[PATCH] PCI Hotplug/powerpc: module build break
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 /*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57
58 static void fastcall free_hot_cold_page(struct page *page, int cold);
59
60 /*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
70 */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
72
73 EXPORT_SYMBOL(totalram_pages);
74
75 /*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
81
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
84
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
87
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
90 {
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
94
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
104 }
105
106 static int page_is_consistent(struct zone *zone, struct page *page)
107 {
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
110 return 0;
111 #endif
112 if (zone != page_zone(page))
113 return 0;
114
115 return 1;
116 }
117 /*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120 static int bad_range(struct zone *zone, struct page *page)
121 {
122 if (page_outside_zone_boundaries(zone, page))
123 return 1;
124 if (!page_is_consistent(zone, page))
125 return 1;
126
127 return 0;
128 }
129
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
132 {
133 return 0;
134 }
135 #endif
136
137 static void bad_page(struct page *page)
138 {
139 printk(KERN_EMERG "Bad page state in process '%s'\n"
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
146 dump_stack();
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
149 1 << PG_locked |
150 1 << PG_active |
151 1 << PG_dirty |
152 1 << PG_reclaim |
153 1 << PG_slab |
154 1 << PG_swapcache |
155 1 << PG_writeback );
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
159 add_taint(TAINT_BAD_PAGE);
160 }
161
162 /*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
172 * The first tail page's ->mapping, if non-zero, holds the address of the
173 * compound page's put_page() function.
174 *
175 * The order of the allocation is stored in the first tail page's ->index
176 * This is only for debug at present. This usage means that zero-order pages
177 * may not be compound.
178 */
179 static void prep_compound_page(struct page *page, unsigned long order)
180 {
181 int i;
182 int nr_pages = 1 << order;
183
184 page[1].mapping = NULL;
185 page[1].index = order;
186 for (i = 0; i < nr_pages; i++) {
187 struct page *p = page + i;
188
189 SetPageCompound(p);
190 set_page_private(p, (unsigned long)page);
191 }
192 }
193
194 static void destroy_compound_page(struct page *page, unsigned long order)
195 {
196 int i;
197 int nr_pages = 1 << order;
198
199 if (unlikely(page[1].index != order))
200 bad_page(page);
201
202 for (i = 0; i < nr_pages; i++) {
203 struct page *p = page + i;
204
205 if (unlikely(!PageCompound(p) |
206 (page_private(p) != (unsigned long)page)))
207 bad_page(page);
208 ClearPageCompound(p);
209 }
210 }
211
212 /*
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
216 */
217 static inline unsigned long page_order(struct page *page) {
218 return page_private(page);
219 }
220
221 static inline void set_page_order(struct page *page, int order) {
222 set_page_private(page, order);
223 __SetPagePrivate(page);
224 }
225
226 static inline void rmv_page_order(struct page *page)
227 {
228 __ClearPagePrivate(page);
229 set_page_private(page, 0);
230 }
231
232 /*
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
235 *
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
242 *
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
246 *
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
248 */
249 static inline struct page *
250 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
251 {
252 unsigned long buddy_idx = page_idx ^ (1 << order);
253
254 return page + (buddy_idx - page_idx);
255 }
256
257 static inline unsigned long
258 __find_combined_index(unsigned long page_idx, unsigned int order)
259 {
260 return (page_idx & ~(1 << order));
261 }
262
263 /*
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
270 * for recording page's order, we use page_private(page) and PG_private.
271 *
272 */
273 static inline int page_is_buddy(struct page *page, int order)
274 {
275 #ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278 #endif
279
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
282 page_count(page) == 0)
283 return 1;
284 return 0;
285 }
286
287 /*
288 * Freeing function for a buddy system allocator.
289 *
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
301 * order is recorded in page_private(page) field.
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
307 *
308 * -- wli
309 */
310
311 static inline void __free_one_page(struct page *page,
312 struct zone *zone, unsigned int order)
313 {
314 unsigned long page_idx;
315 int order_size = 1 << order;
316
317 if (unlikely(PageCompound(page)))
318 destroy_compound_page(page, order);
319
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
321
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
324
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
330
331 buddy = __page_find_buddy(page, page_idx, order);
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
334
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
339 combined_idx = __find_combined_index(page_idx, order);
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
343 }
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
347 }
348
349 static inline int free_pages_check(struct page *page)
350 {
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
362 1 << PG_writeback |
363 1 << PG_reserved ))))
364 bad_page(page);
365 if (PageDirty(page))
366 __ClearPageDirty(page);
367 /*
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
371 */
372 return PageReserved(page);
373 }
374
375 /*
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
378 * count is the number of pages to free.
379 *
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
382 *
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
385 */
386 static void free_pages_bulk(struct zone *zone, int count,
387 struct list_head *list, int order)
388 {
389 spin_lock(&zone->lock);
390 zone->all_unreclaimable = 0;
391 zone->pages_scanned = 0;
392 while (count--) {
393 struct page *page;
394
395 BUG_ON(list_empty(list));
396 page = list_entry(list->prev, struct page, lru);
397 /* have to delete it as __free_one_page list manipulates */
398 list_del(&page->lru);
399 __free_one_page(page, zone, order);
400 }
401 spin_unlock(&zone->lock);
402 }
403
404 static void free_one_page(struct zone *zone, struct page *page, int order)
405 {
406 LIST_HEAD(list);
407 list_add(&page->lru, &list);
408 free_pages_bulk(zone, 1, &list, order);
409 }
410
411 static void __free_pages_ok(struct page *page, unsigned int order)
412 {
413 unsigned long flags;
414 int i;
415 int reserved = 0;
416
417 arch_free_page(page, order);
418 if (!PageHighMem(page))
419 mutex_debug_check_no_locks_freed(page_address(page),
420 PAGE_SIZE<<order);
421
422 #ifndef CONFIG_MMU
423 for (i = 1 ; i < (1 << order) ; ++i)
424 __put_page(page + i);
425 #endif
426
427 for (i = 0 ; i < (1 << order) ; ++i)
428 reserved += free_pages_check(page + i);
429 if (reserved)
430 return;
431
432 kernel_map_pages(page, 1 << order, 0);
433 local_irq_save(flags);
434 __mod_page_state(pgfree, 1 << order);
435 free_one_page(page_zone(page), page, order);
436 local_irq_restore(flags);
437 }
438
439 /*
440 * permit the bootmem allocator to evade page validation on high-order frees
441 */
442 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
443 {
444 if (order == 0) {
445 __ClearPageReserved(page);
446 set_page_count(page, 0);
447
448 free_hot_cold_page(page, 0);
449 } else {
450 LIST_HEAD(list);
451 int loop;
452
453 for (loop = 0; loop < BITS_PER_LONG; loop++) {
454 struct page *p = &page[loop];
455
456 if (loop + 16 < BITS_PER_LONG)
457 prefetchw(p + 16);
458 __ClearPageReserved(p);
459 set_page_count(p, 0);
460 }
461
462 arch_free_page(page, order);
463
464 mod_page_state(pgfree, 1 << order);
465
466 list_add(&page->lru, &list);
467 kernel_map_pages(page, 1 << order, 0);
468 free_pages_bulk(page_zone(page), 1, &list, order);
469 }
470 }
471
472
473 /*
474 * The order of subdivision here is critical for the IO subsystem.
475 * Please do not alter this order without good reasons and regression
476 * testing. Specifically, as large blocks of memory are subdivided,
477 * the order in which smaller blocks are delivered depends on the order
478 * they're subdivided in this function. This is the primary factor
479 * influencing the order in which pages are delivered to the IO
480 * subsystem according to empirical testing, and this is also justified
481 * by considering the behavior of a buddy system containing a single
482 * large block of memory acted on by a series of small allocations.
483 * This behavior is a critical factor in sglist merging's success.
484 *
485 * -- wli
486 */
487 static inline void expand(struct zone *zone, struct page *page,
488 int low, int high, struct free_area *area)
489 {
490 unsigned long size = 1 << high;
491
492 while (high > low) {
493 area--;
494 high--;
495 size >>= 1;
496 BUG_ON(bad_range(zone, &page[size]));
497 list_add(&page[size].lru, &area->free_list);
498 area->nr_free++;
499 set_page_order(&page[size], high);
500 }
501 }
502
503 /*
504 * This page is about to be returned from the page allocator
505 */
506 static int prep_new_page(struct page *page, int order)
507 {
508 if (unlikely(page_mapcount(page) |
509 (page->mapping != NULL) |
510 (page_count(page) != 0) |
511 (page->flags & (
512 1 << PG_lru |
513 1 << PG_private |
514 1 << PG_locked |
515 1 << PG_active |
516 1 << PG_dirty |
517 1 << PG_reclaim |
518 1 << PG_slab |
519 1 << PG_swapcache |
520 1 << PG_writeback |
521 1 << PG_reserved ))))
522 bad_page(page);
523
524 /*
525 * For now, we report if PG_reserved was found set, but do not
526 * clear it, and do not allocate the page: as a safety net.
527 */
528 if (PageReserved(page))
529 return 1;
530
531 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
532 1 << PG_referenced | 1 << PG_arch_1 |
533 1 << PG_checked | 1 << PG_mappedtodisk);
534 set_page_private(page, 0);
535 set_page_refs(page, order);
536 kernel_map_pages(page, 1 << order, 1);
537 return 0;
538 }
539
540 /*
541 * Do the hard work of removing an element from the buddy allocator.
