Merge branch 'dma_mb'
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/debugobjects.h>
52 #include <linux/kmemleak.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/prefetch.h>
56 #include <linux/mm_inline.h>
57 #include <linux/migrate.h>
58 #include <linux/page-debug-flags.h>
59 #include <linux/hugetlb.h>
60 #include <linux/sched/rt.h>
61
62 #include <asm/sections.h>
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
68 static DEFINE_MUTEX(pcp_batch_high_lock);
69 #define MIN_PERCPU_PAGELIST_FRACTION (8)
70
71 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
72 DEFINE_PER_CPU(int, numa_node);
73 EXPORT_PER_CPU_SYMBOL(numa_node);
74 #endif
75
76 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
77 /*
78 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
79 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
80 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
81 * defined in <linux/topology.h>.
82 */
83 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
84 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
85 int _node_numa_mem_[MAX_NUMNODES];
86 #endif
87
88 /*
89 * Array of node states.
90 */
91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
94 #ifndef CONFIG_NUMA
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
96 #ifdef CONFIG_HIGHMEM
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
98 #endif
99 #ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
101 #endif
102 [N_CPU] = { { [0] = 1UL } },
103 #endif /* NUMA */
104 };
105 EXPORT_SYMBOL(node_states);
106
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock);
109
110 unsigned long totalram_pages __read_mostly;
111 unsigned long totalreserve_pages __read_mostly;
112 /*
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
117 */
118 unsigned long dirty_balance_reserve __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 #ifdef CONFIG_PM_SLEEP
124 /*
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
131 */
132
133 static gfp_t saved_gfp_mask;
134
135 void pm_restore_gfp_mask(void)
136 {
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
140 saved_gfp_mask = 0;
141 }
142 }
143
144 void pm_restrict_gfp_mask(void)
145 {
146 WARN_ON(!mutex_is_locked(&pm_mutex));
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
150 }
151
152 bool pm_suspended_storage(void)
153 {
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 return false;
156 return true;
157 }
158 #endif /* CONFIG_PM_SLEEP */
159
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly;
162 #endif
163
164 static void __free_pages_ok(struct page *page, unsigned int order);
165
166 /*
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
173 *
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
176 */
177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
178 #ifdef CONFIG_ZONE_DMA
179 256,
180 #endif
181 #ifdef CONFIG_ZONE_DMA32
182 256,
183 #endif
184 #ifdef CONFIG_HIGHMEM
185 32,
186 #endif
187 32,
188 };
189
190 EXPORT_SYMBOL(totalram_pages);
191
192 static char * const zone_names[MAX_NR_ZONES] = {
193 #ifdef CONFIG_ZONE_DMA
194 "DMA",
195 #endif
196 #ifdef CONFIG_ZONE_DMA32
197 "DMA32",
198 #endif
199 "Normal",
200 #ifdef CONFIG_HIGHMEM
201 "HighMem",
202 #endif
203 "Movable",
204 };
205
206 int min_free_kbytes = 1024;
207 int user_min_free_kbytes = -1;
208
209 static unsigned long __meminitdata nr_kernel_pages;
210 static unsigned long __meminitdata nr_all_pages;
211 static unsigned long __meminitdata dma_reserve;
212
213 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
215 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __initdata required_kernelcore;
217 static unsigned long __initdata required_movablecore;
218 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
219
220 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
221 int movable_zone;
222 EXPORT_SYMBOL(movable_zone);
223 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
224
225 #if MAX_NUMNODES > 1
226 int nr_node_ids __read_mostly = MAX_NUMNODES;
227 int nr_online_nodes __read_mostly = 1;
228 EXPORT_SYMBOL(nr_node_ids);
229 EXPORT_SYMBOL(nr_online_nodes);
230 #endif
231
232 int page_group_by_mobility_disabled __read_mostly;
233
234 void set_pageblock_migratetype(struct page *page, int migratetype)
235 {
236 if (unlikely(page_group_by_mobility_disabled &&
237 migratetype < MIGRATE_PCPTYPES))
238 migratetype = MIGRATE_UNMOVABLE;
239
240 set_pageblock_flags_group(page, (unsigned long)migratetype,
241 PB_migrate, PB_migrate_end);
242 }
243
244 bool oom_killer_disabled __read_mostly;
245
246 #ifdef CONFIG_DEBUG_VM
247 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
248 {
249 int ret = 0;
250 unsigned seq;
251 unsigned long pfn = page_to_pfn(page);
252 unsigned long sp, start_pfn;
253
254 do {
255 seq = zone_span_seqbegin(zone);
256 start_pfn = zone->zone_start_pfn;
257 sp = zone->spanned_pages;
258 if (!zone_spans_pfn(zone, pfn))
259 ret = 1;
260 } while (zone_span_seqretry(zone, seq));
261
262 if (ret)
263 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
264 pfn, zone_to_nid(zone), zone->name,
265 start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page, const char *reason,
299 unsigned long bad_flags)
300 {
301 static unsigned long resume;
302 static unsigned long nr_shown;
303 static unsigned long nr_unshown;
304
305 /* Don't complain about poisoned pages */
306 if (PageHWPoison(page)) {
307 page_mapcount_reset(page); /* remove PageBuddy */
308 return;
309 }
310
311 /*
312 * Allow a burst of 60 reports, then keep quiet for that minute;
313 * or allow a steady drip of one report per second.
314 */
315 if (nr_shown == 60) {
316 if (time_before(jiffies, resume)) {
317 nr_unshown++;
318 goto out;
319 }
320 if (nr_unshown) {
321 printk(KERN_ALERT
322 "BUG: Bad page state: %lu messages suppressed\n",
323 nr_unshown);
324 nr_unshown = 0;
325 }
326 nr_shown = 0;
327 }
328 if (nr_shown++ == 0)
329 resume = jiffies + 60 * HZ;
330
331 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
332 current->comm, page_to_pfn(page));
333 dump_page_badflags(page, reason, bad_flags);
334
335 print_modules();
336 dump_stack();
337 out:
338 /* Leave bad fields for debug, except PageBuddy could make trouble */
339 page_mapcount_reset(page); /* remove PageBuddy */
340 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
341 }
342
343 /*
344 * Higher-order pages are called "compound pages". They are structured thusly:
345 *
346 * The first PAGE_SIZE page is called the "head page".
347 *
348 * The remaining PAGE_SIZE pages are called "tail pages".
349 *
350 * All pages have PG_compound set. All tail pages have their ->first_page
351 * pointing at the head page.
352 *
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
356 */
357
358 static void free_compound_page(struct page *page)
359 {
360 __free_pages_ok(page, compound_order(page));
361 }
362
363 void prep_compound_page(struct page *page, unsigned long order)
364 {
365 int i;
366 int nr_pages = 1 << order;
367
368 set_compound_page_dtor(page, free_compound_page);
369 set_compound_order(page, order);
370 __SetPageHead(page);
371 for (i = 1; i < nr_pages; i++) {
372 struct page *p = page + i;
373 set_page_count(p, 0);
374 p->first_page = page;
375 /* Make sure p->first_page is always valid for PageTail() */
376 smp_wmb();
377 __SetPageTail(p);
378 }
379 }
380
381 /* update __split_huge_page_refcount if you change this function */
382 static int destroy_compound_page(struct page *page, unsigned long order)
383 {
384 int i;
385 int nr_pages = 1 << order;
386 int bad = 0;
387
388 if (unlikely(compound_order(page) != order)) {
389 bad_page(page, "wrong compound order", 0);
390 bad++;
391 }
392
393 __ClearPageHead(page);
394
395 for (i = 1; i < nr_pages; i++) {
396 struct page *p = page + i;
397
398 if (unlikely(!PageTail(p))) {
399 bad_page(page, "PageTail not set", 0);
400 bad++;
401 } else if (unlikely(p->first_page != page)) {
402 bad_page(page, "first_page not consistent", 0);
403 bad++;
404 }
405 __ClearPageTail(p);
406 }
407
408 return bad;
409 }
410
411 static inline void prep_zero_page(struct page *page, unsigned int order,
412 gfp_t gfp_flags)
413 {
414 int i;
415
416 /*
417 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
418 * and __GFP_HIGHMEM from hard or soft interrupt context.
419 */
420 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
421 for (i = 0; i < (1 << order); i++)
422 clear_highpage(page + i);
423 }
424
425 #ifdef CONFIG_DEBUG_PAGEALLOC
426 unsigned int _debug_guardpage_minorder;
427
428 static int __init debug_guardpage_minorder_setup(char *buf)
429 {
430 unsigned long res;
431
432 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
433 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
434 return 0;
435 }
436 _debug_guardpage_minorder = res;
437 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
438 return 0;
439 }
440 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
441
442 static inline void set_page_guard_flag(struct page *page)
443 {
444 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
445 }
446
447 static inline void clear_page_guard_flag(struct page *page)
448 {
449 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
450 }
451 #else
452 static inline void set_page_guard_flag(struct page *page) { }
453 static inline void clear_page_guard_flag(struct page *page) { }
454 #endif
455
456 static inline void set_page_order(struct page *page, unsigned int order)
457 {
458 set_page_private(page, order);
459 __SetPageBuddy(page);
460 }
461
462 static inline void rmv_page_order(struct page *page)
463 {
464 __ClearPageBuddy(page);
465 set_page_private(page, 0);
466 }
467
468 /*
469 * This function checks whether a page is free && is the buddy
470 * we can do coalesce a page and its buddy if
471 * (a) the buddy is not in a hole &&
472 * (b) the buddy is in the buddy system &&
473 * (c) a page and its buddy have the same order &&
474 * (d) a page and its buddy are in the same zone.
475 *
476 * For recording whether a page is in the buddy system, we set ->_mapcount
477 * PAGE_BUDDY_MAPCOUNT_VALUE.
478 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
479 * serialized by zone->lock.
480 *
481 * For recording page's order, we use page_private(page).
482 */
483 static inline int page_is_buddy(struct page *page, struct page *buddy,
484 unsigned int order)
485 {
486 if (!pfn_valid_within(page_to_pfn(buddy)))
487 return 0;
488
489 if (page_is_guard(buddy) && page_order(buddy) == order) {
490 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
491
492 if (page_zone_id(page) != page_zone_id(buddy))
493 return 0;
494
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
500
501 /*
502 * zone check is done late to avoid uselessly
503 * calculating zone/node ids for pages that could
504 * never merge.
505 */
506 if (page_zone_id(page) != page_zone_id(buddy))
507 return 0;
508
509 return 1;
510 }
511 return 0;
512 }
513
514 /*
515 * Freeing function for a buddy system allocator.
516 *
517 * The concept of a buddy system is to maintain direct-mapped table
518 * (containing bit values) for memory blocks of various "orders".
519 * The bottom level table contains the map for the smallest allocatable
520 * units of memory (here, pages), and each level above it describes
521 * pairs of units from the levels below, hence, "buddies".
522 * At a high level, all that happens here is marking the table entry
523 * at the bottom level available, and propagating the changes upward
524 * as necessary, plus some accounting needed to play nicely with other
525 * parts of the VM system.
526 * At each level, we keep a list of pages, which are heads of continuous
527 * free pages of length of (1 << order) and marked with _mapcount
528 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
529 * field.
530 * So when we are allocating or freeing one, we can derive the state of the
531 * other. That is, if we allocate a small block, and both were
532 * free, the remainder of the region must be split into blocks.
533 * If a block is freed, and its buddy is also free, then this
534 * triggers coalescing into a block of larger size.
535 *
536 * -- nyc
537 */
538
539 static inline void __free_one_page(struct page *page,
540 unsigned long pfn,
541 struct zone *zone, unsigned int order,
542 int migratetype)
543 {
544 unsigned long page_idx;
545 unsigned long combined_idx;
546 unsigned long uninitialized_var(buddy_idx);
547 struct page *buddy;
548 int max_order = MAX_ORDER;
549
550 VM_BUG_ON(!zone_is_initialized(zone));
551
552 if (unlikely(PageCompound(page)))
553 if (unlikely(destroy_compound_page(page, order)))
554 return;
555
556 VM_BUG_ON(migratetype == -1);
557 if (is_migrate_isolate(migratetype)) {
558 /*
559 * We restrict max order of merging to prevent merge
560 * between freepages on isolate pageblock and normal
561 * pageblock. Without this, pageblock isolation
562 * could cause incorrect freepage accounting.
563 */
564 max_order = min(MAX_ORDER, pageblock_order + 1);
565 } else {
566 __mod_zone_freepage_state(zone, 1 << order, migratetype);
567 }
568
569 page_idx = pfn & ((1 << max_order) - 1);
570
571 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
572 VM_BUG_ON_PAGE(bad_range(zone, page), page);
573
574 while (order < max_order - 1) {
575 buddy_idx = __find_buddy_index(page_idx, order);
576 buddy = page + (buddy_idx - page_idx);
577 if (!page_is_buddy(page, buddy, order))
578 break;
579 /*
580 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
581 * merge with it and move up one order.
582 */
583 if (page_is_guard(buddy)) {
584 clear_page_guard_flag(buddy);
585 set_page_private(buddy, 0);
586 if (!is_migrate_isolate(migratetype)) {
587 __mod_zone_freepage_state(zone, 1 << order,
588 migratetype);
589 }
590 } else {
591 list_del(&buddy->lru);
592 zone->free_area[order].nr_free--;
593 rmv_page_order(buddy);
594 }
595 combined_idx = buddy_idx & page_idx;
596 page = page + (combined_idx - page_idx);
597 page_idx = combined_idx;
598 order++;
599 }
600 set_page_order(page, order);
601
602 /*
603 * If this is not the largest possible page, check if the buddy
604 * of the next-highest order is free. If it is, it's possible
605 * that pages are being freed that will coalesce soon. In case,
606 * that is happening, add the free page to the tail of the list
607 * so it's less likely to be used soon and more likely to be merged
608 * as a higher order page
609 */
610 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
611 struct page *higher_page, *higher_buddy;
612 combined_idx = buddy_idx & page_idx;
613 higher_page = page + (combined_idx - page_idx);
614 buddy_idx = __find_buddy_index(combined_idx, order + 1);
615 higher_buddy = higher_page + (buddy_idx - combined_idx);
616 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
617 list_add_tail(&page->lru,
618 &zone->free_area[order].free_list[migratetype]);
619 goto out;
620 }
621 }
622
623 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
624 out:
625 zone->free_area[order].nr_free++;
626 }
627
628 static inline int free_pages_check(struct page *page)
629 {
630 const char *bad_reason = NULL;
631 unsigned long bad_flags = 0;
632
633 if (unlikely(page_mapcount(page)))
634 bad_reason = "nonzero mapcount";
635 if (unlikely(page->mapping != NULL))
636 bad_reason = "non-NULL mapping";
637 if (unlikely(atomic_read(&page->_count) != 0))
638 bad_reason = "nonzero _count";
639 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
640 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
641 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
642 }
643 #ifdef CONFIG_MEMCG
644 if (unlikely(page->mem_cgroup))
645 bad_reason = "page still charged to cgroup";
646 #endif
647 if (unlikely(bad_reason)) {
648 bad_page(page, bad_reason, bad_flags);
649 return 1;
650 }
651 page_cpupid_reset_last(page);
652 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
653 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
654 return 0;
655 }
656
657 /*
658 * Frees a number of pages from the PCP lists
659 * Assumes all pages on list are in same zone, and of same order.
660 * count is the number of pages to free.
661 *
662 * If the zone was previously in an "all pages pinned" state then look to
663 * see if this freeing clears that state.
664 *
665 * And clear the zone's pages_scanned counter, to hold off the "all pages are
666 * pinned" detection logic.
667 */
668 static void free_pcppages_bulk(struct zone *zone, int count,
669 struct per_cpu_pages *pcp)
670 {
671 int migratetype = 0;
672 int batch_free = 0;
673 int to_free = count;
674 unsigned long nr_scanned;
675
676 spin_lock(&zone->lock);
677 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
678 if (nr_scanned)
679 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
680
681 while (to_free) {
682 struct page *page;
683 struct list_head *list;
684
685 /*
686 * Remove pages from lists in a round-robin fashion. A
687 * batch_free count is maintained that is incremented when an
688 * empty list is encountered. This is so more pages are freed
689 * off fuller lists instead of spinning excessively around empty
690 * lists
691 */
692 do {
693 batch_free++;
694 if (++migratetype == MIGRATE_PCPTYPES)
695 migratetype = 0;
696 list = &pcp->lists[migratetype];
697 } while (list_empty(list));
698
699 /* This is the only non-empty list. Free them all. */
700 if (batch_free == MIGRATE_PCPTYPES)
701 batch_free = to_free;
702
703 do {
704 int mt; /* migratetype of the to-be-freed page */
705
706 page = list_entry(list->prev, struct page, lru);
707 /* must delete as __free_one_page list manipulates */
708 list_del(&page->lru);
709 mt = get_freepage_migratetype(page);
710 if (unlikely(has_isolate_pageblock(zone)))
711 mt = get_pageblock_migratetype(page);
712
713 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
714 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
715 trace_mm_page_pcpu_drain(page, 0, mt);
716 } while (--to_free && --batch_free && !list_empty(list));
717 }
718 spin_unlock(&zone->lock);
719 }
720
721 static void free_one_page(struct zone *zone,
722 struct page *page, unsigned long pfn,
723 unsigned int order,
724 int migratetype)
725 {
726 unsigned long nr_scanned;
727 spin_lock(&zone->lock);
728 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
729 if (nr_scanned)
730 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
731
732 if (unlikely(has_isolate_pageblock(zone) ||
733 is_migrate_isolate(migratetype))) {
734 migratetype = get_pfnblock_migratetype(page, pfn);
735 }
736 __free_one_page(page, pfn, zone, order, migratetype);
737 spin_unlock(&zone->lock);
738 }
739
740 static bool free_pages_prepare(struct page *page, unsigned int order)
741 {
742 int i;
743 int bad = 0;
744
745 VM_BUG_ON_PAGE(PageTail(page), page);
746 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
747
748 trace_mm_page_free(page, order);
749 kmemcheck_free_shadow(page, order);
750
751 if (PageAnon(page))
752 page->mapping = NULL;
753 for (i = 0; i < (1 << order); i++)
754 bad += free_pages_check(page + i);
755 if (bad)
756 return false;
757
758 if (!PageHighMem(page)) {
759 debug_check_no_locks_freed(page_address(page),
760 PAGE_SIZE << order);
761 debug_check_no_obj_freed(page_address(page),
762 PAGE_SIZE << order);
763 }
764 arch_free_page(page, order);
765 kernel_map_pages(page, 1 << order, 0);
766
767 return true;
768 }
769
770 static void __free_pages_ok(struct page *page, unsigned int order)
771 {
772 unsigned long flags;
773 int migratetype;
774 unsigned long pfn = page_to_pfn(page);
775
776 if (!free_pages_prepare(page, order))
777 return;
778
779 migratetype = get_pfnblock_migratetype(page, pfn);
780 local_irq_save(flags);
781 __count_vm_events(PGFREE, 1 << order);
782 set_freepage_migratetype(page, migratetype);
783 free_one_page(page_zone(page), page, pfn, order, migratetype);
784 local_irq_restore(flags);
785 }
786
787 void __init __free_pages_bootmem(struct page *page, unsigned int order)
788 {
789 unsigned int nr_pages = 1 << order;
790 struct page *p = page;
791 unsigned int loop;
792
793 prefetchw(p);
794 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
795 prefetchw(p + 1);
796 __ClearPageReserved(p);
797 set_page_count(p, 0);
798 }
799 __ClearPageReserved(p);
800 set_page_count(p, 0);
801
802 page_zone(page)->managed_pages += nr_pages;
803 set_page_refcounted(page);
804 __free_pages(page, order);
805 }
806
807 #ifdef CONFIG_CMA
808 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
809 void __init init_cma_reserved_pageblock(struct page *page)
810 {
811 unsigned i = pageblock_nr_pages;
812 struct page *p = page;
813
814 do {
815 __ClearPageReserved(p);
816 set_page_count(p, 0);
817 } while (++p, --i);
818
819 set_pageblock_migratetype(page, MIGRATE_CMA);
820
821 if (pageblock_order >= MAX_ORDER) {
822 i = pageblock_nr_pages;
823 p = page;
824 do {
825 set_page_refcounted(p);
826 __free_pages(p, MAX_ORDER - 1);
827 p += MAX_ORDER_NR_PAGES;
828 } while (i -= MAX_ORDER_NR_PAGES);
829 } else {
830 set_page_refcounted(page);
831 __free_pages(page, pageblock_order);
832 }
833
834 adjust_managed_page_count(page, pageblock_nr_pages);
835 }
836 #endif
837
838 /*
839 * The order of subdivision here is critical for the IO subsystem.
840 * Please do not alter this order without good reasons and regression
841 * testing. Specifically, as large blocks of memory are subdivided,
842 * the order in which smaller blocks are delivered depends on the order
843 * they're subdivided in this function. This is the primary factor
844 * influencing the order in which pages are delivered to the IO
845 * subsystem according to empirical testing, and this is also justified
846 * by considering the behavior of a buddy system containing a single
847 * large block of memory acted on by a series of small allocations.
848 * This behavior is a critical factor in sglist merging's success.
849 *
850 * -- nyc
851 */
852 static inline void expand(struct zone *zone, struct page *page,
853 int low, int high, struct free_area *area,
854 int migratetype)
855 {
856 unsigned long size = 1 << high;
857
858 while (high > low) {
859 area--;
860 high--;
861 size >>= 1;
862 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
863
864 #ifdef CONFIG_DEBUG_PAGEALLOC
865 if (high < debug_guardpage_minorder()) {
866 /*
867 * Mark as guard pages (or page), that will allow to
868 * merge back to allocator when buddy will be freed.
869 * Corresponding page table entries will not be touched,
870 * pages will stay not present in virtual address space
871 */
872 INIT_LIST_HEAD(&page[size].lru);
873 set_page_guard_flag(&page[size]);
874 set_page_private(&page[size], high);
875 /* Guard pages are not available for any usage */
876 __mod_zone_freepage_state(zone, -(1 << high),
877 migratetype);
878 continue;
879 }
880 #endif
881 list_add(&page[size].lru, &area->free_list[migratetype]);
882 area->nr_free++;
883 set_page_order(&page[size], high);
884 }
885 }
886
887 /*
888 * This page is about to be returned from the page allocator
889 */
890 static inline int check_new_page(struct page *page)
891 {
892 const char *bad_reason = NULL;
893 unsigned long bad_flags = 0;
894
895 if (unlikely(page_mapcount(page)))
896 bad_reason = "nonzero mapcount";
897 if (unlikely(page->mapping != NULL))
898 bad_reason = "non-NULL mapping";
899 if (unlikely(atomic_read(&page->_count) != 0))
900 bad_reason = "nonzero _count";
901 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
902 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
903 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
904 }
905 #ifdef CONFIG_MEMCG
906 if (unlikely(page->mem_cgroup))
907 bad_reason = "page still charged to cgroup";
908 #endif
909 if (unlikely(bad_reason)) {
910 bad_page(page, bad_reason, bad_flags);
911 return 1;
912 }
913 return 0;
914 }
915
916 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
917 {
918 int i;
919
920 for (i = 0; i < (1 << order); i++) {
921 struct page *p = page + i;
922 if (unlikely(check_new_page(p)))
923 return 1;
924 }
925
926 set_page_private(page, 0);
927 set_page_refcounted(page);
928
929 arch_alloc_page(page, order);
930 kernel_map_pages(page, 1 << order, 1);
931
932 if (gfp_flags & __GFP_ZERO)
933 prep_zero_page(page, order, gfp_flags);
934
935 if (order && (gfp_flags & __GFP_COMP))
936 prep_compound_page(page, order);
937
938 return 0;
939 }
940
941 /*
942 * Go through the free lists for the given migratetype and remove
943 * the smallest available page from the freelists
944 */
945 static inline
946 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
947 int migratetype)
948 {
949 unsigned int current_order;
950 struct free_area *area;
951 struct page *page;
952
953 /* Find a page of the appropriate size in the preferred list */
954 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
955 area = &(zone->free_area[current_order]);
956 if (list_empty(&area->free_list[migratetype]))
957 continue;
958
959 page = list_entry(area->free_list[migratetype].next,
960 struct page, lru);
961 list_del(&page->lru);
962 rmv_page_order(page);
963 area->nr_free--;
964 expand(zone, page, order, current_order, area, migratetype);
965 set_freepage_migratetype(page, migratetype);
966 return page;
967 }
968
969 return NULL;
970 }
971
972
973 /*
974 * This array describes the order lists are fallen back to when
975 * the free lists for the desirable migrate type are depleted
976 */
977 static int fallbacks[MIGRATE_TYPES][4] = {
978 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
979 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
980 #ifdef CONFIG_CMA
981 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
982 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
983 #else
984 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
985 #endif
986 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
987 #ifdef CONFIG_MEMORY_ISOLATION
988 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
989 #endif
990 };
991
992 /*
993 * Move the free pages in a range to the free lists of the requested type.
