cma: fix watermark checking
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 /*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435
436 static inline void set_page_order(struct page *page, int order)
437 {
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440 }
441
442 static inline void rmv_page_order(struct page *page)
443 {
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446 }
447
448 /*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 return page_idx ^ (1 << order);
469 }
470
471 /*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503 }
504
505 /*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532 {
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
568 combined_idx = buddy_idx & page_idx;
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
584 struct page *higher_page, *higher_buddy;
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
588 higher_buddy = higher_page + (buddy_idx - combined_idx);
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597 out:
598 zone->free_area[order].nr_free++;
599 }
600
601 /*
602 * free_page_mlock() -- clean up attempts to free and mlocked() page.
603 * Page should not be on lru, so no need to fix that up.
604 * free_pages_check() will verify...
605 */
606 static inline void free_page_mlock(struct page *page)
607 {
608 __dec_zone_page_state(page, NR_MLOCK);
609 __count_vm_event(UNEVICTABLE_MLOCKFREED);
610 }
611
612 static inline int free_pages_check(struct page *page)
613 {
614 if (unlikely(page_mapcount(page) |
615 (page->mapping != NULL) |
616 (atomic_read(&page->_count) != 0) |
617 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
618 (mem_cgroup_bad_page_check(page)))) {
619 bad_page(page);
620 return 1;
621 }
622 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
623 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
624 return 0;
625 }
626
627 /*
628 * Frees a number of pages from the PCP lists
629 * Assumes all pages on list are in same zone, and of same order.
630 * count is the number of pages to free.
631 *
632 * If the zone was previously in an "all pages pinned" state then look to
633 * see if this freeing clears that state.
634 *
635 * And clear the zone's pages_scanned counter, to hold off the "all pages are
636 * pinned" detection logic.
637 */
638 static void free_pcppages_bulk(struct zone *zone, int count,
639 struct per_cpu_pages *pcp)
640 {
641 int migratetype = 0;
642 int batch_free = 0;
643 int to_free = count;
644
645 spin_lock(&zone->lock);
646 zone->all_unreclaimable = 0;
647 zone->pages_scanned = 0;
648
649 while (to_free) {
650 struct page *page;
651 struct list_head *list;
652
653 /*
654 * Remove pages from lists in a round-robin fashion. A
655 * batch_free count is maintained that is incremented when an
656 * empty list is encountered. This is so more pages are freed
657 * off fuller lists instead of spinning excessively around empty
658 * lists
659 */
660 do {
661 batch_free++;
662 if (++migratetype == MIGRATE_PCPTYPES)
663 migratetype = 0;
664 list = &pcp->lists[migratetype];
665 } while (list_empty(list));
666
667 /* This is the only non-empty list. Free them all. */
668 if (batch_free == MIGRATE_PCPTYPES)
669 batch_free = to_free;
670
671 do {
672 int mt; /* migratetype of the to-be-freed page */
673
674 page = list_entry(list->prev, struct page, lru);
675 /* must delete as __free_one_page list manipulates */
676 list_del(&page->lru);
677 mt = page_private(page);
678 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
679 __free_one_page(page, zone, 0, mt);
680 trace_mm_page_pcpu_drain(page, 0, mt);
681 if (is_migrate_cma(mt))
682 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
683 } while (--to_free && --batch_free && !list_empty(list));
684 }
