tracing: Convert some kmem events to DEFINE_EVENT
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/kmem.h>
58
59 /*
60 * Array of node states.
61 */
62 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
63 [N_POSSIBLE] = NODE_MASK_ALL,
64 [N_ONLINE] = { { [0] = 1UL } },
65 #ifndef CONFIG_NUMA
66 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
67 #ifdef CONFIG_HIGHMEM
68 [N_HIGH_MEMORY] = { { [0] = 1UL } },
69 #endif
70 [N_CPU] = { { [0] = 1UL } },
71 #endif /* NUMA */
72 };
73 EXPORT_SYMBOL(node_states);
74
75 unsigned long totalram_pages __read_mostly;
76 unsigned long totalreserve_pages __read_mostly;
77 int percpu_pagelist_fraction;
78 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
79
80 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
81 int pageblock_order __read_mostly;
82 #endif
83
84 static void __free_pages_ok(struct page *page, unsigned int order);
85
86 /*
87 * results with 256, 32 in the lowmem_reserve sysctl:
88 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
89 * 1G machine -> (16M dma, 784M normal, 224M high)
90 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
91 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
92 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
93 *
94 * TBD: should special case ZONE_DMA32 machines here - in those we normally
95 * don't need any ZONE_NORMAL reservation
96 */
97 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
98 #ifdef CONFIG_ZONE_DMA
99 256,
100 #endif
101 #ifdef CONFIG_ZONE_DMA32
102 256,
103 #endif
104 #ifdef CONFIG_HIGHMEM
105 32,
106 #endif
107 32,
108 };
109
110 EXPORT_SYMBOL(totalram_pages);
111
112 static char * const zone_names[MAX_NR_ZONES] = {
113 #ifdef CONFIG_ZONE_DMA
114 "DMA",
115 #endif
116 #ifdef CONFIG_ZONE_DMA32
117 "DMA32",
118 #endif
119 "Normal",
120 #ifdef CONFIG_HIGHMEM
121 "HighMem",
122 #endif
123 "Movable",
124 };
125
126 int min_free_kbytes = 1024;
127
128 static unsigned long __meminitdata nr_kernel_pages;
129 static unsigned long __meminitdata nr_all_pages;
130 static unsigned long __meminitdata dma_reserve;
131
132 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
133 /*
134 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
135 * ranges of memory (RAM) that may be registered with add_active_range().
136 * Ranges passed to add_active_range() will be merged if possible
137 * so the number of times add_active_range() can be called is
138 * related to the number of nodes and the number of holes
139 */
140 #ifdef CONFIG_MAX_ACTIVE_REGIONS
141 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
142 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
143 #else
144 #if MAX_NUMNODES >= 32
145 /* If there can be many nodes, allow up to 50 holes per node */
146 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
147 #else
148 /* By default, allow up to 256 distinct regions */
149 #define MAX_ACTIVE_REGIONS 256
150 #endif
151 #endif
152
153 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
154 static int __meminitdata nr_nodemap_entries;
155 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
157 static unsigned long __initdata required_kernelcore;
158 static unsigned long __initdata required_movablecore;
159 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
160
161 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
162 int movable_zone;
163 EXPORT_SYMBOL(movable_zone);
164 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
165
166 #if MAX_NUMNODES > 1
167 int nr_node_ids __read_mostly = MAX_NUMNODES;
168 int nr_online_nodes __read_mostly = 1;
169 EXPORT_SYMBOL(nr_node_ids);
170 EXPORT_SYMBOL(nr_online_nodes);
171 #endif
172
173 int page_group_by_mobility_disabled __read_mostly;
174
175 static void set_pageblock_migratetype(struct page *page, int migratetype)
176 {
177
178 if (unlikely(page_group_by_mobility_disabled))
179 migratetype = MIGRATE_UNMOVABLE;
180
181 set_pageblock_flags_group(page, (unsigned long)migratetype,
182 PB_migrate, PB_migrate_end);
183 }
184
185 bool oom_killer_disabled __read_mostly;
186
187 #ifdef CONFIG_DEBUG_VM
188 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
189 {
190 int ret = 0;
191 unsigned seq;
192 unsigned long pfn = page_to_pfn(page);
193
194 do {
195 seq = zone_span_seqbegin(zone);
196 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
197 ret = 1;
198 else if (pfn < zone->zone_start_pfn)
199 ret = 1;
200 } while (zone_span_seqretry(zone, seq));
201
202 return ret;
203 }
204
205 static int page_is_consistent(struct zone *zone, struct page *page)
206 {
207 if (!pfn_valid_within(page_to_pfn(page)))
208 return 0;
209 if (zone != page_zone(page))
210 return 0;
211
212 return 1;
213 }
214 /*
215 * Temporary debugging check for pages not lying within a given zone.
216 */
217 static int bad_range(struct zone *zone, struct page *page)
218 {
219 if (page_outside_zone_boundaries(zone, page))
220 return 1;
221 if (!page_is_consistent(zone, page))
222 return 1;
223
224 return 0;
225 }
226 #else
227 static inline int bad_range(struct zone *zone, struct page *page)
228 {
229 return 0;
230 }
231 #endif
232
233 static void bad_page(struct page *page)
234 {
235 static unsigned long resume;
236 static unsigned long nr_shown;
237 static unsigned long nr_unshown;
238
239 /* Don't complain about poisoned pages */
240 if (PageHWPoison(page)) {
241 __ClearPageBuddy(page);
242 return;
243 }
244
245 /*
246 * Allow a burst of 60 reports, then keep quiet for that minute;
247 * or allow a steady drip of one report per second.
248 */
249 if (nr_shown == 60) {
250 if (time_before(jiffies, resume)) {
251 nr_unshown++;
252 goto out;
253 }
254 if (nr_unshown) {
255 printk(KERN_ALERT
256 "BUG: Bad page state: %lu messages suppressed\n",
257 nr_unshown);
258 nr_unshown = 0;
259 }
260 nr_shown = 0;
261 }
262 if (nr_shown++ == 0)
263 resume = jiffies + 60 * HZ;
264
265 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
266 current->comm, page_to_pfn(page));
267 printk(KERN_ALERT
268 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
269 page, (void *)page->flags, page_count(page),
270 page_mapcount(page), page->mapping, page->index);
271
272 dump_stack();
273 out:
274 /* Leave bad fields for debug, except PageBuddy could make trouble */
275 __ClearPageBuddy(page);
276 add_taint(TAINT_BAD_PAGE);
277 }
278
279 /*
280 * Higher-order pages are called "compound pages". They are structured thusly:
281 *
282 * The first PAGE_SIZE page is called the "head page".
283 *
284 * The remaining PAGE_SIZE pages are called "tail pages".
285 *
286 * All pages have PG_compound set. All pages have their ->private pointing at
287 * the head page (even the head page has this).
288 *
289 * The first tail page's ->lru.next holds the address of the compound page's
290 * put_page() function. Its ->lru.prev holds the order of allocation.
291 * This usage means that zero-order pages may not be compound.
292 */
293
294 static void free_compound_page(struct page *page)
295 {
296 __free_pages_ok(page, compound_order(page));
297 }
298
299 void prep_compound_page(struct page *page, unsigned long order)
300 {
301 int i;
302 int nr_pages = 1 << order;
303
304 set_compound_page_dtor(page, free_compound_page);
305 set_compound_order(page, order);
306 __SetPageHead(page);
307 for (i = 1; i < nr_pages; i++) {
308 struct page *p = page + i;
309
310 __SetPageTail(p);
311 p->first_page = page;
312 }
313 }
314
315 static int destroy_compound_page(struct page *page, unsigned long order)
316 {
317 int i;
318 int nr_pages = 1 << order;
319 int bad = 0;
320
321 if (unlikely(compound_order(page) != order) ||
322 unlikely(!PageHead(page))) {
323 bad_page(page);
324 bad++;
325 }
326
327 __ClearPageHead(page);
328
329 for (i = 1; i < nr_pages; i++) {
330 struct page *p = page + i;
331
332 if (unlikely(!PageTail(p) || (p->first_page != page))) {
333 bad_page(page);
334 bad++;
335 }
336 __ClearPageTail(p);
337 }
338
339 return bad;
340 }
341
342 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
343 {
344 int i;
345
346 /*
347 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
348 * and __GFP_HIGHMEM from hard or soft interrupt context.
349 */
350 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
351 for (i = 0; i < (1 << order); i++)
352 clear_highpage(page + i);
353 }
354
355 static inline void set_page_order(struct page *page, int order)
356 {
357 set_page_private(page, order);
358 __SetPageBuddy(page);
359 }
360
361 static inline void rmv_page_order(struct page *page)
362 {
363 __ClearPageBuddy(page);
364 set_page_private(page, 0);
365 }
366
367 /*
368 * Locate the struct page for both the matching buddy in our
369 * pair (buddy1) and the combined O(n+1) page they form (page).
370 *
371 * 1) Any buddy B1 will have an order O twin B2 which satisfies
372 * the following equation:
373 * B2 = B1 ^ (1 << O)
374 * For example, if the starting buddy (buddy2) is #8 its order
375 * 1 buddy is #10:
376 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
377 *
378 * 2) Any buddy B will have an order O+1 parent P which
379 * satisfies the following equation:
380 * P = B & ~(1 << O)
381 *
382 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
383 */
384 static inline struct page *
385 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
386 {
387 unsigned long buddy_idx = page_idx ^ (1 << order);
388
389 return page + (buddy_idx - page_idx);
390 }
391
392 static inline unsigned long
393 __find_combined_index(unsigned long page_idx, unsigned int order)
394 {
395 return (page_idx & ~(1 << order));
396 }
397
398 /*
399 * This function checks whether a page is free && is the buddy
400 * we can do coalesce a page and its buddy if
401 * (a) the buddy is not in a hole &&
402 * (b) the buddy is in the buddy system &&
403 * (c) a page and its buddy have the same order &&
404 * (d) a page and its buddy are in the same zone.
405 *
406 * For recording whether a page is in the buddy system, we use PG_buddy.
407 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
408 *
409 * For recording page's order, we use page_private(page).
410 */
411 static inline int page_is_buddy(struct page *page, struct page *buddy,
412 int order)
413 {
414 if (!pfn_valid_within(page_to_pfn(buddy)))
415 return 0;
416
417 if (page_zone_id(page) != page_zone_id(buddy))
418 return 0;
419
420 if (PageBuddy(buddy) && page_order(buddy) == order) {
421 VM_BUG_ON(page_count(buddy) != 0);
422 return 1;
423 }
424 return 0;
425 }
426
427 /*
428 * Freeing function for a buddy system allocator.
429 *
430 * The concept of a buddy system is to maintain direct-mapped table
431 * (containing bit values) for memory blocks of various "orders".
432 * The bottom level table contains the map for the smallest allocatable
433 * units of memory (here, pages), and each level above it describes
434 * pairs of units from the levels below, hence, "buddies".
435 * At a high level, all that happens here is marking the table entry
436 * at the bottom level available, and propagating the changes upward
437 * as necessary, plus some accounting needed to play nicely with other
438 * parts of the VM system.
439 * At each level, we keep a list of pages, which are heads of continuous
440 * free pages of length of (1 << order) and marked with PG_buddy. Page's
441 * order is recorded in page_private(page) field.
442 * So when we are allocating or freeing one, we can derive the state of the
443 * other. That is, if we allocate a small block, and both were
444 * free, the remainder of the region must be split into blocks.
445 * If a block is freed, and its buddy is also free, then this
446 * triggers coalescing into a block of larger size.
447 *
448 * -- wli
449 */
450
451 static inline void __free_one_page(struct page *page,
452 struct zone *zone, unsigned int order,
453 int migratetype)
454 {
455 unsigned long page_idx;
456
457 if (unlikely(PageCompound(page)))
458 if (unlikely(destroy_compound_page(page, order)))
459 return;
460
461 VM_BUG_ON(migratetype == -1);
462
463 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
464
465 VM_BUG_ON(page_idx & ((1 << order) - 1));
466 VM_BUG_ON(bad_range(zone, page));
467
468 while (order < MAX_ORDER-1) {
469 unsigned long combined_idx;
470 struct page *buddy;
471
472 buddy = __page_find_buddy(page, page_idx, order);
473 if (!page_is_buddy(page, buddy, order))
474 break;
475
476 /* Our buddy is free, merge with it and move up one order. */
477 list_del(&buddy->lru);
478 zone->free_area[order].nr_free--;
479 rmv_page_order(buddy);
480 combined_idx = __find_combined_index(page_idx, order);
481 page = page + (combined_idx - page_idx);
482 page_idx = combined_idx;
483 order++;
484 }
485 set_page_order(page, order);
486 list_add(&page->lru,
487 &zone->free_area[order].free_list[migratetype]);
488 zone->free_area[order].nr_free++;
489 }
490
491 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
492 /*
493 * free_page_mlock() -- clean up attempts to free and mlocked() page.
494 * Page should not be on lru, so no need to fix that up.
495 * free_pages_check() will verify...
496 */
497 static inline void free_page_mlock(struct page *page)
498 {
499 __dec_zone_page_state(page, NR_MLOCK);
500 __count_vm_event(UNEVICTABLE_MLOCKFREED);
501 }
502 #else
503 static void free_page_mlock(struct page *page) { }
504 #endif
505
506 static inline int free_pages_check(struct page *page)
507 {
508 if (unlikely(page_mapcount(page) |
509 (page->mapping != NULL) |
510 (atomic_read(&page->_count) != 0) |
511 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
512 bad_page(page);
513 return 1;
514 }
515 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
516 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
517 return 0;
518 }
519
520 /*
521 * Frees a number of pages from the PCP lists
522 * Assumes all pages on list are in same zone, and of same order.
523 * count is the number of pages to free.
524 *
525 * If the zone was previously in an "all pages pinned" state then look to
526 * see if this freeing clears that state.
527 *
528 * And clear the zone's pages_scanned counter, to hold off the "all pages are
529 * pinned" detection logic.
530 */
531 static void free_pcppages_bulk(struct zone *zone, int count,
532 struct per_cpu_pages *pcp)
533 {
534 int migratetype = 0;
535 int batch_free = 0;
536
537 spin_lock(&zone->lock);
538 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
539 zone->pages_scanned = 0;
540
541 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
542 while (count) {
543 struct page *page;
544 struct list_head *list;
545
546 /*
547 * Remove pages from lists in a round-robin fashion. A
548 * batch_free count is maintained that is incremented when an
549 * empty list is encountered. This is so more pages are freed
550 * off fuller lists instead of spinning excessively around empty
551 * lists
552 */
553 do {
554 batch_free++;
555 if (++migratetype == MIGRATE_PCPTYPES)
556 migratetype = 0;
557 list = &pcp->lists[migratetype];
558 } while (list_empty(list));
559
560 do {
561 page = list_entry(list->prev, struct page, lru);
562 /* must delete as __free_one_page list manipulates */
563 list_del(&page->lru);
564 __free_one_page(page, zone, 0, migratetype);
565 trace_mm_page_pcpu_drain(page, 0, migratetype);
566 } while (--count && --batch_free && !list_empty(list));
567 }
568 spin_unlock(&zone->lock);
569 }
570
571 static void free_one_page(struct zone *zone, struct page *page, int order,
572 int migratetype)
573 {
574 spin_lock(&zone->lock);
575 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
576 zone->pages_scanned = 0;
577
578 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
579 __free_one_page(page, zone, order, migratetype);
580 spin_unlock(&zone->lock);
581 }
582
583 static void __free_pages_ok(struct page *page, unsigned int order)
584 {
585 unsigned long flags;
586 int i;
587 int bad = 0;
588 int wasMlocked = __TestClearPageMlocked(page);
589
590 kmemcheck_free_shadow(page, order);
591
592 for (i = 0 ; i < (1 << order) ; ++i)
593 bad += free_pages_check(page + i);
594 if (bad)
595 return;
596
597 if (!PageHighMem(page)) {
598 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
599 debug_check_no_obj_freed(page_address(page),
600 PAGE_SIZE << order);
601 }
602 arch_free_page(page, order);
603 kernel_map_pages(page, 1 << order, 0);
604
605 local_irq_save(flags);
606 if (unlikely(wasMlocked))
607 free_page_mlock(page);
608 __count_vm_events(PGFREE, 1 << order);
609 free_one_page(page_zone(page), page, order,
610 get_pageblock_migratetype(page));
611 local_irq_restore(flags);
612 }
613
614 /*
615 * permit the bootmem allocator to evade page validation on high-order frees
616 */
617 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
618 {
619 if (order == 0) {
620 __ClearPageReserved(page);
621 set_page_count(page, 0);
622 set_page_refcounted(page);
623 __free_page(page);
624 } else {
625 int loop;
626
627 prefetchw(page);
628 for (loop = 0; loop < BITS_PER_LONG; loop++) {
629 struct page *p = &page[loop];
630
631 if (loop + 1 < BITS_PER_LONG)
632 prefetchw(p + 1);
633 __ClearPageReserved(p);
634 set_page_count(p, 0);
635 }
636
637 set_page_refcounted(page);
638 __free_pages(page, order);
639 }
640 }
641
642
643 /*
644 * The order of subdivision here is critical for the IO subsystem.
645 * Please do not alter this order without good reasons and regression
646 * testing. Specifically, as large blocks of memory are subdivided,
647 * the order in which smaller blocks are delivered depends on the order
648 * they're subdivided in this function. This is the primary factor
649 * influencing the order in which pages are delivered to the IO
650 * subsystem according to empirical testing, and this is also justified
651 * by considering the behavior of a buddy system containing a single
652 * large block of memory acted on by a series of small allocations.
653 * This behavior is a critical factor in sglist merging's success.
654 *
655 * -- wli
656 */
657 static inline void expand(struct zone *zone, struct page *page,
658 int low, int high, struct free_area *area,
659 int migratetype)
660 {
661 unsigned long size = 1 << high;
662
663 while (high > low) {
664 area--;
665 high--;
666 size >>= 1;
667 VM_BUG_ON(bad_range(zone, &page[size]));
668 list_add(&page[size].lru, &area->free_list[migratetype]);
669 area->nr_free++;
670 set_page_order(&page[size], high);
671 }
672 }
673
674 /*
675 * This page is about to be returned from the page allocator
676 */
677 static inline int check_new_page(struct page *page)
678 {
679 if (unlikely(page_mapcount(page) |
680 (page->mapping != NULL) |
681 (atomic_read(&page->_count) != 0) |
682 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
683 bad_page(page);
684 return 1;
685 }
686 return 0;
687 }
688
689 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
690 {
691 int i;
692
693 for (i = 0; i < (1 << order); i++) {
694 struct page *p = page + i;
695 if (unlikely(check_new_page(p)))
696 return 1;
697 }
698
699 set_page_private(page, 0);
700 set_page_refcounted(page);
701
702 arch_alloc_page(page, order);
703 kernel_map_pages(page, 1 << order, 1);
704
705 if (gfp_flags & __GFP_ZERO)
706 prep_zero_page(page, order, gfp_flags);
707
708 if (order && (gfp_flags & __GFP_COMP))
709 prep_compound_page(page, order);
710
711 return 0;
712 }
713
714 /*
715 * Go through the free lists for the given migratetype and remove
716 * the smallest available page from the freelists
717 */
718 static inline
719 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
720 int migratetype)
721 {
722 unsigned int current_order;
723 struct free_area * area;
724 struct page *page;
725
726 /* Find a page of the appropriate size in the preferred list */
727 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
728 area = &(zone->free_area[current_order]);
729 if (list_empty(&area->free_list[migratetype]))
730 continue;
731
732 page = list_entry(area->free_list[migratetype].next,
733 struct page, lru);
734 list_del(&page->lru);
735 rmv_page_order(page);
736 area->nr_free--;
737 expand(zone, page, order, current_order, area, migratetype);
738 return page;
739 }
740
741 return NULL;
742 }
743
744
745 /*
746 * This array describes the order lists are fallen back to when
747 * the free lists for the desirable migrate type are depleted
748 */
749 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
750 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
751 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
752 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
753 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
754 };
755
756 /*
757 * Move the free pages in a range to the free lists of the requested type.
