFREE);
1180
1181 /*
1182 * We only track unmovable, reclaimable and movable on pcp lists.
1183 * Free ISOLATE pages back to the allocator because they are being
1184 * offlined but treat RESERVE as movable pages so we can get those
1185 * areas back if necessary. Otherwise, we may have to free
1186 * excessively into the page allocator
1187 */
1188 if (migratetype >= MIGRATE_PCPTYPES) {
1189 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1190 free_one_page(zone, page, 0, migratetype);
1191 goto out;
1192 }
1193 migratetype = MIGRATE_MOVABLE;
1194 }
1195
1196 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1197 if (cold)
1198 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1199 else
1200 list_add(&page->lru, &pcp->lists[migratetype]);
1201 pcp->count++;
1202 if (pcp->count >= pcp->high) {
1203 free_pcppages_bulk(zone, pcp->batch, pcp);
1204 pcp->count -= pcp->batch;
1205 }
1206
1207 out:
1208 local_irq_restore(flags);
1209 }
1210
1211 /*
1212 * split_page takes a non-compound higher-order page, and splits it into
1213 * n (1<<order) sub-pages: page[0..n]
1214 * Each sub-page must be freed individually.
1215 *
1216 * Note: this is probably too low level an operation for use in drivers.
1217 * Please consult with lkml before using this in your driver.
1218 */
1219 void split_page(struct page *page, unsigned int order)
1220 {
1221 int i;
1222
1223 VM_BUG_ON(PageCompound(page));
1224 VM_BUG_ON(!page_count(page));
1225
1226 #ifdef CONFIG_KMEMCHECK
1227 /*
1228 * Split shadow pages too, because free(page[0]) would
1229 * otherwise free the whole shadow.
1230 */
1231 if (kmemcheck_page_is_tracked(page))
1232 split_page(virt_to_page(page[0].shadow), order);
1233 #endif
1234
1235 for (i = 1; i < (1 << order); i++)
1236 set_page_refcounted(page + i);
1237 }
1238
1239 /*
1240 * Similar to split_page except the page is already free. As this is only
1241 * being used for migration, the migratetype of the block also changes.
1242 * As this is called with interrupts disabled, the caller is responsible
1243 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1244 * are enabled.
1245 *
1246 * Note: this is probably too low level an operation for use in drivers.
1247 * Please consult with lkml before using this in your driver.
1248 */
1249 int split_free_page(struct page *page)
1250 {
1251 unsigned int order;
1252 unsigned long watermark;
1253 struct zone *zone;
1254
1255 BUG_ON(!PageBuddy(page));
1256
1257 zone = page_zone(page);
1258 order = page_order(page);
1259
1260 /* Obey watermarks as if the page was being allocated */
1261 watermark = low_wmark_pages(zone) + (1 << order);
1262 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1263 return 0;
1264
1265 /* Remove page from free list */
1266 list_del(&page->lru);
1267 zone->free_area[order].nr_free--;
1268 rmv_page_order(page);
1269 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1270
1271 /* Split into individual pages */
1272 set_page_refcounted(page);
1273 split_page(page, order);
1274
1275 if (order >= pageblock_order - 1) {
1276 struct page *endpage = page + (1 << order) - 1;
1277 for (; page < endpage; page += pageblock_nr_pages)
1278 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1279 }
1280
1281 return 1 << order;
1282 }
1283
1284 /*
1285 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1286 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1287 * or two.
1288 */
1289 static inline
1290 struct page *buffered_rmqueue(struct zone *preferred_zone,
1291 struct zone *zone, int order, gfp_t gfp_flags,
1292 int migratetype)
1293 {
1294 unsigned long flags;
1295 struct page *page;
1296 int cold = !!(gfp_flags & __GFP_COLD);
1297
1298 again:
1299 if (likely(order == 0)) {
1300 struct per_cpu_pages *pcp;
1301 struct list_head *list;
1302
1303 local_irq_save(flags);
1304 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1305 list = &pcp->lists[migratetype];
1306 if (list_empty(list)) {
1307 pcp->count += rmqueue_bulk(zone, 0,
1308 pcp->batch, list,
1309 migratetype, cold);
1310 if (unlikely(list_empty(list)))
1311 goto failed;
1312 }
1313
1314 if (cold)
1315 page = list_entry(list->prev, struct page, lru);
1316 else
1317 page = list_entry(list->next, struct page, lru);
1318
1319 list_del(&page->lru);
1320 pcp->count--;
1321 } else {
1322 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1323 /*
1324 * __GFP_NOFAIL is not to be used in new code.
1325 *
1326 * All __GFP_NOFAIL callers should be fixed so that they
1327 * properly detect and handle allocation failures.
1328 *
1329 * We most definitely don't want callers attempting to
1330 * allocate greater than order-1 page units with
1331 * __GFP_NOFAIL.
1332 */
1333 WARN_ON_ONCE(order > 1);
1334 }
1335 spin_lock_irqsave(&zone->lock, flags);
1336 page = __rmqueue(zone, order, migratetype);
1337 spin_unlock(&zone->lock);
1338 if (!page)
1339 goto failed;
1340 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1341 }
1342
1343 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1344 zone_statistics(preferred_zone, zone, gfp_flags);
1345 local_irq_restore(flags);
1346
1347 VM_BUG_ON(bad_range(zone, page));
1348 if (prep_new_page(page, order, gfp_flags))
1349 goto again;
1350 return page;
1351
1352 failed:
1353 local_irq_restore(flags);
1354 return NULL;
1355 }
1356
1357 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1358 #define ALLOC_WMARK_MIN WMARK_MIN
1359 #define ALLOC_WMARK_LOW WMARK_LOW
1360 #define ALLOC_WMARK_HIGH WMARK_HIGH
1361 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1362
1363 /* Mask to get the watermark bits */
1364 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1365
1366 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1367 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1368 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1369
1370 #ifdef CONFIG_FAIL_PAGE_ALLOC
1371
1372 static struct fail_page_alloc_attr {
1373 struct fault_attr attr;
1374
1375 u32 ignore_gfp_highmem;
1376 u32 ignore_gfp_wait;
1377 u32 min_order;
1378
1379 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1380
1381 struct dentry *ignore_gfp_highmem_file;
1382 struct dentry *ignore_gfp_wait_file;
1383 struct dentry *min_order_file;
1384
1385 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1386
1387 } fail_page_alloc = {
1388 .attr = FAULT_ATTR_INITIALIZER,
1389 .ignore_gfp_wait = 1,
1390 .ignore_gfp_highmem = 1,
1391 .min_order = 1,
1392 };
1393
1394 static int __init setup_fail_page_alloc(char *str)
1395 {
1396 return setup_fault_attr(&fail_page_alloc.attr, str);
1397 }
1398 __setup("fail_page_alloc=", setup_fail_page_alloc);
1399
1400 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1401 {
1402 if (order < fail_page_alloc.min_order)
1403 return 0;
1404 if (gfp_mask & __GFP_NOFAIL)
1405 return 0;
1406 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1407 return 0;
1408 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1409 return 0;
1410
1411 return should_fail(&fail_page_alloc.attr, 1 << order);
1412 }
1413
1414 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1415
1416 static int __init fail_page_alloc_debugfs(void)
1417 {
1418 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1419 struct dentry *dir;
1420 int err;
1421
1422 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1423 "fail_page_alloc");
1424 if (err)
1425 return err;
1426 dir = fail_page_alloc.attr.dentries.dir;
1427
1428 fail_page_alloc.ignore_gfp_wait_file =
1429 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1430 &fail_page_alloc.ignore_gfp_wait);
1431
1432 fail_page_alloc.ignore_gfp_highmem_file =
1433 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1434 &fail_page_alloc.ignore_gfp_highmem);
1435 fail_page_alloc.min_order_file =
1436 debugfs_create_u32("min-order", mode, dir,
1437 &fail_page_alloc.min_order);
1438
1439 if (!fail_page_alloc.ignore_gfp_wait_file ||
1440 !fail_page_alloc.ignore_gfp_highmem_file ||
1441 !fail_page_alloc.min_order_file) {
1442 err = -ENOMEM;
1443 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1444 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1445 debugfs_remove(fail_page_alloc.min_order_file);
1446 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1447 }
1448
1449 return err;
1450 }
1451
1452 late_initcall(fail_page_alloc_debugfs);
1453
1454 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1455
1456 #else /* CONFIG_FAIL_PAGE_ALLOC */
1457
1458 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1459 {
1460 return 0;
1461 }
1462
1463 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1464
1465 /*
1466 * Return true if free pages are above 'mark'. This takes into account the order
1467 * of the allocation.
1468 */
1469 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1470 int classzone_idx, int alloc_flags, long free_pages)
1471 {
1472 /* free_pages my go negative - that's OK */
1473 long min = mark;
1474 int o;
1475
1476 free_pages -= (1 << order) + 1;
1477 if (alloc_flags & ALLOC_HIGH)
1478 min -= min / 2;
1479 if (alloc_flags & ALLOC_HARDER)
1480 min -= min / 4;
1481
1482 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1483 return false;
1484 for (o = 0; o < order; o++) {
1485 /* At the next order, this order's pages become unavailable */
1486 free_pages -= z->free_area[o].nr_free << o;
1487
1488 /* Require fewer higher order pages to be free */
1489 min >>= 1;
1490
1491 if (free_pages <= min)
1492 return false;
1493 }
1494 return true;
1495 }
1496
1497 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1498 int classzone_idx, int alloc_flags)
1499 {
1500 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1501 zone_page_state(z, NR_FREE_PAGES));
1502 }
1503
1504 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1505 int classzone_idx, int alloc_flags)
1506 {
1507 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1508
1509 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1510 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1511
1512 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1513 free_pages);
1514 }
1515
1516 #ifdef CONFIG_NUMA
1517 /*
1518 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1519 * skip over zones that are not allowed by the cpuset, or that have
1520 * been recently (in last second) found to be nearly full. See further
1521 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1522 * that have to skip over a lot of full or unallowed zones.
1523 *
1524 * If the zonelist cache is present in the passed in zonelist, then
1525 * returns a pointer to the allowed node mask (either the current
1526 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1527 *
1528 * If the zonelist cache is not available for this zonelist, does
1529 * nothing and returns NULL.
1530 *
1531 * If the fullzones BITMAP in the zonelist cache is stale (more than
1532 * a second since last zap'd) then we zap it out (clear its bits.)
1533 *
1534 * We hold off even calling zlc_setup, until after we've checked the
1535 * first zone in the zonelist, on the theory that most allocations will
1536 * be satisfied from that first zone, so best to examine that zone as
1537 * quickly as we can.
1538 */
1539 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1540 {
1541 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1542 nodemask_t *allowednodes; /* zonelist_cache approximation */
1543
1544 zlc = zonelist->zlcache_ptr;
1545 if (!zlc)
1546 return NULL;
1547
1548 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1549 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1550 zlc->last_full_zap = jiffies;
1551 }
1552
1553 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1554 &cpuset_current_mems_allowed :
1555 &node_states[N_HIGH_MEMORY];
1556 return allowednodes;
1557 }
1558
1559 /*
1560 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1561 * if it is worth looking at further for free memory:
1562 * 1) Check that the zone isn't thought to be full (doesn't have its
1563 * bit set in the zonelist_cache fullzones BITMAP).
1564 * 2) Check that the zones node (obtained from the zonelist_cache
1565 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1566 * Return true (non-zero) if zone is worth looking at further, or
1567 * else return false (zero) if it is not.
1568 *
1569 * This check -ignores- the distinction between various watermarks,
1570 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1571 * found to be full for any variation of these watermarks, it will
1572 * be considered full for up to one second by all requests, unless
1573 * we are so low on memory on all allowed nodes that we are forced
1574 * into the second scan of the zonelist.
1575 *
1576 * In the second scan we ignore this zonelist cache and exactly
1577 * apply the watermarks to all zones, even it is slower to do so.
1578 * We are low on memory in the second scan, and should leave no stone
1579 * unturned looking for a free page.
1580 */
1581 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1582 nodemask_t *allowednodes)
1583 {
1584 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1585 int i; /* index of *z in zonelist zones */
1586 int n; /* node that zone *z is on */
1587
1588 zlc = zonelist->zlcache_ptr;
1589 if (!zlc)
1590 return 1;
1591
1592 i = z - zonelist->_zonerefs;
1593 n = zlc->z_to_n[i];
1594
1595 /* This zone is worth trying if it is allowed but not full */
1596 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1597 }
1598
1599 /*
1600 * Given 'z' scanning a zonelist, set the corresponding bit in
1601 * zlc->fullzones, so that subsequent attempts to allocate a page
1602 * from that zone don't waste time re-examining it.
1603 */
1604 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1605 {
1606 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1607 int i; /* index of *z in zonelist zones */
1608
1609 zlc = zonelist->zlcache_ptr;
1610 if (!zlc)
1611 return;
1612
1613 i = z - zonelist->_zonerefs;
1614
1615 set_bit(i, zlc->fullzones);
1616 }
1617
1618 #else /* CONFIG_NUMA */
1619
1620 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1621 {
1622 return NULL;
1623 }
1624
1625 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1626 nodemask_t *allowednodes)
1627 {
1628 return 1;
1629 }
1630
1631 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1632 {
1633 }
1634 #endif /* CONFIG_NUMA */
1635
1636 /*
1637 * get_page_from_freelist goes through the zonelist trying to allocate
1638 * a page.
1639 */
1640 static struct page *
1641 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1642 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1643 struct zone *preferred_zone, int migratetype)
1644 {
1645 struct zoneref *z;
1646 struct page *page = NULL;
1647 int classzone_idx;
1648 struct zone *zone;
1649 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1650 int zlc_active = 0; /* set if using zonelist_cache */
1651 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1652
1653 classzone_idx = zone_idx(preferred_zone);
1654 zonelist_scan:
1655 /*
1656 * Scan zonelist, looking for a zone with enough free.
1657 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1658 */
1659 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1660 high_zoneidx, nodemask) {
1661 if (NUMA_BUILD && zlc_active &&
1662 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1663 continue;
1664 if ((alloc_flags & ALLOC_CPUSET) &&
1665 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1666 goto try_next_zone;
1667
1668 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1669 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1670 unsigned long mark;
1671 int ret;
1672
1673 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1674 if (zone_watermark_ok(zone, order, mark,
1675 classzone_idx, alloc_flags))
1676 goto try_this_zone;
1677
1678 if (zone_reclaim_mode == 0)
1679 goto this_zone_full;
1680
1681 ret = zone_reclaim(zone, gfp_mask, order);
1682 switch (ret) {
1683 case ZONE_RECLAIM_NOSCAN:
1684 /* did not scan */
1685 goto try_next_zone;
1686 case ZONE_RECLAIM_FULL:
1687 /* scanned but unreclaimable */
1688 goto this_zone_full;
1689 default:
1690 /* did we reclaim enough */
1691 if (!zone_watermark_ok(zone, order, mark,
1692 classzone_idx, alloc_flags))
1693 goto this_zone_full;
1694 }
1695 }
1696
1697 try_this_zone:
1698 page = buffered_rmqueue(preferred_zone, zone, order,
1699 gfp_mask, migratetype);
1700 if (page)
1701 break;
1702 this_zone_full:
1703 if (NUMA_BUILD)
1704 zlc_mark_zone_full(zonelist, z);
1705 try_next_zone:
1706 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1707 /*
1708 * we do zlc_setup after the first zone is tried but only
1709 * if there are multiple nodes make it worthwhile
1710 */
1711 allowednodes = zlc_setup(zonelist, alloc_flags);
1712 zlc_active = 1;
1713 did_zlc_setup = 1;
1714 }
1715 }
1716
1717 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1718 /* Disable zlc cache for second zonelist scan */
1719 zlc_active = 0;
1720 goto zonelist_scan;
1721 }
1722 return page;
1723 }
1724
1725 /*
1726 * Large machines with many possible nodes should not always dump per-node
1727 * meminfo in irq context.
1728 */
1729 static inline bool should_suppress_show_mem(void)
1730 {
1731 bool ret = false;
1732
1733 #if NODES_SHIFT > 8
1734 ret = in_interrupt();
1735 #endif
1736 return ret;
1737 }
1738
1739 static inline int
1740 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1741 unsigned long pages_reclaimed)
1742 {
1743 /* Do not loop if specifically requested */
1744 if (gfp_mask & __GFP_NORETRY)
1745 return 0;
1746
1747 /*
1748 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1749 * means __GFP_NOFAIL, but that may not be true in other
1750 * implementations.
1751 */
1752 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1753 return 1;
1754
1755 /*
1756 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1757 * specified, then we retry until we no longer reclaim any pages
1758 * (above), or we've reclaimed an order of pages at least as
1759 * large as the allocation's order. In both cases, if the
1760 * allocation still fails, we stop retrying.
1761 */
1762 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1763 return 1;
1764
1765 /*
1766 * Don't let big-order allocations loop unless the caller
1767 * explicitly requests that.
1768 */
1769 if (gfp_mask & __GFP_NOFAIL)
1770 return 1;
1771
1772 return 0;
1773 }
1774
1775 static inline struct page *
1776 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1777 struct zonelist *zonelist, enum zone_type high_zoneidx,
1778 nodemask_t *nodemask, struct zone *preferred_zone,
1779 int migratetype)
1780 {
1781 struct page *page;
1782
1783 /* Acquire the OOM killer lock for the zones in zonelist */
1784 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1785 schedule_timeout_uninterruptible(1);
1786 return NULL;
1787 }
1788
1789 /*
1790 * Go through the zonelist yet one more time, keep very high watermark
1791 * here, this is only to catch a parallel oom killing, we must fail if
1792 * we're still under heavy pressure.