994 * Note that start_page and end_pages are not aligned on a pageblock
995 * boundary. If alignment is required, use move_freepages_block()
996 */
997 int move_freepages(struct zone *zone,
998 struct page *start_page, struct page *end_page,
999 int migratetype)
1000 {
1001 struct page *page;
1002 unsigned long order;
1003 int pages_moved = 0;
1004
1005 #ifndef CONFIG_HOLES_IN_ZONE
1006 /*
1007 * page_zone is not safe to call in this context when
1008 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1009 * anyway as we check zone boundaries in move_freepages_block().
1010 * Remove at a later date when no bug reports exist related to
1011 * grouping pages by mobility
1012 */
1013 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1014 #endif
1015
1016 for (page = start_page; page <= end_page;) {
1017 /* Make sure we are not inadvertently changing nodes */
1018 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1019
1020 if (!pfn_valid_within(page_to_pfn(page))) {
1021 page++;
1022 continue;
1023 }
1024
1025 if (!PageBuddy(page)) {
1026 page++;
1027 continue;
1028 }
1029
1030 order = page_order(page);
1031 list_move(&page->lru,
1032 &zone->free_area[order].free_list[migratetype]);
1033 set_freepage_migratetype(page, migratetype);
1034 page += 1 << order;
1035 pages_moved += 1 << order;
1036 }
1037
1038 return pages_moved;
1039 }
1040
1041 int move_freepages_block(struct zone *zone, struct page *page,
1042 int migratetype)
1043 {
1044 unsigned long start_pfn, end_pfn;
1045 struct page *start_page, *end_page;
1046
1047 start_pfn = page_to_pfn(page);
1048 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1049 start_page = pfn_to_page(start_pfn);
1050 end_page = start_page + pageblock_nr_pages - 1;
1051 end_pfn = start_pfn + pageblock_nr_pages - 1;
1052
1053 /* Do not cross zone boundaries */
1054 if (!zone_spans_pfn(zone, start_pfn))
1055 start_page = page;
1056 if (!zone_spans_pfn(zone, end_pfn))
1057 return 0;
1058
1059 return move_freepages(zone, start_page, end_page, migratetype);
1060 }
1061
1062 static void change_pageblock_range(struct page *pageblock_page,
1063 int start_order, int migratetype)
1064 {
1065 int nr_pageblocks = 1 << (start_order - pageblock_order);
1066
1067 while (nr_pageblocks--) {
1068 set_pageblock_migratetype(pageblock_page, migratetype);
1069 pageblock_page += pageblock_nr_pages;
1070 }
1071 }
1072
1073 /*
1074 * If breaking a large block of pages, move all free pages to the preferred
1075 * allocation list. If falling back for a reclaimable kernel allocation, be
1076 * more aggressive about taking ownership of free pages.
1077 *
1078 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1079 * nor move CMA pages to different free lists. We don't want unmovable pages
1080 * to be allocated from MIGRATE_CMA areas.
1081 *
1082 * Returns the new migratetype of the pageblock (or the same old migratetype
1083 * if it was unchanged).
1084 */
1085 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1086 int start_type, int fallback_type)
1087 {
1088 int current_order = page_order(page);
1089
1090 /*
1091 * When borrowing from MIGRATE_CMA, we need to release the excess
1092 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1093 * is set to CMA so it is returned to the correct freelist in case
1094 * the page ends up being not actually allocated from the pcp lists.
1095 */
1096 if (is_migrate_cma(fallback_type))
1097 return fallback_type;
1098
1099 /* Take ownership for orders >= pageblock_order */
1100 if (current_order >= pageblock_order) {
1101 change_pageblock_range(page, current_order, start_type);
1102 return start_type;
1103 }
1104
1105 if (current_order >= pageblock_order / 2 ||
1106 start_type == MIGRATE_RECLAIMABLE ||
1107 page_group_by_mobility_disabled) {
1108 int pages;
1109
1110 pages = move_freepages_block(zone, page, start_type);
1111
1112 /* Claim the whole block if over half of it is free */
1113 if (pages >= (1 << (pageblock_order-1)) ||
1114 page_group_by_mobility_disabled) {
1115
1116 set_pageblock_migratetype(page, start_type);
1117 return start_type;
1118 }
1119
1120 }
1121
1122 return fallback_type;
1123 }
1124
1125 /* Remove an element from the buddy allocator from the fallback list */
1126 static inline struct page *
1127 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1128 {
1129 struct free_area *area;
1130 unsigned int current_order;
1131 struct page *page;
1132 int migratetype, new_type, i;
1133
1134 /* Find the largest possible block of pages in the other list */
1135 for (current_order = MAX_ORDER-1;
1136 current_order >= order && current_order <= MAX_ORDER-1;
1137 --current_order) {
1138 for (i = 0;; i++) {
1139 migratetype = fallbacks[start_migratetype][i];
1140
1141 /* MIGRATE_RESERVE handled later if necessary */
1142 if (migratetype == MIGRATE_RESERVE)
1143 break;
1144
1145 area = &(zone->free_area[current_order]);
1146 if (list_empty(&area->free_list[migratetype]))
1147 continue;
1148
1149 page = list_entry(area->free_list[migratetype].next,
1150 struct page, lru);
1151 area->nr_free--;
1152
1153 new_type = try_to_steal_freepages(zone, page,
1154 start_migratetype,
1155 migratetype);
1156
1157 /* Remove the page from the freelists */
1158 list_del(&page->lru);
1159 rmv_page_order(page);
1160
1161 expand(zone, page, order, current_order, area,
1162 new_type);
1163 /* The freepage_migratetype may differ from pageblock's
1164 * migratetype depending on the decisions in
1165 * try_to_steal_freepages. This is OK as long as it does
1166 * not differ for MIGRATE_CMA type.
1167 */
1168 set_freepage_migratetype(page, new_type);
1169
1170 trace_mm_page_alloc_extfrag(page, order, current_order,
1171 start_migratetype, migratetype, new_type);
1172
1173 return page;
1174 }
1175 }
1176
1177 return NULL;
1178 }
1179
1180 /*
1181 * Do the hard work of removing an element from the buddy allocator.
1182 * Call me with the zone->lock already held.
1183 */
1184 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1185 int migratetype)
1186 {
1187 struct page *page;
1188
1189 retry_reserve:
1190 page = __rmqueue_smallest(zone, order, migratetype);
1191
1192 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1193 page = __rmqueue_fallback(zone, order, migratetype);
1194
1195 /*
1196 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1197 * is used because __rmqueue_smallest is an inline function
1198 * and we want just one call site
1199 */
1200 if (!page) {
1201 migratetype = MIGRATE_RESERVE;
1202 goto retry_reserve;
1203 }
1204 }
1205
1206 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1207 return page;
1208 }
1209
1210 /*
1211 * Obtain a specified number of elements from the buddy allocator, all under
1212 * a single hold of the lock, for efficiency. Add them to the supplied list.
1213 * Returns the number of new pages which were placed at *list.
1214 */
1215 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1216 unsigned long count, struct list_head *list,
1217 int migratetype, bool cold)
1218 {
1219 int i;
1220
1221 spin_lock(&zone->lock);
1222 for (i = 0; i < count; ++i) {
1223 struct page *page = __rmqueue(zone, order, migratetype);
1224 if (unlikely(page == NULL))
1225 break;
1226
1227 /*
1228 * Split buddy pages returned by expand() are received here
1229 * in physical page order. The page is added to the callers and
1230 * list and the list head then moves forward. From the callers
1231 * perspective, the linked list is ordered by page number in
1232 * some conditions. This is useful for IO devices that can
1233 * merge IO requests if the physical pages are ordered
1234 * properly.
1235 */
1236 if (likely(!cold))
1237 list_add(&page->lru, list);
1238 else
1239 list_add_tail(&page->lru, list);
1240 list = &page->lru;
1241 if (is_migrate_cma(get_freepage_migratetype(page)))
1242 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1243 -(1 << order));
1244 }
1245 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1246 spin_unlock(&zone->lock);
1247 return i;
1248 }
1249
1250 #ifdef CONFIG_NUMA
1251 /*
1252 * Called from the vmstat counter updater to drain pagesets of this
1253 * currently executing processor on remote nodes after they have
1254 * expired.
1255 *
1256 * Note that this function must be called with the thread pinned to
1257 * a single processor.
1258 */
1259 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1260 {
1261 unsigned long flags;
1262 int to_drain, batch;
1263
1264 local_irq_save(flags);
1265 batch = ACCESS_ONCE(pcp->batch);
1266 to_drain = min(pcp->count, batch);
1267 if (to_drain > 0) {
1268 free_pcppages_bulk(zone, to_drain, pcp);
1269 pcp->count -= to_drain;
1270 }
1271 local_irq_restore(flags);
1272 }
1273 #endif
1274
1275 /*
1276 * Drain pcplists of the indicated processor and zone.
1277 *
1278 * The processor must either be the current processor and the
1279 * thread pinned to the current processor or a processor that
1280 * is not online.
1281 */
1282 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1283 {
1284 unsigned long flags;
1285 struct per_cpu_pageset *pset;
1286 struct per_cpu_pages *pcp;
1287
1288 local_irq_save(flags);
1289 pset = per_cpu_ptr(zone->pageset, cpu);
1290
1291 pcp = &pset->pcp;
1292 if (pcp->count) {
1293 free_pcppages_bulk(zone, pcp->count, pcp);
1294 pcp->count = 0;
1295 }
1296 local_irq_restore(flags);
1297 }
1298
1299 /*
1300 * Drain pcplists of all zones on the indicated processor.
1301 *
1302 * The processor must either be the current processor and the
1303 * thread pinned to the current processor or a processor that
1304 * is not online.
1305 */
1306 static void drain_pages(unsigned int cpu)
1307 {
1308 struct zone *zone;
1309
1310 for_each_populated_zone(zone) {
1311 drain_pages_zone(cpu, zone);
1312 }
1313 }
1314
1315 /*
1316 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1317 *
1318 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1319 * the single zone's pages.
1320 */
1321 void drain_local_pages(struct zone *zone)
1322 {
1323 int cpu = smp_processor_id();
1324
1325 if (zone)
1326 drain_pages_zone(cpu, zone);
1327 else
1328 drain_pages(cpu);
1329 }
1330
1331 /*
1332 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1333 *
1334 * When zone parameter is non-NULL, spill just the single zone's pages.
1335 *
1336 * Note that this code is protected against sending an IPI to an offline
1337 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1338 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1339 * nothing keeps CPUs from showing up after we populated the cpumask and
1340 * before the call to on_each_cpu_mask().
1341 */
1342 void drain_all_pages(struct zone *zone)
1343 {
1344 int cpu;
1345
1346 /*
1347 * Allocate in the BSS so we wont require allocation in
1348 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1349 */
1350 static cpumask_t cpus_with_pcps;
1351
1352 /*
1353 * We don't care about racing with CPU hotplug event
1354 * as offline notification will cause the notified
1355 * cpu to drain that CPU pcps and on_each_cpu_mask
1356 * disables preemption as part of its processing
1357 */
1358 for_each_online_cpu(cpu) {
1359 struct per_cpu_pageset *pcp;
1360 struct zone *z;
1361 bool has_pcps = false;
1362
1363 if (zone) {
1364 pcp = per_cpu_ptr(zone->pageset, cpu);
1365 if (pcp->pcp.count)
1366 has_pcps = true;
1367 } else {
1368 for_each_populated_zone(z) {
1369 pcp = per_cpu_ptr(z->pageset, cpu);
1370 if (pcp->pcp.count) {
1371 has_pcps = true;
1372 break;
1373 }
1374 }
1375 }
1376
1377 if (has_pcps)
1378 cpumask_set_cpu(cpu, &cpus_with_pcps);
1379 else
1380 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1381 }
1382 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1383 zone, 1);
1384 }
1385
1386 #ifdef CONFIG_HIBERNATION
1387
1388 void mark_free_pages(struct zone *zone)
1389 {
1390 unsigned long pfn, max_zone_pfn;
1391 unsigned long flags;
1392 unsigned int order, t;
1393 struct list_head *curr;
1394
1395 if (zone_is_empty(zone))
1396 return;
1397
1398 spin_lock_irqsave(&zone->lock, flags);
1399
1400 max_zone_pfn = zone_end_pfn(zone);
1401 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1402 if (pfn_valid(pfn)) {
1403 struct page *page = pfn_to_page(pfn);
1404
1405 if (!swsusp_page_is_forbidden(page))
1406 swsusp_unset_page_free(page);
1407 }
1408
1409 for_each_migratetype_order(order, t) {
1410 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1411 unsigned long i;
1412
1413 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1414 for (i = 0; i < (1UL << order); i++)
1415 swsusp_set_page_free(pfn_to_page(pfn + i));
1416 }
1417 }
1418 spin_unlock_irqrestore(&zone->lock, flags);
1419 }
1420 #endif /* CONFIG_PM */
1421
1422 /*
1423 * Free a 0-order page
1424 * cold == true ? free a cold page : free a hot page
1425 */
1426 void free_hot_cold_page(struct page *page, bool cold)
1427 {
1428 struct zone *zone = page_zone(page);
1429 struct per_cpu_pages *pcp;
1430 unsigned long flags;
1431 unsigned long pfn = page_to_pfn(page);
1432 int migratetype;
1433
1434 if (!free_pages_prepare(page, 0))
1435 return;
1436
1437 migratetype = get_pfnblock_migratetype(page, pfn);
1438 set_freepage_migratetype(page, migratetype);
1439 local_irq_save(flags);
1440 __count_vm_event(PGFREE);
1441
1442 /*
1443 * We only track unmovable, reclaimable and movable on pcp lists.
1444 * Free ISOLATE pages back to the allocator because they are being
1445 * offlined but treat RESERVE as movable pages so we can get those
1446 * areas back if necessary. Otherwise, we may have to free
1447 * excessively into the page allocator
1448 */
1449 if (migratetype >= MIGRATE_PCPTYPES) {
1450 if (unlikely(is_migrate_isolate(migratetype))) {
1451 free_one_page(zone, page, pfn, 0, migratetype);
1452 goto out;
1453 }
1454 migratetype = MIGRATE_MOVABLE;
1455 }
1456
1457 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1458 if (!cold)
1459 list_add(&page->lru, &pcp->lists[migratetype]);
1460 else
1461 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1462 pcp->count++;
1463 if (pcp->count >= pcp->high) {
1464 unsigned long batch = ACCESS_ONCE(pcp->batch);
1465 free_pcppages_bulk(zone, batch, pcp);
1466 pcp->count -= batch;
1467 }
1468
1469 out:
1470 local_irq_restore(flags);
1471 }
1472
1473 /*
1474 * Free a list of 0-order pages
1475 */
1476 void free_hot_cold_page_list(struct list_head *list, bool cold)
1477 {
1478 struct page *page, *next;
1479
1480 list_for_each_entry_safe(page, next, list, lru) {
1481 trace_mm_page_free_batched(page, cold);
1482 free_hot_cold_page(page, cold);
1483 }
1484 }
1485
1486 /*
1487 * split_page takes a non-compound higher-order page, and splits it into
1488 * n (1<<order) sub-pages: page[0..n]
1489 * Each sub-page must be freed individually.
1490 *
1491 * Note: this is probably too low level an operation for use in drivers.
1492 * Please consult with lkml before using this in your driver.
1493 */
1494 void split_page(struct page *page, unsigned int order)
1495 {
1496 int i;
1497
1498 VM_BUG_ON_PAGE(PageCompound(page), page);
1499 VM_BUG_ON_PAGE(!page_count(page), page);
1500
1501 #ifdef CONFIG_KMEMCHECK
1502 /*
1503 * Split shadow pages too, because free(page[0]) would
1504 * otherwise free the whole shadow.
1505 */
1506 if (kmemcheck_page_is_tracked(page))
1507 split_page(virt_to_page(page[0].shadow), order);
1508 #endif
1509
1510 for (i = 1; i < (1 << order); i++)
1511 set_page_refcounted(page + i);
1512 }
1513 EXPORT_SYMBOL_GPL(split_page);
1514
1515 int __isolate_free_page(struct page *page, unsigned int order)
1516 {
1517 unsigned long watermark;
1518 struct zone *zone;
1519 int mt;
1520
1521 BUG_ON(!PageBuddy(page));
1522
1523 zone = page_zone(page);
1524 mt = get_pageblock_migratetype(page);
1525
1526 if (!is_migrate_isolate(mt)) {
1527 /* Obey watermarks as if the page was being allocated */
1528 watermark = low_wmark_pages(zone) + (1 << order);
1529 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1530 return 0;
1531
1532 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1533 }
1534
1535 /* Remove page from free list */
1536 list_del(&page->lru);
1537 zone->free_area[order].nr_free--;
1538 rmv_page_order(page);
1539
1540 /* Set the pageblock if the isolated page is at least a pageblock */
1541 if (order >= pageblock_order - 1) {
1542 struct page *endpage = page + (1 << order) - 1;
1543 for (; page < endpage; page += pageblock_nr_pages) {
1544 int mt = get_pageblock_migratetype(page);
1545 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1546 set_pageblock_migratetype(page,
1547 MIGRATE_MOVABLE);
1548 }
1549 }
1550
1551 return 1UL << order;
1552 }
1553
1554 /*
1555 * Similar to split_page except the page is already free. As this is only
1556 * being used for migration, the migratetype of the block also changes.
1557 * As this is called with interrupts disabled, the caller is responsible
1558 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1559 * are enabled.
1560 *
1561 * Note: this is probably too low level an operation for use in drivers.
1562 * Please consult with lkml before using this in your driver.
1563 */
1564 int split_free_page(struct page *page)
1565 {
1566 unsigned int order;
1567 int nr_pages;
1568
1569 order = page_order(page);
1570
1571 nr_pages = __isolate_free_page(page, order);
1572 if (!nr_pages)
1573 return 0;
1574
1575 /* Split into individual pages */
1576 set_page_refcounted(page);
1577 split_page(page, order);
1578 return nr_pages;
1579 }
1580
1581 /*
1582 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1583 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1584 * or two.
1585 */
1586 static inline
1587 struct page *buffered_rmqueue(struct zone *preferred_zone,
1588 struct zone *zone, unsigned int order,
1589 gfp_t gfp_flags, int migratetype)
1590 {
1591 unsigned long flags;
1592 struct page *page;
1593 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1594
1595 again:
1596 if (likely(order == 0)) {
1597 struct per_cpu_pages *pcp;
1598 struct list_head *list;
1599
1600 local_irq_save(flags);
1601 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1602 list = &pcp->lists[migratetype];
1603 if (list_empty(list)) {
1604 pcp->count += rmqueue_bulk(zone, 0,
1605 pcp->batch, list,
1606 migratetype, cold);
1607 if (unlikely(list_empty(list)))
1608 goto failed;
1609 }
1610
1611 if (cold)
1612 page = list_entry(list->prev, struct page, lru);
1613 else
1614 page = list_entry(list->next, struct page, lru);
1615
1616 list_del(&page->lru);
1617 pcp->count--;
1618 } else {
1619 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1620 /*
1621 * __GFP_NOFAIL is not to be used in new code.
1622 *
1623 * All __GFP_NOFAIL callers should be fixed so that they
1624 * properly detect and handle allocation failures.
1625 *
1626 * We most definitely don't want callers attempting to
1627 * allocate greater than order-1 page units with
1628 * __GFP_NOFAIL.
1629 */
1630 WARN_ON_ONCE(order > 1);
1631 }
1632 spin_lock_irqsave(&zone->lock, flags);
1633 page = __rmqueue(zone, order, migratetype);
1634 spin_unlock(&zone->lock);
1635 if (!page)
1636 goto failed;
1637 __mod_zone_freepage_state(zone, -(1 << order),
1638 get_freepage_migratetype(page));
1639 }
1640
1641 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1642 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1643 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1644 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1645
1646 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1647 zone_statistics(preferred_zone, zone, gfp_flags);
1648 local_irq_restore(flags);
1649
1650 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1651 if (prep_new_page(page, order, gfp_flags))
1652 goto again;
1653 return page;
1654
1655 failed:
1656 local_irq_restore(flags);
1657 return NULL;
1658 }
1659
1660 #ifdef CONFIG_FAIL_PAGE_ALLOC
1661
1662 static struct {
1663 struct fault_attr attr;
1664
1665 u32 ignore_gfp_highmem;
1666 u32 ignore_gfp_wait;
1667 u32 min_order;
1668 } fail_page_alloc = {
1669 .attr = FAULT_ATTR_INITIALIZER,
1670 .ignore_gfp_wait = 1,
1671 .ignore_gfp_highmem = 1,
1672 .min_order = 1,
1673 };
1674
1675 static int __init setup_fail_page_alloc(char *str)
1676 {
1677 return setup_fault_attr(&fail_page_alloc.attr, str);
1678 }
1679 __setup("fail_page_alloc=", setup_fail_page_alloc);
1680
1681 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1682 {
1683 if (order < fail_page_alloc.min_order)
1684 return false;
1685 if (gfp_mask & __GFP_NOFAIL)
1686 return false;
1687 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1688 return false;
1689 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1690 return false;
1691
1692 return should_fail(&fail_page_alloc.attr, 1 << order);
1693 }
1694
1695 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1696
1697 static int __init fail_page_alloc_debugfs(void)
1698 {
1699 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1700 struct dentry *dir;
1701
1702 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1703 &fail_page_alloc.attr);
1704 if (IS_ERR(dir))
1705 return PTR_ERR(dir);
1706
1707 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1708 &fail_page_alloc.ignore_gfp_wait))
1709 goto fail;
1710 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1711 &fail_page_alloc.ignore_gfp_highmem))
1712 goto fail;
1713 if (!debugfs_create_u32("min-order", mode, dir,
1714 &fail_page_alloc.min_order))
1715 goto fail;
1716
1717 return 0;
1718 fail:
1719 debugfs_remove_recursive(dir);
1720
1721 return -ENOMEM;
1722 }
1723
1724 late_initcall(fail_page_alloc_debugfs);
1725
1726 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1727
1728 #else /* CONFIG_FAIL_PAGE_ALLOC */
1729
1730 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1731 {
1732 return false;
1733 }
1734
1735 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1736
1737 /*
1738 * Return true if free pages are above 'mark'. This takes into account the order
1739 * of the allocation.
1740 */
1741 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1742 unsigned long mark, int classzone_idx, int alloc_flags,
1743 long free_pages)
1744 {
1745 /* free_pages may go negative - that's OK */
1746 long min = mark;
1747 int o;
1748 long free_cma = 0;
1749
1750 free_pages -= (1 << order) - 1;
1751 if (alloc_flags & ALLOC_HIGH)
1752 min -= min / 2;
1753 if (alloc_flags & ALLOC_HARDER)
1754 min -= min / 4;
1755 #ifdef CONFIG_CMA
1756 /* If allocation can't use CMA areas don't use free CMA pages */
1757 if (!(alloc_flags & ALLOC_CMA))
1758 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1759 #endif
1760
1761 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1762 return false;
1763 for (o = 0; o < order; o++) {
1764 /* At the next order, this order's pages become unavailable */
1765 free_pages -= z->free_area[o].nr_free << o;
1766
1767 /* Require fewer higher order pages to be free */
1768 min >>= 1;
1769
1770 if (free_pages <= min)
1771 return false;
1772 }
1773 return true;
1774 }
1775
1776 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1777 int classzone_idx, int alloc_flags)
1778 {
1779 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1780 zone_page_state(z, NR_FREE_PAGES));
1781 }
1782
1783 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1784 unsigned long mark, int classzone_idx, int alloc_flags)
1785 {
1786 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1787
1788 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1789 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1790
1791 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1792 free_pages);
1793 }
1794
1795 #ifdef CONFIG_NUMA
1796 /*
1797 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1798 * skip over zones that are not allowed by the cpuset, or that have
1799 * been recently (in last second) found to be nearly full. See further
1800 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1801 * that have to skip over a lot of full or unallowed zones.
1802 *
1803 * If the zonelist cache is present in the passed zonelist, then
1804 * returns a pointer to the allowed node mask (either the current
1805 * tasks mems_allowed, or node_states[N_MEMORY].)