758 * Note that start_page and end_pages are not aligned on a pageblock
759 * boundary. If alignment is required, use move_freepages_block()
760 */
761 static int move_freepages(struct zone *zone,
762 struct page *start_page, struct page *end_page,
763 int migratetype)
764 {
765 struct page *page;
766 unsigned long order;
767 int pages_moved = 0;
768
769 #ifndef CONFIG_HOLES_IN_ZONE
770 /*
771 * page_zone is not safe to call in this context when
772 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
773 * anyway as we check zone boundaries in move_freepages_block().
774 * Remove at a later date when no bug reports exist related to
775 * grouping pages by mobility
776 */
777 BUG_ON(page_zone(start_page) != page_zone(end_page));
778 #endif
779
780 for (page = start_page; page <= end_page;) {
781 /* Make sure we are not inadvertently changing nodes */
782 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
783
784 if (!pfn_valid_within(page_to_pfn(page))) {
785 page++;
786 continue;
787 }
788
789 if (!PageBuddy(page)) {
790 page++;
791 continue;
792 }
793
794 order = page_order(page);
795 list_del(&page->lru);
796 list_add(&page->lru,
797 &zone->free_area[order].free_list[migratetype]);
798 page += 1 << order;
799 pages_moved += 1 << order;
800 }
801
802 return pages_moved;
803 }
804
805 static int move_freepages_block(struct zone *zone, struct page *page,
806 int migratetype)
807 {
808 unsigned long start_pfn, end_pfn;
809 struct page *start_page, *end_page;
810
811 start_pfn = page_to_pfn(page);
812 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
813 start_page = pfn_to_page(start_pfn);
814 end_page = start_page + pageblock_nr_pages - 1;
815 end_pfn = start_pfn + pageblock_nr_pages - 1;
816
817 /* Do not cross zone boundaries */
818 if (start_pfn < zone->zone_start_pfn)
819 start_page = page;
820 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
821 return 0;
822
823 return move_freepages(zone, start_page, end_page, migratetype);
824 }
825
826 static void change_pageblock_range(struct page *pageblock_page,
827 int start_order, int migratetype)
828 {
829 int nr_pageblocks = 1 << (start_order - pageblock_order);
830
831 while (nr_pageblocks--) {
832 set_pageblock_migratetype(pageblock_page, migratetype);
833 pageblock_page += pageblock_nr_pages;
834 }
835 }
836
837 /* Remove an element from the buddy allocator from the fallback list */
838 static inline struct page *
839 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
840 {
841 struct free_area * area;
842 int current_order;
843 struct page *page;
844 int migratetype, i;
845
846 /* Find the largest possible block of pages in the other list */
847 for (current_order = MAX_ORDER-1; current_order >= order;
848 --current_order) {
849 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
850 migratetype = fallbacks[start_migratetype][i];
851
852 /* MIGRATE_RESERVE handled later if necessary */
853 if (migratetype == MIGRATE_RESERVE)
854 continue;
855
856 area = &(zone->free_area[current_order]);
857 if (list_empty(&area->free_list[migratetype]))
858 continue;
859
860 page = list_entry(area->free_list[migratetype].next,
861 struct page, lru);
862 area->nr_free--;
863
864 /*
865 * If breaking a large block of pages, move all free
866 * pages to the preferred allocation list. If falling
867 * back for a reclaimable kernel allocation, be more
868 * agressive about taking ownership of free pages
869 */
870 if (unlikely(current_order >= (pageblock_order >> 1)) ||
871 start_migratetype == MIGRATE_RECLAIMABLE ||
872 page_group_by_mobility_disabled) {
873 unsigned long pages;
874 pages = move_freepages_block(zone, page,
875 start_migratetype);
876
877 /* Claim the whole block if over half of it is free */
878 if (pages >= (1 << (pageblock_order-1)) ||
879 page_group_by_mobility_disabled)
880 set_pageblock_migratetype(page,
881 start_migratetype);
882
883 migratetype = start_migratetype;
884 }
885
886 /* Remove the page from the freelists */
887 list_del(&page->lru);
888 rmv_page_order(page);
889
890 /* Take ownership for orders >= pageblock_order */
891 if (current_order >= pageblock_order)
892 change_pageblock_range(page, current_order,
893 start_migratetype);
894
895 expand(zone, page, order, current_order, area, migratetype);
896
897 trace_mm_page_alloc_extfrag(page, order, current_order,
898 start_migratetype, migratetype);
899
900 return page;
901 }
902 }
903
904 return NULL;
905 }
906
907 /*
908 * Do the hard work of removing an element from the buddy allocator.
909 * Call me with the zone->lock already held.
910 */
911 static struct page *__rmqueue(struct zone *zone, unsigned int order,
912 int migratetype)
913 {
914 struct page *page;
915
916 retry_reserve:
917 page = __rmqueue_smallest(zone, order, migratetype);
918
919 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
920 page = __rmqueue_fallback(zone, order, migratetype);
921
922 /*
923 * Use MIGRATE_RESERVE rather than fail an allocation. goto
924 * is used because __rmqueue_smallest is an inline function
925 * and we want just one call site
926 */
927 if (!page) {
928 migratetype = MIGRATE_RESERVE;
929 goto retry_reserve;
930 }
931 }
932
933 trace_mm_page_alloc_zone_locked(page, order, migratetype);
934 return page;
935 }
936
937 /*
938 * Obtain a specified number of elements from the buddy allocator, all under
939 * a single hold of the lock, for efficiency. Add them to the supplied list.
940 * Returns the number of new pages which were placed at *list.
941 */
942 static int rmqueue_bulk(struct zone *zone, unsigned int order,
943 unsigned long count, struct list_head *list,
944 int migratetype, int cold)
945 {
946 int i;
947
948 spin_lock(&zone->lock);
949 for (i = 0; i < count; ++i) {
950 struct page *page = __rmqueue(zone, order, migratetype);
951 if (unlikely(page == NULL))
952 break;
953
954 /*
955 * Split buddy pages returned by expand() are received here
956 * in physical page order. The page is added to the callers and
957 * list and the list head then moves forward. From the callers
958 * perspective, the linked list is ordered by page number in
959 * some conditions. This is useful for IO devices that can
960 * merge IO requests if the physical pages are ordered
961 * properly.
962 */
963 if (likely(cold == 0))
964 list_add(&page->lru, list);
965 else
966 list_add_tail(&page->lru, list);
967 set_page_private(page, migratetype);
968 list = &page->lru;
969 }
970 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
971 spin_unlock(&zone->lock);
972 return i;
973 }
974
975 #ifdef CONFIG_NUMA
976 /*
977 * Called from the vmstat counter updater to drain pagesets of this
978 * currently executing processor on remote nodes after they have
979 * expired.
980 *
981 * Note that this function must be called with the thread pinned to
982 * a single processor.
983 */
984 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
985 {
986 unsigned long flags;
987 int to_drain;
988
989 local_irq_save(flags);
990 if (pcp->count >= pcp->batch)
991 to_drain = pcp->batch;
992 else
993 to_drain = pcp->count;
994 free_pcppages_bulk(zone, to_drain, pcp);
995 pcp->count -= to_drain;
996 local_irq_restore(flags);
997 }
998 #endif
999
1000 /*
1001 * Drain pages of the indicated processor.
1002 *
1003 * The processor must either be the current processor and the
1004 * thread pinned to the current processor or a processor that
1005 * is not online.
1006 */
1007 static void drain_pages(unsigned int cpu)
1008 {
1009 unsigned long flags;
1010 struct zone *zone;
1011
1012 for_each_populated_zone(zone) {
1013 struct per_cpu_pageset *pset;
1014 struct per_cpu_pages *pcp;
1015
1016 pset = zone_pcp(zone, cpu);
1017
1018 pcp = &pset->pcp;
1019 local_irq_save(flags);
1020 free_pcppages_bulk(zone, pcp->count, pcp);
1021 pcp->count = 0;
1022 local_irq_restore(flags);
1023 }
1024 }
1025
1026 /*
1027 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1028 */
1029 void drain_local_pages(void *arg)
1030 {
1031 drain_pages(smp_processor_id());
1032 }
1033
1034 /*
1035 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1036 */
1037 void drain_all_pages(void)
1038 {
1039 on_each_cpu(drain_local_pages, NULL, 1);
1040 }
1041
1042 #ifdef CONFIG_HIBERNATION
1043
1044 void mark_free_pages(struct zone *zone)
1045 {
1046 unsigned long pfn, max_zone_pfn;
1047 unsigned long flags;
1048 int order, t;
1049 struct list_head *curr;
1050
1051 if (!zone->spanned_pages)
1052 return;
1053
1054 spin_lock_irqsave(&zone->lock, flags);
1055
1056 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1057 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1058 if (pfn_valid(pfn)) {
1059 struct page *page = pfn_to_page(pfn);
1060
1061 if (!swsusp_page_is_forbidden(page))
1062 swsusp_unset_page_free(page);
1063 }
1064
1065 for_each_migratetype_order(order, t) {
1066 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1067 unsigned long i;
1068
1069 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1070 for (i = 0; i < (1UL << order); i++)
1071 swsusp_set_page_free(pfn_to_page(pfn + i));
1072 }
1073 }
1074 spin_unlock_irqrestore(&zone->lock, flags);
1075 }
1076 #endif /* CONFIG_PM */
1077
1078 /*
1079 * Free a 0-order page
1080 */
1081 static void free_hot_cold_page(struct page *page, int cold)
1082 {
1083 struct zone *zone = page_zone(page);
1084 struct per_cpu_pages *pcp;
1085 unsigned long flags;
1086 int migratetype;
1087 int wasMlocked = __TestClearPageMlocked(page);
1088
1089 kmemcheck_free_shadow(page, 0);
1090
1091 if (PageAnon(page))
1092 page->mapping = NULL;
1093 if (free_pages_check(page))
1094 return;
1095
1096 if (!PageHighMem(page)) {
1097 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1098 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1099 }
1100 arch_free_page(page, 0);
1101 kernel_map_pages(page, 1, 0);
1102
1103 pcp = &zone_pcp(zone, get_cpu())->pcp;
1104 migratetype = get_pageblock_migratetype(page);
1105 set_page_private(page, migratetype);
1106 local_irq_save(flags);
1107 if (unlikely(wasMlocked))
1108 free_page_mlock(page);
1109 __count_vm_event(PGFREE);
1110
1111 /*
1112 * We only track unmovable, reclaimable and movable on pcp lists.
1113 * Free ISOLATE pages back to the allocator because they are being
1114 * offlined but treat RESERVE as movable pages so we can get those
1115 * areas back if necessary. Otherwise, we may have to free
1116 * excessively into the page allocator
1117 */
1118 if (migratetype >= MIGRATE_PCPTYPES) {
1119 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1120 free_one_page(zone, page, 0, migratetype);
1121 goto out;
1122 }
1123 migratetype = MIGRATE_MOVABLE;
1124 }
1125
1126 if (cold)
1127 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1128 else
1129 list_add(&page->lru, &pcp->lists[migratetype]);
1130 pcp->count++;
1131 if (pcp->count >= pcp->high) {
1132 free_pcppages_bulk(zone, pcp->batch, pcp);
1133 pcp->count -= pcp->batch;
1134 }
1135
1136 out:
1137 local_irq_restore(flags);
1138 put_cpu();
1139 }
1140
1141 void free_hot_page(struct page *page)
1142 {
1143 trace_mm_page_free_direct(page, 0);
1144 free_hot_cold_page(page, 0);
1145 }
1146
1147 /*
1148 * split_page takes a non-compound higher-order page, and splits it into
1149 * n (1<<order) sub-pages: page[0..n]
1150 * Each sub-page must be freed individually.
1151 *
1152 * Note: this is probably too low level an operation for use in drivers.
1153 * Please consult with lkml before using this in your driver.
1154 */
1155 void split_page(struct page *page, unsigned int order)
1156 {
1157 int i;
1158
1159 VM_BUG_ON(PageCompound(page));
1160 VM_BUG_ON(!page_count(page));
1161
1162 #ifdef CONFIG_KMEMCHECK
1163 /*
1164 * Split shadow pages too, because free(page[0]) would
1165 * otherwise free the whole shadow.
1166 */
1167 if (kmemcheck_page_is_tracked(page))
1168 split_page(virt_to_page(page[0].shadow), order);
1169 #endif
1170
1171 for (i = 1; i < (1 << order); i++)
1172 set_page_refcounted(page + i);
1173 }
1174
1175 /*
1176 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1177 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1178 * or two.
1179 */
1180 static inline
1181 struct page *buffered_rmqueue(struct zone *preferred_zone,
1182 struct zone *zone, int order, gfp_t gfp_flags,
1183 int migratetype)
1184 {
1185 unsigned long flags;
1186 struct page *page;
1187 int cold = !!(gfp_flags & __GFP_COLD);
1188 int cpu;
1189
1190 again:
1191 cpu = get_cpu();
1192 if (likely(order == 0)) {
1193 struct per_cpu_pages *pcp;
1194 struct list_head *list;
1195
1196 pcp = &zone_pcp(zone, cpu)->pcp;
1197 list = &pcp->lists[migratetype];
1198 local_irq_save(flags);
1199 if (list_empty(list)) {
1200 pcp->count += rmqueue_bulk(zone, 0,
1201 pcp->batch, list,
1202 migratetype, cold);
1203 if (unlikely(list_empty(list)))
1204 goto failed;
1205 }
1206
1207 if (cold)
1208 page = list_entry(list->prev, struct page, lru);
1209 else
1210 page = list_entry(list->next, struct page, lru);
1211
1212 list_del(&page->lru);
1213 pcp->count--;
1214 } else {
1215 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1216 /*
1217 * __GFP_NOFAIL is not to be used in new code.
1218 *
1219 * All __GFP_NOFAIL callers should be fixed so that they
1220 * properly detect and handle allocation failures.
1221 *
1222 * We most definitely don't want callers attempting to
1223 * allocate greater than order-1 page units with
1224 * __GFP_NOFAIL.
1225 */
1226 WARN_ON_ONCE(order > 1);
1227 }
1228 spin_lock_irqsave(&zone->lock, flags);
1229 page = __rmqueue(zone, order, migratetype);
1230 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1231 spin_unlock(&zone->lock);
1232 if (!page)
1233 goto failed;
1234 }
1235
1236 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1237 zone_statistics(preferred_zone, zone);
1238 local_irq_restore(flags);
1239 put_cpu();
1240
1241 VM_BUG_ON(bad_range(zone, page));
1242 if (prep_new_page(page, order, gfp_flags))
1243 goto again;
1244 return page;
1245
1246 failed:
1247 local_irq_restore(flags);
1248 put_cpu();
1249 return NULL;
1250 }
1251
1252 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1253 #define ALLOC_WMARK_MIN WMARK_MIN
1254 #define ALLOC_WMARK_LOW WMARK_LOW
1255 #define ALLOC_WMARK_HIGH WMARK_HIGH
1256 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1257
1258 /* Mask to get the watermark bits */
1259 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1260
1261 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1262 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1263 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1264
1265 #ifdef CONFIG_FAIL_PAGE_ALLOC
1266
1267 static struct fail_page_alloc_attr {
1268 struct fault_attr attr;
1269
1270 u32 ignore_gfp_highmem;
1271 u32 ignore_gfp_wait;
1272 u32 min_order;
1273
1274 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1275
1276 struct dentry *ignore_gfp_highmem_file;
1277 struct dentry *ignore_gfp_wait_file;
1278 struct dentry *min_order_file;
1279
1280 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1281
1282 } fail_page_alloc = {
1283 .attr = FAULT_ATTR_INITIALIZER,
1284 .ignore_gfp_wait = 1,
1285 .ignore_gfp_highmem = 1,
1286 .min_order = 1,
1287 };
1288
1289 static int __init setup_fail_page_alloc(char *str)
1290 {
1291 return setup_fault_attr(&fail_page_alloc.attr, str);
1292 }
1293 __setup("fail_page_alloc=", setup_fail_page_alloc);
1294
1295 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1296 {
1297 if (order < fail_page_alloc.min_order)
1298 return 0;
1299 if (gfp_mask & __GFP_NOFAIL)
1300 return 0;
1301 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1302 return 0;
1303 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1304 return 0;
1305
1306 return should_fail(&fail_page_alloc.attr, 1 << order);
1307 }
1308
1309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1310
1311 static int __init fail_page_alloc_debugfs(void)
1312 {
1313 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1314 struct dentry *dir;
1315 int err;
1316
1317 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1318 "fail_page_alloc");
1319 if (err)
1320 return err;
1321 dir = fail_page_alloc.attr.dentries.dir;
1322
1323 fail_page_alloc.ignore_gfp_wait_file =
1324 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1325 &fail_page_alloc.ignore_gfp_wait);
1326
1327 fail_page_alloc.ignore_gfp_highmem_file =
1328 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1329 &fail_page_alloc.ignore_gfp_highmem);
1330 fail_page_alloc.min_order_file =
1331 debugfs_create_u32("min-order", mode, dir,
1332 &fail_page_alloc.min_order);
1333
1334 if (!fail_page_alloc.ignore_gfp_wait_file ||
1335 !fail_page_alloc.ignore_gfp_highmem_file ||
1336 !fail_page_alloc.min_order_file) {
1337 err = -ENOMEM;
1338 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1339 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1340 debugfs_remove(fail_page_alloc.min_order_file);
1341 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1342 }
1343
1344 return err;
1345 }
1346
1347 late_initcall(fail_page_alloc_debugfs);
1348
1349 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1350
1351 #else /* CONFIG_FAIL_PAGE_ALLOC */
1352
1353 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1354 {
1355 return 0;
1356 }
1357
1358 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1359
1360 /*
1361 * Return 1 if free pages are above 'mark'. This takes into account the order
1362 * of the allocation.
1363 */
1364 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1365 int classzone_idx, int alloc_flags)
1366 {
1367 /* free_pages my go negative - that's OK */
1368 long min = mark;
1369 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1370 int o;
1371
1372 if (alloc_flags & ALLOC_HIGH)
1373 min -= min / 2;
1374 if (alloc_flags & ALLOC_HARDER)
1375 min -= min / 4;
1376
1377 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1378 return 0;
1379 for (o = 0; o < order; o++) {
1380 /* At the next order, this order's pages become unavailable */
1381 free_pages -= z->free_area[o].nr_free << o;
1382
1383 /* Require fewer higher order pages to be free */
1384 min >>= 1;
1385
1386 if (free_pages <= min)
1387 return 0;
1388 }
1389 return 1;
1390 }
1391
1392 #ifdef CONFIG_NUMA
1393 /*
1394 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1395 * skip over zones that are not allowed by the cpuset, or that have
1396 * been recently (in last second) found to be nearly full. See further
1397 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1398 * that have to skip over a lot of full or unallowed zones.