542 * Call me with the zone->lock already held.
543 */
544 static struct page *__rmqueue(struct zone *zone, unsigned int order)
545 {
546 struct free_area * area;
547 unsigned int current_order;
548 struct page *page;
549
550 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
551 area = zone->free_area + current_order;
552 if (list_empty(&area->free_list))
553 continue;
554
555 page = list_entry(area->free_list.next, struct page, lru);
556 list_del(&page->lru);
557 rmv_page_order(page);
558 area->nr_free--;
559 zone->free_pages -= 1UL << order;
560 expand(zone, page, order, current_order, area);
561 return page;
562 }
563
564 return NULL;
565 }
566
567 /*
568 * Obtain a specified number of elements from the buddy allocator, all under
569 * a single hold of the lock, for efficiency. Add them to the supplied list.
570 * Returns the number of new pages which were placed at *list.
571 */
572 static int rmqueue_bulk(struct zone *zone, unsigned int order,
573 unsigned long count, struct list_head *list)
574 {
575 int i;
576
577 spin_lock(&zone->lock);
578 for (i = 0; i < count; ++i) {
579 struct page *page = __rmqueue(zone, order);
580 if (unlikely(page == NULL))
581 break;
582 list_add_tail(&page->lru, list);
583 }
584 spin_unlock(&zone->lock);
585 return i;
586 }
587
588 #ifdef CONFIG_NUMA
589 /* Called from the slab reaper to drain remote pagesets */
590 void drain_remote_pages(void)
591 {
592 struct zone *zone;
593 int i;
594 unsigned long flags;
595
596 local_irq_save(flags);
597 for_each_zone(zone) {
598 struct per_cpu_pageset *pset;
599
600 /* Do not drain local pagesets */
601 if (zone->zone_pgdat->node_id == numa_node_id())
602 continue;
603
604 pset = zone_pcp(zone, smp_processor_id());
605 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
606 struct per_cpu_pages *pcp;
607
608 pcp = &pset->pcp[i];
609 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
610 pcp->count = 0;
611 }
612 }
613 local_irq_restore(flags);
614 }
615 #endif
616
617 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
618 static void __drain_pages(unsigned int cpu)
619 {
620 unsigned long flags;
621 struct zone *zone;
622 int i;
623
624 for_each_zone(zone) {
625 struct per_cpu_pageset *pset;
626
627 pset = zone_pcp(zone, cpu);
628 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
629 struct per_cpu_pages *pcp;
630
631 pcp = &pset->pcp[i];
632 local_irq_save(flags);
633 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
634 pcp->count = 0;
635 local_irq_restore(flags);
636 }
637 }
638 }
639 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
640
641 #ifdef CONFIG_PM
642
643 void mark_free_pages(struct zone *zone)
644 {
645 unsigned long zone_pfn, flags;
646 int order;
647 struct list_head *curr;
648
649 if (!zone->spanned_pages)
650 return;
651
652 spin_lock_irqsave(&zone->lock, flags);
653 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
654 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
655
656 for (order = MAX_ORDER - 1; order >= 0; --order)
657 list_for_each(curr, &zone->free_area[order].free_list) {
658 unsigned long start_pfn, i;
659
660 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
661
662 for (i=0; i < (1<<order); i++)
663 SetPageNosaveFree(pfn_to_page(start_pfn+i));
664 }
665 spin_unlock_irqrestore(&zone->lock, flags);
666 }
667
668 /*
669 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
670 */
671 void drain_local_pages(void)
672 {
673 unsigned long flags;
674
675 local_irq_save(flags);
676 __drain_pages(smp_processor_id());
677 local_irq_restore(flags);
678 }
679 #endif /* CONFIG_PM */
680
681 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
682 {
683 #ifdef CONFIG_NUMA
684 pg_data_t *pg = z->zone_pgdat;
685 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
686 struct per_cpu_pageset *p;
687
688 p = zone_pcp(z, cpu);
689 if (pg == orig) {
690 p->numa_hit++;
691 } else {
692 p->numa_miss++;
693 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
694 }
695 if (pg == NODE_DATA(numa_node_id()))
696 p->local_node++;
697 else
698 p->other_node++;
699 #endif
700 }
701
702 /*
703 * Free a 0-order page
704 */
705 static void fastcall free_hot_cold_page(struct page *page, int cold)
706 {
707 struct zone *zone = page_zone(page);
708 struct per_cpu_pages *pcp;
709 unsigned long flags;
710
711 arch_free_page(page, 0);
712
713 if (PageAnon(page))
714 page->mapping = NULL;
715 if (free_pages_check(page))
716 return;
717
718 kernel_map_pages(page, 1, 0);
719
720 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
721 local_irq_save(flags);
722 __inc_page_state(pgfree);
723 list_add(&page->lru, &pcp->list);
724 pcp->count++;
725 if (pcp->count >= pcp->high) {
726 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
727 pcp->count -= pcp->batch;
728 }
729 local_irq_restore(flags);
730 put_cpu();
731 }
732
733 void fastcall free_hot_page(struct page *page)
734 {
735 free_hot_cold_page(page, 0);
736 }
737
738 void fastcall free_cold_page(struct page *page)
739 {
740 free_hot_cold_page(page, 1);
741 }
742
743 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
744 {
745 int i;
746
747 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
748 for(i = 0; i < (1 << order); i++)
749 clear_highpage(page + i);
750 }
751
752 /*
753 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
754 * we cheat by calling it from here, in the order > 0 path. Saves a branch
755 * or two.
756 */
757 static struct page *buffered_rmqueue(struct zonelist *zonelist,
758 struct zone *zone, int order, gfp_t gfp_flags)
759 {
760 unsigned long flags;
761 struct page *page;
762 int cold = !!(gfp_flags & __GFP_COLD);
763 int cpu;
764
765 again:
766 cpu = get_cpu();
767 if (likely(order == 0)) {
768 struct per_cpu_pages *pcp;
769
770 pcp = &zone_pcp(zone, cpu)->pcp[cold];
771 local_irq_save(flags);
772 if (!pcp->count) {
773 pcp->count += rmqueue_bulk(zone, 0,
774 pcp->batch, &pcp->list);
775 if (unlikely(!pcp->count))
776 goto failed;
777 }
778 page = list_entry(pcp->list.next, struct page, lru);
779 list_del(&page->lru);
780 pcp->count--;
781 } else {
782 spin_lock_irqsave(&zone->lock, flags);
783 page = __rmqueue(zone, order);
784 spin_unlock(&zone->lock);
785 if (!page)
786 goto failed;
787 }
788
789 __mod_page_state_zone(zone, pgalloc, 1 << order);
790 zone_statistics(zonelist, zone, cpu);
791 local_irq_restore(flags);
792 put_cpu();
793
794 BUG_ON(bad_range(zone, page));
795 if (prep_new_page(page, order))
796 goto again;
797
798 if (gfp_flags & __GFP_ZERO)
799 prep_zero_page(page, order, gfp_flags);
800
801 if (order && (gfp_flags & __GFP_COMP))
802 prep_compound_page(page, order);
803 return page;
804
805 failed:
806 local_irq_restore(flags);
807 put_cpu();
808 return NULL;
809 }
810
811 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
812 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
813 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
814 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
815 #define ALLOC_HARDER 0x10 /* try to alloc harder */
816 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
817 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
818
819 /*
820 * Return 1 if free pages are above 'mark'. This takes into account the order
821 * of the allocation.
822 */
823 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
824 int classzone_idx, int alloc_flags)
825 {
826 /* free_pages my go negative - that's OK */
827 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
828 int o;
829
830 if (alloc_flags & ALLOC_HIGH)
831 min -= min / 2;
832 if (alloc_flags & ALLOC_HARDER)
833 min -= min / 4;
834
835 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
836 return 0;
837 for (o = 0; o < order; o++) {
838 /* At the next order, this order's pages become unavailable */
839 free_pages -= z->free_area[o].nr_free << o;
840
841 /* Require fewer higher order pages to be free */
842 min >>= 1;
843
844 if (free_pages <= min)
845 return 0;
846 }
847 return 1;
848 }
849
850 /*
851 * get_page_from_freeliest goes through the zonelist trying to allocate
852 * a page.
853 */
854 static struct page *
855 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
856 struct zonelist *zonelist, int alloc_flags)
857 {
858 struct zone **z = zonelist->zones;
859 struct page *page = NULL;
860 int classzone_idx = zone_idx(*z);
861
862 /*
863 * Go through the zonelist once, looking for a zone with enough free.
864 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
865 */
866 do {
867 if ((alloc_flags & ALLOC_CPUSET) &&
868 !cpuset_zone_allowed(*z, gfp_mask))
869 continue;
870
871 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
872 unsigned long mark;
873 if (alloc_flags & ALLOC_WMARK_MIN)
874 mark = (*z)->pages_min;
875 else if (alloc_flags & ALLOC_WMARK_LOW)
876 mark = (*z)->pages_low;
877 else
878 mark = (*z)->pages_high;
879 if (!zone_watermark_ok(*z, order, mark,
880 classzone_idx, alloc_flags))
881 if (!zone_reclaim_mode ||
882 !zone_reclaim(*z, gfp_mask, order))
883 continue;
884 }
885
886 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
887 if (page) {
888 break;
889 }
890 } while (*(++z) != NULL);
891 return page;
892 }
893
894 /*
895 * This is the 'heart' of the zoned buddy allocator.