685 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
686 spin_unlock(&zone->lock);
687 }
688
689 static void free_one_page(struct zone *zone, struct page *page, int order,
690 int migratetype)
691 {
692 spin_lock(&zone->lock);
693 zone->all_unreclaimable = 0;
694 zone->pages_scanned = 0;
695
696 __free_one_page(page, zone, order, migratetype);
697 if (unlikely(migratetype != MIGRATE_ISOLATE))
698 __mod_zone_freepage_state(zone, 1 << order, migratetype);
699 spin_unlock(&zone->lock);
700 }
701
702 static bool free_pages_prepare(struct page *page, unsigned int order)
703 {
704 int i;
705 int bad = 0;
706
707 trace_mm_page_free(page, order);
708 kmemcheck_free_shadow(page, order);
709
710 if (PageAnon(page))
711 page->mapping = NULL;
712 for (i = 0; i < (1 << order); i++)
713 bad += free_pages_check(page + i);
714 if (bad)
715 return false;
716
717 if (!PageHighMem(page)) {
718 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
719 debug_check_no_obj_freed(page_address(page),
720 PAGE_SIZE << order);
721 }
722 arch_free_page(page, order);
723 kernel_map_pages(page, 1 << order, 0);
724
725 return true;
726 }
727
728 static void __free_pages_ok(struct page *page, unsigned int order)
729 {
730 unsigned long flags;
731 int wasMlocked = __TestClearPageMlocked(page);
732
733 if (!free_pages_prepare(page, order))
734 return;
735
736 local_irq_save(flags);
737 if (unlikely(wasMlocked))
738 free_page_mlock(page);
739 __count_vm_events(PGFREE, 1 << order);
740 free_one_page(page_zone(page), page, order,
741 get_pageblock_migratetype(page));
742 local_irq_restore(flags);
743 }
744
745 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
746 {
747 unsigned int nr_pages = 1 << order;
748 unsigned int loop;
749
750 prefetchw(page);
751 for (loop = 0; loop < nr_pages; loop++) {
752 struct page *p = &page[loop];
753
754 if (loop + 1 < nr_pages)
755 prefetchw(p + 1);
756 __ClearPageReserved(p);
757 set_page_count(p, 0);
758 }
759
760 set_page_refcounted(page);
761 __free_pages(page, order);
762 }
763
764 #ifdef CONFIG_CMA
765 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
766 void __init init_cma_reserved_pageblock(struct page *page)
767 {
768 unsigned i = pageblock_nr_pages;
769 struct page *p = page;
770
771 do {
772 __ClearPageReserved(p);
773 set_page_count(p, 0);
774 } while (++p, --i);
775
776 set_page_refcounted(page);
777 set_pageblock_migratetype(page, MIGRATE_CMA);
778 __free_pages(page, pageblock_order);
779 totalram_pages += pageblock_nr_pages;
780 }
781 #endif
782
783 /*
784 * The order of subdivision here is critical for the IO subsystem.
785 * Please do not alter this order without good reasons and regression
786 * testing. Specifically, as large blocks of memory are subdivided,
787 * the order in which smaller blocks are delivered depends on the order
788 * they're subdivided in this function. This is the primary factor
789 * influencing the order in which pages are delivered to the IO
790 * subsystem according to empirical testing, and this is also justified
791 * by considering the behavior of a buddy system containing a single
792 * large block of memory acted on by a series of small allocations.
793 * This behavior is a critical factor in sglist merging's success.
794 *
795 * -- wli
796 */
797 static inline void expand(struct zone *zone, struct page *page,
798 int low, int high, struct free_area *area,
799 int migratetype)
800 {
801 unsigned long size = 1 << high;
802
803 while (high > low) {
804 area--;
805 high--;
806 size >>= 1;
807 VM_BUG_ON(bad_range(zone, &page[size]));
808
809 #ifdef CONFIG_DEBUG_PAGEALLOC
810 if (high < debug_guardpage_minorder()) {
811 /*
812 * Mark as guard pages (or page), that will allow to
813 * merge back to allocator when buddy will be freed.