1399 *
1400 * If the zonelist cache is present in the passed in zonelist, then
1401 * returns a pointer to the allowed node mask (either the current
1402 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1403 *
1404 * If the zonelist cache is not available for this zonelist, does
1405 * nothing and returns NULL.
1406 *
1407 * If the fullzones BITMAP in the zonelist cache is stale (more than
1408 * a second since last zap'd) then we zap it out (clear its bits.)
1409 *
1410 * We hold off even calling zlc_setup, until after we've checked the
1411 * first zone in the zonelist, on the theory that most allocations will
1412 * be satisfied from that first zone, so best to examine that zone as
1413 * quickly as we can.
1414 */
1415 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1416 {
1417 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1418 nodemask_t *allowednodes; /* zonelist_cache approximation */
1419
1420 zlc = zonelist->zlcache_ptr;
1421 if (!zlc)
1422 return NULL;
1423
1424 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1425 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1426 zlc->last_full_zap = jiffies;
1427 }
1428
1429 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1430 &cpuset_current_mems_allowed :
1431 &node_states[N_HIGH_MEMORY];
1432 return allowednodes;
1433 }
1434
1435 /*
1436 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1437 * if it is worth looking at further for free memory:
1438 * 1) Check that the zone isn't thought to be full (doesn't have its
1439 * bit set in the zonelist_cache fullzones BITMAP).
1440 * 2) Check that the zones node (obtained from the zonelist_cache
1441 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1442 * Return true (non-zero) if zone is worth looking at further, or
1443 * else return false (zero) if it is not.
1444 *
1445 * This check -ignores- the distinction between various watermarks,
1446 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1447 * found to be full for any variation of these watermarks, it will
1448 * be considered full for up to one second by all requests, unless
1449 * we are so low on memory on all allowed nodes that we are forced
1450 * into the second scan of the zonelist.
1451 *
1452 * In the second scan we ignore this zonelist cache and exactly
1453 * apply the watermarks to all zones, even it is slower to do so.
1454 * We are low on memory in the second scan, and should leave no stone
1455 * unturned looking for a free page.
1456 */
1457 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1458 nodemask_t *allowednodes)
1459 {
1460 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1461 int i; /* index of *z in zonelist zones */
1462 int n; /* node that zone *z is on */
1463
1464 zlc = zonelist->zlcache_ptr;
1465 if (!zlc)
1466 return 1;
1467
1468 i = z - zonelist->_zonerefs;
1469 n = zlc->z_to_n[i];
1470
1471 /* This zone is worth trying if it is allowed but not full */
1472 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1473 }
1474
1475 /*
1476 * Given 'z' scanning a zonelist, set the corresponding bit in
1477 * zlc->fullzones, so that subsequent attempts to allocate a page
1478 * from that zone don't waste time re-examining it.
1479 */
1480 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1481 {
1482 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1483 int i; /* index of *z in zonelist zones */
1484
1485 zlc = zonelist->zlcache_ptr;
1486 if (!zlc)
1487 return;
1488
1489 i = z - zonelist->_zonerefs;
1490
1491 set_bit(i, zlc->fullzones);
1492 }
1493
1494 #else /* CONFIG_NUMA */
1495
1496 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1497 {
1498 return NULL;
1499 }
1500
1501 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1502 nodemask_t *allowednodes)
1503 {
1504 return 1;
1505 }
1506
1507 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1508 {
1509 }
1510 #endif /* CONFIG_NUMA */
1511
1512 /*
1513 * get_page_from_freelist goes through the zonelist trying to allocate
1514 * a page.
1515 */
1516 static struct page *
1517 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1518 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1519 struct zone *preferred_zone, int migratetype)
1520 {
1521 struct zoneref *z;
1522 struct page *page = NULL;
1523 int classzone_idx;
1524 struct zone *zone;
1525 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1526 int zlc_active = 0; /* set if using zonelist_cache */
1527 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1528
1529 classzone_idx = zone_idx(preferred_zone);
1530 zonelist_scan:
1531 /*
1532 * Scan zonelist, looking for a zone with enough free.
1533 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1534 */
1535 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1536 high_zoneidx, nodemask) {
1537 if (NUMA_BUILD && zlc_active &&
1538 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1539 continue;
1540 if ((alloc_flags & ALLOC_CPUSET) &&
1541 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1542 goto try_next_zone;
1543
1544 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1545 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1546 unsigned long mark;
1547 int ret;
1548
1549 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1550 if (zone_watermark_ok(zone, order, mark,
1551 classzone_idx, alloc_flags))
1552 goto try_this_zone;
1553
1554 if (zone_reclaim_mode == 0)
1555 goto this_zone_full;
1556
1557 ret = zone_reclaim(zone, gfp_mask, order);
1558 switch (ret) {
1559 case ZONE_RECLAIM_NOSCAN:
1560 /* did not scan */
1561 goto try_next_zone;
1562 case ZONE_RECLAIM_FULL:
1563 /* scanned but unreclaimable */
1564 goto this_zone_full;
1565 default:
1566 /* did we reclaim enough */
1567 if (!zone_watermark_ok(zone, order, mark,
1568 classzone_idx, alloc_flags))
1569 goto this_zone_full;
1570 }
1571 }
1572
1573 try_this_zone:
1574 page = buffered_rmqueue(preferred_zone, zone, order,
1575 gfp_mask, migratetype);
1576 if (page)
1577 break;
1578 this_zone_full:
1579 if (NUMA_BUILD)
1580 zlc_mark_zone_full(zonelist, z);
1581 try_next_zone:
1582 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1583 /*
1584 * we do zlc_setup after the first zone is tried but only
1585 * if there are multiple nodes make it worthwhile
1586 */
1587 allowednodes = zlc_setup(zonelist, alloc_flags);
1588 zlc_active = 1;
1589 did_zlc_setup = 1;
1590 }
1591 }
1592
1593 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1594 /* Disable zlc cache for second zonelist scan */
1595 zlc_active = 0;
1596 goto zonelist_scan;
1597 }
1598 return page;
1599 }
1600
1601 static inline int
1602 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1603 unsigned long pages_reclaimed)
1604 {
1605 /* Do not loop if specifically requested */
1606 if (gfp_mask & __GFP_NORETRY)
1607 return 0;
1608
1609 /*
1610 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1611 * means __GFP_NOFAIL, but that may not be true in other
1612 * implementations.
1613 */
1614 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1615 return 1;
1616
1617 /*
1618 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1619 * specified, then we retry until we no longer reclaim any pages
1620 * (above), or we've reclaimed an order of pages at least as
1621 * large as the allocation's order. In both cases, if the
1622 * allocation still fails, we stop retrying.
1623 */
1624 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1625 return 1;
1626
1627 /*
1628 * Don't let big-order allocations loop unless the caller
1629 * explicitly requests that.
1630 */
1631 if (gfp_mask & __GFP_NOFAIL)
1632 return 1;
1633
1634 return 0;
1635 }
1636
1637 static inline struct page *
1638 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1639 struct zonelist *zonelist, enum zone_type high_zoneidx,
1640 nodemask_t *nodemask, struct zone *preferred_zone,
1641 int migratetype)
1642 {
1643 struct page *page;
1644
1645 /* Acquire the OOM killer lock for the zones in zonelist */
1646 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1647 schedule_timeout_uninterruptible(1);
1648 return NULL;
1649 }
1650
1651 /*
1652 * Go through the zonelist yet one more time, keep very high watermark
1653 * here, this is only to catch a parallel oom killing, we must fail if
1654 * we're still under heavy pressure.
1655 */
1656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1657 order, zonelist, high_zoneidx,
1658 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1659 preferred_zone, migratetype);
1660 if (page)
1661 goto out;
1662
1663 /* The OOM killer will not help higher order allocs */
1664 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1665 goto out;
1666
1667 /* Exhausted what can be done so it's blamo time */
1668 out_of_memory(zonelist, gfp_mask, order);
1669
1670 out:
1671 clear_zonelist_oom(zonelist, gfp_mask);
1672 return page;
1673 }
1674
1675 /* The really slow allocator path where we enter direct reclaim */
1676 static inline struct page *
1677 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1678 struct zonelist *zonelist, enum zone_type high_zoneidx,
1679 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1680 int migratetype, unsigned long *did_some_progress)
1681 {
1682 struct page *page = NULL;
1683 struct reclaim_state reclaim_state;
1684 struct task_struct *p = current;
1685
1686 cond_resched();
1687
1688 /* We now go into synchronous reclaim */
1689 cpuset_memory_pressure_bump();
1690 p->flags |= PF_MEMALLOC;
1691 lockdep_set_current_reclaim_state(gfp_mask);
1692 reclaim_state.reclaimed_slab = 0;
1693 p->reclaim_state = &reclaim_state;
1694
1695 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1696
1697 p->reclaim_state = NULL;
1698 lockdep_clear_current_reclaim_state();
1699 p->flags &= ~PF_MEMALLOC;
1700
1701 cond_resched();
1702
1703 if (order != 0)
1704 drain_all_pages();
1705
1706 if (likely(*did_some_progress))
1707 page = get_page_from_freelist(gfp_mask, nodemask, order,
1708 zonelist, high_zoneidx,
1709 alloc_flags, preferred_zone,
1710 migratetype);
1711 return page;
1712 }
1713
1714 /*
1715 * This is called in the allocator slow-path if the allocation request is of
1716 * sufficient urgency to ignore watermarks and take other desperate measures
1717 */
1718 static inline struct page *
1719 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1720 struct zonelist *zonelist, enum zone_type high_zoneidx,
1721 nodemask_t *nodemask, struct zone *preferred_zone,
1722 int migratetype)
1723 {
1724 struct page *page;
1725
1726 do {
1727 page = get_page_from_freelist(gfp_mask, nodemask, order,
1728 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1729 preferred_zone, migratetype);
1730
1731 if (!page && gfp_mask & __GFP_NOFAIL)
1732 congestion_wait(BLK_RW_ASYNC, HZ/50);
1733 } while (!page && (gfp_mask & __GFP_NOFAIL));
1734
1735 return page;
1736 }
1737
1738 static inline
1739 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1740 enum zone_type high_zoneidx)
1741 {
1742 struct zoneref *z;
1743 struct zone *zone;
1744
1745 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1746 wakeup_kswapd(zone, order);
1747 }
1748
1749 static inline int
1750 gfp_to_alloc_flags(gfp_t gfp_mask)
1751 {
1752 struct task_struct *p = current;
1753 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1754 const gfp_t wait = gfp_mask & __GFP_WAIT;
1755
1756 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1757 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1758
1759 /*
1760 * The caller may dip into page reserves a bit more if the caller
1761 * cannot run direct reclaim, or if the caller has realtime scheduling
1762 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1763 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1764 */
1765 alloc_flags |= (gfp_mask & __GFP_HIGH);
1766
1767 if (!wait) {
1768 alloc_flags |= ALLOC_HARDER;
1769 /*
1770 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1771 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1772 */
1773 alloc_flags &= ~ALLOC_CPUSET;
1774 } else if (unlikely(rt_task(p)) && !in_interrupt())
1775 alloc_flags |= ALLOC_HARDER;
1776
1777 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1778 if (!in_interrupt() &&
1779 ((p->flags & PF_MEMALLOC) ||
1780 unlikely(test_thread_flag(TIF_MEMDIE))))
1781 alloc_flags |= ALLOC_NO_WATERMARKS;
1782 }
1783
1784 return alloc_flags;
1785 }
1786
1787 static inline struct page *
1788 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1789 struct zonelist *zonelist, enum zone_type high_zoneidx,
1790 nodemask_t *nodemask, struct zone *preferred_zone,
1791 int migratetype)
1792 {
1793 const gfp_t wait = gfp_mask & __GFP_WAIT;
1794 struct page *page = NULL;
1795 int alloc_flags;
1796 unsigned long pages_reclaimed = 0;
1797 unsigned long did_some_progress;
1798 struct task_struct *p = current;
1799
1800 /*
1801 * In the slowpath, we sanity check order to avoid ever trying to
1802 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1803 * be using allocators in order of preference for an area that is
1804 * too large.
1805 */
1806 if (order >= MAX_ORDER) {
1807 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1808 return NULL;
1809 }
1810
1811 /*
1812 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1813 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1814 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1815 * using a larger set of nodes after it has established that the
1816 * allowed per node queues are empty and that nodes are
1817 * over allocated.
1818 */
1819 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1820 goto nopage;
1821
1822 restart:
1823 wake_all_kswapd(order, zonelist, high_zoneidx);
1824
1825 /*
1826 * OK, we're below the kswapd watermark and have kicked background
1827 * reclaim. Now things get more complex, so set up alloc_flags according
1828 * to how we want to proceed.
1829 */
1830 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1831
1832 /* This is the last chance, in general, before the goto nopage. */
1833 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1834 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1835 preferred_zone, migratetype);
1836 if (page)
1837 goto got_pg;
1838
1839 rebalance:
1840 /* Allocate without watermarks if the context allows */
1841 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1842 page = __alloc_pages_high_priority(gfp_mask, order,
1843 zonelist, high_zoneidx, nodemask,
1844 preferred_zone, migratetype);
1845 if (page)
1846 goto got_pg;
1847 }
1848
1849 /* Atomic allocations - we can't balance anything */
1850 if (!wait)
1851 goto nopage;
1852
1853 /* Avoid recursion of direct reclaim */
1854 if (p->flags & PF_MEMALLOC)
1855 goto nopage;
1856
1857 /* Avoid allocations with no watermarks from looping endlessly */
1858 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1859 goto nopage;
1860
1861 /* Try direct reclaim and then allocating */
1862 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1863 zonelist, high_zoneidx,
1864 nodemask,
1865 alloc_flags, preferred_zone,
1866 migratetype, &did_some_progress);
1867 if (page)
1868 goto got_pg;
1869
1870 /*
1871 * If we failed to make any progress reclaiming, then we are
1872 * running out of options and have to consider going OOM
1873 */
1874 if (!did_some_progress) {
1875 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1876 if (oom_killer_disabled)
1877 goto nopage;
1878 page = __alloc_pages_may_oom(gfp_mask, order,
1879 zonelist, high_zoneidx,
1880 nodemask, preferred_zone,
1881 migratetype);
1882 if (page)
1883 goto got_pg;
1884
1885 /*
1886 * The OOM killer does not trigger for high-order
1887 * ~__GFP_NOFAIL allocations so if no progress is being
1888 * made, there are no other options and retrying is
1889 * unlikely to help.
1890 */
1891 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1892 !(gfp_mask & __GFP_NOFAIL))
1893 goto nopage;
1894
1895 goto restart;
1896 }
1897 }
1898
1899 /* Check if we should retry the allocation */
1900 pages_reclaimed += did_some_progress;
1901 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1902 /* Wait for some write requests to complete then retry */
1903 congestion_wait(BLK_RW_ASYNC, HZ/50);
1904 goto rebalance;
1905 }
1906
1907 nopage:
1908 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1909 printk(KERN_WARNING "%s: page allocation failure."
1910 " order:%d, mode:0x%x\n",
1911 p->comm, order, gfp_mask);
1912 dump_stack();
1913 show_mem();
1914 }
1915 return page;
1916 got_pg:
1917 if (kmemcheck_enabled)
1918 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1919 return page;
1920
1921 }
1922
1923 /*
1924 * This is the 'heart' of the zoned buddy allocator.
1925 */
1926 struct page *
1927 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1928 struct zonelist *zonelist, nodemask_t *nodemask)
1929 {
1930 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1931 struct zone *preferred_zone;
1932 struct page *page;
1933 int migratetype = allocflags_to_migratetype(gfp_mask);
1934
1935 gfp_mask &= gfp_allowed_mask;
1936
1937 lockdep_trace_alloc(gfp_mask);
1938
1939 might_sleep_if(gfp_mask & __GFP_WAIT);
1940
1941 if (should_fail_alloc_page(gfp_mask, order))
1942 return NULL;
1943
1944 /*
1945 * Check the zones suitable for the gfp_mask contain at least one
1946 * valid zone. It's possible to have an empty zonelist as a result
1947 * of GFP_THISNODE and a memoryless node
1948 */
1949 if (unlikely(!zonelist->_zonerefs->zone))
1950 return NULL;
1951
1952 /* The preferred zone is used for statistics later */
1953 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1954 if (!preferred_zone)
1955 return NULL;
1956
1957 /* First allocation attempt */
1958 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1959 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1960 preferred_zone, migratetype);
1961 if (unlikely(!page))
1962 page = __alloc_pages_slowpath(gfp_mask, order,
1963 zonelist, high_zoneidx, nodemask,
1964 preferred_zone, migratetype);
1965
1966 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1967 return page;
1968 }
1969 EXPORT_SYMBOL(__alloc_pages_nodemask);
1970
1971 /*
1972 * Common helper functions.
1973 */
1974 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1975 {
1976 struct page *page;
1977
1978 /*
1979 * __get_free_pages() returns a 32-bit address, which cannot represent
1980 * a highmem page
1981 */
1982 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1983
1984 page = alloc_pages(gfp_mask, order);
1985 if (!page)
1986 return 0;
1987 return (unsigned long) page_address(page);
1988 }
1989 EXPORT_SYMBOL(__get_free_pages);
1990
1991 unsigned long get_zeroed_page(gfp_t gfp_mask)
1992 {
1993 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1994 }
1995 EXPORT_SYMBOL(get_zeroed_page);
1996
1997 void __pagevec_free(struct pagevec *pvec)
1998 {
1999 int i = pagevec_count(pvec);
2000
2001 while (--i >= 0) {
2002 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2003 free_hot_cold_page(pvec->pages[i], pvec->cold);
2004 }
2005 }
2006
2007 void __free_pages(struct page *page, unsigned int order)
2008 {
2009 if (put_page_testzero(page)) {
2010 trace_mm_page_free_direct(page, order);
2011 if (order == 0)
2012 free_hot_page(page);
2013 else
2014 __free_pages_ok(page, order);
2015 }
2016 }
2017
2018 EXPORT_SYMBOL(__free_pages);
2019
2020 void free_pages(unsigned long addr, unsigned int order)
2021 {
2022 if (addr != 0) {
2023 VM_BUG_ON(!virt_addr_valid((void *)addr));
2024 __free_pages(virt_to_page((void *)addr), order);
2025 }
2026 }
2027
2028 EXPORT_SYMBOL(free_pages);
2029
2030 /**
2031 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2032 * @size: the number of bytes to allocate
2033 * @gfp_mask: GFP flags for the allocation
2034 *
2035 * This function is similar to alloc_pages(), except that it allocates the
2036 * minimum number of pages to satisfy the request. alloc_pages() can only
2037 * allocate memory in power-of-two pages.
2038 *
2039 * This function is also limited by MAX_ORDER.
2040 *
2041 * Memory allocated by this function must be released by free_pages_exact().
