mm/memory-hotplug: fix lowmem count overflow when offline pages
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70
71 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
72 DEFINE_PER_CPU(int, numa_node);
73 EXPORT_PER_CPU_SYMBOL(numa_node);
74 #endif
75
76 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
77 /*
78 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
79 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
80 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
81 * defined in <linux/topology.h>.
82 */
83 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
84 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
85 #endif
86
87 /*
88 * Array of node states.
89 */
90 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
91 [N_POSSIBLE] = NODE_MASK_ALL,
92 [N_ONLINE] = { { [0] = 1UL } },
93 #ifndef CONFIG_NUMA
94 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
95 #ifdef CONFIG_HIGHMEM
96 [N_HIGH_MEMORY] = { { [0] = 1UL } },
97 #endif
98 #ifdef CONFIG_MOVABLE_NODE
99 [N_MEMORY] = { { [0] = 1UL } },
100 #endif
101 [N_CPU] = { { [0] = 1UL } },
102 #endif /* NUMA */
103 };
104 EXPORT_SYMBOL(node_states);
105
106 unsigned long totalram_pages __read_mostly;
107 unsigned long totalreserve_pages __read_mostly;
108 /*
109 * When calculating the number of globally allowed dirty pages, there
110 * is a certain number of per-zone reserves that should not be
111 * considered dirtyable memory. This is the sum of those reserves
112 * over all existing zones that contribute dirtyable memory.
113 */
114 unsigned long dirty_balance_reserve __read_mostly;
115
116 int percpu_pagelist_fraction;
117 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
118
119 #ifdef CONFIG_PM_SLEEP
120 /*
121 * The following functions are used by the suspend/hibernate code to temporarily
122 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
123 * while devices are suspended. To avoid races with the suspend/hibernate code,
124 * they should always be called with pm_mutex held (gfp_allowed_mask also should
125 * only be modified with pm_mutex held, unless the suspend/hibernate code is
126 * guaranteed not to run in parallel with that modification).
127 */
128
129 static gfp_t saved_gfp_mask;
130
131 void pm_restore_gfp_mask(void)
132 {
133 WARN_ON(!mutex_is_locked(&pm_mutex));
134 if (saved_gfp_mask) {
135 gfp_allowed_mask = saved_gfp_mask;
136 saved_gfp_mask = 0;
137 }
138 }
139
140 void pm_restrict_gfp_mask(void)
141 {
142 WARN_ON(!mutex_is_locked(&pm_mutex));
143 WARN_ON(saved_gfp_mask);
144 saved_gfp_mask = gfp_allowed_mask;
145 gfp_allowed_mask &= ~GFP_IOFS;
146 }
147
148 bool pm_suspended_storage(void)
149 {
150 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
151 return false;
152 return true;
153 }
154 #endif /* CONFIG_PM_SLEEP */
155
156 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
157 int pageblock_order __read_mostly;
158 #endif
159
160 static void __free_pages_ok(struct page *page, unsigned int order);
161
162 /*
163 * results with 256, 32 in the lowmem_reserve sysctl:
164 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
165 * 1G machine -> (16M dma, 784M normal, 224M high)
166 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
167 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
168 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
169 *
170 * TBD: should special case ZONE_DMA32 machines here - in those we normally
171 * don't need any ZONE_NORMAL reservation
172 */
173 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
174 #ifdef CONFIG_ZONE_DMA
175 256,
176 #endif
177 #ifdef CONFIG_ZONE_DMA32
178 256,
179 #endif
180 #ifdef CONFIG_HIGHMEM
181 32,
182 #endif
183 32,
184 };
185
186 EXPORT_SYMBOL(totalram_pages);
187
188 static char * const zone_names[MAX_NR_ZONES] = {
189 #ifdef CONFIG_ZONE_DMA
190 "DMA",
191 #endif
192 #ifdef CONFIG_ZONE_DMA32
193 "DMA32",
194 #endif
195 "Normal",
196 #ifdef CONFIG_HIGHMEM
197 "HighMem",
198 #endif
199 "Movable",
200 };
201
202 int min_free_kbytes = 1024;
203
204 static unsigned long __meminitdata nr_kernel_pages;
205 static unsigned long __meminitdata nr_all_pages;
206 static unsigned long __meminitdata dma_reserve;
207
208 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
209 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
210 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
211 static unsigned long __initdata required_kernelcore;
212 static unsigned long __initdata required_movablecore;
213 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
214
215 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
216 int movable_zone;
217 EXPORT_SYMBOL(movable_zone);
218 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
219
220 #if MAX_NUMNODES > 1
221 int nr_node_ids __read_mostly = MAX_NUMNODES;
222 int nr_online_nodes __read_mostly = 1;
223 EXPORT_SYMBOL(nr_node_ids);
224 EXPORT_SYMBOL(nr_online_nodes);
225 #endif
226
227 int page_group_by_mobility_disabled __read_mostly;
228
229 void set_pageblock_migratetype(struct page *page, int migratetype)
230 {
231
232 if (unlikely(page_group_by_mobility_disabled))
233 migratetype = MIGRATE_UNMOVABLE;
234
235 set_pageblock_flags_group(page, (unsigned long)migratetype,
236 PB_migrate, PB_migrate_end);
237 }
238
239 bool oom_killer_disabled __read_mostly;
240
241 #ifdef CONFIG_DEBUG_VM
242 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
243 {
244 int ret = 0;
245 unsigned seq;
246 unsigned long pfn = page_to_pfn(page);
247 unsigned long sp, start_pfn;
248
249 do {
250 seq = zone_span_seqbegin(zone);
251 start_pfn = zone->zone_start_pfn;
252 sp = zone->spanned_pages;
253 if (!zone_spans_pfn(zone, pfn))
254 ret = 1;
255 } while (zone_span_seqretry(zone, seq));
256
257 if (ret)
258 pr_err("page %lu outside zone [ %lu - %lu ]\n",
259 pfn, start_pfn, start_pfn + sp);
260
261 return ret;
262 }
263
264 static int page_is_consistent(struct zone *zone, struct page *page)
265 {
266 if (!pfn_valid_within(page_to_pfn(page)))
267 return 0;
268 if (zone != page_zone(page))
269 return 0;
270
271 return 1;
272 }
273 /*
274 * Temporary debugging check for pages not lying within a given zone.
275 */
276 static int bad_range(struct zone *zone, struct page *page)
277 {
278 if (page_outside_zone_boundaries(zone, page))
279 return 1;
280 if (!page_is_consistent(zone, page))
281 return 1;
282
283 return 0;
284 }
285 #else
286 static inline int bad_range(struct zone *zone, struct page *page)
287 {
288 return 0;
289 }
290 #endif
291
292 static void bad_page(struct page *page)
293 {
294 static unsigned long resume;
295 static unsigned long nr_shown;
296 static unsigned long nr_unshown;
297
298 /* Don't complain about poisoned pages */
299 if (PageHWPoison(page)) {
300 page_mapcount_reset(page); /* remove PageBuddy */
301 return;
302 }
303
304 /*
305 * Allow a burst of 60 reports, then keep quiet for that minute;
306 * or allow a steady drip of one report per second.
307 */
308 if (nr_shown == 60) {
309 if (time_before(jiffies, resume)) {
310 nr_unshown++;
311 goto out;
312 }
313 if (nr_unshown) {
314 printk(KERN_ALERT
315 "BUG: Bad page state: %lu messages suppressed\n",
316 nr_unshown);
317 nr_unshown = 0;
318 }
319 nr_shown = 0;
320 }
321 if (nr_shown++ == 0)
322 resume = jiffies + 60 * HZ;
323
324 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
325 current->comm, page_to_pfn(page));
326 dump_page(page);
327
328 print_modules();
329 dump_stack();
330 out:
331 /* Leave bad fields for debug, except PageBuddy could make trouble */
332 page_mapcount_reset(page); /* remove PageBuddy */
333 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
334 }
335
336 /*
337 * Higher-order pages are called "compound pages". They are structured thusly:
338 *
339 * The first PAGE_SIZE page is called the "head page".
340 *
341 * The remaining PAGE_SIZE pages are called "tail pages".
342 *
343 * All pages have PG_compound set. All tail pages have their ->first_page
344 * pointing at the head page.
345 *
346 * The first tail page's ->lru.next holds the address of the compound page's
347 * put_page() function. Its ->lru.prev holds the order of allocation.
348 * This usage means that zero-order pages may not be compound.
349 */
350
351 static void free_compound_page(struct page *page)
352 {
353 __free_pages_ok(page, compound_order(page));
354 }
355
356 void prep_compound_page(struct page *page, unsigned long order)
357 {
358 int i;
359 int nr_pages = 1 << order;
360
361 set_compound_page_dtor(page, free_compound_page);
362 set_compound_order(page, order);
363 __SetPageHead(page);
364 for (i = 1; i < nr_pages; i++) {
365 struct page *p = page + i;
366 __SetPageTail(p);
367 set_page_count(p, 0);
368 p->first_page = page;
369 }
370 }
371
372 /* update __split_huge_page_refcount if you change this function */
373 static int destroy_compound_page(struct page *page, unsigned long order)
374 {
375 int i;
376 int nr_pages = 1 << order;
377 int bad = 0;
378
379 if (unlikely(compound_order(page) != order)) {
380 bad_page(page);
381 bad++;
382 }
383
384 __ClearPageHead(page);
385
386 for (i = 1; i < nr_pages; i++) {
387 struct page *p = page + i;
388
389 if (unlikely(!PageTail(p) || (p->first_page != page))) {
390 bad_page(page);
391 bad++;
392 }
393 __ClearPageTail(p);
394 }
395
396 return bad;
397 }
398
399 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
400 {
401 int i;
402
403 /*
404 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
405 * and __GFP_HIGHMEM from hard or soft interrupt context.
406 */
407 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
408 for (i = 0; i < (1 << order); i++)
409 clear_highpage(page + i);
410 }
411
412 #ifdef CONFIG_DEBUG_PAGEALLOC
413 unsigned int _debug_guardpage_minorder;
414
415 static int __init debug_guardpage_minorder_setup(char *buf)
416 {
417 unsigned long res;
418
419 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
420 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
421 return 0;
422 }
423 _debug_guardpage_minorder = res;
424 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
425 return 0;
426 }
427 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
428
429 static inline void set_page_guard_flag(struct page *page)
430 {
431 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
432 }
433
434 static inline void clear_page_guard_flag(struct page *page)
435 {
436 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
437 }
438 #else
439 static inline void set_page_guard_flag(struct page *page) { }
440 static inline void clear_page_guard_flag(struct page *page) { }
441 #endif
442
443 static inline void set_page_order(struct page *page, int order)
444 {
445 set_page_private(page, order);
446 __SetPageBuddy(page);
447 }
448
449 static inline void rmv_page_order(struct page *page)
450 {
451 __ClearPageBuddy(page);
452 set_page_private(page, 0);
453 }
454
455 /*
456 * Locate the struct page for both the matching buddy in our
457 * pair (buddy1) and the combined O(n+1) page they form (page).
458 *
459 * 1) Any buddy B1 will have an order O twin B2 which satisfies
460 * the following equation:
461 * B2 = B1 ^ (1 << O)
462 * For example, if the starting buddy (buddy2) is #8 its order
463 * 1 buddy is #10:
464 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
465 *
466 * 2) Any buddy B will have an order O+1 parent P which
467 * satisfies the following equation:
468 * P = B & ~(1 << O)
469 *
470 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
471 */
472 static inline unsigned long
473 __find_buddy_index(unsigned long page_idx, unsigned int order)
474 {
475 return page_idx ^ (1 << order);
476 }
477
478 /*
479 * This function checks whether a page is free && is the buddy
480 * we can do coalesce a page and its buddy if
481 * (a) the buddy is not in a hole &&
482 * (b) the buddy is in the buddy system &&
483 * (c) a page and its buddy have the same order &&
484 * (d) a page and its buddy are in the same zone.
485 *
486 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
487 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
488 *
489 * For recording page's order, we use page_private(page).
490 */
491 static inline int page_is_buddy(struct page *page, struct page *buddy,
492 int order)
493 {
494 if (!pfn_valid_within(page_to_pfn(buddy)))
495 return 0;
496
497 if (page_zone_id(page) != page_zone_id(buddy))
498 return 0;
499
500 if (page_is_guard(buddy) && page_order(buddy) == order) {
501 VM_BUG_ON(page_count(buddy) != 0);
502 return 1;
503 }
504
505 if (PageBuddy(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
507 return 1;
508 }
509 return 0;
510 }
511
512 /*
513 * Freeing function for a buddy system allocator.
514 *
515 * The concept of a buddy system is to maintain direct-mapped table
516 * (containing bit values) for memory blocks of various "orders".
517 * The bottom level table contains the map for the smallest allocatable
518 * units of memory (here, pages), and each level above it describes
519 * pairs of units from the levels below, hence, "buddies".
520 * At a high level, all that happens here is marking the table entry
521 * at the bottom level available, and propagating the changes upward
522 * as necessary, plus some accounting needed to play nicely with other
523 * parts of the VM system.
524 * At each level, we keep a list of pages, which are heads of continuous
525 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
526 * order is recorded in page_private(page) field.
527 * So when we are allocating or freeing one, we can derive the state of the
528 * other. That is, if we allocate a small block, and both were
529 * free, the remainder of the region must be split into blocks.
530 * If a block is freed, and its buddy is also free, then this
531 * triggers coalescing into a block of larger size.
532 *
533 * -- nyc
534 */
535
536 static inline void __free_one_page(struct page *page,
537 struct zone *zone, unsigned int order,
538 int migratetype)
539 {
540 unsigned long page_idx;
541 unsigned long combined_idx;
542 unsigned long uninitialized_var(buddy_idx);
543 struct page *buddy;
544
545 VM_BUG_ON(!zone_is_initialized(zone));
546
547 if (unlikely(PageCompound(page)))
548 if (unlikely(destroy_compound_page(page, order)))
549 return;
550
551 VM_BUG_ON(migratetype == -1);
552
553 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
554
555 VM_BUG_ON(page_idx & ((1 << order) - 1));
556 VM_BUG_ON(bad_range(zone, page));
557
558 while (order < MAX_ORDER-1) {
559 buddy_idx = __find_buddy_index(page_idx, order);
560 buddy = page + (buddy_idx - page_idx);
561 if (!page_is_buddy(page, buddy, order))
562 break;
563 /*
564 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
565 * merge with it and move up one order.
566 */
567 if (page_is_guard(buddy)) {
568 clear_page_guard_flag(buddy);
569 set_page_private(page, 0);
570 __mod_zone_freepage_state(zone, 1 << order,
571 migratetype);
572 } else {
573 list_del(&buddy->lru);
574 zone->free_area[order].nr_free--;
575 rmv_page_order(buddy);
576 }
577 combined_idx = buddy_idx & page_idx;
578 page = page + (combined_idx - page_idx);
579 page_idx = combined_idx;
580 order++;
581 }
582 set_page_order(page, order);
583
584 /*
585 * If this is not the largest possible page, check if the buddy
586 * of the next-highest order is free. If it is, it's possible
587 * that pages are being freed that will coalesce soon. In case,
588 * that is happening, add the free page to the tail of the list
589 * so it's less likely to be used soon and more likely to be merged
590 * as a higher order page
591 */
592 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
593 struct page *higher_page, *higher_buddy;
594 combined_idx = buddy_idx & page_idx;
595 higher_page = page + (combined_idx - page_idx);
596 buddy_idx = __find_buddy_index(combined_idx, order + 1);
597 higher_buddy = higher_page + (buddy_idx - combined_idx);
598 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
599 list_add_tail(&page->lru,
600 &zone->free_area[order].free_list[migratetype]);
601 goto out;
602 }
603 }
604
605 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
606 out:
607 zone->free_area[order].nr_free++;
608 }
609
610 static inline int free_pages_check(struct page *page)
611 {
612 if (unlikely(page_mapcount(page) |
613 (page->mapping != NULL) |
614 (atomic_read(&page->_count) != 0) |
615 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
616 (mem_cgroup_bad_page_check(page)))) {
617 bad_page(page);
618 return 1;
619 }
620 page_nid_reset_last(page);
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
624 }
625
626 /*
627 * Frees a number of pages from the PCP lists
628 * Assumes all pages on list are in same zone, and of same order.
629 * count is the number of pages to free.
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
637 static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
639 {
640 int migratetype = 0;
641 int batch_free = 0;
642 int to_free = count;
643
644 spin_lock(&zone->lock);
645 zone->all_unreclaimable = 0;
646 zone->pages_scanned = 0;
647
648 while (to_free) {
649 struct page *page;
650 struct list_head *list;
651
652 /*
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
658 */
659 do {
660 batch_free++;
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
665
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
670 do {
671 int mt; /* migratetype of the to-be-freed page */
672
673 page = list_entry(list->prev, struct page, lru);
674 /* must delete as __free_one_page list manipulates */
675 list_del(&page->lru);
676 mt = get_freepage_migratetype(page);
677 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
678 __free_one_page(page, zone, 0, mt);
679 trace_mm_page_pcpu_drain(page, 0, mt);
680 if (likely(!is_migrate_isolate_page(page))) {
681 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
682 if (is_migrate_cma(mt))
683 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
684 }
685 } while (--to_free && --batch_free && !list_empty(list));
686 }
687 spin_unlock(&zone->lock);
688 }
689
690 static void free_one_page(struct zone *zone, struct page *page, int order,
691 int migratetype)
692 {
693 spin_lock(&zone->lock);
694 zone->all_unreclaimable = 0;
695 zone->pages_scanned = 0;
696
697 __free_one_page(page, zone, order, migratetype);
698 if (unlikely(!is_migrate_isolate(migratetype)))
699 __mod_zone_freepage_state(zone, 1 << order, migratetype);
700 spin_unlock(&zone->lock);
701 }
702
703 static bool free_pages_prepare(struct page *page, unsigned int order)
704 {
705 int i;
706 int bad = 0;
707
708 trace_mm_page_free(page, order);
709 kmemcheck_free_shadow(page, order);
710
711 if (PageAnon(page))
712 page->mapping = NULL;
713 for (i = 0; i < (1 << order); i++)
714 bad += free_pages_check(page + i);
715 if (bad)
716 return false;
717
718 if (!PageHighMem(page)) {
719 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
720 debug_check_no_obj_freed(page_address(page),
721 PAGE_SIZE << order);
722 }
723 arch_free_page(page, order);
724 kernel_map_pages(page, 1 << order, 0);
725
726 return true;
727 }
728
729 static void __free_pages_ok(struct page *page, unsigned int order)
730 {
731 unsigned long flags;
732 int migratetype;
733
734 if (!free_pages_prepare(page, order))
735 return;
736
737 local_irq_save(flags);
738 __count_vm_events(PGFREE, 1 << order);
739 migratetype = get_pageblock_migratetype(page);
740 set_freepage_migratetype(page, migratetype);
741 free_one_page(page_zone(page), page, order, migratetype);
742 local_irq_restore(flags);
743 }
744
745 /*
746 * Read access to zone->managed_pages is safe because it's unsigned long,
747 * but we still need to serialize writers. Currently all callers of
748 * __free_pages_bootmem() except put_page_bootmem() should only be used
749 * at boot time. So for shorter boot time, we shift the burden to
750 * put_page_bootmem() to serialize writers.
751 */
752 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
753 {
754 unsigned int nr_pages = 1 << order;
755 unsigned int loop;
756
757 prefetchw(page);
758 for (loop = 0; loop < nr_pages; loop++) {
759 struct page *p = &page[loop];
760
761 if (loop + 1 < nr_pages)
762 prefetchw(p + 1);
763 __ClearPageReserved(p);
764 set_page_count(p, 0);
765 }
766
767 page_zone(page)->managed_pages += 1 << order;
768 set_page_refcounted(page);
769 __free_pages(page, order);
770 }
771
772 #ifdef CONFIG_CMA
773 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
774 void __init init_cma_reserved_pageblock(struct page *page)
775 {
776 unsigned i = pageblock_nr_pages;
777 struct page *p = page;
778
779 do {
780 __ClearPageReserved(p);
781 set_page_count(p, 0);
782 } while (++p, --i);
783
784 set_page_refcounted(page);
785 set_pageblock_migratetype(page, MIGRATE_CMA);
786 __free_pages(page, pageblock_order);
787 totalram_pages += pageblock_nr_pages;
788 #ifdef CONFIG_HIGHMEM
789 if (PageHighMem(page))
790 totalhigh_pages += pageblock_nr_pages;
791 #endif
792 }
793 #endif
794
795 /*
796 * The order of subdivision here is critical for the IO subsystem.
797 * Please do not alter this order without good reasons and regression
798 * testing. Specifically, as large blocks of memory are subdivided,
799 * the order in which smaller blocks are delivered depends on the order
800 * they're subdivided in this function. This is the primary factor
801 * influencing the order in which pages are delivered to the IO
802 * subsystem according to empirical testing, and this is also justified
803 * by considering the behavior of a buddy system containing a single
804 * large block of memory acted on by a series of small allocations.
805 * This behavior is a critical factor in sglist merging's success.
806 *
807 * -- nyc
808 */
809 static inline void expand(struct zone *zone, struct page *page,
810 int low, int high, struct free_area *area,
811 int migratetype)
812 {
813 unsigned long size = 1 << high;
814
815 while (high > low) {
816 area--;
817 high--;
818 size >>= 1;
819 VM_BUG_ON(bad_range(zone, &page[size]));
820
821 #ifdef CONFIG_DEBUG_PAGEALLOC
822 if (high < debug_guardpage_minorder()) {
823 /*
824 * Mark as guard pages (or page), that will allow to
825 * merge back to allocator when buddy will be freed.
826 * Corresponding page table entries will not be touched,
827 * pages will stay not present in virtual address space
828 */
829 INIT_LIST_HEAD(&page[size].lru);
830 set_page_guard_flag(&page[size]);
831 set_page_private(&page[size], high);
832 /* Guard pages are not available for any usage */
833 __mod_zone_freepage_state(zone, -(1 << high),
834 migratetype);
835 continue;
836 }
837 #endif
838 list_add(&page[size].lru, &area->free_list[migratetype]);
839 area->nr_free++;
840 set_page_order(&page[size], high);
841 }
842 }
843
844 /*
845 * This page is about to be returned from the page allocator
846 */
847 static inline int check_new_page(struct page *page)
848 {
849 if (unlikely(page_mapcount(page) |
850 (page->mapping != NULL) |
851 (atomic_read(&page->_count) != 0) |
852 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
853 (mem_cgroup_bad_page_check(page)))) {
854 bad_page(page);
855 return 1;
856 }
857 return 0;
858 }
859
860 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
861 {
862 int i;
863
864 for (i = 0; i < (1 << order); i++) {
865 struct page *p = page + i;
866 if (unlikely(check_new_page(p)))
867 return 1;
868 }
869
870 set_page_private(page, 0);
871 set_page_refcounted(page);
872
873 arch_alloc_page(page, order);
874 kernel_map_pages(page, 1 << order, 1);
875
876 if (gfp_flags & __GFP_ZERO)
877 prep_zero_page(page, order, gfp_flags);
878
879 if (order && (gfp_flags & __GFP_COMP))
880 prep_compound_page(page, order);
881
882 return 0;
883 }
884
885 /*
886 * Go through the free lists for the given migratetype and remove
887 * the smallest available page from the freelists
888 */
889 static inline
890 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
891 int migratetype)
892 {
893 unsigned int current_order;
894 struct free_area * area;
895 struct page *page;
896
897 /* Find a page of the appropriate size in the preferred list */
898 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
899 area = &(zone->free_area[current_order]);
900 if (list_empty(&area->free_list[migratetype]))
901 continue;
902
903 page = list_entry(area->free_list[migratetype].next,
904 struct page, lru);
905 list_del(&page->lru);
906 rmv_page_order(page);
907 area->nr_free--;
908 expand(zone, page, order, current_order, area, migratetype);
909 return page;
910 }
911
912 return NULL;
913 }
914
915
916 /*
917 * This array describes the order lists are fallen back to when
918 * the free lists for the desirable migrate type are depleted
919 */
920 static int fallbacks[MIGRATE_TYPES][4] = {
921 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
923 #ifdef CONFIG_CMA
924 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
926 #else
927 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
928 #endif
929 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
930 #ifdef CONFIG_MEMORY_ISOLATION
931 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
932 #endif
933 };
934
935 /*
936 * Move the free pages in a range to the free lists of the requested type.