1793 */
1794 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1795 order, zonelist, high_zoneidx,
1796 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1797 preferred_zone, migratetype);
1798 if (page)
1799 goto out;
1800
1801 if (!(gfp_mask & __GFP_NOFAIL)) {
1802 /* The OOM killer will not help higher order allocs */
1803 if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 goto out;
1805 /* The OOM killer does not needlessly kill tasks for lowmem */
1806 if (high_zoneidx < ZONE_NORMAL)
1807 goto out;
1808 /*
1809 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1810 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1811 * The caller should handle page allocation failure by itself if
1812 * it specifies __GFP_THISNODE.
1813 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1814 */
1815 if (gfp_mask & __GFP_THISNODE)
1816 goto out;
1817 }
1818 /* Exhausted what can be done so it's blamo time */
1819 out_of_memory(zonelist, gfp_mask, order, nodemask);
1820
1821 out:
1822 clear_zonelist_oom(zonelist, gfp_mask);
1823 return page;
1824 }
1825
1826 #ifdef CONFIG_COMPACTION
1827 /* Try memory compaction for high-order allocations before reclaim */
1828 static struct page *
1829 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1830 struct zonelist *zonelist, enum zone_type high_zoneidx,
1831 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1832 int migratetype, unsigned long *did_some_progress,
1833 bool sync_migration)
1834 {
1835 struct page *page;
1836
1837 if (!order || compaction_deferred(preferred_zone))
1838 return NULL;
1839
1840 current->flags |= PF_MEMALLOC;
1841 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1842 nodemask, sync_migration);
1843 current->flags &= ~PF_MEMALLOC;
1844 if (*did_some_progress != COMPACT_SKIPPED) {
1845
1846 /* Page migration frees to the PCP lists but we want merging */
1847 drain_pages(get_cpu());
1848 put_cpu();
1849
1850 page = get_page_from_freelist(gfp_mask, nodemask,
1851 order, zonelist, high_zoneidx,
1852 alloc_flags, preferred_zone,
1853 migratetype);
1854 if (page) {
1855 preferred_zone->compact_considered = 0;
1856 preferred_zone->compact_defer_shift = 0;
1857 count_vm_event(COMPACTSUCCESS);
1858 return page;
1859 }
1860
1861 /*
1862 * It's bad if compaction run occurs and fails.
1863 * The most likely reason is that pages exist,
1864 * but not enough to satisfy watermarks.
1865 */
1866 count_vm_event(COMPACTFAIL);
1867 defer_compaction(preferred_zone);
1868
1869 cond_resched();
1870 }
1871
1872 return NULL;
1873 }
1874 #else
1875 static inline struct page *
1876 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1877 struct zonelist *zonelist, enum zone_type high_zoneidx,
1878 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1879 int migratetype, unsigned long *did_some_progress,
1880 bool sync_migration)
1881 {
1882 return NULL;
1883 }
1884 #endif /* CONFIG_COMPACTION */
1885
1886 /* The really slow allocator path where we enter direct reclaim */
1887 static inline struct page *
1888 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1889 struct zonelist *zonelist, enum zone_type high_zoneidx,
1890 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1891 int migratetype, unsigned long *did_some_progress)
1892 {
1893 struct page *page = NULL;
1894 struct reclaim_state reclaim_state;
1895 bool drained = false;
1896
1897 cond_resched();
1898
1899 /* We now go into synchronous reclaim */
1900 cpuset_memory_pressure_bump();
1901 current->flags |= PF_MEMALLOC;
1902 lockdep_set_current_reclaim_state(gfp_mask);
1903 reclaim_state.reclaimed_slab = 0;
1904 current->reclaim_state = &reclaim_state;
1905
1906 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1907
1908 current->reclaim_state = NULL;
1909 lockdep_clear_current_reclaim_state();
1910 current->flags &= ~PF_MEMALLOC;
1911
1912 cond_resched();
1913
1914 if (unlikely(!(*did_some_progress)))
1915 return NULL;
1916
1917 retry:
1918 page = get_page_from_freelist(gfp_mask, nodemask, order,
1919 zonelist, high_zoneidx,
1920 alloc_flags, preferred_zone,
1921 migratetype);
1922
1923 /*
1924 * If an allocation failed after direct reclaim, it could be because
1925 * pages are pinned on the per-cpu lists. Drain them and try again
1926 */
1927 if (!page && !drained) {
1928 drain_all_pages();
1929 drained = true;
1930 goto retry;
1931 }
1932
1933 return page;
1934 }
1935
1936 /*
1937 * This is called in the allocator slow-path if the allocation request is of
1938 * sufficient urgency to ignore watermarks and take other desperate measures
1939 */
1940 static inline struct page *
1941 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1942 struct zonelist *zonelist, enum zone_type high_zoneidx,
1943 nodemask_t *nodemask, struct zone *preferred_zone,
1944 int migratetype)
1945 {
1946 struct page *page;
1947
1948 do {
1949 page = get_page_from_freelist(gfp_mask, nodemask, order,
1950 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1951 preferred_zone, migratetype);
1952
1953 if (!page && gfp_mask & __GFP_NOFAIL)
1954 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1955 } while (!page && (gfp_mask & __GFP_NOFAIL));
1956
1957 return page;
1958 }
1959
1960 static inline
1961 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1962 enum zone_type high_zoneidx,
1963 enum zone_type classzone_idx)
1964 {
1965 struct zoneref *z;
1966 struct zone *zone;
1967
1968 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1969 wakeup_kswapd(zone, order, classzone_idx);
1970 }
1971
1972 static inline int
1973 gfp_to_alloc_flags(gfp_t gfp_mask)
1974 {
1975 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1976 const gfp_t wait = gfp_mask & __GFP_WAIT;
1977
1978 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1979 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
1980
1981 /*
1982 * The caller may dip into page reserves a bit more if the caller
1983 * cannot run direct reclaim, or if the caller has realtime scheduling
1984 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1985 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1986 */
1987 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1988
1989 if (!wait) {
1990 /*
1991 * Not worth trying to allocate harder for
1992 * __GFP_NOMEMALLOC even if it can't schedule.
1993 */
1994 if (!(gfp_mask & __GFP_NOMEMALLOC))
1995 alloc_flags |= ALLOC_HARDER;
1996 /*
1997 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1998 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1999 */
2000 alloc_flags &= ~ALLOC_CPUSET;
2001 } else if (unlikely(rt_task(current)) && !in_interrupt())
2002 alloc_flags |= ALLOC_HARDER;
2003
2004 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2005 if (!in_interrupt() &&
2006 ((current->flags & PF_MEMALLOC) ||
2007 unlikely(test_thread_flag(TIF_MEMDIE))))
2008 alloc_flags |= ALLOC_NO_WATERMARKS;
2009 }
2010
2011 return alloc_flags;
2012 }
2013
2014 static inline struct page *
2015 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2016 struct zonelist *zonelist, enum zone_type high_zoneidx,
2017 nodemask_t *nodemask, struct zone *preferred_zone,
2018 int migratetype)
2019 {
2020 const gfp_t wait = gfp_mask & __GFP_WAIT;
2021 struct page *page = NULL;
2022 int alloc_flags;
2023 unsigned long pages_reclaimed = 0;
2024 unsigned long did_some_progress;
2025 bool sync_migration = false;
2026
2027 /*
2028 * In the slowpath, we sanity check order to avoid ever trying to
2029 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2030 * be using allocators in order of preference for an area that is
2031 * too large.
2032 */
2033 if (order >= MAX_ORDER) {
2034 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2035 return NULL;
2036 }
2037
2038 /*
2039 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2040 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2041 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2042 * using a larger set of nodes after it has established that the
2043 * allowed per node queues are empty and that nodes are
2044 * over allocated.
2045 */
2046 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2047 goto nopage;
2048
2049 restart:
2050 if (!(gfp_mask & __GFP_NO_KSWAPD))
2051 wake_all_kswapd(order, zonelist, high_zoneidx,
2052 zone_idx(preferred_zone));
2053
2054 /*
2055 * OK, we're below the kswapd watermark and have kicked background
2056 * reclaim. Now things get more complex, so set up alloc_flags according
2057 * to how we want to proceed.
2058 */
2059 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2060
2061 /*
2062 * Find the true preferred zone if the allocation is unconstrained by
2063 * cpusets.
2064 */
2065 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2066 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2067 &preferred_zone);
2068
2069 /* This is the last chance, in general, before the goto nopage. */
2070 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2071 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2072 preferred_zone, migratetype);
2073 if (page)
2074 goto got_pg;
2075
2076 rebalance:
2077 /* Allocate without watermarks if the context allows */
2078 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2079 page = __alloc_pages_high_priority(gfp_mask, order,
2080 zonelist, high_zoneidx, nodemask,
2081 preferred_zone, migratetype);
2082 if (page)
2083 goto got_pg;
2084 }
2085
2086 /* Atomic allocations - we can't balance anything */
2087 if (!wait)
2088 goto nopage;
2089
2090 /* Avoid recursion of direct reclaim */
2091 if (current->flags & PF_MEMALLOC)
2092 goto nopage;
2093
2094 /* Avoid allocations with no watermarks from looping endlessly */
2095 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2096 goto nopage;
2097
2098 /*
2099 * Try direct compaction. The first pass is asynchronous. Subsequent
2100 * attempts after direct reclaim are synchronous
2101 */
2102 page = __alloc_pages_direct_compact(gfp_mask, order,
2103 zonelist, high_zoneidx,
2104 nodemask,
2105 alloc_flags, preferred_zone,
2106 migratetype, &did_some_progress,
2107 sync_migration);
2108 if (page)
2109 goto got_pg;
2110 sync_migration = true;
2111
2112 /* Try direct reclaim and then allocating */
2113 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2114 zonelist, high_zoneidx,
2115 nodemask,
2116 alloc_flags, preferred_zone,
2117 migratetype, &did_some_progress);
2118 if (page)
2119 goto got_pg;
2120
2121 /*
2122 * If we failed to make any progress reclaiming, then we are
2123 * running out of options and have to consider going OOM
2124 */
2125 if (!did_some_progress) {
2126 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2127 if (oom_killer_disabled)
2128 goto nopage;
2129 page = __alloc_pages_may_oom(gfp_mask, order,
2130 zonelist, high_zoneidx,
2131 nodemask, preferred_zone,
2132 migratetype);
2133 if (page)
2134 goto got_pg;
2135
2136 if (!(gfp_mask & __GFP_NOFAIL)) {
2137 /*
2138 * The oom killer is not called for high-order
2139 * allocations that may fail, so if no progress
2140 * is being made, there are no other options and
2141 * retrying is unlikely to help.
2142 */
2143 if (order > PAGE_ALLOC_COSTLY_ORDER)
2144 goto nopage;
2145 /*
2146 * The oom killer is not called for lowmem
2147 * allocations to prevent needlessly killing
2148 * innocent tasks.
2149 */
2150 if (high_zoneidx < ZONE_NORMAL)
2151 goto nopage;
2152 }
2153
2154 goto restart;
2155 }
2156 }
2157
2158 /* Check if we should retry the allocation */
2159 pages_reclaimed += did_some_progress;
2160 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2161 /* Wait for some write requests to complete then retry */
2162 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2163 goto rebalance;
2164 } else {
2165 /*
2166 * High-order allocations do not necessarily loop after
2167 * direct reclaim and reclaim/compaction depends on compaction
2168 * being called after reclaim so call directly if necessary
2169 */
2170 page = __alloc_pages_direct_compact(gfp_mask, order,
2171 zonelist, high_zoneidx,
2172 nodemask,
2173 alloc_flags, preferred_zone,
2174 migratetype, &did_some_progress,
2175 sync_migration);
2176 if (page)
2177 goto got_pg;
2178 }
2179
2180 nopage:
2181 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2182 unsigned int filter = SHOW_MEM_FILTER_NODES;
2183
2184 /*
2185 * This documents exceptions given to allocations in certain
2186 * contexts that are allowed to allocate outside current's set
2187 * of allowed nodes.
2188 */
2189 if (!(gfp_mask & __GFP_NOMEMALLOC))
2190 if (test_thread_flag(TIF_MEMDIE) ||
2191 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2192 filter &= ~SHOW_MEM_FILTER_NODES;
2193 if (in_interrupt() || !wait)
2194 filter &= ~SHOW_MEM_FILTER_NODES;
2195
2196 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2197 current->comm, order, gfp_mask);
2198 dump_stack();
2199 if (!should_suppress_show_mem())
2200 show_mem(filter);
2201 }
2202 return page;
2203 got_pg:
2204 if (kmemcheck_enabled)
2205 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2206 return page;
2207
2208 }
2209
2210 /*
2211 * This is the 'heart' of the zoned buddy allocator.
2212 */
2213 struct page *
2214 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2215 struct zonelist *zonelist, nodemask_t *nodemask)
2216 {
2217 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2218 struct zone *preferred_zone;
2219 struct page *page;
2220 int migratetype = allocflags_to_migratetype(gfp_mask);
2221
2222 gfp_mask &= gfp_allowed_mask;
2223
2224 lockdep_trace_alloc(gfp_mask);
2225
2226 might_sleep_if(gfp_mask & __GFP_WAIT);
2227
2228 if (should_fail_alloc_page(gfp_mask, order))
2229 return NULL;
2230
2231 /*
2232 * Check the zones suitable for the gfp_mask contain at least one
2233 * valid zone. It's possible to have an empty zonelist as a result
2234 * of GFP_THISNODE and a memoryless node
2235 */
2236 if (unlikely(!zonelist->_zonerefs->zone))
2237 return NULL;
2238
2239 get_mems_allowed();
2240 /* The preferred zone is used for statistics later */
2241 first_zones_zonelist(zonelist, high_zoneidx,
2242 nodemask ? : &cpuset_current_mems_allowed,
2243 &preferred_zone);
2244 if (!preferred_zone) {
2245 put_mems_allowed();
2246 return NULL;
2247 }
2248
2249 /* First allocation attempt */
2250 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2251 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2252 preferred_zone, migratetype);
2253 if (unlikely(!page))
2254 page = __alloc_pages_slowpath(gfp_mask, order,
2255 zonelist, high_zoneidx, nodemask,
2256 preferred_zone, migratetype);
2257 put_mems_allowed();
2258
2259 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2260 return page;
2261 }
2262 EXPORT_SYMBOL(__alloc_pages_nodemask);
2263
2264 /*
2265 * Common helper functions.
2266 */
2267 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2268 {
2269 struct page *page;
2270
2271 /*
2272 * __get_free_pages() returns a 32-bit address, which cannot represent
2273 * a highmem page
2274 */
2275 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2276
2277 page = alloc_pages(gfp_mask, order);
2278 if (!page)
2279 return 0;
2280 return (unsigned long) page_address(page);
2281 }
2282 EXPORT_SYMBOL(__get_free_pages);
2283
2284 unsigned long get_zeroed_page(gfp_t gfp_mask)
2285 {
2286 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2287 }
2288 EXPORT_SYMBOL(get_zeroed_page);
2289
2290 void __pagevec_free(struct pagevec *pvec)
2291 {
2292 int i = pagevec_count(pvec);
2293
2294 while (--i >= 0) {
2295 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2296 free_hot_cold_page(pvec->pages[i], pvec->cold);
2297 }
2298 }
2299
2300 void __free_pages(struct page *page, unsigned int order)
2301 {
2302 if (put_page_testzero(page)) {
2303 if (order == 0)
2304 free_hot_cold_page(page, 0);
2305 else
2306 __free_pages_ok(page, order);
2307 }
2308 }
2309
2310 EXPORT_SYMBOL(__free_pages);
2311
2312 void free_pages(unsigned long addr, unsigned int order)
2313 {
2314 if (addr != 0) {
2315 VM_BUG_ON(!virt_addr_valid((void *)addr));
2316 __free_pages(virt_to_page((void *)addr), order);
2317 }
2318 }
2319
2320 EXPORT_SYMBOL(free_pages);
2321
2322 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2323 {
2324 if (addr) {
2325 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2326 unsigned long used = addr + PAGE_ALIGN(size);
2327
2328 split_page(virt_to_page((void *)addr), order);
2329 while (used < alloc_end) {
2330 free_page(used);
2331 used += PAGE_SIZE;
2332 }
2333 }
2334 return (void *)addr;
2335 }
2336
2337 /**
2338 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2339 * @size: the number of bytes to allocate
2340 * @gfp_mask: GFP flags for the allocation
2341 *
2342 * This function is similar to alloc_pages(), except that it allocates the
2343 * minimum number of pages to satisfy the request. alloc_pages() can only
2344 * allocate memory in power-of-two pages.
2345 *
2346 * This function is also limited by MAX_ORDER.
2347 *
2348 * Memory allocated by this function must be released by free_pages_exact().
2349 */
2350 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2351 {
2352 unsigned int order = get_order(size);
2353 unsigned long addr;
2354
2355 addr = __get_free_pages(gfp_mask, order);
2356 return make_alloc_exact(addr, order, size);
2357 }
2358 EXPORT_SYMBOL(alloc_pages_exact);
2359
2360 /**
2361 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2362 * pages on a node.
2363 * @nid: the preferred node ID where memory should be allocated
2364 * @size: the number of bytes to allocate
2365 * @gfp_mask: GFP flags for the allocation
2366 *
2367 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2368 * back.
2369 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2370 * but is not exact.
2371 */
2372 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2373 {
2374 unsigned order = get_order(size);
2375 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2376 if (!p)
2377 return NULL;
2378 return make_alloc_exact((unsigned long)page_address(p), order, size);
2379 }
2380 EXPORT_SYMBOL(alloc_pages_exact_nid);
2381
2382 /**
2383 * free_pages_exact - release memory allocated via alloc_pages_exact()
2384 * @virt: the value returned by alloc_pages_exact.