2042 */
2043 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2044 {
2045 unsigned int order = get_order(size);
2046 unsigned long addr;
2047
2048 addr = __get_free_pages(gfp_mask, order);
2049 if (addr) {
2050 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2051 unsigned long used = addr + PAGE_ALIGN(size);
2052
2053 split_page(virt_to_page((void *)addr), order);
2054 while (used < alloc_end) {
2055 free_page(used);
2056 used += PAGE_SIZE;
2057 }
2058 }
2059
2060 return (void *)addr;
2061 }
2062 EXPORT_SYMBOL(alloc_pages_exact);
2063
2064 /**
2065 * free_pages_exact - release memory allocated via alloc_pages_exact()
2066 * @virt: the value returned by alloc_pages_exact.
2067 * @size: size of allocation, same value as passed to alloc_pages_exact().
2068 *
2069 * Release the memory allocated by a previous call to alloc_pages_exact.
2070 */
2071 void free_pages_exact(void *virt, size_t size)
2072 {
2073 unsigned long addr = (unsigned long)virt;
2074 unsigned long end = addr + PAGE_ALIGN(size);
2075
2076 while (addr < end) {
2077 free_page(addr);
2078 addr += PAGE_SIZE;
2079 }
2080 }
2081 EXPORT_SYMBOL(free_pages_exact);
2082
2083 static unsigned int nr_free_zone_pages(int offset)
2084 {
2085 struct zoneref *z;
2086 struct zone *zone;
2087
2088 /* Just pick one node, since fallback list is circular */
2089 unsigned int sum = 0;
2090
2091 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2092
2093 for_each_zone_zonelist(zone, z, zonelist, offset) {
2094 unsigned long size = zone->present_pages;
2095 unsigned long high = high_wmark_pages(zone);
2096 if (size > high)
2097 sum += size - high;
2098 }
2099
2100 return sum;
2101 }
2102
2103 /*
2104 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2105 */
2106 unsigned int nr_free_buffer_pages(void)
2107 {
2108 return nr_free_zone_pages(gfp_zone(GFP_USER));
2109 }
2110 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2111
2112 /*
2113 * Amount of free RAM allocatable within all zones
2114 */
2115 unsigned int nr_free_pagecache_pages(void)
2116 {
2117 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2118 }
2119
2120 static inline void show_node(struct zone *zone)
2121 {
2122 if (NUMA_BUILD)
2123 printk("Node %d ", zone_to_nid(zone));
2124 }
2125
2126 void si_meminfo(struct sysinfo *val)
2127 {
2128 val->totalram = totalram_pages;
2129 val->sharedram = 0;
2130 val->freeram = global_page_state(NR_FREE_PAGES);
2131 val->bufferram = nr_blockdev_pages();
2132 val->totalhigh = totalhigh_pages;
2133 val->freehigh = nr_free_highpages();
2134 val->mem_unit = PAGE_SIZE;
2135 }
2136
2137 EXPORT_SYMBOL(si_meminfo);
2138
2139 #ifdef CONFIG_NUMA
2140 void si_meminfo_node(struct sysinfo *val, int nid)
2141 {
2142 pg_data_t *pgdat = NODE_DATA(nid);
2143
2144 val->totalram = pgdat->node_present_pages;
2145 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2146 #ifdef CONFIG_HIGHMEM
2147 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2148 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2149 NR_FREE_PAGES);
2150 #else
2151 val->totalhigh = 0;
2152 val->freehigh = 0;
2153 #endif
2154 val->mem_unit = PAGE_SIZE;
2155 }
2156 #endif
2157
2158 #define K(x) ((x) << (PAGE_SHIFT-10))
2159
2160 /*
2161 * Show free area list (used inside shift_scroll-lock stuff)
2162 * We also calculate the percentage fragmentation. We do this by counting the
2163 * memory on each free list with the exception of the first item on the list.
2164 */
2165 void show_free_areas(void)
2166 {
2167 int cpu;
2168 struct zone *zone;
2169
2170 for_each_populated_zone(zone) {
2171 show_node(zone);
2172 printk("%s per-cpu:\n", zone->name);
2173
2174 for_each_online_cpu(cpu) {
2175 struct per_cpu_pageset *pageset;
2176
2177 pageset = zone_pcp(zone, cpu);
2178
2179 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2180 cpu, pageset->pcp.high,
2181 pageset->pcp.batch, pageset->pcp.count);
2182 }
2183 }
2184
2185 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2186 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2187 " unevictable:%lu"
2188 " dirty:%lu writeback:%lu unstable:%lu\n"
2189 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2190 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2191 global_page_state(NR_ACTIVE_ANON),
2192 global_page_state(NR_INACTIVE_ANON),
2193 global_page_state(NR_ISOLATED_ANON),
2194 global_page_state(NR_ACTIVE_FILE),
2195 global_page_state(NR_INACTIVE_FILE),
2196 global_page_state(NR_ISOLATED_FILE),
2197 global_page_state(NR_UNEVICTABLE),
2198 global_page_state(NR_FILE_DIRTY),
2199 global_page_state(NR_WRITEBACK),
2200 global_page_state(NR_UNSTABLE_NFS),
2201 global_page_state(NR_FREE_PAGES),
2202 global_page_state(NR_SLAB_RECLAIMABLE),
2203 global_page_state(NR_SLAB_UNRECLAIMABLE),
2204 global_page_state(NR_FILE_MAPPED),
2205 global_page_state(NR_SHMEM),
2206 global_page_state(NR_PAGETABLE),
2207 global_page_state(NR_BOUNCE));
2208
2209 for_each_populated_zone(zone) {
2210 int i;
2211
2212 show_node(zone);
2213 printk("%s"
2214 " free:%lukB"
2215 " min:%lukB"
2216 " low:%lukB"
2217 " high:%lukB"
2218 " active_anon:%lukB"
2219 " inactive_anon:%lukB"
2220 " active_file:%lukB"
2221 " inactive_file:%lukB"
2222 " unevictable:%lukB"
2223 " isolated(anon):%lukB"
2224 " isolated(file):%lukB"
2225 " present:%lukB"
2226 " mlocked:%lukB"
2227 " dirty:%lukB"
2228 " writeback:%lukB"
2229 " mapped:%lukB"
2230 " shmem:%lukB"
2231 " slab_reclaimable:%lukB"
2232 " slab_unreclaimable:%lukB"
2233 " kernel_stack:%lukB"
2234 " pagetables:%lukB"
2235 " unstable:%lukB"
2236 " bounce:%lukB"
2237 " writeback_tmp:%lukB"
2238 " pages_scanned:%lu"
2239 " all_unreclaimable? %s"
2240 "\n",
2241 zone->name,
2242 K(zone_page_state(zone, NR_FREE_PAGES)),
2243 K(min_wmark_pages(zone)),
2244 K(low_wmark_pages(zone)),
2245 K(high_wmark_pages(zone)),
2246 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2247 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2248 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2249 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2250 K(zone_page_state(zone, NR_UNEVICTABLE)),
2251 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2252 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2253 K(zone->present_pages),
2254 K(zone_page_state(zone, NR_MLOCK)),
2255 K(zone_page_state(zone, NR_FILE_DIRTY)),
2256 K(zone_page_state(zone, NR_WRITEBACK)),
2257 K(zone_page_state(zone, NR_FILE_MAPPED)),
2258 K(zone_page_state(zone, NR_SHMEM)),
2259 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2260 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2261 zone_page_state(zone, NR_KERNEL_STACK) *
2262 THREAD_SIZE / 1024,
2263 K(zone_page_state(zone, NR_PAGETABLE)),
2264 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2265 K(zone_page_state(zone, NR_BOUNCE)),
2266 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2267 zone->pages_scanned,
2268 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2269 );
2270 printk("lowmem_reserve[]:");
2271 for (i = 0; i < MAX_NR_ZONES; i++)
2272 printk(" %lu", zone->lowmem_reserve[i]);
2273 printk("\n");
2274 }
2275
2276 for_each_populated_zone(zone) {
2277 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2278
2279 show_node(zone);
2280 printk("%s: ", zone->name);
2281
2282 spin_lock_irqsave(&zone->lock, flags);
2283 for (order = 0; order < MAX_ORDER; order++) {
2284 nr[order] = zone->free_area[order].nr_free;
2285 total += nr[order] << order;
2286 }
2287 spin_unlock_irqrestore(&zone->lock, flags);
2288 for (order = 0; order < MAX_ORDER; order++)
2289 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2290 printk("= %lukB\n", K(total));
2291 }
2292
2293 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2294
2295 show_swap_cache_info();
2296 }
2297
2298 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2299 {
2300 zoneref->zone = zone;
2301 zoneref->zone_idx = zone_idx(zone);
2302 }
2303
2304 /*
2305 * Builds allocation fallback zone lists.
2306 *
2307 * Add all populated zones of a node to the zonelist.
2308 */
2309 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2310 int nr_zones, enum zone_type zone_type)
2311 {
2312 struct zone *zone;
2313
2314 BUG_ON(zone_type >= MAX_NR_ZONES);
2315 zone_type++;
2316
2317 do {
2318 zone_type--;
2319 zone = pgdat->node_zones + zone_type;
2320 if (populated_zone(zone)) {
2321 zoneref_set_zone(zone,
2322 &zonelist->_zonerefs[nr_zones++]);
2323 check_highest_zone(zone_type);
2324 }
2325
2326 } while (zone_type);
2327 return nr_zones;
2328 }
2329
2330
2331 /*
2332 * zonelist_order:
2333 * 0 = automatic detection of better ordering.
2334 * 1 = order by ([node] distance, -zonetype)
2335 * 2 = order by (-zonetype, [node] distance)
2336 *
2337 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2338 * the same zonelist. So only NUMA can configure this param.
2339 */
2340 #define ZONELIST_ORDER_DEFAULT 0
2341 #define ZONELIST_ORDER_NODE 1
2342 #define ZONELIST_ORDER_ZONE 2
2343
2344 /* zonelist order in the kernel.
2345 * set_zonelist_order() will set this to NODE or ZONE.
2346 */
2347 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2348 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2349
2350
2351 #ifdef CONFIG_NUMA
2352 /* The value user specified ....changed by config */
2353 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2354 /* string for sysctl */
2355 #define NUMA_ZONELIST_ORDER_LEN 16
2356 char numa_zonelist_order[16] = "default";
2357
2358 /*
2359 * interface for configure zonelist ordering.
2360 * command line option "numa_zonelist_order"
2361 * = "[dD]efault - default, automatic configuration.
2362 * = "[nN]ode - order by node locality, then by zone within node
2363 * = "[zZ]one - order by zone, then by locality within zone
2364 */
2365
2366 static int __parse_numa_zonelist_order(char *s)
2367 {
2368 if (*s == 'd' || *s == 'D') {
2369 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2370 } else if (*s == 'n' || *s == 'N') {
2371 user_zonelist_order = ZONELIST_ORDER_NODE;
2372 } else if (*s == 'z' || *s == 'Z') {
2373 user_zonelist_order = ZONELIST_ORDER_ZONE;
2374 } else {
2375 printk(KERN_WARNING
2376 "Ignoring invalid numa_zonelist_order value: "
2377 "%s\n", s);
2378 return -EINVAL;
2379 }
2380 return 0;
2381 }
2382
2383 static __init int setup_numa_zonelist_order(char *s)
2384 {
2385 if (s)
2386 return __parse_numa_zonelist_order(s);
2387 return 0;
2388 }
2389 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2390
2391 /*
2392 * sysctl handler for numa_zonelist_order
2393 */
2394 int numa_zonelist_order_handler(ctl_table *table, int write,
2395 void __user *buffer, size_t *length,
2396 loff_t *ppos)
2397 {
2398 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2399 int ret;
2400
2401 if (write)
2402 strncpy(saved_string, (char*)table->data,
2403 NUMA_ZONELIST_ORDER_LEN);
2404 ret = proc_dostring(table, write, buffer, length, ppos);
2405 if (ret)
2406 return ret;
2407 if (write) {
2408 int oldval = user_zonelist_order;
2409 if (__parse_numa_zonelist_order((char*)table->data)) {
2410 /*
2411 * bogus value. restore saved string
2412 */
2413 strncpy((char*)table->data, saved_string,
2414 NUMA_ZONELIST_ORDER_LEN);
2415 user_zonelist_order = oldval;
2416 } else if (oldval != user_zonelist_order)
2417 build_all_zonelists();
2418 }
2419 return 0;
2420 }
2421
2422
2423 #define MAX_NODE_LOAD (nr_online_nodes)
2424 static int node_load[MAX_NUMNODES];
2425
2426 /**
2427 * find_next_best_node - find the next node that should appear in a given node's fallback list
2428 * @node: node whose fallback list we're appending
2429 * @used_node_mask: nodemask_t of already used nodes
2430 *
2431 * We use a number of factors to determine which is the next node that should
2432 * appear on a given node's fallback list. The node should not have appeared
2433 * already in @node's fallback list, and it should be the next closest node
2434 * according to the distance array (which contains arbitrary distance values
2435 * from each node to each node in the system), and should also prefer nodes
2436 * with no CPUs, since presumably they'll have very little allocation pressure
2437 * on them otherwise.
2438 * It returns -1 if no node is found.
2439 */
2440 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2441 {
2442 int n, val;
2443 int min_val = INT_MAX;
2444 int best_node = -1;
2445 const struct cpumask *tmp = cpumask_of_node(0);
2446
2447 /* Use the local node if we haven't already */
2448 if (!node_isset(node, *used_node_mask)) {
2449 node_set(node, *used_node_mask);
2450 return node;
2451 }
2452
2453 for_each_node_state(n, N_HIGH_MEMORY) {
2454
2455 /* Don't want a node to appear more than once */
2456 if (node_isset(n, *used_node_mask))
2457 continue;
2458
2459 /* Use the distance array to find the distance */
2460 val = node_distance(node, n);
2461
2462 /* Penalize nodes under us ("prefer the next node") */
2463 val += (n < node);
2464
2465 /* Give preference to headless and unused nodes */
2466 tmp = cpumask_of_node(n);
2467 if (!cpumask_empty(tmp))
2468 val += PENALTY_FOR_NODE_WITH_CPUS;
2469
2470 /* Slight preference for less loaded node */
2471 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2472 val += node_load[n];
2473
2474 if (val < min_val) {
2475 min_val = val;
2476 best_node = n;
2477 }
2478 }
2479
2480 if (best_node >= 0)
2481 node_set(best_node, *used_node_mask);
2482
2483 return best_node;
2484 }
2485
2486
2487 /*
2488 * Build zonelists ordered by node and zones within node.
2489 * This results in maximum locality--normal zone overflows into local
2490 * DMA zone, if any--but risks exhausting DMA zone.
2491 */
2492 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2493 {
2494 int j;
2495 struct zonelist *zonelist;
2496
2497 zonelist = &pgdat->node_zonelists[0];
2498 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2499 ;
2500 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2501 MAX_NR_ZONES - 1);
2502 zonelist->_zonerefs[j].zone = NULL;
2503 zonelist->_zonerefs[j].zone_idx = 0;
2504 }
2505
2506 /*
2507 * Build gfp_thisnode zonelists
2508 */
2509 static void build_thisnode_zonelists(pg_data_t *pgdat)
2510 {
2511 int j;
2512 struct zonelist *zonelist;
2513
2514 zonelist = &pgdat->node_zonelists[1];
2515 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2516 zonelist->_zonerefs[j].zone = NULL;
2517 zonelist->_zonerefs[j].zone_idx = 0;
2518 }
2519
2520 /*
2521 * Build zonelists ordered by zone and nodes within zones.
2522 * This results in conserving DMA zone[s] until all Normal memory is
2523 * exhausted, but results in overflowing to remote node while memory
2524 * may still exist in local DMA zone.
2525 */
2526 static int node_order[MAX_NUMNODES];
2527
2528 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2529 {
2530 int pos, j, node;
2531 int zone_type; /* needs to be signed */
2532 struct zone *z;
2533 struct zonelist *zonelist;
2534
2535 zonelist = &pgdat->node_zonelists[0];
2536 pos = 0;
2537 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2538 for (j = 0; j < nr_nodes; j++) {
2539 node = node_order[j];
2540 z = &NODE_DATA(node)->node_zones[zone_type];
2541 if (populated_zone(z)) {
2542 zoneref_set_zone(z,
2543 &zonelist->_zonerefs[pos++]);
2544 check_highest_zone(zone_type);
2545 }
2546 }
2547 }
2548 zonelist->_zonerefs[pos].zone = NULL;
2549 zonelist->_zonerefs[pos].zone_idx = 0;
2550 }
2551
2552 static int default_zonelist_order(void)
2553 {
2554 int nid, zone_type;
2555 unsigned long low_kmem_size,total_size;
2556 struct zone *z;
2557 int average_size;
2558 /*
2559 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2560 * If they are really small and used heavily, the system can fall
2561 * into OOM very easily.
2562 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2563 */
2564 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2565 low_kmem_size = 0;
2566 total_size = 0;
2567 for_each_online_node(nid) {
2568 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2569 z = &NODE_DATA(nid)->node_zones[zone_type];
2570 if (populated_zone(z)) {
2571 if (zone_type < ZONE_NORMAL)
2572 low_kmem_size += z->present_pages;
2573 total_size += z->present_pages;
2574 }
2575 }
2576 }
2577 if (!low_kmem_size || /* there are no DMA area. */
2578 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2579 return ZONELIST_ORDER_NODE;
2580 /*
2581 * look into each node's config.
2582 * If there is a node whose DMA/DMA32 memory is very big area on
2583 * local memory, NODE_ORDER may be suitable.
2584 */
2585 average_size = total_size /
2586 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2587 for_each_online_node(nid) {
2588 low_kmem_size = 0;
2589 total_size = 0;
2590 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2591 z = &NODE_DATA(nid)->node_zones[zone_type];
2592 if (populated_zone(z)) {
2593 if (zone_type < ZONE_NORMAL)
2594 low_kmem_size += z->present_pages;
2595 total_size += z->present_pages;
2596 }
2597 }
2598 if (low_kmem_size &&
2599 total_size > average_size && /* ignore small node */
2600 low_kmem_size > total_size * 70/100)
2601 return ZONELIST_ORDER_NODE;
2602 }
2603 return ZONELIST_ORDER_ZONE;
2604 }
2605
2606 static void set_zonelist_order(void)
2607 {
2608 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2609 current_zonelist_order = default_zonelist_order();
2610 else
2611 current_zonelist_order = user_zonelist_order;
2612 }
2613
2614 static void build_zonelists(pg_data_t *pgdat)
2615 {
2616 int j, node, load;
2617 enum zone_type i;
2618 nodemask_t used_mask;
2619 int local_node, prev_node;
2620 struct zonelist *zonelist;
2621 int order = current_zonelist_order;
2622
2623 /* initialize zonelists */
2624 for (i = 0; i < MAX_ZONELISTS; i++) {
2625 zonelist = pgdat->node_zonelists + i;
2626 zonelist->_zonerefs[0].zone = NULL;
2627 zonelist->_zonerefs[0].zone_idx = 0;
2628 }
2629
2630 /* NUMA-aware ordering of nodes */
2631 local_node = pgdat->node_id;
2632 load = nr_online_nodes;
2633 prev_node = local_node;
2634 nodes_clear(used_mask);
2635
2636 memset(node_order, 0, sizeof(node_order));
2637 j = 0;
2638
2639 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2640 int distance = node_distance(local_node, node);
2641
2642 /*
2643 * If another node is sufficiently far away then it is better
2644 * to reclaim pages in a zone before going off node.