937 * Note that start_page and end_pages are not aligned on a pageblock
938 * boundary. If alignment is required, use move_freepages_block()
939 */
940 int move_freepages(struct zone *zone,
941 struct page *start_page, struct page *end_page,
942 int migratetype)
943 {
944 struct page *page;
945 unsigned long order;
946 int pages_moved = 0;
947
948 #ifndef CONFIG_HOLES_IN_ZONE
949 /*
950 * page_zone is not safe to call in this context when
951 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
952 * anyway as we check zone boundaries in move_freepages_block().
953 * Remove at a later date when no bug reports exist related to
954 * grouping pages by mobility
955 */
956 BUG_ON(page_zone(start_page) != page_zone(end_page));
957 #endif
958
959 for (page = start_page; page <= end_page;) {
960 /* Make sure we are not inadvertently changing nodes */
961 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
962
963 if (!pfn_valid_within(page_to_pfn(page))) {
964 page++;
965 continue;
966 }
967
968 if (!PageBuddy(page)) {
969 page++;
970 continue;
971 }
972
973 order = page_order(page);
974 list_move(&page->lru,
975 &zone->free_area[order].free_list[migratetype]);
976 set_freepage_migratetype(page, migratetype);
977 page += 1 << order;
978 pages_moved += 1 << order;
979 }
980
981 return pages_moved;
982 }
983
984 int move_freepages_block(struct zone *zone, struct page *page,
985 int migratetype)
986 {
987 unsigned long start_pfn, end_pfn;
988 struct page *start_page, *end_page;
989
990 start_pfn = page_to_pfn(page);
991 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
992 start_page = pfn_to_page(start_pfn);
993 end_page = start_page + pageblock_nr_pages - 1;
994 end_pfn = start_pfn + pageblock_nr_pages - 1;
995
996 /* Do not cross zone boundaries */
997 if (!zone_spans_pfn(zone, start_pfn))
998 start_page = page;
999 if (!zone_spans_pfn(zone, end_pfn))
1000 return 0;
1001
1002 return move_freepages(zone, start_page, end_page, migratetype);
1003 }
1004
1005 static void change_pageblock_range(struct page *pageblock_page,
1006 int start_order, int migratetype)
1007 {
1008 int nr_pageblocks = 1 << (start_order - pageblock_order);
1009
1010 while (nr_pageblocks--) {
1011 set_pageblock_migratetype(pageblock_page, migratetype);
1012 pageblock_page += pageblock_nr_pages;
1013 }
1014 }
1015
1016 /* Remove an element from the buddy allocator from the fallback list */
1017 static inline struct page *
1018 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1019 {
1020 struct free_area * area;
1021 int current_order;
1022 struct page *page;
1023 int migratetype, i;
1024
1025 /* Find the largest possible block of pages in the other list */
1026 for (current_order = MAX_ORDER-1; current_order >= order;
1027 --current_order) {
1028 for (i = 0;; i++) {
1029 migratetype = fallbacks[start_migratetype][i];
1030
1031 /* MIGRATE_RESERVE handled later if necessary */
1032 if (migratetype == MIGRATE_RESERVE)
1033 break;
1034
1035 area = &(zone->free_area[current_order]);
1036 if (list_empty(&area->free_list[migratetype]))
1037 continue;
1038
1039 page = list_entry(area->free_list[migratetype].next,
1040 struct page, lru);
1041 area->nr_free--;
1042
1043 /*
1044 * If breaking a large block of pages, move all free
1045 * pages to the preferred allocation list. If falling
1046 * back for a reclaimable kernel allocation, be more
1047 * aggressive about taking ownership of free pages
1048 *
1049 * On the other hand, never change migration
1050 * type of MIGRATE_CMA pageblocks nor move CMA
1051 * pages on different free lists. We don't
1052 * want unmovable pages to be allocated from
1053 * MIGRATE_CMA areas.
1054 */
1055 if (!is_migrate_cma(migratetype) &&
1056 (unlikely(current_order >= pageblock_order / 2) ||
1057 start_migratetype == MIGRATE_RECLAIMABLE ||
1058 page_group_by_mobility_disabled)) {
1059 int pages;
1060 pages = move_freepages_block(zone, page,
1061 start_migratetype);
1062
1063 /* Claim the whole block if over half of it is free */
1064 if (pages >= (1 << (pageblock_order-1)) ||
1065 page_group_by_mobility_disabled)
1066 set_pageblock_migratetype(page,
1067 start_migratetype);
1068
1069 migratetype = start_migratetype;
1070 }
1071
1072 /* Remove the page from the freelists */
1073 list_del(&page->lru);
1074 rmv_page_order(page);
1075
1076 /* Take ownership for orders >= pageblock_order */
1077 if (current_order >= pageblock_order &&
1078 !is_migrate_cma(migratetype))
1079 change_pageblock_range(page, current_order,
1080 start_migratetype);
1081
1082 expand(zone, page, order, current_order, area,
1083 is_migrate_cma(migratetype)
1084 ? migratetype : start_migratetype);
1085
1086 trace_mm_page_alloc_extfrag(page, order, current_order,
1087 start_migratetype, migratetype);
1088
1089 return page;
1090 }
1091 }
1092
1093 return NULL;
1094 }
1095
1096 /*
1097 * Do the hard work of removing an element from the buddy allocator.
1098 * Call me with the zone->lock already held.
1099 */
1100 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1101 int migratetype)
1102 {
1103 struct page *page;
1104
1105 retry_reserve:
1106 page = __rmqueue_smallest(zone, order, migratetype);
1107
1108 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1109 page = __rmqueue_fallback(zone, order, migratetype);
1110
1111 /*
1112 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1113 * is used because __rmqueue_smallest is an inline function
1114 * and we want just one call site
1115 */
1116 if (!page) {
1117 migratetype = MIGRATE_RESERVE;
1118 goto retry_reserve;
1119 }
1120 }
1121
1122 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1123 return page;
1124 }
1125
1126 /*
1127 * Obtain a specified number of elements from the buddy allocator, all under
1128 * a single hold of the lock, for efficiency. Add them to the supplied list.
1129 * Returns the number of new pages which were placed at *list.
1130 */
1131 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1132 unsigned long count, struct list_head *list,
1133 int migratetype, int cold)
1134 {
1135 int mt = migratetype, i;
1136
1137 spin_lock(&zone->lock);
1138 for (i = 0; i < count; ++i) {
1139 struct page *page = __rmqueue(zone, order, migratetype);
1140 if (unlikely(page == NULL))
1141 break;
1142
1143 /*
1144 * Split buddy pages returned by expand() are received here
1145 * in physical page order. The page is added to the callers and
1146 * list and the list head then moves forward. From the callers
1147 * perspective, the linked list is ordered by page number in
1148 * some conditions. This is useful for IO devices that can
1149 * merge IO requests if the physical pages are ordered
1150 * properly.
1151 */
1152 if (likely(cold == 0))
1153 list_add(&page->lru, list);
1154 else
1155 list_add_tail(&page->lru, list);
1156 if (IS_ENABLED(CONFIG_CMA)) {
1157 mt = get_pageblock_migratetype(page);
1158 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1159 mt = migratetype;
1160 }
1161 set_freepage_migratetype(page, mt);
1162 list = &page->lru;
1163 if (is_migrate_cma(mt))
1164 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1165 -(1 << order));
1166 }
1167 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1168 spin_unlock(&zone->lock);
1169 return i;
1170 }
1171
1172 #ifdef CONFIG_NUMA
1173 /*
1174 * Called from the vmstat counter updater to drain pagesets of this
1175 * currently executing processor on remote nodes after they have
1176 * expired.
1177 *
1178 * Note that this function must be called with the thread pinned to
1179 * a single processor.
1180 */
1181 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1182 {
1183 unsigned long flags;
1184 int to_drain;
1185 unsigned long batch;
1186
1187 local_irq_save(flags);
1188 batch = ACCESS_ONCE(pcp->batch);
1189 if (pcp->count >= batch)
1190 to_drain = batch;
1191 else
1192 to_drain = pcp->count;
1193 if (to_drain > 0) {
1194 free_pcppages_bulk(zone, to_drain, pcp);
1195 pcp->count -= to_drain;
1196 }
1197 local_irq_restore(flags);
1198 }
1199 #endif
1200
1201 /*
1202 * Drain pages of the indicated processor.
1203 *
1204 * The processor must either be the current processor and the
1205 * thread pinned to the current processor or a processor that
1206 * is not online.
1207 */
1208 static void drain_pages(unsigned int cpu)
1209 {
1210 unsigned long flags;
1211 struct zone *zone;
1212
1213 for_each_populated_zone(zone) {
1214 struct per_cpu_pageset *pset;
1215 struct per_cpu_pages *pcp;
1216
1217 local_irq_save(flags);
1218 pset = per_cpu_ptr(zone->pageset, cpu);
1219
1220 pcp = &pset->pcp;
1221 if (pcp->count) {
1222 free_pcppages_bulk(zone, pcp->count, pcp);
1223 pcp->count = 0;
1224 }
1225 local_irq_restore(flags);
1226 }
1227 }
1228
1229 /*
1230 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1231 */
1232 void drain_local_pages(void *arg)
1233 {
1234 drain_pages(smp_processor_id());
1235 }
1236
1237 /*
1238 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1239 *
1240 * Note that this code is protected against sending an IPI to an offline
1241 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1242 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1243 * nothing keeps CPUs from showing up after we populated the cpumask and
1244 * before the call to on_each_cpu_mask().
1245 */
1246 void drain_all_pages(void)
1247 {
1248 int cpu;
1249 struct per_cpu_pageset *pcp;
1250 struct zone *zone;
1251
1252 /*
1253 * Allocate in the BSS so we wont require allocation in
1254 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1255 */
1256 static cpumask_t cpus_with_pcps;
1257
1258 /*
1259 * We don't care about racing with CPU hotplug event
1260 * as offline notification will cause the notified
1261 * cpu to drain that CPU pcps and on_each_cpu_mask
1262 * disables preemption as part of its processing
1263 */
1264 for_each_online_cpu(cpu) {
1265 bool has_pcps = false;
1266 for_each_populated_zone(zone) {
1267 pcp = per_cpu_ptr(zone->pageset, cpu);
1268 if (pcp->pcp.count) {
1269 has_pcps = true;
1270 break;
1271 }
1272 }
1273 if (has_pcps)
1274 cpumask_set_cpu(cpu, &cpus_with_pcps);
1275 else
1276 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1277 }
1278 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1279 }
1280
1281 #ifdef CONFIG_HIBERNATION
1282
1283 void mark_free_pages(struct zone *zone)
1284 {
1285 unsigned long pfn, max_zone_pfn;
1286 unsigned long flags;
1287 int order, t;
1288 struct list_head *curr;
1289
1290 if (!zone->spanned_pages)
1291 return;
1292
1293 spin_lock_irqsave(&zone->lock, flags);
1294
1295 max_zone_pfn = zone_end_pfn(zone);
1296 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1297 if (pfn_valid(pfn)) {
1298 struct page *page = pfn_to_page(pfn);
1299
1300 if (!swsusp_page_is_forbidden(page))
1301 swsusp_unset_page_free(page);
1302 }
1303
1304 for_each_migratetype_order(order, t) {
1305 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1306 unsigned long i;
1307
1308 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1309 for (i = 0; i < (1UL << order); i++)
1310 swsusp_set_page_free(pfn_to_page(pfn + i));
1311 }
1312 }
1313 spin_unlock_irqrestore(&zone->lock, flags);
1314 }
1315 #endif /* CONFIG_PM */
1316
1317 /*
1318 * Free a 0-order page
1319 * cold == 1 ? free a cold page : free a hot page
1320 */
1321 void free_hot_cold_page(struct page *page, int cold)
1322 {
1323 struct zone *zone = page_zone(page);
1324 struct per_cpu_pages *pcp;
1325 unsigned long flags;
1326 int migratetype;
1327
1328 if (!free_pages_prepare(page, 0))
1329 return;
1330
1331 migratetype = get_pageblock_migratetype(page);
1332 set_freepage_migratetype(page, migratetype);
1333 local_irq_save(flags);
1334 __count_vm_event(PGFREE);
1335
1336 /*
1337 * We only track unmovable, reclaimable and movable on pcp lists.
1338 * Free ISOLATE pages back to the allocator because they are being
1339 * offlined but treat RESERVE as movable pages so we can get those
1340 * areas back if necessary. Otherwise, we may have to free
1341 * excessively into the page allocator
1342 */
1343 if (migratetype >= MIGRATE_PCPTYPES) {
1344 if (unlikely(is_migrate_isolate(migratetype))) {
1345 free_one_page(zone, page, 0, migratetype);
1346 goto out;
1347 }
1348 migratetype = MIGRATE_MOVABLE;
1349 }
1350
1351 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1352 if (cold)
1353 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1354 else
1355 list_add(&page->lru, &pcp->lists[migratetype]);
1356 pcp->count++;
1357 if (pcp->count >= pcp->high) {
1358 unsigned long batch = ACCESS_ONCE(pcp->batch);
1359 free_pcppages_bulk(zone, batch, pcp);
1360 pcp->count -= batch;
1361 }
1362
1363 out:
1364 local_irq_restore(flags);
1365 }
1366
1367 /*
1368 * Free a list of 0-order pages
1369 */
1370 void free_hot_cold_page_list(struct list_head *list, int cold)
1371 {
1372 struct page *page, *next;
1373
1374 list_for_each_entry_safe(page, next, list, lru) {
1375 trace_mm_page_free_batched(page, cold);
1376 free_hot_cold_page(page, cold);
1377 }
1378 }
1379
1380 /*
1381 * split_page takes a non-compound higher-order page, and splits it into
1382 * n (1<<order) sub-pages: page[0..n]
1383 * Each sub-page must be freed individually.
1384 *
1385 * Note: this is probably too low level an operation for use in drivers.
1386 * Please consult with lkml before using this in your driver.
1387 */
1388 void split_page(struct page *page, unsigned int order)
1389 {
1390 int i;
1391
1392 VM_BUG_ON(PageCompound(page));
1393 VM_BUG_ON(!page_count(page));
1394
1395 #ifdef CONFIG_KMEMCHECK
1396 /*
1397 * Split shadow pages too, because free(page[0]) would
1398 * otherwise free the whole shadow.
1399 */
1400 if (kmemcheck_page_is_tracked(page))
1401 split_page(virt_to_page(page[0].shadow), order);
1402 #endif
1403
1404 for (i = 1; i < (1 << order); i++)
1405 set_page_refcounted(page + i);
1406 }
1407 EXPORT_SYMBOL_GPL(split_page);
1408
1409 static int __isolate_free_page(struct page *page, unsigned int order)
1410 {
1411 unsigned long watermark;
1412 struct zone *zone;
1413 int mt;
1414
1415 BUG_ON(!PageBuddy(page));
1416
1417 zone = page_zone(page);
1418 mt = get_pageblock_migratetype(page);
1419
1420 if (!is_migrate_isolate(mt)) {
1421 /* Obey watermarks as if the page was being allocated */
1422 watermark = low_wmark_pages(zone) + (1 << order);
1423 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1424 return 0;
1425
1426 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1427 }
1428
1429 /* Remove page from free list */
1430 list_del(&page->lru);
1431 zone->free_area[order].nr_free--;
1432 rmv_page_order(page);
1433
1434 /* Set the pageblock if the isolated page is at least a pageblock */
1435 if (order >= pageblock_order - 1) {
1436 struct page *endpage = page + (1 << order) - 1;
1437 for (; page < endpage; page += pageblock_nr_pages) {
1438 int mt = get_pageblock_migratetype(page);
1439 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1440 set_pageblock_migratetype(page,
1441 MIGRATE_MOVABLE);
1442 }
1443 }
1444
1445 return 1UL << order;
1446 }
1447
1448 /*
1449 * Similar to split_page except the page is already free. As this is only
1450 * being used for migration, the migratetype of the block also changes.
1451 * As this is called with interrupts disabled, the caller is responsible
1452 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1453 * are enabled.
1454 *
1455 * Note: this is probably too low level an operation for use in drivers.
1456 * Please consult with lkml before using this in your driver.
1457 */
1458 int split_free_page(struct page *page)
1459 {
1460 unsigned int order;
1461 int nr_pages;
1462
1463 order = page_order(page);
1464
1465 nr_pages = __isolate_free_page(page, order);
1466 if (!nr_pages)
1467 return 0;
1468
1469 /* Split into individual pages */
1470 set_page_refcounted(page);
1471 split_page(page, order);
1472 return nr_pages;
1473 }
1474
1475 /*
1476 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1477 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1478 * or two.
1479 */
1480 static inline
1481 struct page *buffered_rmqueue(struct zone *preferred_zone,
1482 struct zone *zone, int order, gfp_t gfp_flags,
1483 int migratetype)
1484 {
1485 unsigned long flags;
1486 struct page *page;
1487 int cold = !!(gfp_flags & __GFP_COLD);
1488
1489 again:
1490 if (likely(order == 0)) {
1491 struct per_cpu_pages *pcp;
1492 struct list_head *list;
1493
1494 local_irq_save(flags);
1495 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1496 list = &pcp->lists[migratetype];
1497 if (list_empty(list)) {
1498 pcp->count += rmqueue_bulk(zone, 0,
1499 pcp->batch, list,
1500 migratetype, cold);
1501 if (unlikely(list_empty(list)))
1502 goto failed;
1503 }
1504
1505 if (cold)
1506 page = list_entry(list->prev, struct page, lru);
1507 else
1508 page = list_entry(list->next, struct page, lru);
1509
1510 list_del(&page->lru);
1511 pcp->count--;
1512 } else {
1513 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1514 /*
1515 * __GFP_NOFAIL is not to be used in new code.
1516 *
1517 * All __GFP_NOFAIL callers should be fixed so that they
1518 * properly detect and handle allocation failures.
1519 *
1520 * We most definitely don't want callers attempting to
1521 * allocate greater than order-1 page units with
1522 * __GFP_NOFAIL.
1523 */
1524 WARN_ON_ONCE(order > 1);
1525 }
1526 spin_lock_irqsave(&zone->lock, flags);
1527 page = __rmqueue(zone, order, migratetype);
1528 spin_unlock(&zone->lock);
1529 if (!page)
1530 goto failed;
1531 __mod_zone_freepage_state(zone, -(1 << order),
1532 get_pageblock_migratetype(page));
1533 }
1534
1535 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1536 zone_statistics(preferred_zone, zone, gfp_flags);
1537 local_irq_restore(flags);
1538
1539 VM_BUG_ON(bad_range(zone, page));
1540 if (prep_new_page(page, order, gfp_flags))
1541 goto again;
1542 return page;
1543
1544 failed:
1545 local_irq_restore(flags);
1546 return NULL;
1547 }
1548
1549 #ifdef CONFIG_FAIL_PAGE_ALLOC
1550
1551 static struct {
1552 struct fault_attr attr;
1553
1554 u32 ignore_gfp_highmem;
1555 u32 ignore_gfp_wait;
1556 u32 min_order;
1557 } fail_page_alloc = {
1558 .attr = FAULT_ATTR_INITIALIZER,
1559 .ignore_gfp_wait = 1,
1560 .ignore_gfp_highmem = 1,
1561 .min_order = 1,
1562 };
1563
1564 static int __init setup_fail_page_alloc(char *str)
1565 {
1566 return setup_fault_attr(&fail_page_alloc.attr, str);
1567 }
1568 __setup("fail_page_alloc=", setup_fail_page_alloc);
1569
1570 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1571 {
1572 if (order < fail_page_alloc.min_order)
1573 return false;
1574 if (gfp_mask & __GFP_NOFAIL)
1575 return false;
1576 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1577 return false;
1578 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1579 return false;
1580
1581 return should_fail(&fail_page_alloc.attr, 1 << order);
1582 }
1583
1584 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1585
1586 static int __init fail_page_alloc_debugfs(void)
1587 {
1588 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1589 struct dentry *dir;
1590
1591 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1592 &fail_page_alloc.attr);
1593 if (IS_ERR(dir))
1594 return PTR_ERR(dir);
1595
1596 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1597 &fail_page_alloc.ignore_gfp_wait))
1598 goto fail;
1599 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1600 &fail_page_alloc.ignore_gfp_highmem))
1601 goto fail;
1602 if (!debugfs_create_u32("min-order", mode, dir,
1603 &fail_page_alloc.min_order))
1604 goto fail;
1605
1606 return 0;
1607 fail:
1608 debugfs_remove_recursive(dir);
1609
1610 return -ENOMEM;
1611 }
1612
1613 late_initcall(fail_page_alloc_debugfs);
1614
1615 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1616
1617 #else /* CONFIG_FAIL_PAGE_ALLOC */
1618
1619 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1620 {
1621 return false;
1622 }
1623
1624 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1625
1626 /*
1627 * Return true if free pages are above 'mark'. This takes into account the order
1628 * of the allocation.
1629 */
1630 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1631 int classzone_idx, int alloc_flags, long free_pages)
1632 {
1633 /* free_pages my go negative - that's OK */
1634 long min = mark;
1635 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1636 int o;
1637 long free_cma = 0;
1638
1639 free_pages -= (1 << order) - 1;
1640 if (alloc_flags & ALLOC_HIGH)
1641 min -= min / 2;
1642 if (alloc_flags & ALLOC_HARDER)
1643 min -= min / 4;
1644 #ifdef CONFIG_CMA
1645 /* If allocation can't use CMA areas don't use free CMA pages */
1646 if (!(alloc_flags & ALLOC_CMA))
1647 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1648 #endif
1649
1650 if (free_pages - free_cma <= min + lowmem_reserve)
1651 return false;
1652 for (o = 0; o < order; o++) {
1653 /* At the next order, this order's pages become unavailable */
1654 free_pages -= z->free_area[o].nr_free << o;
1655
1656 /* Require fewer higher order pages to be free */
1657 min >>= 1;
1658
1659 if (free_pages <= min)
1660 return false;
1661 }
1662 return true;
1663 }
1664
1665 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667 {
1668 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1669 zone_page_state(z, NR_FREE_PAGES));
1670 }
1671
1672 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1673 int classzone_idx, int alloc_flags)
1674 {
1675 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1676
1677 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1678 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1679
1680 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1681 free_pages);
1682 }
1683
1684 #ifdef CONFIG_NUMA
1685 /*
1686 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1687 * skip over zones that are not allowed by the cpuset, or that have
1688 * been recently (in last second) found to be nearly full. See further
1689 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1690 * that have to skip over a lot of full or unallowed zones.
1691 *
1692 * If the zonelist cache is present in the passed in zonelist, then
1693 * returns a pointer to the allowed node mask (either the current
1694 * tasks mems_allowed, or node_states[N_MEMORY].)
1695 *
1696 * If the zonelist cache is not available for this zonelist, does
1697 * nothing and returns NULL.
1698 *
1699 * If the fullzones BITMAP in the zonelist cache is stale (more than
1700 * a second since last zap'd) then we zap it out (clear its bits.)