896 */
897 struct page * fastcall
898 __alloc_pages(gfp_t gfp_mask, unsigned int order,
899 struct zonelist *zonelist)
900 {
901 const gfp_t wait = gfp_mask & __GFP_WAIT;
902 struct zone **z;
903 struct page *page;
904 struct reclaim_state reclaim_state;
905 struct task_struct *p = current;
906 int do_retry;
907 int alloc_flags;
908 int did_some_progress;
909
910 might_sleep_if(wait);
911
912 restart:
913 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
914
915 if (unlikely(*z == NULL)) {
916 /* Should this ever happen?? */
917 return NULL;
918 }
919
920 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
921 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
922 if (page)
923 goto got_pg;
924
925 do {
926 wakeup_kswapd(*z, order);
927 } while (*(++z));
928
929 /*
930 * OK, we're below the kswapd watermark and have kicked background
931 * reclaim. Now things get more complex, so set up alloc_flags according
932 * to how we want to proceed.
933 *
934 * The caller may dip into page reserves a bit more if the caller
935 * cannot run direct reclaim, or if the caller has realtime scheduling
936 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
937 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
938 */
939 alloc_flags = ALLOC_WMARK_MIN;
940 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
941 alloc_flags |= ALLOC_HARDER;
942 if (gfp_mask & __GFP_HIGH)
943 alloc_flags |= ALLOC_HIGH;
944 alloc_flags |= ALLOC_CPUSET;
945
946 /*
947 * Go through the zonelist again. Let __GFP_HIGH and allocations
948 * coming from realtime tasks go deeper into reserves.
949 *
950 * This is the last chance, in general, before the goto nopage.
951 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
952 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
953 */
954 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
955 if (page)
956 goto got_pg;
957
958 /* This allocation should allow future memory freeing. */
959
960 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
961 && !in_interrupt()) {
962 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
963 nofail_alloc:
964 /* go through the zonelist yet again, ignoring mins */
965 page = get_page_from_freelist(gfp_mask, order,
966 zonelist, ALLOC_NO_WATERMARKS);
967 if (page)
968 goto got_pg;
969 if (gfp_mask & __GFP_NOFAIL) {
970 blk_congestion_wait(WRITE, HZ/50);
971 goto nofail_alloc;
972 }
973 }
974 goto nopage;
975 }
976
977 /* Atomic allocations - we can't balance anything */
978 if (!wait)
979 goto nopage;
980
981 rebalance:
982 cond_resched();
983
984 /* We now go into synchronous reclaim */
985 cpuset_memory_pressure_bump();
986 p->flags |= PF_MEMALLOC;
987 reclaim_state.reclaimed_slab = 0;
988 p->reclaim_state = &reclaim_state;
989
990 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
991
992 p->reclaim_state = NULL;
993 p->flags &= ~PF_MEMALLOC;
994
995 cond_resched();
996
997 if (likely(did_some_progress)) {
998 page = get_page_from_freelist(gfp_mask, order,
999 zonelist, alloc_flags);
1000 if (page)
1001 goto got_pg;
1002 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1003 /*
1004 * Go through the zonelist yet one more time, keep
1005 * very high watermark here, this is only to catch
1006 * a parallel oom killing, we must fail if we're still
1007 * under heavy pressure.
1008 */
1009 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1010 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1011 if (page)
1012 goto got_pg;
1013
1014 out_of_memory(gfp_mask, order);
1015 goto restart;
1016 }
1017
1018 /*
1019 * Don't let big-order allocations loop unless the caller explicitly
1020 * requests that. Wait for some write requests to complete then retry.
1021 *
1022 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1023 * <= 3, but that may not be true in other implementations.
1024 */
1025 do_retry = 0;
1026 if (!(gfp_mask & __GFP_NORETRY)) {
1027 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1028 do_retry = 1;
1029 if (gfp_mask & __GFP_NOFAIL)
1030 do_retry = 1;
1031 }
1032 if (do_retry) {
1033 blk_congestion_wait(WRITE, HZ/50);
1034 goto rebalance;
1035 }
1036
1037 nopage:
1038 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1039 printk(KERN_WARNING "%s: page allocation failure."
1040 " order:%d, mode:0x%x\n",
1041 p->comm, order, gfp_mask);
1042 dump_stack();
1043 show_mem();
1044 }
1045 got_pg:
1046 return page;
1047 }
1048
1049 EXPORT_SYMBOL(__alloc_pages);
1050
1051 /*
1052 * Common helper functions.
1053 */
1054 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1055 {
1056 struct page * page;
1057 page = alloc_pages(gfp_mask, order);
1058 if (!page)
1059 return 0;
1060 return (unsigned long) page_address(page);
1061 }
1062
1063 EXPORT_SYMBOL(__get_free_pages);
1064
1065 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1066 {
1067 struct page * page;
1068
1069 /*
1070 * get_zeroed_page() returns a 32-bit address, which cannot represent
1071 * a highmem page
1072 */
1073 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1074
1075 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1076 if (page)
1077 return (unsigned long) page_address(page);
1078 return 0;
1079 }
1080
1081 EXPORT_SYMBOL(get_zeroed_page);
1082
1083 void __pagevec_free(struct pagevec *pvec)
1084 {
1085 int i = pagevec_count(pvec);
1086
1087 while (--i >= 0)
1088 free_hot_cold_page(pvec->pages[i], pvec->cold);
1089 }
1090
1091 fastcall void __free_pages(struct page *page, unsigned int order)
1092 {
1093 if (put_page_testzero(page)) {
1094 if (order == 0)
1095 free_hot_page(page);
1096 else
1097 __free_pages_ok(page, order);
1098 }
1099 }
1100
1101 EXPORT_SYMBOL(__free_pages);
1102
1103 fastcall void free_pages(unsigned long addr, unsigned int order)
1104 {
1105 if (addr != 0) {
1106 BUG_ON(!virt_addr_valid((void *)addr));
1107 __free_pages(virt_to_page((void *)addr), order);
1108 }
1109 }
1110
1111 EXPORT_SYMBOL(free_pages);
1112
1113 /*
1114 * Total amount of free (allocatable) RAM:
1115 */
1116 unsigned int nr_free_pages(void)
1117 {
1118 unsigned int sum = 0;
1119 struct zone *zone;
1120
1121 for_each_zone(zone)
1122 sum += zone->free_pages;
1123
1124 return sum;
1125 }
1126
1127 EXPORT_SYMBOL(nr_free_pages);
1128
1129 #ifdef CONFIG_NUMA
1130 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1131 {
1132 unsigned int i, sum = 0;
1133
1134 for (i = 0; i < MAX_NR_ZONES; i++)
1135 sum += pgdat->node_zones[i].free_pages;
1136
1137 return sum;
1138 }
1139 #endif
1140
1141 static unsigned int nr_free_zone_pages(int offset)
1142 {
1143 /* Just pick one node, since fallback list is circular */
1144 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1145 unsigned int sum = 0;
1146
1147 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1148 struct zone **zonep = zonelist->zones;
1149 struct zone *zone;
1150
1151 for (zone = *zonep++; zone; zone = *zonep++) {
1152 unsigned long size = zone->present_pages;
1153 unsigned long high = zone->pages_high;
1154 if (size > high)
1155 sum += size - high;
1156 }
1157
1158 return sum;
1159 }
1160
1161 /*
1162 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1163 */
1164 unsigned int nr_free_buffer_pages(void)
1165 {
1166 return nr_free_zone_pages(gfp_zone(GFP_USER));
1167 }
1168
1169 /*
1170 * Amount of free RAM allocatable within all zones
1171 */
1172 unsigned int nr_free_pagecache_pages(void)
1173 {
1174 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1175 }
1176
1177 #ifdef CONFIG_HIGHMEM
1178 unsigned int nr_free_highpages (void)
1179 {
1180 pg_data_t *pgdat;
1181 unsigned int pages = 0;
1182
1183 for_each_pgdat(pgdat)
1184 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1185
1186 return pages;
1187 }
1188 #endif
1189
1190 #ifdef CONFIG_NUMA
1191 static void show_node(struct zone *zone)
1192 {
1193 printk("Node %d ", zone->zone_pgdat->node_id);
1194 }
1195 #else
1196 #define show_node(zone) do { } while (0)
1197 #endif
1198
1199 /*
1200 * Accumulate the page_state information across all CPUs.
1201 * The result is unavoidably approximate - it can change
1202 * during and after execution of this function.