2645 */
2646 if (distance > RECLAIM_DISTANCE)
2647 zone_reclaim_mode = 1;
2648
2649 /*
2650 * We don't want to pressure a particular node.
2651 * So adding penalty to the first node in same
2652 * distance group to make it round-robin.
2653 */
2654 if (distance != node_distance(local_node, prev_node))
2655 node_load[node] = load;
2656
2657 prev_node = node;
2658 load--;
2659 if (order == ZONELIST_ORDER_NODE)
2660 build_zonelists_in_node_order(pgdat, node);
2661 else
2662 node_order[j++] = node; /* remember order */
2663 }
2664
2665 if (order == ZONELIST_ORDER_ZONE) {
2666 /* calculate node order -- i.e., DMA last! */
2667 build_zonelists_in_zone_order(pgdat, j);
2668 }
2669
2670 build_thisnode_zonelists(pgdat);
2671 }
2672
2673 /* Construct the zonelist performance cache - see further mmzone.h */
2674 static void build_zonelist_cache(pg_data_t *pgdat)
2675 {
2676 struct zonelist *zonelist;
2677 struct zonelist_cache *zlc;
2678 struct zoneref *z;
2679
2680 zonelist = &pgdat->node_zonelists[0];
2681 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2682 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2683 for (z = zonelist->_zonerefs; z->zone; z++)
2684 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2685 }
2686
2687
2688 #else /* CONFIG_NUMA */
2689
2690 static void set_zonelist_order(void)
2691 {
2692 current_zonelist_order = ZONELIST_ORDER_ZONE;
2693 }
2694
2695 static void build_zonelists(pg_data_t *pgdat)
2696 {
2697 int node, local_node;
2698 enum zone_type j;
2699 struct zonelist *zonelist;
2700
2701 local_node = pgdat->node_id;
2702
2703 zonelist = &pgdat->node_zonelists[0];
2704 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2705
2706 /*
2707 * Now we build the zonelist so that it contains the zones
2708 * of all the other nodes.
2709 * We don't want to pressure a particular node, so when
2710 * building the zones for node N, we make sure that the
2711 * zones coming right after the local ones are those from
2712 * node N+1 (modulo N)
2713 */
2714 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2715 if (!node_online(node))
2716 continue;
2717 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2718 MAX_NR_ZONES - 1);
2719 }
2720 for (node = 0; node < local_node; node++) {
2721 if (!node_online(node))
2722 continue;
2723 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2724 MAX_NR_ZONES - 1);
2725 }
2726
2727 zonelist->_zonerefs[j].zone = NULL;
2728 zonelist->_zonerefs[j].zone_idx = 0;
2729 }
2730
2731 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2732 static void build_zonelist_cache(pg_data_t *pgdat)
2733 {
2734 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2735 }
2736
2737 #endif /* CONFIG_NUMA */
2738
2739 /* return values int ....just for stop_machine() */
2740 static int __build_all_zonelists(void *dummy)
2741 {
2742 int nid;
2743
2744 #ifdef CONFIG_NUMA
2745 memset(node_load, 0, sizeof(node_load));
2746 #endif
2747 for_each_online_node(nid) {
2748 pg_data_t *pgdat = NODE_DATA(nid);
2749
2750 build_zonelists(pgdat);
2751 build_zonelist_cache(pgdat);
2752 }
2753 return 0;
2754 }
2755
2756 void build_all_zonelists(void)
2757 {
2758 set_zonelist_order();
2759
2760 if (system_state == SYSTEM_BOOTING) {
2761 __build_all_zonelists(NULL);
2762 mminit_verify_zonelist();
2763 cpuset_init_current_mems_allowed();
2764 } else {
2765 /* we have to stop all cpus to guarantee there is no user
2766 of zonelist */
2767 stop_machine(__build_all_zonelists, NULL, NULL);
2768 /* cpuset refresh routine should be here */
2769 }
2770 vm_total_pages = nr_free_pagecache_pages();
2771 /*
2772 * Disable grouping by mobility if the number of pages in the
2773 * system is too low to allow the mechanism to work. It would be
2774 * more accurate, but expensive to check per-zone. This check is
2775 * made on memory-hotadd so a system can start with mobility
2776 * disabled and enable it later
2777 */
2778 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2779 page_group_by_mobility_disabled = 1;
2780 else
2781 page_group_by_mobility_disabled = 0;
2782
2783 printk("Built %i zonelists in %s order, mobility grouping %s. "
2784 "Total pages: %ld\n",
2785 nr_online_nodes,
2786 zonelist_order_name[current_zonelist_order],
2787 page_group_by_mobility_disabled ? "off" : "on",
2788 vm_total_pages);
2789 #ifdef CONFIG_NUMA
2790 printk("Policy zone: %s\n", zone_names[policy_zone]);
2791 #endif
2792 }
2793
2794 /*
2795 * Helper functions to size the waitqueue hash table.
2796 * Essentially these want to choose hash table sizes sufficiently
2797 * large so that collisions trying to wait on pages are rare.
2798 * But in fact, the number of active page waitqueues on typical
2799 * systems is ridiculously low, less than 200. So this is even
2800 * conservative, even though it seems large.
2801 *
2802 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2803 * waitqueues, i.e. the size of the waitq table given the number of pages.
2804 */
2805 #define PAGES_PER_WAITQUEUE 256
2806
2807 #ifndef CONFIG_MEMORY_HOTPLUG
2808 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2809 {
2810 unsigned long size = 1;
2811
2812 pages /= PAGES_PER_WAITQUEUE;
2813
2814 while (size < pages)
2815 size <<= 1;
2816
2817 /*
2818 * Once we have dozens or even hundreds of threads sleeping
2819 * on IO we've got bigger problems than wait queue collision.
2820 * Limit the size of the wait table to a reasonable size.
2821 */
2822 size = min(size, 4096UL);
2823
2824 return max(size, 4UL);
2825 }
2826 #else
2827 /*
2828 * A zone's size might be changed by hot-add, so it is not possible to determine
2829 * a suitable size for its wait_table. So we use the maximum size now.
2830 *
2831 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2832 *
2833 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2834 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2835 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2836 *
2837 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2838 * or more by the traditional way. (See above). It equals:
2839 *
2840 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2841 * ia64(16K page size) : = ( 8G + 4M)byte.
2842 * powerpc (64K page size) : = (32G +16M)byte.
2843 */
2844 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2845 {
2846 return 4096UL;
2847 }
2848 #endif
2849
2850 /*
2851 * This is an integer logarithm so that shifts can be used later
2852 * to extract the more random high bits from the multiplicative
2853 * hash function before the remainder is taken.
2854 */
2855 static inline unsigned long wait_table_bits(unsigned long size)
2856 {
2857 return ffz(~size);
2858 }
2859
2860 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2861
2862 /*
2863 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2864 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2865 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2866 * higher will lead to a bigger reserve which will get freed as contiguous
2867 * blocks as reclaim kicks in
2868 */
2869 static void setup_zone_migrate_reserve(struct zone *zone)
2870 {
2871 unsigned long start_pfn, pfn, end_pfn;
2872 struct page *page;
2873 unsigned long block_migratetype;
2874 int reserve;
2875
2876 /* Get the start pfn, end pfn and the number of blocks to reserve */
2877 start_pfn = zone->zone_start_pfn;
2878 end_pfn = start_pfn + zone->spanned_pages;
2879 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2880 pageblock_order;
2881
2882 /*
2883 * Reserve blocks are generally in place to help high-order atomic
2884 * allocations that are short-lived. A min_free_kbytes value that
2885 * would result in more than 2 reserve blocks for atomic allocations
2886 * is assumed to be in place to help anti-fragmentation for the
2887 * future allocation of hugepages at runtime.
2888 */
2889 reserve = min(2, reserve);
2890
2891 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2892 if (!pfn_valid(pfn))
2893 continue;
2894 page = pfn_to_page(pfn);
2895
2896 /* Watch out for overlapping nodes */
2897 if (page_to_nid(page) != zone_to_nid(zone))
2898 continue;
2899
2900 /* Blocks with reserved pages will never free, skip them. */
2901 if (PageReserved(page))
2902 continue;
2903
2904 block_migratetype = get_pageblock_migratetype(page);
2905
2906 /* If this block is reserved, account for it */
2907 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2908 reserve--;
2909 continue;
2910 }
2911
2912 /* Suitable for reserving if this block is movable */
2913 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2914 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2915 move_freepages_block(zone, page, MIGRATE_RESERVE);
2916 reserve--;
2917 continue;
2918 }
2919
2920 /*
2921 * If the reserve is met and this is a previous reserved block,
2922 * take it back
2923 */
2924 if (block_migratetype == MIGRATE_RESERVE) {
2925 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2926 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2927 }
2928 }
2929 }
2930
2931 /*
2932 * Initially all pages are reserved - free ones are freed
2933 * up by free_all_bootmem() once the early boot process is
2934 * done. Non-atomic initialization, single-pass.
2935 */
2936 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2937 unsigned long start_pfn, enum memmap_context context)
2938 {
2939 struct page *page;
2940 unsigned long end_pfn = start_pfn + size;
2941 unsigned long pfn;
2942 struct zone *z;
2943
2944 if (highest_memmap_pfn < end_pfn - 1)
2945 highest_memmap_pfn = end_pfn - 1;
2946
2947 z = &NODE_DATA(nid)->node_zones[zone];
2948 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2949 /*
2950 * There can be holes in boot-time mem_map[]s
2951 * handed to this function. They do not
2952 * exist on hotplugged memory.
2953 */
2954 if (context == MEMMAP_EARLY) {
2955 if (!early_pfn_valid(pfn))
2956 continue;
2957 if (!early_pfn_in_nid(pfn, nid))
2958 continue;
2959 }
2960 page = pfn_to_page(pfn);
2961 set_page_links(page, zone, nid, pfn);
2962 mminit_verify_page_links(page, zone, nid, pfn);
2963 init_page_count(page);
2964 reset_page_mapcount(page);
2965 SetPageReserved(page);
2966 /*
2967 * Mark the block movable so that blocks are reserved for
2968 * movable at startup. This will force kernel allocations
2969 * to reserve their blocks rather than leaking throughout
2970 * the address space during boot when many long-lived
2971 * kernel allocations are made. Later some blocks near
2972 * the start are marked MIGRATE_RESERVE by
2973 * setup_zone_migrate_reserve()
2974 *
2975 * bitmap is created for zone's valid pfn range. but memmap
2976 * can be created for invalid pages (for alignment)
2977 * check here not to call set_pageblock_migratetype() against
2978 * pfn out of zone.
2979 */
2980 if ((z->zone_start_pfn <= pfn)
2981 && (pfn < z->zone_start_pfn + z->spanned_pages)
2982 && !(pfn & (pageblock_nr_pages - 1)))
2983 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2984
2985 INIT_LIST_HEAD(&page->lru);
2986 #ifdef WANT_PAGE_VIRTUAL
2987 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2988 if (!is_highmem_idx(zone))
2989 set_page_address(page, __va(pfn << PAGE_SHIFT));
2990 #endif
2991 }
2992 }
2993
2994 static void __meminit zone_init_free_lists(struct zone *zone)
2995 {
2996 int order, t;
2997 for_each_migratetype_order(order, t) {
2998 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2999 zone->free_area[order].nr_free = 0;
3000 }
3001 }
3002
3003 #ifndef __HAVE_ARCH_MEMMAP_INIT
3004 #define memmap_init(size, nid, zone, start_pfn) \
3005 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3006 #endif
3007
3008 static int zone_batchsize(struct zone *zone)
3009 {
3010 #ifdef CONFIG_MMU
3011 int batch;
3012
3013 /*
3014 * The per-cpu-pages pools are set to around 1000th of the
3015 * size of the zone. But no more than 1/2 of a meg.
3016 *
3017 * OK, so we don't know how big the cache is. So guess.
3018 */
3019 batch = zone->present_pages / 1024;
3020 if (batch * PAGE_SIZE > 512 * 1024)
3021 batch = (512 * 1024) / PAGE_SIZE;
3022 batch /= 4; /* We effectively *= 4 below */
3023 if (batch < 1)
3024 batch = 1;
3025
3026 /*
3027 * Clamp the batch to a 2^n - 1 value. Having a power
3028 * of 2 value was found to be more likely to have
3029 * suboptimal cache aliasing properties in some cases.
3030 *
3031 * For example if 2 tasks are alternately allocating
3032 * batches of pages, one task can end up with a lot
3033 * of pages of one half of the possible page colors
3034 * and the other with pages of the other colors.
3035 */
3036 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3037
3038 return batch;
3039
3040 #else
3041 /* The deferral and batching of frees should be suppressed under NOMMU
3042 * conditions.
3043 *
3044 * The problem is that NOMMU needs to be able to allocate large chunks
3045 * of contiguous memory as there's no hardware page translation to
3046 * assemble apparent contiguous memory from discontiguous pages.
3047 *
3048 * Queueing large contiguous runs of pages for batching, however,
3049 * causes the pages to actually be freed in smaller chunks. As there
3050 * can be a significant delay between the individual batches being
3051 * recycled, this leads to the once large chunks of space being
3052 * fragmented and becoming unavailable for high-order allocations.
3053 */
3054 return 0;
3055 #endif
3056 }
3057
3058 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3059 {
3060 struct per_cpu_pages *pcp;
3061 int migratetype;
3062
3063 memset(p, 0, sizeof(*p));
3064
3065 pcp = &p->pcp;
3066 pcp->count = 0;
3067 pcp->high = 6 * batch;
3068 pcp->batch = max(1UL, 1 * batch);
3069 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3070 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3071 }
3072
3073 /*
3074 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3075 * to the value high for the pageset p.
3076 */
3077
3078 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3079 unsigned long high)
3080 {
3081 struct per_cpu_pages *pcp;
3082
3083 pcp = &p->pcp;
3084 pcp->high = high;
3085 pcp->batch = max(1UL, high/4);
3086 if ((high/4) > (PAGE_SHIFT * 8))
3087 pcp->batch = PAGE_SHIFT * 8;
3088 }
3089
3090
3091 #ifdef CONFIG_NUMA
3092 /*
3093 * Boot pageset table. One per cpu which is going to be used for all
3094 * zones and all nodes. The parameters will be set in such a way
3095 * that an item put on a list will immediately be handed over to
3096 * the buddy list. This is safe since pageset manipulation is done
3097 * with interrupts disabled.
3098 *
3099 * Some NUMA counter updates may also be caught by the boot pagesets.
3100 *
3101 * The boot_pagesets must be kept even after bootup is complete for
3102 * unused processors and/or zones. They do play a role for bootstrapping
3103 * hotplugged processors.
3104 *
3105 * zoneinfo_show() and maybe other functions do
3106 * not check if the processor is online before following the pageset pointer.
3107 * Other parts of the kernel may not check if the zone is available.
3108 */
3109 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3110
3111 /*
3112 * Dynamically allocate memory for the
3113 * per cpu pageset array in struct zone.
3114 */
3115 static int __cpuinit process_zones(int cpu)
3116 {
3117 struct zone *zone, *dzone;
3118 int node = cpu_to_node(cpu);
3119
3120 node_set_state(node, N_CPU); /* this node has a cpu */
3121
3122 for_each_populated_zone(zone) {
3123 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3124 GFP_KERNEL, node);
3125 if (!zone_pcp(zone, cpu))
3126 goto bad;
3127
3128 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3129
3130 if (percpu_pagelist_fraction)
3131 setup_pagelist_highmark(zone_pcp(zone, cpu),
3132 (zone->present_pages / percpu_pagelist_fraction));
3133 }
3134
3135 return 0;
3136 bad:
3137 for_each_zone(dzone) {
3138 if (!populated_zone(dzone))
3139 continue;
3140 if (dzone == zone)
3141 break;
3142 kfree(zone_pcp(dzone, cpu));
3143 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3144 }
3145 return -ENOMEM;
3146 }
3147
3148 static inline void free_zone_pagesets(int cpu)
3149 {
3150 struct zone *zone;
3151
3152 for_each_zone(zone) {
3153 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3154
3155 /* Free per_cpu_pageset if it is slab allocated */
3156 if (pset != &boot_pageset[cpu])
3157 kfree(pset);
3158 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3159 }
3160 }
3161
3162 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3163 unsigned long action,
3164 void *hcpu)
3165 {
3166 int cpu = (long)hcpu;
3167 int ret = NOTIFY_OK;
3168
3169 switch (action) {
3170 case CPU_UP_PREPARE:
3171 case CPU_UP_PREPARE_FROZEN:
3172 if (process_zones(cpu))
3173 ret = NOTIFY_BAD;
3174 break;
3175 case CPU_UP_CANCELED:
3176 case CPU_UP_CANCELED_FROZEN:
3177 case CPU_DEAD:
3178 case CPU_DEAD_FROZEN:
3179 free_zone_pagesets(cpu);
3180 break;
3181 default:
3182 break;
3183 }
3184 return ret;
3185 }
3186
3187 static struct notifier_block __cpuinitdata pageset_notifier =
3188 { &pageset_cpuup_callback, NULL, 0 };
3189
3190 void __init setup_per_cpu_pageset(void)
3191 {
3192 int err;
3193
3194 /* Initialize per_cpu_pageset for cpu 0.
3195 * A cpuup callback will do this for every cpu
3196 * as it comes online
3197 */
3198 err = process_zones(smp_processor_id());
3199 BUG_ON(err);
3200 register_cpu_notifier(&pageset_notifier);
3201 }
3202
3203 #endif
3204
3205 static noinline __init_refok
3206 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3207 {
3208 int i;
3209 struct pglist_data *pgdat = zone->zone_pgdat;
3210 size_t alloc_size;
3211
3212 /*
3213 * The per-page waitqueue mechanism uses hashed waitqueues
3214 * per zone.
3215 */
3216 zone->wait_table_hash_nr_entries =
3217 wait_table_hash_nr_entries(zone_size_pages);
3218 zone->wait_table_bits =
3219 wait_table_bits(zone->wait_table_hash_nr_entries);
3220 alloc_size = zone->wait_table_hash_nr_entries
3221 * sizeof(wait_queue_head_t);
3222
3223 if (!slab_is_available()) {
3224 zone->wait_table = (wait_queue_head_t *)
3225 alloc_bootmem_node(pgdat, alloc_size);
3226 } else {
3227 /*
3228 * This case means that a zone whose size was 0 gets new memory
3229 * via memory hot-add.
3230 * But it may be the case that a new node was hot-added. In
3231 * this case vmalloc() will not be able to use this new node's
3232 * memory - this wait_table must be initialized to use this new
3233 * node itself as well.
3234 * To use this new node's memory, further consideration will be
3235 * necessary.