1701 *
1702 * We hold off even calling zlc_setup, until after we've checked the
1703 * first zone in the zonelist, on the theory that most allocations will
1704 * be satisfied from that first zone, so best to examine that zone as
1705 * quickly as we can.
1706 */
1707 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1708 {
1709 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1710 nodemask_t *allowednodes; /* zonelist_cache approximation */
1711
1712 zlc = zonelist->zlcache_ptr;
1713 if (!zlc)
1714 return NULL;
1715
1716 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1717 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1718 zlc->last_full_zap = jiffies;
1719 }
1720
1721 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1722 &cpuset_current_mems_allowed :
1723 &node_states[N_MEMORY];
1724 return allowednodes;
1725 }
1726
1727 /*
1728 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1729 * if it is worth looking at further for free memory:
1730 * 1) Check that the zone isn't thought to be full (doesn't have its
1731 * bit set in the zonelist_cache fullzones BITMAP).
1732 * 2) Check that the zones node (obtained from the zonelist_cache
1733 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1734 * Return true (non-zero) if zone is worth looking at further, or
1735 * else return false (zero) if it is not.
1736 *
1737 * This check -ignores- the distinction between various watermarks,
1738 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1739 * found to be full for any variation of these watermarks, it will
1740 * be considered full for up to one second by all requests, unless
1741 * we are so low on memory on all allowed nodes that we are forced
1742 * into the second scan of the zonelist.
1743 *
1744 * In the second scan we ignore this zonelist cache and exactly
1745 * apply the watermarks to all zones, even it is slower to do so.
1746 * We are low on memory in the second scan, and should leave no stone
1747 * unturned looking for a free page.
1748 */
1749 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1750 nodemask_t *allowednodes)
1751 {
1752 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1753 int i; /* index of *z in zonelist zones */
1754 int n; /* node that zone *z is on */
1755
1756 zlc = zonelist->zlcache_ptr;
1757 if (!zlc)
1758 return 1;
1759
1760 i = z - zonelist->_zonerefs;
1761 n = zlc->z_to_n[i];
1762
1763 /* This zone is worth trying if it is allowed but not full */
1764 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1765 }
1766
1767 /*
1768 * Given 'z' scanning a zonelist, set the corresponding bit in
1769 * zlc->fullzones, so that subsequent attempts to allocate a page
1770 * from that zone don't waste time re-examining it.
1771 */
1772 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1773 {
1774 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1775 int i; /* index of *z in zonelist zones */
1776
1777 zlc = zonelist->zlcache_ptr;
1778 if (!zlc)
1779 return;
1780
1781 i = z - zonelist->_zonerefs;
1782
1783 set_bit(i, zlc->fullzones);
1784 }
1785
1786 /*
1787 * clear all zones full, called after direct reclaim makes progress so that
1788 * a zone that was recently full is not skipped over for up to a second
1789 */
1790 static void zlc_clear_zones_full(struct zonelist *zonelist)
1791 {
1792 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1793
1794 zlc = zonelist->zlcache_ptr;
1795 if (!zlc)
1796 return;
1797
1798 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1799 }
1800
1801 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1802 {
1803 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1804 }
1805
1806 static void __paginginit init_zone_allows_reclaim(int nid)
1807 {
1808 int i;
1809
1810 for_each_online_node(i)
1811 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1812 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1813 else
1814 zone_reclaim_mode = 1;
1815 }
1816
1817 #else /* CONFIG_NUMA */
1818
1819 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1820 {
1821 return NULL;
1822 }
1823
1824 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1825 nodemask_t *allowednodes)
1826 {
1827 return 1;
1828 }
1829
1830 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1831 {
1832 }
1833
1834 static void zlc_clear_zones_full(struct zonelist *zonelist)
1835 {
1836 }
1837
1838 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1839 {
1840 return true;
1841 }
1842
1843 static inline void init_zone_allows_reclaim(int nid)
1844 {
1845 }
1846 #endif /* CONFIG_NUMA */
1847
1848 /*
1849 * get_page_from_freelist goes through the zonelist trying to allocate
1850 * a page.
1851 */
1852 static struct page *
1853 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1854 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1855 struct zone *preferred_zone, int migratetype)
1856 {
1857 struct zoneref *z;
1858 struct page *page = NULL;
1859 int classzone_idx;
1860 struct zone *zone;
1861 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1862 int zlc_active = 0; /* set if using zonelist_cache */
1863 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1864
1865 classzone_idx = zone_idx(preferred_zone);
1866 zonelist_scan:
1867 /*
1868 * Scan zonelist, looking for a zone with enough free.
1869 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1870 */
1871 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1872 high_zoneidx, nodemask) {
1873 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1874 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1875 continue;
1876 if ((alloc_flags & ALLOC_CPUSET) &&
1877 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1878 continue;
1879 /*
1880 * When allocating a page cache page for writing, we
1881 * want to get it from a zone that is within its dirty
1882 * limit, such that no single zone holds more than its
1883 * proportional share of globally allowed dirty pages.
1884 * The dirty limits take into account the zone's
1885 * lowmem reserves and high watermark so that kswapd
1886 * should be able to balance it without having to
1887 * write pages from its LRU list.
1888 *
1889 * This may look like it could increase pressure on
1890 * lower zones by failing allocations in higher zones
1891 * before they are full. But the pages that do spill
1892 * over are limited as the lower zones are protected
1893 * by this very same mechanism. It should not become
1894 * a practical burden to them.
1895 *
1896 * XXX: For now, allow allocations to potentially
1897 * exceed the per-zone dirty limit in the slowpath
1898 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1899 * which is important when on a NUMA setup the allowed
1900 * zones are together not big enough to reach the
1901 * global limit. The proper fix for these situations
1902 * will require awareness of zones in the
1903 * dirty-throttling and the flusher threads.
1904 */
1905 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1906 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1907 goto this_zone_full;
1908
1909 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1910 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1911 unsigned long mark;
1912 int ret;
1913
1914 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1915 if (zone_watermark_ok(zone, order, mark,
1916 classzone_idx, alloc_flags))
1917 goto try_this_zone;
1918
1919 if (IS_ENABLED(CONFIG_NUMA) &&
1920 !did_zlc_setup && nr_online_nodes > 1) {
1921 /*
1922 * we do zlc_setup if there are multiple nodes
1923 * and before considering the first zone allowed
1924 * by the cpuset.
1925 */
1926 allowednodes = zlc_setup(zonelist, alloc_flags);
1927 zlc_active = 1;
1928 did_zlc_setup = 1;
1929 }
1930
1931 if (zone_reclaim_mode == 0 ||
1932 !zone_allows_reclaim(preferred_zone, zone))
1933 goto this_zone_full;
1934
1935 /*
1936 * As we may have just activated ZLC, check if the first
1937 * eligible zone has failed zone_reclaim recently.
1938 */
1939 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
1942
1943 ret = zone_reclaim(zone, gfp_mask, order);
1944 switch (ret) {
1945 case ZONE_RECLAIM_NOSCAN:
1946 /* did not scan */
1947 continue;
1948 case ZONE_RECLAIM_FULL:
1949 /* scanned but unreclaimable */
1950 continue;
1951 default:
1952 /* did we reclaim enough */
1953 if (zone_watermark_ok(zone, order, mark,
1954 classzone_idx, alloc_flags))
1955 goto try_this_zone;
1956
1957 /*
1958 * Failed to reclaim enough to meet watermark.
1959 * Only mark the zone full if checking the min
1960 * watermark or if we failed to reclaim just
1961 * 1<<order pages or else the page allocator
1962 * fastpath will prematurely mark zones full
1963 * when the watermark is between the low and
1964 * min watermarks.
1965 */
1966 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1967 ret == ZONE_RECLAIM_SOME)
1968 goto this_zone_full;
1969
1970 continue;
1971 }
1972 }
1973
1974 try_this_zone:
1975 page = buffered_rmqueue(preferred_zone, zone, order,
1976 gfp_mask, migratetype);
1977 if (page)
1978 break;
1979 this_zone_full:
1980 if (IS_ENABLED(CONFIG_NUMA))
1981 zlc_mark_zone_full(zonelist, z);
1982 }
1983
1984 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1985 /* Disable zlc cache for second zonelist scan */
1986 zlc_active = 0;
1987 goto zonelist_scan;
1988 }
1989
1990 if (page)
1991 /*
1992 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1993 * necessary to allocate the page. The expectation is
1994 * that the caller is taking steps that will free more
1995 * memory. The caller should avoid the page being used
1996 * for !PFMEMALLOC purposes.
1997 */
1998 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1999
2000 return page;
2001 }
2002
2003 /*
2004 * Large machines with many possible nodes should not always dump per-node
2005 * meminfo in irq context.
2006 */
2007 static inline bool should_suppress_show_mem(void)
2008 {
2009 bool ret = false;
2010
2011 #if NODES_SHIFT > 8
2012 ret = in_interrupt();
2013 #endif
2014 return ret;
2015 }
2016
2017 static DEFINE_RATELIMIT_STATE(nopage_rs,
2018 DEFAULT_RATELIMIT_INTERVAL,
2019 DEFAULT_RATELIMIT_BURST);
2020
2021 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2022 {
2023 unsigned int filter = SHOW_MEM_FILTER_NODES;
2024
2025 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2026 debug_guardpage_minorder() > 0)
2027 return;
2028
2029 /*
2030 * Walking all memory to count page types is very expensive and should
2031 * be inhibited in non-blockable contexts.
2032 */
2033 if (!(gfp_mask & __GFP_WAIT))
2034 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2035
2036 /*
2037 * This documents exceptions given to allocations in certain
2038 * contexts that are allowed to allocate outside current's set
2039 * of allowed nodes.
2040 */
2041 if (!(gfp_mask & __GFP_NOMEMALLOC))
2042 if (test_thread_flag(TIF_MEMDIE) ||
2043 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2044 filter &= ~SHOW_MEM_FILTER_NODES;
2045 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2046 filter &= ~SHOW_MEM_FILTER_NODES;
2047
2048 if (fmt) {
2049 struct va_format vaf;
2050 va_list args;
2051
2052 va_start(args, fmt);
2053
2054 vaf.fmt = fmt;
2055 vaf.va = &args;
2056
2057 pr_warn("%pV", &vaf);
2058
2059 va_end(args);
2060 }
2061
2062 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2063 current->comm, order, gfp_mask);
2064
2065 dump_stack();
2066 if (!should_suppress_show_mem())
2067 show_mem(filter);
2068 }
2069
2070 static inline int
2071 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2072 unsigned long did_some_progress,
2073 unsigned long pages_reclaimed)
2074 {
2075 /* Do not loop if specifically requested */
2076 if (gfp_mask & __GFP_NORETRY)
2077 return 0;
2078
2079 /* Always retry if specifically requested */
2080 if (gfp_mask & __GFP_NOFAIL)
2081 return 1;
2082
2083 /*
2084 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2085 * making forward progress without invoking OOM. Suspend also disables
2086 * storage devices so kswapd will not help. Bail if we are suspending.
2087 */
2088 if (!did_some_progress && pm_suspended_storage())
2089 return 0;
2090
2091 /*
2092 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2093 * means __GFP_NOFAIL, but that may not be true in other
2094 * implementations.
2095 */
2096 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2097 return 1;
2098
2099 /*
2100 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2101 * specified, then we retry until we no longer reclaim any pages
2102 * (above), or we've reclaimed an order of pages at least as
2103 * large as the allocation's order. In both cases, if the
2104 * allocation still fails, we stop retrying.
2105 */
2106 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2107 return 1;
2108
2109 return 0;
2110 }
2111
2112 static inline struct page *
2113 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2114 struct zonelist *zonelist, enum zone_type high_zoneidx,
2115 nodemask_t *nodemask, struct zone *preferred_zone,
2116 int migratetype)
2117 {
2118 struct page *page;
2119
2120 /* Acquire the OOM killer lock for the zones in zonelist */
2121 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2122 schedule_timeout_uninterruptible(1);
2123 return NULL;
2124 }
2125
2126 /*
2127 * Go through the zonelist yet one more time, keep very high watermark
2128 * here, this is only to catch a parallel oom killing, we must fail if
2129 * we're still under heavy pressure.
2130 */
2131 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2132 order, zonelist, high_zoneidx,
2133 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2134 preferred_zone, migratetype);
2135 if (page)
2136 goto out;
2137
2138 if (!(gfp_mask & __GFP_NOFAIL)) {
2139 /* The OOM killer will not help higher order allocs */
2140 if (order > PAGE_ALLOC_COSTLY_ORDER)
2141 goto out;
2142 /* The OOM killer does not needlessly kill tasks for lowmem */
2143 if (high_zoneidx < ZONE_NORMAL)
2144 goto out;
2145 /*
2146 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2147 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2148 * The caller should handle page allocation failure by itself if
2149 * it specifies __GFP_THISNODE.
2150 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2151 */
2152 if (gfp_mask & __GFP_THISNODE)
2153 goto out;
2154 }
2155 /* Exhausted what can be done so it's blamo time */
2156 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2157
2158 out:
2159 clear_zonelist_oom(zonelist, gfp_mask);
2160 return page;
2161 }
2162
2163 #ifdef CONFIG_COMPACTION
2164 /* Try memory compaction for high-order allocations before reclaim */
2165 static struct page *
2166 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2167 struct zonelist *zonelist, enum zone_type high_zoneidx,
2168 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2169 int migratetype, bool sync_migration,
2170 bool *contended_compaction, bool *deferred_compaction,
2171 unsigned long *did_some_progress)
2172 {
2173 if (!order)
2174 return NULL;
2175
2176 if (compaction_deferred(preferred_zone, order)) {
2177 *deferred_compaction = true;
2178 return NULL;
2179 }
2180
2181 current->flags |= PF_MEMALLOC;
2182 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2183 nodemask, sync_migration,
2184 contended_compaction);
2185 current->flags &= ~PF_MEMALLOC;
2186
2187 if (*did_some_progress != COMPACT_SKIPPED) {
2188 struct page *page;
2189
2190 /* Page migration frees to the PCP lists but we want merging */
2191 drain_pages(get_cpu());
2192 put_cpu();
2193
2194 page = get_page_from_freelist(gfp_mask, nodemask,
2195 order, zonelist, high_zoneidx,
2196 alloc_flags & ~ALLOC_NO_WATERMARKS,
2197 preferred_zone, migratetype);
2198 if (page) {
2199 preferred_zone->compact_blockskip_flush = false;
2200 preferred_zone->compact_considered = 0;
2201 preferred_zone->compact_defer_shift = 0;
2202 if (order >= preferred_zone->compact_order_failed)
2203 preferred_zone->compact_order_failed = order + 1;
2204 count_vm_event(COMPACTSUCCESS);
2205 return page;
2206 }
2207
2208 /*
2209 * It's bad if compaction run occurs and fails.
2210 * The most likely reason is that pages exist,
2211 * but not enough to satisfy watermarks.
2212 */
2213 count_vm_event(COMPACTFAIL);
2214
2215 /*
2216 * As async compaction considers a subset of pageblocks, only
2217 * defer if the failure was a sync compaction failure.
2218 */
2219 if (sync_migration)
2220 defer_compaction(preferred_zone, order);
2221
2222 cond_resched();
2223 }
2224
2225 return NULL;
2226 }
2227 #else
2228 static inline struct page *
2229 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2230 struct zonelist *zonelist, enum zone_type high_zoneidx,
2231 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2232 int migratetype, bool sync_migration,
2233 bool *contended_compaction, bool *deferred_compaction,
2234 unsigned long *did_some_progress)
2235 {
2236 return NULL;
2237 }
2238 #endif /* CONFIG_COMPACTION */
2239
2240 /* Perform direct synchronous page reclaim */
2241 static int
2242 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2243 nodemask_t *nodemask)
2244 {
2245 struct reclaim_state reclaim_state;
2246 int progress;
2247
2248 cond_resched();
2249
2250 /* We now go into synchronous reclaim */
2251 cpuset_memory_pressure_bump();
2252 current->flags |= PF_MEMALLOC;
2253 lockdep_set_current_reclaim_state(gfp_mask);
2254 reclaim_state.reclaimed_slab = 0;
2255 current->reclaim_state = &reclaim_state;
2256
2257 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2258
2259 current->reclaim_state = NULL;
2260 lockdep_clear_current_reclaim_state();
2261 current->flags &= ~PF_MEMALLOC;
2262
2263 cond_resched();
2264
2265 return progress;
2266 }
2267
2268 /* The really slow allocator path where we enter direct reclaim */
2269 static inline struct page *
2270 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2271 struct zonelist *zonelist, enum zone_type high_zoneidx,
2272 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2273 int migratetype, unsigned long *did_some_progress)
2274 {
2275 struct page *page = NULL;
2276 bool drained = false;
2277
2278 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2279 nodemask);
2280 if (unlikely(!(*did_some_progress)))
2281 return NULL;
2282
2283 /* After successful reclaim, reconsider all zones for allocation */
2284 if (IS_ENABLED(CONFIG_NUMA))
2285 zlc_clear_zones_full(zonelist);
2286
2287 retry:
2288 page = get_page_from_freelist(gfp_mask, nodemask, order,
2289 zonelist, high_zoneidx,
2290 alloc_flags & ~ALLOC_NO_WATERMARKS,
2291 preferred_zone, migratetype);
2292
2293 /*
2294 * If an allocation failed after direct reclaim, it could be because
2295 * pages are pinned on the per-cpu lists. Drain them and try again
2296 */
2297 if (!page && !drained) {
2298 drain_all_pages();
2299 drained = true;
2300 goto retry;
2301 }
2302
2303 return page;
2304 }
2305
2306 /*
2307 * This is called in the allocator slow-path if the allocation request is of
2308 * sufficient urgency to ignore watermarks and take other desperate measures
2309 */
2310 static inline struct page *
2311 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2312 struct zonelist *zonelist, enum zone_type high_zoneidx,
2313 nodemask_t *nodemask, struct zone *preferred_zone,
2314 int migratetype)
2315 {
2316 struct page *page;
2317
2318 do {
2319 page = get_page_from_freelist(gfp_mask, nodemask, order,
2320 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2321 preferred_zone, migratetype);
2322
2323 if (!page && gfp_mask & __GFP_NOFAIL)
2324 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2325 } while (!page && (gfp_mask & __GFP_NOFAIL));
2326
2327 return page;
2328 }
2329
2330 static inline
2331 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2332 enum zone_type high_zoneidx,
2333 enum zone_type classzone_idx)
2334 {
2335 struct zoneref *z;
2336 struct zone *zone;
2337
2338 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2339 wakeup_kswapd(zone, order, classzone_idx);
2340 }
2341
2342 static inline int
2343 gfp_to_alloc_flags(gfp_t gfp_mask)
2344 {
2345 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2346 const gfp_t wait = gfp_mask & __GFP_WAIT;
2347
2348 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2349 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2350
2351 /*
2352 * The caller may dip into page reserves a bit more if the caller
2353 * cannot run direct reclaim, or if the caller has realtime scheduling
2354 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2355 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2356 */
2357 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2358
2359 if (!wait) {
2360 /*
2361 * Not worth trying to allocate harder for
2362 * __GFP_NOMEMALLOC even if it can't schedule.
2363 */
2364 if (!(gfp_mask & __GFP_NOMEMALLOC))
2365 alloc_flags |= ALLOC_HARDER;
2366 /*
2367 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2368 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2369 */
2370 alloc_flags &= ~ALLOC_CPUSET;
2371 } else if (unlikely(rt_task(current)) && !in_interrupt())
2372 alloc_flags |= ALLOC_HARDER;
2373
2374 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2375 if (gfp_mask & __GFP_MEMALLOC)
2376 alloc_flags |= ALLOC_NO_WATERMARKS;
2377 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2378 alloc_flags |= ALLOC_NO_WATERMARKS;
2379 else if (!in_interrupt() &&
2380 ((current->flags & PF_MEMALLOC) ||
2381 unlikely(test_thread_flag(TIF_MEMDIE))))
2382 alloc_flags |= ALLOC_NO_WATERMARKS;
2383 }
2384 #ifdef CONFIG_CMA
2385 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2386 alloc_flags |= ALLOC_CMA;
2387 #endif
2388 return alloc_flags;
2389 }
2390
2391 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2392 {
2393 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2394 }
2395
2396 static inline struct page *
2397 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2398 struct zonelist *zonelist, enum zone_type high_zoneidx,
2399 nodemask_t *nodemask, struct zone *preferred_zone,
2400 int migratetype)
2401 {
2402 const gfp_t wait = gfp_mask & __GFP_WAIT;
2403 struct page *page = NULL;
2404 int alloc_flags;
2405 unsigned long pages_reclaimed = 0;
2406 unsigned long did_some_progress;
2407 bool sync_migration = false;
2408 bool deferred_compaction = false;
2409 bool contended_compaction = false;
2410
2411 /*
2412 * In the slowpath, we sanity check order to avoid ever trying to
2413 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2414 * be using allocators in order of preference for an area that is
2415 * too large.
2416 */
2417 if (order >= MAX_ORDER) {
2418 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2419 return NULL;
2420 }
2421
2422 /*
2423 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2424 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2425 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2426 * using a larger set of nodes after it has established that the
2427 * allowed per node queues are empty and that nodes are
2428 * over allocated.
2429 */
2430 if (IS_ENABLED(CONFIG_NUMA) &&
2431 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2432 goto nopage;
2433
2434 restart:
2435 if (!(gfp_mask & __GFP_NO_KSWAPD))
2436 wake_all_kswapd(order, zonelist, high_zoneidx,
2437 zone_idx(preferred_zone));
2438
2439 /*
2440 * OK, we're below the kswapd watermark and have kicked background
2441 * reclaim. Now things get more complex, so set up alloc_flags according
2442 * to how we want to proceed.
2443 */
2444 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2445
2446 /*
2447 * Find the true preferred zone if the allocation is unconstrained by
2448 * cpusets.
2449 */
2450 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2451 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2452 &preferred_zone);
2453
2454 rebalance:
2455 /* This is the last chance, in general, before the goto nopage. */
2456 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2457 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2458 preferred_zone, migratetype);
2459 if (page)
2460 goto got_pg;
2461
2462 /* Allocate without watermarks if the context allows */
2463 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2464 /*
2465 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2466 * the allocation is high priority and these type of
2467 * allocations are system rather than user orientated
2468 */
2469 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2470
2471 page = __alloc_pages_high_priority(gfp_mask, order,
2472 zonelist, high_zoneidx, nodemask,
2473 preferred_zone, migratetype);
2474 if (page) {
2475 goto got_pg;
2476 }
2477 }
2478
2479 /* Atomic allocations - we can't balance anything */
2480 if (!wait)
2481 goto nopage;
2482
2483 /* Avoid recursion of direct reclaim */
2484 if (current->flags & PF_MEMALLOC)
2485 goto nopage;
2486
2487 /* Avoid allocations with no watermarks from looping endlessly */
2488 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2489 goto nopage;
2490
2491 /*
2492 * Try direct compaction. The first pass is asynchronous. Subsequent
2493 * attempts after direct reclaim are synchronous
2494 */
2495 page = __alloc_pages_direct_compact(gfp_mask, order,
2496 zonelist, high_zoneidx,
2497 nodemask,
2498 alloc_flags, preferred_zone,
2499 migratetype, sync_migration,
2500 &contended_compaction,
2501 &deferred_compaction,
2502 &did_some_progress);
2503 if (page)
2504 goto got_pg;
2505 sync_migration = true;
2506
2507 /*
2508 * If compaction is deferred for high-order allocations, it is because
2509 * sync compaction recently failed. In this is the case and the caller
2510 * requested a movable allocation that does not heavily disrupt the
2511 * system then fail the allocation instead of entering direct reclaim.