1203 */
1204 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1205
1206 atomic_t nr_pagecache = ATOMIC_INIT(0);
1207 EXPORT_SYMBOL(nr_pagecache);
1208 #ifdef CONFIG_SMP
1209 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1210 #endif
1211
1212 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1213 {
1214 int cpu = 0;
1215
1216 memset(ret, 0, sizeof(*ret));
1217 cpus_and(*cpumask, *cpumask, cpu_online_map);
1218
1219 cpu = first_cpu(*cpumask);
1220 while (cpu < NR_CPUS) {
1221 unsigned long *in, *out, off;
1222
1223 in = (unsigned long *)&per_cpu(page_states, cpu);
1224
1225 cpu = next_cpu(cpu, *cpumask);
1226
1227 if (cpu < NR_CPUS)
1228 prefetch(&per_cpu(page_states, cpu));
1229
1230 out = (unsigned long *)ret;
1231 for (off = 0; off < nr; off++)
1232 *out++ += *in++;
1233 }
1234 }
1235
1236 void get_page_state_node(struct page_state *ret, int node)
1237 {
1238 int nr;
1239 cpumask_t mask = node_to_cpumask(node);
1240
1241 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1242 nr /= sizeof(unsigned long);
1243
1244 __get_page_state(ret, nr+1, &mask);
1245 }
1246
1247 void get_page_state(struct page_state *ret)
1248 {
1249 int nr;
1250 cpumask_t mask = CPU_MASK_ALL;
1251
1252 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1253 nr /= sizeof(unsigned long);
1254
1255 __get_page_state(ret, nr + 1, &mask);
1256 }
1257
1258 void get_full_page_state(struct page_state *ret)
1259 {
1260 cpumask_t mask = CPU_MASK_ALL;
1261
1262 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1263 }
1264
1265 unsigned long read_page_state_offset(unsigned long offset)
1266 {
1267 unsigned long ret = 0;
1268 int cpu;
1269
1270 for_each_online_cpu(cpu) {
1271 unsigned long in;
1272
1273 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1274 ret += *((unsigned long *)in);
1275 }
1276 return ret;
1277 }
1278
1279 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1280 {
1281 void *ptr;
1282
1283 ptr = &__get_cpu_var(page_states);
1284 *(unsigned long *)(ptr + offset) += delta;
1285 }
1286 EXPORT_SYMBOL(__mod_page_state_offset);
1287
1288 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1289 {
1290 unsigned long flags;
1291 void *ptr;
1292
1293 local_irq_save(flags);
1294 ptr = &__get_cpu_var(page_states);
1295 *(unsigned long *)(ptr + offset) += delta;
1296 local_irq_restore(flags);
1297 }
1298 EXPORT_SYMBOL(mod_page_state_offset);
1299
1300 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1301 unsigned long *free, struct pglist_data *pgdat)
1302 {
1303 struct zone *zones = pgdat->node_zones;
1304 int i;
1305
1306 *active = 0;
1307 *inactive = 0;
1308 *free = 0;
1309 for (i = 0; i < MAX_NR_ZONES; i++) {
1310 *active += zones[i].nr_active;
1311 *inactive += zones[i].nr_inactive;
1312 *free += zones[i].free_pages;
1313 }
1314 }
1315
1316 void get_zone_counts(unsigned long *active,
1317 unsigned long *inactive, unsigned long *free)
1318 {
1319 struct pglist_data *pgdat;
1320
1321 *active = 0;
1322 *inactive = 0;
1323 *free = 0;
1324 for_each_pgdat(pgdat) {
1325 unsigned long l, m, n;
1326 __get_zone_counts(&l, &m, &n, pgdat);
1327 *active += l;
1328 *inactive += m;
1329 *free += n;
1330 }
1331 }
1332
1333 void si_meminfo(struct sysinfo *val)
1334 {
1335 val->totalram = totalram_pages;
1336 val->sharedram = 0;
1337 val->freeram = nr_free_pages();
1338 val->bufferram = nr_blockdev_pages();
1339 #ifdef CONFIG_HIGHMEM
1340 val->totalhigh = totalhigh_pages;
1341 val->freehigh = nr_free_highpages();
1342 #else
1343 val->totalhigh = 0;
1344 val->freehigh = 0;
1345 #endif
1346 val->mem_unit = PAGE_SIZE;
1347 }
1348
1349 EXPORT_SYMBOL(si_meminfo);
1350
1351 #ifdef CONFIG_NUMA
1352 void si_meminfo_node(struct sysinfo *val, int nid)
1353 {
1354 pg_data_t *pgdat = NODE_DATA(nid);
1355
1356 val->totalram = pgdat->node_present_pages;
1357 val->freeram = nr_free_pages_pgdat(pgdat);
1358 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1359 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1360 val->mem_unit = PAGE_SIZE;
1361 }
1362 #endif
1363
1364 #define K(x) ((x) << (PAGE_SHIFT-10))
1365
1366 /*
1367 * Show free area list (used inside shift_scroll-lock stuff)
1368 * We also calculate the percentage fragmentation. We do this by counting the
1369 * memory on each free list with the exception of the first item on the list.
1370 */
1371 void show_free_areas(void)
1372 {
1373 struct page_state ps;
1374 int cpu, temperature;
1375 unsigned long active;
1376 unsigned long inactive;
1377 unsigned long free;
1378 struct zone *zone;
1379
1380 for_each_zone(zone) {
1381 show_node(zone);
1382 printk("%s per-cpu:", zone->name);
1383
1384 if (!populated_zone(zone)) {
1385 printk(" empty\n");
1386 continue;
1387 } else
1388 printk("\n");
1389
1390 for_each_online_cpu(cpu) {
1391 struct per_cpu_pageset *pageset;
1392
1393 pageset = zone_pcp(zone, cpu);
1394
1395 for (temperature = 0; temperature < 2; temperature++)
1396 printk("cpu %d %s: high %d, batch %d used:%d\n",
1397 cpu,
1398 temperature ? "cold" : "hot",
1399 pageset->pcp[temperature].high,
1400 pageset->pcp[temperature].batch,
1401 pageset->pcp[temperature].count);
1402 }
1403 }
1404
1405 get_page_state(&ps);
1406 get_zone_counts(&active, &inactive, &free);
1407
1408 printk("Free pages: %11ukB (%ukB HighMem)\n",
1409 K(nr_free_pages()),
1410 K(nr_free_highpages()));
1411
1412 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1413 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1414 active,
1415 inactive,
1416 ps.nr_dirty,
1417 ps.nr_writeback,
1418 ps.nr_unstable,
1419 nr_free_pages(),
1420 ps.nr_slab,
1421 ps.nr_mapped,
1422 ps.nr_page_table_pages);
1423
1424 for_each_zone(zone) {
1425 int i;
1426
1427 show_node(zone);
1428 printk("%s"
1429 " free:%lukB"
1430 " min:%lukB"
1431 " low:%lukB"
1432 " high:%lukB"
1433 " active:%lukB"
1434 " inactive:%lukB"
1435 " present:%lukB"
1436 " pages_scanned:%lu"
1437 " all_unreclaimable? %s"
1438 "\n",
1439 zone->name,
1440 K(zone->free_pages),
1441 K(zone->pages_min),
1442 K(zone->pages_low),
1443 K(zone->pages_high),
1444 K(zone->nr_active),
1445 K(zone->nr_inactive),
1446 K(zone->present_pages),
1447 zone->pages_scanned,
1448 (zone->all_unreclaimable ? "yes" : "no")
1449 );
1450 printk("lowmem_reserve[]:");
1451 for (i = 0; i < MAX_NR_ZONES; i++)
1452 printk(" %lu", zone->lowmem_reserve[i]);
1453 printk("\n");
1454 }
1455
1456 for_each_zone(zone) {
1457 unsigned long nr, flags, order, total = 0;
1458
1459 show_node(zone);
1460 printk("%s: ", zone->name);
1461 if (!populated_zone(zone)) {
1462 printk("empty\n");
1463 continue;
1464 }
1465
1466 spin_lock_irqsave(&zone->lock, flags);
1467 for (order = 0; order < MAX_ORDER; order++) {
1468 nr = zone->free_area[order].nr_free;
1469 total += nr << order;
1470 printk("%lu*%lukB ", nr, K(1UL) << order);
1471 }
1472 spin_unlock_irqrestore(&zone->lock, flags);
1473 printk("= %lukB\n", K(total));
1474 }
1475
1476 show_swap_cache_info();
1477 }
1478
1479 /*
1480 * Builds allocation fallback zone lists.
1481 *
1482 * Add all populated zones of a node to the zonelist.
1483 */
1484 static int __init build_zonelists_node(pg_data_t *pgdat,
1485 struct zonelist *zonelist, int nr_zones, int zone_type)
1486 {
1487 struct zone *zone;
1488
1489 BUG_ON(zone_type > ZONE_HIGHMEM);
1490
1491 do {
1492 zone = pgdat->node_zones + zone_type;
1493 if (populated_zone(zone)) {
1494 #ifndef CONFIG_HIGHMEM
1495 BUG_ON(zone_type > ZONE_NORMAL);
1496 #endif
1497 zonelist->zones[nr_zones++] = zone;
1498 check_highest_zone(zone_type);
1499 }
1500 zone_type--;
1501
1502 } while (zone_type >= 0);
1503 return nr_zones;
1504 }
1505
1506 static inline int highest_zone(int zone_bits)
1507 {
1508 int res = ZONE_NORMAL;
1509 if (zone_bits & (__force int)__GFP_HIGHMEM)
1510 res = ZONE_HIGHMEM;
1511 if (zone_bits & (__force int)__GFP_DMA32)
1512 res = ZONE_DMA32;
1513 if (zone_bits & (__force int)__GFP_DMA)
1514 res = ZONE_DMA;
1515 return res;
1516 }
1517
1518 #ifdef CONFIG_NUMA
1519 #define MAX_NODE_LOAD (num_online_nodes())
1520 static int __initdata node_load[MAX_NUMNODES];
1521 /**
1522 * find_next_best_node - find the next node that should appear in a given node's fallback list
1523 * @node: node whose fallback list we're appending
1524 * @used_node_mask: nodemask_t of already used nodes
1525 *
1526 * We use a number of factors to determine which is the next node that should
1527 * appear on a given node's fallback list. The node should not have appeared
1528 * already in @node's fallback list, and it should be the next closest node
1529 * according to the distance array (which contains arbitrary distance values
1530 * from each node to each node in the system), and should also prefer nodes
1531 * with no CPUs, since presumably they'll have very little allocation pressure
1532 * on them otherwise.