3236 */
3237 zone->wait_table = vmalloc(alloc_size);
3238 }
3239 if (!zone->wait_table)
3240 return -ENOMEM;
3241
3242 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3243 init_waitqueue_head(zone->wait_table + i);
3244
3245 return 0;
3246 }
3247
3248 static int __zone_pcp_update(void *data)
3249 {
3250 struct zone *zone = data;
3251 int cpu;
3252 unsigned long batch = zone_batchsize(zone), flags;
3253
3254 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3255 struct per_cpu_pageset *pset;
3256 struct per_cpu_pages *pcp;
3257
3258 pset = zone_pcp(zone, cpu);
3259 pcp = &pset->pcp;
3260
3261 local_irq_save(flags);
3262 free_pcppages_bulk(zone, pcp->count, pcp);
3263 setup_pageset(pset, batch);
3264 local_irq_restore(flags);
3265 }
3266 return 0;
3267 }
3268
3269 void zone_pcp_update(struct zone *zone)
3270 {
3271 stop_machine(__zone_pcp_update, zone, NULL);
3272 }
3273
3274 static __meminit void zone_pcp_init(struct zone *zone)
3275 {
3276 int cpu;
3277 unsigned long batch = zone_batchsize(zone);
3278
3279 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3280 #ifdef CONFIG_NUMA
3281 /* Early boot. Slab allocator not functional yet */
3282 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3283 setup_pageset(&boot_pageset[cpu],0);
3284 #else
3285 setup_pageset(zone_pcp(zone,cpu), batch);
3286 #endif
3287 }
3288 if (zone->present_pages)
3289 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3290 zone->name, zone->present_pages, batch);
3291 }
3292
3293 __meminit int init_currently_empty_zone(struct zone *zone,
3294 unsigned long zone_start_pfn,
3295 unsigned long size,
3296 enum memmap_context context)
3297 {
3298 struct pglist_data *pgdat = zone->zone_pgdat;
3299 int ret;
3300 ret = zone_wait_table_init(zone, size);
3301 if (ret)
3302 return ret;
3303 pgdat->nr_zones = zone_idx(zone) + 1;
3304
3305 zone->zone_start_pfn = zone_start_pfn;
3306
3307 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3308 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3309 pgdat->node_id,
3310 (unsigned long)zone_idx(zone),
3311 zone_start_pfn, (zone_start_pfn + size));
3312
3313 zone_init_free_lists(zone);
3314
3315 return 0;
3316 }
3317
3318 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3319 /*
3320 * Basic iterator support. Return the first range of PFNs for a node
3321 * Note: nid == MAX_NUMNODES returns first region regardless of node
3322 */
3323 static int __meminit first_active_region_index_in_nid(int nid)
3324 {
3325 int i;
3326
3327 for (i = 0; i < nr_nodemap_entries; i++)
3328 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3329 return i;
3330
3331 return -1;
3332 }
3333
3334 /*
3335 * Basic iterator support. Return the next active range of PFNs for a node
3336 * Note: nid == MAX_NUMNODES returns next region regardless of node
3337 */
3338 static int __meminit next_active_region_index_in_nid(int index, int nid)
3339 {
3340 for (index = index + 1; index < nr_nodemap_entries; index++)
3341 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3342 return index;
3343
3344 return -1;
3345 }
3346
3347 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3348 /*
3349 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3350 * Architectures may implement their own version but if add_active_range()
3351 * was used and there are no special requirements, this is a convenient
3352 * alternative
3353 */
3354 int __meminit __early_pfn_to_nid(unsigned long pfn)
3355 {
3356 int i;
3357
3358 for (i = 0; i < nr_nodemap_entries; i++) {
3359 unsigned long start_pfn = early_node_map[i].start_pfn;
3360 unsigned long end_pfn = early_node_map[i].end_pfn;
3361
3362 if (start_pfn <= pfn && pfn < end_pfn)
3363 return early_node_map[i].nid;
3364 }
3365 /* This is a memory hole */
3366 return -1;
3367 }
3368 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3369
3370 int __meminit early_pfn_to_nid(unsigned long pfn)
3371 {
3372 int nid;
3373
3374 nid = __early_pfn_to_nid(pfn);
3375 if (nid >= 0)
3376 return nid;
3377 /* just returns 0 */
3378 return 0;
3379 }
3380
3381 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3382 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3383 {
3384 int nid;
3385
3386 nid = __early_pfn_to_nid(pfn);
3387 if (nid >= 0 && nid != node)
3388 return false;
3389 return true;
3390 }
3391 #endif
3392
3393 /* Basic iterator support to walk early_node_map[] */
3394 #define for_each_active_range_index_in_nid(i, nid) \
3395 for (i = first_active_region_index_in_nid(nid); i != -1; \
3396 i = next_active_region_index_in_nid(i, nid))
3397
3398 /**
3399 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3400 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3401 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3402 *
3403 * If an architecture guarantees that all ranges registered with
3404 * add_active_ranges() contain no holes and may be freed, this
3405 * this function may be used instead of calling free_bootmem() manually.
3406 */
3407 void __init free_bootmem_with_active_regions(int nid,
3408 unsigned long max_low_pfn)
3409 {
3410 int i;
3411
3412 for_each_active_range_index_in_nid(i, nid) {
3413 unsigned long size_pages = 0;
3414 unsigned long end_pfn = early_node_map[i].end_pfn;
3415
3416 if (early_node_map[i].start_pfn >= max_low_pfn)
3417 continue;
3418
3419 if (end_pfn > max_low_pfn)
3420 end_pfn = max_low_pfn;
3421
3422 size_pages = end_pfn - early_node_map[i].start_pfn;
3423 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3424 PFN_PHYS(early_node_map[i].start_pfn),
3425 size_pages << PAGE_SHIFT);
3426 }
3427 }
3428
3429 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3430 {
3431 int i;
3432 int ret;
3433
3434 for_each_active_range_index_in_nid(i, nid) {
3435 ret = work_fn(early_node_map[i].start_pfn,
3436 early_node_map[i].end_pfn, data);
3437 if (ret)
3438 break;
3439 }
3440 }
3441 /**
3442 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3443 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3444 *
3445 * If an architecture guarantees that all ranges registered with
3446 * add_active_ranges() contain no holes and may be freed, this
3447 * function may be used instead of calling memory_present() manually.
3448 */
3449 void __init sparse_memory_present_with_active_regions(int nid)
3450 {
3451 int i;
3452
3453 for_each_active_range_index_in_nid(i, nid)
3454 memory_present(early_node_map[i].nid,
3455 early_node_map[i].start_pfn,
3456 early_node_map[i].end_pfn);
3457 }
3458
3459 /**
3460 * get_pfn_range_for_nid - Return the start and end page frames for a node
3461 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3462 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3463 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3464 *
3465 * It returns the start and end page frame of a node based on information
3466 * provided by an arch calling add_active_range(). If called for a node
3467 * with no available memory, a warning is printed and the start and end
3468 * PFNs will be 0.
3469 */
3470 void __meminit get_pfn_range_for_nid(unsigned int nid,
3471 unsigned long *start_pfn, unsigned long *end_pfn)
3472 {
3473 int i;
3474 *start_pfn = -1UL;
3475 *end_pfn = 0;
3476
3477 for_each_active_range_index_in_nid(i, nid) {
3478 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3479 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3480 }
3481
3482 if (*start_pfn == -1UL)
3483 *start_pfn = 0;
3484 }
3485
3486 /*
3487 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3488 * assumption is made that zones within a node are ordered in monotonic
3489 * increasing memory addresses so that the "highest" populated zone is used
3490 */
3491 static void __init find_usable_zone_for_movable(void)
3492 {
3493 int zone_index;
3494 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3495 if (zone_index == ZONE_MOVABLE)
3496 continue;
3497
3498 if (arch_zone_highest_possible_pfn[zone_index] >
3499 arch_zone_lowest_possible_pfn[zone_index])
3500 break;
3501 }
3502
3503 VM_BUG_ON(zone_index == -1);
3504 movable_zone = zone_index;
3505 }
3506
3507 /*
3508 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3509 * because it is sized independant of architecture. Unlike the other zones,
3510 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3511 * in each node depending on the size of each node and how evenly kernelcore
3512 * is distributed. This helper function adjusts the zone ranges
3513 * provided by the architecture for a given node by using the end of the
3514 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3515 * zones within a node are in order of monotonic increases memory addresses
3516 */
3517 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3518 unsigned long zone_type,
3519 unsigned long node_start_pfn,
3520 unsigned long node_end_pfn,
3521 unsigned long *zone_start_pfn,
3522 unsigned long *zone_end_pfn)
3523 {
3524 /* Only adjust if ZONE_MOVABLE is on this node */
3525 if (zone_movable_pfn[nid]) {
3526 /* Size ZONE_MOVABLE */
3527 if (zone_type == ZONE_MOVABLE) {
3528 *zone_start_pfn = zone_movable_pfn[nid];
3529 *zone_end_pfn = min(node_end_pfn,
3530 arch_zone_highest_possible_pfn[movable_zone]);
3531
3532 /* Adjust for ZONE_MOVABLE starting within this range */
3533 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3534 *zone_end_pfn > zone_movable_pfn[nid]) {
3535 *zone_end_pfn = zone_movable_pfn[nid];
3536
3537 /* Check if this whole range is within ZONE_MOVABLE */
3538 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3539 *zone_start_pfn = *zone_end_pfn;
3540 }
3541 }
3542
3543 /*
3544 * Return the number of pages a zone spans in a node, including holes
3545 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3546 */
3547 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3548 unsigned long zone_type,
3549 unsigned long *ignored)
3550 {
3551 unsigned long node_start_pfn, node_end_pfn;
3552 unsigned long zone_start_pfn, zone_end_pfn;
3553
3554 /* Get the start and end of the node and zone */
3555 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3556 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3557 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3558 adjust_zone_range_for_zone_movable(nid, zone_type,
3559 node_start_pfn, node_end_pfn,
3560 &zone_start_pfn, &zone_end_pfn);
3561
3562 /* Check that this node has pages within the zone's required range */
3563 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3564 return 0;
3565
3566 /* Move the zone boundaries inside the node if necessary */
3567 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3568 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3569
3570 /* Return the spanned pages */
3571 return zone_end_pfn - zone_start_pfn;
3572 }
3573
3574 /*
3575 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3576 * then all holes in the requested range will be accounted for.
3577 */
3578 static unsigned long __meminit __absent_pages_in_range(int nid,
3579 unsigned long range_start_pfn,
3580 unsigned long range_end_pfn)
3581 {
3582 int i = 0;
3583 unsigned long prev_end_pfn = 0, hole_pages = 0;
3584 unsigned long start_pfn;
3585
3586 /* Find the end_pfn of the first active range of pfns in the node */
3587 i = first_active_region_index_in_nid(nid);
3588 if (i == -1)
3589 return 0;
3590
3591 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3592
3593 /* Account for ranges before physical memory on this node */
3594 if (early_node_map[i].start_pfn > range_start_pfn)
3595 hole_pages = prev_end_pfn - range_start_pfn;
3596
3597 /* Find all holes for the zone within the node */
3598 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3599
3600 /* No need to continue if prev_end_pfn is outside the zone */
3601 if (prev_end_pfn >= range_end_pfn)
3602 break;
3603
3604 /* Make sure the end of the zone is not within the hole */
3605 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3606 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3607
3608 /* Update the hole size cound and move on */
3609 if (start_pfn > range_start_pfn) {
3610 BUG_ON(prev_end_pfn > start_pfn);
3611 hole_pages += start_pfn - prev_end_pfn;
3612 }
3613 prev_end_pfn = early_node_map[i].end_pfn;
3614 }
3615
3616 /* Account for ranges past physical memory on this node */
3617 if (range_end_pfn > prev_end_pfn)
3618 hole_pages += range_end_pfn -
3619 max(range_start_pfn, prev_end_pfn);
3620
3621 return hole_pages;
3622 }
3623
3624 /**
3625 * absent_pages_in_range - Return number of page frames in holes within a range
3626 * @start_pfn: The start PFN to start searching for holes
3627 * @end_pfn: The end PFN to stop searching for holes
3628 *
3629 * It returns the number of pages frames in memory holes within a range.
3630 */
3631 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3632 unsigned long end_pfn)
3633 {
3634 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3635 }
3636
3637 /* Return the number of page frames in holes in a zone on a node */
3638 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3639 unsigned long zone_type,
3640 unsigned long *ignored)
3641 {
3642 unsigned long node_start_pfn, node_end_pfn;
3643 unsigned long zone_start_pfn, zone_end_pfn;
3644
3645 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3646 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3647 node_start_pfn);
3648 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3649 node_end_pfn);
3650
3651 adjust_zone_range_for_zone_movable(nid, zone_type,
3652 node_start_pfn, node_end_pfn,
3653 &zone_start_pfn, &zone_end_pfn);
3654 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3655 }
3656
3657 #else
3658 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3659 unsigned long zone_type,
3660 unsigned long *zones_size)
3661 {
3662 return zones_size[zone_type];
3663 }
3664
3665 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3666 unsigned long zone_type,
3667 unsigned long *zholes_size)
3668 {
3669 if (!zholes_size)
3670 return 0;
3671
3672 return zholes_size[zone_type];
3673 }
3674
3675 #endif
3676
3677 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3678 unsigned long *zones_size, unsigned long *zholes_size)
3679 {
3680 unsigned long realtotalpages, totalpages = 0;
3681 enum zone_type i;
3682
3683 for (i = 0; i < MAX_NR_ZONES; i++)
3684 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3685 zones_size);
3686 pgdat->node_spanned_pages = totalpages;
3687
3688 realtotalpages = totalpages;
3689 for (i = 0; i < MAX_NR_ZONES; i++)
3690 realtotalpages -=
3691 zone_absent_pages_in_node(pgdat->node_id, i,
3692 zholes_size);
3693 pgdat->node_present_pages = realtotalpages;
3694 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3695 realtotalpages);
3696 }
3697
3698 #ifndef CONFIG_SPARSEMEM
3699 /*
3700 * Calculate the size of the zone->blockflags rounded to an unsigned long
3701 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3702 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3703 * round what is now in bits to nearest long in bits, then return it in
3704 * bytes.
3705 */
3706 static unsigned long __init usemap_size(unsigned long zonesize)
3707 {
3708 unsigned long usemapsize;
3709
3710 usemapsize = roundup(zonesize, pageblock_nr_pages);
3711 usemapsize = usemapsize >> pageblock_order;
3712 usemapsize *= NR_PAGEBLOCK_BITS;
3713 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3714
3715 return usemapsize / 8;
3716 }
3717
3718 static void __init setup_usemap(struct pglist_data *pgdat,
3719 struct zone *zone, unsigned long zonesize)
3720 {
3721 unsigned long usemapsize = usemap_size(zonesize);
3722 zone->pageblock_flags = NULL;
3723 if (usemapsize)
3724 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3725 }
3726 #else
3727 static void inline setup_usemap(struct pglist_data *pgdat,
3728 struct zone *zone, unsigned long zonesize) {}
3729 #endif /* CONFIG_SPARSEMEM */
3730
3731 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3732
3733 /* Return a sensible default order for the pageblock size. */
3734 static inline int pageblock_default_order(void)
3735 {
3736 if (HPAGE_SHIFT > PAGE_SHIFT)
3737 return HUGETLB_PAGE_ORDER;
3738
3739 return MAX_ORDER-1;
3740 }
3741
3742 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3743 static inline void __init set_pageblock_order(unsigned int order)
3744 {
3745 /* Check that pageblock_nr_pages has not already been setup */
3746 if (pageblock_order)
3747 return;
3748
3749 /*
3750 * Assume the largest contiguous order of interest is a huge page.
3751 * This value may be variable depending on boot parameters on IA64
3752 */
3753 pageblock_order = order;
3754 }
3755 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3756
3757 /*
3758 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3759 * and pageblock_default_order() are unused as pageblock_order is set
3760 * at compile-time. See include/linux/pageblock-flags.h for the values of
3761 * pageblock_order based on the kernel config
3762 */
3763 static inline int pageblock_default_order(unsigned int order)
3764 {
3765 return MAX_ORDER-1;
3766 }
3767 #define set_pageblock_order(x) do {} while (0)
3768
3769 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3770
3771 /*
3772 * Set up the zone data structures:
3773 * - mark all pages reserved
3774 * - mark all memory queues empty
3775 * - clear the memory bitmaps
3776 */
3777 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3778 unsigned long *zones_size, unsigned long *zholes_size)
3779 {
3780 enum zone_type j;
3781 int nid = pgdat->node_id;
3782 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3783 int ret;
3784
3785 pgdat_resize_init(pgdat);
3786 pgdat->nr_zones = 0;
3787 init_waitqueue_head(&pgdat->kswapd_wait);
3788 pgdat->kswapd_max_order = 0;
3789 pgdat_page_cgroup_init(pgdat);
3790
3791 for (j = 0; j < MAX_NR_ZONES; j++) {
3792 struct zone *zone = pgdat->node_zones + j;
3793 unsigned long size, realsize, memmap_pages;
3794 enum lru_list l;
3795
3796 size = zone_spanned_pages_in_node(nid, j, zones_size);
3797 realsize = size - zone_absent_pages_in_node(nid, j,
3798 zholes_size);
3799
3800 /*
3801 * Adjust realsize so that it accounts for how much memory
3802 * is used by this zone for memmap. This affects the watermark
3803 * and per-cpu initialisations
3804 */
3805 memmap_pages =
3806 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3807 if (realsize >= memmap_pages) {
3808 realsize -= memmap_pages;
3809 if (memmap_pages)
3810 printk(KERN_DEBUG
3811 " %s zone: %lu pages used for memmap\n",
3812 zone_names[j], memmap_pages);
3813 } else
3814 printk(KERN_WARNING
3815 " %s zone: %lu pages exceeds realsize %lu\n",
3816 zone_names[j], memmap_pages, realsize);
3817
3818 /* Account for reserved pages */
3819 if (j == 0 && realsize > dma_reserve) {
3820 realsize -= dma_reserve;
3821 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3822 zone_names[0], dma_reserve);
3823 }
3824
3825 if (!is_highmem_idx(j))
3826 nr_kernel_pages += realsize;
3827 nr_all_pages += realsize;
3828
3829 zone->spanned_pages = size;
3830 zone->present_pages = realsize;
3831 #ifdef CONFIG_NUMA
3832 zone->node = nid;
3833 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3834 / 100;
3835 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3836 #endif
3837 zone->name = zone_names[j];
3838 spin_lock_init(&zone->lock);
3839 spin_lock_init(&zone->lru_lock);
3840 zone_seqlock_init(zone);
3841 zone->zone_pgdat = pgdat;
3842
3843 zone->prev_priority = DEF_PRIORITY;
3844
3845 zone_pcp_init(zone);
3846 for_each_lru(l) {
3847 INIT_LIST_HEAD(&zone->lru[l].list);
3848 zone->reclaim_stat.nr_saved_scan[l] = 0;
3849 }
3850 zone->reclaim_stat.recent_rotated[0] = 0;
3851 zone->reclaim_stat.recent_rotated[1] = 0;
3852 zone->reclaim_stat.recent_scanned[0] = 0;
3853 zone->reclaim_stat.recent_scanned[1] = 0;
3854 zap_zone_vm_stats(zone);
3855 zone->flags = 0;
3856 if (!size)
3857 continue;
3858
3859 set_pageblock_order(pageblock_default_order());
3860 setup_usemap(pgdat, zone, size);
3861 ret = init_currently_empty_zone(zone, zone_start_pfn,
3862 size, MEMMAP_EARLY);
3863 BUG_ON(ret);
3864 memmap_init(size, nid, j, zone_start_pfn);
3865 zone_start_pfn += size;
3866 }
3867 }
3868
3869 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3870 {
3871 /* Skip empty nodes */
3872 if (!pgdat->node_spanned_pages)
3873 return;
3874
3875 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3876 /* ia64 gets its own node_mem_map, before this, without bootmem */
3877 if (!pgdat->node_mem_map) {
3878 unsigned long size, start, end;
3879 struct page *map;
3880
3881 /*
3882 * The zone's endpoints aren't required to be MAX_ORDER
3883 * aligned but the node_mem_map endpoints must be in order
3884 * for the buddy allocator to function correctly.