2512 */
2513 if ((deferred_compaction || contended_compaction) &&
2514 (gfp_mask & __GFP_NO_KSWAPD))
2515 goto nopage;
2516
2517 /* Try direct reclaim and then allocating */
2518 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2519 zonelist, high_zoneidx,
2520 nodemask,
2521 alloc_flags, preferred_zone,
2522 migratetype, &did_some_progress);
2523 if (page)
2524 goto got_pg;
2525
2526 /*
2527 * If we failed to make any progress reclaiming, then we are
2528 * running out of options and have to consider going OOM
2529 */
2530 if (!did_some_progress) {
2531 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2532 if (oom_killer_disabled)
2533 goto nopage;
2534 /* Coredumps can quickly deplete all memory reserves */
2535 if ((current->flags & PF_DUMPCORE) &&
2536 !(gfp_mask & __GFP_NOFAIL))
2537 goto nopage;
2538 page = __alloc_pages_may_oom(gfp_mask, order,
2539 zonelist, high_zoneidx,
2540 nodemask, preferred_zone,
2541 migratetype);
2542 if (page)
2543 goto got_pg;
2544
2545 if (!(gfp_mask & __GFP_NOFAIL)) {
2546 /*
2547 * The oom killer is not called for high-order
2548 * allocations that may fail, so if no progress
2549 * is being made, there are no other options and
2550 * retrying is unlikely to help.
2551 */
2552 if (order > PAGE_ALLOC_COSTLY_ORDER)
2553 goto nopage;
2554 /*
2555 * The oom killer is not called for lowmem
2556 * allocations to prevent needlessly killing
2557 * innocent tasks.
2558 */
2559 if (high_zoneidx < ZONE_NORMAL)
2560 goto nopage;
2561 }
2562
2563 goto restart;
2564 }
2565 }
2566
2567 /* Check if we should retry the allocation */
2568 pages_reclaimed += did_some_progress;
2569 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2570 pages_reclaimed)) {
2571 /* Wait for some write requests to complete then retry */
2572 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2573 goto rebalance;
2574 } else {
2575 /*
2576 * High-order allocations do not necessarily loop after
2577 * direct reclaim and reclaim/compaction depends on compaction
2578 * being called after reclaim so call directly if necessary
2579 */
2580 page = __alloc_pages_direct_compact(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
2583 alloc_flags, preferred_zone,
2584 migratetype, sync_migration,
2585 &contended_compaction,
2586 &deferred_compaction,
2587 &did_some_progress);
2588 if (page)
2589 goto got_pg;
2590 }
2591
2592 nopage:
2593 warn_alloc_failed(gfp_mask, order, NULL);
2594 return page;
2595 got_pg:
2596 if (kmemcheck_enabled)
2597 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2598
2599 return page;
2600 }
2601
2602 /*
2603 * This is the 'heart' of the zoned buddy allocator.
2604 */
2605 struct page *
2606 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2607 struct zonelist *zonelist, nodemask_t *nodemask)
2608 {
2609 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2610 struct zone *preferred_zone;
2611 struct page *page = NULL;
2612 int migratetype = allocflags_to_migratetype(gfp_mask);
2613 unsigned int cpuset_mems_cookie;
2614 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2615 struct mem_cgroup *memcg = NULL;
2616
2617 gfp_mask &= gfp_allowed_mask;
2618
2619 lockdep_trace_alloc(gfp_mask);
2620
2621 might_sleep_if(gfp_mask & __GFP_WAIT);
2622
2623 if (should_fail_alloc_page(gfp_mask, order))
2624 return NULL;
2625
2626 /*
2627 * Check the zones suitable for the gfp_mask contain at least one
2628 * valid zone. It's possible to have an empty zonelist as a result
2629 * of GFP_THISNODE and a memoryless node
2630 */
2631 if (unlikely(!zonelist->_zonerefs->zone))
2632 return NULL;
2633
2634 /*
2635 * Will only have any effect when __GFP_KMEMCG is set. This is
2636 * verified in the (always inline) callee
2637 */
2638 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2639 return NULL;
2640
2641 retry_cpuset:
2642 cpuset_mems_cookie = get_mems_allowed();
2643
2644 /* The preferred zone is used for statistics later */
2645 first_zones_zonelist(zonelist, high_zoneidx,
2646 nodemask ? : &cpuset_current_mems_allowed,
2647 &preferred_zone);
2648 if (!preferred_zone)
2649 goto out;
2650
2651 #ifdef CONFIG_CMA
2652 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2653 alloc_flags |= ALLOC_CMA;
2654 #endif
2655 /* First allocation attempt */
2656 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2657 zonelist, high_zoneidx, alloc_flags,
2658 preferred_zone, migratetype);
2659 if (unlikely(!page)) {
2660 /*
2661 * Runtime PM, block IO and its error handling path
2662 * can deadlock because I/O on the device might not
2663 * complete.
2664 */
2665 gfp_mask = memalloc_noio_flags(gfp_mask);
2666 page = __alloc_pages_slowpath(gfp_mask, order,
2667 zonelist, high_zoneidx, nodemask,
2668 preferred_zone, migratetype);
2669 }
2670
2671 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2672
2673 out:
2674 /*
2675 * When updating a task's mems_allowed, it is possible to race with
2676 * parallel threads in such a way that an allocation can fail while
2677 * the mask is being updated. If a page allocation is about to fail,
2678 * check if the cpuset changed during allocation and if so, retry.
2679 */
2680 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2681 goto retry_cpuset;
2682
2683 memcg_kmem_commit_charge(page, memcg, order);
2684
2685 return page;
2686 }
2687 EXPORT_SYMBOL(__alloc_pages_nodemask);
2688
2689 /*
2690 * Common helper functions.
2691 */
2692 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2693 {
2694 struct page *page;
2695
2696 /*
2697 * __get_free_pages() returns a 32-bit address, which cannot represent
2698 * a highmem page
2699 */
2700 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2701
2702 page = alloc_pages(gfp_mask, order);
2703 if (!page)
2704 return 0;
2705 return (unsigned long) page_address(page);
2706 }
2707 EXPORT_SYMBOL(__get_free_pages);
2708
2709 unsigned long get_zeroed_page(gfp_t gfp_mask)
2710 {
2711 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2712 }
2713 EXPORT_SYMBOL(get_zeroed_page);
2714
2715 void __free_pages(struct page *page, unsigned int order)
2716 {
2717 if (put_page_testzero(page)) {
2718 if (order == 0)
2719 free_hot_cold_page(page, 0);
2720 else
2721 __free_pages_ok(page, order);
2722 }
2723 }
2724
2725 EXPORT_SYMBOL(__free_pages);
2726
2727 void free_pages(unsigned long addr, unsigned int order)
2728 {
2729 if (addr != 0) {
2730 VM_BUG_ON(!virt_addr_valid((void *)addr));
2731 __free_pages(virt_to_page((void *)addr), order);
2732 }
2733 }
2734
2735 EXPORT_SYMBOL(free_pages);
2736
2737 /*
2738 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2739 * pages allocated with __GFP_KMEMCG.
2740 *
2741 * Those pages are accounted to a particular memcg, embedded in the
2742 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2743 * for that information only to find out that it is NULL for users who have no
2744 * interest in that whatsoever, we provide these functions.
2745 *
2746 * The caller knows better which flags it relies on.
2747 */
2748 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2749 {
2750 memcg_kmem_uncharge_pages(page, order);
2751 __free_pages(page, order);
2752 }
2753
2754 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2755 {
2756 if (addr != 0) {
2757 VM_BUG_ON(!virt_addr_valid((void *)addr));
2758 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2759 }
2760 }
2761
2762 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2763 {
2764 if (addr) {
2765 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2766 unsigned long used = addr + PAGE_ALIGN(size);
2767
2768 split_page(virt_to_page((void *)addr), order);
2769 while (used < alloc_end) {
2770 free_page(used);
2771 used += PAGE_SIZE;
2772 }
2773 }
2774 return (void *)addr;
2775 }
2776
2777 /**
2778 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2779 * @size: the number of bytes to allocate
2780 * @gfp_mask: GFP flags for the allocation
2781 *
2782 * This function is similar to alloc_pages(), except that it allocates the
2783 * minimum number of pages to satisfy the request. alloc_pages() can only
2784 * allocate memory in power-of-two pages.
2785 *
2786 * This function is also limited by MAX_ORDER.
2787 *
2788 * Memory allocated by this function must be released by free_pages_exact().
2789 */
2790 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2791 {
2792 unsigned int order = get_order(size);
2793 unsigned long addr;
2794
2795 addr = __get_free_pages(gfp_mask, order);
2796 return make_alloc_exact(addr, order, size);
2797 }
2798 EXPORT_SYMBOL(alloc_pages_exact);
2799
2800 /**
2801 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2802 * pages on a node.
2803 * @nid: the preferred node ID where memory should be allocated
2804 * @size: the number of bytes to allocate
2805 * @gfp_mask: GFP flags for the allocation
2806 *
2807 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2808 * back.
2809 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2810 * but is not exact.
2811 */
2812 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2813 {
2814 unsigned order = get_order(size);
2815 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2816 if (!p)
2817 return NULL;
2818 return make_alloc_exact((unsigned long)page_address(p), order, size);
2819 }
2820 EXPORT_SYMBOL(alloc_pages_exact_nid);
2821
2822 /**
2823 * free_pages_exact - release memory allocated via alloc_pages_exact()
2824 * @virt: the value returned by alloc_pages_exact.
2825 * @size: size of allocation, same value as passed to alloc_pages_exact().
2826 *
2827 * Release the memory allocated by a previous call to alloc_pages_exact.
2828 */
2829 void free_pages_exact(void *virt, size_t size)
2830 {
2831 unsigned long addr = (unsigned long)virt;
2832 unsigned long end = addr + PAGE_ALIGN(size);
2833
2834 while (addr < end) {
2835 free_page(addr);
2836 addr += PAGE_SIZE;
2837 }
2838 }
2839 EXPORT_SYMBOL(free_pages_exact);
2840
2841 /**
2842 * nr_free_zone_pages - count number of pages beyond high watermark
2843 * @offset: The zone index of the highest zone
2844 *
2845 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2846 * high watermark within all zones at or below a given zone index. For each
2847 * zone, the number of pages is calculated as:
2848 * present_pages - high_pages
2849 */
2850 static unsigned long nr_free_zone_pages(int offset)
2851 {
2852 struct zoneref *z;
2853 struct zone *zone;
2854
2855 /* Just pick one node, since fallback list is circular */
2856 unsigned long sum = 0;
2857
2858 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2859
2860 for_each_zone_zonelist(zone, z, zonelist, offset) {
2861 unsigned long size = zone->managed_pages;
2862 unsigned long high = high_wmark_pages(zone);
2863 if (size > high)
2864 sum += size - high;
2865 }
2866
2867 return sum;
2868 }
2869
2870 /**
2871 * nr_free_buffer_pages - count number of pages beyond high watermark
2872 *
2873 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2874 * watermark within ZONE_DMA and ZONE_NORMAL.
2875 */
2876 unsigned long nr_free_buffer_pages(void)
2877 {
2878 return nr_free_zone_pages(gfp_zone(GFP_USER));
2879 }
2880 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2881
2882 /**
2883 * nr_free_pagecache_pages - count number of pages beyond high watermark
2884 *
2885 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2886 * high watermark within all zones.
2887 */
2888 unsigned long nr_free_pagecache_pages(void)
2889 {
2890 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2891 }
2892
2893 static inline void show_node(struct zone *zone)
2894 {
2895 if (IS_ENABLED(CONFIG_NUMA))
2896 printk("Node %d ", zone_to_nid(zone));
2897 }
2898
2899 void si_meminfo(struct sysinfo *val)
2900 {
2901 val->totalram = totalram_pages;
2902 val->sharedram = 0;
2903 val->freeram = global_page_state(NR_FREE_PAGES);
2904 val->bufferram = nr_blockdev_pages();
2905 val->totalhigh = totalhigh_pages;
2906 val->freehigh = nr_free_highpages();
2907 val->mem_unit = PAGE_SIZE;
2908 }
2909
2910 EXPORT_SYMBOL(si_meminfo);
2911
2912 #ifdef CONFIG_NUMA
2913 void si_meminfo_node(struct sysinfo *val, int nid)
2914 {
2915 pg_data_t *pgdat = NODE_DATA(nid);
2916
2917 val->totalram = pgdat->node_present_pages;
2918 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2919 #ifdef CONFIG_HIGHMEM
2920 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2921 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2922 NR_FREE_PAGES);
2923 #else
2924 val->totalhigh = 0;
2925 val->freehigh = 0;
2926 #endif
2927 val->mem_unit = PAGE_SIZE;
2928 }
2929 #endif
2930
2931 /*
2932 * Determine whether the node should be displayed or not, depending on whether
2933 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2934 */
2935 bool skip_free_areas_node(unsigned int flags, int nid)
2936 {
2937 bool ret = false;
2938 unsigned int cpuset_mems_cookie;
2939
2940 if (!(flags & SHOW_MEM_FILTER_NODES))
2941 goto out;
2942
2943 do {
2944 cpuset_mems_cookie = get_mems_allowed();
2945 ret = !node_isset(nid, cpuset_current_mems_allowed);
2946 } while (!put_mems_allowed(cpuset_mems_cookie));
2947 out:
2948 return ret;
2949 }
2950
2951 #define K(x) ((x) << (PAGE_SHIFT-10))
2952
2953 static void show_migration_types(unsigned char type)
2954 {
2955 static const char types[MIGRATE_TYPES] = {
2956 [MIGRATE_UNMOVABLE] = 'U',
2957 [MIGRATE_RECLAIMABLE] = 'E',
2958 [MIGRATE_MOVABLE] = 'M',
2959 [MIGRATE_RESERVE] = 'R',
2960 #ifdef CONFIG_CMA
2961 [MIGRATE_CMA] = 'C',
2962 #endif
2963 #ifdef CONFIG_MEMORY_ISOLATION
2964 [MIGRATE_ISOLATE] = 'I',
2965 #endif
2966 };
2967 char tmp[MIGRATE_TYPES + 1];
2968 char *p = tmp;
2969 int i;
2970
2971 for (i = 0; i < MIGRATE_TYPES; i++) {
2972 if (type & (1 << i))
2973 *p++ = types[i];
2974 }
2975
2976 *p = '\0';
2977 printk("(%s) ", tmp);
2978 }
2979
2980 /*
2981 * Show free area list (used inside shift_scroll-lock stuff)
2982 * We also calculate the percentage fragmentation. We do this by counting the
2983 * memory on each free list with the exception of the first item on the list.
2984 * Suppresses nodes that are not allowed by current's cpuset if
2985 * SHOW_MEM_FILTER_NODES is passed.
2986 */
2987 void show_free_areas(unsigned int filter)
2988 {
2989 int cpu;
2990 struct zone *zone;
2991
2992 for_each_populated_zone(zone) {
2993 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2994 continue;
2995 show_node(zone);
2996 printk("%s per-cpu:\n", zone->name);
2997
2998 for_each_online_cpu(cpu) {
2999 struct per_cpu_pageset *pageset;
3000
3001 pageset = per_cpu_ptr(zone->pageset, cpu);
3002
3003 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3004 cpu, pageset->pcp.high,
3005 pageset->pcp.batch, pageset->pcp.count);
3006 }
3007 }
3008
3009 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3010 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3011 " unevictable:%lu"
3012 " dirty:%lu writeback:%lu unstable:%lu\n"
3013 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3014 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3015 " free_cma:%lu\n",
3016 global_page_state(NR_ACTIVE_ANON),
3017 global_page_state(NR_INACTIVE_ANON),
3018 global_page_state(NR_ISOLATED_ANON),
3019 global_page_state(NR_ACTIVE_FILE),
3020 global_page_state(NR_INACTIVE_FILE),
3021 global_page_state(NR_ISOLATED_FILE),
3022 global_page_state(NR_UNEVICTABLE),
3023 global_page_state(NR_FILE_DIRTY),
3024 global_page_state(NR_WRITEBACK),
3025 global_page_state(NR_UNSTABLE_NFS),
3026 global_page_state(NR_FREE_PAGES),
3027 global_page_state(NR_SLAB_RECLAIMABLE),
3028 global_page_state(NR_SLAB_UNRECLAIMABLE),
3029 global_page_state(NR_FILE_MAPPED),
3030 global_page_state(NR_SHMEM),
3031 global_page_state(NR_PAGETABLE),
3032 global_page_state(NR_BOUNCE),
3033 global_page_state(NR_FREE_CMA_PAGES));
3034
3035 for_each_populated_zone(zone) {
3036 int i;
3037
3038 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3039 continue;
3040 show_node(zone);
3041 printk("%s"
3042 " free:%lukB"
3043 " min:%lukB"
3044 " low:%lukB"
3045 " high:%lukB"
3046 " active_anon:%lukB"
3047 " inactive_anon:%lukB"
3048 " active_file:%lukB"
3049 " inactive_file:%lukB"
3050 " unevictable:%lukB"
3051 " isolated(anon):%lukB"
3052 " isolated(file):%lukB"
3053 " present:%lukB"
3054 " managed:%lukB"
3055 " mlocked:%lukB"
3056 " dirty:%lukB"
3057 " writeback:%lukB"
3058 " mapped:%lukB"
3059 " shmem:%lukB"
3060 " slab_reclaimable:%lukB"
3061 " slab_unreclaimable:%lukB"
3062 " kernel_stack:%lukB"
3063 " pagetables:%lukB"
3064 " unstable:%lukB"
3065 " bounce:%lukB"
3066 " free_cma:%lukB"
3067 " writeback_tmp:%lukB"
3068 " pages_scanned:%lu"
3069 " all_unreclaimable? %s"
3070 "\n",
3071 zone->name,
3072 K(zone_page_state(zone, NR_FREE_PAGES)),
3073 K(min_wmark_pages(zone)),
3074 K(low_wmark_pages(zone)),
3075 K(high_wmark_pages(zone)),
3076 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3077 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3078 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3079 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3080 K(zone_page_state(zone, NR_UNEVICTABLE)),
3081 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3082 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3083 K(zone->present_pages),
3084 K(zone->managed_pages),
3085 K(zone_page_state(zone, NR_MLOCK)),
3086 K(zone_page_state(zone, NR_FILE_DIRTY)),
3087 K(zone_page_state(zone, NR_WRITEBACK)),
3088 K(zone_page_state(zone, NR_FILE_MAPPED)),
3089 K(zone_page_state(zone, NR_SHMEM)),
3090 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3091 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3092 zone_page_state(zone, NR_KERNEL_STACK) *
3093 THREAD_SIZE / 1024,
3094 K(zone_page_state(zone, NR_PAGETABLE)),
3095 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3096 K(zone_page_state(zone, NR_BOUNCE)),
3097 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3098 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3099 zone->pages_scanned,
3100 (zone->all_unreclaimable ? "yes" : "no")
3101 );
3102 printk("lowmem_reserve[]:");
3103 for (i = 0; i < MAX_NR_ZONES; i++)
3104 printk(" %lu", zone->lowmem_reserve[i]);
3105 printk("\n");
3106 }
3107
3108 for_each_populated_zone(zone) {
3109 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3110 unsigned char types[MAX_ORDER];
3111
3112 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3113 continue;
3114 show_node(zone);
3115 printk("%s: ", zone->name);
3116
3117 spin_lock_irqsave(&zone->lock, flags);
3118 for (order = 0; order < MAX_ORDER; order++) {
3119 struct free_area *area = &zone->free_area[order];
3120 int type;
3121
3122 nr[order] = area->nr_free;
3123 total += nr[order] << order;
3124
3125 types[order] = 0;
3126 for (type = 0; type < MIGRATE_TYPES; type++) {
3127 if (!list_empty(&area->free_list[type]))
3128 types[order] |= 1 << type;
3129 }
3130 }
3131 spin_unlock_irqrestore(&zone->lock, flags);
3132 for (order = 0; order < MAX_ORDER; order++) {
3133 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3134 if (nr[order])
3135 show_migration_types(types[order]);
3136 }
3137 printk("= %lukB\n", K(total));
3138 }
3139
3140 hugetlb_show_meminfo();
3141
3142 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3143
3144 show_swap_cache_info();
3145 }
3146
3147 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3148 {
3149 zoneref->zone = zone;
3150 zoneref->zone_idx = zone_idx(zone);
3151 }
3152
3153 /*
3154 * Builds allocation fallback zone lists.
3155 *
3156 * Add all populated zones of a node to the zonelist.
3157 */
3158 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3159 int nr_zones, enum zone_type zone_type)
3160 {
3161 struct zone *zone;
3162
3163 BUG_ON(zone_type >= MAX_NR_ZONES);
3164 zone_type++;
3165
3166 do {
3167 zone_type--;
3168 zone = pgdat->node_zones + zone_type;
3169 if (populated_zone(zone)) {
3170 zoneref_set_zone(zone,
3171 &zonelist->_zonerefs[nr_zones++]);
3172 check_highest_zone(zone_type);
3173 }
3174
3175 } while (zone_type);
3176 return nr_zones;
3177 }
3178
3179
3180 /*
3181 * zonelist_order:
3182 * 0 = automatic detection of better ordering.
3183 * 1 = order by ([node] distance, -zonetype)
3184 * 2 = order by (-zonetype, [node] distance)
3185 *
3186 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3187 * the same zonelist. So only NUMA can configure this param.
3188 */
3189 #define ZONELIST_ORDER_DEFAULT 0
3190 #define ZONELIST_ORDER_NODE 1
3191 #define ZONELIST_ORDER_ZONE 2
3192
3193 /* zonelist order in the kernel.
3194 * set_zonelist_order() will set this to NODE or ZONE.
3195 */
3196 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3197 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3198
3199
3200 #ifdef CONFIG_NUMA
3201 /* The value user specified ....changed by config */
3202 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3203 /* string for sysctl */
3204 #define NUMA_ZONELIST_ORDER_LEN 16
3205 char numa_zonelist_order[16] = "default";
3206
3207 /*
3208 * interface for configure zonelist ordering.
3209 * command line option "numa_zonelist_order"
3210 * = "[dD]efault - default, automatic configuration.
3211 * = "[nN]ode - order by node locality, then by zone within node
3212 * = "[zZ]one - order by zone, then by locality within zone
3213 */
3214
3215 static int __parse_numa_zonelist_order(char *s)
3216 {
3217 if (*s == 'd' || *s == 'D') {
3218 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3219 } else if (*s == 'n' || *s == 'N') {
3220 user_zonelist_order = ZONELIST_ORDER_NODE;
3221 } else if (*s == 'z' || *s == 'Z') {
3222 user_zonelist_order = ZONELIST_ORDER_ZONE;
3223 } else {
3224 printk(KERN_WARNING
3225 "Ignoring invalid numa_zonelist_order value: "
3226 "%s\n", s);
3227 return -EINVAL;
3228 }
3229 return 0;
3230 }
3231
3232 static __init int setup_numa_zonelist_order(char *s)
3233 {
3234 int ret;
3235
3236 if (!s)
3237 return 0;
3238
3239 ret = __parse_numa_zonelist_order(s);
3240 if (ret == 0)
3241 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3242
3243 return ret;
3244 }
3245 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3246
3247 /*
3248 * sysctl handler for numa_zonelist_order
3249 */
3250 int numa_zonelist_order_handler(ctl_table *table, int write,
3251 void __user *buffer, size_t *length,
3252 loff_t *ppos)
3253 {
3254 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3255 int ret;
3256 static DEFINE_MUTEX(zl_order_mutex);
3257
3258 mutex_lock(&zl_order_mutex);
3259 if (write) {
3260 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3261 ret = -EINVAL;
3262 goto out;
3263 }
3264 strcpy(saved_string, (char *)table->data);
3265 }
3266 ret = proc_dostring(table, write, buffer, length, ppos);
3267 if (ret)
3268 goto out;
3269 if (write) {
3270 int oldval = user_zonelist_order;
3271
3272 ret = __parse_numa_zonelist_order((char *)table->data);
3273 if (ret) {
3274 /*
3275 * bogus value. restore saved string
3276 */
3277 strncpy((char *)table->data, saved_string,
3278 NUMA_ZONELIST_ORDER_LEN);
3279 user_zonelist_order = oldval;
3280 } else if (oldval != user_zonelist_order) {
3281 mutex_lock(&zonelists_mutex);
3282 build_all_zonelists(NULL, NULL);
3283 mutex_unlock(&zonelists_mutex);
3284 }
3285 }
3286 out:
3287 mutex_unlock(&zl_order_mutex);
3288 return ret;
3289 }
3290
3291
3292 #define MAX_NODE_LOAD (nr_online_nodes)
3293 static int node_load[MAX_NUMNODES];
3294
3295 /**
3296 * find_next_best_node - find the next node that should appear in a given node's fallback list
3297 * @node: node whose fallback list we're appending
3298 * @used_node_mask: nodemask_t of already used nodes
3299 *
3300 * We use a number of factors to determine which is the next node that should
3301 * appear on a given node's fallback list. The node should not have appeared
3302 * already in @node's fallback list, and it should be the next closest node
3303 * according to the distance array (which contains arbitrary distance values
3304 * from each node to each node in the system), and should also prefer nodes
3305 * with no CPUs, since presumably they'll have very little allocation pressure
3306 * on them otherwise.