1533 * It returns -1 if no node is found.
1534 */
1535 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1536 {
1537 int i, n, val;
1538 int min_val = INT_MAX;
1539 int best_node = -1;
1540
1541 for_each_online_node(i) {
1542 cpumask_t tmp;
1543
1544 /* Start from local node */
1545 n = (node+i) % num_online_nodes();
1546
1547 /* Don't want a node to appear more than once */
1548 if (node_isset(n, *used_node_mask))
1549 continue;
1550
1551 /* Use the local node if we haven't already */
1552 if (!node_isset(node, *used_node_mask)) {
1553 best_node = node;
1554 break;
1555 }
1556
1557 /* Use the distance array to find the distance */
1558 val = node_distance(node, n);
1559
1560 /* Give preference to headless and unused nodes */
1561 tmp = node_to_cpumask(n);
1562 if (!cpus_empty(tmp))
1563 val += PENALTY_FOR_NODE_WITH_CPUS;
1564
1565 /* Slight preference for less loaded node */
1566 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1567 val += node_load[n];
1568
1569 if (val < min_val) {
1570 min_val = val;
1571 best_node = n;
1572 }
1573 }
1574
1575 if (best_node >= 0)
1576 node_set(best_node, *used_node_mask);
1577
1578 return best_node;
1579 }
1580
1581 static void __init build_zonelists(pg_data_t *pgdat)
1582 {
1583 int i, j, k, node, local_node;
1584 int prev_node, load;
1585 struct zonelist *zonelist;
1586 nodemask_t used_mask;
1587
1588 /* initialize zonelists */
1589 for (i = 0; i < GFP_ZONETYPES; i++) {
1590 zonelist = pgdat->node_zonelists + i;
1591 zonelist->zones[0] = NULL;
1592 }
1593
1594 /* NUMA-aware ordering of nodes */
1595 local_node = pgdat->node_id;
1596 load = num_online_nodes();
1597 prev_node = local_node;
1598 nodes_clear(used_mask);
1599 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1600 int distance = node_distance(local_node, node);
1601
1602 /*
1603 * If another node is sufficiently far away then it is better
1604 * to reclaim pages in a zone before going off node.
1605 */
1606 if (distance > RECLAIM_DISTANCE)
1607 zone_reclaim_mode = 1;
1608
1609 /*
1610 * We don't want to pressure a particular node.
1611 * So adding penalty to the first node in same
1612 * distance group to make it round-robin.
1613 */
1614
1615 if (distance != node_distance(local_node, prev_node))
1616 node_load[node] += load;
1617 prev_node = node;
1618 load--;
1619 for (i = 0; i < GFP_ZONETYPES; i++) {
1620 zonelist = pgdat->node_zonelists + i;
1621 for (j = 0; zonelist->zones[j] != NULL; j++);
1622
1623 k = highest_zone(i);
1624
1625 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1626 zonelist->zones[j] = NULL;
1627 }
1628 }
1629 }
1630
1631 #else /* CONFIG_NUMA */
1632
1633 static void __init build_zonelists(pg_data_t *pgdat)
1634 {
1635 int i, j, k, node, local_node;
1636
1637 local_node = pgdat->node_id;
1638 for (i = 0; i < GFP_ZONETYPES; i++) {
1639 struct zonelist *zonelist;
1640
1641 zonelist = pgdat->node_zonelists + i;
1642
1643 j = 0;
1644 k = highest_zone(i);
1645 j = build_zonelists_node(pgdat, zonelist, j, k);
1646 /*
1647 * Now we build the zonelist so that it contains the zones
1648 * of all the other nodes.
1649 * We don't want to pressure a particular node, so when
1650 * building the zones for node N, we make sure that the
1651 * zones coming right after the local ones are those from
1652 * node N+1 (modulo N)
1653 */
1654 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1655 if (!node_online(node))
1656 continue;
1657 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1658 }
1659 for (node = 0; node < local_node; node++) {
1660 if (!node_online(node))
1661 continue;
1662 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1663 }
1664
1665 zonelist->zones[j] = NULL;
1666 }
1667 }
1668
1669 #endif /* CONFIG_NUMA */
1670
1671 void __init build_all_zonelists(void)
1672 {
1673 int i;
1674
1675 for_each_online_node(i)
1676 build_zonelists(NODE_DATA(i));
1677 printk("Built %i zonelists\n", num_online_nodes());
1678 cpuset_init_current_mems_allowed();
1679 }
1680
1681 /*
1682 * Helper functions to size the waitqueue hash table.
1683 * Essentially these want to choose hash table sizes sufficiently
1684 * large so that collisions trying to wait on pages are rare.
1685 * But in fact, the number of active page waitqueues on typical
1686 * systems is ridiculously low, less than 200. So this is even
1687 * conservative, even though it seems large.
1688 *
1689 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1690 * waitqueues, i.e. the size of the waitq table given the number of pages.
1691 */
1692 #define PAGES_PER_WAITQUEUE 256
1693
1694 static inline unsigned long wait_table_size(unsigned long pages)
1695 {
1696 unsigned long size = 1;
1697
1698 pages /= PAGES_PER_WAITQUEUE;
1699
1700 while (size < pages)
1701 size <<= 1;
1702
1703 /*
1704 * Once we have dozens or even hundreds of threads sleeping
1705 * on IO we've got bigger problems than wait queue collision.
1706 * Limit the size of the wait table to a reasonable size.
1707 */
1708 size = min(size, 4096UL);
1709
1710 return max(size, 4UL);
1711 }
1712
1713 /*
1714 * This is an integer logarithm so that shifts can be used later
1715 * to extract the more random high bits from the multiplicative
1716 * hash function before the remainder is taken.
1717 */
1718 static inline unsigned long wait_table_bits(unsigned long size)
1719 {
1720 return ffz(~size);
1721 }
1722
1723 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1724
1725 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1726 unsigned long *zones_size, unsigned long *zholes_size)
1727 {
1728 unsigned long realtotalpages, totalpages = 0;
1729 int i;
1730
1731 for (i = 0; i < MAX_NR_ZONES; i++)
1732 totalpages += zones_size[i];
1733 pgdat->node_spanned_pages = totalpages;
1734
1735 realtotalpages = totalpages;
1736 if (zholes_size)
1737 for (i = 0; i < MAX_NR_ZONES; i++)
1738 realtotalpages -= zholes_size[i];
1739 pgdat->node_present_pages = realtotalpages;
1740 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1741 }
1742
1743
1744 /*
1745 * Initially all pages are reserved - free ones are freed
1746 * up by free_all_bootmem() once the early boot process is
1747 * done. Non-atomic initialization, single-pass.
1748 */
1749 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1750 unsigned long start_pfn)
1751 {
1752 struct page *page;
1753 unsigned long end_pfn = start_pfn + size;
1754 unsigned long pfn;
1755
1756 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1757 if (!early_pfn_valid(pfn))
1758 continue;
1759 page = pfn_to_page(pfn);
1760 set_page_links(page, zone, nid, pfn);
1761 set_page_count(page, 1);
1762 reset_page_mapcount(page);
1763 SetPageReserved(page);
1764 INIT_LIST_HEAD(&page->lru);
1765 #ifdef WANT_PAGE_VIRTUAL
1766 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1767 if (!is_highmem_idx(zone))
1768 set_page_address(page, __va(pfn << PAGE_SHIFT));
1769 #endif
1770 }
1771 }
1772
1773 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1774 unsigned long size)
1775 {
1776 int order;
1777 for (order = 0; order < MAX_ORDER ; order++) {
1778 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1779 zone->free_area[order].nr_free = 0;
1780 }
1781 }
1782
1783 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1784 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1785 unsigned long size)
1786 {
1787 unsigned long snum = pfn_to_section_nr(pfn);
1788 unsigned long end = pfn_to_section_nr(pfn + size);
1789
1790 if (FLAGS_HAS_NODE)
1791 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1792 else
1793 for (; snum <= end; snum++)
1794 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1795 }
1796
1797 #ifndef __HAVE_ARCH_MEMMAP_INIT
1798 #define memmap_init(size, nid, zone, start_pfn) \
1799 memmap_init_zone((size), (nid), (zone), (start_pfn))
1800 #endif
1801
1802 static int __meminit zone_batchsize(struct zone *zone)
1803 {
1804 int batch;
1805
1806 /*
1807 * The per-cpu-pages pools are set to around 1000th of the
1808 * size of the zone. But no more than 1/2 of a meg.
1809 *
1810 * OK, so we don't know how big the cache is. So guess.