2385 * @size: size of allocation, same value as passed to alloc_pages_exact().
2386 *
2387 * Release the memory allocated by a previous call to alloc_pages_exact.
2388 */
2389 void free_pages_exact(void *virt, size_t size)
2390 {
2391 unsigned long addr = (unsigned long)virt;
2392 unsigned long end = addr + PAGE_ALIGN(size);
2393
2394 while (addr < end) {
2395 free_page(addr);
2396 addr += PAGE_SIZE;
2397 }
2398 }
2399 EXPORT_SYMBOL(free_pages_exact);
2400
2401 static unsigned int nr_free_zone_pages(int offset)
2402 {
2403 struct zoneref *z;
2404 struct zone *zone;
2405
2406 /* Just pick one node, since fallback list is circular */
2407 unsigned int sum = 0;
2408
2409 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2410
2411 for_each_zone_zonelist(zone, z, zonelist, offset) {
2412 unsigned long size = zone->present_pages;
2413 unsigned long high = high_wmark_pages(zone);
2414 if (size > high)
2415 sum += size - high;
2416 }
2417
2418 return sum;
2419 }
2420
2421 /*
2422 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2423 */
2424 unsigned int nr_free_buffer_pages(void)
2425 {
2426 return nr_free_zone_pages(gfp_zone(GFP_USER));
2427 }
2428 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2429
2430 /*
2431 * Amount of free RAM allocatable within all zones
2432 */
2433 unsigned int nr_free_pagecache_pages(void)
2434 {
2435 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2436 }
2437
2438 static inline void show_node(struct zone *zone)
2439 {
2440 if (NUMA_BUILD)
2441 printk("Node %d ", zone_to_nid(zone));
2442 }
2443
2444 void si_meminfo(struct sysinfo *val)
2445 {
2446 val->totalram = totalram_pages;
2447 val->sharedram = 0;
2448 val->freeram = global_page_state(NR_FREE_PAGES);
2449 val->bufferram = nr_blockdev_pages();
2450 val->totalhigh = totalhigh_pages;
2451 val->freehigh = nr_free_highpages();
2452 val->mem_unit = PAGE_SIZE;
2453 }
2454
2455 EXPORT_SYMBOL(si_meminfo);
2456
2457 #ifdef CONFIG_NUMA
2458 void si_meminfo_node(struct sysinfo *val, int nid)
2459 {
2460 pg_data_t *pgdat = NODE_DATA(nid);
2461
2462 val->totalram = pgdat->node_present_pages;
2463 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2464 #ifdef CONFIG_HIGHMEM
2465 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2466 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2467 NR_FREE_PAGES);
2468 #else
2469 val->totalhigh = 0;
2470 val->freehigh = 0;
2471 #endif
2472 val->mem_unit = PAGE_SIZE;
2473 }
2474 #endif
2475
2476 /*
2477 * Determine whether the node should be displayed or not, depending on whether
2478 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2479 */
2480 bool skip_free_areas_node(unsigned int flags, int nid)
2481 {
2482 bool ret = false;
2483
2484 if (!(flags & SHOW_MEM_FILTER_NODES))
2485 goto out;
2486
2487 get_mems_allowed();
2488 ret = !node_isset(nid, cpuset_current_mems_allowed);
2489 put_mems_allowed();
2490 out:
2491 return ret;
2492 }
2493
2494 #define K(x) ((x) << (PAGE_SHIFT-10))
2495
2496 /*
2497 * Show free area list (used inside shift_scroll-lock stuff)
2498 * We also calculate the percentage fragmentation. We do this by counting the
2499 * memory on each free list with the exception of the first item on the list.
2500 * Suppresses nodes that are not allowed by current's cpuset if
2501 * SHOW_MEM_FILTER_NODES is passed.
2502 */
2503 void show_free_areas(unsigned int filter)
2504 {
2505 int cpu;
2506 struct zone *zone;
2507
2508 for_each_populated_zone(zone) {
2509 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2510 continue;
2511 show_node(zone);
2512 printk("%s per-cpu:\n", zone->name);
2513
2514 for_each_online_cpu(cpu) {
2515 struct per_cpu_pageset *pageset;
2516
2517 pageset = per_cpu_ptr(zone->pageset, cpu);
2518
2519 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2520 cpu, pageset->pcp.high,
2521 pageset->pcp.batch, pageset->pcp.count);
2522 }
2523 }
2524
2525 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2526 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2527 " unevictable:%lu"
2528 " dirty:%lu writeback:%lu unstable:%lu\n"
2529 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2530 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2531 global_page_state(NR_ACTIVE_ANON),
2532 global_page_state(NR_INACTIVE_ANON),
2533 global_page_state(NR_ISOLATED_ANON),
2534 global_page_state(NR_ACTIVE_FILE),
2535 global_page_state(NR_INACTIVE_FILE),
2536 global_page_state(NR_ISOLATED_FILE),
2537 global_page_state(NR_UNEVICTABLE),
2538 global_page_state(NR_FILE_DIRTY),
2539 global_page_state(NR_WRITEBACK),
2540 global_page_state(NR_UNSTABLE_NFS),
2541 global_page_state(NR_FREE_PAGES),
2542 global_page_state(NR_SLAB_RECLAIMABLE),
2543 global_page_state(NR_SLAB_UNRECLAIMABLE),
2544 global_page_state(NR_FILE_MAPPED),
2545 global_page_state(NR_SHMEM),
2546 global_page_state(NR_PAGETABLE),
2547 global_page_state(NR_BOUNCE));
2548
2549 for_each_populated_zone(zone) {
2550 int i;
2551
2552 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2553 continue;
2554 show_node(zone);
2555 printk("%s"
2556 " free:%lukB"
2557 " min:%lukB"
2558 " low:%lukB"
2559 " high:%lukB"
2560 " active_anon:%lukB"
2561 " inactive_anon:%lukB"
2562 " active_file:%lukB"
2563 " inactive_file:%lukB"
2564 " unevictable:%lukB"
2565 " isolated(anon):%lukB"
2566 " isolated(file):%lukB"
2567 " present:%lukB"
2568 " mlocked:%lukB"
2569 " dirty:%lukB"
2570 " writeback:%lukB"
2571 " mapped:%lukB"
2572 " shmem:%lukB"
2573 " slab_reclaimable:%lukB"
2574 " slab_unreclaimable:%lukB"
2575 " kernel_stack:%lukB"
2576 " pagetables:%lukB"
2577 " unstable:%lukB"
2578 " bounce:%lukB"
2579 " writeback_tmp:%lukB"
2580 " pages_scanned:%lu"
2581 " all_unreclaimable? %s"
2582 "\n",
2583 zone->name,
2584 K(zone_page_state(zone, NR_FREE_PAGES)),
2585 K(min_wmark_pages(zone)),
2586 K(low_wmark_pages(zone)),
2587 K(high_wmark_pages(zone)),
2588 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2589 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2590 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2591 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2592 K(zone_page_state(zone, NR_UNEVICTABLE)),
2593 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2594 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2595 K(zone->present_pages),
2596 K(zone_page_state(zone, NR_MLOCK)),
2597 K(zone_page_state(zone, NR_FILE_DIRTY)),
2598 K(zone_page_state(zone, NR_WRITEBACK)),
2599 K(zone_page_state(zone, NR_FILE_MAPPED)),
2600 K(zone_page_state(zone, NR_SHMEM)),
2601 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2602 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2603 zone_page_state(zone, NR_KERNEL_STACK) *
2604 THREAD_SIZE / 1024,
2605 K(zone_page_state(zone, NR_PAGETABLE)),
2606 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2607 K(zone_page_state(zone, NR_BOUNCE)),
2608 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2609 zone->pages_scanned,
2610 (zone->all_unreclaimable ? "yes" : "no")
2611 );
2612 printk("lowmem_reserve[]:");
2613 for (i = 0; i < MAX_NR_ZONES; i++)
2614 printk(" %lu", zone->lowmem_reserve[i]);
2615 printk("\n");
2616 }
2617
2618 for_each_populated_zone(zone) {
2619 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2620
2621 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2622 continue;
2623 show_node(zone);
2624 printk("%s: ", zone->name);
2625
2626 spin_lock_irqsave(&zone->lock, flags);
2627 for (order = 0; order < MAX_ORDER; order++) {
2628 nr[order] = zone->free_area[order].nr_free;
2629 total += nr[order] << order;
2630 }
2631 spin_unlock_irqrestore(&zone->lock, flags);
2632 for (order = 0; order < MAX_ORDER; order++)
2633 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2634 printk("= %lukB\n", K(total));
2635 }
2636
2637 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2638
2639 show_swap_cache_info();
2640 }
2641
2642 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2643 {
2644 zoneref->zone = zone;
2645 zoneref->zone_idx = zone_idx(zone);
2646 }
2647
2648 /*
2649 * Builds allocation fallback zone lists.
2650 *
2651 * Add all populated zones of a node to the zonelist.
2652 */
2653 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2654 int nr_zones, enum zone_type zone_type)
2655 {
2656 struct zone *zone;
2657
2658 BUG_ON(zone_type >= MAX_NR_ZONES);
2659 zone_type++;
2660
2661 do {
2662 zone_type--;
2663 zone = pgdat->node_zones + zone_type;
2664 if (populated_zone(zone)) {
2665 zoneref_set_zone(zone,
2666 &zonelist->_zonerefs[nr_zones++]);
2667 check_highest_zone(zone_type);
2668 }
2669
2670 } while (zone_type);
2671 return nr_zones;
2672 }
2673
2674
2675 /*
2676 * zonelist_order:
2677 * 0 = automatic detection of better ordering.
2678 * 1 = order by ([node] distance, -zonetype)
2679 * 2 = order by (-zonetype, [node] distance)
2680 *
2681 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2682 * the same zonelist. So only NUMA can configure this param.
2683 */
2684 #define ZONELIST_ORDER_DEFAULT 0
2685 #define ZONELIST_ORDER_NODE 1
2686 #define ZONELIST_ORDER_ZONE 2
2687
2688 /* zonelist order in the kernel.
2689 * set_zonelist_order() will set this to NODE or ZONE.
2690 */
2691 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2692 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2693
2694
2695 #ifdef CONFIG_NUMA
2696 /* The value user specified ....changed by config */
2697 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2698 /* string for sysctl */
2699 #define NUMA_ZONELIST_ORDER_LEN 16
2700 char numa_zonelist_order[16] = "default";
2701
2702 /*
2703 * interface for configure zonelist ordering.
2704 * command line option "numa_zonelist_order"
2705 * = "[dD]efault - default, automatic configuration.
2706 * = "[nN]ode - order by node locality, then by zone within node
2707 * = "[zZ]one - order by zone, then by locality within zone
2708 */
2709
2710 static int __parse_numa_zonelist_order(char *s)
2711 {
2712 if (*s == 'd' || *s == 'D') {
2713 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2714 } else if (*s == 'n' || *s == 'N') {
2715 user_zonelist_order = ZONELIST_ORDER_NODE;
2716 } else if (*s == 'z' || *s == 'Z') {
2717 user_zonelist_order = ZONELIST_ORDER_ZONE;
2718 } else {
2719 printk(KERN_WARNING
2720 "Ignoring invalid numa_zonelist_order value: "
2721 "%s\n", s);
2722 return -EINVAL;
2723 }
2724 return 0;
2725 }
2726
2727 static __init int setup_numa_zonelist_order(char *s)
2728 {
2729 int ret;
2730
2731 if (!s)
2732 return 0;
2733
2734 ret = __parse_numa_zonelist_order(s);
2735 if (ret == 0)
2736 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2737
2738 return ret;
2739 }
2740 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2741
2742 /*
2743 * sysctl handler for numa_zonelist_order
2744 */
2745 int numa_zonelist_order_handler(ctl_table *table, int write,
2746 void __user *buffer, size_t *length,
2747 loff_t *ppos)
2748 {
2749 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2750 int ret;
2751 static DEFINE_MUTEX(zl_order_mutex);
2752
2753 mutex_lock(&zl_order_mutex);
2754 if (write)
2755 strcpy(saved_string, (char*)table->data);
2756 ret = proc_dostring(table, write, buffer, length, ppos);
2757 if (ret)
2758 goto out;
2759 if (write) {
2760 int oldval = user_zonelist_order;
2761 if (__parse_numa_zonelist_order((char*)table->data)) {
2762 /*
2763 * bogus value. restore saved string
2764 */
2765 strncpy((char*)table->data, saved_string,
2766 NUMA_ZONELIST_ORDER_LEN);
2767 user_zonelist_order = oldval;
2768 } else if (oldval != user_zonelist_order) {
2769 mutex_lock(&zonelists_mutex);
2770 build_all_zonelists(NULL);
2771 mutex_unlock(&zonelists_mutex);
2772 }
2773 }
2774 out:
2775 mutex_unlock(&zl_order_mutex);
2776 return ret;
2777 }
2778
2779
2780 #define MAX_NODE_LOAD (nr_online_nodes)
2781 static int node_load[MAX_NUMNODES];
2782
2783 /**
2784 * find_next_best_node - find the next node that should appear in a given node's fallback list
2785 * @node: node whose fallback list we're appending
2786 * @used_node_mask: nodemask_t of already used nodes
2787 *
2788 * We use a number of factors to determine which is the next node that should
2789 * appear on a given node's fallback list. The node should not have appeared
2790 * already in @node's fallback list, and it should be the next closest node
2791 * according to the distance array (which contains arbitrary distance values
2792 * from each node to each node in the system), and should also prefer nodes
2793 * with no CPUs, since presumably they'll have very little allocation pressure
2794 * on them otherwise.
2795 * It returns -1 if no node is found.
2796 */
2797 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2798 {
2799 int n, val;
2800 int min_val = INT_MAX;
2801 int best_node = -1;
2802 const struct cpumask *tmp = cpumask_of_node(0);
2803
2804 /* Use the local node if we haven't already */
2805 if (!node_isset(node, *used_node_mask)) {
2806 node_set(node, *used_node_mask);
2807 return node;
2808 }
2809
2810 for_each_node_state(n, N_HIGH_MEMORY) {
2811
2812 /* Don't want a node to appear more than once */
2813 if (node_isset(n, *used_node_mask))
2814 continue;
2815
2816 /* Use the distance array to find the distance */
2817 val = node_distance(node, n);
2818
2819 /* Penalize nodes under us ("prefer the next node") */
2820 val += (n < node);
2821
2822 /* Give preference to headless and unused nodes */
2823 tmp = cpumask_of_node(n);
2824 if (!cpumask_empty(tmp))
2825 val += PENALTY_FOR_NODE_WITH_CPUS;
2826
2827 /* Slight preference for less loaded node */
2828 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2829 val += node_load[n];
2830
2831 if (val < min_val) {
2832 min_val = val;
2833 best_node = n;
2834 }
2835 }
2836
2837 if (best_node >= 0)
2838 node_set(best_node, *used_node_mask);
2839
2840 return best_node;
2841 }
2842
2843
2844 /*
2845 * Build zonelists ordered by node and zones within node.
2846 * This results in maximum locality--normal zone overflows into local
2847 * DMA zone, if any--but risks exhausting DMA zone.
2848 */
2849 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2850 {
2851 int j;
2852 struct zonelist *zonelist;
2853
2854 zonelist = &pgdat->node_zonelists[0];
2855 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2856 ;
2857 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2858 MAX_NR_ZONES - 1);
2859 zonelist->_zonerefs[j].zone = NULL;
2860 zonelist->_zonerefs[j].zone_idx = 0;
2861 }
2862
2863 /*
2864 * Build gfp_thisnode zonelists
2865 */
2866 static void build_thisnode_zonelists(pg_data_t *pgdat)
2867 {
2868 int j;
2869 struct zonelist *zonelist;
2870
2871 zonelist = &pgdat->node_zonelists[1];
2872 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2873 zonelist->_zonerefs[j].zone = NULL;
2874 zonelist->_zonerefs[j].zone_idx = 0;
2875 }
2876
2877 /*
2878 * Build zonelists ordered by zone and nodes within zones.
2879 * This results in conserving DMA zone[s] until all Normal memory is
2880 * exhausted, but results in overflowing to remote node while memory
2881 * may still exist in local DMA zone.
2882 */
2883 static int node_order[MAX_NUMNODES];
2884
2885 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2886 {
2887 int pos, j, node;
2888 int zone_type; /* needs to be signed */
2889 struct zone *z;
2890 struct zonelist *zonelist;
2891
2892 zonelist = &pgdat->node_zonelists[0];
2893 pos = 0;
2894 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2895 for (j = 0; j < nr_nodes; j++) {
2896 node = node_order[j];
2897 z = &NODE_DATA(node)->node_zones[zone_type];
2898 if (populated_zone(z)) {
2899 zoneref_set_zone(z,
2900 &zonelist->_zonerefs[pos++]);
2901 check_highest_zone(zone_type);
2902 }
2903 }
2904 }
2905 zonelist->_zonerefs[pos].zone = NULL;
2906 zonelist->_zonerefs[pos].zone_idx = 0;
2907 }
2908
2909 static int default_zonelist_order(void)
2910 {
2911 int nid, zone_type;
2912 unsigned long low_kmem_size,total_size;
2913 struct zone *z;
2914 int average_size;
2915 /*
2916 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2917 * If they are really small and used heavily, the system can fall
2918 * into OOM very easily.
2919 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2920 */
2921 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2922 low_kmem_size = 0;
2923 total_size = 0;
2924 for_each_online_node(nid) {
2925 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2926 z = &NODE_DATA(nid)->node_zones[zone_type];
2927 if (populated_zone(z)) {
2928 if (zone_type < ZONE_NORMAL)
2929 low_kmem_size += z->present_pages;
2930 total_size += z->present_pages;
2931 } else if (zone_type == ZONE_NORMAL) {
2932 /*
2933 * If any node has only lowmem, then node order
2934 * is preferred to allow kernel allocations
2935 * locally; otherwise, they can easily infringe
2936 * on other nodes when there is an abundance of
2937 * lowmem available to allocate from.