1806 *
1807 * If the zonelist cache is not available for this zonelist, does
1808 * nothing and returns NULL.
1809 *
1810 * If the fullzones BITMAP in the zonelist cache is stale (more than
1811 * a second since last zap'd) then we zap it out (clear its bits.)
1812 *
1813 * We hold off even calling zlc_setup, until after we've checked the
1814 * first zone in the zonelist, on the theory that most allocations will
1815 * be satisfied from that first zone, so best to examine that zone as
1816 * quickly as we can.
1817 */
1818 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1819 {
1820 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1821 nodemask_t *allowednodes; /* zonelist_cache approximation */
1822
1823 zlc = zonelist->zlcache_ptr;
1824 if (!zlc)
1825 return NULL;
1826
1827 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1828 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1829 zlc->last_full_zap = jiffies;
1830 }
1831
1832 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1833 &cpuset_current_mems_allowed :
1834 &node_states[N_MEMORY];
1835 return allowednodes;
1836 }
1837
1838 /*
1839 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1840 * if it is worth looking at further for free memory:
1841 * 1) Check that the zone isn't thought to be full (doesn't have its
1842 * bit set in the zonelist_cache fullzones BITMAP).
1843 * 2) Check that the zones node (obtained from the zonelist_cache
1844 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1845 * Return true (non-zero) if zone is worth looking at further, or
1846 * else return false (zero) if it is not.
1847 *
1848 * This check -ignores- the distinction between various watermarks,
1849 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1850 * found to be full for any variation of these watermarks, it will
1851 * be considered full for up to one second by all requests, unless
1852 * we are so low on memory on all allowed nodes that we are forced
1853 * into the second scan of the zonelist.
1854 *
1855 * In the second scan we ignore this zonelist cache and exactly
1856 * apply the watermarks to all zones, even it is slower to do so.
1857 * We are low on memory in the second scan, and should leave no stone
1858 * unturned looking for a free page.
1859 */
1860 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1861 nodemask_t *allowednodes)
1862 {
1863 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1864 int i; /* index of *z in zonelist zones */
1865 int n; /* node that zone *z is on */
1866
1867 zlc = zonelist->zlcache_ptr;
1868 if (!zlc)
1869 return 1;
1870
1871 i = z - zonelist->_zonerefs;
1872 n = zlc->z_to_n[i];
1873
1874 /* This zone is worth trying if it is allowed but not full */
1875 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1876 }
1877
1878 /*
1879 * Given 'z' scanning a zonelist, set the corresponding bit in
1880 * zlc->fullzones, so that subsequent attempts to allocate a page
1881 * from that zone don't waste time re-examining it.
1882 */
1883 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1884 {
1885 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1886 int i; /* index of *z in zonelist zones */
1887
1888 zlc = zonelist->zlcache_ptr;
1889 if (!zlc)
1890 return;
1891
1892 i = z - zonelist->_zonerefs;
1893
1894 set_bit(i, zlc->fullzones);
1895 }
1896
1897 /*
1898 * clear all zones full, called after direct reclaim makes progress so that
1899 * a zone that was recently full is not skipped over for up to a second
1900 */
1901 static void zlc_clear_zones_full(struct zonelist *zonelist)
1902 {
1903 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1904
1905 zlc = zonelist->zlcache_ptr;
1906 if (!zlc)
1907 return;
1908
1909 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1910 }
1911
1912 static bool zone_local(struct zone *local_zone, struct zone *zone)
1913 {
1914 return local_zone->node == zone->node;
1915 }
1916
1917 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1918 {
1919 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1920 RECLAIM_DISTANCE;
1921 }
1922
1923 #else /* CONFIG_NUMA */
1924
1925 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1926 {
1927 return NULL;
1928 }
1929
1930 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1931 nodemask_t *allowednodes)
1932 {
1933 return 1;
1934 }
1935
1936 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1937 {
1938 }
1939
1940 static void zlc_clear_zones_full(struct zonelist *zonelist)
1941 {
1942 }
1943
1944 static bool zone_local(struct zone *local_zone, struct zone *zone)
1945 {
1946 return true;
1947 }
1948
1949 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1950 {
1951 return true;
1952 }
1953
1954 #endif /* CONFIG_NUMA */
1955
1956 static void reset_alloc_batches(struct zone *preferred_zone)
1957 {
1958 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1959
1960 do {
1961 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1962 high_wmark_pages(zone) - low_wmark_pages(zone) -
1963 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1964 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1965 } while (zone++ != preferred_zone);
1966 }
1967
1968 /*
1969 * get_page_from_freelist goes through the zonelist trying to allocate
1970 * a page.
1971 */
1972 static struct page *
1973 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1974 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1975 struct zone *preferred_zone, int classzone_idx, int migratetype)
1976 {
1977 struct zoneref *z;
1978 struct page *page = NULL;
1979 struct zone *zone;
1980 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1981 int zlc_active = 0; /* set if using zonelist_cache */
1982 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1983 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1984 (gfp_mask & __GFP_WRITE);
1985 int nr_fair_skipped = 0;
1986 bool zonelist_rescan;
1987
1988 zonelist_scan:
1989 zonelist_rescan = false;
1990
1991 /*
1992 * Scan zonelist, looking for a zone with enough free.
1993 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1994 */
1995 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1996 high_zoneidx, nodemask) {
1997 unsigned long mark;
1998
1999 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2000 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2001 continue;
2002 if (cpusets_enabled() &&
2003 (alloc_flags & ALLOC_CPUSET) &&
2004 !cpuset_zone_allowed_softwall(zone, gfp_mask))
2005 continue;
2006 /*
2007 * Distribute pages in proportion to the individual
2008 * zone size to ensure fair page aging. The zone a
2009 * page was allocated in should have no effect on the
2010 * time the page has in memory before being reclaimed.
2011 */
2012 if (alloc_flags & ALLOC_FAIR) {
2013 if (!zone_local(preferred_zone, zone))
2014 break;
2015 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2016 nr_fair_skipped++;
2017 continue;
2018 }
2019 }
2020 /*
2021 * When allocating a page cache page for writing, we
2022 * want to get it from a zone that is within its dirty
2023 * limit, such that no single zone holds more than its
2024 * proportional share of globally allowed dirty pages.
2025 * The dirty limits take into account the zone's
2026 * lowmem reserves and high watermark so that kswapd
2027 * should be able to balance it without having to
2028 * write pages from its LRU list.
2029 *
2030 * This may look like it could increase pressure on
2031 * lower zones by failing allocations in higher zones
2032 * before they are full. But the pages that do spill
2033 * over are limited as the lower zones are protected
2034 * by this very same mechanism. It should not become
2035 * a practical burden to them.
2036 *
2037 * XXX: For now, allow allocations to potentially
2038 * exceed the per-zone dirty limit in the slowpath
2039 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2040 * which is important when on a NUMA setup the allowed
2041 * zones are together not big enough to reach the
2042 * global limit. The proper fix for these situations
2043 * will require awareness of zones in the
2044 * dirty-throttling and the flusher threads.
2045 */
2046 if (consider_zone_dirty && !zone_dirty_ok(zone))
2047 continue;
2048
2049 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2050 if (!zone_watermark_ok(zone, order, mark,
2051 classzone_idx, alloc_flags)) {
2052 int ret;
2053
2054 /* Checked here to keep the fast path fast */
2055 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2056 if (alloc_flags & ALLOC_NO_WATERMARKS)
2057 goto try_this_zone;
2058
2059 if (IS_ENABLED(CONFIG_NUMA) &&
2060 !did_zlc_setup && nr_online_nodes > 1) {
2061 /*
2062 * we do zlc_setup if there are multiple nodes
2063 * and before considering the first zone allowed
2064 * by the cpuset.
2065 */
2066 allowednodes = zlc_setup(zonelist, alloc_flags);
2067 zlc_active = 1;
2068 did_zlc_setup = 1;
2069 }
2070
2071 if (zone_reclaim_mode == 0 ||
2072 !zone_allows_reclaim(preferred_zone, zone))
2073 goto this_zone_full;
2074
2075 /*
2076 * As we may have just activated ZLC, check if the first
2077 * eligible zone has failed zone_reclaim recently.
2078 */
2079 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2080 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2081 continue;
2082
2083 ret = zone_reclaim(zone, gfp_mask, order);
2084 switch (ret) {
2085 case ZONE_RECLAIM_NOSCAN:
2086 /* did not scan */
2087 continue;
2088 case ZONE_RECLAIM_FULL:
2089 /* scanned but unreclaimable */
2090 continue;
2091 default:
2092 /* did we reclaim enough */
2093 if (zone_watermark_ok(zone, order, mark,
2094 classzone_idx, alloc_flags))
2095 goto try_this_zone;
2096
2097 /*
2098 * Failed to reclaim enough to meet watermark.
2099 * Only mark the zone full if checking the min
2100 * watermark or if we failed to reclaim just
2101 * 1<<order pages or else the page allocator
2102 * fastpath will prematurely mark zones full
2103 * when the watermark is between the low and
2104 * min watermarks.
2105 */
2106 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2107 ret == ZONE_RECLAIM_SOME)
2108 goto this_zone_full;
2109
2110 continue;
2111 }
2112 }
2113
2114 try_this_zone:
2115 page = buffered_rmqueue(preferred_zone, zone, order,
2116 gfp_mask, migratetype);
2117 if (page)
2118 break;
2119 this_zone_full:
2120 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2121 zlc_mark_zone_full(zonelist, z);
2122 }
2123
2124 if (page) {
2125 /*
2126 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2127 * necessary to allocate the page. The expectation is
2128 * that the caller is taking steps that will free more
2129 * memory. The caller should avoid the page being used
2130 * for !PFMEMALLOC purposes.
2131 */
2132 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2133 return page;
2134 }
2135
2136 /*
2137 * The first pass makes sure allocations are spread fairly within the
2138 * local node. However, the local node might have free pages left
2139 * after the fairness batches are exhausted, and remote zones haven't
2140 * even been considered yet. Try once more without fairness, and
2141 * include remote zones now, before entering the slowpath and waking
2142 * kswapd: prefer spilling to a remote zone over swapping locally.
2143 */
2144 if (alloc_flags & ALLOC_FAIR) {
2145 alloc_flags &= ~ALLOC_FAIR;
2146 if (nr_fair_skipped) {
2147 zonelist_rescan = true;
2148 reset_alloc_batches(preferred_zone);
2149 }
2150 if (nr_online_nodes > 1)
2151 zonelist_rescan = true;
2152 }
2153
2154 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2155 /* Disable zlc cache for second zonelist scan */
2156 zlc_active = 0;
2157 zonelist_rescan = true;
2158 }
2159
2160 if (zonelist_rescan)
2161 goto zonelist_scan;
2162
2163 return NULL;
2164 }
2165
2166 /*
2167 * Large machines with many possible nodes should not always dump per-node
2168 * meminfo in irq context.
2169 */
2170 static inline bool should_suppress_show_mem(void)
2171 {
2172 bool ret = false;
2173
2174 #if NODES_SHIFT > 8
2175 ret = in_interrupt();
2176 #endif
2177 return ret;
2178 }
2179
2180 static DEFINE_RATELIMIT_STATE(nopage_rs,
2181 DEFAULT_RATELIMIT_INTERVAL,
2182 DEFAULT_RATELIMIT_BURST);
2183
2184 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2185 {
2186 unsigned int filter = SHOW_MEM_FILTER_NODES;
2187
2188 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2189 debug_guardpage_minorder() > 0)
2190 return;
2191
2192 /*
2193 * This documents exceptions given to allocations in certain
2194 * contexts that are allowed to allocate outside current's set
2195 * of allowed nodes.
2196 */
2197 if (!(gfp_mask & __GFP_NOMEMALLOC))
2198 if (test_thread_flag(TIF_MEMDIE) ||
2199 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2200 filter &= ~SHOW_MEM_FILTER_NODES;
2201 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2202 filter &= ~SHOW_MEM_FILTER_NODES;
2203
2204 if (fmt) {
2205 struct va_format vaf;
2206 va_list args;
2207
2208 va_start(args, fmt);
2209
2210 vaf.fmt = fmt;
2211 vaf.va = &args;
2212
2213 pr_warn("%pV", &vaf);
2214
2215 va_end(args);
2216 }
2217
2218 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2219 current->comm, order, gfp_mask);
2220
2221 dump_stack();
2222 if (!should_suppress_show_mem())
2223 show_mem(filter);
2224 }
2225
2226 static inline int
2227 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2228 unsigned long did_some_progress,
2229 unsigned long pages_reclaimed)
2230 {
2231 /* Do not loop if specifically requested */
2232 if (gfp_mask & __GFP_NORETRY)
2233 return 0;
2234
2235 /* Always retry if specifically requested */
2236 if (gfp_mask & __GFP_NOFAIL)
2237 return 1;
2238
2239 /*
2240 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2241 * making forward progress without invoking OOM. Suspend also disables
2242 * storage devices so kswapd will not help. Bail if we are suspending.
2243 */
2244 if (!did_some_progress && pm_suspended_storage())
2245 return 0;
2246
2247 /*
2248 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2249 * means __GFP_NOFAIL, but that may not be true in other
2250 * implementations.
2251 */
2252 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2253 return 1;
2254
2255 /*
2256 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2257 * specified, then we retry until we no longer reclaim any pages
2258 * (above), or we've reclaimed an order of pages at least as
2259 * large as the allocation's order. In both cases, if the
2260 * allocation still fails, we stop retrying.
2261 */
2262 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2263 return 1;
2264
2265 return 0;
2266 }
2267
2268 static inline struct page *
2269 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2270 struct zonelist *zonelist, enum zone_type high_zoneidx,
2271 nodemask_t *nodemask, struct zone *preferred_zone,
2272 int classzone_idx, int migratetype)
2273 {
2274 struct page *page;
2275
2276 /* Acquire the per-zone oom lock for each zone */
2277 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2278 schedule_timeout_uninterruptible(1);
2279 return NULL;
2280 }
2281
2282 /*
2283 * PM-freezer should be notified that there might be an OOM killer on
2284 * its way to kill and wake somebody up. This is too early and we might
2285 * end up not killing anything but false positives are acceptable.
2286 * See freeze_processes.
2287 */
2288 note_oom_kill();
2289
2290 /*
2291 * Go through the zonelist yet one more time, keep very high watermark
2292 * here, this is only to catch a parallel oom killing, we must fail if
2293 * we're still under heavy pressure.
2294 */
2295 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2296 order, zonelist, high_zoneidx,
2297 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2298 preferred_zone, classzone_idx, migratetype);
2299 if (page)
2300 goto out;
2301
2302 if (!(gfp_mask & __GFP_NOFAIL)) {
2303 /* The OOM killer will not help higher order allocs */
2304 if (order > PAGE_ALLOC_COSTLY_ORDER)
2305 goto out;
2306 /* The OOM killer does not needlessly kill tasks for lowmem */
2307 if (high_zoneidx < ZONE_NORMAL)
2308 goto out;
2309 /*
2310 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2311 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2312 * The caller should handle page allocation failure by itself if
2313 * it specifies __GFP_THISNODE.
2314 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2315 */
2316 if (gfp_mask & __GFP_THISNODE)
2317 goto out;
2318 }
2319 /* Exhausted what can be done so it's blamo time */
2320 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2321
2322 out:
2323 oom_zonelist_unlock(zonelist, gfp_mask);
2324 return page;
2325 }
2326
2327 #ifdef CONFIG_COMPACTION
2328 /* Try memory compaction for high-order allocations before reclaim */
2329 static struct page *
2330 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2331 struct zonelist *zonelist, enum zone_type high_zoneidx,
2332 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2333 int classzone_idx, int migratetype, enum migrate_mode mode,
2334 int *contended_compaction, bool *deferred_compaction)
2335 {
2336 unsigned long compact_result;
2337 struct page *page;
2338
2339 if (!order)
2340 return NULL;
2341
2342 current->flags |= PF_MEMALLOC;
2343 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2344 nodemask, mode,
2345 contended_compaction,
2346 alloc_flags, classzone_idx);
2347 current->flags &= ~PF_MEMALLOC;
2348
2349 switch (compact_result) {
2350 case COMPACT_DEFERRED:
2351 *deferred_compaction = true;
2352 /* fall-through */
2353 case COMPACT_SKIPPED:
2354 return NULL;
2355 default:
2356 break;
2357 }
2358
2359 /*
2360 * At least in one zone compaction wasn't deferred or skipped, so let's
2361 * count a compaction stall
2362 */
2363 count_vm_event(COMPACTSTALL);
2364
2365 page = get_page_from_freelist(gfp_mask, nodemask,
2366 order, zonelist, high_zoneidx,
2367 alloc_flags & ~ALLOC_NO_WATERMARKS,
2368 preferred_zone, classzone_idx, migratetype);
2369
2370 if (page) {
2371 struct zone *zone = page_zone(page);
2372
2373 zone->compact_blockskip_flush = false;
2374 compaction_defer_reset(zone, order, true);
2375 count_vm_event(COMPACTSUCCESS);
2376 return page;
2377 }
2378
2379 /*
2380 * It's bad if compaction run occurs and fails. The most likely reason
2381 * is that pages exist, but not enough to satisfy watermarks.
2382 */
2383 count_vm_event(COMPACTFAIL);
2384
2385 cond_resched();
2386
2387 return NULL;
2388 }
2389 #else
2390 static inline struct page *
2391 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2392 struct zonelist *zonelist, enum zone_type high_zoneidx,
2393 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2394 int classzone_idx, int migratetype, enum migrate_mode mode,
2395 int *contended_compaction, bool *deferred_compaction)
2396 {
2397 return NULL;
2398 }
2399 #endif /* CONFIG_COMPACTION */
2400
2401 /* Perform direct synchronous page reclaim */
2402 static int
2403 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2404 nodemask_t *nodemask)
2405 {
2406 struct reclaim_state reclaim_state;
2407 int progress;
2408
2409 cond_resched();
2410
2411 /* We now go into synchronous reclaim */
2412 cpuset_memory_pressure_bump();
2413 current->flags |= PF_MEMALLOC;
2414 lockdep_set_current_reclaim_state(gfp_mask);
2415 reclaim_state.reclaimed_slab = 0;
2416 current->reclaim_state = &reclaim_state;
2417
2418 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2419
2420 current->reclaim_state = NULL;
2421 lockdep_clear_current_reclaim_state();
2422 current->flags &= ~PF_MEMALLOC;
2423
2424 cond_resched();
2425
2426 return progress;
2427 }
2428
2429 /* The really slow allocator path where we enter direct reclaim */
2430 static inline struct page *
2431 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2432 struct zonelist *zonelist, enum zone_type high_zoneidx,
2433 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2434 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2435 {
2436 struct page *page = NULL;
2437 bool drained = false;
2438
2439 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2440 nodemask);
2441 if (unlikely(!(*did_some_progress)))
2442 return NULL;
2443
2444 /* After successful reclaim, reconsider all zones for allocation */
2445 if (IS_ENABLED(CONFIG_NUMA))
2446 zlc_clear_zones_full(zonelist);
2447
2448 retry:
2449 page = get_page_from_freelist(gfp_mask, nodemask, order,
2450 zonelist, high_zoneidx,
2451 alloc_flags & ~ALLOC_NO_WATERMARKS,
2452 preferred_zone, classzone_idx,
2453 migratetype);
2454
2455 /*
2456 * If an allocation failed after direct reclaim, it could be because
2457 * pages are pinned on the per-cpu lists. Drain them and try again
2458 */
2459 if (!page && !drained) {
2460 drain_all_pages(NULL);
2461 drained = true;
2462 goto retry;
2463 }
2464
2465 return page;
2466 }
2467
2468 /*
2469 * This is called in the allocator slow-path if the allocation request is of
2470 * sufficient urgency to ignore watermarks and take other desperate measures
2471 */
2472 static inline struct page *
2473 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2474 struct zonelist *zonelist, enum zone_type high_zoneidx,
2475 nodemask_t *nodemask, struct zone *preferred_zone,
2476 int classzone_idx, int migratetype)
2477 {
2478 struct page *page;
2479
2480 do {
2481 page = get_page_from_freelist(gfp_mask, nodemask, order,
2482 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2483 preferred_zone, classzone_idx, migratetype);
2484
2485 if (!page && gfp_mask & __GFP_NOFAIL)
2486 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2487 } while (!page && (gfp_mask & __GFP_NOFAIL));
2488
2489 return page;
2490 }
2491
2492 static void wake_all_kswapds(unsigned int order,
2493 struct zonelist *zonelist,
2494 enum zone_type high_zoneidx,
2495 struct zone *preferred_zone,
2496 nodemask_t *nodemask)
2497 {
2498 struct zoneref *z;
2499 struct zone *zone;
2500
2501 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2502 high_zoneidx, nodemask)
2503 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2504 }
2505
2506 static inline int
2507 gfp_to_alloc_flags(gfp_t gfp_mask)
2508 {
2509 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2510 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2511
2512 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2513 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2514
2515 /*
2516 * The caller may dip into page reserves a bit more if the caller
2517 * cannot run direct reclaim, or if the caller has realtime scheduling
2518 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2519 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2520 */
2521 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2522
2523 if (atomic) {
2524 /*
2525 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2526 * if it can't schedule.
2527 */
2528 if (!(gfp_mask & __GFP_NOMEMALLOC))
2529 alloc_flags |= ALLOC_HARDER;
2530 /*
2531 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2532 * comment for __cpuset_node_allowed_softwall().
2533 */
2534 alloc_flags &= ~ALLOC_CPUSET;
2535 } else if (unlikely(rt_task(current)) && !in_interrupt())
2536 alloc_flags |= ALLOC_HARDER;
2537
2538 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2539 if (gfp_mask & __GFP_MEMALLOC)
2540 alloc_flags |= ALLOC_NO_WATERMARKS;
2541 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2542 alloc_flags |= ALLOC_NO_WATERMARKS;
2543 else if (!in_interrupt() &&
2544 ((current->flags & PF_MEMALLOC) ||
2545 unlikely(test_thread_flag(TIF_MEMDIE))))
2546 alloc_flags |= ALLOC_NO_WATERMARKS;
2547 }
2548 #ifdef CONFIG_CMA
2549 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2550 alloc_flags |= ALLOC_CMA;
2551 #endif
2552 return alloc_flags;
2553 }
2554
2555 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2556 {
2557 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2558 }
2559
2560 static inline struct page *
2561 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2562 struct zonelist *zonelist, enum zone_type high_zoneidx,
2563 nodemask_t *nodemask, struct zone *preferred_zone,
2564 int classzone_idx, int migratetype)
2565 {
2566 const gfp_t wait = gfp_mask & __GFP_WAIT;
2567 struct page *page = NULL;
2568 int alloc_flags;
2569 unsigned long pages_reclaimed = 0;
2570 unsigned long did_some_progress;
2571 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2572 bool deferred_compaction = false;
2573 int contended_compaction = COMPACT_CONTENDED_NONE;
2574
2575 /*
2576 * In the slowpath, we sanity check order to avoid ever trying to
2577 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2578 * be using allocators in order of preference for an area that is
2579 * too large.
2580 */
2581 if (order >= MAX_ORDER) {
2582 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2583 return NULL;
2584 }
2585
2586 /*
2587 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2588 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2589 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2590 * using a larger set of nodes after it has established that the
2591 * allowed per node queues are empty and that nodes are
2592 * over allocated.
2593 */
2594 if (IS_ENABLED(CONFIG_NUMA) &&
2595 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2596 goto nopage;
2597
2598 restart:
2599 if (!(gfp_mask & __GFP_NO_KSWAPD))
2600 wake_all_kswapds(order, zonelist, high_zoneidx,
2601 preferred_zone, nodemask);
2602
2603 /*
2604 * OK, we're below the kswapd watermark and have kicked background
2605 * reclaim. Now things get more complex, so set up alloc_flags according
2606 * to how we want to proceed.
2607 */
2608 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2609
2610 /*
2611 * Find the true preferred zone if the allocation is unconstrained by
2612 * cpusets.
2613 */
2614 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2615 struct zoneref *preferred_zoneref;
2616 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2617 NULL, &preferred_zone);
2618 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2619 }
2620
2621 rebalance:
2622 /* This is the last chance, in general, before the goto nopage. */
2623 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2624 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2625 preferred_zone, classzone_idx, migratetype);
2626 if (page)
2627 goto got_pg;
2628
2629 /* Allocate without watermarks if the context allows */
2630 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2631 /*
2632 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2633 * the allocation is high priority and these type of
2634 * allocations are system rather than user orientated
2635 */
2636 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2637
2638 page = __alloc_pages_high_priority(gfp_mask, order,
2639 zonelist, high_zoneidx, nodemask,
2640 preferred_zone, classzone_idx, migratetype);
2641 if (page) {
2642 goto got_pg;
2643 }
2644 }
2645
2646 /* Atomic allocations - we can't balance anything */
2647 if (!wait) {
2648 /*
2649 * All existing users of the deprecated __GFP_NOFAIL are
2650 * blockable, so warn of any new users that actually allow this
2651 * type of allocation to fail.