3307 * It returns -1 if no node is found.
3308 */
3309 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3310 {
3311 int n, val;
3312 int min_val = INT_MAX;
3313 int best_node = NUMA_NO_NODE;
3314 const struct cpumask *tmp = cpumask_of_node(0);
3315
3316 /* Use the local node if we haven't already */
3317 if (!node_isset(node, *used_node_mask)) {
3318 node_set(node, *used_node_mask);
3319 return node;
3320 }
3321
3322 for_each_node_state(n, N_MEMORY) {
3323
3324 /* Don't want a node to appear more than once */
3325 if (node_isset(n, *used_node_mask))
3326 continue;
3327
3328 /* Use the distance array to find the distance */
3329 val = node_distance(node, n);
3330
3331 /* Penalize nodes under us ("prefer the next node") */
3332 val += (n < node);
3333
3334 /* Give preference to headless and unused nodes */
3335 tmp = cpumask_of_node(n);
3336 if (!cpumask_empty(tmp))
3337 val += PENALTY_FOR_NODE_WITH_CPUS;
3338
3339 /* Slight preference for less loaded node */
3340 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3341 val += node_load[n];
3342
3343 if (val < min_val) {
3344 min_val = val;
3345 best_node = n;
3346 }
3347 }
3348
3349 if (best_node >= 0)
3350 node_set(best_node, *used_node_mask);
3351
3352 return best_node;
3353 }
3354
3355
3356 /*
3357 * Build zonelists ordered by node and zones within node.
3358 * This results in maximum locality--normal zone overflows into local
3359 * DMA zone, if any--but risks exhausting DMA zone.
3360 */
3361 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3362 {
3363 int j;
3364 struct zonelist *zonelist;
3365
3366 zonelist = &pgdat->node_zonelists[0];
3367 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3368 ;
3369 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3370 MAX_NR_ZONES - 1);
3371 zonelist->_zonerefs[j].zone = NULL;
3372 zonelist->_zonerefs[j].zone_idx = 0;
3373 }
3374
3375 /*
3376 * Build gfp_thisnode zonelists
3377 */
3378 static void build_thisnode_zonelists(pg_data_t *pgdat)
3379 {
3380 int j;
3381 struct zonelist *zonelist;
3382
3383 zonelist = &pgdat->node_zonelists[1];
3384 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3385 zonelist->_zonerefs[j].zone = NULL;
3386 zonelist->_zonerefs[j].zone_idx = 0;
3387 }
3388
3389 /*
3390 * Build zonelists ordered by zone and nodes within zones.
3391 * This results in conserving DMA zone[s] until all Normal memory is
3392 * exhausted, but results in overflowing to remote node while memory
3393 * may still exist in local DMA zone.
3394 */
3395 static int node_order[MAX_NUMNODES];
3396
3397 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3398 {
3399 int pos, j, node;
3400 int zone_type; /* needs to be signed */
3401 struct zone *z;
3402 struct zonelist *zonelist;
3403
3404 zonelist = &pgdat->node_zonelists[0];
3405 pos = 0;
3406 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3407 for (j = 0; j < nr_nodes; j++) {
3408 node = node_order[j];
3409 z = &NODE_DATA(node)->node_zones[zone_type];
3410 if (populated_zone(z)) {
3411 zoneref_set_zone(z,
3412 &zonelist->_zonerefs[pos++]);
3413 check_highest_zone(zone_type);
3414 }
3415 }
3416 }
3417 zonelist->_zonerefs[pos].zone = NULL;
3418 zonelist->_zonerefs[pos].zone_idx = 0;
3419 }
3420
3421 static int default_zonelist_order(void)
3422 {
3423 int nid, zone_type;
3424 unsigned long low_kmem_size,total_size;
3425 struct zone *z;
3426 int average_size;
3427 /*
3428 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3429 * If they are really small and used heavily, the system can fall
3430 * into OOM very easily.
3431 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3432 */
3433 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3434 low_kmem_size = 0;
3435 total_size = 0;
3436 for_each_online_node(nid) {
3437 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3438 z = &NODE_DATA(nid)->node_zones[zone_type];
3439 if (populated_zone(z)) {
3440 if (zone_type < ZONE_NORMAL)
3441 low_kmem_size += z->present_pages;
3442 total_size += z->present_pages;
3443 } else if (zone_type == ZONE_NORMAL) {
3444 /*
3445 * If any node has only lowmem, then node order
3446 * is preferred to allow kernel allocations
3447 * locally; otherwise, they can easily infringe
3448 * on other nodes when there is an abundance of
3449 * lowmem available to allocate from.
3450 */
3451 return ZONELIST_ORDER_NODE;
3452 }
3453 }
3454 }
3455 if (!low_kmem_size || /* there are no DMA area. */
3456 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3457 return ZONELIST_ORDER_NODE;
3458 /*
3459 * look into each node's config.
3460 * If there is a node whose DMA/DMA32 memory is very big area on
3461 * local memory, NODE_ORDER may be suitable.
3462 */
3463 average_size = total_size /
3464 (nodes_weight(node_states[N_MEMORY]) + 1);
3465 for_each_online_node(nid) {
3466 low_kmem_size = 0;
3467 total_size = 0;
3468 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3469 z = &NODE_DATA(nid)->node_zones[zone_type];
3470 if (populated_zone(z)) {
3471 if (zone_type < ZONE_NORMAL)
3472 low_kmem_size += z->present_pages;
3473 total_size += z->present_pages;
3474 }
3475 }
3476 if (low_kmem_size &&
3477 total_size > average_size && /* ignore small node */
3478 low_kmem_size > total_size * 70/100)
3479 return ZONELIST_ORDER_NODE;
3480 }
3481 return ZONELIST_ORDER_ZONE;
3482 }
3483
3484 static void set_zonelist_order(void)
3485 {
3486 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3487 current_zonelist_order = default_zonelist_order();
3488 else
3489 current_zonelist_order = user_zonelist_order;
3490 }
3491
3492 static void build_zonelists(pg_data_t *pgdat)
3493 {
3494 int j, node, load;
3495 enum zone_type i;
3496 nodemask_t used_mask;
3497 int local_node, prev_node;
3498 struct zonelist *zonelist;
3499 int order = current_zonelist_order;
3500
3501 /* initialize zonelists */
3502 for (i = 0; i < MAX_ZONELISTS; i++) {
3503 zonelist = pgdat->node_zonelists + i;
3504 zonelist->_zonerefs[0].zone = NULL;
3505 zonelist->_zonerefs[0].zone_idx = 0;
3506 }
3507
3508 /* NUMA-aware ordering of nodes */
3509 local_node = pgdat->node_id;
3510 load = nr_online_nodes;
3511 prev_node = local_node;
3512 nodes_clear(used_mask);
3513
3514 memset(node_order, 0, sizeof(node_order));
3515 j = 0;
3516
3517 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3518 /*
3519 * We don't want to pressure a particular node.
3520 * So adding penalty to the first node in same
3521 * distance group to make it round-robin.
3522 */
3523 if (node_distance(local_node, node) !=
3524 node_distance(local_node, prev_node))
3525 node_load[node] = load;
3526
3527 prev_node = node;
3528 load--;
3529 if (order == ZONELIST_ORDER_NODE)
3530 build_zonelists_in_node_order(pgdat, node);
3531 else
3532 node_order[j++] = node; /* remember order */
3533 }
3534
3535 if (order == ZONELIST_ORDER_ZONE) {
3536 /* calculate node order -- i.e., DMA last! */
3537 build_zonelists_in_zone_order(pgdat, j);
3538 }
3539
3540 build_thisnode_zonelists(pgdat);
3541 }
3542
3543 /* Construct the zonelist performance cache - see further mmzone.h */
3544 static void build_zonelist_cache(pg_data_t *pgdat)
3545 {
3546 struct zonelist *zonelist;
3547 struct zonelist_cache *zlc;
3548 struct zoneref *z;
3549
3550 zonelist = &pgdat->node_zonelists[0];
3551 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3552 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3553 for (z = zonelist->_zonerefs; z->zone; z++)
3554 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3555 }
3556
3557 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3558 /*
3559 * Return node id of node used for "local" allocations.
3560 * I.e., first node id of first zone in arg node's generic zonelist.
3561 * Used for initializing percpu 'numa_mem', which is used primarily
3562 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3563 */
3564 int local_memory_node(int node)
3565 {
3566 struct zone *zone;
3567
3568 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3569 gfp_zone(GFP_KERNEL),
3570 NULL,
3571 &zone);
3572 return zone->node;
3573 }
3574 #endif
3575
3576 #else /* CONFIG_NUMA */
3577
3578 static void set_zonelist_order(void)
3579 {
3580 current_zonelist_order = ZONELIST_ORDER_ZONE;
3581 }
3582
3583 static void build_zonelists(pg_data_t *pgdat)
3584 {
3585 int node, local_node;
3586 enum zone_type j;
3587 struct zonelist *zonelist;
3588
3589 local_node = pgdat->node_id;
3590
3591 zonelist = &pgdat->node_zonelists[0];
3592 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3593
3594 /*
3595 * Now we build the zonelist so that it contains the zones
3596 * of all the other nodes.
3597 * We don't want to pressure a particular node, so when
3598 * building the zones for node N, we make sure that the
3599 * zones coming right after the local ones are those from
3600 * node N+1 (modulo N)
3601 */
3602 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3603 if (!node_online(node))
3604 continue;
3605 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3606 MAX_NR_ZONES - 1);
3607 }
3608 for (node = 0; node < local_node; node++) {
3609 if (!node_online(node))
3610 continue;
3611 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3612 MAX_NR_ZONES - 1);
3613 }
3614
3615 zonelist->_zonerefs[j].zone = NULL;
3616 zonelist->_zonerefs[j].zone_idx = 0;
3617 }
3618
3619 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3620 static void build_zonelist_cache(pg_data_t *pgdat)
3621 {
3622 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3623 }
3624
3625 #endif /* CONFIG_NUMA */
3626
3627 /*
3628 * Boot pageset table. One per cpu which is going to be used for all
3629 * zones and all nodes. The parameters will be set in such a way
3630 * that an item put on a list will immediately be handed over to
3631 * the buddy list. This is safe since pageset manipulation is done
3632 * with interrupts disabled.
3633 *
3634 * The boot_pagesets must be kept even after bootup is complete for
3635 * unused processors and/or zones. They do play a role for bootstrapping
3636 * hotplugged processors.
3637 *
3638 * zoneinfo_show() and maybe other functions do
3639 * not check if the processor is online before following the pageset pointer.
3640 * Other parts of the kernel may not check if the zone is available.
3641 */
3642 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3643 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3644 static void setup_zone_pageset(struct zone *zone);
3645
3646 /*
3647 * Global mutex to protect against size modification of zonelists
3648 * as well as to serialize pageset setup for the new populated zone.
3649 */
3650 DEFINE_MUTEX(zonelists_mutex);
3651
3652 /* return values int ....just for stop_machine() */
3653 static int __build_all_zonelists(void *data)
3654 {
3655 int nid;
3656 int cpu;
3657 pg_data_t *self = data;
3658
3659 #ifdef CONFIG_NUMA
3660 memset(node_load, 0, sizeof(node_load));
3661 #endif
3662
3663 if (self && !node_online(self->node_id)) {
3664 build_zonelists(self);
3665 build_zonelist_cache(self);
3666 }
3667
3668 for_each_online_node(nid) {
3669 pg_data_t *pgdat = NODE_DATA(nid);
3670
3671 build_zonelists(pgdat);
3672 build_zonelist_cache(pgdat);
3673 }
3674
3675 /*
3676 * Initialize the boot_pagesets that are going to be used
3677 * for bootstrapping processors. The real pagesets for
3678 * each zone will be allocated later when the per cpu
3679 * allocator is available.
3680 *
3681 * boot_pagesets are used also for bootstrapping offline
3682 * cpus if the system is already booted because the pagesets
3683 * are needed to initialize allocators on a specific cpu too.
3684 * F.e. the percpu allocator needs the page allocator which
3685 * needs the percpu allocator in order to allocate its pagesets
3686 * (a chicken-egg dilemma).
3687 */
3688 for_each_possible_cpu(cpu) {
3689 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3690
3691 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3692 /*
3693 * We now know the "local memory node" for each node--
3694 * i.e., the node of the first zone in the generic zonelist.
3695 * Set up numa_mem percpu variable for on-line cpus. During
3696 * boot, only the boot cpu should be on-line; we'll init the
3697 * secondary cpus' numa_mem as they come on-line. During
3698 * node/memory hotplug, we'll fixup all on-line cpus.
3699 */
3700 if (cpu_online(cpu))
3701 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3702 #endif
3703 }
3704
3705 return 0;
3706 }
3707
3708 /*
3709 * Called with zonelists_mutex held always
3710 * unless system_state == SYSTEM_BOOTING.
3711 */
3712 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3713 {
3714 set_zonelist_order();
3715
3716 if (system_state == SYSTEM_BOOTING) {
3717 __build_all_zonelists(NULL);
3718 mminit_verify_zonelist();
3719 cpuset_init_current_mems_allowed();
3720 } else {
3721 #ifdef CONFIG_MEMORY_HOTPLUG
3722 if (zone)
3723 setup_zone_pageset(zone);
3724 #endif
3725 /* we have to stop all cpus to guarantee there is no user
3726 of zonelist */
3727 stop_machine(__build_all_zonelists, pgdat, NULL);
3728 /* cpuset refresh routine should be here */
3729 }
3730 vm_total_pages = nr_free_pagecache_pages();
3731 /*
3732 * Disable grouping by mobility if the number of pages in the
3733 * system is too low to allow the mechanism to work. It would be
3734 * more accurate, but expensive to check per-zone. This check is
3735 * made on memory-hotadd so a system can start with mobility
3736 * disabled and enable it later
3737 */
3738 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3739 page_group_by_mobility_disabled = 1;
3740 else
3741 page_group_by_mobility_disabled = 0;
3742
3743 printk("Built %i zonelists in %s order, mobility grouping %s. "
3744 "Total pages: %ld\n",
3745 nr_online_nodes,
3746 zonelist_order_name[current_zonelist_order],
3747 page_group_by_mobility_disabled ? "off" : "on",
3748 vm_total_pages);
3749 #ifdef CONFIG_NUMA
3750 printk("Policy zone: %s\n", zone_names[policy_zone]);
3751 #endif
3752 }
3753
3754 /*
3755 * Helper functions to size the waitqueue hash table.
3756 * Essentially these want to choose hash table sizes sufficiently
3757 * large so that collisions trying to wait on pages are rare.
3758 * But in fact, the number of active page waitqueues on typical
3759 * systems is ridiculously low, less than 200. So this is even
3760 * conservative, even though it seems large.
3761 *
3762 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3763 * waitqueues, i.e. the size of the waitq table given the number of pages.
3764 */
3765 #define PAGES_PER_WAITQUEUE 256
3766
3767 #ifndef CONFIG_MEMORY_HOTPLUG
3768 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3769 {
3770 unsigned long size = 1;
3771
3772 pages /= PAGES_PER_WAITQUEUE;
3773
3774 while (size < pages)
3775 size <<= 1;
3776
3777 /*
3778 * Once we have dozens or even hundreds of threads sleeping
3779 * on IO we've got bigger problems than wait queue collision.
3780 * Limit the size of the wait table to a reasonable size.
3781 */
3782 size = min(size, 4096UL);
3783
3784 return max(size, 4UL);
3785 }
3786 #else
3787 /*
3788 * A zone's size might be changed by hot-add, so it is not possible to determine
3789 * a suitable size for its wait_table. So we use the maximum size now.
3790 *
3791 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3792 *
3793 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3794 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3795 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3796 *
3797 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3798 * or more by the traditional way. (See above). It equals:
3799 *
3800 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3801 * ia64(16K page size) : = ( 8G + 4M)byte.
3802 * powerpc (64K page size) : = (32G +16M)byte.
3803 */
3804 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3805 {
3806 return 4096UL;
3807 }
3808 #endif
3809
3810 /*
3811 * This is an integer logarithm so that shifts can be used later
3812 * to extract the more random high bits from the multiplicative
3813 * hash function before the remainder is taken.
3814 */
3815 static inline unsigned long wait_table_bits(unsigned long size)
3816 {
3817 return ffz(~size);
3818 }
3819
3820 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3821
3822 /*
3823 * Check if a pageblock contains reserved pages
3824 */
3825 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3826 {
3827 unsigned long pfn;
3828
3829 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3830 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3831 return 1;
3832 }
3833 return 0;
3834 }
3835
3836 /*
3837 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3838 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3839 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3840 * higher will lead to a bigger reserve which will get freed as contiguous
3841 * blocks as reclaim kicks in
3842 */
3843 static void setup_zone_migrate_reserve(struct zone *zone)
3844 {
3845 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3846 struct page *page;
3847 unsigned long block_migratetype;
3848 int reserve;
3849
3850 /*
3851 * Get the start pfn, end pfn and the number of blocks to reserve
3852 * We have to be careful to be aligned to pageblock_nr_pages to
3853 * make sure that we always check pfn_valid for the first page in
3854 * the block.
3855 */
3856 start_pfn = zone->zone_start_pfn;
3857 end_pfn = zone_end_pfn(zone);
3858 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3859 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3860 pageblock_order;
3861
3862 /*
3863 * Reserve blocks are generally in place to help high-order atomic
3864 * allocations that are short-lived. A min_free_kbytes value that
3865 * would result in more than 2 reserve blocks for atomic allocations
3866 * is assumed to be in place to help anti-fragmentation for the
3867 * future allocation of hugepages at runtime.
3868 */
3869 reserve = min(2, reserve);
3870
3871 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3872 if (!pfn_valid(pfn))
3873 continue;
3874 page = pfn_to_page(pfn);
3875
3876 /* Watch out for overlapping nodes */
3877 if (page_to_nid(page) != zone_to_nid(zone))
3878 continue;
3879
3880 block_migratetype = get_pageblock_migratetype(page);
3881
3882 /* Only test what is necessary when the reserves are not met */
3883 if (reserve > 0) {
3884 /*
3885 * Blocks with reserved pages will never free, skip
3886 * them.
3887 */
3888 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3889 if (pageblock_is_reserved(pfn, block_end_pfn))
3890 continue;
3891
3892 /* If this block is reserved, account for it */
3893 if (block_migratetype == MIGRATE_RESERVE) {
3894 reserve--;
3895 continue;
3896 }
3897
3898 /* Suitable for reserving if this block is movable */
3899 if (block_migratetype == MIGRATE_MOVABLE) {
3900 set_pageblock_migratetype(page,
3901 MIGRATE_RESERVE);
3902 move_freepages_block(zone, page,
3903 MIGRATE_RESERVE);
3904 reserve--;
3905 continue;
3906 }
3907 }
3908
3909 /*
3910 * If the reserve is met and this is a previous reserved block,
3911 * take it back
3912 */
3913 if (block_migratetype == MIGRATE_RESERVE) {
3914 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3915 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3916 }
3917 }
3918 }
3919
3920 /*
3921 * Initially all pages are reserved - free ones are freed
3922 * up by free_all_bootmem() once the early boot process is
3923 * done. Non-atomic initialization, single-pass.
3924 */
3925 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3926 unsigned long start_pfn, enum memmap_context context)
3927 {
3928 struct page *page;
3929 unsigned long end_pfn = start_pfn + size;
3930 unsigned long pfn;
3931 struct zone *z;
3932
3933 if (highest_memmap_pfn < end_pfn - 1)
3934 highest_memmap_pfn = end_pfn - 1;
3935
3936 z = &NODE_DATA(nid)->node_zones[zone];
3937 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3938 /*
3939 * There can be holes in boot-time mem_map[]s
3940 * handed to this function. They do not
3941 * exist on hotplugged memory.
3942 */
3943 if (context == MEMMAP_EARLY) {
3944 if (!early_pfn_valid(pfn))
3945 continue;
3946 if (!early_pfn_in_nid(pfn, nid))
3947 continue;
3948 }
3949 page = pfn_to_page(pfn);
3950 set_page_links(page, zone, nid, pfn);
3951 mminit_verify_page_links(page, zone, nid, pfn);
3952 init_page_count(page);
3953 page_mapcount_reset(page);
3954 page_nid_reset_last(page);
3955 SetPageReserved(page);
3956 /*
3957 * Mark the block movable so that blocks are reserved for
3958 * movable at startup. This will force kernel allocations
3959 * to reserve their blocks rather than leaking throughout
3960 * the address space during boot when many long-lived
3961 * kernel allocations are made. Later some blocks near
3962 * the start are marked MIGRATE_RESERVE by
3963 * setup_zone_migrate_reserve()
3964 *
3965 * bitmap is created for zone's valid pfn range. but memmap
3966 * can be created for invalid pages (for alignment)
3967 * check here not to call set_pageblock_migratetype() against
3968 * pfn out of zone.
3969 */
3970 if ((z->zone_start_pfn <= pfn)
3971 && (pfn < zone_end_pfn(z))
3972 && !(pfn & (pageblock_nr_pages - 1)))
3973 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3974
3975 INIT_LIST_HEAD(&page->lru);
3976 #ifdef WANT_PAGE_VIRTUAL
3977 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3978 if (!is_highmem_idx(zone))
3979 set_page_address(page, __va(pfn << PAGE_SHIFT));
3980 #endif
3981 }
3982 }
3983
3984 static void __meminit zone_init_free_lists(struct zone *zone)
3985 {
3986 int order, t;
3987 for_each_migratetype_order(order, t) {
3988 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3989 zone->free_area[order].nr_free = 0;
3990 }
3991 }
3992
3993 #ifndef __HAVE_ARCH_MEMMAP_INIT
3994 #define memmap_init(size, nid, zone, start_pfn) \
3995 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3996 #endif
3997
3998 static int __meminit zone_batchsize(struct zone *zone)
3999 {
4000 #ifdef CONFIG_MMU
4001 int batch;
4002
4003 /*
4004 * The per-cpu-pages pools are set to around 1000th of the
4005 * size of the zone. But no more than 1/2 of a meg.
4006 *
4007 * OK, so we don't know how big the cache is. So guess.