2938 */
2939 return ZONELIST_ORDER_NODE;
2940 }
2941 }
2942 }
2943 if (!low_kmem_size || /* there are no DMA area. */
2944 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2945 return ZONELIST_ORDER_NODE;
2946 /*
2947 * look into each node's config.
2948 * If there is a node whose DMA/DMA32 memory is very big area on
2949 * local memory, NODE_ORDER may be suitable.
2950 */
2951 average_size = total_size /
2952 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2953 for_each_online_node(nid) {
2954 low_kmem_size = 0;
2955 total_size = 0;
2956 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2957 z = &NODE_DATA(nid)->node_zones[zone_type];
2958 if (populated_zone(z)) {
2959 if (zone_type < ZONE_NORMAL)
2960 low_kmem_size += z->present_pages;
2961 total_size += z->present_pages;
2962 }
2963 }
2964 if (low_kmem_size &&
2965 total_size > average_size && /* ignore small node */
2966 low_kmem_size > total_size * 70/100)
2967 return ZONELIST_ORDER_NODE;
2968 }
2969 return ZONELIST_ORDER_ZONE;
2970 }
2971
2972 static void set_zonelist_order(void)
2973 {
2974 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2975 current_zonelist_order = default_zonelist_order();
2976 else
2977 current_zonelist_order = user_zonelist_order;
2978 }
2979
2980 static void build_zonelists(pg_data_t *pgdat)
2981 {
2982 int j, node, load;
2983 enum zone_type i;
2984 nodemask_t used_mask;
2985 int local_node, prev_node;
2986 struct zonelist *zonelist;
2987 int order = current_zonelist_order;
2988
2989 /* initialize zonelists */
2990 for (i = 0; i < MAX_ZONELISTS; i++) {
2991 zonelist = pgdat->node_zonelists + i;
2992 zonelist->_zonerefs[0].zone = NULL;
2993 zonelist->_zonerefs[0].zone_idx = 0;
2994 }
2995
2996 /* NUMA-aware ordering of nodes */
2997 local_node = pgdat->node_id;
2998 load = nr_online_nodes;
2999 prev_node = local_node;
3000 nodes_clear(used_mask);
3001
3002 memset(node_order, 0, sizeof(node_order));
3003 j = 0;
3004
3005 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3006 int distance = node_distance(local_node, node);
3007
3008 /*
3009 * If another node is sufficiently far away then it is better
3010 * to reclaim pages in a zone before going off node.
3011 */
3012 if (distance > RECLAIM_DISTANCE)
3013 zone_reclaim_mode = 1;
3014
3015 /*
3016 * We don't want to pressure a particular node.
3017 * So adding penalty to the first node in same
3018 * distance group to make it round-robin.
3019 */
3020 if (distance != node_distance(local_node, prev_node))
3021 node_load[node] = load;
3022
3023 prev_node = node;
3024 load--;
3025 if (order == ZONELIST_ORDER_NODE)
3026 build_zonelists_in_node_order(pgdat, node);
3027 else
3028 node_order[j++] = node; /* remember order */
3029 }
3030
3031 if (order == ZONELIST_ORDER_ZONE) {
3032 /* calculate node order -- i.e., DMA last! */
3033 build_zonelists_in_zone_order(pgdat, j);
3034 }
3035
3036 build_thisnode_zonelists(pgdat);
3037 }
3038
3039 /* Construct the zonelist performance cache - see further mmzone.h */
3040 static void build_zonelist_cache(pg_data_t *pgdat)
3041 {
3042 struct zonelist *zonelist;
3043 struct zonelist_cache *zlc;
3044 struct zoneref *z;
3045
3046 zonelist = &pgdat->node_zonelists[0];
3047 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3048 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3049 for (z = zonelist->_zonerefs; z->zone; z++)
3050 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3051 }
3052
3053 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3054 /*
3055 * Return node id of node used for "local" allocations.
3056 * I.e., first node id of first zone in arg node's generic zonelist.
3057 * Used for initializing percpu 'numa_mem', which is used primarily
3058 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3059 */
3060 int local_memory_node(int node)
3061 {
3062 struct zone *zone;
3063
3064 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3065 gfp_zone(GFP_KERNEL),
3066 NULL,
3067 &zone);
3068 return zone->node;
3069 }
3070 #endif
3071
3072 #else /* CONFIG_NUMA */
3073
3074 static void set_zonelist_order(void)
3075 {
3076 current_zonelist_order = ZONELIST_ORDER_ZONE;
3077 }
3078
3079 static void build_zonelists(pg_data_t *pgdat)
3080 {
3081 int node, local_node;
3082 enum zone_type j;
3083 struct zonelist *zonelist;
3084
3085 local_node = pgdat->node_id;
3086
3087 zonelist = &pgdat->node_zonelists[0];
3088 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3089
3090 /*
3091 * Now we build the zonelist so that it contains the zones
3092 * of all the other nodes.
3093 * We don't want to pressure a particular node, so when
3094 * building the zones for node N, we make sure that the
3095 * zones coming right after the local ones are those from
3096 * node N+1 (modulo N)
3097 */
3098 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3099 if (!node_online(node))
3100 continue;
3101 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3102 MAX_NR_ZONES - 1);
3103 }
3104 for (node = 0; node < local_node; node++) {
3105 if (!node_online(node))
3106 continue;
3107 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3108 MAX_NR_ZONES - 1);
3109 }
3110
3111 zonelist->_zonerefs[j].zone = NULL;
3112 zonelist->_zonerefs[j].zone_idx = 0;
3113 }
3114
3115 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3116 static void build_zonelist_cache(pg_data_t *pgdat)
3117 {
3118 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3119 }
3120
3121 #endif /* CONFIG_NUMA */
3122
3123 /*
3124 * Boot pageset table. One per cpu which is going to be used for all
3125 * zones and all nodes. The parameters will be set in such a way
3126 * that an item put on a list will immediately be handed over to
3127 * the buddy list. This is safe since pageset manipulation is done
3128 * with interrupts disabled.
3129 *
3130 * The boot_pagesets must be kept even after bootup is complete for
3131 * unused processors and/or zones. They do play a role for bootstrapping
3132 * hotplugged processors.
3133 *
3134 * zoneinfo_show() and maybe other functions do
3135 * not check if the processor is online before following the pageset pointer.
3136 * Other parts of the kernel may not check if the zone is available.
3137 */
3138 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3139 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3140 static void setup_zone_pageset(struct zone *zone);
3141
3142 /*
3143 * Global mutex to protect against size modification of zonelists
3144 * as well as to serialize pageset setup for the new populated zone.
3145 */
3146 DEFINE_MUTEX(zonelists_mutex);
3147
3148 /* return values int ....just for stop_machine() */
3149 static __init_refok int __build_all_zonelists(void *data)
3150 {
3151 int nid;
3152 int cpu;
3153
3154 #ifdef CONFIG_NUMA
3155 memset(node_load, 0, sizeof(node_load));
3156 #endif
3157 for_each_online_node(nid) {
3158 pg_data_t *pgdat = NODE_DATA(nid);
3159
3160 build_zonelists(pgdat);
3161 build_zonelist_cache(pgdat);
3162 }
3163
3164 /*
3165 * Initialize the boot_pagesets that are going to be used
3166 * for bootstrapping processors. The real pagesets for
3167 * each zone will be allocated later when the per cpu
3168 * allocator is available.
3169 *
3170 * boot_pagesets are used also for bootstrapping offline
3171 * cpus if the system is already booted because the pagesets
3172 * are needed to initialize allocators on a specific cpu too.
3173 * F.e. the percpu allocator needs the page allocator which
3174 * needs the percpu allocator in order to allocate its pagesets
3175 * (a chicken-egg dilemma).
3176 */
3177 for_each_possible_cpu(cpu) {
3178 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3179
3180 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3181 /*
3182 * We now know the "local memory node" for each node--
3183 * i.e., the node of the first zone in the generic zonelist.
3184 * Set up numa_mem percpu variable for on-line cpus. During
3185 * boot, only the boot cpu should be on-line; we'll init the
3186 * secondary cpus' numa_mem as they come on-line. During
3187 * node/memory hotplug, we'll fixup all on-line cpus.
3188 */
3189 if (cpu_online(cpu))
3190 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3191 #endif
3192 }
3193
3194 return 0;
3195 }
3196
3197 /*
3198 * Called with zonelists_mutex held always
3199 * unless system_state == SYSTEM_BOOTING.
3200 */
3201 void __ref build_all_zonelists(void *data)
3202 {
3203 set_zonelist_order();
3204
3205 if (system_state == SYSTEM_BOOTING) {
3206 __build_all_zonelists(NULL);
3207 mminit_verify_zonelist();
3208 cpuset_init_current_mems_allowed();
3209 } else {
3210 /* we have to stop all cpus to guarantee there is no user
3211 of zonelist */
3212 #ifdef CONFIG_MEMORY_HOTPLUG
3213 if (data)
3214 setup_zone_pageset((struct zone *)data);
3215 #endif
3216 stop_machine(__build_all_zonelists, NULL, NULL);
3217 /* cpuset refresh routine should be here */
3218 }
3219 vm_total_pages = nr_free_pagecache_pages();
3220 /*
3221 * Disable grouping by mobility if the number of pages in the
3222 * system is too low to allow the mechanism to work. It would be
3223 * more accurate, but expensive to check per-zone. This check is
3224 * made on memory-hotadd so a system can start with mobility
3225 * disabled and enable it later
3226 */
3227 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3228 page_group_by_mobility_disabled = 1;
3229 else
3230 page_group_by_mobility_disabled = 0;
3231
3232 printk("Built %i zonelists in %s order, mobility grouping %s. "
3233 "Total pages: %ld\n",
3234 nr_online_nodes,
3235 zonelist_order_name[current_zonelist_order],
3236 page_group_by_mobility_disabled ? "off" : "on",
3237 vm_total_pages);
3238 #ifdef CONFIG_NUMA
3239 printk("Policy zone: %s\n", zone_names[policy_zone]);
3240 #endif
3241 }
3242
3243 /*
3244 * Helper functions to size the waitqueue hash table.
3245 * Essentially these want to choose hash table sizes sufficiently
3246 * large so that collisions trying to wait on pages are rare.
3247 * But in fact, the number of active page waitqueues on typical
3248 * systems is ridiculously low, less than 200. So this is even
3249 * conservative, even though it seems large.
3250 *
3251 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3252 * waitqueues, i.e. the size of the waitq table given the number of pages.
3253 */
3254 #define PAGES_PER_WAITQUEUE 256
3255
3256 #ifndef CONFIG_MEMORY_HOTPLUG
3257 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3258 {
3259 unsigned long size = 1;
3260
3261 pages /= PAGES_PER_WAITQUEUE;
3262
3263 while (size < pages)
3264 size <<= 1;
3265
3266 /*
3267 * Once we have dozens or even hundreds of threads sleeping
3268 * on IO we've got bigger problems than wait queue collision.
3269 * Limit the size of the wait table to a reasonable size.
3270 */
3271 size = min(size, 4096UL);
3272
3273 return max(size, 4UL);
3274 }
3275 #else
3276 /*
3277 * A zone's size might be changed by hot-add, so it is not possible to determine
3278 * a suitable size for its wait_table. So we use the maximum size now.
3279 *
3280 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3281 *
3282 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3283 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3284 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3285 *
3286 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3287 * or more by the traditional way. (See above). It equals:
3288 *
3289 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3290 * ia64(16K page size) : = ( 8G + 4M)byte.
3291 * powerpc (64K page size) : = (32G +16M)byte.
3292 */
3293 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3294 {
3295 return 4096UL;
3296 }
3297 #endif
3298
3299 /*
3300 * This is an integer logarithm so that shifts can be used later
3301 * to extract the more random high bits from the multiplicative
3302 * hash function before the remainder is taken.
3303 */
3304 static inline unsigned long wait_table_bits(unsigned long size)
3305 {
3306 return ffz(~size);
3307 }
3308
3309 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3310
3311 /*
3312 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3313 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3314 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3315 * higher will lead to a bigger reserve which will get freed as contiguous
3316 * blocks as reclaim kicks in
3317 */
3318 static void setup_zone_migrate_reserve(struct zone *zone)
3319 {
3320 unsigned long start_pfn, pfn, end_pfn;
3321 struct page *page;
3322 unsigned long block_migratetype;
3323 int reserve;
3324
3325 /* Get the start pfn, end pfn and the number of blocks to reserve */
3326 start_pfn = zone->zone_start_pfn;
3327 end_pfn = start_pfn + zone->spanned_pages;
3328 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3329 pageblock_order;
3330
3331 /*
3332 * Reserve blocks are generally in place to help high-order atomic
3333 * allocations that are short-lived. A min_free_kbytes value that
3334 * would result in more than 2 reserve blocks for atomic allocations
3335 * is assumed to be in place to help anti-fragmentation for the
3336 * future allocation of hugepages at runtime.
3337 */
3338 reserve = min(2, reserve);
3339
3340 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3341 if (!pfn_valid(pfn))
3342 continue;
3343 page = pfn_to_page(pfn);
3344
3345 /* Watch out for overlapping nodes */
3346 if (page_to_nid(page) != zone_to_nid(zone))
3347 continue;
3348
3349 /* Blocks with reserved pages will never free, skip them. */
3350 if (PageReserved(page))
3351 continue;
3352
3353 block_migratetype = get_pageblock_migratetype(page);
3354
3355 /* If this block is reserved, account for it */
3356 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3357 reserve--;
3358 continue;
3359 }
3360
3361 /* Suitable for reserving if this block is movable */
3362 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3363 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3364 move_freepages_block(zone, page, MIGRATE_RESERVE);
3365 reserve--;
3366 continue;
3367 }
3368
3369 /*
3370 * If the reserve is met and this is a previous reserved block,
3371 * take it back
3372 */
3373 if (block_migratetype == MIGRATE_RESERVE) {
3374 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3375 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3376 }
3377 }
3378 }
3379
3380 /*
3381 * Initially all pages are reserved - free ones are freed
3382 * up by free_all_bootmem() once the early boot process is
3383 * done. Non-atomic initialization, single-pass.
3384 */
3385 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3386 unsigned long start_pfn, enum memmap_context context)
3387 {
3388 struct page *page;
3389 unsigned long end_pfn = start_pfn + size;
3390 unsigned long pfn;
3391 struct zone *z;
3392
3393 if (highest_memmap_pfn < end_pfn - 1)
3394 highest_memmap_pfn = end_pfn - 1;
3395
3396 z = &NODE_DATA(nid)->node_zones[zone];
3397 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3398 /*
3399 * There can be holes in boot-time mem_map[]s
3400 * handed to this function. They do not
3401 * exist on hotplugged memory.
3402 */
3403 if (context == MEMMAP_EARLY) {
3404 if (!early_pfn_valid(pfn))
3405 continue;
3406 if (!early_pfn_in_nid(pfn, nid))
3407 continue;
3408 }
3409 page = pfn_to_page(pfn);
3410 set_page_links(page, zone, nid, pfn);
3411 mminit_verify_page_links(page, zone, nid, pfn);
3412 init_page_count(page);
3413 reset_page_mapcount(page);
3414 SetPageReserved(page);
3415 /*
3416 * Mark the block movable so that blocks are reserved for
3417 * movable at startup. This will force kernel allocations
3418 * to reserve their blocks rather than leaking throughout
3419 * the address space during boot when many long-lived
3420 * kernel allocations are made. Later some blocks near
3421 * the start are marked MIGRATE_RESERVE by
3422 * setup_zone_migrate_reserve()
3423 *
3424 * bitmap is created for zone's valid pfn range. but memmap
3425 * can be created for invalid pages (for alignment)
3426 * check here not to call set_pageblock_migratetype() against
3427 * pfn out of zone.
3428 */
3429 if ((z->zone_start_pfn <= pfn)
3430 && (pfn < z->zone_start_pfn + z->spanned_pages)
3431 && !(pfn & (pageblock_nr_pages - 1)))
3432 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3433
3434 INIT_LIST_HEAD(&page->lru);
3435 #ifdef WANT_PAGE_VIRTUAL
3436 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3437 if (!is_highmem_idx(zone))
3438 set_page_address(page, __va(pfn << PAGE_SHIFT));
3439 #endif
3440 }
3441 }
3442
3443 static void __meminit zone_init_free_lists(struct zone *zone)
3444 {
3445 int order, t;
3446 for_each_migratetype_order(order, t) {
3447 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3448 zone->free_area[order].nr_free = 0;
3449 }
3450 }
3451
3452 #ifndef __HAVE_ARCH_MEMMAP_INIT
3453 #define memmap_init(size, nid, zone, start_pfn) \
3454 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3455 #endif
3456
3457 static int zone_batchsize(struct zone *zone)
3458 {
3459 #ifdef CONFIG_MMU
3460 int batch;
3461
3462 /*
3463 * The per-cpu-pages pools are set to around 1000th of the
3464 * size of the zone. But no more than 1/2 of a meg.
3465 *
3466 * OK, so we don't know how big the cache is. So guess.
3467 */
3468 batch = zone->present_pages / 1024;
3469 if (batch * PAGE_SIZE > 512 * 1024)
3470 batch = (512 * 1024) / PAGE_SIZE;
3471 batch /= 4; /* We effectively *= 4 below */
3472 if (batch < 1)
3473 batch = 1;
3474
3475 /*
3476 * Clamp the batch to a 2^n - 1 value. Having a power
3477 * of 2 value was found to be more likely to have
3478 * suboptimal cache aliasing properties in some cases.