2652 */
2653 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2654 goto nopage;
2655 }
2656
2657 /* Avoid recursion of direct reclaim */
2658 if (current->flags & PF_MEMALLOC)
2659 goto nopage;
2660
2661 /* Avoid allocations with no watermarks from looping endlessly */
2662 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2663 goto nopage;
2664
2665 /*
2666 * Try direct compaction. The first pass is asynchronous. Subsequent
2667 * attempts after direct reclaim are synchronous
2668 */
2669 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2670 high_zoneidx, nodemask, alloc_flags,
2671 preferred_zone,
2672 classzone_idx, migratetype,
2673 migration_mode, &contended_compaction,
2674 &deferred_compaction);
2675 if (page)
2676 goto got_pg;
2677
2678 /* Checks for THP-specific high-order allocations */
2679 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2680 /*
2681 * If compaction is deferred for high-order allocations, it is
2682 * because sync compaction recently failed. If this is the case
2683 * and the caller requested a THP allocation, we do not want
2684 * to heavily disrupt the system, so we fail the allocation
2685 * instead of entering direct reclaim.
2686 */
2687 if (deferred_compaction)
2688 goto nopage;
2689
2690 /*
2691 * In all zones where compaction was attempted (and not
2692 * deferred or skipped), lock contention has been detected.
2693 * For THP allocation we do not want to disrupt the others
2694 * so we fallback to base pages instead.
2695 */
2696 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2697 goto nopage;
2698
2699 /*
2700 * If compaction was aborted due to need_resched(), we do not
2701 * want to further increase allocation latency, unless it is
2702 * khugepaged trying to collapse.
2703 */
2704 if (contended_compaction == COMPACT_CONTENDED_SCHED
2705 && !(current->flags & PF_KTHREAD))
2706 goto nopage;
2707 }
2708
2709 /*
2710 * It can become very expensive to allocate transparent hugepages at
2711 * fault, so use asynchronous memory compaction for THP unless it is
2712 * khugepaged trying to collapse.
2713 */
2714 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2715 (current->flags & PF_KTHREAD))
2716 migration_mode = MIGRATE_SYNC_LIGHT;
2717
2718 /* Try direct reclaim and then allocating */
2719 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2720 zonelist, high_zoneidx,
2721 nodemask,
2722 alloc_flags, preferred_zone,
2723 classzone_idx, migratetype,
2724 &did_some_progress);
2725 if (page)
2726 goto got_pg;
2727
2728 /*
2729 * If we failed to make any progress reclaiming, then we are
2730 * running out of options and have to consider going OOM
2731 */
2732 if (!did_some_progress) {
2733 if (oom_gfp_allowed(gfp_mask)) {
2734 if (oom_killer_disabled)
2735 goto nopage;
2736 /* Coredumps can quickly deplete all memory reserves */
2737 if ((current->flags & PF_DUMPCORE) &&
2738 !(gfp_mask & __GFP_NOFAIL))
2739 goto nopage;
2740 page = __alloc_pages_may_oom(gfp_mask, order,
2741 zonelist, high_zoneidx,
2742 nodemask, preferred_zone,
2743 classzone_idx, migratetype);
2744 if (page)
2745 goto got_pg;
2746
2747 if (!(gfp_mask & __GFP_NOFAIL)) {
2748 /*
2749 * The oom killer is not called for high-order
2750 * allocations that may fail, so if no progress
2751 * is being made, there are no other options and
2752 * retrying is unlikely to help.
2753 */
2754 if (order > PAGE_ALLOC_COSTLY_ORDER)
2755 goto nopage;
2756 /*
2757 * The oom killer is not called for lowmem
2758 * allocations to prevent needlessly killing
2759 * innocent tasks.
2760 */
2761 if (high_zoneidx < ZONE_NORMAL)
2762 goto nopage;
2763 }
2764
2765 goto restart;
2766 }
2767 }
2768
2769 /* Check if we should retry the allocation */
2770 pages_reclaimed += did_some_progress;
2771 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2772 pages_reclaimed)) {
2773 /* Wait for some write requests to complete then retry */
2774 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2775 goto rebalance;
2776 } else {
2777 /*
2778 * High-order allocations do not necessarily loop after
2779 * direct reclaim and reclaim/compaction depends on compaction
2780 * being called after reclaim so call directly if necessary
2781 */
2782 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2783 high_zoneidx, nodemask, alloc_flags,
2784 preferred_zone,
2785 classzone_idx, migratetype,
2786 migration_mode, &contended_compaction,
2787 &deferred_compaction);
2788 if (page)
2789 goto got_pg;
2790 }
2791
2792 nopage:
2793 warn_alloc_failed(gfp_mask, order, NULL);
2794 return page;
2795 got_pg:
2796 if (kmemcheck_enabled)
2797 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2798
2799 return page;
2800 }
2801
2802 /*
2803 * This is the 'heart' of the zoned buddy allocator.
2804 */
2805 struct page *
2806 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2807 struct zonelist *zonelist, nodemask_t *nodemask)
2808 {
2809 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2810 struct zone *preferred_zone;
2811 struct zoneref *preferred_zoneref;
2812 struct page *page = NULL;
2813 int migratetype = gfpflags_to_migratetype(gfp_mask);
2814 unsigned int cpuset_mems_cookie;
2815 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2816 int classzone_idx;
2817
2818 gfp_mask &= gfp_allowed_mask;
2819
2820 lockdep_trace_alloc(gfp_mask);
2821
2822 might_sleep_if(gfp_mask & __GFP_WAIT);
2823
2824 if (should_fail_alloc_page(gfp_mask, order))
2825 return NULL;
2826
2827 /*
2828 * Check the zones suitable for the gfp_mask contain at least one
2829 * valid zone. It's possible to have an empty zonelist as a result
2830 * of GFP_THISNODE and a memoryless node
2831 */
2832 if (unlikely(!zonelist->_zonerefs->zone))
2833 return NULL;
2834
2835 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2836 alloc_flags |= ALLOC_CMA;
2837
2838 retry_cpuset:
2839 cpuset_mems_cookie = read_mems_allowed_begin();
2840
2841 /* The preferred zone is used for statistics later */
2842 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2843 nodemask ? : &cpuset_current_mems_allowed,
2844 &preferred_zone);
2845 if (!preferred_zone)
2846 goto out;
2847 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2848
2849 /* First allocation attempt */
2850 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2851 zonelist, high_zoneidx, alloc_flags,
2852 preferred_zone, classzone_idx, migratetype);
2853 if (unlikely(!page)) {
2854 /*
2855 * Runtime PM, block IO and its error handling path
2856 * can deadlock because I/O on the device might not
2857 * complete.
2858 */
2859 gfp_mask = memalloc_noio_flags(gfp_mask);
2860 page = __alloc_pages_slowpath(gfp_mask, order,
2861 zonelist, high_zoneidx, nodemask,
2862 preferred_zone, classzone_idx, migratetype);
2863 }
2864
2865 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2866
2867 out:
2868 /*
2869 * When updating a task's mems_allowed, it is possible to race with
2870 * parallel threads in such a way that an allocation can fail while
2871 * the mask is being updated. If a page allocation is about to fail,
2872 * check if the cpuset changed during allocation and if so, retry.
2873 */
2874 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2875 goto retry_cpuset;
2876
2877 return page;
2878 }
2879 EXPORT_SYMBOL(__alloc_pages_nodemask);
2880
2881 /*
2882 * Common helper functions.
2883 */
2884 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2885 {
2886 struct page *page;
2887
2888 /*
2889 * __get_free_pages() returns a 32-bit address, which cannot represent
2890 * a highmem page
2891 */
2892 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2893
2894 page = alloc_pages(gfp_mask, order);
2895 if (!page)
2896 return 0;
2897 return (unsigned long) page_address(page);
2898 }
2899 EXPORT_SYMBOL(__get_free_pages);
2900
2901 unsigned long get_zeroed_page(gfp_t gfp_mask)
2902 {
2903 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2904 }
2905 EXPORT_SYMBOL(get_zeroed_page);
2906
2907 void __free_pages(struct page *page, unsigned int order)
2908 {
2909 if (put_page_testzero(page)) {
2910 if (order == 0)
2911 free_hot_cold_page(page, false);
2912 else
2913 __free_pages_ok(page, order);
2914 }
2915 }
2916
2917 EXPORT_SYMBOL(__free_pages);
2918
2919 void free_pages(unsigned long addr, unsigned int order)
2920 {
2921 if (addr != 0) {
2922 VM_BUG_ON(!virt_addr_valid((void *)addr));
2923 __free_pages(virt_to_page((void *)addr), order);
2924 }
2925 }
2926
2927 EXPORT_SYMBOL(free_pages);
2928
2929 /*
2930 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2931 * of the current memory cgroup.
2932 *
2933 * It should be used when the caller would like to use kmalloc, but since the
2934 * allocation is large, it has to fall back to the page allocator.
2935 */
2936 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2937 {
2938 struct page *page;
2939 struct mem_cgroup *memcg = NULL;
2940
2941 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2942 return NULL;
2943 page = alloc_pages(gfp_mask, order);
2944 memcg_kmem_commit_charge(page, memcg, order);
2945 return page;
2946 }
2947
2948 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2949 {
2950 struct page *page;
2951 struct mem_cgroup *memcg = NULL;
2952
2953 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2954 return NULL;
2955 page = alloc_pages_node(nid, gfp_mask, order);
2956 memcg_kmem_commit_charge(page, memcg, order);
2957 return page;
2958 }
2959
2960 /*
2961 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2962 * alloc_kmem_pages.
2963 */
2964 void __free_kmem_pages(struct page *page, unsigned int order)
2965 {
2966 memcg_kmem_uncharge_pages(page, order);
2967 __free_pages(page, order);
2968 }
2969
2970 void free_kmem_pages(unsigned long addr, unsigned int order)
2971 {
2972 if (addr != 0) {
2973 VM_BUG_ON(!virt_addr_valid((void *)addr));
2974 __free_kmem_pages(virt_to_page((void *)addr), order);
2975 }
2976 }
2977
2978 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2979 {
2980 if (addr) {
2981 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2982 unsigned long used = addr + PAGE_ALIGN(size);
2983
2984 split_page(virt_to_page((void *)addr), order);
2985 while (used < alloc_end) {
2986 free_page(used);
2987 used += PAGE_SIZE;
2988 }
2989 }
2990 return (void *)addr;
2991 }
2992
2993 /**
2994 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2995 * @size: the number of bytes to allocate
2996 * @gfp_mask: GFP flags for the allocation
2997 *
2998 * This function is similar to alloc_pages(), except that it allocates the
2999 * minimum number of pages to satisfy the request. alloc_pages() can only
3000 * allocate memory in power-of-two pages.
3001 *
3002 * This function is also limited by MAX_ORDER.
3003 *
3004 * Memory allocated by this function must be released by free_pages_exact().
3005 */
3006 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3007 {
3008 unsigned int order = get_order(size);
3009 unsigned long addr;
3010
3011 addr = __get_free_pages(gfp_mask, order);
3012 return make_alloc_exact(addr, order, size);
3013 }
3014 EXPORT_SYMBOL(alloc_pages_exact);
3015
3016 /**
3017 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3018 * pages on a node.
3019 * @nid: the preferred node ID where memory should be allocated
3020 * @size: the number of bytes to allocate
3021 * @gfp_mask: GFP flags for the allocation
3022 *
3023 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3024 * back.
3025 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3026 * but is not exact.
3027 */
3028 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3029 {
3030 unsigned order = get_order(size);
3031 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3032 if (!p)
3033 return NULL;
3034 return make_alloc_exact((unsigned long)page_address(p), order, size);
3035 }
3036
3037 /**
3038 * free_pages_exact - release memory allocated via alloc_pages_exact()
3039 * @virt: the value returned by alloc_pages_exact.
3040 * @size: size of allocation, same value as passed to alloc_pages_exact().
3041 *
3042 * Release the memory allocated by a previous call to alloc_pages_exact.
3043 */
3044 void free_pages_exact(void *virt, size_t size)
3045 {
3046 unsigned long addr = (unsigned long)virt;
3047 unsigned long end = addr + PAGE_ALIGN(size);
3048
3049 while (addr < end) {
3050 free_page(addr);
3051 addr += PAGE_SIZE;
3052 }
3053 }
3054 EXPORT_SYMBOL(free_pages_exact);
3055
3056 /**
3057 * nr_free_zone_pages - count number of pages beyond high watermark
3058 * @offset: The zone index of the highest zone
3059 *
3060 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3061 * high watermark within all zones at or below a given zone index. For each
3062 * zone, the number of pages is calculated as:
3063 * managed_pages - high_pages
3064 */
3065 static unsigned long nr_free_zone_pages(int offset)
3066 {
3067 struct zoneref *z;
3068 struct zone *zone;
3069
3070 /* Just pick one node, since fallback list is circular */
3071 unsigned long sum = 0;
3072
3073 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3074
3075 for_each_zone_zonelist(zone, z, zonelist, offset) {
3076 unsigned long size = zone->managed_pages;
3077 unsigned long high = high_wmark_pages(zone);
3078 if (size > high)
3079 sum += size - high;
3080 }
3081
3082 return sum;
3083 }
3084
3085 /**
3086 * nr_free_buffer_pages - count number of pages beyond high watermark
3087 *
3088 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3089 * watermark within ZONE_DMA and ZONE_NORMAL.
3090 */
3091 unsigned long nr_free_buffer_pages(void)
3092 {
3093 return nr_free_zone_pages(gfp_zone(GFP_USER));
3094 }
3095 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3096
3097 /**
3098 * nr_free_pagecache_pages - count number of pages beyond high watermark
3099 *
3100 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3101 * high watermark within all zones.
3102 */
3103 unsigned long nr_free_pagecache_pages(void)
3104 {
3105 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3106 }
3107
3108 static inline void show_node(struct zone *zone)
3109 {
3110 if (IS_ENABLED(CONFIG_NUMA))
3111 printk("Node %d ", zone_to_nid(zone));
3112 }
3113
3114 void si_meminfo(struct sysinfo *val)
3115 {
3116 val->totalram = totalram_pages;
3117 val->sharedram = global_page_state(NR_SHMEM);
3118 val->freeram = global_page_state(NR_FREE_PAGES);
3119 val->bufferram = nr_blockdev_pages();
3120 val->totalhigh = totalhigh_pages;
3121 val->freehigh = nr_free_highpages();
3122 val->mem_unit = PAGE_SIZE;
3123 }
3124
3125 EXPORT_SYMBOL(si_meminfo);
3126
3127 #ifdef CONFIG_NUMA
3128 void si_meminfo_node(struct sysinfo *val, int nid)
3129 {
3130 int zone_type; /* needs to be signed */
3131 unsigned long managed_pages = 0;
3132 pg_data_t *pgdat = NODE_DATA(nid);
3133
3134 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3135 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3136 val->totalram = managed_pages;
3137 val->sharedram = node_page_state(nid, NR_SHMEM);
3138 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3139 #ifdef CONFIG_HIGHMEM
3140 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3141 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3142 NR_FREE_PAGES);
3143 #else
3144 val->totalhigh = 0;
3145 val->freehigh = 0;
3146 #endif
3147 val->mem_unit = PAGE_SIZE;
3148 }
3149 #endif
3150
3151 /*
3152 * Determine whether the node should be displayed or not, depending on whether
3153 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3154 */
3155 bool skip_free_areas_node(unsigned int flags, int nid)
3156 {
3157 bool ret = false;
3158 unsigned int cpuset_mems_cookie;
3159
3160 if (!(flags & SHOW_MEM_FILTER_NODES))
3161 goto out;
3162
3163 do {
3164 cpuset_mems_cookie = read_mems_allowed_begin();
3165 ret = !node_isset(nid, cpuset_current_mems_allowed);
3166 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3167 out:
3168 return ret;
3169 }
3170
3171 #define K(x) ((x) << (PAGE_SHIFT-10))
3172
3173 static void show_migration_types(unsigned char type)
3174 {
3175 static const char types[MIGRATE_TYPES] = {
3176 [MIGRATE_UNMOVABLE] = 'U',
3177 [MIGRATE_RECLAIMABLE] = 'E',
3178 [MIGRATE_MOVABLE] = 'M',
3179 [MIGRATE_RESERVE] = 'R',
3180 #ifdef CONFIG_CMA
3181 [MIGRATE_CMA] = 'C',
3182 #endif
3183 #ifdef CONFIG_MEMORY_ISOLATION
3184 [MIGRATE_ISOLATE] = 'I',
3185 #endif
3186 };
3187 char tmp[MIGRATE_TYPES + 1];
3188 char *p = tmp;
3189 int i;
3190
3191 for (i = 0; i < MIGRATE_TYPES; i++) {
3192 if (type & (1 << i))
3193 *p++ = types[i];
3194 }
3195
3196 *p = '\0';
3197 printk("(%s) ", tmp);
3198 }
3199
3200 /*
3201 * Show free area list (used inside shift_scroll-lock stuff)
3202 * We also calculate the percentage fragmentation. We do this by counting the
3203 * memory on each free list with the exception of the first item on the list.
3204 * Suppresses nodes that are not allowed by current's cpuset if
3205 * SHOW_MEM_FILTER_NODES is passed.
3206 */
3207 void show_free_areas(unsigned int filter)
3208 {
3209 int cpu;
3210 struct zone *zone;
3211
3212 for_each_populated_zone(zone) {
3213 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3214 continue;
3215 show_node(zone);
3216 printk("%s per-cpu:\n", zone->name);
3217
3218 for_each_online_cpu(cpu) {
3219 struct per_cpu_pageset *pageset;
3220
3221 pageset = per_cpu_ptr(zone->pageset, cpu);
3222
3223 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3224 cpu, pageset->pcp.high,
3225 pageset->pcp.batch, pageset->pcp.count);
3226 }
3227 }
3228
3229 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3230 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3231 " unevictable:%lu"
3232 " dirty:%lu writeback:%lu unstable:%lu\n"
3233 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3234 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3235 " free_cma:%lu\n",
3236 global_page_state(NR_ACTIVE_ANON),
3237 global_page_state(NR_INACTIVE_ANON),
3238 global_page_state(NR_ISOLATED_ANON),
3239 global_page_state(NR_ACTIVE_FILE),
3240 global_page_state(NR_INACTIVE_FILE),
3241 global_page_state(NR_ISOLATED_FILE),
3242 global_page_state(NR_UNEVICTABLE),
3243 global_page_state(NR_FILE_DIRTY),
3244 global_page_state(NR_WRITEBACK),
3245 global_page_state(NR_UNSTABLE_NFS),
3246 global_page_state(NR_FREE_PAGES),
3247 global_page_state(NR_SLAB_RECLAIMABLE),
3248 global_page_state(NR_SLAB_UNRECLAIMABLE),
3249 global_page_state(NR_FILE_MAPPED),
3250 global_page_state(NR_SHMEM),
3251 global_page_state(NR_PAGETABLE),
3252 global_page_state(NR_BOUNCE),
3253 global_page_state(NR_FREE_CMA_PAGES));
3254
3255 for_each_populated_zone(zone) {
3256 int i;
3257
3258 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3259 continue;
3260 show_node(zone);
3261 printk("%s"
3262 " free:%lukB"
3263 " min:%lukB"
3264 " low:%lukB"
3265 " high:%lukB"
3266 " active_anon:%lukB"
3267 " inactive_anon:%lukB"
3268 " active_file:%lukB"
3269 " inactive_file:%lukB"
3270 " unevictable:%lukB"
3271 " isolated(anon):%lukB"
3272 " isolated(file):%lukB"
3273 " present:%lukB"
3274 " managed:%lukB"
3275 " mlocked:%lukB"
3276 " dirty:%lukB"
3277 " writeback:%lukB"
3278 " mapped:%lukB"
3279 " shmem:%lukB"
3280 " slab_reclaimable:%lukB"
3281 " slab_unreclaimable:%lukB"
3282 " kernel_stack:%lukB"
3283 " pagetables:%lukB"
3284 " unstable:%lukB"
3285 " bounce:%lukB"
3286 " free_cma:%lukB"
3287 " writeback_tmp:%lukB"
3288 " pages_scanned:%lu"
3289 " all_unreclaimable? %s"
3290 "\n",
3291 zone->name,
3292 K(zone_page_state(zone, NR_FREE_PAGES)),
3293 K(min_wmark_pages(zone)),
3294 K(low_wmark_pages(zone)),
3295 K(high_wmark_pages(zone)),
3296 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3297 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3298 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3299 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3300 K(zone_page_state(zone, NR_UNEVICTABLE)),
3301 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3302 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3303 K(zone->present_pages),
3304 K(zone->managed_pages),
3305 K(zone_page_state(zone, NR_MLOCK)),
3306 K(zone_page_state(zone, NR_FILE_DIRTY)),
3307 K(zone_page_state(zone, NR_WRITEBACK)),
3308 K(zone_page_state(zone, NR_FILE_MAPPED)),
3309 K(zone_page_state(zone, NR_SHMEM)),
3310 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3311 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3312 zone_page_state(zone, NR_KERNEL_STACK) *
3313 THREAD_SIZE / 1024,
3314 K(zone_page_state(zone, NR_PAGETABLE)),
3315 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3316 K(zone_page_state(zone, NR_BOUNCE)),
3317 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3318 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3319 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3320 (!zone_reclaimable(zone) ? "yes" : "no")
3321 );
3322 printk("lowmem_reserve[]:");
3323 for (i = 0; i < MAX_NR_ZONES; i++)
3324 printk(" %ld", zone->lowmem_reserve[i]);
3325 printk("\n");
3326 }
3327
3328 for_each_populated_zone(zone) {
3329 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3330 unsigned char types[MAX_ORDER];
3331
3332 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3333 continue;
3334 show_node(zone);
3335 printk("%s: ", zone->name);
3336
3337 spin_lock_irqsave(&zone->lock, flags);
3338 for (order = 0; order < MAX_ORDER; order++) {
3339 struct free_area *area = &zone->free_area[order];
3340 int type;
3341
3342 nr[order] = area->nr_free;
3343 total += nr[order] << order;
3344
3345 types[order] = 0;
3346 for (type = 0; type < MIGRATE_TYPES; type++) {
3347 if (!list_empty(&area->free_list[type]))
3348 types[order] |= 1 << type;
3349 }
3350 }
3351 spin_unlock_irqrestore(&zone->lock, flags);
3352 for (order = 0; order < MAX_ORDER; order++) {
3353 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3354 if (nr[order])
3355 show_migration_types(types[order]);
3356 }
3357 printk("= %lukB\n", K(total));
3358 }
3359
3360 hugetlb_show_meminfo();
3361
3362 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3363
3364 show_swap_cache_info();
3365 }
3366
3367 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3368 {
3369 zoneref->zone = zone;
3370 zoneref->zone_idx = zone_idx(zone);
3371 }
3372
3373 /*
3374 * Builds allocation fallback zone lists.
3375 *
3376 * Add all populated zones of a node to the zonelist.
3377 */
3378 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3379 int nr_zones)
3380 {
3381 struct zone *zone;
3382 enum zone_type zone_type = MAX_NR_ZONES;
3383
3384 do {
3385 zone_type--;
3386 zone = pgdat->node_zones + zone_type;
3387 if (populated_zone(zone)) {
3388 zoneref_set_zone(zone,
3389 &zonelist->_zonerefs[nr_zones++]);
3390 check_highest_zone(zone_type);
3391 }
3392 } while (zone_type);
3393
3394 return nr_zones;
3395 }
3396
3397
3398 /*
3399 * zonelist_order:
3400 * 0 = automatic detection of better ordering.
3401 * 1 = order by ([node] distance, -zonetype)
3402 * 2 = order by (-zonetype, [node] distance)
3403 *
3404 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3405 * the same zonelist. So only NUMA can configure this param.
3406 */
3407 #define ZONELIST_ORDER_DEFAULT 0
3408 #define ZONELIST_ORDER_NODE 1
3409 #define ZONELIST_ORDER_ZONE 2
3410
3411 /* zonelist order in the kernel.