3885 */
3886 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3887 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3888 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3889 size = (end - start) * sizeof(struct page);
3890 map = alloc_remap(pgdat->node_id, size);
3891 if (!map)
3892 map = alloc_bootmem_node(pgdat, size);
3893 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3894 }
3895 #ifndef CONFIG_NEED_MULTIPLE_NODES
3896 /*
3897 * With no DISCONTIG, the global mem_map is just set as node 0's
3898 */
3899 if (pgdat == NODE_DATA(0)) {
3900 mem_map = NODE_DATA(0)->node_mem_map;
3901 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3902 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3903 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3904 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3905 }
3906 #endif
3907 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3908 }
3909
3910 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3911 unsigned long node_start_pfn, unsigned long *zholes_size)
3912 {
3913 pg_data_t *pgdat = NODE_DATA(nid);
3914
3915 pgdat->node_id = nid;
3916 pgdat->node_start_pfn = node_start_pfn;
3917 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3918
3919 alloc_node_mem_map(pgdat);
3920 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3921 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3922 nid, (unsigned long)pgdat,
3923 (unsigned long)pgdat->node_mem_map);
3924 #endif
3925
3926 free_area_init_core(pgdat, zones_size, zholes_size);
3927 }
3928
3929 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3930
3931 #if MAX_NUMNODES > 1
3932 /*
3933 * Figure out the number of possible node ids.
3934 */
3935 static void __init setup_nr_node_ids(void)
3936 {
3937 unsigned int node;
3938 unsigned int highest = 0;
3939
3940 for_each_node_mask(node, node_possible_map)
3941 highest = node;
3942 nr_node_ids = highest + 1;
3943 }
3944 #else
3945 static inline void setup_nr_node_ids(void)
3946 {
3947 }
3948 #endif
3949
3950 /**
3951 * add_active_range - Register a range of PFNs backed by physical memory
3952 * @nid: The node ID the range resides on
3953 * @start_pfn: The start PFN of the available physical memory
3954 * @end_pfn: The end PFN of the available physical memory
3955 *
3956 * These ranges are stored in an early_node_map[] and later used by
3957 * free_area_init_nodes() to calculate zone sizes and holes. If the
3958 * range spans a memory hole, it is up to the architecture to ensure
3959 * the memory is not freed by the bootmem allocator. If possible
3960 * the range being registered will be merged with existing ranges.
3961 */
3962 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3963 unsigned long end_pfn)
3964 {
3965 int i;
3966
3967 mminit_dprintk(MMINIT_TRACE, "memory_register",
3968 "Entering add_active_range(%d, %#lx, %#lx) "
3969 "%d entries of %d used\n",
3970 nid, start_pfn, end_pfn,
3971 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3972
3973 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3974
3975 /* Merge with existing active regions if possible */
3976 for (i = 0; i < nr_nodemap_entries; i++) {
3977 if (early_node_map[i].nid != nid)
3978 continue;
3979
3980 /* Skip if an existing region covers this new one */
3981 if (start_pfn >= early_node_map[i].start_pfn &&
3982 end_pfn <= early_node_map[i].end_pfn)
3983 return;
3984
3985 /* Merge forward if suitable */
3986 if (start_pfn <= early_node_map[i].end_pfn &&
3987 end_pfn > early_node_map[i].end_pfn) {
3988 early_node_map[i].end_pfn = end_pfn;
3989 return;
3990 }
3991
3992 /* Merge backward if suitable */
3993 if (start_pfn < early_node_map[i].end_pfn &&
3994 end_pfn >= early_node_map[i].start_pfn) {
3995 early_node_map[i].start_pfn = start_pfn;
3996 return;
3997 }
3998 }
3999
4000 /* Check that early_node_map is large enough */
4001 if (i >= MAX_ACTIVE_REGIONS) {
4002 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4003 MAX_ACTIVE_REGIONS);
4004 return;
4005 }
4006
4007 early_node_map[i].nid = nid;
4008 early_node_map[i].start_pfn = start_pfn;
4009 early_node_map[i].end_pfn = end_pfn;
4010 nr_nodemap_entries = i + 1;
4011 }
4012
4013 /**
4014 * remove_active_range - Shrink an existing registered range of PFNs
4015 * @nid: The node id the range is on that should be shrunk
4016 * @start_pfn: The new PFN of the range
4017 * @end_pfn: The new PFN of the range
4018 *
4019 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4020 * The map is kept near the end physical page range that has already been
4021 * registered. This function allows an arch to shrink an existing registered
4022 * range.
4023 */
4024 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4025 unsigned long end_pfn)
4026 {
4027 int i, j;
4028 int removed = 0;
4029
4030 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4031 nid, start_pfn, end_pfn);
4032
4033 /* Find the old active region end and shrink */
4034 for_each_active_range_index_in_nid(i, nid) {
4035 if (early_node_map[i].start_pfn >= start_pfn &&
4036 early_node_map[i].end_pfn <= end_pfn) {
4037 /* clear it */
4038 early_node_map[i].start_pfn = 0;
4039 early_node_map[i].end_pfn = 0;
4040 removed = 1;
4041 continue;
4042 }
4043 if (early_node_map[i].start_pfn < start_pfn &&
4044 early_node_map[i].end_pfn > start_pfn) {
4045 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4046 early_node_map[i].end_pfn = start_pfn;
4047 if (temp_end_pfn > end_pfn)
4048 add_active_range(nid, end_pfn, temp_end_pfn);
4049 continue;
4050 }
4051 if (early_node_map[i].start_pfn >= start_pfn &&
4052 early_node_map[i].end_pfn > end_pfn &&
4053 early_node_map[i].start_pfn < end_pfn) {
4054 early_node_map[i].start_pfn = end_pfn;
4055 continue;
4056 }
4057 }
4058
4059 if (!removed)
4060 return;
4061
4062 /* remove the blank ones */
4063 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4064 if (early_node_map[i].nid != nid)
4065 continue;
4066 if (early_node_map[i].end_pfn)
4067 continue;
4068 /* we found it, get rid of it */
4069 for (j = i; j < nr_nodemap_entries - 1; j++)
4070 memcpy(&early_node_map[j], &early_node_map[j+1],
4071 sizeof(early_node_map[j]));
4072 j = nr_nodemap_entries - 1;
4073 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4074 nr_nodemap_entries--;
4075 }
4076 }
4077
4078 /**
4079 * remove_all_active_ranges - Remove all currently registered regions
4080 *
4081 * During discovery, it may be found that a table like SRAT is invalid
4082 * and an alternative discovery method must be used. This function removes
4083 * all currently registered regions.
4084 */
4085 void __init remove_all_active_ranges(void)
4086 {
4087 memset(early_node_map, 0, sizeof(early_node_map));
4088 nr_nodemap_entries = 0;
4089 }
4090
4091 /* Compare two active node_active_regions */
4092 static int __init cmp_node_active_region(const void *a, const void *b)
4093 {
4094 struct node_active_region *arange = (struct node_active_region *)a;
4095 struct node_active_region *brange = (struct node_active_region *)b;
4096
4097 /* Done this way to avoid overflows */
4098 if (arange->start_pfn > brange->start_pfn)
4099 return 1;
4100 if (arange->start_pfn < brange->start_pfn)
4101 return -1;
4102
4103 return 0;
4104 }
4105
4106 /* sort the node_map by start_pfn */
4107 static void __init sort_node_map(void)
4108 {
4109 sort(early_node_map, (size_t)nr_nodemap_entries,
4110 sizeof(struct node_active_region),
4111 cmp_node_active_region, NULL);
4112 }
4113
4114 /* Find the lowest pfn for a node */
4115 static unsigned long __init find_min_pfn_for_node(int nid)
4116 {
4117 int i;
4118 unsigned long min_pfn = ULONG_MAX;
4119
4120 /* Assuming a sorted map, the first range found has the starting pfn */
4121 for_each_active_range_index_in_nid(i, nid)
4122 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4123
4124 if (min_pfn == ULONG_MAX) {
4125 printk(KERN_WARNING
4126 "Could not find start_pfn for node %d\n", nid);
4127 return 0;
4128 }
4129
4130 return min_pfn;
4131 }
4132
4133 /**
4134 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4135 *
4136 * It returns the minimum PFN based on information provided via
4137 * add_active_range().
4138 */
4139 unsigned long __init find_min_pfn_with_active_regions(void)
4140 {
4141 return find_min_pfn_for_node(MAX_NUMNODES);
4142 }
4143
4144 /*
4145 * early_calculate_totalpages()
4146 * Sum pages in active regions for movable zone.
4147 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4148 */
4149 static unsigned long __init early_calculate_totalpages(void)
4150 {
4151 int i;
4152 unsigned long totalpages = 0;
4153
4154 for (i = 0; i < nr_nodemap_entries; i++) {
4155 unsigned long pages = early_node_map[i].end_pfn -
4156 early_node_map[i].start_pfn;
4157 totalpages += pages;
4158 if (pages)
4159 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4160 }
4161 return totalpages;
4162 }
4163
4164 /*
4165 * Find the PFN the Movable zone begins in each node. Kernel memory
4166 * is spread evenly between nodes as long as the nodes have enough
4167 * memory. When they don't, some nodes will have more kernelcore than
4168 * others
4169 */
4170 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4171 {
4172 int i, nid;
4173 unsigned long usable_startpfn;
4174 unsigned long kernelcore_node, kernelcore_remaining;
4175 /* save the state before borrow the nodemask */
4176 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4177 unsigned long totalpages = early_calculate_totalpages();
4178 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4179
4180 /*
4181 * If movablecore was specified, calculate what size of
4182 * kernelcore that corresponds so that memory usable for
4183 * any allocation type is evenly spread. If both kernelcore
4184 * and movablecore are specified, then the value of kernelcore
4185 * will be used for required_kernelcore if it's greater than
4186 * what movablecore would have allowed.
4187 */
4188 if (required_movablecore) {
4189 unsigned long corepages;
4190
4191 /*
4192 * Round-up so that ZONE_MOVABLE is at least as large as what
4193 * was requested by the user
4194 */
4195 required_movablecore =
4196 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4197 corepages = totalpages - required_movablecore;
4198
4199 required_kernelcore = max(required_kernelcore, corepages);
4200 }
4201
4202 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4203 if (!required_kernelcore)
4204 goto out;
4205
4206 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4207 find_usable_zone_for_movable();
4208 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4209
4210 restart:
4211 /* Spread kernelcore memory as evenly as possible throughout nodes */
4212 kernelcore_node = required_kernelcore / usable_nodes;
4213 for_each_node_state(nid, N_HIGH_MEMORY) {
4214 /*
4215 * Recalculate kernelcore_node if the division per node
4216 * now exceeds what is necessary to satisfy the requested
4217 * amount of memory for the kernel
4218 */
4219 if (required_kernelcore < kernelcore_node)
4220 kernelcore_node = required_kernelcore / usable_nodes;
4221
4222 /*
4223 * As the map is walked, we track how much memory is usable
4224 * by the kernel using kernelcore_remaining. When it is
4225 * 0, the rest of the node is usable by ZONE_MOVABLE
4226 */
4227 kernelcore_remaining = kernelcore_node;
4228
4229 /* Go through each range of PFNs within this node */
4230 for_each_active_range_index_in_nid(i, nid) {
4231 unsigned long start_pfn, end_pfn;
4232 unsigned long size_pages;
4233
4234 start_pfn = max(early_node_map[i].start_pfn,
4235 zone_movable_pfn[nid]);
4236 end_pfn = early_node_map[i].end_pfn;
4237 if (start_pfn >= end_pfn)
4238 continue;
4239
4240 /* Account for what is only usable for kernelcore */
4241 if (start_pfn < usable_startpfn) {
4242 unsigned long kernel_pages;
4243 kernel_pages = min(end_pfn, usable_startpfn)
4244 - start_pfn;
4245
4246 kernelcore_remaining -= min(kernel_pages,
4247 kernelcore_remaining);
4248 required_kernelcore -= min(kernel_pages,
4249 required_kernelcore);
4250
4251 /* Continue if range is now fully accounted */
4252 if (end_pfn <= usable_startpfn) {
4253
4254 /*
4255 * Push zone_movable_pfn to the end so
4256 * that if we have to rebalance
4257 * kernelcore across nodes, we will
4258 * not double account here
4259 */
4260 zone_movable_pfn[nid] = end_pfn;
4261 continue;
4262 }
4263 start_pfn = usable_startpfn;
4264 }
4265
4266 /*
4267 * The usable PFN range for ZONE_MOVABLE is from
4268 * start_pfn->end_pfn. Calculate size_pages as the
4269 * number of pages used as kernelcore
4270 */
4271 size_pages = end_pfn - start_pfn;
4272 if (size_pages > kernelcore_remaining)
4273 size_pages = kernelcore_remaining;
4274 zone_movable_pfn[nid] = start_pfn + size_pages;
4275
4276 /*
4277 * Some kernelcore has been met, update counts and
4278 * break if the kernelcore for this node has been
4279 * satisified
4280 */
4281 required_kernelcore -= min(required_kernelcore,
4282 size_pages);
4283 kernelcore_remaining -= size_pages;
4284 if (!kernelcore_remaining)
4285 break;
4286 }
4287 }
4288
4289 /*
4290 * If there is still required_kernelcore, we do another pass with one
4291 * less node in the count. This will push zone_movable_pfn[nid] further
4292 * along on the nodes that still have memory until kernelcore is
4293 * satisified
4294 */
4295 usable_nodes--;
4296 if (usable_nodes && required_kernelcore > usable_nodes)
4297 goto restart;
4298
4299 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4300 for (nid = 0; nid < MAX_NUMNODES; nid++)
4301 zone_movable_pfn[nid] =
4302 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4303
4304 out:
4305 /* restore the node_state */
4306 node_states[N_HIGH_MEMORY] = saved_node_state;
4307 }
4308
4309 /* Any regular memory on that node ? */
4310 static void check_for_regular_memory(pg_data_t *pgdat)
4311 {
4312 #ifdef CONFIG_HIGHMEM
4313 enum zone_type zone_type;
4314
4315 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4316 struct zone *zone = &pgdat->node_zones[zone_type];
4317 if (zone->present_pages)
4318 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4319 }
4320 #endif
4321 }
4322
4323 /**
4324 * free_area_init_nodes - Initialise all pg_data_t and zone data
4325 * @max_zone_pfn: an array of max PFNs for each zone
4326 *
4327 * This will call free_area_init_node() for each active node in the system.
4328 * Using the page ranges provided by add_active_range(), the size of each
4329 * zone in each node and their holes is calculated. If the maximum PFN
4330 * between two adjacent zones match, it is assumed that the zone is empty.
4331 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4332 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4333 * starts where the previous one ended. For example, ZONE_DMA32 starts
4334 * at arch_max_dma_pfn.
4335 */
4336 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4337 {
4338 unsigned long nid;
4339 int i;
4340
4341 /* Sort early_node_map as initialisation assumes it is sorted */
4342 sort_node_map();
4343
4344 /* Record where the zone boundaries are */
4345 memset(arch_zone_lowest_possible_pfn, 0,
4346 sizeof(arch_zone_lowest_possible_pfn));
4347 memset(arch_zone_highest_possible_pfn, 0,
4348 sizeof(arch_zone_highest_possible_pfn));
4349 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4350 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4351 for (i = 1; i < MAX_NR_ZONES; i++) {
4352 if (i == ZONE_MOVABLE)
4353 continue;
4354 arch_zone_lowest_possible_pfn[i] =
4355 arch_zone_highest_possible_pfn[i-1];
4356 arch_zone_highest_possible_pfn[i] =
4357 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4358 }
4359 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4360 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4361
4362 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4363 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4364 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4365
4366 /* Print out the zone ranges */
4367 printk("Zone PFN ranges:\n");
4368 for (i = 0; i < MAX_NR_ZONES; i++) {
4369 if (i == ZONE_MOVABLE)
4370 continue;
4371 printk(" %-8s %0#10lx -> %0#10lx\n",
4372 zone_names[i],
4373 arch_zone_lowest_possible_pfn[i],
4374 arch_zone_highest_possible_pfn[i]);
4375 }
4376
4377 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4378 printk("Movable zone start PFN for each node\n");
4379 for (i = 0; i < MAX_NUMNODES; i++) {
4380 if (zone_movable_pfn[i])
4381 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4382 }
4383
4384 /* Print out the early_node_map[] */
4385 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4386 for (i = 0; i < nr_nodemap_entries; i++)
4387 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4388 early_node_map[i].start_pfn,
4389 early_node_map[i].end_pfn);
4390
4391 /* Initialise every node */
4392 mminit_verify_pageflags_layout();
4393 setup_nr_node_ids();
4394 for_each_online_node(nid) {
4395 pg_data_t *pgdat = NODE_DATA(nid);
4396 free_area_init_node(nid, NULL,
4397 find_min_pfn_for_node(nid), NULL);
4398
4399 /* Any memory on that node */
4400 if (pgdat->node_present_pages)
4401 node_set_state(nid, N_HIGH_MEMORY);
4402 check_for_regular_memory(pgdat);
4403 }
4404 }
4405
4406 static int __init cmdline_parse_core(char *p, unsigned long *core)
4407 {
4408 unsigned long long coremem;
4409 if (!p)
4410 return -EINVAL;
4411
4412 coremem = memparse(p, &p);
4413 *core = coremem >> PAGE_SHIFT;
4414
4415 /* Paranoid check that UL is enough for the coremem value */
4416 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4417
4418 return 0;
4419 }
4420
4421 /*
4422 * kernelcore=size sets the amount of memory for use for allocations that
4423 * cannot be reclaimed or migrated.
4424 */
4425 static int __init cmdline_parse_kernelcore(char *p)
4426 {
4427 return cmdline_parse_core(p, &required_kernelcore);
4428 }
4429
4430 /*
4431 * movablecore=size sets the amount of memory for use for allocations that
4432 * can be reclaimed or migrated.
4433 */
4434 static int __init cmdline_parse_movablecore(char *p)
4435 {
4436 return cmdline_parse_core(p, &required_movablecore);
4437 }
4438
4439 early_param("kernelcore", cmdline_parse_kernelcore);
4440 early_param("movablecore", cmdline_parse_movablecore);
4441
4442 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4443
4444 /**
4445 * set_dma_reserve - set the specified number of pages reserved in the first zone
4446 * @new_dma_reserve: The number of pages to mark reserved
4447 *
4448 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4449 * In the DMA zone, a significant percentage may be consumed by kernel image
4450 * and other unfreeable allocations which can skew the watermarks badly. This
4451 * function may optionally be used to account for unfreeable pages in the
4452 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4453 * smaller per-cpu batchsize.