3479 *
3480 * For example if 2 tasks are alternately allocating
3481 * batches of pages, one task can end up with a lot
3482 * of pages of one half of the possible page colors
3483 * and the other with pages of the other colors.
3484 */
3485 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3486
3487 return batch;
3488
3489 #else
3490 /* The deferral and batching of frees should be suppressed under NOMMU
3491 * conditions.
3492 *
3493 * The problem is that NOMMU needs to be able to allocate large chunks
3494 * of contiguous memory as there's no hardware page translation to
3495 * assemble apparent contiguous memory from discontiguous pages.
3496 *
3497 * Queueing large contiguous runs of pages for batching, however,
3498 * causes the pages to actually be freed in smaller chunks. As there
3499 * can be a significant delay between the individual batches being
3500 * recycled, this leads to the once large chunks of space being
3501 * fragmented and becoming unavailable for high-order allocations.
3502 */
3503 return 0;
3504 #endif
3505 }
3506
3507 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3508 {
3509 struct per_cpu_pages *pcp;
3510 int migratetype;
3511
3512 memset(p, 0, sizeof(*p));
3513
3514 pcp = &p->pcp;
3515 pcp->count = 0;
3516 pcp->high = 6 * batch;
3517 pcp->batch = max(1UL, 1 * batch);
3518 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3519 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3520 }
3521
3522 /*
3523 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3524 * to the value high for the pageset p.
3525 */
3526
3527 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3528 unsigned long high)
3529 {
3530 struct per_cpu_pages *pcp;
3531
3532 pcp = &p->pcp;
3533 pcp->high = high;
3534 pcp->batch = max(1UL, high/4);
3535 if ((high/4) > (PAGE_SHIFT * 8))
3536 pcp->batch = PAGE_SHIFT * 8;
3537 }
3538
3539 static void setup_zone_pageset(struct zone *zone)
3540 {
3541 int cpu;
3542
3543 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3544
3545 for_each_possible_cpu(cpu) {
3546 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3547
3548 setup_pageset(pcp, zone_batchsize(zone));
3549
3550 if (percpu_pagelist_fraction)
3551 setup_pagelist_highmark(pcp,
3552 (zone->present_pages /
3553 percpu_pagelist_fraction));
3554 }
3555 }
3556
3557 /*
3558 * Allocate per cpu pagesets and initialize them.
3559 * Before this call only boot pagesets were available.
3560 */
3561 void __init setup_per_cpu_pageset(void)
3562 {
3563 struct zone *zone;
3564
3565 for_each_populated_zone(zone)
3566 setup_zone_pageset(zone);
3567 }
3568
3569 static noinline __init_refok
3570 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3571 {
3572 int i;
3573 struct pglist_data *pgdat = zone->zone_pgdat;
3574 size_t alloc_size;
3575
3576 /*
3577 * The per-page waitqueue mechanism uses hashed waitqueues
3578 * per zone.
3579 */
3580 zone->wait_table_hash_nr_entries =
3581 wait_table_hash_nr_entries(zone_size_pages);
3582 zone->wait_table_bits =
3583 wait_table_bits(zone->wait_table_hash_nr_entries);
3584 alloc_size = zone->wait_table_hash_nr_entries
3585 * sizeof(wait_queue_head_t);
3586
3587 if (!slab_is_available()) {
3588 zone->wait_table = (wait_queue_head_t *)
3589 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3590 } else {
3591 /*
3592 * This case means that a zone whose size was 0 gets new memory
3593 * via memory hot-add.
3594 * But it may be the case that a new node was hot-added. In
3595 * this case vmalloc() will not be able to use this new node's
3596 * memory - this wait_table must be initialized to use this new
3597 * node itself as well.
3598 * To use this new node's memory, further consideration will be
3599 * necessary.
3600 */
3601 zone->wait_table = vmalloc(alloc_size);
3602 }
3603 if (!zone->wait_table)
3604 return -ENOMEM;
3605
3606 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3607 init_waitqueue_head(zone->wait_table + i);
3608
3609 return 0;
3610 }
3611
3612 static int __zone_pcp_update(void *data)
3613 {
3614 struct zone *zone = data;
3615 int cpu;
3616 unsigned long batch = zone_batchsize(zone), flags;
3617
3618 for_each_possible_cpu(cpu) {
3619 struct per_cpu_pageset *pset;
3620 struct per_cpu_pages *pcp;
3621
3622 pset = per_cpu_ptr(zone->pageset, cpu);
3623 pcp = &pset->pcp;
3624
3625 local_irq_save(flags);
3626 free_pcppages_bulk(zone, pcp->count, pcp);
3627 setup_pageset(pset, batch);
3628 local_irq_restore(flags);
3629 }
3630 return 0;
3631 }
3632
3633 void zone_pcp_update(struct zone *zone)
3634 {
3635 stop_machine(__zone_pcp_update, zone, NULL);
3636 }
3637
3638 static __meminit void zone_pcp_init(struct zone *zone)
3639 {
3640 /*
3641 * per cpu subsystem is not up at this point. The following code
3642 * relies on the ability of the linker to provide the
3643 * offset of a (static) per cpu variable into the per cpu area.
3644 */
3645 zone->pageset = &boot_pageset;
3646
3647 if (zone->present_pages)
3648 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3649 zone->name, zone->present_pages,
3650 zone_batchsize(zone));
3651 }
3652
3653 __meminit int init_currently_empty_zone(struct zone *zone,
3654 unsigned long zone_start_pfn,
3655 unsigned long size,
3656 enum memmap_context context)
3657 {
3658 struct pglist_data *pgdat = zone->zone_pgdat;
3659 int ret;
3660 ret = zone_wait_table_init(zone, size);
3661 if (ret)
3662 return ret;
3663 pgdat->nr_zones = zone_idx(zone) + 1;
3664
3665 zone->zone_start_pfn = zone_start_pfn;
3666
3667 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3668 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3669 pgdat->node_id,
3670 (unsigned long)zone_idx(zone),
3671 zone_start_pfn, (zone_start_pfn + size));
3672
3673 zone_init_free_lists(zone);
3674
3675 return 0;
3676 }
3677
3678 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3679 /*
3680 * Basic iterator support. Return the first range of PFNs for a node
3681 * Note: nid == MAX_NUMNODES returns first region regardless of node
3682 */
3683 static int __meminit first_active_region_index_in_nid(int nid)
3684 {
3685 int i;
3686
3687 for (i = 0; i < nr_nodemap_entries; i++)
3688 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3689 return i;
3690
3691 return -1;
3692 }
3693
3694 /*
3695 * Basic iterator support. Return the next active range of PFNs for a node
3696 * Note: nid == MAX_NUMNODES returns next region regardless of node
3697 */
3698 static int __meminit next_active_region_index_in_nid(int index, int nid)
3699 {
3700 for (index = index + 1; index < nr_nodemap_entries; index++)
3701 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3702 return index;
3703
3704 return -1;
3705 }
3706
3707 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3708 /*
3709 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3710 * Architectures may implement their own version but if add_active_range()
3711 * was used and there are no special requirements, this is a convenient
3712 * alternative
3713 */
3714 int __meminit __early_pfn_to_nid(unsigned long pfn)
3715 {
3716 int i;
3717
3718 for (i = 0; i < nr_nodemap_entries; i++) {
3719 unsigned long start_pfn = early_node_map[i].start_pfn;
3720 unsigned long end_pfn = early_node_map[i].end_pfn;
3721
3722 if (start_pfn <= pfn && pfn < end_pfn)
3723 return early_node_map[i].nid;
3724 }
3725 /* This is a memory hole */
3726 return -1;
3727 }
3728 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3729
3730 int __meminit early_pfn_to_nid(unsigned long pfn)
3731 {
3732 int nid;
3733
3734 nid = __early_pfn_to_nid(pfn);
3735 if (nid >= 0)
3736 return nid;
3737 /* just returns 0 */
3738 return 0;
3739 }
3740
3741 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3742 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3743 {
3744 int nid;
3745
3746 nid = __early_pfn_to_nid(pfn);
3747 if (nid >= 0 && nid != node)
3748 return false;
3749 return true;
3750 }
3751 #endif
3752
3753 /* Basic iterator support to walk early_node_map[] */
3754 #define for_each_active_range_index_in_nid(i, nid) \
3755 for (i = first_active_region_index_in_nid(nid); i != -1; \
3756 i = next_active_region_index_in_nid(i, nid))
3757
3758 /**
3759 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3760 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3761 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3762 *
3763 * If an architecture guarantees that all ranges registered with
3764 * add_active_ranges() contain no holes and may be freed, this
3765 * this function may be used instead of calling free_bootmem() manually.
3766 */
3767 void __init free_bootmem_with_active_regions(int nid,
3768 unsigned long max_low_pfn)
3769 {
3770 int i;
3771
3772 for_each_active_range_index_in_nid(i, nid) {
3773 unsigned long size_pages = 0;
3774 unsigned long end_pfn = early_node_map[i].end_pfn;
3775
3776 if (early_node_map[i].start_pfn >= max_low_pfn)
3777 continue;
3778
3779 if (end_pfn > max_low_pfn)
3780 end_pfn = max_low_pfn;
3781
3782 size_pages = end_pfn - early_node_map[i].start_pfn;
3783 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3784 PFN_PHYS(early_node_map[i].start_pfn),
3785 size_pages << PAGE_SHIFT);
3786 }
3787 }
3788
3789 #ifdef CONFIG_HAVE_MEMBLOCK
3790 /*
3791 * Basic iterator support. Return the last range of PFNs for a node
3792 * Note: nid == MAX_NUMNODES returns last region regardless of node
3793 */
3794 static int __meminit last_active_region_index_in_nid(int nid)
3795 {
3796 int i;
3797
3798 for (i = nr_nodemap_entries - 1; i >= 0; i--)
3799 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3800 return i;
3801
3802 return -1;
3803 }
3804
3805 /*
3806 * Basic iterator support. Return the previous active range of PFNs for a node
3807 * Note: nid == MAX_NUMNODES returns next region regardless of node
3808 */
3809 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3810 {
3811 for (index = index - 1; index >= 0; index--)
3812 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3813 return index;
3814
3815 return -1;
3816 }
3817
3818 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3819 for (i = last_active_region_index_in_nid(nid); i != -1; \
3820 i = previous_active_region_index_in_nid(i, nid))
3821
3822 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3823 u64 goal, u64 limit)
3824 {
3825 int i;
3826
3827 /* Need to go over early_node_map to find out good range for node */
3828 for_each_active_range_index_in_nid_reverse(i, nid) {
3829 u64 addr;
3830 u64 ei_start, ei_last;
3831 u64 final_start, final_end;
3832
3833 ei_last = early_node_map[i].end_pfn;
3834 ei_last <<= PAGE_SHIFT;
3835 ei_start = early_node_map[i].start_pfn;
3836 ei_start <<= PAGE_SHIFT;
3837
3838 final_start = max(ei_start, goal);
3839 final_end = min(ei_last, limit);
3840
3841 if (final_start >= final_end)
3842 continue;
3843
3844 addr = memblock_find_in_range(final_start, final_end, size, align);
3845
3846 if (addr == MEMBLOCK_ERROR)
3847 continue;
3848
3849 return addr;
3850 }
3851
3852 return MEMBLOCK_ERROR;
3853 }
3854 #endif
3855
3856 int __init add_from_early_node_map(struct range *range, int az,
3857 int nr_range, int nid)
3858 {
3859 int i;
3860 u64 start, end;
3861
3862 /* need to go over early_node_map to find out good range for node */
3863 for_each_active_range_index_in_nid(i, nid) {
3864 start = early_node_map[i].start_pfn;
3865 end = early_node_map[i].end_pfn;
3866 nr_range = add_range(range, az, nr_range, start, end);
3867 }
3868 return nr_range;
3869 }
3870
3871 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3872 {
3873 int i;
3874 int ret;
3875
3876 for_each_active_range_index_in_nid(i, nid) {
3877 ret = work_fn(early_node_map[i].start_pfn,
3878 early_node_map[i].end_pfn, data);
3879 if (ret)
3880 break;
3881 }
3882 }
3883 /**
3884 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3885 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3886 *
3887 * If an architecture guarantees that all ranges registered with
3888 * add_active_ranges() contain no holes and may be freed, this
3889 * function may be used instead of calling memory_present() manually.
3890 */
3891 void __init sparse_memory_present_with_active_regions(int nid)
3892 {
3893 int i;
3894
3895 for_each_active_range_index_in_nid(i, nid)
3896 memory_present(early_node_map[i].nid,
3897 early_node_map[i].start_pfn,
3898 early_node_map[i].end_pfn);
3899 }
3900
3901 /**
3902 * get_pfn_range_for_nid - Return the start and end page frames for a node
3903 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3904 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3905 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3906 *
3907 * It returns the start and end page frame of a node based on information
3908 * provided by an arch calling add_active_range(). If called for a node
3909 * with no available memory, a warning is printed and the start and end
3910 * PFNs will be 0.
3911 */
3912 void __meminit get_pfn_range_for_nid(unsigned int nid,
3913 unsigned long *start_pfn, unsigned long *end_pfn)
3914 {
3915 int i;
3916 *start_pfn = -1UL;
3917 *end_pfn = 0;
3918
3919 for_each_active_range_index_in_nid(i, nid) {
3920 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3921 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3922 }
3923
3924 if (*start_pfn == -1UL)
3925 *start_pfn = 0;
3926 }
3927
3928 /*
3929 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3930 * assumption is made that zones within a node are ordered in monotonic
3931 * increasing memory addresses so that the "highest" populated zone is used
3932 */
3933 static void __init find_usable_zone_for_movable(void)
3934 {
3935 int zone_index;
3936 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3937 if (zone_index == ZONE_MOVABLE)
3938 continue;
3939
3940 if (arch_zone_highest_possible_pfn[zone_index] >
3941 arch_zone_lowest_possible_pfn[zone_index])
3942 break;
3943 }
3944
3945 VM_BUG_ON(zone_index == -1);
3946 movable_zone = zone_index;
3947 }
3948
3949 /*
3950 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3951 * because it is sized independent of architecture. Unlike the other zones,
3952 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3953 * in each node depending on the size of each node and how evenly kernelcore
3954 * is distributed. This helper function adjusts the zone ranges
3955 * provided by the architecture for a given node by using the end of the
3956 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3957 * zones within a node are in order of monotonic increases memory addresses
3958 */
3959 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3960 unsigned long zone_type,
3961 unsigned long node_start_pfn,
3962 unsigned long node_end_pfn,
3963 unsigned long *zone_start_pfn,
3964 unsigned long *zone_end_pfn)
3965 {
3966 /* Only adjust if ZONE_MOVABLE is on this node */
3967 if (zone_movable_pfn[nid]) {
3968 /* Size ZONE_MOVABLE */
3969 if (zone_type == ZONE_MOVABLE) {
3970 *zone_start_pfn = zone_movable_pfn[nid];
3971 *zone_end_pfn = min(node_end_pfn,
3972 arch_zone_highest_possible_pfn[movable_zone]);
3973
3974 /* Adjust for ZONE_MOVABLE starting within this range */
3975 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3976 *zone_end_pfn > zone_movable_pfn[nid]) {
3977 *zone_end_pfn = zone_movable_pfn[nid];
3978
3979 /* Check if this whole range is within ZONE_MOVABLE */
3980 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3981 *zone_start_pfn = *zone_end_pfn;
3982 }
3983 }
3984
3985 /*
3986 * Return the number of pages a zone spans in a node, including holes
3987 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3988 */
3989 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3990 unsigned long zone_type,
3991 unsigned long *ignored)
3992 {
3993 unsigned long node_start_pfn, node_end_pfn;
3994 unsigned long zone_start_pfn, zone_end_pfn;
3995
3996 /* Get the start and end of the node and zone */
3997 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3998 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3999 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4000 adjust_zone_range_for_zone_movable(nid, zone_type,
4001 node_start_pfn, node_end_pfn,
4002 &zone_start_pfn, &zone_end_pfn);
4003
4004 /* Check that this node has pages within the zone's required range */
4005 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4006 return 0;
4007
4008 /* Move the zone boundaries inside the node if necessary */
4009 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4010 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4011
4012 /* Return the spanned pages */
4013 return zone_end_pfn - zone_start_pfn;
4014 }
4015
4016 /*
4017 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4018 * then all holes in the requested range will be accounted for.
4019 */
4020 unsigned long __meminit __absent_pages_in_range(int nid,
4021 unsigned long range_start_pfn,
4022 unsigned long range_end_pfn)
4023 {
4024 int i = 0;
4025 unsigned long prev_end_pfn = 0, hole_pages = 0;
4026 unsigned long start_pfn;
4027
4028 /* Find the end_pfn of the first active range of pfns in the node */
4029 i = first_active_region_index_in_nid(nid);
4030 if (i == -1)
4031 return 0;
4032
4033 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4034
4035 /* Account for ranges before physical memory on this node */
4036 if (early_node_map[i].start_pfn > range_start_pfn)
4037 hole_pages = prev_end_pfn - range_start_pfn;
4038
4039 /* Find all holes for the zone within the node */
4040 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4041
4042 /* No need to continue if prev_end_pfn is outside the zone */
4043 if (prev_end_pfn >= range_end_pfn)
4044 break;
4045
4046 /* Make sure the end of the zone is not within the hole */
4047 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4048 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4049
4050 /* Update the hole size cound and move on */
4051 if (start_pfn > range_start_pfn) {
4052 BUG_ON(prev_end_pfn > start_pfn);
4053 hole_pages += start_pfn - prev_end_pfn;
4054 }
4055 prev_end_pfn = early_node_map[i].end_pfn;
4056 }
4057
4058 /* Account for ranges past physical memory on this node */
4059 if (range_end_pfn > prev_end_pfn)
4060 hole_pages += range_end_pfn -
4061 max(range_start_pfn, prev_end_pfn);
4062
4063 return hole_pages;
4064 }
4065
4066 /**
4067 * absent_pages_in_range - Return number of page frames in holes within a range
4068 * @start_pfn: The start PFN to start searching for holes
4069 * @end_pfn: The end PFN to stop searching for holes
4070 *
4071 * It returns the number of pages frames in memory holes within a range.