3412 * set_zonelist_order() will set this to NODE or ZONE.
3413 */
3414 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3415 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3416
3417
3418 #ifdef CONFIG_NUMA
3419 /* The value user specified ....changed by config */
3420 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3421 /* string for sysctl */
3422 #define NUMA_ZONELIST_ORDER_LEN 16
3423 char numa_zonelist_order[16] = "default";
3424
3425 /*
3426 * interface for configure zonelist ordering.
3427 * command line option "numa_zonelist_order"
3428 * = "[dD]efault - default, automatic configuration.
3429 * = "[nN]ode - order by node locality, then by zone within node
3430 * = "[zZ]one - order by zone, then by locality within zone
3431 */
3432
3433 static int __parse_numa_zonelist_order(char *s)
3434 {
3435 if (*s == 'd' || *s == 'D') {
3436 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3437 } else if (*s == 'n' || *s == 'N') {
3438 user_zonelist_order = ZONELIST_ORDER_NODE;
3439 } else if (*s == 'z' || *s == 'Z') {
3440 user_zonelist_order = ZONELIST_ORDER_ZONE;
3441 } else {
3442 printk(KERN_WARNING
3443 "Ignoring invalid numa_zonelist_order value: "
3444 "%s\n", s);
3445 return -EINVAL;
3446 }
3447 return 0;
3448 }
3449
3450 static __init int setup_numa_zonelist_order(char *s)
3451 {
3452 int ret;
3453
3454 if (!s)
3455 return 0;
3456
3457 ret = __parse_numa_zonelist_order(s);
3458 if (ret == 0)
3459 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3460
3461 return ret;
3462 }
3463 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3464
3465 /*
3466 * sysctl handler for numa_zonelist_order
3467 */
3468 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3469 void __user *buffer, size_t *length,
3470 loff_t *ppos)
3471 {
3472 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3473 int ret;
3474 static DEFINE_MUTEX(zl_order_mutex);
3475
3476 mutex_lock(&zl_order_mutex);
3477 if (write) {
3478 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3479 ret = -EINVAL;
3480 goto out;
3481 }
3482 strcpy(saved_string, (char *)table->data);
3483 }
3484 ret = proc_dostring(table, write, buffer, length, ppos);
3485 if (ret)
3486 goto out;
3487 if (write) {
3488 int oldval = user_zonelist_order;
3489
3490 ret = __parse_numa_zonelist_order((char *)table->data);
3491 if (ret) {
3492 /*
3493 * bogus value. restore saved string
3494 */
3495 strncpy((char *)table->data, saved_string,
3496 NUMA_ZONELIST_ORDER_LEN);
3497 user_zonelist_order = oldval;
3498 } else if (oldval != user_zonelist_order) {
3499 mutex_lock(&zonelists_mutex);
3500 build_all_zonelists(NULL, NULL);
3501 mutex_unlock(&zonelists_mutex);
3502 }
3503 }
3504 out:
3505 mutex_unlock(&zl_order_mutex);
3506 return ret;
3507 }
3508
3509
3510 #define MAX_NODE_LOAD (nr_online_nodes)
3511 static int node_load[MAX_NUMNODES];
3512
3513 /**
3514 * find_next_best_node - find the next node that should appear in a given node's fallback list
3515 * @node: node whose fallback list we're appending
3516 * @used_node_mask: nodemask_t of already used nodes
3517 *
3518 * We use a number of factors to determine which is the next node that should
3519 * appear on a given node's fallback list. The node should not have appeared
3520 * already in @node's fallback list, and it should be the next closest node
3521 * according to the distance array (which contains arbitrary distance values
3522 * from each node to each node in the system), and should also prefer nodes
3523 * with no CPUs, since presumably they'll have very little allocation pressure
3524 * on them otherwise.
3525 * It returns -1 if no node is found.
3526 */
3527 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3528 {
3529 int n, val;
3530 int min_val = INT_MAX;
3531 int best_node = NUMA_NO_NODE;
3532 const struct cpumask *tmp = cpumask_of_node(0);
3533
3534 /* Use the local node if we haven't already */
3535 if (!node_isset(node, *used_node_mask)) {
3536 node_set(node, *used_node_mask);
3537 return node;
3538 }
3539
3540 for_each_node_state(n, N_MEMORY) {
3541
3542 /* Don't want a node to appear more than once */
3543 if (node_isset(n, *used_node_mask))
3544 continue;
3545
3546 /* Use the distance array to find the distance */
3547 val = node_distance(node, n);
3548
3549 /* Penalize nodes under us ("prefer the next node") */
3550 val += (n < node);
3551
3552 /* Give preference to headless and unused nodes */
3553 tmp = cpumask_of_node(n);
3554 if (!cpumask_empty(tmp))
3555 val += PENALTY_FOR_NODE_WITH_CPUS;
3556
3557 /* Slight preference for less loaded node */
3558 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3559 val += node_load[n];
3560
3561 if (val < min_val) {
3562 min_val = val;
3563 best_node = n;
3564 }
3565 }
3566
3567 if (best_node >= 0)
3568 node_set(best_node, *used_node_mask);
3569
3570 return best_node;
3571 }
3572
3573
3574 /*
3575 * Build zonelists ordered by node and zones within node.
3576 * This results in maximum locality--normal zone overflows into local
3577 * DMA zone, if any--but risks exhausting DMA zone.
3578 */
3579 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3580 {
3581 int j;
3582 struct zonelist *zonelist;
3583
3584 zonelist = &pgdat->node_zonelists[0];
3585 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3586 ;
3587 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3588 zonelist->_zonerefs[j].zone = NULL;
3589 zonelist->_zonerefs[j].zone_idx = 0;
3590 }
3591
3592 /*
3593 * Build gfp_thisnode zonelists
3594 */
3595 static void build_thisnode_zonelists(pg_data_t *pgdat)
3596 {
3597 int j;
3598 struct zonelist *zonelist;
3599
3600 zonelist = &pgdat->node_zonelists[1];
3601 j = build_zonelists_node(pgdat, zonelist, 0);
3602 zonelist->_zonerefs[j].zone = NULL;
3603 zonelist->_zonerefs[j].zone_idx = 0;
3604 }
3605
3606 /*
3607 * Build zonelists ordered by zone and nodes within zones.
3608 * This results in conserving DMA zone[s] until all Normal memory is
3609 * exhausted, but results in overflowing to remote node while memory
3610 * may still exist in local DMA zone.
3611 */
3612 static int node_order[MAX_NUMNODES];
3613
3614 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3615 {
3616 int pos, j, node;
3617 int zone_type; /* needs to be signed */
3618 struct zone *z;
3619 struct zonelist *zonelist;
3620
3621 zonelist = &pgdat->node_zonelists[0];
3622 pos = 0;
3623 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3624 for (j = 0; j < nr_nodes; j++) {
3625 node = node_order[j];
3626 z = &NODE_DATA(node)->node_zones[zone_type];
3627 if (populated_zone(z)) {
3628 zoneref_set_zone(z,
3629 &zonelist->_zonerefs[pos++]);
3630 check_highest_zone(zone_type);
3631 }
3632 }
3633 }
3634 zonelist->_zonerefs[pos].zone = NULL;
3635 zonelist->_zonerefs[pos].zone_idx = 0;
3636 }
3637
3638 #if defined(CONFIG_64BIT)
3639 /*
3640 * Devices that require DMA32/DMA are relatively rare and do not justify a
3641 * penalty to every machine in case the specialised case applies. Default
3642 * to Node-ordering on 64-bit NUMA machines
3643 */
3644 static int default_zonelist_order(void)
3645 {
3646 return ZONELIST_ORDER_NODE;
3647 }
3648 #else
3649 /*
3650 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3651 * by the kernel. If processes running on node 0 deplete the low memory zone
3652 * then reclaim will occur more frequency increasing stalls and potentially
3653 * be easier to OOM if a large percentage of the zone is under writeback or
3654 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3655 * Hence, default to zone ordering on 32-bit.
3656 */
3657 static int default_zonelist_order(void)
3658 {
3659 return ZONELIST_ORDER_ZONE;
3660 }
3661 #endif /* CONFIG_64BIT */
3662
3663 static void set_zonelist_order(void)
3664 {
3665 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3666 current_zonelist_order = default_zonelist_order();
3667 else
3668 current_zonelist_order = user_zonelist_order;
3669 }
3670
3671 static void build_zonelists(pg_data_t *pgdat)
3672 {
3673 int j, node, load;
3674 enum zone_type i;
3675 nodemask_t used_mask;
3676 int local_node, prev_node;
3677 struct zonelist *zonelist;
3678 int order = current_zonelist_order;
3679
3680 /* initialize zonelists */
3681 for (i = 0; i < MAX_ZONELISTS; i++) {
3682 zonelist = pgdat->node_zonelists + i;
3683 zonelist->_zonerefs[0].zone = NULL;
3684 zonelist->_zonerefs[0].zone_idx = 0;
3685 }
3686
3687 /* NUMA-aware ordering of nodes */
3688 local_node = pgdat->node_id;
3689 load = nr_online_nodes;
3690 prev_node = local_node;
3691 nodes_clear(used_mask);
3692
3693 memset(node_order, 0, sizeof(node_order));
3694 j = 0;
3695
3696 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3697 /*
3698 * We don't want to pressure a particular node.
3699 * So adding penalty to the first node in same
3700 * distance group to make it round-robin.
3701 */
3702 if (node_distance(local_node, node) !=
3703 node_distance(local_node, prev_node))
3704 node_load[node] = load;
3705
3706 prev_node = node;
3707 load--;
3708 if (order == ZONELIST_ORDER_NODE)
3709 build_zonelists_in_node_order(pgdat, node);
3710 else
3711 node_order[j++] = node; /* remember order */
3712 }
3713
3714 if (order == ZONELIST_ORDER_ZONE) {
3715 /* calculate node order -- i.e., DMA last! */
3716 build_zonelists_in_zone_order(pgdat, j);
3717 }
3718
3719 build_thisnode_zonelists(pgdat);
3720 }
3721
3722 /* Construct the zonelist performance cache - see further mmzone.h */
3723 static void build_zonelist_cache(pg_data_t *pgdat)
3724 {
3725 struct zonelist *zonelist;
3726 struct zonelist_cache *zlc;
3727 struct zoneref *z;
3728
3729 zonelist = &pgdat->node_zonelists[0];
3730 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3731 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3732 for (z = zonelist->_zonerefs; z->zone; z++)
3733 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3734 }
3735
3736 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3737 /*
3738 * Return node id of node used for "local" allocations.
3739 * I.e., first node id of first zone in arg node's generic zonelist.
3740 * Used for initializing percpu 'numa_mem', which is used primarily
3741 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3742 */
3743 int local_memory_node(int node)
3744 {
3745 struct zone *zone;
3746
3747 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3748 gfp_zone(GFP_KERNEL),
3749 NULL,
3750 &zone);
3751 return zone->node;
3752 }
3753 #endif
3754
3755 #else /* CONFIG_NUMA */
3756
3757 static void set_zonelist_order(void)
3758 {
3759 current_zonelist_order = ZONELIST_ORDER_ZONE;
3760 }
3761
3762 static void build_zonelists(pg_data_t *pgdat)
3763 {
3764 int node, local_node;
3765 enum zone_type j;
3766 struct zonelist *zonelist;
3767
3768 local_node = pgdat->node_id;
3769
3770 zonelist = &pgdat->node_zonelists[0];
3771 j = build_zonelists_node(pgdat, zonelist, 0);
3772
3773 /*
3774 * Now we build the zonelist so that it contains the zones
3775 * of all the other nodes.
3776 * We don't want to pressure a particular node, so when
3777 * building the zones for node N, we make sure that the
3778 * zones coming right after the local ones are those from
3779 * node N+1 (modulo N)
3780 */
3781 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3782 if (!node_online(node))
3783 continue;
3784 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3785 }
3786 for (node = 0; node < local_node; node++) {
3787 if (!node_online(node))
3788 continue;
3789 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3790 }
3791
3792 zonelist->_zonerefs[j].zone = NULL;
3793 zonelist->_zonerefs[j].zone_idx = 0;
3794 }
3795
3796 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3797 static void build_zonelist_cache(pg_data_t *pgdat)
3798 {
3799 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3800 }
3801
3802 #endif /* CONFIG_NUMA */
3803
3804 /*
3805 * Boot pageset table. One per cpu which is going to be used for all
3806 * zones and all nodes. The parameters will be set in such a way
3807 * that an item put on a list will immediately be handed over to
3808 * the buddy list. This is safe since pageset manipulation is done
3809 * with interrupts disabled.
3810 *
3811 * The boot_pagesets must be kept even after bootup is complete for
3812 * unused processors and/or zones. They do play a role for bootstrapping
3813 * hotplugged processors.
3814 *
3815 * zoneinfo_show() and maybe other functions do
3816 * not check if the processor is online before following the pageset pointer.
3817 * Other parts of the kernel may not check if the zone is available.
3818 */
3819 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3820 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3821 static void setup_zone_pageset(struct zone *zone);
3822
3823 /*
3824 * Global mutex to protect against size modification of zonelists
3825 * as well as to serialize pageset setup for the new populated zone.
3826 */
3827 DEFINE_MUTEX(zonelists_mutex);
3828
3829 /* return values int ....just for stop_machine() */
3830 static int __build_all_zonelists(void *data)
3831 {
3832 int nid;
3833 int cpu;
3834 pg_data_t *self = data;
3835
3836 #ifdef CONFIG_NUMA
3837 memset(node_load, 0, sizeof(node_load));
3838 #endif
3839
3840 if (self && !node_online(self->node_id)) {
3841 build_zonelists(self);
3842 build_zonelist_cache(self);
3843 }
3844
3845 for_each_online_node(nid) {
3846 pg_data_t *pgdat = NODE_DATA(nid);
3847
3848 build_zonelists(pgdat);
3849 build_zonelist_cache(pgdat);
3850 }
3851
3852 /*
3853 * Initialize the boot_pagesets that are going to be used
3854 * for bootstrapping processors. The real pagesets for
3855 * each zone will be allocated later when the per cpu
3856 * allocator is available.
3857 *
3858 * boot_pagesets are used also for bootstrapping offline
3859 * cpus if the system is already booted because the pagesets
3860 * are needed to initialize allocators on a specific cpu too.
3861 * F.e. the percpu allocator needs the page allocator which
3862 * needs the percpu allocator in order to allocate its pagesets
3863 * (a chicken-egg dilemma).
3864 */
3865 for_each_possible_cpu(cpu) {
3866 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3867
3868 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3869 /*
3870 * We now know the "local memory node" for each node--
3871 * i.e., the node of the first zone in the generic zonelist.
3872 * Set up numa_mem percpu variable for on-line cpus. During
3873 * boot, only the boot cpu should be on-line; we'll init the
3874 * secondary cpus' numa_mem as they come on-line. During
3875 * node/memory hotplug, we'll fixup all on-line cpus.
3876 */
3877 if (cpu_online(cpu))
3878 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3879 #endif
3880 }
3881
3882 return 0;
3883 }
3884
3885 /*
3886 * Called with zonelists_mutex held always
3887 * unless system_state == SYSTEM_BOOTING.
3888 */
3889 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3890 {
3891 set_zonelist_order();
3892
3893 if (system_state == SYSTEM_BOOTING) {
3894 __build_all_zonelists(NULL);
3895 mminit_verify_zonelist();
3896 cpuset_init_current_mems_allowed();
3897 } else {
3898 #ifdef CONFIG_MEMORY_HOTPLUG
3899 if (zone)
3900 setup_zone_pageset(zone);
3901 #endif
3902 /* we have to stop all cpus to guarantee there is no user
3903 of zonelist */
3904 stop_machine(__build_all_zonelists, pgdat, NULL);
3905 /* cpuset refresh routine should be here */
3906 }
3907 vm_total_pages = nr_free_pagecache_pages();
3908 /*
3909 * Disable grouping by mobility if the number of pages in the
3910 * system is too low to allow the mechanism to work. It would be
3911 * more accurate, but expensive to check per-zone. This check is
3912 * made on memory-hotadd so a system can start with mobility
3913 * disabled and enable it later
3914 */
3915 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3916 page_group_by_mobility_disabled = 1;
3917 else
3918 page_group_by_mobility_disabled = 0;
3919
3920 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3921 "Total pages: %ld\n",
3922 nr_online_nodes,
3923 zonelist_order_name[current_zonelist_order],
3924 page_group_by_mobility_disabled ? "off" : "on",
3925 vm_total_pages);
3926 #ifdef CONFIG_NUMA
3927 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3928 #endif
3929 }
3930
3931 /*
3932 * Helper functions to size the waitqueue hash table.
3933 * Essentially these want to choose hash table sizes sufficiently
3934 * large so that collisions trying to wait on pages are rare.
3935 * But in fact, the number of active page waitqueues on typical
3936 * systems is ridiculously low, less than 200. So this is even
3937 * conservative, even though it seems large.
3938 *
3939 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3940 * waitqueues, i.e. the size of the waitq table given the number of pages.
3941 */
3942 #define PAGES_PER_WAITQUEUE 256
3943
3944 #ifndef CONFIG_MEMORY_HOTPLUG
3945 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3946 {
3947 unsigned long size = 1;
3948
3949 pages /= PAGES_PER_WAITQUEUE;
3950
3951 while (size < pages)
3952 size <<= 1;
3953
3954 /*
3955 * Once we have dozens or even hundreds of threads sleeping
3956 * on IO we've got bigger problems than wait queue collision.
3957 * Limit the size of the wait table to a reasonable size.
3958 */
3959 size = min(size, 4096UL);
3960
3961 return max(size, 4UL);
3962 }
3963 #else
3964 /*
3965 * A zone's size might be changed by hot-add, so it is not possible to determine
3966 * a suitable size for its wait_table. So we use the maximum size now.
3967 *
3968 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3969 *
3970 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3971 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3972 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3973 *
3974 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3975 * or more by the traditional way. (See above). It equals:
3976 *
3977 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3978 * ia64(16K page size) : = ( 8G + 4M)byte.
3979 * powerpc (64K page size) : = (32G +16M)byte.
3980 */
3981 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3982 {
3983 return 4096UL;
3984 }
3985 #endif
3986
3987 /*
3988 * This is an integer logarithm so that shifts can be used later
3989 * to extract the more random high bits from the multiplicative
3990 * hash function before the remainder is taken.
3991 */
3992 static inline unsigned long wait_table_bits(unsigned long size)
3993 {
3994 return ffz(~size);
3995 }
3996
3997 /*
3998 * Check if a pageblock contains reserved pages
3999 */
4000 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4001 {
4002 unsigned long pfn;
4003
4004 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4005 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4006 return 1;
4007 }
4008 return 0;
4009 }
4010
4011 /*
4012 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4013 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4014 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4015 * higher will lead to a bigger reserve which will get freed as contiguous
4016 * blocks as reclaim kicks in
4017 */
4018 static void setup_zone_migrate_reserve(struct zone *zone)
4019 {
4020 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4021 struct page *page;
4022 unsigned long block_migratetype;
4023 int reserve;
4024 int old_reserve;
4025
4026 /*
4027 * Get the start pfn, end pfn and the number of blocks to reserve
4028 * We have to be careful to be aligned to pageblock_nr_pages to
4029 * make sure that we always check pfn_valid for the first page in
4030 * the block.
4031 */
4032 start_pfn = zone->zone_start_pfn;
4033 end_pfn = zone_end_pfn(zone);
4034 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4035 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4036 pageblock_order;
4037
4038 /*
4039 * Reserve blocks are generally in place to help high-order atomic
4040 * allocations that are short-lived. A min_free_kbytes value that
4041 * would result in more than 2 reserve blocks for atomic allocations
4042 * is assumed to be in place to help anti-fragmentation for the
4043 * future allocation of hugepages at runtime.
4044 */
4045 reserve = min(2, reserve);
4046 old_reserve = zone->nr_migrate_reserve_block;
4047
4048 /* When memory hot-add, we almost always need to do nothing */
4049 if (reserve == old_reserve)
4050 return;
4051 zone->nr_migrate_reserve_block = reserve;
4052
4053 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4054 if (!pfn_valid(pfn))
4055 continue;
4056 page = pfn_to_page(pfn);
4057
4058 /* Watch out for overlapping nodes */
4059 if (page_to_nid(page) != zone_to_nid(zone))
4060 continue;
4061
4062 block_migratetype = get_pageblock_migratetype(page);
4063
4064 /* Only test what is necessary when the reserves are not met */
4065 if (reserve > 0) {
4066 /*
4067 * Blocks with reserved pages will never free, skip
4068 * them.
4069 */
4070 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4071 if (pageblock_is_reserved(pfn, block_end_pfn))
4072 continue;
4073
4074 /* If this block is reserved, account for it */
4075 if (block_migratetype == MIGRATE_RESERVE) {
4076 reserve--;
4077 continue;
4078 }
4079
4080 /* Suitable for reserving if this block is movable */
4081 if (block_migratetype == MIGRATE_MOVABLE) {
4082 set_pageblock_migratetype(page,
4083 MIGRATE_RESERVE);
4084 move_freepages_block(zone, page,
4085 MIGRATE_RESERVE);
4086 reserve--;
4087 continue;
4088 }
4089 } else if (!old_reserve) {
4090 /*
4091 * At boot time we don't need to scan the whole zone
4092 * for turning off MIGRATE_RESERVE.
4093 */
4094 break;
4095 }
4096
4097 /*
4098 * If the reserve is met and this is a previous reserved block,
4099 * take it back
4100 */
4101 if (block_migratetype == MIGRATE_RESERVE) {
4102 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4103 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4104 }
4105 }
4106 }
4107
4108 /*
4109 * Initially all pages are reserved - free ones are freed
4110 * up by free_all_bootmem() once the early boot process is
4111 * done. Non-atomic initialization, single-pass.
4112 */
4113 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4114 unsigned long start_pfn, enum memmap_context context)
4115 {
4116 struct page *page;
4117 unsigned long end_pfn = start_pfn + size;
4118 unsigned long pfn;
4119 struct zone *z;
4120
4121 if (highest_memmap_pfn < end_pfn - 1)
4122 highest_memmap_pfn = end_pfn - 1;
4123
4124 z = &NODE_DATA(nid)->node_zones[zone];
4125 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4126 /*
4127 * There can be holes in boot-time mem_map[]s
4128 * handed to this function. They do not
4129 * exist on hotplugged memory.
4130 */
4131 if (context == MEMMAP_EARLY) {
4132 if (!early_pfn_valid(pfn))
4133 continue;
4134 if (!early_pfn_in_nid(pfn, nid))
4135 continue;
4136 }
4137 page = pfn_to_page(pfn);
4138 set_page_links(page, zone, nid, pfn);
4139 mminit_verify_page_links(page, zone, nid, pfn);
4140 init_page_count(page);
4141 page_mapcount_reset(page);
4142 page_cpupid_reset_last(page);
4143 SetPageReserved(page);
4144 /*
4145 * Mark the block movable so that blocks are reserved for
4146 * movable at startup. This will force kernel allocations
4147 * to reserve their blocks rather than leaking throughout
4148 * the address space during boot when many long-lived
4149 * kernel allocations are made. Later some blocks near
4150 * the start are marked MIGRATE_RESERVE by
4151 * setup_zone_migrate_reserve()
4152 *
4153 * bitmap is created for zone's valid pfn range. but memmap
4154 * can be created for invalid pages (for alignment)
4155 * check here not to call set_pageblock_migratetype() against
4156 * pfn out of zone.
4157 */
4158 if ((z->zone_start_pfn <= pfn)
4159 && (pfn < zone_end_pfn(z))
4160 && !(pfn & (pageblock_nr_pages - 1)))
4161 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4162
4163 INIT_LIST_HEAD(&page->lru);
4164 #ifdef WANT_PAGE_VIRTUAL
4165 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4166 if (!is_highmem_idx(zone))
4167 set_page_address(page, __va(pfn << PAGE_SHIFT));
4168 #endif
4169 }
4170 }
4171
4172 static void __meminit zone_init_free_lists(struct zone *zone)
4173 {
4174 unsigned int order, t;
4175 for_each_migratetype_order(order, t) {
4176 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4177 zone->free_area[order].nr_free = 0;
4178 }
4179 }
4180
4181 #ifndef __HAVE_ARCH_MEMMAP_INIT
4182 #define memmap_init(size, nid, zone, start_pfn) \
4183 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4184 #endif
4185
4186 static int zone_batchsize(struct zone *zone)
4187 {
4188 #ifdef CONFIG_MMU
4189 int batch;
4190
4191 /*
4192 * The per-cpu-pages pools are set to around 1000th of the
4193 * size of the zone. But no more than 1/2 of a meg.