4008 */
4009 batch = zone->managed_pages / 1024;
4010 if (batch * PAGE_SIZE > 512 * 1024)
4011 batch = (512 * 1024) / PAGE_SIZE;
4012 batch /= 4; /* We effectively *= 4 below */
4013 if (batch < 1)
4014 batch = 1;
4015
4016 /*
4017 * Clamp the batch to a 2^n - 1 value. Having a power
4018 * of 2 value was found to be more likely to have
4019 * suboptimal cache aliasing properties in some cases.
4020 *
4021 * For example if 2 tasks are alternately allocating
4022 * batches of pages, one task can end up with a lot
4023 * of pages of one half of the possible page colors
4024 * and the other with pages of the other colors.
4025 */
4026 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4027
4028 return batch;
4029
4030 #else
4031 /* The deferral and batching of frees should be suppressed under NOMMU
4032 * conditions.
4033 *
4034 * The problem is that NOMMU needs to be able to allocate large chunks
4035 * of contiguous memory as there's no hardware page translation to
4036 * assemble apparent contiguous memory from discontiguous pages.
4037 *
4038 * Queueing large contiguous runs of pages for batching, however,
4039 * causes the pages to actually be freed in smaller chunks. As there
4040 * can be a significant delay between the individual batches being
4041 * recycled, this leads to the once large chunks of space being
4042 * fragmented and becoming unavailable for high-order allocations.
4043 */
4044 return 0;
4045 #endif
4046 }
4047
4048 /*
4049 * pcp->high and pcp->batch values are related and dependent on one another:
4050 * ->batch must never be higher then ->high.
4051 * The following function updates them in a safe manner without read side
4052 * locking.
4053 *
4054 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4055 * those fields changing asynchronously (acording the the above rule).
4056 *
4057 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4058 * outside of boot time (or some other assurance that no concurrent updaters
4059 * exist).
4060 */
4061 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4062 unsigned long batch)
4063 {
4064 /* start with a fail safe value for batch */
4065 pcp->batch = 1;
4066 smp_wmb();
4067
4068 /* Update high, then batch, in order */
4069 pcp->high = high;
4070 smp_wmb();
4071
4072 pcp->batch = batch;
4073 }
4074
4075 /* a companion to pageset_set_high() */
4076 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4077 {
4078 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4079 }
4080
4081 static void pageset_init(struct per_cpu_pageset *p)
4082 {
4083 struct per_cpu_pages *pcp;
4084 int migratetype;
4085
4086 memset(p, 0, sizeof(*p));
4087
4088 pcp = &p->pcp;
4089 pcp->count = 0;
4090 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4091 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4092 }
4093
4094 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4095 {
4096 pageset_init(p);
4097 pageset_set_batch(p, batch);
4098 }
4099
4100 /*
4101 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4102 * to the value high for the pageset p.
4103 */
4104 static void pageset_set_high(struct per_cpu_pageset *p,
4105 unsigned long high)
4106 {
4107 unsigned long batch = max(1UL, high / 4);
4108 if ((high / 4) > (PAGE_SHIFT * 8))
4109 batch = PAGE_SHIFT * 8;
4110
4111 pageset_update(&p->pcp, high, batch);
4112 }
4113
4114 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4115 struct per_cpu_pageset *pcp)
4116 {
4117 if (percpu_pagelist_fraction)
4118 pageset_set_high(pcp,
4119 (zone->managed_pages /
4120 percpu_pagelist_fraction));
4121 else
4122 pageset_set_batch(pcp, zone_batchsize(zone));
4123 }
4124
4125 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4126 {
4127 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4128
4129 pageset_init(pcp);
4130 pageset_set_high_and_batch(zone, pcp);
4131 }
4132
4133 static void __meminit setup_zone_pageset(struct zone *zone)
4134 {
4135 int cpu;
4136 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4137 for_each_possible_cpu(cpu)
4138 zone_pageset_init(zone, cpu);
4139 }
4140
4141 /*
4142 * Allocate per cpu pagesets and initialize them.
4143 * Before this call only boot pagesets were available.
4144 */
4145 void __init setup_per_cpu_pageset(void)
4146 {
4147 struct zone *zone;
4148
4149 for_each_populated_zone(zone)
4150 setup_zone_pageset(zone);
4151 }
4152
4153 static noinline __init_refok
4154 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4155 {
4156 int i;
4157 struct pglist_data *pgdat = zone->zone_pgdat;
4158 size_t alloc_size;
4159
4160 /*
4161 * The per-page waitqueue mechanism uses hashed waitqueues
4162 * per zone.
4163 */
4164 zone->wait_table_hash_nr_entries =
4165 wait_table_hash_nr_entries(zone_size_pages);
4166 zone->wait_table_bits =
4167 wait_table_bits(zone->wait_table_hash_nr_entries);
4168 alloc_size = zone->wait_table_hash_nr_entries
4169 * sizeof(wait_queue_head_t);
4170
4171 if (!slab_is_available()) {
4172 zone->wait_table = (wait_queue_head_t *)
4173 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4174 } else {
4175 /*
4176 * This case means that a zone whose size was 0 gets new memory
4177 * via memory hot-add.
4178 * But it may be the case that a new node was hot-added. In
4179 * this case vmalloc() will not be able to use this new node's
4180 * memory - this wait_table must be initialized to use this new
4181 * node itself as well.
4182 * To use this new node's memory, further consideration will be
4183 * necessary.
4184 */
4185 zone->wait_table = vmalloc(alloc_size);
4186 }
4187 if (!zone->wait_table)
4188 return -ENOMEM;
4189
4190 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4191 init_waitqueue_head(zone->wait_table + i);
4192
4193 return 0;
4194 }
4195
4196 static __meminit void zone_pcp_init(struct zone *zone)
4197 {
4198 /*
4199 * per cpu subsystem is not up at this point. The following code
4200 * relies on the ability of the linker to provide the
4201 * offset of a (static) per cpu variable into the per cpu area.
4202 */
4203 zone->pageset = &boot_pageset;
4204
4205 if (zone->present_pages)
4206 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4207 zone->name, zone->present_pages,
4208 zone_batchsize(zone));
4209 }
4210
4211 int __meminit init_currently_empty_zone(struct zone *zone,
4212 unsigned long zone_start_pfn,
4213 unsigned long size,
4214 enum memmap_context context)
4215 {
4216 struct pglist_data *pgdat = zone->zone_pgdat;
4217 int ret;
4218 ret = zone_wait_table_init(zone, size);
4219 if (ret)
4220 return ret;
4221 pgdat->nr_zones = zone_idx(zone) + 1;
4222
4223 zone->zone_start_pfn = zone_start_pfn;
4224
4225 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4226 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4227 pgdat->node_id,
4228 (unsigned long)zone_idx(zone),
4229 zone_start_pfn, (zone_start_pfn + size));
4230
4231 zone_init_free_lists(zone);
4232
4233 return 0;
4234 }
4235
4236 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4237 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4238 /*
4239 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4240 * Architectures may implement their own version but if add_active_range()
4241 * was used and there are no special requirements, this is a convenient
4242 * alternative
4243 */
4244 int __meminit __early_pfn_to_nid(unsigned long pfn)
4245 {
4246 unsigned long start_pfn, end_pfn;
4247 int i, nid;
4248 /*
4249 * NOTE: The following SMP-unsafe globals are only used early in boot
4250 * when the kernel is running single-threaded.
4251 */
4252 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4253 static int __meminitdata last_nid;
4254
4255 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4256 return last_nid;
4257
4258 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4259 if (start_pfn <= pfn && pfn < end_pfn) {
4260 last_start_pfn = start_pfn;
4261 last_end_pfn = end_pfn;
4262 last_nid = nid;
4263 return nid;
4264 }
4265 /* This is a memory hole */
4266 return -1;
4267 }
4268 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4269
4270 int __meminit early_pfn_to_nid(unsigned long pfn)
4271 {
4272 int nid;
4273
4274 nid = __early_pfn_to_nid(pfn);
4275 if (nid >= 0)
4276 return nid;
4277 /* just returns 0 */
4278 return 0;
4279 }
4280
4281 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4282 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4283 {
4284 int nid;
4285
4286 nid = __early_pfn_to_nid(pfn);
4287 if (nid >= 0 && nid != node)
4288 return false;
4289 return true;
4290 }
4291 #endif
4292
4293 /**
4294 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4295 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4296 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4297 *
4298 * If an architecture guarantees that all ranges registered with
4299 * add_active_ranges() contain no holes and may be freed, this
4300 * this function may be used instead of calling free_bootmem() manually.
4301 */
4302 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4303 {
4304 unsigned long start_pfn, end_pfn;
4305 int i, this_nid;
4306
4307 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4308 start_pfn = min(start_pfn, max_low_pfn);
4309 end_pfn = min(end_pfn, max_low_pfn);
4310
4311 if (start_pfn < end_pfn)
4312 free_bootmem_node(NODE_DATA(this_nid),
4313 PFN_PHYS(start_pfn),
4314 (end_pfn - start_pfn) << PAGE_SHIFT);
4315 }
4316 }
4317
4318 /**
4319 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4320 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4321 *
4322 * If an architecture guarantees that all ranges registered with
4323 * add_active_ranges() contain no holes and may be freed, this
4324 * function may be used instead of calling memory_present() manually.
4325 */
4326 void __init sparse_memory_present_with_active_regions(int nid)
4327 {
4328 unsigned long start_pfn, end_pfn;
4329 int i, this_nid;
4330
4331 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4332 memory_present(this_nid, start_pfn, end_pfn);
4333 }
4334
4335 /**
4336 * get_pfn_range_for_nid - Return the start and end page frames for a node
4337 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4338 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4339 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4340 *
4341 * It returns the start and end page frame of a node based on information
4342 * provided by an arch calling add_active_range(). If called for a node
4343 * with no available memory, a warning is printed and the start and end
4344 * PFNs will be 0.
4345 */
4346 void __meminit get_pfn_range_for_nid(unsigned int nid,
4347 unsigned long *start_pfn, unsigned long *end_pfn)
4348 {
4349 unsigned long this_start_pfn, this_end_pfn;
4350 int i;
4351
4352 *start_pfn = -1UL;
4353 *end_pfn = 0;
4354
4355 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4356 *start_pfn = min(*start_pfn, this_start_pfn);
4357 *end_pfn = max(*end_pfn, this_end_pfn);
4358 }
4359
4360 if (*start_pfn == -1UL)
4361 *start_pfn = 0;
4362 }
4363
4364 /*
4365 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4366 * assumption is made that zones within a node are ordered in monotonic
4367 * increasing memory addresses so that the "highest" populated zone is used
4368 */
4369 static void __init find_usable_zone_for_movable(void)
4370 {
4371 int zone_index;
4372 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4373 if (zone_index == ZONE_MOVABLE)
4374 continue;
4375
4376 if (arch_zone_highest_possible_pfn[zone_index] >
4377 arch_zone_lowest_possible_pfn[zone_index])
4378 break;
4379 }
4380
4381 VM_BUG_ON(zone_index == -1);
4382 movable_zone = zone_index;
4383 }
4384
4385 /*
4386 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4387 * because it is sized independent of architecture. Unlike the other zones,
4388 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4389 * in each node depending on the size of each node and how evenly kernelcore
4390 * is distributed. This helper function adjusts the zone ranges
4391 * provided by the architecture for a given node by using the end of the
4392 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4393 * zones within a node are in order of monotonic increases memory addresses
4394 */
4395 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4396 unsigned long zone_type,
4397 unsigned long node_start_pfn,
4398 unsigned long node_end_pfn,
4399 unsigned long *zone_start_pfn,
4400 unsigned long *zone_end_pfn)
4401 {
4402 /* Only adjust if ZONE_MOVABLE is on this node */
4403 if (zone_movable_pfn[nid]) {
4404 /* Size ZONE_MOVABLE */
4405 if (zone_type == ZONE_MOVABLE) {
4406 *zone_start_pfn = zone_movable_pfn[nid];
4407 *zone_end_pfn = min(node_end_pfn,
4408 arch_zone_highest_possible_pfn[movable_zone]);
4409
4410 /* Adjust for ZONE_MOVABLE starting within this range */
4411 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4412 *zone_end_pfn > zone_movable_pfn[nid]) {
4413 *zone_end_pfn = zone_movable_pfn[nid];
4414
4415 /* Check if this whole range is within ZONE_MOVABLE */
4416 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4417 *zone_start_pfn = *zone_end_pfn;
4418 }
4419 }
4420
4421 /*
4422 * Return the number of pages a zone spans in a node, including holes
4423 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4424 */
4425 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4426 unsigned long zone_type,
4427 unsigned long *ignored)
4428 {
4429 unsigned long node_start_pfn, node_end_pfn;
4430 unsigned long zone_start_pfn, zone_end_pfn;
4431
4432 /* Get the start and end of the node and zone */
4433 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4434 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4435 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4436 adjust_zone_range_for_zone_movable(nid, zone_type,
4437 node_start_pfn, node_end_pfn,
4438 &zone_start_pfn, &zone_end_pfn);
4439
4440 /* Check that this node has pages within the zone's required range */
4441 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4442 return 0;
4443
4444 /* Move the zone boundaries inside the node if necessary */
4445 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4446 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4447
4448 /* Return the spanned pages */
4449 return zone_end_pfn - zone_start_pfn;
4450 }
4451
4452 /*
4453 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4454 * then all holes in the requested range will be accounted for.
4455 */
4456 unsigned long __meminit __absent_pages_in_range(int nid,
4457 unsigned long range_start_pfn,
4458 unsigned long range_end_pfn)
4459 {
4460 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4461 unsigned long start_pfn, end_pfn;
4462 int i;
4463
4464 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4465 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4466 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4467 nr_absent -= end_pfn - start_pfn;
4468 }
4469 return nr_absent;
4470 }
4471
4472 /**
4473 * absent_pages_in_range - Return number of page frames in holes within a range
4474 * @start_pfn: The start PFN to start searching for holes
4475 * @end_pfn: The end PFN to stop searching for holes
4476 *
4477 * It returns the number of pages frames in memory holes within a range.
4478 */
4479 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4480 unsigned long end_pfn)
4481 {
4482 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4483 }
4484
4485 /* Return the number of page frames in holes in a zone on a node */
4486 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4487 unsigned long zone_type,
4488 unsigned long *ignored)
4489 {
4490 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4491 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4492 unsigned long node_start_pfn, node_end_pfn;
4493 unsigned long zone_start_pfn, zone_end_pfn;
4494
4495 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4496 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4497 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4498
4499 adjust_zone_range_for_zone_movable(nid, zone_type,
4500 node_start_pfn, node_end_pfn,
4501 &zone_start_pfn, &zone_end_pfn);
4502 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4503 }
4504
4505 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4506 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4507 unsigned long zone_type,
4508 unsigned long *zones_size)
4509 {
4510 return zones_size[zone_type];
4511 }
4512
4513 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4514 unsigned long zone_type,
4515 unsigned long *zholes_size)
4516 {
4517 if (!zholes_size)
4518 return 0;
4519
4520 return zholes_size[zone_type];
4521 }
4522
4523 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4524
4525 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4526 unsigned long *zones_size, unsigned long *zholes_size)
4527 {
4528 unsigned long realtotalpages, totalpages = 0;
4529 enum zone_type i;
4530
4531 for (i = 0; i < MAX_NR_ZONES; i++)
4532 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4533 zones_size);
4534 pgdat->node_spanned_pages = totalpages;
4535
4536 realtotalpages = totalpages;
4537 for (i = 0; i < MAX_NR_ZONES; i++)
4538 realtotalpages -=
4539 zone_absent_pages_in_node(pgdat->node_id, i,
4540 zholes_size);
4541 pgdat->node_present_pages = realtotalpages;
4542 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4543 realtotalpages);
4544 }
4545
4546 #ifndef CONFIG_SPARSEMEM
4547 /*
4548 * Calculate the size of the zone->blockflags rounded to an unsigned long
4549 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4550 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4551 * round what is now in bits to nearest long in bits, then return it in
4552 * bytes.
4553 */
4554 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4555 {
4556 unsigned long usemapsize;
4557
4558 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4559 usemapsize = roundup(zonesize, pageblock_nr_pages);
4560 usemapsize = usemapsize >> pageblock_order;
4561 usemapsize *= NR_PAGEBLOCK_BITS;
4562 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4563
4564 return usemapsize / 8;
4565 }
4566
4567 static void __init setup_usemap(struct pglist_data *pgdat,
4568 struct zone *zone,
4569 unsigned long zone_start_pfn,
4570 unsigned long zonesize)
4571 {
4572 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4573 zone->pageblock_flags = NULL;
4574 if (usemapsize)
4575 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4576 usemapsize);
4577 }
4578 #else
4579 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4580 unsigned long zone_start_pfn, unsigned long zonesize) {}
4581 #endif /* CONFIG_SPARSEMEM */
4582
4583 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4584
4585 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4586 void __init set_pageblock_order(void)
4587 {
4588 unsigned int order;
4589
4590 /* Check that pageblock_nr_pages has not already been setup */
4591 if (pageblock_order)
4592 return;
4593
4594 if (HPAGE_SHIFT > PAGE_SHIFT)
4595 order = HUGETLB_PAGE_ORDER;
4596 else
4597 order = MAX_ORDER - 1;
4598
4599 /*
4600 * Assume the largest contiguous order of interest is a huge page.
4601 * This value may be variable depending on boot parameters on IA64 and
4602 * powerpc.
4603 */
4604 pageblock_order = order;
4605 }
4606 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4607
4608 /*
4609 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4610 * is unused as pageblock_order is set at compile-time. See
4611 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4612 * the kernel config
4613 */
4614 void __init set_pageblock_order(void)
4615 {
4616 }
4617
4618 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4619
4620 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4621 unsigned long present_pages)
4622 {
4623 unsigned long pages = spanned_pages;
4624
4625 /*
4626 * Provide a more accurate estimation if there are holes within
4627 * the zone and SPARSEMEM is in use. If there are holes within the
4628 * zone, each populated memory region may cost us one or two extra
4629 * memmap pages due to alignment because memmap pages for each
4630 * populated regions may not naturally algined on page boundary.
4631 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4632 */
4633 if (spanned_pages > present_pages + (present_pages >> 4) &&
4634 IS_ENABLED(CONFIG_SPARSEMEM))
4635 pages = present_pages;
4636
4637 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4638 }
4639
4640 /*
4641 * Set up the zone data structures:
4642 * - mark all pages reserved
4643 * - mark all memory queues empty
4644 * - clear the memory bitmaps
4645 *
4646 * NOTE: pgdat should get zeroed by caller.
4647 */
4648 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4649 unsigned long *zones_size, unsigned long *zholes_size)
4650 {
4651 enum zone_type j;
4652 int nid = pgdat->node_id;
4653 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4654 int ret;
4655
4656 pgdat_resize_init(pgdat);
4657 #ifdef CONFIG_NUMA_BALANCING
4658 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4659 pgdat->numabalancing_migrate_nr_pages = 0;
4660 pgdat->numabalancing_migrate_next_window = jiffies;
4661 #endif
4662 init_waitqueue_head(&pgdat->kswapd_wait);
4663 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4664 pgdat_page_cgroup_init(pgdat);
4665
4666 for (j = 0; j < MAX_NR_ZONES; j++) {
4667 struct zone *zone = pgdat->node_zones + j;
4668 unsigned long size, realsize, freesize, memmap_pages;
4669
4670 size = zone_spanned_pages_in_node(nid, j, zones_size);
4671 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4672 zholes_size);
4673
4674 /*
4675 * Adjust freesize so that it accounts for how much memory
4676 * is used by this zone for memmap. This affects the watermark
4677 * and per-cpu initialisations
4678 */
4679 memmap_pages = calc_memmap_size(size, realsize);
4680 if (freesize >= memmap_pages) {
4681 freesize -= memmap_pages;
4682 if (memmap_pages)
4683 printk(KERN_DEBUG
4684 " %s zone: %lu pages used for memmap\n",
4685 zone_names[j], memmap_pages);
4686 } else
4687 printk(KERN_WARNING
4688 " %s zone: %lu pages exceeds freesize %lu\n",
4689 zone_names[j], memmap_pages, freesize);
4690
4691 /* Account for reserved pages */
4692 if (j == 0 && freesize > dma_reserve) {
4693 freesize -= dma_reserve;
4694 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4695 zone_names[0], dma_reserve);
4696 }
4697
4698 if (!is_highmem_idx(j))
4699 nr_kernel_pages += freesize;
4700 /* Charge for highmem memmap if there are enough kernel pages */
4701 else if (nr_kernel_pages > memmap_pages * 2)
4702 nr_kernel_pages -= memmap_pages;
4703 nr_all_pages += freesize;
4704
4705 zone->spanned_pages = size;
4706 zone->present_pages = realsize;
4707 /*
4708 * Set an approximate value for lowmem here, it will be adjusted
4709 * when the bootmem allocator frees pages into the buddy system.
4710 * And all highmem pages will be managed by the buddy system.
4711 */
4712 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4713 #ifdef CONFIG_NUMA
4714 zone->node = nid;
4715 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4716 / 100;
4717 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4718 #endif
4719 zone->name = zone_names[j];
4720 spin_lock_init(&zone->lock);
4721 spin_lock_init(&zone->lru_lock);
4722 zone_seqlock_init(zone);
4723 zone->zone_pgdat = pgdat;
4724
4725 zone_pcp_init(zone);
4726 lruvec_init(&zone->lruvec);
4727 if (!size)
4728 continue;
4729
4730 set_pageblock_order();
4731 setup_usemap(pgdat, zone, zone_start_pfn, size);
4732 ret = init_currently_empty_zone(zone, zone_start_pfn,
4733 size, MEMMAP_EARLY);
4734 BUG_ON(ret);
4735 memmap_init(size, nid, j, zone_start_pfn);
4736 zone_start_pfn += size;
4737 }
4738 }
4739
4740 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4741 {
4742 /* Skip empty nodes */
4743 if (!pgdat->node_spanned_pages)
4744 return;
4745
4746 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4747 /* ia64 gets its own node_mem_map, before this, without bootmem */
4748 if (!pgdat->node_mem_map) {
4749 unsigned long size, start, end;
4750 struct page *map;
4751
4752 /*
4753 * The zone's endpoints aren't required to be MAX_ORDER
4754 * aligned but the node_mem_map endpoints must be in order
4755 * for the buddy allocator to function correctly.
4756 */
4757 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4758 end = pgdat_end_pfn(pgdat);
4759 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4760 size = (end - start) * sizeof(struct page);
4761 map = alloc_remap(pgdat->node_id, size);
4762 if (!map)
4763 map = alloc_bootmem_node_nopanic(pgdat, size);
4764 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4765 }
4766 #ifndef CONFIG_NEED_MULTIPLE_NODES
4767 /*
4768 * With no DISCONTIG, the global mem_map is just set as node 0's
4769 */
4770 if (pgdat == NODE_DATA(0)) {
4771 mem_map = NODE_DATA(0)->node_mem_map;
4772 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4773 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4774 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4775 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4776 }
4777 #endif
4778 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4779 }
4780
4781 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4782 unsigned long node_start_pfn, unsigned long *zholes_size)
4783 {
4784 pg_data_t *pgdat = NODE_DATA(nid);
4785
4786 /* pg_data_t should be reset to zero when it's allocated */
4787 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4788
4789 pgdat->node_id = nid;
4790 pgdat->node_start_pfn = node_start_pfn;
4791 init_zone_allows_reclaim(nid);
4792 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4793
4794 alloc_node_mem_map(pgdat);
4795 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4796 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4797 nid, (unsigned long)pgdat,
4798 (unsigned long)pgdat->node_mem_map);
4799 #endif
4800
4801 free_area_init_core(pgdat, zones_size, zholes_size);
4802 }
4803
4804 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4805
4806 #if MAX_NUMNODES > 1
4807 /*
4808 * Figure out the number of possible node ids.