4072 */
4073 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4074 unsigned long end_pfn)
4075 {
4076 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4077 }
4078
4079 /* Return the number of page frames in holes in a zone on a node */
4080 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4081 unsigned long zone_type,
4082 unsigned long *ignored)
4083 {
4084 unsigned long node_start_pfn, node_end_pfn;
4085 unsigned long zone_start_pfn, zone_end_pfn;
4086
4087 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4088 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4089 node_start_pfn);
4090 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4091 node_end_pfn);
4092
4093 adjust_zone_range_for_zone_movable(nid, zone_type,
4094 node_start_pfn, node_end_pfn,
4095 &zone_start_pfn, &zone_end_pfn);
4096 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4097 }
4098
4099 #else
4100 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4101 unsigned long zone_type,
4102 unsigned long *zones_size)
4103 {
4104 return zones_size[zone_type];
4105 }
4106
4107 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4108 unsigned long zone_type,
4109 unsigned long *zholes_size)
4110 {
4111 if (!zholes_size)
4112 return 0;
4113
4114 return zholes_size[zone_type];
4115 }
4116
4117 #endif
4118
4119 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4120 unsigned long *zones_size, unsigned long *zholes_size)
4121 {
4122 unsigned long realtotalpages, totalpages = 0;
4123 enum zone_type i;
4124
4125 for (i = 0; i < MAX_NR_ZONES; i++)
4126 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4127 zones_size);
4128 pgdat->node_spanned_pages = totalpages;
4129
4130 realtotalpages = totalpages;
4131 for (i = 0; i < MAX_NR_ZONES; i++)
4132 realtotalpages -=
4133 zone_absent_pages_in_node(pgdat->node_id, i,
4134 zholes_size);
4135 pgdat->node_present_pages = realtotalpages;
4136 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4137 realtotalpages);
4138 }
4139
4140 #ifndef CONFIG_SPARSEMEM
4141 /*
4142 * Calculate the size of the zone->blockflags rounded to an unsigned long
4143 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4144 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4145 * round what is now in bits to nearest long in bits, then return it in
4146 * bytes.
4147 */
4148 static unsigned long __init usemap_size(unsigned long zonesize)
4149 {
4150 unsigned long usemapsize;
4151
4152 usemapsize = roundup(zonesize, pageblock_nr_pages);
4153 usemapsize = usemapsize >> pageblock_order;
4154 usemapsize *= NR_PAGEBLOCK_BITS;
4155 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4156
4157 return usemapsize / 8;
4158 }
4159
4160 static void __init setup_usemap(struct pglist_data *pgdat,
4161 struct zone *zone, unsigned long zonesize)
4162 {
4163 unsigned long usemapsize = usemap_size(zonesize);
4164 zone->pageblock_flags = NULL;
4165 if (usemapsize)
4166 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4167 usemapsize);
4168 }
4169 #else
4170 static inline void setup_usemap(struct pglist_data *pgdat,
4171 struct zone *zone, unsigned long zonesize) {}
4172 #endif /* CONFIG_SPARSEMEM */
4173
4174 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4175
4176 /* Return a sensible default order for the pageblock size. */
4177 static inline int pageblock_default_order(void)
4178 {
4179 if (HPAGE_SHIFT > PAGE_SHIFT)
4180 return HUGETLB_PAGE_ORDER;
4181
4182 return MAX_ORDER-1;
4183 }
4184
4185 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4186 static inline void __init set_pageblock_order(unsigned int order)
4187 {
4188 /* Check that pageblock_nr_pages has not already been setup */
4189 if (pageblock_order)
4190 return;
4191
4192 /*
4193 * Assume the largest contiguous order of interest is a huge page.
4194 * This value may be variable depending on boot parameters on IA64
4195 */
4196 pageblock_order = order;
4197 }
4198 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4199
4200 /*
4201 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4202 * and pageblock_default_order() are unused as pageblock_order is set
4203 * at compile-time. See include/linux/pageblock-flags.h for the values of
4204 * pageblock_order based on the kernel config
4205 */
4206 static inline int pageblock_default_order(unsigned int order)
4207 {
4208 return MAX_ORDER-1;
4209 }
4210 #define set_pageblock_order(x) do {} while (0)
4211
4212 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4213
4214 /*
4215 * Set up the zone data structures:
4216 * - mark all pages reserved
4217 * - mark all memory queues empty
4218 * - clear the memory bitmaps
4219 */
4220 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4221 unsigned long *zones_size, unsigned long *zholes_size)
4222 {
4223 enum zone_type j;
4224 int nid = pgdat->node_id;
4225 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4226 int ret;
4227
4228 pgdat_resize_init(pgdat);
4229 pgdat->nr_zones = 0;
4230 init_waitqueue_head(&pgdat->kswapd_wait);
4231 pgdat->kswapd_max_order = 0;
4232 pgdat_page_cgroup_init(pgdat);
4233
4234 for (j = 0; j < MAX_NR_ZONES; j++) {
4235 struct zone *zone = pgdat->node_zones + j;
4236 unsigned long size, realsize, memmap_pages;
4237 enum lru_list l;
4238
4239 size = zone_spanned_pages_in_node(nid, j, zones_size);
4240 realsize = size - zone_absent_pages_in_node(nid, j,
4241 zholes_size);
4242
4243 /*
4244 * Adjust realsize so that it accounts for how much memory
4245 * is used by this zone for memmap. This affects the watermark
4246 * and per-cpu initialisations
4247 */
4248 memmap_pages =
4249 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4250 if (realsize >= memmap_pages) {
4251 realsize -= memmap_pages;
4252 if (memmap_pages)
4253 printk(KERN_DEBUG
4254 " %s zone: %lu pages used for memmap\n",
4255 zone_names[j], memmap_pages);
4256 } else
4257 printk(KERN_WARNING
4258 " %s zone: %lu pages exceeds realsize %lu\n",
4259 zone_names[j], memmap_pages, realsize);
4260
4261 /* Account for reserved pages */
4262 if (j == 0 && realsize > dma_reserve) {
4263 realsize -= dma_reserve;
4264 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4265 zone_names[0], dma_reserve);
4266 }
4267
4268 if (!is_highmem_idx(j))
4269 nr_kernel_pages += realsize;
4270 nr_all_pages += realsize;
4271
4272 zone->spanned_pages = size;
4273 zone->present_pages = realsize;
4274 #ifdef CONFIG_NUMA
4275 zone->node = nid;
4276 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4277 / 100;
4278 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4279 #endif
4280 zone->name = zone_names[j];
4281 spin_lock_init(&zone->lock);
4282 spin_lock_init(&zone->lru_lock);
4283 zone_seqlock_init(zone);
4284 zone->zone_pgdat = pgdat;
4285
4286 zone_pcp_init(zone);
4287 for_each_lru(l) {
4288 INIT_LIST_HEAD(&zone->lru[l].list);
4289 zone->reclaim_stat.nr_saved_scan[l] = 0;
4290 }
4291 zone->reclaim_stat.recent_rotated[0] = 0;
4292 zone->reclaim_stat.recent_rotated[1] = 0;
4293 zone->reclaim_stat.recent_scanned[0] = 0;
4294 zone->reclaim_stat.recent_scanned[1] = 0;
4295 zap_zone_vm_stats(zone);
4296 zone->flags = 0;
4297 if (!size)
4298 continue;
4299
4300 set_pageblock_order(pageblock_default_order());
4301 setup_usemap(pgdat, zone, size);
4302 ret = init_currently_empty_zone(zone, zone_start_pfn,
4303 size, MEMMAP_EARLY);
4304 BUG_ON(ret);
4305 memmap_init(size, nid, j, zone_start_pfn);
4306 zone_start_pfn += size;
4307 }
4308 }
4309
4310 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4311 {
4312 /* Skip empty nodes */
4313 if (!pgdat->node_spanned_pages)
4314 return;
4315
4316 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4317 /* ia64 gets its own node_mem_map, before this, without bootmem */
4318 if (!pgdat->node_mem_map) {
4319 unsigned long size, start, end;
4320 struct page *map;
4321
4322 /*
4323 * The zone's endpoints aren't required to be MAX_ORDER
4324 * aligned but the node_mem_map endpoints must be in order
4325 * for the buddy allocator to function correctly.
4326 */
4327 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4328 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4329 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4330 size = (end - start) * sizeof(struct page);
4331 map = alloc_remap(pgdat->node_id, size);
4332 if (!map)
4333 map = alloc_bootmem_node_nopanic(pgdat, size);
4334 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4335 }
4336 #ifndef CONFIG_NEED_MULTIPLE_NODES
4337 /*
4338 * With no DISCONTIG, the global mem_map is just set as node 0's
4339 */
4340 if (pgdat == NODE_DATA(0)) {
4341 mem_map = NODE_DATA(0)->node_mem_map;
4342 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4343 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4344 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4345 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4346 }
4347 #endif
4348 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4349 }
4350
4351 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4352 unsigned long node_start_pfn, unsigned long *zholes_size)
4353 {
4354 pg_data_t *pgdat = NODE_DATA(nid);
4355
4356 pgdat->node_id = nid;
4357 pgdat->node_start_pfn = node_start_pfn;
4358 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4359
4360 alloc_node_mem_map(pgdat);
4361 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4362 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4363 nid, (unsigned long)pgdat,
4364 (unsigned long)pgdat->node_mem_map);
4365 #endif
4366
4367 free_area_init_core(pgdat, zones_size, zholes_size);
4368 }
4369
4370 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4371
4372 #if MAX_NUMNODES > 1
4373 /*
4374 * Figure out the number of possible node ids.
4375 */
4376 static void __init setup_nr_node_ids(void)
4377 {
4378 unsigned int node;
4379 unsigned int highest = 0;
4380
4381 for_each_node_mask(node, node_possible_map)
4382 highest = node;
4383 nr_node_ids = highest + 1;
4384 }
4385 #else
4386 static inline void setup_nr_node_ids(void)
4387 {
4388 }
4389 #endif
4390
4391 /**
4392 * add_active_range - Register a range of PFNs backed by physical memory
4393 * @nid: The node ID the range resides on
4394 * @start_pfn: The start PFN of the available physical memory
4395 * @end_pfn: The end PFN of the available physical memory
4396 *
4397 * These ranges are stored in an early_node_map[] and later used by
4398 * free_area_init_nodes() to calculate zone sizes and holes. If the
4399 * range spans a memory hole, it is up to the architecture to ensure
4400 * the memory is not freed by the bootmem allocator. If possible
4401 * the range being registered will be merged with existing ranges.
4402 */
4403 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4404 unsigned long end_pfn)
4405 {
4406 int i;
4407
4408 mminit_dprintk(MMINIT_TRACE, "memory_register",
4409 "Entering add_active_range(%d, %#lx, %#lx) "
4410 "%d entries of %d used\n",
4411 nid, start_pfn, end_pfn,
4412 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4413
4414 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4415
4416 /* Merge with existing active regions if possible */
4417 for (i = 0; i < nr_nodemap_entries; i++) {
4418 if (early_node_map[i].nid != nid)
4419 continue;
4420
4421 /* Skip if an existing region covers this new one */
4422 if (start_pfn >= early_node_map[i].start_pfn &&
4423 end_pfn <= early_node_map[i].end_pfn)
4424 return;
4425
4426 /* Merge forward if suitable */
4427 if (start_pfn <= early_node_map[i].end_pfn &&
4428 end_pfn > early_node_map[i].end_pfn) {
4429 early_node_map[i].end_pfn = end_pfn;
4430 return;
4431 }
4432
4433 /* Merge backward if suitable */
4434 if (start_pfn < early_node_map[i].start_pfn &&
4435 end_pfn >= early_node_map[i].start_pfn) {
4436 early_node_map[i].start_pfn = start_pfn;
4437 return;
4438 }
4439 }
4440
4441 /* Check that early_node_map is large enough */
4442 if (i >= MAX_ACTIVE_REGIONS) {
4443 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4444 MAX_ACTIVE_REGIONS);
4445 return;
4446 }
4447
4448 early_node_map[i].nid = nid;
4449 early_node_map[i].start_pfn = start_pfn;
4450 early_node_map[i].end_pfn = end_pfn;
4451 nr_nodemap_entries = i + 1;
4452 }
4453
4454 /**
4455 * remove_active_range - Shrink an existing registered range of PFNs
4456 * @nid: The node id the range is on that should be shrunk
4457 * @start_pfn: The new PFN of the range
4458 * @end_pfn: The new PFN of the range
4459 *
4460 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4461 * The map is kept near the end physical page range that has already been
4462 * registered. This function allows an arch to shrink an existing registered
4463 * range.
4464 */
4465 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4466 unsigned long end_pfn)
4467 {
4468 int i, j;
4469 int removed = 0;
4470
4471 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4472 nid, start_pfn, end_pfn);
4473
4474 /* Find the old active region end and shrink */
4475 for_each_active_range_index_in_nid(i, nid) {
4476 if (early_node_map[i].start_pfn >= start_pfn &&
4477 early_node_map[i].end_pfn <= end_pfn) {
4478 /* clear it */
4479 early_node_map[i].start_pfn = 0;
4480 early_node_map[i].end_pfn = 0;
4481 removed = 1;
4482 continue;
4483 }
4484 if (early_node_map[i].start_pfn < start_pfn &&
4485 early_node_map[i].end_pfn > start_pfn) {
4486 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4487 early_node_map[i].end_pfn = start_pfn;
4488 if (temp_end_pfn > end_pfn)
4489 add_active_range(nid, end_pfn, temp_end_pfn);
4490 continue;
4491 }
4492 if (early_node_map[i].start_pfn >= start_pfn &&
4493 early_node_map[i].end_pfn > end_pfn &&
4494 early_node_map[i].start_pfn < end_pfn) {
4495 early_node_map[i].start_pfn = end_pfn;
4496 continue;
4497 }
4498 }
4499
4500 if (!removed)
4501 return;
4502
4503 /* remove the blank ones */
4504 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4505 if (early_node_map[i].nid != nid)
4506 continue;
4507 if (early_node_map[i].end_pfn)
4508 continue;
4509 /* we found it, get rid of it */
4510 for (j = i; j < nr_nodemap_entries - 1; j++)
4511 memcpy(&early_node_map[j], &early_node_map[j+1],
4512 sizeof(early_node_map[j]));
4513 j = nr_nodemap_entries - 1;
4514 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4515 nr_nodemap_entries--;
4516 }
4517 }
4518
4519 /**
4520 * remove_all_active_ranges - Remove all currently registered regions
4521 *
4522 * During discovery, it may be found that a table like SRAT is invalid
4523 * and an alternative discovery method must be used. This function removes
4524 * all currently registered regions.
4525 */
4526 void __init remove_all_active_ranges(void)
4527 {
4528 memset(early_node_map, 0, sizeof(early_node_map));
4529 nr_nodemap_entries = 0;
4530 }
4531
4532 /* Compare two active node_active_regions */
4533 static int __init cmp_node_active_region(const void *a, const void *b)
4534 {
4535 struct node_active_region *arange = (struct node_active_region *)a;
4536 struct node_active_region *brange = (struct node_active_region *)b;
4537
4538 /* Done this way to avoid overflows */
4539 if (arange->start_pfn > brange->start_pfn)
4540 return 1;
4541 if (arange->start_pfn < brange->start_pfn)
4542 return -1;
4543
4544 return 0;
4545 }
4546
4547 /* sort the node_map by start_pfn */
4548 void __init sort_node_map(void)
4549 {
4550 sort(early_node_map, (size_t)nr_nodemap_entries,
4551 sizeof(struct node_active_region),
4552 cmp_node_active_region, NULL);
4553 }
4554
4555 /* Find the lowest pfn for a node */
4556 static unsigned long __init find_min_pfn_for_node(int nid)
4557 {
4558 int i;
4559 unsigned long min_pfn = ULONG_MAX;
4560
4561 /* Assuming a sorted map, the first range found has the starting pfn */
4562 for_each_active_range_index_in_nid(i, nid)
4563 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4564
4565 if (min_pfn == ULONG_MAX) {
4566 printk(KERN_WARNING
4567 "Could not find start_pfn for node %d\n", nid);
4568 return 0;
4569 }
4570
4571 return min_pfn;
4572 }
4573
4574 /**
4575 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4576 *
4577 * It returns the minimum PFN based on information provided via
4578 * add_active_range().
4579 */
4580 unsigned long __init find_min_pfn_with_active_regions(void)
4581 {
4582 return find_min_pfn_for_node(MAX_NUMNODES);
4583 }
4584
4585 /*
4586 * early_calculate_totalpages()
4587 * Sum pages in active regions for movable zone.