4194 *
4195 * OK, so we don't know how big the cache is. So guess.
4196 */
4197 batch = zone->managed_pages / 1024;
4198 if (batch * PAGE_SIZE > 512 * 1024)
4199 batch = (512 * 1024) / PAGE_SIZE;
4200 batch /= 4; /* We effectively *= 4 below */
4201 if (batch < 1)
4202 batch = 1;
4203
4204 /*
4205 * Clamp the batch to a 2^n - 1 value. Having a power
4206 * of 2 value was found to be more likely to have
4207 * suboptimal cache aliasing properties in some cases.
4208 *
4209 * For example if 2 tasks are alternately allocating
4210 * batches of pages, one task can end up with a lot
4211 * of pages of one half of the possible page colors
4212 * and the other with pages of the other colors.
4213 */
4214 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4215
4216 return batch;
4217
4218 #else
4219 /* The deferral and batching of frees should be suppressed under NOMMU
4220 * conditions.
4221 *
4222 * The problem is that NOMMU needs to be able to allocate large chunks
4223 * of contiguous memory as there's no hardware page translation to
4224 * assemble apparent contiguous memory from discontiguous pages.
4225 *
4226 * Queueing large contiguous runs of pages for batching, however,
4227 * causes the pages to actually be freed in smaller chunks. As there
4228 * can be a significant delay between the individual batches being
4229 * recycled, this leads to the once large chunks of space being
4230 * fragmented and becoming unavailable for high-order allocations.
4231 */
4232 return 0;
4233 #endif
4234 }
4235
4236 /*
4237 * pcp->high and pcp->batch values are related and dependent on one another:
4238 * ->batch must never be higher then ->high.
4239 * The following function updates them in a safe manner without read side
4240 * locking.
4241 *
4242 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4243 * those fields changing asynchronously (acording the the above rule).
4244 *
4245 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4246 * outside of boot time (or some other assurance that no concurrent updaters
4247 * exist).
4248 */
4249 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4250 unsigned long batch)
4251 {
4252 /* start with a fail safe value for batch */
4253 pcp->batch = 1;
4254 smp_wmb();
4255
4256 /* Update high, then batch, in order */
4257 pcp->high = high;
4258 smp_wmb();
4259
4260 pcp->batch = batch;
4261 }
4262
4263 /* a companion to pageset_set_high() */
4264 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4265 {
4266 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4267 }
4268
4269 static void pageset_init(struct per_cpu_pageset *p)
4270 {
4271 struct per_cpu_pages *pcp;
4272 int migratetype;
4273
4274 memset(p, 0, sizeof(*p));
4275
4276 pcp = &p->pcp;
4277 pcp->count = 0;
4278 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4279 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4280 }
4281
4282 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4283 {
4284 pageset_init(p);
4285 pageset_set_batch(p, batch);
4286 }
4287
4288 /*
4289 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4290 * to the value high for the pageset p.
4291 */
4292 static void pageset_set_high(struct per_cpu_pageset *p,
4293 unsigned long high)
4294 {
4295 unsigned long batch = max(1UL, high / 4);
4296 if ((high / 4) > (PAGE_SHIFT * 8))
4297 batch = PAGE_SHIFT * 8;
4298
4299 pageset_update(&p->pcp, high, batch);
4300 }
4301
4302 static void pageset_set_high_and_batch(struct zone *zone,
4303 struct per_cpu_pageset *pcp)
4304 {
4305 if (percpu_pagelist_fraction)
4306 pageset_set_high(pcp,
4307 (zone->managed_pages /
4308 percpu_pagelist_fraction));
4309 else
4310 pageset_set_batch(pcp, zone_batchsize(zone));
4311 }
4312
4313 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4314 {
4315 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4316
4317 pageset_init(pcp);
4318 pageset_set_high_and_batch(zone, pcp);
4319 }
4320
4321 static void __meminit setup_zone_pageset(struct zone *zone)
4322 {
4323 int cpu;
4324 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4325 for_each_possible_cpu(cpu)
4326 zone_pageset_init(zone, cpu);
4327 }
4328
4329 /*
4330 * Allocate per cpu pagesets and initialize them.
4331 * Before this call only boot pagesets were available.
4332 */
4333 void __init setup_per_cpu_pageset(void)
4334 {
4335 struct zone *zone;
4336
4337 for_each_populated_zone(zone)
4338 setup_zone_pageset(zone);
4339 }
4340
4341 static noinline __init_refok
4342 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4343 {
4344 int i;
4345 size_t alloc_size;
4346
4347 /*
4348 * The per-page waitqueue mechanism uses hashed waitqueues
4349 * per zone.
4350 */
4351 zone->wait_table_hash_nr_entries =
4352 wait_table_hash_nr_entries(zone_size_pages);
4353 zone->wait_table_bits =
4354 wait_table_bits(zone->wait_table_hash_nr_entries);
4355 alloc_size = zone->wait_table_hash_nr_entries
4356 * sizeof(wait_queue_head_t);
4357
4358 if (!slab_is_available()) {
4359 zone->wait_table = (wait_queue_head_t *)
4360 memblock_virt_alloc_node_nopanic(
4361 alloc_size, zone->zone_pgdat->node_id);
4362 } else {
4363 /*
4364 * This case means that a zone whose size was 0 gets new memory
4365 * via memory hot-add.
4366 * But it may be the case that a new node was hot-added. In
4367 * this case vmalloc() will not be able to use this new node's
4368 * memory - this wait_table must be initialized to use this new
4369 * node itself as well.
4370 * To use this new node's memory, further consideration will be
4371 * necessary.
4372 */
4373 zone->wait_table = vmalloc(alloc_size);
4374 }
4375 if (!zone->wait_table)
4376 return -ENOMEM;
4377
4378 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4379 init_waitqueue_head(zone->wait_table + i);
4380
4381 return 0;
4382 }
4383
4384 static __meminit void zone_pcp_init(struct zone *zone)
4385 {
4386 /*
4387 * per cpu subsystem is not up at this point. The following code
4388 * relies on the ability of the linker to provide the
4389 * offset of a (static) per cpu variable into the per cpu area.
4390 */
4391 zone->pageset = &boot_pageset;
4392
4393 if (populated_zone(zone))
4394 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4395 zone->name, zone->present_pages,
4396 zone_batchsize(zone));
4397 }
4398
4399 int __meminit init_currently_empty_zone(struct zone *zone,
4400 unsigned long zone_start_pfn,
4401 unsigned long size,
4402 enum memmap_context context)
4403 {
4404 struct pglist_data *pgdat = zone->zone_pgdat;
4405 int ret;
4406 ret = zone_wait_table_init(zone, size);
4407 if (ret)
4408 return ret;
4409 pgdat->nr_zones = zone_idx(zone) + 1;
4410
4411 zone->zone_start_pfn = zone_start_pfn;
4412
4413 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4414 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4415 pgdat->node_id,
4416 (unsigned long)zone_idx(zone),
4417 zone_start_pfn, (zone_start_pfn + size));
4418
4419 zone_init_free_lists(zone);
4420
4421 return 0;
4422 }
4423
4424 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4425 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4426 /*
4427 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4428 */
4429 int __meminit __early_pfn_to_nid(unsigned long pfn)
4430 {
4431 unsigned long start_pfn, end_pfn;
4432 int nid;
4433 /*
4434 * NOTE: The following SMP-unsafe globals are only used early in boot
4435 * when the kernel is running single-threaded.
4436 */
4437 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4438 static int __meminitdata last_nid;
4439
4440 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4441 return last_nid;
4442
4443 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4444 if (nid != -1) {
4445 last_start_pfn = start_pfn;
4446 last_end_pfn = end_pfn;
4447 last_nid = nid;
4448 }
4449
4450 return nid;
4451 }
4452 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4453
4454 int __meminit early_pfn_to_nid(unsigned long pfn)
4455 {
4456 int nid;
4457
4458 nid = __early_pfn_to_nid(pfn);
4459 if (nid >= 0)
4460 return nid;
4461 /* just returns 0 */
4462 return 0;
4463 }
4464
4465 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4466 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4467 {
4468 int nid;
4469
4470 nid = __early_pfn_to_nid(pfn);
4471 if (nid >= 0 && nid != node)
4472 return false;
4473 return true;
4474 }
4475 #endif
4476
4477 /**
4478 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4479 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4480 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4481 *
4482 * If an architecture guarantees that all ranges registered contain no holes
4483 * and may be freed, this this function may be used instead of calling
4484 * memblock_free_early_nid() manually.
4485 */
4486 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4487 {
4488 unsigned long start_pfn, end_pfn;
4489 int i, this_nid;
4490
4491 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4492 start_pfn = min(start_pfn, max_low_pfn);
4493 end_pfn = min(end_pfn, max_low_pfn);
4494
4495 if (start_pfn < end_pfn)
4496 memblock_free_early_nid(PFN_PHYS(start_pfn),
4497 (end_pfn - start_pfn) << PAGE_SHIFT,
4498 this_nid);
4499 }
4500 }
4501
4502 /**
4503 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4504 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4505 *
4506 * If an architecture guarantees that all ranges registered contain no holes and may
4507 * be freed, this function may be used instead of calling memory_present() manually.
4508 */
4509 void __init sparse_memory_present_with_active_regions(int nid)
4510 {
4511 unsigned long start_pfn, end_pfn;
4512 int i, this_nid;
4513
4514 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4515 memory_present(this_nid, start_pfn, end_pfn);
4516 }
4517
4518 /**
4519 * get_pfn_range_for_nid - Return the start and end page frames for a node
4520 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4521 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4522 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4523 *
4524 * It returns the start and end page frame of a node based on information
4525 * provided by memblock_set_node(). If called for a node
4526 * with no available memory, a warning is printed and the start and end
4527 * PFNs will be 0.
4528 */
4529 void __meminit get_pfn_range_for_nid(unsigned int nid,
4530 unsigned long *start_pfn, unsigned long *end_pfn)
4531 {
4532 unsigned long this_start_pfn, this_end_pfn;
4533 int i;
4534
4535 *start_pfn = -1UL;
4536 *end_pfn = 0;
4537
4538 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4539 *start_pfn = min(*start_pfn, this_start_pfn);
4540 *end_pfn = max(*end_pfn, this_end_pfn);
4541 }
4542
4543 if (*start_pfn == -1UL)
4544 *start_pfn = 0;
4545 }
4546
4547 /*
4548 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4549 * assumption is made that zones within a node are ordered in monotonic
4550 * increasing memory addresses so that the "highest" populated zone is used
4551 */
4552 static void __init find_usable_zone_for_movable(void)
4553 {
4554 int zone_index;
4555 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4556 if (zone_index == ZONE_MOVABLE)
4557 continue;
4558
4559 if (arch_zone_highest_possible_pfn[zone_index] >
4560 arch_zone_lowest_possible_pfn[zone_index])
4561 break;
4562 }
4563
4564 VM_BUG_ON(zone_index == -1);
4565 movable_zone = zone_index;
4566 }
4567
4568 /*
4569 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4570 * because it is sized independent of architecture. Unlike the other zones,
4571 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4572 * in each node depending on the size of each node and how evenly kernelcore
4573 * is distributed. This helper function adjusts the zone ranges
4574 * provided by the architecture for a given node by using the end of the
4575 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4576 * zones within a node are in order of monotonic increases memory addresses
4577 */
4578 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4579 unsigned long zone_type,
4580 unsigned long node_start_pfn,
4581 unsigned long node_end_pfn,
4582 unsigned long *zone_start_pfn,
4583 unsigned long *zone_end_pfn)
4584 {
4585 /* Only adjust if ZONE_MOVABLE is on this node */
4586 if (zone_movable_pfn[nid]) {
4587 /* Size ZONE_MOVABLE */
4588 if (zone_type == ZONE_MOVABLE) {
4589 *zone_start_pfn = zone_movable_pfn[nid];
4590 *zone_end_pfn = min(node_end_pfn,
4591 arch_zone_highest_possible_pfn[movable_zone]);
4592
4593 /* Adjust for ZONE_MOVABLE starting within this range */
4594 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4595 *zone_end_pfn > zone_movable_pfn[nid]) {
4596 *zone_end_pfn = zone_movable_pfn[nid];
4597
4598 /* Check if this whole range is within ZONE_MOVABLE */
4599 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4600 *zone_start_pfn = *zone_end_pfn;
4601 }
4602 }
4603
4604 /*
4605 * Return the number of pages a zone spans in a node, including holes
4606 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4607 */
4608 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4609 unsigned long zone_type,
4610 unsigned long node_start_pfn,
4611 unsigned long node_end_pfn,
4612 unsigned long *ignored)
4613 {
4614 unsigned long zone_start_pfn, zone_end_pfn;
4615
4616 /* Get the start and end of the zone */
4617 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4618 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4619 adjust_zone_range_for_zone_movable(nid, zone_type,
4620 node_start_pfn, node_end_pfn,
4621 &zone_start_pfn, &zone_end_pfn);
4622
4623 /* Check that this node has pages within the zone's required range */
4624 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4625 return 0;
4626
4627 /* Move the zone boundaries inside the node if necessary */
4628 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4629 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4630
4631 /* Return the spanned pages */
4632 return zone_end_pfn - zone_start_pfn;
4633 }
4634
4635 /*
4636 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4637 * then all holes in the requested range will be accounted for.
4638 */
4639 unsigned long __meminit __absent_pages_in_range(int nid,
4640 unsigned long range_start_pfn,
4641 unsigned long range_end_pfn)
4642 {
4643 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4644 unsigned long start_pfn, end_pfn;
4645 int i;
4646
4647 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4648 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4649 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4650 nr_absent -= end_pfn - start_pfn;
4651 }
4652 return nr_absent;
4653 }
4654
4655 /**
4656 * absent_pages_in_range - Return number of page frames in holes within a range
4657 * @start_pfn: The start PFN to start searching for holes
4658 * @end_pfn: The end PFN to stop searching for holes
4659 *
4660 * It returns the number of pages frames in memory holes within a range.
4661 */
4662 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4663 unsigned long end_pfn)
4664 {
4665 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4666 }
4667
4668 /* Return the number of page frames in holes in a zone on a node */
4669 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4670 unsigned long zone_type,
4671 unsigned long node_start_pfn,
4672 unsigned long node_end_pfn,
4673 unsigned long *ignored)
4674 {
4675 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4676 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4677 unsigned long zone_start_pfn, zone_end_pfn;
4678
4679 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4680 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4681
4682 adjust_zone_range_for_zone_movable(nid, zone_type,
4683 node_start_pfn, node_end_pfn,
4684 &zone_start_pfn, &zone_end_pfn);
4685 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4686 }
4687
4688 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4689 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4690 unsigned long zone_type,
4691 unsigned long node_start_pfn,
4692 unsigned long node_end_pfn,
4693 unsigned long *zones_size)
4694 {
4695 return zones_size[zone_type];
4696 }
4697
4698 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4699 unsigned long zone_type,
4700 unsigned long node_start_pfn,
4701 unsigned long node_end_pfn,
4702 unsigned long *zholes_size)
4703 {
4704 if (!zholes_size)
4705 return 0;
4706
4707 return zholes_size[zone_type];
4708 }
4709
4710 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4711
4712 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4713 unsigned long node_start_pfn,
4714 unsigned long node_end_pfn,
4715 unsigned long *zones_size,
4716 unsigned long *zholes_size)
4717 {
4718 unsigned long realtotalpages, totalpages = 0;
4719 enum zone_type i;
4720
4721 for (i = 0; i < MAX_NR_ZONES; i++)
4722 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4723 node_start_pfn,
4724 node_end_pfn,
4725 zones_size);
4726 pgdat->node_spanned_pages = totalpages;
4727
4728 realtotalpages = totalpages;
4729 for (i = 0; i < MAX_NR_ZONES; i++)
4730 realtotalpages -=
4731 zone_absent_pages_in_node(pgdat->node_id, i,
4732 node_start_pfn, node_end_pfn,
4733 zholes_size);
4734 pgdat->node_present_pages = realtotalpages;
4735 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4736 realtotalpages);
4737 }
4738
4739 #ifndef CONFIG_SPARSEMEM
4740 /*
4741 * Calculate the size of the zone->blockflags rounded to an unsigned long
4742 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4743 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4744 * round what is now in bits to nearest long in bits, then return it in
4745 * bytes.
4746 */
4747 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4748 {
4749 unsigned long usemapsize;
4750
4751 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4752 usemapsize = roundup(zonesize, pageblock_nr_pages);
4753 usemapsize = usemapsize >> pageblock_order;
4754 usemapsize *= NR_PAGEBLOCK_BITS;
4755 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4756
4757 return usemapsize / 8;
4758 }
4759
4760 static void __init setup_usemap(struct pglist_data *pgdat,
4761 struct zone *zone,
4762 unsigned long zone_start_pfn,
4763 unsigned long zonesize)
4764 {
4765 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4766 zone->pageblock_flags = NULL;
4767 if (usemapsize)
4768 zone->pageblock_flags =
4769 memblock_virt_alloc_node_nopanic(usemapsize,
4770 pgdat->node_id);
4771 }
4772 #else
4773 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4774 unsigned long zone_start_pfn, unsigned long zonesize) {}
4775 #endif /* CONFIG_SPARSEMEM */
4776
4777 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4778
4779 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4780 void __paginginit set_pageblock_order(void)
4781 {
4782 unsigned int order;
4783
4784 /* Check that pageblock_nr_pages has not already been setup */
4785 if (pageblock_order)
4786 return;
4787
4788 if (HPAGE_SHIFT > PAGE_SHIFT)
4789 order = HUGETLB_PAGE_ORDER;
4790 else
4791 order = MAX_ORDER - 1;
4792
4793 /*
4794 * Assume the largest contiguous order of interest is a huge page.
4795 * This value may be variable depending on boot parameters on IA64 and
4796 * powerpc.
4797 */
4798 pageblock_order = order;
4799 }
4800 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4801
4802 /*
4803 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4804 * is unused as pageblock_order is set at compile-time. See
4805 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4806 * the kernel config
4807 */
4808 void __paginginit set_pageblock_order(void)
4809 {
4810 }
4811
4812 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4813
4814 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4815 unsigned long present_pages)
4816 {
4817 unsigned long pages = spanned_pages;
4818
4819 /*
4820 * Provide a more accurate estimation if there are holes within
4821 * the zone and SPARSEMEM is in use. If there are holes within the
4822 * zone, each populated memory region may cost us one or two extra
4823 * memmap pages due to alignment because memmap pages for each
4824 * populated regions may not naturally algined on page boundary.
4825 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4826 */
4827 if (spanned_pages > present_pages + (present_pages >> 4) &&
4828 IS_ENABLED(CONFIG_SPARSEMEM))
4829 pages = present_pages;
4830
4831 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4832 }
4833
4834 /*
4835 * Set up the zone data structures:
4836 * - mark all pages reserved
4837 * - mark all memory queues empty
4838 * - clear the memory bitmaps
4839 *
4840 * NOTE: pgdat should get zeroed by caller.
4841 */
4842 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4843 unsigned long node_start_pfn, unsigned long node_end_pfn,
4844 unsigned long *zones_size, unsigned long *zholes_size)
4845 {
4846 enum zone_type j;
4847 int nid = pgdat->node_id;
4848 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4849 int ret;
4850
4851 pgdat_resize_init(pgdat);
4852 #ifdef CONFIG_NUMA_BALANCING
4853 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4854 pgdat->numabalancing_migrate_nr_pages = 0;
4855 pgdat->numabalancing_migrate_next_window = jiffies;
4856 #endif
4857 init_waitqueue_head(&pgdat->kswapd_wait);
4858 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4859
4860 for (j = 0; j < MAX_NR_ZONES; j++) {
4861 struct zone *zone = pgdat->node_zones + j;
4862 unsigned long size, realsize, freesize, memmap_pages;
4863
4864 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4865 node_end_pfn, zones_size);
4866 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4867 node_start_pfn,
4868 node_end_pfn,
4869 zholes_size);
4870
4871 /*
4872 * Adjust freesize so that it accounts for how much memory
4873 * is used by this zone for memmap. This affects the watermark
4874 * and per-cpu initialisations
4875 */
4876 memmap_pages = calc_memmap_size(size, realsize);
4877 if (freesize >= memmap_pages) {
4878 freesize -= memmap_pages;
4879 if (memmap_pages)
4880 printk(KERN_DEBUG
4881 " %s zone: %lu pages used for memmap\n",
4882 zone_names[j], memmap_pages);
4883 } else
4884 printk(KERN_WARNING
4885 " %s zone: %lu pages exceeds freesize %lu\n",
4886 zone_names[j], memmap_pages, freesize);
4887
4888 /* Account for reserved pages */
4889 if (j == 0 && freesize > dma_reserve) {
4890 freesize -= dma_reserve;
4891 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4892 zone_names[0], dma_reserve);
4893 }
4894
4895 if (!is_highmem_idx(j))
4896 nr_kernel_pages += freesize;
4897 /* Charge for highmem memmap if there are enough kernel pages */
4898 else if (nr_kernel_pages > memmap_pages * 2)
4899 nr_kernel_pages -= memmap_pages;
4900 nr_all_pages += freesize;
4901
4902 zone->spanned_pages = size;
4903 zone->present_pages = realsize;
4904 /*
4905 * Set an approximate value for lowmem here, it will be adjusted
4906 * when the bootmem allocator frees pages into the buddy system.
4907 * And all highmem pages will be managed by the buddy system.
4908 */
4909 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4910 #ifdef CONFIG_NUMA
4911 zone->node = nid;
4912 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4913 / 100;
4914 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4915 #endif
4916 zone->name = zone_names[j];
4917 spin_lock_init(&zone->lock);
4918 spin_lock_init(&zone->lru_lock);
4919 zone_seqlock_init(zone);
4920 zone->zone_pgdat = pgdat;
4921 zone_pcp_init(zone);
4922
4923 /* For bootup, initialized properly in watermark setup */
4924 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4925
4926 lruvec_init(&zone->lruvec);
4927 if (!size)
4928 continue;
4929
4930 set_pageblock_order();
4931 setup_usemap(pgdat, zone, zone_start_pfn, size);
4932 ret = init_currently_empty_zone(zone, zone_start_pfn,
4933 size, MEMMAP_EARLY);
4934 BUG_ON(ret);
4935 memmap_init(size, nid, j, zone_start_pfn);
4936 zone_start_pfn += size;
4937 }
4938 }
4939
4940 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4941 {
4942 /* Skip empty nodes */
4943 if (!pgdat->node_spanned_pages)
4944 return;
4945
4946 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4947 /* ia64 gets its own node_mem_map, before this, without bootmem */
4948 if (!pgdat->node_mem_map) {
4949 unsigned long size, start, end;
4950 struct page *map;
4951
4952 /*
4953 * The zone's endpoints aren't required to be MAX_ORDER
4954 * aligned but the node_mem_map endpoints must be in order
4955 * for the buddy allocator to function correctly.
4956 */
4957 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4958 end = pgdat_end_pfn(pgdat);
4959 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4960 size = (end - start) * sizeof(struct page);
4961 map = alloc_remap(pgdat->node_id, size);
4962 if (!map)
4963 map = memblock_virt_alloc_node_nopanic(size,
4964 pgdat->node_id);
4965 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4966 }
4967 #ifndef CONFIG_NEED_MULTIPLE_NODES
4968 /*
4969 * With no DISCONTIG, the global mem_map is just set as node 0's
4970 */
4971 if (pgdat == NODE_DATA(0)) {
4972 mem_map = NODE_DATA(0)->node_mem_map;
4973 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4974 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4975 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4976 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4977 }
4978 #endif
4979 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4980 }
4981
4982 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4983 unsigned long node_start_pfn, unsigned long *zholes_size)
4984 {
4985 pg_data_t *pgdat = NODE_DATA(nid);
4986 unsigned long start_pfn = 0;
4987 unsigned long end_pfn = 0;
4988
4989 /* pg_data_t should be reset to zero when it's allocated */
4990 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4991
4992 pgdat->node_id = nid;
4993 pgdat->node_start_pfn = node_start_pfn;
4994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4995 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4996 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4997 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4998 #endif
4999 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5000 zones_size, zholes_size);
5001
5002 alloc_node_mem_map(pgdat);
5003 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5004 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5005 nid, (unsigned long)pgdat,
5006 (unsigned long)pgdat->node_mem_map);
5007 #endif
5008
5009 free_area_init_core(pgdat, start_pfn, end_pfn,
5010 zones_size, zholes_size);
5011 }
5012
5013 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5014
5015 #if MAX_NUMNODES > 1
5016 /*
5017 * Figure out the number of possible node ids.