4809 */
4810 void __init setup_nr_node_ids(void)
4811 {
4812 unsigned int node;
4813 unsigned int highest = 0;
4814
4815 for_each_node_mask(node, node_possible_map)
4816 highest = node;
4817 nr_node_ids = highest + 1;
4818 }
4819 #endif
4820
4821 /**
4822 * node_map_pfn_alignment - determine the maximum internode alignment
4823 *
4824 * This function should be called after node map is populated and sorted.
4825 * It calculates the maximum power of two alignment which can distinguish
4826 * all the nodes.
4827 *
4828 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4829 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4830 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4831 * shifted, 1GiB is enough and this function will indicate so.
4832 *
4833 * This is used to test whether pfn -> nid mapping of the chosen memory
4834 * model has fine enough granularity to avoid incorrect mapping for the
4835 * populated node map.
4836 *
4837 * Returns the determined alignment in pfn's. 0 if there is no alignment
4838 * requirement (single node).
4839 */
4840 unsigned long __init node_map_pfn_alignment(void)
4841 {
4842 unsigned long accl_mask = 0, last_end = 0;
4843 unsigned long start, end, mask;
4844 int last_nid = -1;
4845 int i, nid;
4846
4847 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4848 if (!start || last_nid < 0 || last_nid == nid) {
4849 last_nid = nid;
4850 last_end = end;
4851 continue;
4852 }
4853
4854 /*
4855 * Start with a mask granular enough to pin-point to the
4856 * start pfn and tick off bits one-by-one until it becomes
4857 * too coarse to separate the current node from the last.
4858 */
4859 mask = ~((1 << __ffs(start)) - 1);
4860 while (mask && last_end <= (start & (mask << 1)))
4861 mask <<= 1;
4862
4863 /* accumulate all internode masks */
4864 accl_mask |= mask;
4865 }
4866
4867 /* convert mask to number of pages */
4868 return ~accl_mask + 1;
4869 }
4870
4871 /* Find the lowest pfn for a node */
4872 static unsigned long __init find_min_pfn_for_node(int nid)
4873 {
4874 unsigned long min_pfn = ULONG_MAX;
4875 unsigned long start_pfn;
4876 int i;
4877
4878 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4879 min_pfn = min(min_pfn, start_pfn);
4880
4881 if (min_pfn == ULONG_MAX) {
4882 printk(KERN_WARNING
4883 "Could not find start_pfn for node %d\n", nid);
4884 return 0;
4885 }
4886
4887 return min_pfn;
4888 }
4889
4890 /**
4891 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4892 *
4893 * It returns the minimum PFN based on information provided via
4894 * add_active_range().
4895 */
4896 unsigned long __init find_min_pfn_with_active_regions(void)
4897 {
4898 return find_min_pfn_for_node(MAX_NUMNODES);
4899 }
4900
4901 /*
4902 * early_calculate_totalpages()
4903 * Sum pages in active regions for movable zone.
4904 * Populate N_MEMORY for calculating usable_nodes.
4905 */
4906 static unsigned long __init early_calculate_totalpages(void)
4907 {
4908 unsigned long totalpages = 0;
4909 unsigned long start_pfn, end_pfn;
4910 int i, nid;
4911
4912 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4913 unsigned long pages = end_pfn - start_pfn;
4914
4915 totalpages += pages;
4916 if (pages)
4917 node_set_state(nid, N_MEMORY);
4918 }
4919 return totalpages;
4920 }
4921
4922 /*
4923 * Find the PFN the Movable zone begins in each node. Kernel memory
4924 * is spread evenly between nodes as long as the nodes have enough
4925 * memory. When they don't, some nodes will have more kernelcore than
4926 * others
4927 */
4928 static void __init find_zone_movable_pfns_for_nodes(void)
4929 {
4930 int i, nid;
4931 unsigned long usable_startpfn;
4932 unsigned long kernelcore_node, kernelcore_remaining;
4933 /* save the state before borrow the nodemask */
4934 nodemask_t saved_node_state = node_states[N_MEMORY];
4935 unsigned long totalpages = early_calculate_totalpages();
4936 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4937
4938 /*
4939 * If movablecore was specified, calculate what size of
4940 * kernelcore that corresponds so that memory usable for
4941 * any allocation type is evenly spread. If both kernelcore
4942 * and movablecore are specified, then the value of kernelcore
4943 * will be used for required_kernelcore if it's greater than
4944 * what movablecore would have allowed.
4945 */
4946 if (required_movablecore) {
4947 unsigned long corepages;
4948
4949 /*
4950 * Round-up so that ZONE_MOVABLE is at least as large as what
4951 * was requested by the user
4952 */
4953 required_movablecore =
4954 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4955 corepages = totalpages - required_movablecore;
4956
4957 required_kernelcore = max(required_kernelcore, corepages);
4958 }
4959
4960 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4961 if (!required_kernelcore)
4962 goto out;
4963
4964 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4965 find_usable_zone_for_movable();
4966 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4967
4968 restart:
4969 /* Spread kernelcore memory as evenly as possible throughout nodes */
4970 kernelcore_node = required_kernelcore / usable_nodes;
4971 for_each_node_state(nid, N_MEMORY) {
4972 unsigned long start_pfn, end_pfn;
4973
4974 /*
4975 * Recalculate kernelcore_node if the division per node
4976 * now exceeds what is necessary to satisfy the requested
4977 * amount of memory for the kernel
4978 */
4979 if (required_kernelcore < kernelcore_node)
4980 kernelcore_node = required_kernelcore / usable_nodes;
4981
4982 /*
4983 * As the map is walked, we track how much memory is usable
4984 * by the kernel using kernelcore_remaining. When it is
4985 * 0, the rest of the node is usable by ZONE_MOVABLE
4986 */
4987 kernelcore_remaining = kernelcore_node;
4988
4989 /* Go through each range of PFNs within this node */
4990 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4991 unsigned long size_pages;
4992
4993 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4994 if (start_pfn >= end_pfn)
4995 continue;
4996
4997 /* Account for what is only usable for kernelcore */
4998 if (start_pfn < usable_startpfn) {
4999 unsigned long kernel_pages;
5000 kernel_pages = min(end_pfn, usable_startpfn)
5001 - start_pfn;
5002
5003 kernelcore_remaining -= min(kernel_pages,
5004 kernelcore_remaining);
5005 required_kernelcore -= min(kernel_pages,
5006 required_kernelcore);
5007
5008 /* Continue if range is now fully accounted */
5009 if (end_pfn <= usable_startpfn) {
5010
5011 /*
5012 * Push zone_movable_pfn to the end so
5013 * that if we have to rebalance
5014 * kernelcore across nodes, we will
5015 * not double account here
5016 */
5017 zone_movable_pfn[nid] = end_pfn;
5018 continue;
5019 }
5020 start_pfn = usable_startpfn;
5021 }
5022
5023 /*
5024 * The usable PFN range for ZONE_MOVABLE is from
5025 * start_pfn->end_pfn. Calculate size_pages as the
5026 * number of pages used as kernelcore
5027 */
5028 size_pages = end_pfn - start_pfn;
5029 if (size_pages > kernelcore_remaining)
5030 size_pages = kernelcore_remaining;
5031 zone_movable_pfn[nid] = start_pfn + size_pages;
5032
5033 /*
5034 * Some kernelcore has been met, update counts and
5035 * break if the kernelcore for this node has been
5036 * satisified
5037 */
5038 required_kernelcore -= min(required_kernelcore,
5039 size_pages);
5040 kernelcore_remaining -= size_pages;
5041 if (!kernelcore_remaining)
5042 break;
5043 }
5044 }
5045
5046 /*
5047 * If there is still required_kernelcore, we do another pass with one
5048 * less node in the count. This will push zone_movable_pfn[nid] further
5049 * along on the nodes that still have memory until kernelcore is
5050 * satisified
5051 */
5052 usable_nodes--;
5053 if (usable_nodes && required_kernelcore > usable_nodes)
5054 goto restart;
5055
5056 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5057 for (nid = 0; nid < MAX_NUMNODES; nid++)
5058 zone_movable_pfn[nid] =
5059 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5060
5061 out:
5062 /* restore the node_state */
5063 node_states[N_MEMORY] = saved_node_state;
5064 }
5065
5066 /* Any regular or high memory on that node ? */
5067 static void check_for_memory(pg_data_t *pgdat, int nid)
5068 {
5069 enum zone_type zone_type;
5070
5071 if (N_MEMORY == N_NORMAL_MEMORY)
5072 return;
5073
5074 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5075 struct zone *zone = &pgdat->node_zones[zone_type];
5076 if (zone->present_pages) {
5077 node_set_state(nid, N_HIGH_MEMORY);
5078 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5079 zone_type <= ZONE_NORMAL)
5080 node_set_state(nid, N_NORMAL_MEMORY);
5081 break;
5082 }
5083 }
5084 }
5085
5086 /**
5087 * free_area_init_nodes - Initialise all pg_data_t and zone data
5088 * @max_zone_pfn: an array of max PFNs for each zone
5089 *
5090 * This will call free_area_init_node() for each active node in the system.
5091 * Using the page ranges provided by add_active_range(), the size of each
5092 * zone in each node and their holes is calculated. If the maximum PFN
5093 * between two adjacent zones match, it is assumed that the zone is empty.
5094 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5095 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5096 * starts where the previous one ended. For example, ZONE_DMA32 starts
5097 * at arch_max_dma_pfn.
5098 */
5099 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5100 {
5101 unsigned long start_pfn, end_pfn;
5102 int i, nid;
5103
5104 /* Record where the zone boundaries are */
5105 memset(arch_zone_lowest_possible_pfn, 0,
5106 sizeof(arch_zone_lowest_possible_pfn));
5107 memset(arch_zone_highest_possible_pfn, 0,
5108 sizeof(arch_zone_highest_possible_pfn));
5109 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5110 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5111 for (i = 1; i < MAX_NR_ZONES; i++) {
5112 if (i == ZONE_MOVABLE)
5113 continue;
5114 arch_zone_lowest_possible_pfn[i] =
5115 arch_zone_highest_possible_pfn[i-1];
5116 arch_zone_highest_possible_pfn[i] =
5117 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5118 }
5119 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5120 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5121
5122 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5123 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5124 find_zone_movable_pfns_for_nodes();
5125
5126 /* Print out the zone ranges */
5127 printk("Zone ranges:\n");
5128 for (i = 0; i < MAX_NR_ZONES; i++) {
5129 if (i == ZONE_MOVABLE)
5130 continue;
5131 printk(KERN_CONT " %-8s ", zone_names[i]);
5132 if (arch_zone_lowest_possible_pfn[i] ==
5133 arch_zone_highest_possible_pfn[i])
5134 printk(KERN_CONT "empty\n");
5135 else
5136 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5137 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5138 (arch_zone_highest_possible_pfn[i]
5139 << PAGE_SHIFT) - 1);
5140 }
5141
5142 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5143 printk("Movable zone start for each node\n");
5144 for (i = 0; i < MAX_NUMNODES; i++) {
5145 if (zone_movable_pfn[i])
5146 printk(" Node %d: %#010lx\n", i,
5147 zone_movable_pfn[i] << PAGE_SHIFT);
5148 }
5149
5150 /* Print out the early node map */
5151 printk("Early memory node ranges\n");
5152 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5153 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5154 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5155
5156 /* Initialise every node */
5157 mminit_verify_pageflags_layout();
5158 setup_nr_node_ids();
5159 for_each_online_node(nid) {
5160 pg_data_t *pgdat = NODE_DATA(nid);
5161 free_area_init_node(nid, NULL,
5162 find_min_pfn_for_node(nid), NULL);
5163
5164 /* Any memory on that node */
5165 if (pgdat->node_present_pages)
5166 node_set_state(nid, N_MEMORY);
5167 check_for_memory(pgdat, nid);
5168 }
5169 }
5170
5171 static int __init cmdline_parse_core(char *p, unsigned long *core)
5172 {
5173 unsigned long long coremem;
5174 if (!p)
5175 return -EINVAL;
5176
5177 coremem = memparse(p, &p);
5178 *core = coremem >> PAGE_SHIFT;
5179
5180 /* Paranoid check that UL is enough for the coremem value */
5181 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5182
5183 return 0;
5184 }
5185
5186 /*
5187 * kernelcore=size sets the amount of memory for use for allocations that
5188 * cannot be reclaimed or migrated.
5189 */
5190 static int __init cmdline_parse_kernelcore(char *p)
5191 {
5192 return cmdline_parse_core(p, &required_kernelcore);
5193 }
5194
5195 /*
5196 * movablecore=size sets the amount of memory for use for allocations that
5197 * can be reclaimed or migrated.
5198 */
5199 static int __init cmdline_parse_movablecore(char *p)
5200 {
5201 return cmdline_parse_core(p, &required_movablecore);
5202 }
5203
5204 early_param("kernelcore", cmdline_parse_kernelcore);
5205 early_param("movablecore", cmdline_parse_movablecore);
5206
5207 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5208
5209 unsigned long free_reserved_area(unsigned long start, unsigned long end,
5210 int poison, char *s)
5211 {
5212 unsigned long pages, pos;
5213
5214 pos = start = PAGE_ALIGN(start);
5215 end &= PAGE_MASK;
5216 for (pages = 0; pos < end; pos += PAGE_SIZE, pages++) {
5217 if (poison)
5218 memset((void *)pos, poison, PAGE_SIZE);
5219 free_reserved_page(virt_to_page((void *)pos));
5220 }
5221
5222 if (pages && s)
5223 pr_info("Freeing %s memory: %ldK (%lx - %lx)\n",
5224 s, pages << (PAGE_SHIFT - 10), start, end);
5225
5226 return pages;
5227 }
5228
5229 #ifdef CONFIG_HIGHMEM
5230 void free_highmem_page(struct page *page)
5231 {
5232 __free_reserved_page(page);
5233 totalram_pages++;
5234 totalhigh_pages++;
5235 }
5236 #endif
5237
5238 /**
5239 * set_dma_reserve - set the specified number of pages reserved in the first zone
5240 * @new_dma_reserve: The number of pages to mark reserved
5241 *
5242 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5243 * In the DMA zone, a significant percentage may be consumed by kernel image
5244 * and other unfreeable allocations which can skew the watermarks badly. This
5245 * function may optionally be used to account for unfreeable pages in the
5246 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5247 * smaller per-cpu batchsize.
5248 */
5249 void __init set_dma_reserve(unsigned long new_dma_reserve)
5250 {
5251 dma_reserve = new_dma_reserve;
5252 }
5253
5254 void __init free_area_init(unsigned long *zones_size)
5255 {
5256 free_area_init_node(0, zones_size,
5257 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5258 }
5259
5260 static int page_alloc_cpu_notify(struct notifier_block *self,
5261 unsigned long action, void *hcpu)
5262 {
5263 int cpu = (unsigned long)hcpu;
5264
5265 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5266 lru_add_drain_cpu(cpu);
5267 drain_pages(cpu);
5268
5269 /*
5270 * Spill the event counters of the dead processor
5271 * into the current processors event counters.
5272 * This artificially elevates the count of the current
5273 * processor.
5274 */
5275 vm_events_fold_cpu(cpu);
5276
5277 /*
5278 * Zero the differential counters of the dead processor
5279 * so that the vm statistics are consistent.
5280 *
5281 * This is only okay since the processor is dead and cannot
5282 * race with what we are doing.
5283 */
5284 refresh_cpu_vm_stats(cpu);
5285 }
5286 return NOTIFY_OK;
5287 }
5288
5289 void __init page_alloc_init(void)
5290 {
5291 hotcpu_notifier(page_alloc_cpu_notify, 0);
5292 }
5293
5294 /*
5295 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5296 * or min_free_kbytes changes.
5297 */
5298 static void calculate_totalreserve_pages(void)
5299 {
5300 struct pglist_data *pgdat;
5301 unsigned long reserve_pages = 0;
5302 enum zone_type i, j;
5303
5304 for_each_online_pgdat(pgdat) {
5305 for (i = 0; i < MAX_NR_ZONES; i++) {
5306 struct zone *zone = pgdat->node_zones + i;
5307 unsigned long max = 0;
5308
5309 /* Find valid and maximum lowmem_reserve in the zone */
5310 for (j = i; j < MAX_NR_ZONES; j++) {
5311 if (zone->lowmem_reserve[j] > max)
5312 max = zone->lowmem_reserve[j];
5313 }
5314
5315 /* we treat the high watermark as reserved pages. */
5316 max += high_wmark_pages(zone);
5317
5318 if (max > zone->managed_pages)
5319 max = zone->managed_pages;
5320 reserve_pages += max;
5321 /*
5322 * Lowmem reserves are not available to
5323 * GFP_HIGHUSER page cache allocations and
5324 * kswapd tries to balance zones to their high
5325 * watermark. As a result, neither should be
5326 * regarded as dirtyable memory, to prevent a
5327 * situation where reclaim has to clean pages
5328 * in order to balance the zones.
5329 */
5330 zone->dirty_balance_reserve = max;
5331 }
5332 }
5333 dirty_balance_reserve = reserve_pages;
5334 totalreserve_pages = reserve_pages;
5335 }
5336
5337 /*
5338 * setup_per_zone_lowmem_reserve - called whenever
5339 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5340 * has a correct pages reserved value, so an adequate number of
5341 * pages are left in the zone after a successful __alloc_pages().
5342 */
5343 static void setup_per_zone_lowmem_reserve(void)
5344 {
5345 struct pglist_data *pgdat;
5346 enum zone_type j, idx;
5347
5348 for_each_online_pgdat(pgdat) {
5349 for (j = 0; j < MAX_NR_ZONES; j++) {
5350 struct zone *zone = pgdat->node_zones + j;
5351 unsigned long managed_pages = zone->managed_pages;
5352
5353 zone->lowmem_reserve[j] = 0;
5354
5355 idx = j;
5356 while (idx) {
5357 struct zone *lower_zone;
5358
5359 idx--;
5360
5361 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5362 sysctl_lowmem_reserve_ratio[idx] = 1;
5363
5364 lower_zone = pgdat->node_zones + idx;
5365 lower_zone->lowmem_reserve[j] = managed_pages /
5366 sysctl_lowmem_reserve_ratio[idx];
5367 managed_pages += lower_zone->managed_pages;
5368 }
5369 }
5370 }
5371
5372 /* update totalreserve_pages */
5373 calculate_totalreserve_pages();
5374 }
5375
5376 static void __setup_per_zone_wmarks(void)
5377 {
5378 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5379 unsigned long lowmem_pages = 0;
5380 struct zone *zone;
5381 unsigned long flags;
5382
5383 /* Calculate total number of !ZONE_HIGHMEM pages */
5384 for_each_zone(zone) {
5385 if (!is_highmem(zone))
5386 lowmem_pages += zone->managed_pages;
5387 }
5388
5389 for_each_zone(zone) {
5390 u64 tmp;
5391
5392 spin_lock_irqsave(&zone->lock, flags);
5393 tmp = (u64)pages_min * zone->managed_pages;
5394 do_div(tmp, lowmem_pages);
5395 if (is_highmem(zone)) {
5396 /*
5397 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5398 * need highmem pages, so cap pages_min to a small
5399 * value here.
5400 *
5401 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5402 * deltas controls asynch page reclaim, and so should
5403 * not be capped for highmem.
5404 */
5405 unsigned long min_pages;
5406
5407 min_pages = zone->managed_pages / 1024;
5408 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5409 zone->watermark[WMARK_MIN] = min_pages;
5410 } else {
5411 /*
5412 * If it's a lowmem zone, reserve a number of pages
5413 * proportionate to the zone's size.
5414 */
5415 zone->watermark[WMARK_MIN] = tmp;
5416 }
5417
5418 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5419 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5420
5421 setup_zone_migrate_reserve(zone);
5422 spin_unlock_irqrestore(&zone->lock, flags);
5423 }
5424
5425 /* update totalreserve_pages */
5426 calculate_totalreserve_pages();
5427 }
5428
5429 /**
5430 * setup_per_zone_wmarks - called when min_free_kbytes changes
5431 * or when memory is hot-{added|removed}
5432 *
5433 * Ensures that the watermark[min,low,high] values for each zone are set
5434 * correctly with respect to min_free_kbytes.
5435 */
5436 void setup_per_zone_wmarks(void)
5437 {
5438 mutex_lock(&zonelists_mutex);
5439 __setup_per_zone_wmarks();
5440 mutex_unlock(&zonelists_mutex);
5441 }
5442
5443 /*
5444 * The inactive anon list should be small enough that the VM never has to
5445 * do too much work, but large enough that each inactive page has a chance
5446 * to be referenced again before it is swapped out.
5447 *
5448 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5449 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5450 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5451 * the anonymous pages are kept on the inactive list.
5452 *
5453 * total target max
5454 * memory ratio inactive anon
5455 * -------------------------------------
5456 * 10MB 1 5MB
5457 * 100MB 1 50MB
5458 * 1GB 3 250MB
5459 * 10GB 10 0.9GB
5460 * 100GB 31 3GB
5461 * 1TB 101 10GB
5462 * 10TB 320 32GB
5463 */
5464 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5465 {
5466 unsigned int gb, ratio;
5467
5468 /* Zone size in gigabytes */
5469 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5470 if (gb)
5471 ratio = int_sqrt(10 * gb);
5472 else
5473 ratio = 1;
5474
5475 zone->inactive_ratio = ratio;
5476 }
5477
5478 static void __meminit setup_per_zone_inactive_ratio(void)
5479 {
5480 struct zone *zone;
5481
5482 for_each_zone(zone)
5483 calculate_zone_inactive_ratio(zone);
5484 }
5485
5486 /*
5487 * Initialise min_free_kbytes.
5488 *
5489 * For small machines we want it small (128k min). For large machines
5490 * we want it large (64MB max). But it is not linear, because network
5491 * bandwidth does not increase linearly with machine size. We use
5492 *
5493 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5494 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5495 *
5496 * which yields
5497 *
5498 * 16MB: 512k
5499 * 32MB: 724k
5500 * 64MB: 1024k
5501 * 128MB: 1448k
5502 * 256MB: 2048k
5503 * 512MB: 2896k
5504 * 1024MB: 4096k
5505 * 2048MB: 5792k
5506 * 4096MB: 8192k
5507 * 8192MB: 11584k
5508 * 16384MB: 16384k
5509 */
5510 int __meminit init_per_zone_wmark_min(void)
5511 {
5512 unsigned long lowmem_kbytes;
5513
5514 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5515
5516 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5517 if (min_free_kbytes < 128)
5518 min_free_kbytes = 128;
5519 if (min_free_kbytes > 65536)
5520 min_free_kbytes = 65536;
5521 setup_per_zone_wmarks();
5522 refresh_zone_stat_thresholds();
5523 setup_per_zone_lowmem_reserve();
5524 setup_per_zone_inactive_ratio();
5525 return 0;
5526 }
5527 module_init(init_per_zone_wmark_min)
5528
5529 /*
5530 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5531 * that we can call two helper functions whenever min_free_kbytes
5532 * changes.