1811 */
1812 batch = zone->present_pages / 1024;
1813 if (batch * PAGE_SIZE > 512 * 1024)
1814 batch = (512 * 1024) / PAGE_SIZE;
1815 batch /= 4; /* We effectively *= 4 below */
1816 if (batch < 1)
1817 batch = 1;
1818
1819 /*
1820 * Clamp the batch to a 2^n - 1 value. Having a power
1821 * of 2 value was found to be more likely to have
1822 * suboptimal cache aliasing properties in some cases.
1823 *
1824 * For example if 2 tasks are alternately allocating
1825 * batches of pages, one task can end up with a lot
1826 * of pages of one half of the possible page colors
1827 * and the other with pages of the other colors.
1828 */
1829 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1830
1831 return batch;
1832 }
1833
1834 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1835 {
1836 struct per_cpu_pages *pcp;
1837
1838 memset(p, 0, sizeof(*p));
1839
1840 pcp = &p->pcp[0]; /* hot */
1841 pcp->count = 0;
1842 pcp->high = 6 * batch;
1843 pcp->batch = max(1UL, 1 * batch);
1844 INIT_LIST_HEAD(&pcp->list);
1845
1846 pcp = &p->pcp[1]; /* cold*/
1847 pcp->count = 0;
1848 pcp->high = 2 * batch;
1849 pcp->batch = max(1UL, batch/2);
1850 INIT_LIST_HEAD(&pcp->list);
1851 }
1852
1853 /*
1854 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1855 * to the value high for the pageset p.
1856 */
1857
1858 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1859 unsigned long high)
1860 {
1861 struct per_cpu_pages *pcp;
1862
1863 pcp = &p->pcp[0]; /* hot list */
1864 pcp->high = high;
1865 pcp->batch = max(1UL, high/4);
1866 if ((high/4) > (PAGE_SHIFT * 8))
1867 pcp->batch = PAGE_SHIFT * 8;
1868 }
1869
1870
1871 #ifdef CONFIG_NUMA
1872 /*
1873 * Boot pageset table. One per cpu which is going to be used for all
1874 * zones and all nodes. The parameters will be set in such a way
1875 * that an item put on a list will immediately be handed over to
1876 * the buddy list. This is safe since pageset manipulation is done
1877 * with interrupts disabled.
1878 *
1879 * Some NUMA counter updates may also be caught by the boot pagesets.
1880 *
1881 * The boot_pagesets must be kept even after bootup is complete for
1882 * unused processors and/or zones. They do play a role for bootstrapping
1883 * hotplugged processors.
1884 *
1885 * zoneinfo_show() and maybe other functions do
1886 * not check if the processor is online before following the pageset pointer.
1887 * Other parts of the kernel may not check if the zone is available.
1888 */
1889 static struct per_cpu_pageset
1890 boot_pageset[NR_CPUS];
1891
1892 /*
1893 * Dynamically allocate memory for the
1894 * per cpu pageset array in struct zone.
1895 */
1896 static int __meminit process_zones(int cpu)
1897 {
1898 struct zone *zone, *dzone;
1899
1900 for_each_zone(zone) {
1901
1902 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1903 GFP_KERNEL, cpu_to_node(cpu));
1904 if (!zone_pcp(zone, cpu))
1905 goto bad;
1906
1907 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1908
1909 if (percpu_pagelist_fraction)
1910 setup_pagelist_highmark(zone_pcp(zone, cpu),
1911 (zone->present_pages / percpu_pagelist_fraction));
1912 }
1913
1914 return 0;
1915 bad:
1916 for_each_zone(dzone) {
1917 if (dzone == zone)
1918 break;
1919 kfree(zone_pcp(dzone, cpu));
1920 zone_pcp(dzone, cpu) = NULL;
1921 }
1922 return -ENOMEM;
1923 }
1924
1925 static inline void free_zone_pagesets(int cpu)
1926 {
1927 struct zone *zone;
1928
1929 for_each_zone(zone) {
1930 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1931
1932 zone_pcp(zone, cpu) = NULL;
1933 kfree(pset);
1934 }
1935 }
1936
1937 static int __meminit pageset_cpuup_callback(struct notifier_block *nfb,
1938 unsigned long action,
1939 void *hcpu)
1940 {
1941 int cpu = (long)hcpu;
1942 int ret = NOTIFY_OK;
1943
1944 switch (action) {
1945 case CPU_UP_PREPARE:
1946 if (process_zones(cpu))
1947 ret = NOTIFY_BAD;
1948 break;
1949 case CPU_UP_CANCELED:
1950 case CPU_DEAD:
1951 free_zone_pagesets(cpu);
1952 break;
1953 default:
1954 break;
1955 }
1956 return ret;
1957 }
1958
1959 static struct notifier_block pageset_notifier =
1960 { &pageset_cpuup_callback, NULL, 0 };
1961
1962 void __init setup_per_cpu_pageset(void)
1963 {
1964 int err;
1965
1966 /* Initialize per_cpu_pageset for cpu 0.
1967 * A cpuup callback will do this for every cpu
1968 * as it comes online
1969 */
1970 err = process_zones(smp_processor_id());
1971 BUG_ON(err);
1972 register_cpu_notifier(&pageset_notifier);
1973 }
1974
1975 #endif
1976
1977 static __meminit
1978 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1979 {
1980 int i;
1981 struct pglist_data *pgdat = zone->zone_pgdat;
1982
1983 /*
1984 * The per-page waitqueue mechanism uses hashed waitqueues
1985 * per zone.
1986 */
1987 zone->wait_table_size = wait_table_size(zone_size_pages);
1988 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1989 zone->wait_table = (wait_queue_head_t *)
1990 alloc_bootmem_node(pgdat, zone->wait_table_size
1991 * sizeof(wait_queue_head_t));
1992
1993 for(i = 0; i < zone->wait_table_size; ++i)
1994 init_waitqueue_head(zone->wait_table + i);
1995 }
1996
1997 static __meminit void zone_pcp_init(struct zone *zone)
1998 {
1999 int cpu;
2000 unsigned long batch = zone_batchsize(zone);
2001
2002 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2003 #ifdef CONFIG_NUMA
2004 /* Early boot. Slab allocator not functional yet */
2005 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2006 setup_pageset(&boot_pageset[cpu],0);
2007 #else
2008 setup_pageset(zone_pcp(zone,cpu), batch);
2009 #endif
2010 }
2011 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2012 zone->name, zone->present_pages, batch);
2013 }
2014
2015 static __meminit void init_currently_empty_zone(struct zone *zone,
2016 unsigned long zone_start_pfn, unsigned long size)
2017 {
2018 struct pglist_data *pgdat = zone->zone_pgdat;
2019
2020 zone_wait_table_init(zone, size);
2021 pgdat->nr_zones = zone_idx(zone) + 1;
2022
2023 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2024 zone->zone_start_pfn = zone_start_pfn;
2025
2026 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2027
2028 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2029 }
2030
2031 /*
2032 * Set up the zone data structures:
2033 * - mark all pages reserved
2034 * - mark all memory queues empty
2035 * - clear the memory bitmaps
2036 */
2037 static void __init free_area_init_core(struct pglist_data *pgdat,
2038 unsigned long *zones_size, unsigned long *zholes_size)
2039 {
2040 unsigned long j;
2041 int nid = pgdat->node_id;
2042 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2043
2044 pgdat_resize_init(pgdat);
2045 pgdat->nr_zones = 0;
2046 init_waitqueue_head(&pgdat->kswapd_wait);
2047 pgdat->kswapd_max_order = 0;
2048
2049 for (j = 0; j < MAX_NR_ZONES; j++) {
2050 struct zone *zone = pgdat->node_zones + j;
2051 unsigned long size, realsize;
2052
2053 realsize = size = zones_size[j];
2054 if (zholes_size)
2055 realsize -= zholes_size[j];
2056
2057 if (j < ZONE_HIGHMEM)
2058 nr_kernel_pages += realsize;
2059 nr_all_pages += realsize;
2060
2061 zone->spanned_pages = size;
2062 zone->present_pages = realsize;
2063 zone->name = zone_names[j];
2064 spin_lock_init(&zone->lock);
2065 spin_lock_init(&zone->lru_lock);
2066 zone_seqlock_init(zone);
2067 zone->zone_pgdat = pgdat;
2068 zone->free_pages = 0;
2069
2070 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2071
2072 zone_pcp_init(zone);
2073 INIT_LIST_HEAD(&zone->active_list);
2074 INIT_LIST_HEAD(&zone->inactive_list);
2075 zone->nr_scan_active = 0;
2076 zone->nr_scan_inactive = 0;
2077 zone->nr_active = 0;
2078 zone->nr_inactive = 0;
2079 atomic_set(&zone->reclaim_in_progress, 0);
2080 if (!size)
2081 continue;
2082
2083 zonetable_add(zone, nid, j, zone_start_pfn, size);
2084 init_currently_empty_zone(zone, zone_start_pfn, size);
2085 zone_start_pfn += size;
2086 }
2087 }
2088
2089 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2090 {
2091 /* Skip empty nodes */
2092 if (!pgdat->node_spanned_pages)
2093 return;
2094
2095 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2096 /* ia64 gets its own node_mem_map, before this, without bootmem */
2097 if (!pgdat->node_mem_map) {
2098 unsigned long size;
2099 struct page *map;
2100
2101 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2102 map = alloc_remap(pgdat->node_id, size);
2103 if (!map)
2104 map = alloc_bootmem_node(pgdat, size);
2105 pgdat->node_mem_map = map;
2106 }
2107 #ifdef CONFIG_FLATMEM
2108 /*
2109 * With no DISCONTIG, the global mem_map is just set as node 0's
2110 */
2111 if (pgdat == NODE_DATA(0))
2112 mem_map = NODE_DATA(0)->node_mem_map;
2113 #endif
2114 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2115 }
2116
2117 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2118 unsigned long *zones_size, unsigned long node_start_pfn,
2119 unsigned long *zholes_size)
2120 {
2121 pgdat->node_id = nid;
2122 pgdat->node_start_pfn = node_start_pfn;
2123 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2124
2125 alloc_node_mem_map(pgdat);
2126
2127 free_area_init_core(pgdat, zones_size, zholes_size);
2128 }
2129
2130 #ifndef CONFIG_NEED_MULTIPLE_NODES
2131 static bootmem_data_t contig_bootmem_data;
2132 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2133
2134 EXPORT_SYMBOL(contig_page_data);
2135 #endif
2136
2137 void __init free_area_init(unsigned long *zones_size)
2138 {
2139 free_area_init_node(0, NODE_DATA(0), zones_size,
2140 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2141 }
2142
2143 #ifdef CONFIG_PROC_FS
2144
2145 #include <linux/seq_file.h>
2146
2147 static void *frag_start(struct seq_file *m, loff_t *pos)
2148 {
2149 pg_data_t *pgdat;
2150 loff_t node = *pos;
2151
2152 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2153 --node;
2154
2155 return pgdat;
2156 }
2157
2158 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2159 {
2160 pg_data_t *pgdat = (pg_data_t *)arg;
2161
2162 (*pos)++;
2163 return pgdat->pgdat_next;
2164 }
2165
2166 static void frag_stop(struct seq_file *m, void *arg)
2167 {
2168 }
2169
2170 /*
2171 * This walks the free areas for each zone.