5018 */
5019 void __init setup_nr_node_ids(void)
5020 {
5021 unsigned int node;
5022 unsigned int highest = 0;
5023
5024 for_each_node_mask(node, node_possible_map)
5025 highest = node;
5026 nr_node_ids = highest + 1;
5027 }
5028 #endif
5029
5030 /**
5031 * node_map_pfn_alignment - determine the maximum internode alignment
5032 *
5033 * This function should be called after node map is populated and sorted.
5034 * It calculates the maximum power of two alignment which can distinguish
5035 * all the nodes.
5036 *
5037 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5038 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5039 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5040 * shifted, 1GiB is enough and this function will indicate so.
5041 *
5042 * This is used to test whether pfn -> nid mapping of the chosen memory
5043 * model has fine enough granularity to avoid incorrect mapping for the
5044 * populated node map.
5045 *
5046 * Returns the determined alignment in pfn's. 0 if there is no alignment
5047 * requirement (single node).
5048 */
5049 unsigned long __init node_map_pfn_alignment(void)
5050 {
5051 unsigned long accl_mask = 0, last_end = 0;
5052 unsigned long start, end, mask;
5053 int last_nid = -1;
5054 int i, nid;
5055
5056 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5057 if (!start || last_nid < 0 || last_nid == nid) {
5058 last_nid = nid;
5059 last_end = end;
5060 continue;
5061 }
5062
5063 /*
5064 * Start with a mask granular enough to pin-point to the
5065 * start pfn and tick off bits one-by-one until it becomes
5066 * too coarse to separate the current node from the last.
5067 */
5068 mask = ~((1 << __ffs(start)) - 1);
5069 while (mask && last_end <= (start & (mask << 1)))
5070 mask <<= 1;
5071
5072 /* accumulate all internode masks */
5073 accl_mask |= mask;
5074 }
5075
5076 /* convert mask to number of pages */
5077 return ~accl_mask + 1;
5078 }
5079
5080 /* Find the lowest pfn for a node */
5081 static unsigned long __init find_min_pfn_for_node(int nid)
5082 {
5083 unsigned long min_pfn = ULONG_MAX;
5084 unsigned long start_pfn;
5085 int i;
5086
5087 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5088 min_pfn = min(min_pfn, start_pfn);
5089
5090 if (min_pfn == ULONG_MAX) {
5091 printk(KERN_WARNING
5092 "Could not find start_pfn for node %d\n", nid);
5093 return 0;
5094 }
5095
5096 return min_pfn;
5097 }
5098
5099 /**
5100 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5101 *
5102 * It returns the minimum PFN based on information provided via
5103 * memblock_set_node().
5104 */
5105 unsigned long __init find_min_pfn_with_active_regions(void)
5106 {
5107 return find_min_pfn_for_node(MAX_NUMNODES);
5108 }
5109
5110 /*
5111 * early_calculate_totalpages()
5112 * Sum pages in active regions for movable zone.
5113 * Populate N_MEMORY for calculating usable_nodes.
5114 */
5115 static unsigned long __init early_calculate_totalpages(void)
5116 {
5117 unsigned long totalpages = 0;
5118 unsigned long start_pfn, end_pfn;
5119 int i, nid;
5120
5121 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5122 unsigned long pages = end_pfn - start_pfn;
5123
5124 totalpages += pages;
5125 if (pages)
5126 node_set_state(nid, N_MEMORY);
5127 }
5128 return totalpages;
5129 }
5130
5131 /*
5132 * Find the PFN the Movable zone begins in each node. Kernel memory
5133 * is spread evenly between nodes as long as the nodes have enough
5134 * memory. When they don't, some nodes will have more kernelcore than
5135 * others
5136 */
5137 static void __init find_zone_movable_pfns_for_nodes(void)
5138 {
5139 int i, nid;
5140 unsigned long usable_startpfn;
5141 unsigned long kernelcore_node, kernelcore_remaining;
5142 /* save the state before borrow the nodemask */
5143 nodemask_t saved_node_state = node_states[N_MEMORY];
5144 unsigned long totalpages = early_calculate_totalpages();
5145 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5146 struct memblock_region *r;
5147
5148 /* Need to find movable_zone earlier when movable_node is specified. */
5149 find_usable_zone_for_movable();
5150
5151 /*
5152 * If movable_node is specified, ignore kernelcore and movablecore
5153 * options.
5154 */
5155 if (movable_node_is_enabled()) {
5156 for_each_memblock(memory, r) {
5157 if (!memblock_is_hotpluggable(r))
5158 continue;
5159
5160 nid = r->nid;
5161
5162 usable_startpfn = PFN_DOWN(r->base);
5163 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5164 min(usable_startpfn, zone_movable_pfn[nid]) :
5165 usable_startpfn;
5166 }
5167
5168 goto out2;
5169 }
5170
5171 /*
5172 * If movablecore=nn[KMG] was specified, calculate what size of
5173 * kernelcore that corresponds so that memory usable for
5174 * any allocation type is evenly spread. If both kernelcore
5175 * and movablecore are specified, then the value of kernelcore
5176 * will be used for required_kernelcore if it's greater than
5177 * what movablecore would have allowed.
5178 */
5179 if (required_movablecore) {
5180 unsigned long corepages;
5181
5182 /*
5183 * Round-up so that ZONE_MOVABLE is at least as large as what
5184 * was requested by the user
5185 */
5186 required_movablecore =
5187 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5188 corepages = totalpages - required_movablecore;
5189
5190 required_kernelcore = max(required_kernelcore, corepages);
5191 }
5192
5193 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5194 if (!required_kernelcore)
5195 goto out;
5196
5197 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5198 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5199
5200 restart:
5201 /* Spread kernelcore memory as evenly as possible throughout nodes */
5202 kernelcore_node = required_kernelcore / usable_nodes;
5203 for_each_node_state(nid, N_MEMORY) {
5204 unsigned long start_pfn, end_pfn;
5205
5206 /*
5207 * Recalculate kernelcore_node if the division per node
5208 * now exceeds what is necessary to satisfy the requested
5209 * amount of memory for the kernel
5210 */
5211 if (required_kernelcore < kernelcore_node)
5212 kernelcore_node = required_kernelcore / usable_nodes;
5213
5214 /*
5215 * As the map is walked, we track how much memory is usable
5216 * by the kernel using kernelcore_remaining. When it is
5217 * 0, the rest of the node is usable by ZONE_MOVABLE
5218 */
5219 kernelcore_remaining = kernelcore_node;
5220
5221 /* Go through each range of PFNs within this node */
5222 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5223 unsigned long size_pages;
5224
5225 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5226 if (start_pfn >= end_pfn)
5227 continue;
5228
5229 /* Account for what is only usable for kernelcore */
5230 if (start_pfn < usable_startpfn) {
5231 unsigned long kernel_pages;
5232 kernel_pages = min(end_pfn, usable_startpfn)
5233 - start_pfn;
5234
5235 kernelcore_remaining -= min(kernel_pages,
5236 kernelcore_remaining);
5237 required_kernelcore -= min(kernel_pages,
5238 required_kernelcore);
5239
5240 /* Continue if range is now fully accounted */
5241 if (end_pfn <= usable_startpfn) {
5242
5243 /*
5244 * Push zone_movable_pfn to the end so
5245 * that if we have to rebalance
5246 * kernelcore across nodes, we will
5247 * not double account here
5248 */
5249 zone_movable_pfn[nid] = end_pfn;
5250 continue;
5251 }
5252 start_pfn = usable_startpfn;
5253 }
5254
5255 /*
5256 * The usable PFN range for ZONE_MOVABLE is from
5257 * start_pfn->end_pfn. Calculate size_pages as the
5258 * number of pages used as kernelcore
5259 */
5260 size_pages = end_pfn - start_pfn;
5261 if (size_pages > kernelcore_remaining)
5262 size_pages = kernelcore_remaining;
5263 zone_movable_pfn[nid] = start_pfn + size_pages;
5264
5265 /*
5266 * Some kernelcore has been met, update counts and
5267 * break if the kernelcore for this node has been
5268 * satisfied
5269 */
5270 required_kernelcore -= min(required_kernelcore,
5271 size_pages);
5272 kernelcore_remaining -= size_pages;
5273 if (!kernelcore_remaining)
5274 break;
5275 }
5276 }
5277
5278 /*
5279 * If there is still required_kernelcore, we do another pass with one
5280 * less node in the count. This will push zone_movable_pfn[nid] further
5281 * along on the nodes that still have memory until kernelcore is
5282 * satisfied
5283 */
5284 usable_nodes--;
5285 if (usable_nodes && required_kernelcore > usable_nodes)
5286 goto restart;
5287
5288 out2:
5289 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5290 for (nid = 0; nid < MAX_NUMNODES; nid++)
5291 zone_movable_pfn[nid] =
5292 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5293
5294 out:
5295 /* restore the node_state */
5296 node_states[N_MEMORY] = saved_node_state;
5297 }
5298
5299 /* Any regular or high memory on that node ? */
5300 static void check_for_memory(pg_data_t *pgdat, int nid)
5301 {
5302 enum zone_type zone_type;
5303
5304 if (N_MEMORY == N_NORMAL_MEMORY)
5305 return;
5306
5307 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5308 struct zone *zone = &pgdat->node_zones[zone_type];
5309 if (populated_zone(zone)) {
5310 node_set_state(nid, N_HIGH_MEMORY);
5311 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5312 zone_type <= ZONE_NORMAL)
5313 node_set_state(nid, N_NORMAL_MEMORY);
5314 break;
5315 }
5316 }
5317 }
5318
5319 /**
5320 * free_area_init_nodes - Initialise all pg_data_t and zone data
5321 * @max_zone_pfn: an array of max PFNs for each zone
5322 *
5323 * This will call free_area_init_node() for each active node in the system.
5324 * Using the page ranges provided by memblock_set_node(), the size of each
5325 * zone in each node and their holes is calculated. If the maximum PFN
5326 * between two adjacent zones match, it is assumed that the zone is empty.
5327 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5328 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5329 * starts where the previous one ended. For example, ZONE_DMA32 starts
5330 * at arch_max_dma_pfn.
5331 */
5332 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5333 {
5334 unsigned long start_pfn, end_pfn;
5335 int i, nid;
5336
5337 /* Record where the zone boundaries are */
5338 memset(arch_zone_lowest_possible_pfn, 0,
5339 sizeof(arch_zone_lowest_possible_pfn));
5340 memset(arch_zone_highest_possible_pfn, 0,
5341 sizeof(arch_zone_highest_possible_pfn));
5342 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5343 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5344 for (i = 1; i < MAX_NR_ZONES; i++) {
5345 if (i == ZONE_MOVABLE)
5346 continue;
5347 arch_zone_lowest_possible_pfn[i] =
5348 arch_zone_highest_possible_pfn[i-1];
5349 arch_zone_highest_possible_pfn[i] =
5350 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5351 }
5352 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5353 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5354
5355 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5356 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5357 find_zone_movable_pfns_for_nodes();
5358
5359 /* Print out the zone ranges */
5360 pr_info("Zone ranges:\n");
5361 for (i = 0; i < MAX_NR_ZONES; i++) {
5362 if (i == ZONE_MOVABLE)
5363 continue;
5364 pr_info(" %-8s ", zone_names[i]);
5365 if (arch_zone_lowest_possible_pfn[i] ==
5366 arch_zone_highest_possible_pfn[i])
5367 pr_cont("empty\n");
5368 else
5369 pr_cont("[mem %0#10lx-%0#10lx]\n",
5370 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5371 (arch_zone_highest_possible_pfn[i]
5372 << PAGE_SHIFT) - 1);
5373 }
5374
5375 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5376 pr_info("Movable zone start for each node\n");
5377 for (i = 0; i < MAX_NUMNODES; i++) {
5378 if (zone_movable_pfn[i])
5379 pr_info(" Node %d: %#010lx\n", i,
5380 zone_movable_pfn[i] << PAGE_SHIFT);
5381 }
5382
5383 /* Print out the early node map */
5384 pr_info("Early memory node ranges\n");
5385 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5386 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5387 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5388
5389 /* Initialise every node */
5390 mminit_verify_pageflags_layout();
5391 setup_nr_node_ids();
5392 for_each_online_node(nid) {
5393 pg_data_t *pgdat = NODE_DATA(nid);
5394 free_area_init_node(nid, NULL,
5395 find_min_pfn_for_node(nid), NULL);
5396
5397 /* Any memory on that node */
5398 if (pgdat->node_present_pages)
5399 node_set_state(nid, N_MEMORY);
5400 check_for_memory(pgdat, nid);
5401 }
5402 }
5403
5404 static int __init cmdline_parse_core(char *p, unsigned long *core)
5405 {
5406 unsigned long long coremem;
5407 if (!p)
5408 return -EINVAL;
5409
5410 coremem = memparse(p, &p);
5411 *core = coremem >> PAGE_SHIFT;
5412
5413 /* Paranoid check that UL is enough for the coremem value */
5414 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5415
5416 return 0;
5417 }
5418
5419 /*
5420 * kernelcore=size sets the amount of memory for use for allocations that
5421 * cannot be reclaimed or migrated.
5422 */
5423 static int __init cmdline_parse_kernelcore(char *p)
5424 {
5425 return cmdline_parse_core(p, &required_kernelcore);
5426 }
5427
5428 /*
5429 * movablecore=size sets the amount of memory for use for allocations that
5430 * can be reclaimed or migrated.
5431 */
5432 static int __init cmdline_parse_movablecore(char *p)
5433 {
5434 return cmdline_parse_core(p, &required_movablecore);
5435 }
5436
5437 early_param("kernelcore", cmdline_parse_kernelcore);
5438 early_param("movablecore", cmdline_parse_movablecore);
5439
5440 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5441
5442 void adjust_managed_page_count(struct page *page, long count)
5443 {
5444 spin_lock(&managed_page_count_lock);
5445 page_zone(page)->managed_pages += count;
5446 totalram_pages += count;
5447 #ifdef CONFIG_HIGHMEM
5448 if (PageHighMem(page))
5449 totalhigh_pages += count;
5450 #endif
5451 spin_unlock(&managed_page_count_lock);
5452 }
5453 EXPORT_SYMBOL(adjust_managed_page_count);
5454
5455 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5456 {
5457 void *pos;
5458 unsigned long pages = 0;
5459
5460 start = (void *)PAGE_ALIGN((unsigned long)start);
5461 end = (void *)((unsigned long)end & PAGE_MASK);
5462 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5463 if ((unsigned int)poison <= 0xFF)
5464 memset(pos, poison, PAGE_SIZE);
5465 free_reserved_page(virt_to_page(pos));
5466 }
5467
5468 if (pages && s)
5469 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5470 s, pages << (PAGE_SHIFT - 10), start, end);
5471
5472 return pages;
5473 }
5474 EXPORT_SYMBOL(free_reserved_area);
5475
5476 #ifdef CONFIG_HIGHMEM
5477 void free_highmem_page(struct page *page)
5478 {
5479 __free_reserved_page(page);
5480 totalram_pages++;
5481 page_zone(page)->managed_pages++;
5482 totalhigh_pages++;
5483 }
5484 #endif
5485
5486
5487 void __init mem_init_print_info(const char *str)
5488 {
5489 unsigned long physpages, codesize, datasize, rosize, bss_size;
5490 unsigned long init_code_size, init_data_size;
5491
5492 physpages = get_num_physpages();
5493 codesize = _etext - _stext;
5494 datasize = _edata - _sdata;
5495 rosize = __end_rodata - __start_rodata;
5496 bss_size = __bss_stop - __bss_start;
5497 init_data_size = __init_end - __init_begin;
5498 init_code_size = _einittext - _sinittext;
5499
5500 /*
5501 * Detect special cases and adjust section sizes accordingly:
5502 * 1) .init.* may be embedded into .data sections
5503 * 2) .init.text.* may be out of [__init_begin, __init_end],
5504 * please refer to arch/tile/kernel/vmlinux.lds.S.
5505 * 3) .rodata.* may be embedded into .text or .data sections.
5506 */
5507 #define adj_init_size(start, end, size, pos, adj) \
5508 do { \
5509 if (start <= pos && pos < end && size > adj) \
5510 size -= adj; \
5511 } while (0)
5512
5513 adj_init_size(__init_begin, __init_end, init_data_size,
5514 _sinittext, init_code_size);
5515 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5516 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5517 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5518 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5519
5520 #undef adj_init_size
5521
5522 pr_info("Memory: %luK/%luK available "
5523 "(%luK kernel code, %luK rwdata, %luK rodata, "
5524 "%luK init, %luK bss, %luK reserved"
5525 #ifdef CONFIG_HIGHMEM
5526 ", %luK highmem"
5527 #endif
5528 "%s%s)\n",
5529 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5530 codesize >> 10, datasize >> 10, rosize >> 10,
5531 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5532 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5533 #ifdef CONFIG_HIGHMEM
5534 totalhigh_pages << (PAGE_SHIFT-10),
5535 #endif
5536 str ? ", " : "", str ? str : "");
5537 }
5538
5539 /**
5540 * set_dma_reserve - set the specified number of pages reserved in the first zone
5541 * @new_dma_reserve: The number of pages to mark reserved
5542 *
5543 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5544 * In the DMA zone, a significant percentage may be consumed by kernel image
5545 * and other unfreeable allocations which can skew the watermarks badly. This
5546 * function may optionally be used to account for unfreeable pages in the
5547 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5548 * smaller per-cpu batchsize.
5549 */
5550 void __init set_dma_reserve(unsigned long new_dma_reserve)
5551 {
5552 dma_reserve = new_dma_reserve;
5553 }
5554
5555 void __init free_area_init(unsigned long *zones_size)
5556 {
5557 free_area_init_node(0, zones_size,
5558 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5559 }
5560
5561 static int page_alloc_cpu_notify(struct notifier_block *self,
5562 unsigned long action, void *hcpu)
5563 {
5564 int cpu = (unsigned long)hcpu;
5565
5566 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5567 lru_add_drain_cpu(cpu);
5568 drain_pages(cpu);
5569
5570 /*
5571 * Spill the event counters of the dead processor
5572 * into the current processors event counters.
5573 * This artificially elevates the count of the current
5574 * processor.
5575 */
5576 vm_events_fold_cpu(cpu);
5577
5578 /*
5579 * Zero the differential counters of the dead processor
5580 * so that the vm statistics are consistent.
5581 *
5582 * This is only okay since the processor is dead and cannot
5583 * race with what we are doing.
5584 */
5585 cpu_vm_stats_fold(cpu);
5586 }
5587 return NOTIFY_OK;
5588 }
5589
5590 void __init page_alloc_init(void)
5591 {
5592 hotcpu_notifier(page_alloc_cpu_notify, 0);
5593 }
5594
5595 /*
5596 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5597 * or min_free_kbytes changes.
5598 */
5599 static void calculate_totalreserve_pages(void)
5600 {
5601 struct pglist_data *pgdat;
5602 unsigned long reserve_pages = 0;
5603 enum zone_type i, j;
5604
5605 for_each_online_pgdat(pgdat) {
5606 for (i = 0; i < MAX_NR_ZONES; i++) {
5607 struct zone *zone = pgdat->node_zones + i;
5608 long max = 0;
5609
5610 /* Find valid and maximum lowmem_reserve in the zone */
5611 for (j = i; j < MAX_NR_ZONES; j++) {
5612 if (zone->lowmem_reserve[j] > max)
5613 max = zone->lowmem_reserve[j];
5614 }
5615
5616 /* we treat the high watermark as reserved pages. */
5617 max += high_wmark_pages(zone);
5618
5619 if (max > zone->managed_pages)
5620 max = zone->managed_pages;
5621 reserve_pages += max;
5622 /*
5623 * Lowmem reserves are not available to
5624 * GFP_HIGHUSER page cache allocations and
5625 * kswapd tries to balance zones to their high
5626 * watermark. As a result, neither should be
5627 * regarded as dirtyable memory, to prevent a
5628 * situation where reclaim has to clean pages
5629 * in order to balance the zones.
5630 */
5631 zone->dirty_balance_reserve = max;
5632 }
5633 }
5634 dirty_balance_reserve = reserve_pages;
5635 totalreserve_pages = reserve_pages;
5636 }
5637
5638 /*
5639 * setup_per_zone_lowmem_reserve - called whenever
5640 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5641 * has a correct pages reserved value, so an adequate number of
5642 * pages are left in the zone after a successful __alloc_pages().
5643 */
5644 static void setup_per_zone_lowmem_reserve(void)
5645 {
5646 struct pglist_data *pgdat;
5647 enum zone_type j, idx;
5648
5649 for_each_online_pgdat(pgdat) {
5650 for (j = 0; j < MAX_NR_ZONES; j++) {
5651 struct zone *zone = pgdat->node_zones + j;
5652 unsigned long managed_pages = zone->managed_pages;
5653
5654 zone->lowmem_reserve[j] = 0;
5655
5656 idx = j;
5657 while (idx) {
5658 struct zone *lower_zone;
5659
5660 idx--;
5661
5662 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5663 sysctl_lowmem_reserve_ratio[idx] = 1;
5664
5665 lower_zone = pgdat->node_zones + idx;
5666 lower_zone->lowmem_reserve[j] = managed_pages /
5667 sysctl_lowmem_reserve_ratio[idx];
5668 managed_pages += lower_zone->managed_pages;
5669 }
5670 }
5671 }
5672
5673 /* update totalreserve_pages */
5674 calculate_totalreserve_pages();
5675 }
5676
5677 static void __setup_per_zone_wmarks(void)
5678 {
5679 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5680 unsigned long lowmem_pages = 0;
5681 struct zone *zone;
5682 unsigned long flags;
5683
5684 /* Calculate total number of !ZONE_HIGHMEM pages */
5685 for_each_zone(zone) {
5686 if (!is_highmem(zone))
5687 lowmem_pages += zone->managed_pages;
5688 }
5689
5690 for_each_zone(zone) {
5691 u64 tmp;
5692
5693 spin_lock_irqsave(&zone->lock, flags);
5694 tmp = (u64)pages_min * zone->managed_pages;
5695 do_div(tmp, lowmem_pages);
5696 if (is_highmem(zone)) {
5697 /*
5698 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5699 * need highmem pages, so cap pages_min to a small
5700 * value here.
5701 *
5702 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5703 * deltas controls asynch page reclaim, and so should
5704 * not be capped for highmem.
5705 */
5706 unsigned long min_pages;
5707
5708 min_pages = zone->managed_pages / 1024;
5709 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5710 zone->watermark[WMARK_MIN] = min_pages;
5711 } else {
5712 /*
5713 * If it's a lowmem zone, reserve a number of pages
5714 * proportionate to the zone's size.
5715 */
5716 zone->watermark[WMARK_MIN] = tmp;
5717 }
5718
5719 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5720 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5721
5722 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5723 high_wmark_pages(zone) - low_wmark_pages(zone) -
5724 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5725
5726 setup_zone_migrate_reserve(zone);
5727 spin_unlock_irqrestore(&zone->lock, flags);
5728 }
5729
5730 /* update totalreserve_pages */
5731 calculate_totalreserve_pages();
5732 }
5733
5734 /**
5735 * setup_per_zone_wmarks - called when min_free_kbytes changes
5736 * or when memory is hot-{added|removed}
5737 *
5738 * Ensures that the watermark[min,low,high] values for each zone are set
5739 * correctly with respect to min_free_kbytes.
5740 */
5741 void setup_per_zone_wmarks(void)
5742 {
5743 mutex_lock(&zonelists_mutex);
5744 __setup_per_zone_wmarks();
5745 mutex_unlock(&zonelists_mutex);
5746 }
5747
5748 /*
5749 * The inactive anon list should be small enough that the VM never has to
5750 * do too much work, but large enough that each inactive page has a chance
5751 * to be referenced again before it is swapped out.
5752 *
5753 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5754 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5755 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5756 * the anonymous pages are kept on the inactive list.
5757 *
5758 * total target max
5759 * memory ratio inactive anon
5760 * -------------------------------------
5761 * 10MB 1 5MB
5762 * 100MB 1 50MB
5763 * 1GB 3 250MB
5764 * 10GB 10 0.9GB
5765 * 100GB 31 3GB
5766 * 1TB 101 10GB
5767 * 10TB 320 32GB
5768 */
5769 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5770 {
5771 unsigned int gb, ratio;
5772
5773 /* Zone size in gigabytes */
5774 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5775 if (gb)
5776 ratio = int_sqrt(10 * gb);
5777 else
5778 ratio = 1;
5779
5780 zone->inactive_ratio = ratio;
5781 }
5782
5783 static void __meminit setup_per_zone_inactive_ratio(void)
5784 {
5785 struct zone *zone;
5786
5787 for_each_zone(zone)
5788 calculate_zone_inactive_ratio(zone);
5789 }
5790
5791 /*
5792 * Initialise min_free_kbytes.