5533 */
5534 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5535 void __user *buffer, size_t *length, loff_t *ppos)
5536 {
5537 proc_dointvec(table, write, buffer, length, ppos);
5538 if (write)
5539 setup_per_zone_wmarks();
5540 return 0;
5541 }
5542
5543 #ifdef CONFIG_NUMA
5544 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5545 void __user *buffer, size_t *length, loff_t *ppos)
5546 {
5547 struct zone *zone;
5548 int rc;
5549
5550 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5551 if (rc)
5552 return rc;
5553
5554 for_each_zone(zone)
5555 zone->min_unmapped_pages = (zone->managed_pages *
5556 sysctl_min_unmapped_ratio) / 100;
5557 return 0;
5558 }
5559
5560 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5561 void __user *buffer, size_t *length, loff_t *ppos)
5562 {
5563 struct zone *zone;
5564 int rc;
5565
5566 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5567 if (rc)
5568 return rc;
5569
5570 for_each_zone(zone)
5571 zone->min_slab_pages = (zone->managed_pages *
5572 sysctl_min_slab_ratio) / 100;
5573 return 0;
5574 }
5575 #endif
5576
5577 /*
5578 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5579 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5580 * whenever sysctl_lowmem_reserve_ratio changes.
5581 *
5582 * The reserve ratio obviously has absolutely no relation with the
5583 * minimum watermarks. The lowmem reserve ratio can only make sense
5584 * if in function of the boot time zone sizes.
5585 */
5586 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5587 void __user *buffer, size_t *length, loff_t *ppos)
5588 {
5589 proc_dointvec_minmax(table, write, buffer, length, ppos);
5590 setup_per_zone_lowmem_reserve();
5591 return 0;
5592 }
5593
5594 /*
5595 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5596 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5597 * can have before it gets flushed back to buddy allocator.
5598 */
5599 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5600 void __user *buffer, size_t *length, loff_t *ppos)
5601 {
5602 struct zone *zone;
5603 unsigned int cpu;
5604 int ret;
5605
5606 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5607 if (!write || (ret < 0))
5608 return ret;
5609
5610 mutex_lock(&pcp_batch_high_lock);
5611 for_each_populated_zone(zone) {
5612 unsigned long high;
5613 high = zone->managed_pages / percpu_pagelist_fraction;
5614 for_each_possible_cpu(cpu)
5615 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5616 high);
5617 }
5618 mutex_unlock(&pcp_batch_high_lock);
5619 return 0;
5620 }
5621
5622 int hashdist = HASHDIST_DEFAULT;
5623
5624 #ifdef CONFIG_NUMA
5625 static int __init set_hashdist(char *str)
5626 {
5627 if (!str)
5628 return 0;
5629 hashdist = simple_strtoul(str, &str, 0);
5630 return 1;
5631 }
5632 __setup("hashdist=", set_hashdist);
5633 #endif
5634
5635 /*
5636 * allocate a large system hash table from bootmem
5637 * - it is assumed that the hash table must contain an exact power-of-2
5638 * quantity of entries
5639 * - limit is the number of hash buckets, not the total allocation size
5640 */
5641 void *__init alloc_large_system_hash(const char *tablename,
5642 unsigned long bucketsize,
5643 unsigned long numentries,
5644 int scale,
5645 int flags,
5646 unsigned int *_hash_shift,
5647 unsigned int *_hash_mask,
5648 unsigned long low_limit,
5649 unsigned long high_limit)
5650 {
5651 unsigned long long max = high_limit;
5652 unsigned long log2qty, size;
5653 void *table = NULL;
5654
5655 /* allow the kernel cmdline to have a say */
5656 if (!numentries) {
5657 /* round applicable memory size up to nearest megabyte */
5658 numentries = nr_kernel_pages;
5659 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5660 numentries >>= 20 - PAGE_SHIFT;
5661 numentries <<= 20 - PAGE_SHIFT;
5662
5663 /* limit to 1 bucket per 2^scale bytes of low memory */
5664 if (scale > PAGE_SHIFT)
5665 numentries >>= (scale - PAGE_SHIFT);
5666 else
5667 numentries <<= (PAGE_SHIFT - scale);
5668
5669 /* Make sure we've got at least a 0-order allocation.. */
5670 if (unlikely(flags & HASH_SMALL)) {
5671 /* Makes no sense without HASH_EARLY */
5672 WARN_ON(!(flags & HASH_EARLY));
5673 if (!(numentries >> *_hash_shift)) {
5674 numentries = 1UL << *_hash_shift;
5675 BUG_ON(!numentries);
5676 }
5677 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5678 numentries = PAGE_SIZE / bucketsize;
5679 }
5680 numentries = roundup_pow_of_two(numentries);
5681
5682 /* limit allocation size to 1/16 total memory by default */
5683 if (max == 0) {
5684 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5685 do_div(max, bucketsize);
5686 }
5687 max = min(max, 0x80000000ULL);
5688
5689 if (numentries < low_limit)
5690 numentries = low_limit;
5691 if (numentries > max)
5692 numentries = max;
5693
5694 log2qty = ilog2(numentries);
5695
5696 do {
5697 size = bucketsize << log2qty;
5698 if (flags & HASH_EARLY)
5699 table = alloc_bootmem_nopanic(size);
5700 else if (hashdist)
5701 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5702 else {
5703 /*
5704 * If bucketsize is not a power-of-two, we may free
5705 * some pages at the end of hash table which
5706 * alloc_pages_exact() automatically does
5707 */
5708 if (get_order(size) < MAX_ORDER) {
5709 table = alloc_pages_exact(size, GFP_ATOMIC);
5710 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5711 }
5712 }
5713 } while (!table && size > PAGE_SIZE && --log2qty);
5714
5715 if (!table)
5716 panic("Failed to allocate %s hash table\n", tablename);
5717
5718 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5719 tablename,
5720 (1UL << log2qty),
5721 ilog2(size) - PAGE_SHIFT,
5722 size);
5723
5724 if (_hash_shift)
5725 *_hash_shift = log2qty;
5726 if (_hash_mask)
5727 *_hash_mask = (1 << log2qty) - 1;
5728
5729 return table;
5730 }
5731
5732 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5733 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5734 unsigned long pfn)
5735 {
5736 #ifdef CONFIG_SPARSEMEM
5737 return __pfn_to_section(pfn)->pageblock_flags;
5738 #else
5739 return zone->pageblock_flags;
5740 #endif /* CONFIG_SPARSEMEM */
5741 }
5742
5743 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5744 {
5745 #ifdef CONFIG_SPARSEMEM
5746 pfn &= (PAGES_PER_SECTION-1);
5747 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5748 #else
5749 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5750 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5751 #endif /* CONFIG_SPARSEMEM */
5752 }
5753
5754 /**
5755 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5756 * @page: The page within the block of interest
5757 * @start_bitidx: The first bit of interest to retrieve
5758 * @end_bitidx: The last bit of interest
5759 * returns pageblock_bits flags
5760 */
5761 unsigned long get_pageblock_flags_group(struct page *page,
5762 int start_bitidx, int end_bitidx)
5763 {
5764 struct zone *zone;
5765 unsigned long *bitmap;
5766 unsigned long pfn, bitidx;
5767 unsigned long flags = 0;
5768 unsigned long value = 1;
5769
5770 zone = page_zone(page);
5771 pfn = page_to_pfn(page);
5772 bitmap = get_pageblock_bitmap(zone, pfn);
5773 bitidx = pfn_to_bitidx(zone, pfn);
5774
5775 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5776 if (test_bit(bitidx + start_bitidx, bitmap))
5777 flags |= value;
5778
5779 return flags;
5780 }
5781
5782 /**
5783 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5784 * @page: The page within the block of interest
5785 * @start_bitidx: The first bit of interest
5786 * @end_bitidx: The last bit of interest
5787 * @flags: The flags to set
5788 */
5789 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5790 int start_bitidx, int end_bitidx)
5791 {
5792 struct zone *zone;
5793 unsigned long *bitmap;
5794 unsigned long pfn, bitidx;
5795 unsigned long value = 1;
5796
5797 zone = page_zone(page);
5798 pfn = page_to_pfn(page);
5799 bitmap = get_pageblock_bitmap(zone, pfn);
5800 bitidx = pfn_to_bitidx(zone, pfn);
5801 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5802
5803 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5804 if (flags & value)
5805 __set_bit(bitidx + start_bitidx, bitmap);
5806 else
5807 __clear_bit(bitidx + start_bitidx, bitmap);
5808 }
5809
5810 /*
5811 * This function checks whether pageblock includes unmovable pages or not.
5812 * If @count is not zero, it is okay to include less @count unmovable pages
5813 *
5814 * PageLRU check wihtout isolation or lru_lock could race so that
5815 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5816 * expect this function should be exact.
5817 */
5818 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5819 bool skip_hwpoisoned_pages)
5820 {
5821 unsigned long pfn, iter, found;
5822 int mt;
5823
5824 /*
5825 * For avoiding noise data, lru_add_drain_all() should be called
5826 * If ZONE_MOVABLE, the zone never contains unmovable pages
5827 */
5828 if (zone_idx(zone) == ZONE_MOVABLE)
5829 return false;
5830 mt = get_pageblock_migratetype(page);
5831 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5832 return false;
5833
5834 pfn = page_to_pfn(page);
5835 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5836 unsigned long check = pfn + iter;
5837
5838 if (!pfn_valid_within(check))
5839 continue;
5840
5841 page = pfn_to_page(check);
5842 /*
5843 * We can't use page_count without pin a page
5844 * because another CPU can free compound page.
5845 * This check already skips compound tails of THP
5846 * because their page->_count is zero at all time.
5847 */
5848 if (!atomic_read(&page->_count)) {
5849 if (PageBuddy(page))
5850 iter += (1 << page_order(page)) - 1;
5851 continue;
5852 }
5853
5854 /*
5855 * The HWPoisoned page may be not in buddy system, and
5856 * page_count() is not 0.
5857 */
5858 if (skip_hwpoisoned_pages && PageHWPoison(page))
5859 continue;
5860
5861 if (!PageLRU(page))
5862 found++;
5863 /*
5864 * If there are RECLAIMABLE pages, we need to check it.
5865 * But now, memory offline itself doesn't call shrink_slab()
5866 * and it still to be fixed.
5867 */
5868 /*
5869 * If the page is not RAM, page_count()should be 0.
5870 * we don't need more check. This is an _used_ not-movable page.
5871 *
5872 * The problematic thing here is PG_reserved pages. PG_reserved
5873 * is set to both of a memory hole page and a _used_ kernel
5874 * page at boot.
5875 */
5876 if (found > count)
5877 return true;
5878 }
5879 return false;
5880 }
5881
5882 bool is_pageblock_removable_nolock(struct page *page)
5883 {
5884 struct zone *zone;
5885 unsigned long pfn;
5886
5887 /*
5888 * We have to be careful here because we are iterating over memory
5889 * sections which are not zone aware so we might end up outside of
5890 * the zone but still within the section.
5891 * We have to take care about the node as well. If the node is offline
5892 * its NODE_DATA will be NULL - see page_zone.
5893 */
5894 if (!node_online(page_to_nid(page)))
5895 return false;
5896
5897 zone = page_zone(page);
5898 pfn = page_to_pfn(page);
5899 if (!zone_spans_pfn(zone, pfn))
5900 return false;
5901
5902 return !has_unmovable_pages(zone, page, 0, true);
5903 }
5904
5905 #ifdef CONFIG_CMA
5906
5907 static unsigned long pfn_max_align_down(unsigned long pfn)
5908 {
5909 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5910 pageblock_nr_pages) - 1);
5911 }
5912
5913 static unsigned long pfn_max_align_up(unsigned long pfn)
5914 {
5915 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5916 pageblock_nr_pages));
5917 }
5918
5919 /* [start, end) must belong to a single zone. */
5920 static int __alloc_contig_migrate_range(struct compact_control *cc,
5921 unsigned long start, unsigned long end)
5922 {
5923 /* This function is based on compact_zone() from compaction.c. */
5924 unsigned long nr_reclaimed;
5925 unsigned long pfn = start;
5926 unsigned int tries = 0;
5927 int ret = 0;
5928
5929 migrate_prep();
5930
5931 while (pfn < end || !list_empty(&cc->migratepages)) {
5932 if (fatal_signal_pending(current)) {
5933 ret = -EINTR;
5934 break;
5935 }
5936
5937 if (list_empty(&cc->migratepages)) {
5938 cc->nr_migratepages = 0;
5939 pfn = isolate_migratepages_range(cc->zone, cc,
5940 pfn, end, true);
5941 if (!pfn) {
5942 ret = -EINTR;
5943 break;
5944 }
5945 tries = 0;
5946 } else if (++tries == 5) {
5947 ret = ret < 0 ? ret : -EBUSY;
5948 break;
5949 }
5950
5951 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5952 &cc->migratepages);
5953 cc->nr_migratepages -= nr_reclaimed;
5954
5955 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
5956 0, MIGRATE_SYNC, MR_CMA);
5957 }
5958 if (ret < 0) {
5959 putback_movable_pages(&cc->migratepages);
5960 return ret;
5961 }
5962 return 0;
5963 }
5964
5965 /**
5966 * alloc_contig_range() -- tries to allocate given range of pages
5967 * @start: start PFN to allocate
5968 * @end: one-past-the-last PFN to allocate
5969 * @migratetype: migratetype of the underlaying pageblocks (either
5970 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5971 * in range must have the same migratetype and it must
5972 * be either of the two.
5973 *
5974 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5975 * aligned, however it's the caller's responsibility to guarantee that
5976 * we are the only thread that changes migrate type of pageblocks the
5977 * pages fall in.
5978 *
5979 * The PFN range must belong to a single zone.
5980 *
5981 * Returns zero on success or negative error code. On success all
5982 * pages which PFN is in [start, end) are allocated for the caller and
5983 * need to be freed with free_contig_range().
5984 */
5985 int alloc_contig_range(unsigned long start, unsigned long end,
5986 unsigned migratetype)
5987 {
5988 unsigned long outer_start, outer_end;
5989 int ret = 0, order;
5990
5991 struct compact_control cc = {
5992 .nr_migratepages = 0,
5993 .order = -1,
5994 .zone = page_zone(pfn_to_page(start)),
5995 .sync = true,
5996 .ignore_skip_hint = true,
5997 };
5998 INIT_LIST_HEAD(&cc.migratepages);
5999
6000 /*
6001 * What we do here is we mark all pageblocks in range as
6002 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6003 * have different sizes, and due to the way page allocator
6004 * work, we align the range to biggest of the two pages so
6005 * that page allocator won't try to merge buddies from
6006 * different pageblocks and change MIGRATE_ISOLATE to some
6007 * other migration type.
6008 *
6009 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6010 * migrate the pages from an unaligned range (ie. pages that
6011 * we are interested in). This will put all the pages in
6012 * range back to page allocator as MIGRATE_ISOLATE.
6013 *
6014 * When this is done, we take the pages in range from page
6015 * allocator removing them from the buddy system. This way
6016 * page allocator will never consider using them.
6017 *
6018 * This lets us mark the pageblocks back as
6019 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6020 * aligned range but not in the unaligned, original range are
6021 * put back to page allocator so that buddy can use them.
6022 */
6023
6024 ret = start_isolate_page_range(pfn_max_align_down(start),
6025 pfn_max_align_up(end), migratetype,
6026 false);
6027 if (ret)
6028 return ret;
6029
6030 ret = __alloc_contig_migrate_range(&cc, start, end);
6031 if (ret)
6032 goto done;
6033
6034 /*
6035 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6036 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6037 * more, all pages in [start, end) are free in page allocator.
6038 * What we are going to do is to allocate all pages from
6039 * [start, end) (that is remove them from page allocator).
6040 *
6041 * The only problem is that pages at the beginning and at the
6042 * end of interesting range may be not aligned with pages that
6043 * page allocator holds, ie. they can be part of higher order
6044 * pages. Because of this, we reserve the bigger range and
6045 * once this is done free the pages we are not interested in.
6046 *
6047 * We don't have to hold zone->lock here because the pages are
6048 * isolated thus they won't get removed from buddy.
6049 */
6050
6051 lru_add_drain_all();
6052 drain_all_pages();
6053
6054 order = 0;
6055 outer_start = start;
6056 while (!PageBuddy(pfn_to_page(outer_start))) {
6057 if (++order >= MAX_ORDER) {
6058 ret = -EBUSY;
6059 goto done;
6060 }
6061 outer_start &= ~0UL << order;
6062 }
6063
6064 /* Make sure the range is really isolated. */
6065 if (test_pages_isolated(outer_start, end, false)) {
6066 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6067 outer_start, end);
6068 ret = -EBUSY;
6069 goto done;
6070 }
6071
6072
6073 /* Grab isolated pages from freelists. */
6074 outer_end = isolate_freepages_range(&cc, outer_start, end);
6075 if (!outer_end) {
6076 ret = -EBUSY;
6077 goto done;
6078 }
6079
6080 /* Free head and tail (if any) */
6081 if (start != outer_start)
6082 free_contig_range(outer_start, start - outer_start);
6083 if (end != outer_end)
6084 free_contig_range(end, outer_end - end);
6085
6086 done:
6087 undo_isolate_page_range(pfn_max_align_down(start),
6088 pfn_max_align_up(end), migratetype);
6089 return ret;
6090 }
6091
6092 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6093 {
6094 unsigned int count = 0;
6095
6096 for (; nr_pages--; pfn++) {
6097 struct page *page = pfn_to_page(pfn);
6098
6099 count += page_count(page) != 1;
6100 __free_page(page);
6101 }
6102 WARN(count != 0, "%d pages are still in use!\n", count);
6103 }
6104 #endif
6105
6106 #ifdef CONFIG_MEMORY_HOTPLUG
6107 /*
6108 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6109 * page high values need to be recalulated.
6110 */
6111 void __meminit zone_pcp_update(struct zone *zone)
6112 {
6113 unsigned cpu;
6114 mutex_lock(&pcp_batch_high_lock);
6115 for_each_possible_cpu(cpu)
6116 pageset_set_high_and_batch(zone,
6117 per_cpu_ptr(zone->pageset, cpu));
6118 mutex_unlock(&pcp_batch_high_lock);
6119 }
6120 #endif
6121
6122 void zone_pcp_reset(struct zone *zone)
6123 {
6124 unsigned long flags;
6125 int cpu;
6126 struct per_cpu_pageset *pset;
6127
6128 /* avoid races with drain_pages() */
6129 local_irq_save(flags);
6130 if (zone->pageset != &boot_pageset) {
6131 for_each_online_cpu(cpu) {
6132 pset = per_cpu_ptr(zone->pageset, cpu);
6133 drain_zonestat(zone, pset);
6134 }
6135 free_percpu(zone->pageset);
6136 zone->pageset = &boot_pageset;
6137 }
6138 local_irq_restore(flags);
6139 }
6140
6141 #ifdef CONFIG_MEMORY_HOTREMOVE
6142 /*
6143 * All pages in the range must be isolated before calling this.
6144 */
6145 void
6146 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6147 {
6148 struct page *page;
6149 struct zone *zone;
6150 int order, i;
6151 unsigned long pfn;
6152 unsigned long flags;
6153 /* find the first valid pfn */
6154 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6155 if (pfn_valid(pfn))
6156 break;
6157 if (pfn == end_pfn)
6158 return;
6159 zone = page_zone(pfn_to_page(pfn));
6160 spin_lock_irqsave(&zone->lock, flags);
6161 pfn = start_pfn;
6162 while (pfn < end_pfn) {
6163 if (!pfn_valid(pfn)) {
6164 pfn++;
6165 continue;
6166 }
6167 page = pfn_to_page(pfn);
6168 /*
6169 * The HWPoisoned page may be not in buddy system, and
6170 * page_count() is not 0.
6171 */
6172 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6173 pfn++;
6174 SetPageReserved(page);
6175 continue;
6176 }
6177
6178 BUG_ON(page_count(page));
6179 BUG_ON(!PageBuddy(page));
6180 order = page_order(page);
6181 #ifdef CONFIG_DEBUG_VM
6182 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6183 pfn, 1 << order, end_pfn);
6184 #endif
6185 list_del(&page->lru);
6186 rmv_page_order(page);
6187 zone->free_area[order].nr_free--;
6188 #ifdef CONFIG_HIGHMEM
6189 if (PageHighMem(page))
6190 totalhigh_pages -= 1 << order;
6191 #endif
6192 for (i = 0; i < (1 << order); i++)
6193 SetPageReserved((page+i));
6194 pfn += (1 << order);
6195 }
6196 spin_unlock_irqrestore(&zone->lock, flags);
6197 }
6198 #endif
6199
6200 #ifdef CONFIG_MEMORY_FAILURE
6201 bool is_free_buddy_page(struct page *page)
6202 {
6203 struct zone *zone = page_zone(page);
6204 unsigned long pfn = page_to_pfn(page);
6205 unsigned long flags;
6206 int order;
6207
6208 spin_lock_irqsave(&zone->lock, flags);
6209 for (order = 0; order < MAX_ORDER; order++) {
6210 struct page *page_head = page - (pfn & ((1 << order) - 1));
6211
6212 if (PageBuddy(page_head) && page_order(page_head) >= order)
6213 break;
6214 }
6215 spin_unlock_irqrestore(&zone->lock, flags);
6216
6217 return order < MAX_ORDER;
6218 }
6219 #endif
6220
6221 static const struct trace_print_flags pageflag_names[] = {
6222 {1UL << PG_locked, "locked" },
6223 {1UL << PG_error, "error" },
6224 {1UL << PG_referenced, "referenced" },
6225 {1UL << PG_uptodate, "uptodate" },
6226 {1UL << PG_dirty, "dirty" },
6227 {1UL << PG_lru, "lru" },
6228 {1UL << PG_active, "active" },
6229 {1UL << PG_slab, "slab" },
6230 {1UL << PG_owner_priv_1, "owner_priv_1" },
6231 {1UL << PG_arch_1, "arch_1" },
6232 {1UL << PG_reserved, "reserved" },
6233 {1UL << PG_private, "private" },
6234 {1UL << PG_private_2, "private_2" },
6235 {1UL << PG_writeback, "writeback" },
6236 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6237 {1UL << PG_head, "head" },
6238 {1UL << PG_tail, "tail" },
6239 #else
6240 {1UL << PG_compound, "compound" },
6241 #endif
6242 {1UL << PG_swapcache, "swapcache" },
6243 {1UL << PG_mappedtodisk, "mappedtodisk" },
6244 {1UL << PG_reclaim, "reclaim" },
6245 {1UL << PG_swapbacked, "swapbacked" },
6246 {1UL << PG_unevictable, "unevictable" },
6247 #ifdef CONFIG_MMU
6248 {1UL << PG_mlocked, "mlocked" },
6249 #endif
6250 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6251 {1UL << PG_uncached, "uncached" },
6252 #endif
6253 #ifdef CONFIG_MEMORY_FAILURE
6254 {1UL << PG_hwpoison, "hwpoison" },
6255 #endif
6256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6257 {1UL << PG_compound_lock, "compound_lock" },
6258 #endif
6259 };
6260
6261 static void dump_page_flags(unsigned long flags)
6262 {
6263 const char *delim = "";
6264 unsigned long mask;
6265 int i;
6266
6267 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6268
6269 printk(KERN_ALERT "page flags: %#lx(", flags);
6270
6271 /* remove zone id */
6272 flags &= (1UL << NR_PAGEFLAGS) - 1;
6273
6274 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6275
6276 mask = pageflag_names[i].mask;
6277 if ((flags & mask) != mask)
6278 continue;
6279
6280 flags &= ~mask;
6281 printk("%s%s", delim, pageflag_names[i].name);
6282 delim = "|";
6283 }
6284
6285 /* check for left over flags */
6286 if (flags)
6287 printk("%s%#lx", delim, flags);
6288
6289 printk(")\n");
6290 }
6291
6292 void dump_page(struct page *page)
6293 {
6294 printk(KERN_ALERT
6295 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6296 page, atomic_read(&page->_count), page_mapcount(page),
6297 page->mapping, page->index);
6298 dump_page_flags(page->flags);
6299 mem_cgroup_print_bad_page(page);
6300 }
This page took 0.162555 seconds and 5 git commands to generate.