4588 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4589 */
4590 static unsigned long __init early_calculate_totalpages(void)
4591 {
4592 int i;
4593 unsigned long totalpages = 0;
4594
4595 for (i = 0; i < nr_nodemap_entries; i++) {
4596 unsigned long pages = early_node_map[i].end_pfn -
4597 early_node_map[i].start_pfn;
4598 totalpages += pages;
4599 if (pages)
4600 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4601 }
4602 return totalpages;
4603 }
4604
4605 /*
4606 * Find the PFN the Movable zone begins in each node. Kernel memory
4607 * is spread evenly between nodes as long as the nodes have enough
4608 * memory. When they don't, some nodes will have more kernelcore than
4609 * others
4610 */
4611 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4612 {
4613 int i, nid;
4614 unsigned long usable_startpfn;
4615 unsigned long kernelcore_node, kernelcore_remaining;
4616 /* save the state before borrow the nodemask */
4617 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4618 unsigned long totalpages = early_calculate_totalpages();
4619 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4620
4621 /*
4622 * If movablecore was specified, calculate what size of
4623 * kernelcore that corresponds so that memory usable for
4624 * any allocation type is evenly spread. If both kernelcore
4625 * and movablecore are specified, then the value of kernelcore
4626 * will be used for required_kernelcore if it's greater than
4627 * what movablecore would have allowed.
4628 */
4629 if (required_movablecore) {
4630 unsigned long corepages;
4631
4632 /*
4633 * Round-up so that ZONE_MOVABLE is at least as large as what
4634 * was requested by the user
4635 */
4636 required_movablecore =
4637 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4638 corepages = totalpages - required_movablecore;
4639
4640 required_kernelcore = max(required_kernelcore, corepages);
4641 }
4642
4643 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4644 if (!required_kernelcore)
4645 goto out;
4646
4647 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4648 find_usable_zone_for_movable();
4649 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4650
4651 restart:
4652 /* Spread kernelcore memory as evenly as possible throughout nodes */
4653 kernelcore_node = required_kernelcore / usable_nodes;
4654 for_each_node_state(nid, N_HIGH_MEMORY) {
4655 /*
4656 * Recalculate kernelcore_node if the division per node
4657 * now exceeds what is necessary to satisfy the requested
4658 * amount of memory for the kernel
4659 */
4660 if (required_kernelcore < kernelcore_node)
4661 kernelcore_node = required_kernelcore / usable_nodes;
4662
4663 /*
4664 * As the map is walked, we track how much memory is usable
4665 * by the kernel using kernelcore_remaining. When it is
4666 * 0, the rest of the node is usable by ZONE_MOVABLE
4667 */
4668 kernelcore_remaining = kernelcore_node;
4669
4670 /* Go through each range of PFNs within this node */
4671 for_each_active_range_index_in_nid(i, nid) {
4672 unsigned long start_pfn, end_pfn;
4673 unsigned long size_pages;
4674
4675 start_pfn = max(early_node_map[i].start_pfn,
4676 zone_movable_pfn[nid]);
4677 end_pfn = early_node_map[i].end_pfn;
4678 if (start_pfn >= end_pfn)
4679 continue;
4680
4681 /* Account for what is only usable for kernelcore */
4682 if (start_pfn < usable_startpfn) {
4683 unsigned long kernel_pages;
4684 kernel_pages = min(end_pfn, usable_startpfn)
4685 - start_pfn;
4686
4687 kernelcore_remaining -= min(kernel_pages,
4688 kernelcore_remaining);
4689 required_kernelcore -= min(kernel_pages,
4690 required_kernelcore);
4691
4692 /* Continue if range is now fully accounted */
4693 if (end_pfn <= usable_startpfn) {
4694
4695 /*
4696 * Push zone_movable_pfn to the end so
4697 * that if we have to rebalance
4698 * kernelcore across nodes, we will
4699 * not double account here
4700 */
4701 zone_movable_pfn[nid] = end_pfn;
4702 continue;
4703 }
4704 start_pfn = usable_startpfn;
4705 }
4706
4707 /*
4708 * The usable PFN range for ZONE_MOVABLE is from
4709 * start_pfn->end_pfn. Calculate size_pages as the
4710 * number of pages used as kernelcore
4711 */
4712 size_pages = end_pfn - start_pfn;
4713 if (size_pages > kernelcore_remaining)
4714 size_pages = kernelcore_remaining;
4715 zone_movable_pfn[nid] = start_pfn + size_pages;
4716
4717 /*
4718 * Some kernelcore has been met, update counts and
4719 * break if the kernelcore for this node has been
4720 * satisified
4721 */
4722 required_kernelcore -= min(required_kernelcore,
4723 size_pages);
4724 kernelcore_remaining -= size_pages;
4725 if (!kernelcore_remaining)
4726 break;
4727 }
4728 }
4729
4730 /*
4731 * If there is still required_kernelcore, we do another pass with one
4732 * less node in the count. This will push zone_movable_pfn[nid] further
4733 * along on the nodes that still have memory until kernelcore is
4734 * satisified
4735 */
4736 usable_nodes--;
4737 if (usable_nodes && required_kernelcore > usable_nodes)
4738 goto restart;
4739
4740 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4741 for (nid = 0; nid < MAX_NUMNODES; nid++)
4742 zone_movable_pfn[nid] =
4743 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4744
4745 out:
4746 /* restore the node_state */
4747 node_states[N_HIGH_MEMORY] = saved_node_state;
4748 }
4749
4750 /* Any regular memory on that node ? */
4751 static void check_for_regular_memory(pg_data_t *pgdat)
4752 {
4753 #ifdef CONFIG_HIGHMEM
4754 enum zone_type zone_type;
4755
4756 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4757 struct zone *zone = &pgdat->node_zones[zone_type];
4758 if (zone->present_pages)
4759 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4760 }
4761 #endif
4762 }
4763
4764 /**
4765 * free_area_init_nodes - Initialise all pg_data_t and zone data
4766 * @max_zone_pfn: an array of max PFNs for each zone
4767 *
4768 * This will call free_area_init_node() for each active node in the system.
4769 * Using the page ranges provided by add_active_range(), the size of each
4770 * zone in each node and their holes is calculated. If the maximum PFN
4771 * between two adjacent zones match, it is assumed that the zone is empty.
4772 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4773 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4774 * starts where the previous one ended. For example, ZONE_DMA32 starts
4775 * at arch_max_dma_pfn.
4776 */
4777 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4778 {
4779 unsigned long nid;
4780 int i;
4781
4782 /* Sort early_node_map as initialisation assumes it is sorted */
4783 sort_node_map();
4784
4785 /* Record where the zone boundaries are */
4786 memset(arch_zone_lowest_possible_pfn, 0,
4787 sizeof(arch_zone_lowest_possible_pfn));
4788 memset(arch_zone_highest_possible_pfn, 0,
4789 sizeof(arch_zone_highest_possible_pfn));
4790 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4791 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4792 for (i = 1; i < MAX_NR_ZONES; i++) {
4793 if (i == ZONE_MOVABLE)
4794 continue;
4795 arch_zone_lowest_possible_pfn[i] =
4796 arch_zone_highest_possible_pfn[i-1];
4797 arch_zone_highest_possible_pfn[i] =
4798 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4799 }
4800 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4801 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4802
4803 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4804 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4805 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4806
4807 /* Print out the zone ranges */
4808 printk("Zone PFN ranges:\n");
4809 for (i = 0; i < MAX_NR_ZONES; i++) {
4810 if (i == ZONE_MOVABLE)
4811 continue;
4812 printk(" %-8s ", zone_names[i]);
4813 if (arch_zone_lowest_possible_pfn[i] ==
4814 arch_zone_highest_possible_pfn[i])
4815 printk("empty\n");
4816 else
4817 printk("%0#10lx -> %0#10lx\n",
4818 arch_zone_lowest_possible_pfn[i],
4819 arch_zone_highest_possible_pfn[i]);
4820 }
4821
4822 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4823 printk("Movable zone start PFN for each node\n");
4824 for (i = 0; i < MAX_NUMNODES; i++) {
4825 if (zone_movable_pfn[i])
4826 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4827 }
4828
4829 /* Print out the early_node_map[] */
4830 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4831 for (i = 0; i < nr_nodemap_entries; i++)
4832 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4833 early_node_map[i].start_pfn,
4834 early_node_map[i].end_pfn);
4835
4836 /* Initialise every node */
4837 mminit_verify_pageflags_layout();
4838 setup_nr_node_ids();
4839 for_each_online_node(nid) {
4840 pg_data_t *pgdat = NODE_DATA(nid);
4841 free_area_init_node(nid, NULL,
4842 find_min_pfn_for_node(nid), NULL);
4843
4844 /* Any memory on that node */
4845 if (pgdat->node_present_pages)
4846 node_set_state(nid, N_HIGH_MEMORY);
4847 check_for_regular_memory(pgdat);
4848 }
4849 }
4850
4851 static int __init cmdline_parse_core(char *p, unsigned long *core)
4852 {
4853 unsigned long long coremem;
4854 if (!p)
4855 return -EINVAL;
4856
4857 coremem = memparse(p, &p);
4858 *core = coremem >> PAGE_SHIFT;
4859
4860 /* Paranoid check that UL is enough for the coremem value */
4861 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4862
4863 return 0;
4864 }
4865
4866 /*
4867 * kernelcore=size sets the amount of memory for use for allocations that
4868 * cannot be reclaimed or migrated.
4869 */
4870 static int __init cmdline_parse_kernelcore(char *p)
4871 {
4872 return cmdline_parse_core(p, &required_kernelcore);
4873 }
4874
4875 /*
4876 * movablecore=size sets the amount of memory for use for allocations that
4877 * can be reclaimed or migrated.
4878 */
4879 static int __init cmdline_parse_movablecore(char *p)
4880 {
4881 return cmdline_parse_core(p, &required_movablecore);
4882 }
4883
4884 early_param("kernelcore", cmdline_parse_kernelcore);
4885 early_param("movablecore", cmdline_parse_movablecore);
4886
4887 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4888
4889 /**
4890 * set_dma_reserve - set the specified number of pages reserved in the first zone
4891 * @new_dma_reserve: The number of pages to mark reserved
4892 *
4893 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4894 * In the DMA zone, a significant percentage may be consumed by kernel image
4895 * and other unfreeable allocations which can skew the watermarks badly. This
4896 * function may optionally be used to account for unfreeable pages in the
4897 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4898 * smaller per-cpu batchsize.
4899 */
4900 void __init set_dma_reserve(unsigned long new_dma_reserve)
4901 {
4902 dma_reserve = new_dma_reserve;
4903 }
4904
4905 void __init free_area_init(unsigned long *zones_size)
4906 {
4907 free_area_init_node(0, zones_size,
4908 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4909 }
4910
4911 static int page_alloc_cpu_notify(struct notifier_block *self,
4912 unsigned long action, void *hcpu)
4913 {
4914 int cpu = (unsigned long)hcpu;
4915
4916 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4917 drain_pages(cpu);
4918
4919 /*
4920 * Spill the event counters of the dead processor
4921 * into the current processors event counters.
4922 * This artificially elevates the count of the current
4923 * processor.
4924 */
4925 vm_events_fold_cpu(cpu);
4926
4927 /*
4928 * Zero the differential counters of the dead processor
4929 * so that the vm statistics are consistent.
4930 *
4931 * This is only okay since the processor is dead and cannot
4932 * race with what we are doing.
4933 */
4934 refresh_cpu_vm_stats(cpu);
4935 }
4936 return NOTIFY_OK;
4937 }
4938
4939 void __init page_alloc_init(void)
4940 {
4941 hotcpu_notifier(page_alloc_cpu_notify, 0);
4942 }
4943
4944 /*
4945 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4946 * or min_free_kbytes changes.
4947 */
4948 static void calculate_totalreserve_pages(void)
4949 {
4950 struct pglist_data *pgdat;
4951 unsigned long reserve_pages = 0;
4952 enum zone_type i, j;
4953
4954 for_each_online_pgdat(pgdat) {
4955 for (i = 0; i < MAX_NR_ZONES; i++) {
4956 struct zone *zone = pgdat->node_zones + i;
4957 unsigned long max = 0;
4958
4959 /* Find valid and maximum lowmem_reserve in the zone */
4960 for (j = i; j < MAX_NR_ZONES; j++) {
4961 if (zone->lowmem_reserve[j] > max)
4962 max = zone->lowmem_reserve[j];
4963 }
4964
4965 /* we treat the high watermark as reserved pages. */
4966 max += high_wmark_pages(zone);
4967
4968 if (max > zone->present_pages)
4969 max = zone->present_pages;
4970 reserve_pages += max;
4971 }
4972 }
4973 totalreserve_pages = reserve_pages;
4974 }
4975
4976 /*
4977 * setup_per_zone_lowmem_reserve - called whenever
4978 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4979 * has a correct pages reserved value, so an adequate number of
4980 * pages are left in the zone after a successful __alloc_pages().
4981 */
4982 static void setup_per_zone_lowmem_reserve(void)
4983 {
4984 struct pglist_data *pgdat;
4985 enum zone_type j, idx;
4986
4987 for_each_online_pgdat(pgdat) {
4988 for (j = 0; j < MAX_NR_ZONES; j++) {
4989 struct zone *zone = pgdat->node_zones + j;
4990 unsigned long present_pages = zone->present_pages;
4991
4992 zone->lowmem_reserve[j] = 0;
4993
4994 idx = j;
4995 while (idx) {
4996 struct zone *lower_zone;
4997
4998 idx--;
4999
5000 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5001 sysctl_lowmem_reserve_ratio[idx] = 1;
5002
5003 lower_zone = pgdat->node_zones + idx;
5004 lower_zone->lowmem_reserve[j] = present_pages /
5005 sysctl_lowmem_reserve_ratio[idx];
5006 present_pages += lower_zone->present_pages;
5007 }
5008 }
5009 }
5010
5011 /* update totalreserve_pages */
5012 calculate_totalreserve_pages();
5013 }
5014
5015 /**
5016 * setup_per_zone_wmarks - called when min_free_kbytes changes
5017 * or when memory is hot-{added|removed}
5018 *
5019 * Ensures that the watermark[min,low,high] values for each zone are set
5020 * correctly with respect to min_free_kbytes.
5021 */
5022 void setup_per_zone_wmarks(void)
5023 {
5024 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5025 unsigned long lowmem_pages = 0;
5026 struct zone *zone;
5027 unsigned long flags;
5028
5029 /* Calculate total number of !ZONE_HIGHMEM pages */
5030 for_each_zone(zone) {
5031 if (!is_highmem(zone))
5032 lowmem_pages += zone->present_pages;
5033 }
5034
5035 for_each_zone(zone) {
5036 u64 tmp;
5037
5038 spin_lock_irqsave(&zone->lock, flags);
5039 tmp = (u64)pages_min * zone->present_pages;
5040 do_div(tmp, lowmem_pages);
5041 if (is_highmem(zone)) {
5042 /*
5043 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5044 * need highmem pages, so cap pages_min to a small
5045 * value here.
5046 *
5047 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5048 * deltas controls asynch page reclaim, and so should
5049 * not be capped for highmem.
5050 */
5051 int min_pages;
5052
5053 min_pages = zone->present_pages / 1024;
5054 if (min_pages < SWAP_CLUSTER_MAX)
5055 min_pages = SWAP_CLUSTER_MAX;
5056 if (min_pages > 128)
5057 min_pages = 128;
5058 zone->watermark[WMARK_MIN] = min_pages;
5059 } else {
5060 /*
5061 * If it's a lowmem zone, reserve a number of pages
5062 * proportionate to the zone's size.
5063 */
5064 zone->watermark[WMARK_MIN] = tmp;
5065 }
5066
5067 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5068 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5069 setup_zone_migrate_reserve(zone);
5070 spin_unlock_irqrestore(&zone->lock, flags);
5071 }
5072
5073 /* update totalreserve_pages */
5074 calculate_totalreserve_pages();
5075 }
5076
5077 /*
5078 * The inactive anon list should be small enough that the VM never has to
5079 * do too much work, but large enough that each inactive page has a chance
5080 * to be referenced again before it is swapped out.
5081 *
5082 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5083 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5084 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5085 * the anonymous pages are kept on the inactive list.
5086 *
5087 * total target max
5088 * memory ratio inactive anon
5089 * -------------------------------------
5090 * 10MB 1 5MB
5091 * 100MB 1 50MB
5092 * 1GB 3 250MB
5093 * 10GB 10 0.9GB
5094 * 100GB 31 3GB
5095 * 1TB 101 10GB
5096 * 10TB 320 32GB
5097 */
5098 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5099 {
5100 unsigned int gb, ratio;
5101
5102 /* Zone size in gigabytes */
5103 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5104 if (gb)
5105 ratio = int_sqrt(10 * gb);
5106 else
5107 ratio = 1;
5108
5109 zone->inactive_ratio = ratio;
5110 }
5111
5112 static void __meminit setup_per_zone_inactive_ratio(void)
5113 {
5114 struct zone *zone;
5115
5116 for_each_zone(zone)
5117 calculate_zone_inactive_ratio(zone);
5118 }
5119
5120 /*
5121 * Initialise min_free_kbytes.
5122 *
5123 * For small machines we want it small (128k min). For large machines
5124 * we want it large (64MB max). But it is not linear, because network
5125 * bandwidth does not increase linearly with machine size. We use
5126 *
5127 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5128 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5129 *
5130 * which yields
5131 *
5132 * 16MB: 512k
5133 * 32MB: 724k
5134 * 64MB: 1024k
5135 * 128MB: 1448k
5136 * 256MB: 2048k
5137 * 512MB: 2896k
5138 * 1024MB: 4096k
5139 * 2048MB: 5792k
5140 * 4096MB: 8192k
5141 * 8192MB: 11584k
5142 * 16384MB: 16384k
5143 */
5144 int __meminit init_per_zone_wmark_min(void)
5145 {
5146 unsigned long lowmem_kbytes;
5147
5148 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5149
5150 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5151 if (min_free_kbytes < 128)
5152 min_free_kbytes = 128;
5153 if (min_free_kbytes > 65536)
5154 min_free_kbytes = 65536;
5155 setup_per_zone_wmarks();
5156 refresh_zone_stat_thresholds();
5157 setup_per_zone_lowmem_reserve();
5158 setup_per_zone_inactive_ratio();
5159 return 0;
5160 }
5161 module_init(init_per_zone_wmark_min)
5162
5163 /*
5164 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5165 * that we can call two helper functions whenever min_free_kbytes
5166 * changes.