2172 */
2173 static int frag_show(struct seq_file *m, void *arg)
2174 {
2175 pg_data_t *pgdat = (pg_data_t *)arg;
2176 struct zone *zone;
2177 struct zone *node_zones = pgdat->node_zones;
2178 unsigned long flags;
2179 int order;
2180
2181 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2182 if (!populated_zone(zone))
2183 continue;
2184
2185 spin_lock_irqsave(&zone->lock, flags);
2186 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2187 for (order = 0; order < MAX_ORDER; ++order)
2188 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2189 spin_unlock_irqrestore(&zone->lock, flags);
2190 seq_putc(m, '\n');
2191 }
2192 return 0;
2193 }
2194
2195 struct seq_operations fragmentation_op = {
2196 .start = frag_start,
2197 .next = frag_next,
2198 .stop = frag_stop,
2199 .show = frag_show,
2200 };
2201
2202 /*
2203 * Output information about zones in @pgdat.
2204 */
2205 static int zoneinfo_show(struct seq_file *m, void *arg)
2206 {
2207 pg_data_t *pgdat = arg;
2208 struct zone *zone;
2209 struct zone *node_zones = pgdat->node_zones;
2210 unsigned long flags;
2211
2212 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2213 int i;
2214
2215 if (!populated_zone(zone))
2216 continue;
2217
2218 spin_lock_irqsave(&zone->lock, flags);
2219 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2220 seq_printf(m,
2221 "\n pages free %lu"
2222 "\n min %lu"
2223 "\n low %lu"
2224 "\n high %lu"
2225 "\n active %lu"
2226 "\n inactive %lu"
2227 "\n scanned %lu (a: %lu i: %lu)"
2228 "\n spanned %lu"
2229 "\n present %lu",
2230 zone->free_pages,
2231 zone->pages_min,
2232 zone->pages_low,
2233 zone->pages_high,
2234 zone->nr_active,
2235 zone->nr_inactive,
2236 zone->pages_scanned,
2237 zone->nr_scan_active, zone->nr_scan_inactive,
2238 zone->spanned_pages,
2239 zone->present_pages);
2240 seq_printf(m,
2241 "\n protection: (%lu",
2242 zone->lowmem_reserve[0]);
2243 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2244 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2245 seq_printf(m,
2246 ")"
2247 "\n pagesets");
2248 for_each_online_cpu(i) {
2249 struct per_cpu_pageset *pageset;
2250 int j;
2251
2252 pageset = zone_pcp(zone, i);
2253 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2254 if (pageset->pcp[j].count)
2255 break;
2256 }
2257 if (j == ARRAY_SIZE(pageset->pcp))
2258 continue;
2259 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2260 seq_printf(m,
2261 "\n cpu: %i pcp: %i"
2262 "\n count: %i"
2263 "\n high: %i"
2264 "\n batch: %i",
2265 i, j,
2266 pageset->pcp[j].count,
2267 pageset->pcp[j].high,
2268 pageset->pcp[j].batch);
2269 }
2270 #ifdef CONFIG_NUMA
2271 seq_printf(m,
2272 "\n numa_hit: %lu"
2273 "\n numa_miss: %lu"
2274 "\n numa_foreign: %lu"
2275 "\n interleave_hit: %lu"
2276 "\n local_node: %lu"
2277 "\n other_node: %lu",
2278 pageset->numa_hit,
2279 pageset->numa_miss,
2280 pageset->numa_foreign,
2281 pageset->interleave_hit,
2282 pageset->local_node,
2283 pageset->other_node);
2284 #endif
2285 }
2286 seq_printf(m,
2287 "\n all_unreclaimable: %u"
2288 "\n prev_priority: %i"
2289 "\n temp_priority: %i"
2290 "\n start_pfn: %lu",
2291 zone->all_unreclaimable,
2292 zone->prev_priority,
2293 zone->temp_priority,
2294 zone->zone_start_pfn);
2295 spin_unlock_irqrestore(&zone->lock, flags);
2296 seq_putc(m, '\n');
2297 }
2298 return 0;
2299 }
2300
2301 struct seq_operations zoneinfo_op = {
2302 .start = frag_start, /* iterate over all zones. The same as in
2303 * fragmentation. */
2304 .next = frag_next,
2305 .stop = frag_stop,
2306 .show = zoneinfo_show,
2307 };
2308
2309 static char *vmstat_text[] = {
2310 "nr_dirty",
2311 "nr_writeback",
2312 "nr_unstable",
2313 "nr_page_table_pages",
2314 "nr_mapped",
2315 "nr_slab",
2316
2317 "pgpgin",
2318 "pgpgout",
2319 "pswpin",
2320 "pswpout",
2321
2322 "pgalloc_high",
2323 "pgalloc_normal",
2324 "pgalloc_dma32",
2325 "pgalloc_dma",
2326
2327 "pgfree",
2328 "pgactivate",
2329 "pgdeactivate",
2330
2331 "pgfault",
2332 "pgmajfault",
2333
2334 "pgrefill_high",
2335 "pgrefill_normal",
2336 "pgrefill_dma32",
2337 "pgrefill_dma",
2338
2339 "pgsteal_high",
2340 "pgsteal_normal",
2341 "pgsteal_dma32",
2342 "pgsteal_dma",
2343
2344 "pgscan_kswapd_high",
2345 "pgscan_kswapd_normal",
2346 "pgscan_kswapd_dma32",
2347 "pgscan_kswapd_dma",
2348
2349 "pgscan_direct_high",
2350 "pgscan_direct_normal",
2351 "pgscan_direct_dma32",
2352 "pgscan_direct_dma",
2353
2354 "pginodesteal",
2355 "slabs_scanned",
2356 "kswapd_steal",
2357 "kswapd_inodesteal",
2358 "pageoutrun",
2359 "allocstall",
2360
2361 "pgrotated",
2362 "nr_bounce",
2363 };
2364
2365 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2366 {
2367 struct page_state *ps;
2368
2369 if (*pos >= ARRAY_SIZE(vmstat_text))
2370 return NULL;
2371
2372 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2373 m->private = ps;
2374 if (!ps)
2375 return ERR_PTR(-ENOMEM);
2376 get_full_page_state(ps);
2377 ps->pgpgin /= 2; /* sectors -> kbytes */
2378 ps->pgpgout /= 2;
2379 return (unsigned long *)ps + *pos;
2380 }
2381
2382 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2383 {
2384 (*pos)++;
2385 if (*pos >= ARRAY_SIZE(vmstat_text))
2386 return NULL;
2387 return (unsigned long *)m->private + *pos;
2388 }
2389
2390 static int vmstat_show(struct seq_file *m, void *arg)
2391 {
2392 unsigned long *l = arg;
2393 unsigned long off = l - (unsigned long *)m->private;
2394
2395 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2396 return 0;
2397 }
2398
2399 static void vmstat_stop(struct seq_file *m, void *arg)
2400 {
2401 kfree(m->private);
2402 m->private = NULL;
2403 }
2404
2405 struct seq_operations vmstat_op = {
2406 .start = vmstat_start,
2407 .next = vmstat_next,
2408 .stop = vmstat_stop,
2409 .show = vmstat_show,
2410 };
2411
2412 #endif /* CONFIG_PROC_FS */
2413
2414 #ifdef CONFIG_HOTPLUG_CPU
2415 static int page_alloc_cpu_notify(struct notifier_block *self,
2416 unsigned long action, void *hcpu)
2417 {
2418 int cpu = (unsigned long)hcpu;
2419 long *count;
2420 unsigned long *src, *dest;
2421
2422 if (action == CPU_DEAD) {
2423 int i;
2424
2425 /* Drain local pagecache count. */
2426 count = &per_cpu(nr_pagecache_local, cpu);
2427 atomic_add(*count, &nr_pagecache);
2428 *count = 0;
2429 local_irq_disable();
2430 __drain_pages(cpu);
2431
2432 /* Add dead cpu's page_states to our own. */
2433 dest = (unsigned long *)&__get_cpu_var(page_states);
2434 src = (unsigned long *)&per_cpu(page_states, cpu);
2435
2436 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2437 i++) {
2438 dest[i] += src[i];
2439 src[i] = 0;
2440 }
2441
2442 local_irq_enable();
2443 }
2444 return NOTIFY_OK;
2445 }
2446 #endif /* CONFIG_HOTPLUG_CPU */
2447
2448 void __init page_alloc_init(void)
2449 {
2450 hotcpu_notifier(page_alloc_cpu_notify, 0);
2451 }
2452
2453 /*
2454 * setup_per_zone_lowmem_reserve - called whenever
2455 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2456 * has a correct pages reserved value, so an adequate number of
2457 * pages are left in the zone after a successful __alloc_pages().