4454 */
4455 void __init set_dma_reserve(unsigned long new_dma_reserve)
4456 {
4457 dma_reserve = new_dma_reserve;
4458 }
4459
4460 #ifndef CONFIG_NEED_MULTIPLE_NODES
4461 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4462 EXPORT_SYMBOL(contig_page_data);
4463 #endif
4464
4465 void __init free_area_init(unsigned long *zones_size)
4466 {
4467 free_area_init_node(0, zones_size,
4468 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4469 }
4470
4471 static int page_alloc_cpu_notify(struct notifier_block *self,
4472 unsigned long action, void *hcpu)
4473 {
4474 int cpu = (unsigned long)hcpu;
4475
4476 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4477 drain_pages(cpu);
4478
4479 /*
4480 * Spill the event counters of the dead processor
4481 * into the current processors event counters.
4482 * This artificially elevates the count of the current
4483 * processor.
4484 */
4485 vm_events_fold_cpu(cpu);
4486
4487 /*
4488 * Zero the differential counters of the dead processor
4489 * so that the vm statistics are consistent.
4490 *
4491 * This is only okay since the processor is dead and cannot
4492 * race with what we are doing.
4493 */
4494 refresh_cpu_vm_stats(cpu);
4495 }
4496 return NOTIFY_OK;
4497 }
4498
4499 void __init page_alloc_init(void)
4500 {
4501 hotcpu_notifier(page_alloc_cpu_notify, 0);
4502 }
4503
4504 /*
4505 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4506 * or min_free_kbytes changes.
4507 */
4508 static void calculate_totalreserve_pages(void)
4509 {
4510 struct pglist_data *pgdat;
4511 unsigned long reserve_pages = 0;
4512 enum zone_type i, j;
4513
4514 for_each_online_pgdat(pgdat) {
4515 for (i = 0; i < MAX_NR_ZONES; i++) {
4516 struct zone *zone = pgdat->node_zones + i;
4517 unsigned long max = 0;
4518
4519 /* Find valid and maximum lowmem_reserve in the zone */
4520 for (j = i; j < MAX_NR_ZONES; j++) {
4521 if (zone->lowmem_reserve[j] > max)
4522 max = zone->lowmem_reserve[j];
4523 }
4524
4525 /* we treat the high watermark as reserved pages. */
4526 max += high_wmark_pages(zone);
4527
4528 if (max > zone->present_pages)
4529 max = zone->present_pages;
4530 reserve_pages += max;
4531 }
4532 }
4533 totalreserve_pages = reserve_pages;
4534 }
4535
4536 /*
4537 * setup_per_zone_lowmem_reserve - called whenever
4538 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4539 * has a correct pages reserved value, so an adequate number of
4540 * pages are left in the zone after a successful __alloc_pages().
4541 */
4542 static void setup_per_zone_lowmem_reserve(void)
4543 {
4544 struct pglist_data *pgdat;
4545 enum zone_type j, idx;
4546
4547 for_each_online_pgdat(pgdat) {
4548 for (j = 0; j < MAX_NR_ZONES; j++) {
4549 struct zone *zone = pgdat->node_zones + j;
4550 unsigned long present_pages = zone->present_pages;
4551
4552 zone->lowmem_reserve[j] = 0;
4553
4554 idx = j;
4555 while (idx) {
4556 struct zone *lower_zone;
4557
4558 idx--;
4559
4560 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4561 sysctl_lowmem_reserve_ratio[idx] = 1;
4562
4563 lower_zone = pgdat->node_zones + idx;
4564 lower_zone->lowmem_reserve[j] = present_pages /
4565 sysctl_lowmem_reserve_ratio[idx];
4566 present_pages += lower_zone->present_pages;
4567 }
4568 }
4569 }
4570
4571 /* update totalreserve_pages */
4572 calculate_totalreserve_pages();
4573 }
4574
4575 /**
4576 * setup_per_zone_wmarks - called when min_free_kbytes changes
4577 * or when memory is hot-{added|removed}
4578 *
4579 * Ensures that the watermark[min,low,high] values for each zone are set
4580 * correctly with respect to min_free_kbytes.
4581 */
4582 void setup_per_zone_wmarks(void)
4583 {
4584 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4585 unsigned long lowmem_pages = 0;
4586 struct zone *zone;
4587 unsigned long flags;
4588
4589 /* Calculate total number of !ZONE_HIGHMEM pages */
4590 for_each_zone(zone) {
4591 if (!is_highmem(zone))
4592 lowmem_pages += zone->present_pages;
4593 }
4594
4595 for_each_zone(zone) {
4596 u64 tmp;
4597
4598 spin_lock_irqsave(&zone->lock, flags);
4599 tmp = (u64)pages_min * zone->present_pages;
4600 do_div(tmp, lowmem_pages);
4601 if (is_highmem(zone)) {
4602 /*
4603 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4604 * need highmem pages, so cap pages_min to a small
4605 * value here.
4606 *
4607 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4608 * deltas controls asynch page reclaim, and so should
4609 * not be capped for highmem.
4610 */
4611 int min_pages;
4612
4613 min_pages = zone->present_pages / 1024;
4614 if (min_pages < SWAP_CLUSTER_MAX)
4615 min_pages = SWAP_CLUSTER_MAX;
4616 if (min_pages > 128)
4617 min_pages = 128;
4618 zone->watermark[WMARK_MIN] = min_pages;
4619 } else {
4620 /*
4621 * If it's a lowmem zone, reserve a number of pages
4622 * proportionate to the zone's size.
4623 */
4624 zone->watermark[WMARK_MIN] = tmp;
4625 }
4626
4627 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4628 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4629 setup_zone_migrate_reserve(zone);
4630 spin_unlock_irqrestore(&zone->lock, flags);
4631 }
4632
4633 /* update totalreserve_pages */
4634 calculate_totalreserve_pages();
4635 }
4636
4637 /*
4638 * The inactive anon list should be small enough that the VM never has to
4639 * do too much work, but large enough that each inactive page has a chance
4640 * to be referenced again before it is swapped out.
4641 *
4642 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4643 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4644 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4645 * the anonymous pages are kept on the inactive list.
4646 *
4647 * total target max
4648 * memory ratio inactive anon
4649 * -------------------------------------
4650 * 10MB 1 5MB
4651 * 100MB 1 50MB
4652 * 1GB 3 250MB
4653 * 10GB 10 0.9GB
4654 * 100GB 31 3GB
4655 * 1TB 101 10GB
4656 * 10TB 320 32GB
4657 */
4658 void calculate_zone_inactive_ratio(struct zone *zone)
4659 {
4660 unsigned int gb, ratio;
4661
4662 /* Zone size in gigabytes */
4663 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4664 if (gb)
4665 ratio = int_sqrt(10 * gb);
4666 else
4667 ratio = 1;
4668
4669 zone->inactive_ratio = ratio;
4670 }
4671
4672 static void __init setup_per_zone_inactive_ratio(void)
4673 {
4674 struct zone *zone;
4675
4676 for_each_zone(zone)
4677 calculate_zone_inactive_ratio(zone);
4678 }
4679
4680 /*
4681 * Initialise min_free_kbytes.
4682 *
4683 * For small machines we want it small (128k min). For large machines
4684 * we want it large (64MB max). But it is not linear, because network
4685 * bandwidth does not increase linearly with machine size. We use
4686 *
4687 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4688 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4689 *
4690 * which yields
4691 *
4692 * 16MB: 512k
4693 * 32MB: 724k
4694 * 64MB: 1024k
4695 * 128MB: 1448k
4696 * 256MB: 2048k
4697 * 512MB: 2896k
4698 * 1024MB: 4096k
4699 * 2048MB: 5792k
4700 * 4096MB: 8192k
4701 * 8192MB: 11584k
4702 * 16384MB: 16384k
4703 */
4704 static int __init init_per_zone_wmark_min(void)
4705 {
4706 unsigned long lowmem_kbytes;
4707
4708 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4709
4710 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4711 if (min_free_kbytes < 128)
4712 min_free_kbytes = 128;
4713 if (min_free_kbytes > 65536)
4714 min_free_kbytes = 65536;
4715 setup_per_zone_wmarks();
4716 setup_per_zone_lowmem_reserve();
4717 setup_per_zone_inactive_ratio();
4718 return 0;
4719 }
4720 module_init(init_per_zone_wmark_min)
4721
4722 /*
4723 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4724 * that we can call two helper functions whenever min_free_kbytes
4725 * changes.
4726 */
4727 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4728 void __user *buffer, size_t *length, loff_t *ppos)
4729 {
4730 proc_dointvec(table, write, buffer, length, ppos);
4731 if (write)
4732 setup_per_zone_wmarks();
4733 return 0;
4734 }
4735
4736 #ifdef CONFIG_NUMA
4737 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4738 void __user *buffer, size_t *length, loff_t *ppos)
4739 {
4740 struct zone *zone;
4741 int rc;
4742
4743 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4744 if (rc)
4745 return rc;
4746
4747 for_each_zone(zone)
4748 zone->min_unmapped_pages = (zone->present_pages *
4749 sysctl_min_unmapped_ratio) / 100;
4750 return 0;
4751 }
4752
4753 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4754 void __user *buffer, size_t *length, loff_t *ppos)
4755 {
4756 struct zone *zone;
4757 int rc;
4758
4759 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4760 if (rc)
4761 return rc;
4762
4763 for_each_zone(zone)
4764 zone->min_slab_pages = (zone->present_pages *
4765 sysctl_min_slab_ratio) / 100;
4766 return 0;
4767 }
4768 #endif
4769
4770 /*
4771 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4772 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4773 * whenever sysctl_lowmem_reserve_ratio changes.
4774 *
4775 * The reserve ratio obviously has absolutely no relation with the
4776 * minimum watermarks. The lowmem reserve ratio can only make sense
4777 * if in function of the boot time zone sizes.
4778 */
4779 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4780 void __user *buffer, size_t *length, loff_t *ppos)
4781 {
4782 proc_dointvec_minmax(table, write, buffer, length, ppos);
4783 setup_per_zone_lowmem_reserve();
4784 return 0;
4785 }
4786
4787 /*
4788 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4789 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4790 * can have before it gets flushed back to buddy allocator.
4791 */
4792
4793 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4794 void __user *buffer, size_t *length, loff_t *ppos)
4795 {
4796 struct zone *zone;
4797 unsigned int cpu;
4798 int ret;
4799
4800 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4801 if (!write || (ret == -EINVAL))
4802 return ret;
4803 for_each_populated_zone(zone) {
4804 for_each_online_cpu(cpu) {
4805 unsigned long high;
4806 high = zone->present_pages / percpu_pagelist_fraction;
4807 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4808 }
4809 }
4810 return 0;
4811 }
4812
4813 int hashdist = HASHDIST_DEFAULT;
4814
4815 #ifdef CONFIG_NUMA
4816 static int __init set_hashdist(char *str)
4817 {
4818 if (!str)
4819 return 0;
4820 hashdist = simple_strtoul(str, &str, 0);
4821 return 1;
4822 }
4823 __setup("hashdist=", set_hashdist);
4824 #endif
4825
4826 /*
4827 * allocate a large system hash table from bootmem
4828 * - it is assumed that the hash table must contain an exact power-of-2
4829 * quantity of entries
4830 * - limit is the number of hash buckets, not the total allocation size
4831 */
4832 void *__init alloc_large_system_hash(const char *tablename,
4833 unsigned long bucketsize,
4834 unsigned long numentries,
4835 int scale,
4836 int flags,
4837 unsigned int *_hash_shift,
4838 unsigned int *_hash_mask,
4839 unsigned long limit)
4840 {
4841 unsigned long long max = limit;
4842 unsigned long log2qty, size;
4843 void *table = NULL;
4844
4845 /* allow the kernel cmdline to have a say */
4846 if (!numentries) {
4847 /* round applicable memory size up to nearest megabyte */
4848 numentries = nr_kernel_pages;
4849 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4850 numentries >>= 20 - PAGE_SHIFT;
4851 numentries <<= 20 - PAGE_SHIFT;
4852
4853 /* limit to 1 bucket per 2^scale bytes of low memory */
4854 if (scale > PAGE_SHIFT)
4855 numentries >>= (scale - PAGE_SHIFT);
4856 else
4857 numentries <<= (PAGE_SHIFT - scale);
4858
4859 /* Make sure we've got at least a 0-order allocation.. */
4860 if (unlikely(flags & HASH_SMALL)) {
4861 /* Makes no sense without HASH_EARLY */
4862 WARN_ON(!(flags & HASH_EARLY));
4863 if (!(numentries >> *_hash_shift)) {
4864 numentries = 1UL << *_hash_shift;
4865 BUG_ON(!numentries);
4866 }
4867 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4868 numentries = PAGE_SIZE / bucketsize;
4869 }
4870 numentries = roundup_pow_of_two(numentries);
4871
4872 /* limit allocation size to 1/16 total memory by default */
4873 if (max == 0) {
4874 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4875 do_div(max, bucketsize);
4876 }
4877
4878 if (numentries > max)
4879 numentries = max;
4880
4881 log2qty = ilog2(numentries);
4882
4883 do {
4884 size = bucketsize << log2qty;
4885 if (flags & HASH_EARLY)
4886 table = alloc_bootmem_nopanic(size);
4887 else if (hashdist)
4888 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4889 else {
4890 /*
4891 * If bucketsize is not a power-of-two, we may free
4892 * some pages at the end of hash table which
4893 * alloc_pages_exact() automatically does
4894 */
4895 if (get_order(size) < MAX_ORDER) {
4896 table = alloc_pages_exact(size, GFP_ATOMIC);
4897 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4898 }
4899 }
4900 } while (!table && size > PAGE_SIZE && --log2qty);
4901
4902 if (!table)
4903 panic("Failed to allocate %s hash table\n", tablename);
4904
4905 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4906 tablename,
4907 (1U << log2qty),
4908 ilog2(size) - PAGE_SHIFT,
4909 size);
4910
4911 if (_hash_shift)
4912 *_hash_shift = log2qty;
4913 if (_hash_mask)
4914 *_hash_mask = (1 << log2qty) - 1;
4915
4916 return table;
4917 }
4918
4919 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4920 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4921 unsigned long pfn)
4922 {
4923 #ifdef CONFIG_SPARSEMEM
4924 return __pfn_to_section(pfn)->pageblock_flags;
4925 #else
4926 return zone->pageblock_flags;
4927 #endif /* CONFIG_SPARSEMEM */
4928 }
4929
4930 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4931 {
4932 #ifdef CONFIG_SPARSEMEM
4933 pfn &= (PAGES_PER_SECTION-1);
4934 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4935 #else
4936 pfn = pfn - zone->zone_start_pfn;
4937 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4938 #endif /* CONFIG_SPARSEMEM */
4939 }
4940
4941 /**
4942 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4943 * @page: The page within the block of interest
4944 * @start_bitidx: The first bit of interest to retrieve
4945 * @end_bitidx: The last bit of interest
4946 * returns pageblock_bits flags
4947 */
4948 unsigned long get_pageblock_flags_group(struct page *page,
4949 int start_bitidx, int end_bitidx)
4950 {
4951 struct zone *zone;
4952 unsigned long *bitmap;
4953 unsigned long pfn, bitidx;
4954 unsigned long flags = 0;
4955 unsigned long value = 1;
4956
4957 zone = page_zone(page);
4958 pfn = page_to_pfn(page);
4959 bitmap = get_pageblock_bitmap(zone, pfn);
4960 bitidx = pfn_to_bitidx(zone, pfn);
4961
4962 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4963 if (test_bit(bitidx + start_bitidx, bitmap))
4964 flags |= value;
4965
4966 return flags;
4967 }
4968
4969 /**
4970 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4971 * @page: The page within the block of interest
4972 * @start_bitidx: The first bit of interest
4973 * @end_bitidx: The last bit of interest
4974 * @flags: The flags to set
4975 */
4976 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4977 int start_bitidx, int end_bitidx)
4978 {
4979 struct zone *zone;
4980 unsigned long *bitmap;
4981 unsigned long pfn, bitidx;
4982 unsigned long value = 1;
4983
4984 zone = page_zone(page);
4985 pfn = page_to_pfn(page);
4986 bitmap = get_pageblock_bitmap(zone, pfn);
4987 bitidx = pfn_to_bitidx(zone, pfn);
4988 VM_BUG_ON(pfn < zone->zone_start_pfn);
4989 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4990
4991 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4992 if (flags & value)
4993 __set_bit(bitidx + start_bitidx, bitmap);
4994 else
4995 __clear_bit(bitidx + start_bitidx, bitmap);
4996 }
4997
4998 /*
4999 * This is designed as sub function...plz see page_isolation.c also.
5000 * set/clear page block's type to be ISOLATE.
5001 * page allocater never alloc memory from ISOLATE block.
5002 */
5003
5004 int set_migratetype_isolate(struct page *page)
5005 {
5006 struct zone *zone;
5007 unsigned long flags;
5008 int ret = -EBUSY;
5009 int zone_idx;
5010
5011 zone = page_zone(page);
5012 zone_idx = zone_idx(zone);
5013 spin_lock_irqsave(&zone->lock, flags);
5014 /*
5015 * In future, more migrate types will be able to be isolation target.
5016 */
5017 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
5018 zone_idx != ZONE_MOVABLE)
5019 goto out;
5020 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5021 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5022 ret = 0;
5023 out:
5024 spin_unlock_irqrestore(&zone->lock, flags);
5025 if (!ret)
5026 drain_all_pages();
5027 return ret;
5028 }
5029
5030 void unset_migratetype_isolate(struct page *page)
5031 {
5032 struct zone *zone;
5033 unsigned long flags;
5034 zone = page_zone(page);
5035 spin_lock_irqsave(&zone->lock, flags);
5036 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5037 goto out;
5038 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5039 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5040 out:
5041 spin_unlock_irqrestore(&zone->lock, flags);
5042 }
5043
5044 #ifdef CONFIG_MEMORY_HOTREMOVE
5045 /*
5046 * All pages in the range must be isolated before calling this.
5047 */
5048 void
5049 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5050 {
5051 struct page *page;
5052 struct zone *zone;
5053 int order, i;
5054 unsigned long pfn;
5055 unsigned long flags;
5056 /* find the first valid pfn */
5057 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5058 if (pfn_valid(pfn))
5059 break;
5060 if (pfn == end_pfn)
5061 return;
5062 zone = page_zone(pfn_to_page(pfn));
5063 spin_lock_irqsave(&zone->lock, flags);
5064 pfn = start_pfn;
5065 while (pfn < end_pfn) {
5066 if (!pfn_valid(pfn)) {
5067 pfn++;
5068 continue;
5069 }
5070 page = pfn_to_page(pfn);
5071 BUG_ON(page_count(page));
5072 BUG_ON(!PageBuddy(page));
5073 order = page_order(page);
5074 #ifdef CONFIG_DEBUG_VM
5075 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5076 pfn, 1 << order, end_pfn);
5077 #endif
5078 list_del(&page->lru);
5079 rmv_page_order(page);
5080 zone->free_area[order].nr_free--;
5081 __mod_zone_page_state(zone, NR_FREE_PAGES,
5082 - (1UL << order));
5083 for (i = 0; i < (1 << order); i++)
5084 SetPageReserved((page+i));
5085 pfn += (1 << order);
5086 }
5087 spin_unlock_irqrestore(&zone->lock, flags);
5088 }
5089 #endif
This page took 0.156247 seconds and 5 git commands to generate.