5167 */
5168 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5169 void __user *buffer, size_t *length, loff_t *ppos)
5170 {
5171 proc_dointvec(table, write, buffer, length, ppos);
5172 if (write)
5173 setup_per_zone_wmarks();
5174 return 0;
5175 }
5176
5177 #ifdef CONFIG_NUMA
5178 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5179 void __user *buffer, size_t *length, loff_t *ppos)
5180 {
5181 struct zone *zone;
5182 int rc;
5183
5184 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5185 if (rc)
5186 return rc;
5187
5188 for_each_zone(zone)
5189 zone->min_unmapped_pages = (zone->present_pages *
5190 sysctl_min_unmapped_ratio) / 100;
5191 return 0;
5192 }
5193
5194 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5195 void __user *buffer, size_t *length, loff_t *ppos)
5196 {
5197 struct zone *zone;
5198 int rc;
5199
5200 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5201 if (rc)
5202 return rc;
5203
5204 for_each_zone(zone)
5205 zone->min_slab_pages = (zone->present_pages *
5206 sysctl_min_slab_ratio) / 100;
5207 return 0;
5208 }
5209 #endif
5210
5211 /*
5212 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5213 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5214 * whenever sysctl_lowmem_reserve_ratio changes.
5215 *
5216 * The reserve ratio obviously has absolutely no relation with the
5217 * minimum watermarks. The lowmem reserve ratio can only make sense
5218 * if in function of the boot time zone sizes.
5219 */
5220 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5221 void __user *buffer, size_t *length, loff_t *ppos)
5222 {
5223 proc_dointvec_minmax(table, write, buffer, length, ppos);
5224 setup_per_zone_lowmem_reserve();
5225 return 0;
5226 }
5227
5228 /*
5229 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5230 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5231 * can have before it gets flushed back to buddy allocator.
5232 */
5233
5234 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5235 void __user *buffer, size_t *length, loff_t *ppos)
5236 {
5237 struct zone *zone;
5238 unsigned int cpu;
5239 int ret;
5240
5241 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5242 if (!write || (ret == -EINVAL))
5243 return ret;
5244 for_each_populated_zone(zone) {
5245 for_each_possible_cpu(cpu) {
5246 unsigned long high;
5247 high = zone->present_pages / percpu_pagelist_fraction;
5248 setup_pagelist_highmark(
5249 per_cpu_ptr(zone->pageset, cpu), high);
5250 }
5251 }
5252 return 0;
5253 }
5254
5255 int hashdist = HASHDIST_DEFAULT;
5256
5257 #ifdef CONFIG_NUMA
5258 static int __init set_hashdist(char *str)
5259 {
5260 if (!str)
5261 return 0;
5262 hashdist = simple_strtoul(str, &str, 0);
5263 return 1;
5264 }
5265 __setup("hashdist=", set_hashdist);
5266 #endif
5267
5268 /*
5269 * allocate a large system hash table from bootmem
5270 * - it is assumed that the hash table must contain an exact power-of-2
5271 * quantity of entries
5272 * - limit is the number of hash buckets, not the total allocation size
5273 */
5274 void *__init alloc_large_system_hash(const char *tablename,
5275 unsigned long bucketsize,
5276 unsigned long numentries,
5277 int scale,
5278 int flags,
5279 unsigned int *_hash_shift,
5280 unsigned int *_hash_mask,
5281 unsigned long limit)
5282 {
5283 unsigned long long max = limit;
5284 unsigned long log2qty, size;
5285 void *table = NULL;
5286
5287 /* allow the kernel cmdline to have a say */
5288 if (!numentries) {
5289 /* round applicable memory size up to nearest megabyte */
5290 numentries = nr_kernel_pages;
5291 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5292 numentries >>= 20 - PAGE_SHIFT;
5293 numentries <<= 20 - PAGE_SHIFT;
5294
5295 /* limit to 1 bucket per 2^scale bytes of low memory */
5296 if (scale > PAGE_SHIFT)
5297 numentries >>= (scale - PAGE_SHIFT);
5298 else
5299 numentries <<= (PAGE_SHIFT - scale);
5300
5301 /* Make sure we've got at least a 0-order allocation.. */
5302 if (unlikely(flags & HASH_SMALL)) {
5303 /* Makes no sense without HASH_EARLY */
5304 WARN_ON(!(flags & HASH_EARLY));
5305 if (!(numentries >> *_hash_shift)) {
5306 numentries = 1UL << *_hash_shift;
5307 BUG_ON(!numentries);
5308 }
5309 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5310 numentries = PAGE_SIZE / bucketsize;
5311 }
5312 numentries = roundup_pow_of_two(numentries);
5313
5314 /* limit allocation size to 1/16 total memory by default */
5315 if (max == 0) {
5316 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5317 do_div(max, bucketsize);
5318 }
5319
5320 if (numentries > max)
5321 numentries = max;
5322
5323 log2qty = ilog2(numentries);
5324
5325 do {
5326 size = bucketsize << log2qty;
5327 if (flags & HASH_EARLY)
5328 table = alloc_bootmem_nopanic(size);
5329 else if (hashdist)
5330 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5331 else {
5332 /*
5333 * If bucketsize is not a power-of-two, we may free
5334 * some pages at the end of hash table which
5335 * alloc_pages_exact() automatically does
5336 */
5337 if (get_order(size) < MAX_ORDER) {
5338 table = alloc_pages_exact(size, GFP_ATOMIC);
5339 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5340 }
5341 }
5342 } while (!table && size > PAGE_SIZE && --log2qty);
5343
5344 if (!table)
5345 panic("Failed to allocate %s hash table\n", tablename);
5346
5347 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5348 tablename,
5349 (1UL << log2qty),
5350 ilog2(size) - PAGE_SHIFT,
5351 size);
5352
5353 if (_hash_shift)
5354 *_hash_shift = log2qty;
5355 if (_hash_mask)
5356 *_hash_mask = (1 << log2qty) - 1;
5357
5358 return table;
5359 }
5360
5361 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5362 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5363 unsigned long pfn)
5364 {
5365 #ifdef CONFIG_SPARSEMEM
5366 return __pfn_to_section(pfn)->pageblock_flags;
5367 #else
5368 return zone->pageblock_flags;
5369 #endif /* CONFIG_SPARSEMEM */
5370 }
5371
5372 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5373 {
5374 #ifdef CONFIG_SPARSEMEM
5375 pfn &= (PAGES_PER_SECTION-1);
5376 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5377 #else
5378 pfn = pfn - zone->zone_start_pfn;
5379 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5380 #endif /* CONFIG_SPARSEMEM */
5381 }
5382
5383 /**
5384 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5385 * @page: The page within the block of interest
5386 * @start_bitidx: The first bit of interest to retrieve
5387 * @end_bitidx: The last bit of interest
5388 * returns pageblock_bits flags
5389 */
5390 unsigned long get_pageblock_flags_group(struct page *page,
5391 int start_bitidx, int end_bitidx)
5392 {
5393 struct zone *zone;
5394 unsigned long *bitmap;
5395 unsigned long pfn, bitidx;
5396 unsigned long flags = 0;
5397 unsigned long value = 1;
5398
5399 zone = page_zone(page);
5400 pfn = page_to_pfn(page);
5401 bitmap = get_pageblock_bitmap(zone, pfn);
5402 bitidx = pfn_to_bitidx(zone, pfn);
5403
5404 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5405 if (test_bit(bitidx + start_bitidx, bitmap))
5406 flags |= value;
5407
5408 return flags;
5409 }
5410
5411 /**
5412 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5413 * @page: The page within the block of interest
5414 * @start_bitidx: The first bit of interest
5415 * @end_bitidx: The last bit of interest
5416 * @flags: The flags to set
5417 */
5418 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5419 int start_bitidx, int end_bitidx)
5420 {
5421 struct zone *zone;
5422 unsigned long *bitmap;
5423 unsigned long pfn, bitidx;
5424 unsigned long value = 1;
5425
5426 zone = page_zone(page);
5427 pfn = page_to_pfn(page);
5428 bitmap = get_pageblock_bitmap(zone, pfn);
5429 bitidx = pfn_to_bitidx(zone, pfn);
5430 VM_BUG_ON(pfn < zone->zone_start_pfn);
5431 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5432
5433 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5434 if (flags & value)
5435 __set_bit(bitidx + start_bitidx, bitmap);
5436 else
5437 __clear_bit(bitidx + start_bitidx, bitmap);
5438 }
5439
5440 /*
5441 * This is designed as sub function...plz see page_isolation.c also.
5442 * set/clear page block's type to be ISOLATE.
5443 * page allocater never alloc memory from ISOLATE block.
5444 */
5445
5446 static int
5447 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5448 {
5449 unsigned long pfn, iter, found;
5450 /*
5451 * For avoiding noise data, lru_add_drain_all() should be called
5452 * If ZONE_MOVABLE, the zone never contains immobile pages
5453 */
5454 if (zone_idx(zone) == ZONE_MOVABLE)
5455 return true;
5456
5457 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5458 return true;
5459
5460 pfn = page_to_pfn(page);
5461 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5462 unsigned long check = pfn + iter;
5463
5464 if (!pfn_valid_within(check))
5465 continue;
5466
5467 page = pfn_to_page(check);
5468 if (!page_count(page)) {
5469 if (PageBuddy(page))
5470 iter += (1 << page_order(page)) - 1;
5471 continue;
5472 }
5473 if (!PageLRU(page))
5474 found++;
5475 /*
5476 * If there are RECLAIMABLE pages, we need to check it.
5477 * But now, memory offline itself doesn't call shrink_slab()
5478 * and it still to be fixed.
5479 */
5480 /*
5481 * If the page is not RAM, page_count()should be 0.
5482 * we don't need more check. This is an _used_ not-movable page.
5483 *
5484 * The problematic thing here is PG_reserved pages. PG_reserved
5485 * is set to both of a memory hole page and a _used_ kernel
5486 * page at boot.
5487 */
5488 if (found > count)
5489 return false;
5490 }
5491 return true;
5492 }
5493
5494 bool is_pageblock_removable_nolock(struct page *page)
5495 {
5496 struct zone *zone = page_zone(page);
5497 return __count_immobile_pages(zone, page, 0);
5498 }
5499
5500 int set_migratetype_isolate(struct page *page)
5501 {
5502 struct zone *zone;
5503 unsigned long flags, pfn;
5504 struct memory_isolate_notify arg;
5505 int notifier_ret;
5506 int ret = -EBUSY;
5507
5508 zone = page_zone(page);
5509
5510 spin_lock_irqsave(&zone->lock, flags);
5511
5512 pfn = page_to_pfn(page);
5513 arg.start_pfn = pfn;
5514 arg.nr_pages = pageblock_nr_pages;
5515 arg.pages_found = 0;
5516
5517 /*
5518 * It may be possible to isolate a pageblock even if the
5519 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5520 * notifier chain is used by balloon drivers to return the
5521 * number of pages in a range that are held by the balloon
5522 * driver to shrink memory. If all the pages are accounted for
5523 * by balloons, are free, or on the LRU, isolation can continue.
5524 * Later, for example, when memory hotplug notifier runs, these
5525 * pages reported as "can be isolated" should be isolated(freed)
5526 * by the balloon driver through the memory notifier chain.
5527 */
5528 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5529 notifier_ret = notifier_to_errno(notifier_ret);
5530 if (notifier_ret)
5531 goto out;
5532 /*
5533 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5534 * We just check MOVABLE pages.
5535 */
5536 if (__count_immobile_pages(zone, page, arg.pages_found))
5537 ret = 0;
5538
5539 /*
5540 * immobile means "not-on-lru" paes. If immobile is larger than
5541 * removable-by-driver pages reported by notifier, we'll fail.
5542 */
5543
5544 out:
5545 if (!ret) {
5546 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5547 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5548 }
5549
5550 spin_unlock_irqrestore(&zone->lock, flags);
5551 if (!ret)
5552 drain_all_pages();
5553 return ret;
5554 }
5555
5556 void unset_migratetype_isolate(struct page *page)
5557 {
5558 struct zone *zone;
5559 unsigned long flags;
5560 zone = page_zone(page);
5561 spin_lock_irqsave(&zone->lock, flags);
5562 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5563 goto out;
5564 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5565 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5566 out:
5567 spin_unlock_irqrestore(&zone->lock, flags);
5568 }
5569
5570 #ifdef CONFIG_MEMORY_HOTREMOVE
5571 /*
5572 * All pages in the range must be isolated before calling this.
5573 */
5574 void
5575 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5576 {
5577 struct page *page;
5578 struct zone *zone;
5579 int order, i;
5580 unsigned long pfn;
5581 unsigned long flags;
5582 /* find the first valid pfn */
5583 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5584 if (pfn_valid(pfn))
5585 break;
5586 if (pfn == end_pfn)
5587 return;
5588 zone = page_zone(pfn_to_page(pfn));
5589 spin_lock_irqsave(&zone->lock, flags);
5590 pfn = start_pfn;
5591 while (pfn < end_pfn) {
5592 if (!pfn_valid(pfn)) {
5593 pfn++;
5594 continue;
5595 }
5596 page = pfn_to_page(pfn);
5597 BUG_ON(page_count(page));
5598 BUG_ON(!PageBuddy(page));
5599 order = page_order(page);
5600 #ifdef CONFIG_DEBUG_VM
5601 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5602 pfn, 1 << order, end_pfn);
5603 #endif
5604 list_del(&page->lru);
5605 rmv_page_order(page);
5606 zone->free_area[order].nr_free--;
5607 __mod_zone_page_state(zone, NR_FREE_PAGES,
5608 - (1UL << order));
5609 for (i = 0; i < (1 << order); i++)
5610 SetPageReserved((page+i));
5611 pfn += (1 << order);
5612 }
5613 spin_unlock_irqrestore(&zone->lock, flags);
5614 }
5615 #endif
5616
5617 #ifdef CONFIG_MEMORY_FAILURE
5618 bool is_free_buddy_page(struct page *page)
5619 {
5620 struct zone *zone = page_zone(page);
5621 unsigned long pfn = page_to_pfn(page);
5622 unsigned long flags;
5623 int order;
5624
5625 spin_lock_irqsave(&zone->lock, flags);
5626 for (order = 0; order < MAX_ORDER; order++) {
5627 struct page *page_head = page - (pfn & ((1 << order) - 1));
5628
5629 if (PageBuddy(page_head) && page_order(page_head) >= order)
5630 break;
5631 }
5632 spin_unlock_irqrestore(&zone->lock, flags);
5633
5634 return order < MAX_ORDER;
5635 }
5636 #endif
5637
5638 static struct trace_print_flags pageflag_names[] = {
5639 {1UL << PG_locked, "locked" },
5640 {1UL << PG_error, "error" },
5641 {1UL << PG_referenced, "referenced" },
5642 {1UL << PG_uptodate, "uptodate" },
5643 {1UL << PG_dirty, "dirty" },
5644 {1UL << PG_lru, "lru" },
5645 {1UL << PG_active, "active" },
5646 {1UL << PG_slab, "slab" },
5647 {1UL << PG_owner_priv_1, "owner_priv_1" },
5648 {1UL << PG_arch_1, "arch_1" },
5649 {1UL << PG_reserved, "reserved" },
5650 {1UL << PG_private, "private" },
5651 {1UL << PG_private_2, "private_2" },
5652 {1UL << PG_writeback, "writeback" },
5653 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5654 {1UL << PG_head, "head" },
5655 {1UL << PG_tail, "tail" },
5656 #else
5657 {1UL << PG_compound, "compound" },
5658 #endif
5659 {1UL << PG_swapcache, "swapcache" },
5660 {1UL << PG_mappedtodisk, "mappedtodisk" },
5661 {1UL << PG_reclaim, "reclaim" },
5662 {1UL << PG_swapbacked, "swapbacked" },
5663 {1UL << PG_unevictable, "unevictable" },
5664 #ifdef CONFIG_MMU
5665 {1UL << PG_mlocked, "mlocked" },
5666 #endif
5667 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5668 {1UL << PG_uncached, "uncached" },
5669 #endif
5670 #ifdef CONFIG_MEMORY_FAILURE
5671 {1UL << PG_hwpoison, "hwpoison" },
5672 #endif
5673 {-1UL, NULL },
5674 };
5675
5676 static void dump_page_flags(unsigned long flags)
5677 {
5678 const char *delim = "";
5679 unsigned long mask;
5680 int i;
5681
5682 printk(KERN_ALERT "page flags: %#lx(", flags);
5683
5684 /* remove zone id */
5685 flags &= (1UL << NR_PAGEFLAGS) - 1;
5686
5687 for (i = 0; pageflag_names[i].name && flags; i++) {
5688
5689 mask = pageflag_names[i].mask;
5690 if ((flags & mask) != mask)
5691 continue;
5692
5693 flags &= ~mask;
5694 printk("%s%s", delim, pageflag_names[i].name);
5695 delim = "|";
5696 }
5697
5698 /* check for left over flags */
5699 if (flags)
5700 printk("%s%#lx", delim, flags);
5701
5702 printk(")\n");
5703 }
5704
5705 void dump_page(struct page *page)
5706 {
5707 printk(KERN_ALERT
5708 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5709 page, atomic_read(&page->_count), page_mapcount(page),
5710 page->mapping, page->index);
5711 dump_page_flags(page->flags);
5712 mem_cgroup_print_bad_page(page);
5713 }
This page took 0.161424 seconds and 5 git commands to generate.