2458 */
2459 static void setup_per_zone_lowmem_reserve(void)
2460 {
2461 struct pglist_data *pgdat;
2462 int j, idx;
2463
2464 for_each_pgdat(pgdat) {
2465 for (j = 0; j < MAX_NR_ZONES; j++) {
2466 struct zone *zone = pgdat->node_zones + j;
2467 unsigned long present_pages = zone->present_pages;
2468
2469 zone->lowmem_reserve[j] = 0;
2470
2471 for (idx = j-1; idx >= 0; idx--) {
2472 struct zone *lower_zone;
2473
2474 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2475 sysctl_lowmem_reserve_ratio[idx] = 1;
2476
2477 lower_zone = pgdat->node_zones + idx;
2478 lower_zone->lowmem_reserve[j] = present_pages /
2479 sysctl_lowmem_reserve_ratio[idx];
2480 present_pages += lower_zone->present_pages;
2481 }
2482 }
2483 }
2484 }
2485
2486 /*
2487 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2488 * that the pages_{min,low,high} values for each zone are set correctly
2489 * with respect to min_free_kbytes.
2490 */
2491 void setup_per_zone_pages_min(void)
2492 {
2493 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2494 unsigned long lowmem_pages = 0;
2495 struct zone *zone;
2496 unsigned long flags;
2497
2498 /* Calculate total number of !ZONE_HIGHMEM pages */
2499 for_each_zone(zone) {
2500 if (!is_highmem(zone))
2501 lowmem_pages += zone->present_pages;
2502 }
2503
2504 for_each_zone(zone) {
2505 unsigned long tmp;
2506 spin_lock_irqsave(&zone->lru_lock, flags);
2507 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2508 if (is_highmem(zone)) {
2509 /*
2510 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2511 * need highmem pages, so cap pages_min to a small
2512 * value here.
2513 *
2514 * The (pages_high-pages_low) and (pages_low-pages_min)
2515 * deltas controls asynch page reclaim, and so should
2516 * not be capped for highmem.
2517 */
2518 int min_pages;
2519
2520 min_pages = zone->present_pages / 1024;
2521 if (min_pages < SWAP_CLUSTER_MAX)
2522 min_pages = SWAP_CLUSTER_MAX;
2523 if (min_pages > 128)
2524 min_pages = 128;
2525 zone->pages_min = min_pages;
2526 } else {
2527 /*
2528 * If it's a lowmem zone, reserve a number of pages
2529 * proportionate to the zone's size.
2530 */
2531 zone->pages_min = tmp;
2532 }
2533
2534 zone->pages_low = zone->pages_min + tmp / 4;
2535 zone->pages_high = zone->pages_min + tmp / 2;
2536 spin_unlock_irqrestore(&zone->lru_lock, flags);
2537 }
2538 }
2539
2540 /*
2541 * Initialise min_free_kbytes.
2542 *
2543 * For small machines we want it small (128k min). For large machines
2544 * we want it large (64MB max). But it is not linear, because network
2545 * bandwidth does not increase linearly with machine size. We use
2546 *
2547 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2548 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2549 *
2550 * which yields
2551 *
2552 * 16MB: 512k
2553 * 32MB: 724k
2554 * 64MB: 1024k
2555 * 128MB: 1448k
2556 * 256MB: 2048k
2557 * 512MB: 2896k
2558 * 1024MB: 4096k
2559 * 2048MB: 5792k
2560 * 4096MB: 8192k
2561 * 8192MB: 11584k
2562 * 16384MB: 16384k
2563 */
2564 static int __init init_per_zone_pages_min(void)
2565 {
2566 unsigned long lowmem_kbytes;
2567
2568 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2569
2570 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2571 if (min_free_kbytes < 128)
2572 min_free_kbytes = 128;
2573 if (min_free_kbytes > 65536)
2574 min_free_kbytes = 65536;
2575 setup_per_zone_pages_min();
2576 setup_per_zone_lowmem_reserve();
2577 return 0;
2578 }
2579 module_init(init_per_zone_pages_min)
2580
2581 /*
2582 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2583 * that we can call two helper functions whenever min_free_kbytes
2584 * changes.
2585 */
2586 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2587 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2588 {
2589 proc_dointvec(table, write, file, buffer, length, ppos);
2590 setup_per_zone_pages_min();
2591 return 0;
2592 }
2593
2594 /*
2595 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2596 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2597 * whenever sysctl_lowmem_reserve_ratio changes.
2598 *
2599 * The reserve ratio obviously has absolutely no relation with the
2600 * pages_min watermarks. The lowmem reserve ratio can only make sense
2601 * if in function of the boot time zone sizes.
2602 */
2603 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2604 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2605 {
2606 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2607 setup_per_zone_lowmem_reserve();
2608 return 0;
2609 }
2610
2611 /*
2612 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2613 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2614 * can have before it gets flushed back to buddy allocator.
2615 */
2616
2617 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2618 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2619 {
2620 struct zone *zone;
2621 unsigned int cpu;
2622 int ret;
2623
2624 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2625 if (!write || (ret == -EINVAL))
2626 return ret;
2627 for_each_zone(zone) {
2628 for_each_online_cpu(cpu) {
2629 unsigned long high;
2630 high = zone->present_pages / percpu_pagelist_fraction;
2631 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2632 }
2633 }
2634 return 0;
2635 }
2636
2637 __initdata int hashdist = HASHDIST_DEFAULT;
2638
2639 #ifdef CONFIG_NUMA
2640 static int __init set_hashdist(char *str)
2641 {
2642 if (!str)
2643 return 0;
2644 hashdist = simple_strtoul(str, &str, 0);
2645 return 1;
2646 }
2647 __setup("hashdist=", set_hashdist);
2648 #endif
2649
2650 /*
2651 * allocate a large system hash table from bootmem
2652 * - it is assumed that the hash table must contain an exact power-of-2
2653 * quantity of entries
2654 * - limit is the number of hash buckets, not the total allocation size
2655 */
2656 void *__init alloc_large_system_hash(const char *tablename,
2657 unsigned long bucketsize,
2658 unsigned long numentries,
2659 int scale,
2660 int flags,
2661 unsigned int *_hash_shift,
2662 unsigned int *_hash_mask,
2663 unsigned long limit)
2664 {
2665 unsigned long long max = limit;
2666 unsigned long log2qty, size;
2667 void *table = NULL;
2668
2669 /* allow the kernel cmdline to have a say */
2670 if (!numentries) {
2671 /* round applicable memory size up to nearest megabyte */
2672 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2673 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2674 numentries >>= 20 - PAGE_SHIFT;
2675 numentries <<= 20 - PAGE_SHIFT;
2676
2677 /* limit to 1 bucket per 2^scale bytes of low memory */
2678 if (scale > PAGE_SHIFT)
2679 numentries >>= (scale - PAGE_SHIFT);
2680 else
2681 numentries <<= (PAGE_SHIFT - scale);
2682 }
2683 /* rounded up to nearest power of 2 in size */
2684 numentries = 1UL << (long_log2(numentries) + 1);
2685
2686 /* limit allocation size to 1/16 total memory by default */
2687 if (max == 0) {
2688 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2689 do_div(max, bucketsize);
2690 }
2691
2692 if (numentries > max)
2693 numentries = max;
2694
2695 log2qty = long_log2(numentries);
2696
2697 do {
2698 size = bucketsize << log2qty;
2699 if (flags & HASH_EARLY)
2700 table = alloc_bootmem(size);
2701 else if (hashdist)
2702 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2703 else {
2704 unsigned long order;
2705 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2706 ;
2707 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2708 }
2709 } while (!table && size > PAGE_SIZE && --log2qty);
2710
2711 if (!table)
2712 panic("Failed to allocate %s hash table\n", tablename);
2713
2714 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2715 tablename,
2716 (1U << log2qty),
2717 long_log2(size) - PAGE_SHIFT,
2718 size);
2719
2720 if (_hash_shift)
2721 *_hash_shift = log2qty;
2722 if (_hash_mask)
2723 *_hash_mask = (1 << log2qty) - 1;
2724
2725 return table;
2726 }
This page took 0.133195 seconds and 5 git commands to generate.