5793 *
5794 * For small machines we want it small (128k min). For large machines
5795 * we want it large (64MB max). But it is not linear, because network
5796 * bandwidth does not increase linearly with machine size. We use
5797 *
5798 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5799 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5800 *
5801 * which yields
5802 *
5803 * 16MB: 512k
5804 * 32MB: 724k
5805 * 64MB: 1024k
5806 * 128MB: 1448k
5807 * 256MB: 2048k
5808 * 512MB: 2896k
5809 * 1024MB: 4096k
5810 * 2048MB: 5792k
5811 * 4096MB: 8192k
5812 * 8192MB: 11584k
5813 * 16384MB: 16384k
5814 */
5815 int __meminit init_per_zone_wmark_min(void)
5816 {
5817 unsigned long lowmem_kbytes;
5818 int new_min_free_kbytes;
5819
5820 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5821 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5822
5823 if (new_min_free_kbytes > user_min_free_kbytes) {
5824 min_free_kbytes = new_min_free_kbytes;
5825 if (min_free_kbytes < 128)
5826 min_free_kbytes = 128;
5827 if (min_free_kbytes > 65536)
5828 min_free_kbytes = 65536;
5829 } else {
5830 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5831 new_min_free_kbytes, user_min_free_kbytes);
5832 }
5833 setup_per_zone_wmarks();
5834 refresh_zone_stat_thresholds();
5835 setup_per_zone_lowmem_reserve();
5836 setup_per_zone_inactive_ratio();
5837 return 0;
5838 }
5839 module_init(init_per_zone_wmark_min)
5840
5841 /*
5842 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5843 * that we can call two helper functions whenever min_free_kbytes
5844 * changes.
5845 */
5846 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5847 void __user *buffer, size_t *length, loff_t *ppos)
5848 {
5849 int rc;
5850
5851 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5852 if (rc)
5853 return rc;
5854
5855 if (write) {
5856 user_min_free_kbytes = min_free_kbytes;
5857 setup_per_zone_wmarks();
5858 }
5859 return 0;
5860 }
5861
5862 #ifdef CONFIG_NUMA
5863 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5864 void __user *buffer, size_t *length, loff_t *ppos)
5865 {
5866 struct zone *zone;
5867 int rc;
5868
5869 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5870 if (rc)
5871 return rc;
5872
5873 for_each_zone(zone)
5874 zone->min_unmapped_pages = (zone->managed_pages *
5875 sysctl_min_unmapped_ratio) / 100;
5876 return 0;
5877 }
5878
5879 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5880 void __user *buffer, size_t *length, loff_t *ppos)
5881 {
5882 struct zone *zone;
5883 int rc;
5884
5885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5886 if (rc)
5887 return rc;
5888
5889 for_each_zone(zone)
5890 zone->min_slab_pages = (zone->managed_pages *
5891 sysctl_min_slab_ratio) / 100;
5892 return 0;
5893 }
5894 #endif
5895
5896 /*
5897 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5898 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5899 * whenever sysctl_lowmem_reserve_ratio changes.
5900 *
5901 * The reserve ratio obviously has absolutely no relation with the
5902 * minimum watermarks. The lowmem reserve ratio can only make sense
5903 * if in function of the boot time zone sizes.
5904 */
5905 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5906 void __user *buffer, size_t *length, loff_t *ppos)
5907 {
5908 proc_dointvec_minmax(table, write, buffer, length, ppos);
5909 setup_per_zone_lowmem_reserve();
5910 return 0;
5911 }
5912
5913 /*
5914 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5915 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5916 * pagelist can have before it gets flushed back to buddy allocator.
5917 */
5918 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5919 void __user *buffer, size_t *length, loff_t *ppos)
5920 {
5921 struct zone *zone;
5922 int old_percpu_pagelist_fraction;
5923 int ret;
5924
5925 mutex_lock(&pcp_batch_high_lock);
5926 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5927
5928 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5929 if (!write || ret < 0)
5930 goto out;
5931
5932 /* Sanity checking to avoid pcp imbalance */
5933 if (percpu_pagelist_fraction &&
5934 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5935 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5936 ret = -EINVAL;
5937 goto out;
5938 }
5939
5940 /* No change? */
5941 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5942 goto out;
5943
5944 for_each_populated_zone(zone) {
5945 unsigned int cpu;
5946
5947 for_each_possible_cpu(cpu)
5948 pageset_set_high_and_batch(zone,
5949 per_cpu_ptr(zone->pageset, cpu));
5950 }
5951 out:
5952 mutex_unlock(&pcp_batch_high_lock);
5953 return ret;
5954 }
5955
5956 int hashdist = HASHDIST_DEFAULT;
5957
5958 #ifdef CONFIG_NUMA
5959 static int __init set_hashdist(char *str)
5960 {
5961 if (!str)
5962 return 0;
5963 hashdist = simple_strtoul(str, &str, 0);
5964 return 1;
5965 }
5966 __setup("hashdist=", set_hashdist);
5967 #endif
5968
5969 /*
5970 * allocate a large system hash table from bootmem
5971 * - it is assumed that the hash table must contain an exact power-of-2
5972 * quantity of entries
5973 * - limit is the number of hash buckets, not the total allocation size
5974 */
5975 void *__init alloc_large_system_hash(const char *tablename,
5976 unsigned long bucketsize,
5977 unsigned long numentries,
5978 int scale,
5979 int flags,
5980 unsigned int *_hash_shift,
5981 unsigned int *_hash_mask,
5982 unsigned long low_limit,
5983 unsigned long high_limit)
5984 {
5985 unsigned long long max = high_limit;
5986 unsigned long log2qty, size;
5987 void *table = NULL;
5988
5989 /* allow the kernel cmdline to have a say */
5990 if (!numentries) {
5991 /* round applicable memory size up to nearest megabyte */
5992 numentries = nr_kernel_pages;
5993
5994 /* It isn't necessary when PAGE_SIZE >= 1MB */
5995 if (PAGE_SHIFT < 20)
5996 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5997
5998 /* limit to 1 bucket per 2^scale bytes of low memory */
5999 if (scale > PAGE_SHIFT)
6000 numentries >>= (scale - PAGE_SHIFT);
6001 else
6002 numentries <<= (PAGE_SHIFT - scale);
6003
6004 /* Make sure we've got at least a 0-order allocation.. */
6005 if (unlikely(flags & HASH_SMALL)) {
6006 /* Makes no sense without HASH_EARLY */
6007 WARN_ON(!(flags & HASH_EARLY));
6008 if (!(numentries >> *_hash_shift)) {
6009 numentries = 1UL << *_hash_shift;
6010 BUG_ON(!numentries);
6011 }
6012 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6013 numentries = PAGE_SIZE / bucketsize;
6014 }
6015 numentries = roundup_pow_of_two(numentries);
6016
6017 /* limit allocation size to 1/16 total memory by default */
6018 if (max == 0) {
6019 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6020 do_div(max, bucketsize);
6021 }
6022 max = min(max, 0x80000000ULL);
6023
6024 if (numentries < low_limit)
6025 numentries = low_limit;
6026 if (numentries > max)
6027 numentries = max;
6028
6029 log2qty = ilog2(numentries);
6030
6031 do {
6032 size = bucketsize << log2qty;
6033 if (flags & HASH_EARLY)
6034 table = memblock_virt_alloc_nopanic(size, 0);
6035 else if (hashdist)
6036 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6037 else {
6038 /*
6039 * If bucketsize is not a power-of-two, we may free
6040 * some pages at the end of hash table which
6041 * alloc_pages_exact() automatically does
6042 */
6043 if (get_order(size) < MAX_ORDER) {
6044 table = alloc_pages_exact(size, GFP_ATOMIC);
6045 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6046 }
6047 }
6048 } while (!table && size > PAGE_SIZE && --log2qty);
6049
6050 if (!table)
6051 panic("Failed to allocate %s hash table\n", tablename);
6052
6053 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6054 tablename,
6055 (1UL << log2qty),
6056 ilog2(size) - PAGE_SHIFT,
6057 size);
6058
6059 if (_hash_shift)
6060 *_hash_shift = log2qty;
6061 if (_hash_mask)
6062 *_hash_mask = (1 << log2qty) - 1;
6063
6064 return table;
6065 }
6066
6067 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6068 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6069 unsigned long pfn)
6070 {
6071 #ifdef CONFIG_SPARSEMEM
6072 return __pfn_to_section(pfn)->pageblock_flags;
6073 #else
6074 return zone->pageblock_flags;
6075 #endif /* CONFIG_SPARSEMEM */
6076 }
6077
6078 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6079 {
6080 #ifdef CONFIG_SPARSEMEM
6081 pfn &= (PAGES_PER_SECTION-1);
6082 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6083 #else
6084 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6085 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6086 #endif /* CONFIG_SPARSEMEM */
6087 }
6088
6089 /**
6090 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6091 * @page: The page within the block of interest
6092 * @pfn: The target page frame number
6093 * @end_bitidx: The last bit of interest to retrieve
6094 * @mask: mask of bits that the caller is interested in
6095 *
6096 * Return: pageblock_bits flags
6097 */
6098 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6099 unsigned long end_bitidx,
6100 unsigned long mask)
6101 {
6102 struct zone *zone;
6103 unsigned long *bitmap;
6104 unsigned long bitidx, word_bitidx;
6105 unsigned long word;
6106
6107 zone = page_zone(page);
6108 bitmap = get_pageblock_bitmap(zone, pfn);
6109 bitidx = pfn_to_bitidx(zone, pfn);
6110 word_bitidx = bitidx / BITS_PER_LONG;
6111 bitidx &= (BITS_PER_LONG-1);
6112
6113 word = bitmap[word_bitidx];
6114 bitidx += end_bitidx;
6115 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6116 }
6117
6118 /**
6119 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6120 * @page: The page within the block of interest
6121 * @flags: The flags to set
6122 * @pfn: The target page frame number
6123 * @end_bitidx: The last bit of interest
6124 * @mask: mask of bits that the caller is interested in
6125 */
6126 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6127 unsigned long pfn,
6128 unsigned long end_bitidx,
6129 unsigned long mask)
6130 {
6131 struct zone *zone;
6132 unsigned long *bitmap;
6133 unsigned long bitidx, word_bitidx;
6134 unsigned long old_word, word;
6135
6136 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6137
6138 zone = page_zone(page);
6139 bitmap = get_pageblock_bitmap(zone, pfn);
6140 bitidx = pfn_to_bitidx(zone, pfn);
6141 word_bitidx = bitidx / BITS_PER_LONG;
6142 bitidx &= (BITS_PER_LONG-1);
6143
6144 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6145
6146 bitidx += end_bitidx;
6147 mask <<= (BITS_PER_LONG - bitidx - 1);
6148 flags <<= (BITS_PER_LONG - bitidx - 1);
6149
6150 word = ACCESS_ONCE(bitmap[word_bitidx]);
6151 for (;;) {
6152 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6153 if (word == old_word)
6154 break;
6155 word = old_word;
6156 }
6157 }
6158
6159 /*
6160 * This function checks whether pageblock includes unmovable pages or not.
6161 * If @count is not zero, it is okay to include less @count unmovable pages
6162 *
6163 * PageLRU check without isolation or lru_lock could race so that
6164 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6165 * expect this function should be exact.
6166 */
6167 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6168 bool skip_hwpoisoned_pages)
6169 {
6170 unsigned long pfn, iter, found;
6171 int mt;
6172
6173 /*
6174 * For avoiding noise data, lru_add_drain_all() should be called
6175 * If ZONE_MOVABLE, the zone never contains unmovable pages
6176 */
6177 if (zone_idx(zone) == ZONE_MOVABLE)
6178 return false;
6179 mt = get_pageblock_migratetype(page);
6180 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6181 return false;
6182
6183 pfn = page_to_pfn(page);
6184 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6185 unsigned long check = pfn + iter;
6186
6187 if (!pfn_valid_within(check))
6188 continue;
6189
6190 page = pfn_to_page(check);
6191
6192 /*
6193 * Hugepages are not in LRU lists, but they're movable.
6194 * We need not scan over tail pages bacause we don't
6195 * handle each tail page individually in migration.
6196 */
6197 if (PageHuge(page)) {
6198 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6199 continue;
6200 }
6201
6202 /*
6203 * We can't use page_count without pin a page
6204 * because another CPU can free compound page.
6205 * This check already skips compound tails of THP
6206 * because their page->_count is zero at all time.
6207 */
6208 if (!atomic_read(&page->_count)) {
6209 if (PageBuddy(page))
6210 iter += (1 << page_order(page)) - 1;
6211 continue;
6212 }
6213
6214 /*
6215 * The HWPoisoned page may be not in buddy system, and
6216 * page_count() is not 0.
6217 */
6218 if (skip_hwpoisoned_pages && PageHWPoison(page))
6219 continue;
6220
6221 if (!PageLRU(page))
6222 found++;
6223 /*
6224 * If there are RECLAIMABLE pages, we need to check it.
6225 * But now, memory offline itself doesn't call shrink_slab()
6226 * and it still to be fixed.
6227 */
6228 /*
6229 * If the page is not RAM, page_count()should be 0.
6230 * we don't need more check. This is an _used_ not-movable page.
6231 *
6232 * The problematic thing here is PG_reserved pages. PG_reserved
6233 * is set to both of a memory hole page and a _used_ kernel
6234 * page at boot.
6235 */
6236 if (found > count)
6237 return true;
6238 }
6239 return false;
6240 }
6241
6242 bool is_pageblock_removable_nolock(struct page *page)
6243 {
6244 struct zone *zone;
6245 unsigned long pfn;
6246
6247 /*
6248 * We have to be careful here because we are iterating over memory
6249 * sections which are not zone aware so we might end up outside of
6250 * the zone but still within the section.
6251 * We have to take care about the node as well. If the node is offline
6252 * its NODE_DATA will be NULL - see page_zone.
6253 */
6254 if (!node_online(page_to_nid(page)))
6255 return false;
6256
6257 zone = page_zone(page);
6258 pfn = page_to_pfn(page);
6259 if (!zone_spans_pfn(zone, pfn))
6260 return false;
6261
6262 return !has_unmovable_pages(zone, page, 0, true);
6263 }
6264
6265 #ifdef CONFIG_CMA
6266
6267 static unsigned long pfn_max_align_down(unsigned long pfn)
6268 {
6269 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6270 pageblock_nr_pages) - 1);
6271 }
6272
6273 static unsigned long pfn_max_align_up(unsigned long pfn)
6274 {
6275 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6276 pageblock_nr_pages));
6277 }
6278
6279 /* [start, end) must belong to a single zone. */
6280 static int __alloc_contig_migrate_range(struct compact_control *cc,
6281 unsigned long start, unsigned long end)
6282 {
6283 /* This function is based on compact_zone() from compaction.c. */
6284 unsigned long nr_reclaimed;
6285 unsigned long pfn = start;
6286 unsigned int tries = 0;
6287 int ret = 0;
6288
6289 migrate_prep();
6290
6291 while (pfn < end || !list_empty(&cc->migratepages)) {
6292 if (fatal_signal_pending(current)) {
6293 ret = -EINTR;
6294 break;
6295 }
6296
6297 if (list_empty(&cc->migratepages)) {
6298 cc->nr_migratepages = 0;
6299 pfn = isolate_migratepages_range(cc, pfn, end);
6300 if (!pfn) {
6301 ret = -EINTR;
6302 break;
6303 }
6304 tries = 0;
6305 } else if (++tries == 5) {
6306 ret = ret < 0 ? ret : -EBUSY;
6307 break;
6308 }
6309
6310 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6311 &cc->migratepages);
6312 cc->nr_migratepages -= nr_reclaimed;
6313
6314 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6315 NULL, 0, cc->mode, MR_CMA);
6316 }
6317 if (ret < 0) {
6318 putback_movable_pages(&cc->migratepages);
6319 return ret;
6320 }
6321 return 0;
6322 }
6323
6324 /**
6325 * alloc_contig_range() -- tries to allocate given range of pages
6326 * @start: start PFN to allocate
6327 * @end: one-past-the-last PFN to allocate
6328 * @migratetype: migratetype of the underlaying pageblocks (either
6329 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6330 * in range must have the same migratetype and it must
6331 * be either of the two.
6332 *
6333 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6334 * aligned, however it's the caller's responsibility to guarantee that
6335 * we are the only thread that changes migrate type of pageblocks the
6336 * pages fall in.
6337 *
6338 * The PFN range must belong to a single zone.
6339 *
6340 * Returns zero on success or negative error code. On success all
6341 * pages which PFN is in [start, end) are allocated for the caller and
6342 * need to be freed with free_contig_range().
6343 */
6344 int alloc_contig_range(unsigned long start, unsigned long end,
6345 unsigned migratetype)
6346 {
6347 unsigned long outer_start, outer_end;
6348 int ret = 0, order;
6349
6350 struct compact_control cc = {
6351 .nr_migratepages = 0,
6352 .order = -1,
6353 .zone = page_zone(pfn_to_page(start)),
6354 .mode = MIGRATE_SYNC,
6355 .ignore_skip_hint = true,
6356 };
6357 INIT_LIST_HEAD(&cc.migratepages);
6358
6359 /*
6360 * What we do here is we mark all pageblocks in range as
6361 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6362 * have different sizes, and due to the way page allocator
6363 * work, we align the range to biggest of the two pages so
6364 * that page allocator won't try to merge buddies from
6365 * different pageblocks and change MIGRATE_ISOLATE to some
6366 * other migration type.
6367 *
6368 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6369 * migrate the pages from an unaligned range (ie. pages that
6370 * we are interested in). This will put all the pages in
6371 * range back to page allocator as MIGRATE_ISOLATE.
6372 *
6373 * When this is done, we take the pages in range from page
6374 * allocator removing them from the buddy system. This way
6375 * page allocator will never consider using them.
6376 *
6377 * This lets us mark the pageblocks back as
6378 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6379 * aligned range but not in the unaligned, original range are
6380 * put back to page allocator so that buddy can use them.
6381 */
6382
6383 ret = start_isolate_page_range(pfn_max_align_down(start),
6384 pfn_max_align_up(end), migratetype,
6385 false);
6386 if (ret)
6387 return ret;
6388
6389 ret = __alloc_contig_migrate_range(&cc, start, end);
6390 if (ret)
6391 goto done;
6392
6393 /*
6394 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6395 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6396 * more, all pages in [start, end) are free in page allocator.
6397 * What we are going to do is to allocate all pages from
6398 * [start, end) (that is remove them from page allocator).
6399 *
6400 * The only problem is that pages at the beginning and at the
6401 * end of interesting range may be not aligned with pages that
6402 * page allocator holds, ie. they can be part of higher order
6403 * pages. Because of this, we reserve the bigger range and
6404 * once this is done free the pages we are not interested in.
6405 *
6406 * We don't have to hold zone->lock here because the pages are
6407 * isolated thus they won't get removed from buddy.
6408 */
6409
6410 lru_add_drain_all();
6411 drain_all_pages(cc.zone);
6412
6413 order = 0;
6414 outer_start = start;
6415 while (!PageBuddy(pfn_to_page(outer_start))) {
6416 if (++order >= MAX_ORDER) {
6417 ret = -EBUSY;
6418 goto done;
6419 }
6420 outer_start &= ~0UL << order;
6421 }
6422
6423 /* Make sure the range is really isolated. */
6424 if (test_pages_isolated(outer_start, end, false)) {
6425 pr_info("%s: [%lx, %lx) PFNs busy\n",
6426 __func__, outer_start, end);
6427 ret = -EBUSY;
6428 goto done;
6429 }
6430
6431 /* Grab isolated pages from freelists. */
6432 outer_end = isolate_freepages_range(&cc, outer_start, end);
6433 if (!outer_end) {
6434 ret = -EBUSY;
6435 goto done;
6436 }
6437
6438 /* Free head and tail (if any) */
6439 if (start != outer_start)
6440 free_contig_range(outer_start, start - outer_start);
6441 if (end != outer_end)
6442 free_contig_range(end, outer_end - end);
6443
6444 done:
6445 undo_isolate_page_range(pfn_max_align_down(start),
6446 pfn_max_align_up(end), migratetype);
6447 return ret;
6448 }
6449
6450 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6451 {
6452 unsigned int count = 0;
6453
6454 for (; nr_pages--; pfn++) {
6455 struct page *page = pfn_to_page(pfn);
6456
6457 count += page_count(page) != 1;
6458 __free_page(page);
6459 }
6460 WARN(count != 0, "%d pages are still in use!\n", count);
6461 }
6462 #endif
6463
6464 #ifdef CONFIG_MEMORY_HOTPLUG
6465 /*
6466 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6467 * page high values need to be recalulated.
6468 */
6469 void __meminit zone_pcp_update(struct zone *zone)
6470 {
6471 unsigned cpu;
6472 mutex_lock(&pcp_batch_high_lock);
6473 for_each_possible_cpu(cpu)
6474 pageset_set_high_and_batch(zone,
6475 per_cpu_ptr(zone->pageset, cpu));
6476 mutex_unlock(&pcp_batch_high_lock);
6477 }
6478 #endif
6479
6480 void zone_pcp_reset(struct zone *zone)
6481 {
6482 unsigned long flags;
6483 int cpu;
6484 struct per_cpu_pageset *pset;
6485
6486 /* avoid races with drain_pages() */
6487 local_irq_save(flags);
6488 if (zone->pageset != &boot_pageset) {
6489 for_each_online_cpu(cpu) {
6490 pset = per_cpu_ptr(zone->pageset, cpu);
6491 drain_zonestat(zone, pset);
6492 }
6493 free_percpu(zone->pageset);
6494 zone->pageset = &boot_pageset;
6495 }
6496 local_irq_restore(flags);
6497 }
6498
6499 #ifdef CONFIG_MEMORY_HOTREMOVE
6500 /*
6501 * All pages in the range must be isolated before calling this.
6502 */
6503 void
6504 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6505 {
6506 struct page *page;
6507 struct zone *zone;
6508 unsigned int order, i;
6509 unsigned long pfn;
6510 unsigned long flags;
6511 /* find the first valid pfn */
6512 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6513 if (pfn_valid(pfn))
6514 break;
6515 if (pfn == end_pfn)
6516 return;
6517 zone = page_zone(pfn_to_page(pfn));
6518 spin_lock_irqsave(&zone->lock, flags);
6519 pfn = start_pfn;
6520 while (pfn < end_pfn) {
6521 if (!pfn_valid(pfn)) {
6522 pfn++;
6523 continue;
6524 }
6525 page = pfn_to_page(pfn);
6526 /*
6527 * The HWPoisoned page may be not in buddy system, and
6528 * page_count() is not 0.
6529 */
6530 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6531 pfn++;
6532 SetPageReserved(page);
6533 continue;
6534 }
6535
6536 BUG_ON(page_count(page));
6537 BUG_ON(!PageBuddy(page));
6538 order = page_order(page);
6539 #ifdef CONFIG_DEBUG_VM
6540 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6541 pfn, 1 << order, end_pfn);
6542 #endif
6543 list_del(&page->lru);
6544 rmv_page_order(page);
6545 zone->free_area[order].nr_free--;
6546 for (i = 0; i < (1 << order); i++)
6547 SetPageReserved((page+i));
6548 pfn += (1 << order);
6549 }
6550 spin_unlock_irqrestore(&zone->lock, flags);
6551 }
6552 #endif
6553
6554 #ifdef CONFIG_MEMORY_FAILURE
6555 bool is_free_buddy_page(struct page *page)
6556 {
6557 struct zone *zone = page_zone(page);
6558 unsigned long pfn = page_to_pfn(page);
6559 unsigned long flags;
6560 unsigned int order;
6561
6562 spin_lock_irqsave(&zone->lock, flags);
6563 for (order = 0; order < MAX_ORDER; order++) {
6564 struct page *page_head = page - (pfn & ((1 << order) - 1));
6565
6566 if (PageBuddy(page_head) && page_order(page_head) >= order)
6567 break;
6568 }
6569 spin_unlock_irqrestore(&zone->lock, flags);
6570
6571 return order < MAX_ORDER;
6572 }
6573 #endif
This page took 0.215729 seconds and 5 git commands to generate.