814 * Corresponding page table entries will not be touched,
815 * pages will stay not present in virtual address space
816 */
817 INIT_LIST_HEAD(&page[size].lru);
818 set_page_guard_flag(&page[size]);
819 set_page_private(&page[size], high);
820 /* Guard pages are not available for any usage */
821 __mod_zone_freepage_state(zone, -(1 << high),
822 migratetype);
823 continue;
824 }
825 #endif
826 list_add(&page[size].lru, &area->free_list[migratetype]);
827 area->nr_free++;
828 set_page_order(&page[size], high);
829 }
830 }
831
832 /*
833 * This page is about to be returned from the page allocator
834 */
835 static inline int check_new_page(struct page *page)
836 {
837 if (unlikely(page_mapcount(page) |
838 (page->mapping != NULL) |
839 (atomic_read(&page->_count) != 0) |
840 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
841 (mem_cgroup_bad_page_check(page)))) {
842 bad_page(page);
843 return 1;
844 }
845 return 0;
846 }
847
848 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
849 {
850 int i;
851
852 for (i = 0; i < (1 << order); i++) {
853 struct page *p = page + i;
854 if (unlikely(check_new_page(p)))
855 return 1;
856 }
857
858 set_page_private(page, 0);
859 set_page_refcounted(page);
860
861 arch_alloc_page(page, order);
862 kernel_map_pages(page, 1 << order, 1);
863
864 if (gfp_flags & __GFP_ZERO)
865 prep_zero_page(page, order, gfp_flags);
866
867 if (order && (gfp_flags & __GFP_COMP))
868 prep_compound_page(page, order);
869
870 return 0;
871 }
872
873 /*
874 * Go through the free lists for the given migratetype and remove
875 * the smallest available page from the freelists
876 */
877 static inline
878 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
879 int migratetype)
880 {
881 unsigned int current_order;
882 struct free_area * area;
883 struct page *page;
884
885 /* Find a page of the appropriate size in the preferred list */
886 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
887 area = &(zone->free_area[current_order]);
888 if (list_empty(&area->free_list[migratetype]))
889 continue;
890
891 page = list_entry(area->free_list[migratetype].next,
892 struct page, lru);
893 list_del(&page->lru);
894 rmv_page_order(page);
895 area->nr_free--;
896 expand(zone, page, order, current_order, area, migratetype);
897 return page;
898 }
899
900 return NULL;
901 }
902
903
904 /*
905 * This array describes the order lists are fallen back to when
906 * the free lists for the desirable migrate type are depleted
907 */
908 static int fallbacks[MIGRATE_TYPES][4] = {
909 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
910 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
911 #ifdef CONFIG_CMA
912 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
913 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
914 #else
915 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
916 #endif
917 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
918 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
919 };
920
921 /*
922 * Move the free pages in a range to the free lists of the requested type.
923 * Note that start_page and end_pages are not aligned on a pageblock
924 * boundary. If alignment is required, use move_freepages_block()
925 */
926 static int move_freepages(struct zone *zone,
927 struct page *start_page, struct page *end_page,
928 int migratetype)
929 {
930 struct page *page;
931 unsigned long order;
932 int pages_moved = 0;
933
934 #ifndef CONFIG_HOLES_IN_ZONE
935 /*
936 * page_zone is not safe to call in this context when
937 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
938 * anyway as we check zone boundaries in move_freepages_block().
939 * Remove at a later date when no bug reports exist related to
940 * grouping pages by mobility
941 */
942 BUG_ON(page_zone(start_page) != page_zone(end_page));
943 #endif
944
945 for (page = start_page; page <= end_page;) {
946 /* Make sure we are not inadvertently changing nodes */
947 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
948
949 if (!pfn_valid_within(page_to_pfn(page))) {
950 page++;
951 continue;
952 }
953
954 if (!PageBuddy(page)) {
955 page++;
956 continue;
957 }
958
959 order = page_order(page);
960 list_move(&page->lru,
961 &zone->free_area[order].free_list[migratetype]);
962 page += 1 << order;
963 pages_moved += 1 << order;
964 }
965
966 return pages_moved;
967 }
968
969 int move_freepages_block(struct zone *zone, struct page *page,
970 int migratetype)
971 {
972 unsigned long start_pfn, end_pfn;
973 struct page *start_page, *end_page;
974
975 start_pfn = page_to_pfn(page);
976 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
977 start_page = pfn_to_page(start_pfn);
978 end_page = start_page + pageblock_nr_pages - 1;
979 end_pfn = start_pfn + pageblock_nr_pages - 1;
980
981 /* Do not cross zone boundaries */
982 if (start_pfn < zone->zone_start_pfn)
983 start_page = page;
984 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
985 return 0;
986
987 return move_freepages(zone, start_page, end_page, migratetype);
988 }
989
990 static void change_pageblock_range(struct page *pageblock_page,
991 int start_order, int migratetype)
992 {
993 int nr_pageblocks = 1 << (start_order - pageblock_order);
994
995 while (nr_pageblocks--) {
996 set_pageblock_migratetype(pageblock_page, migratetype);
997 pageblock_page += pageblock_nr_pages;
998 }
999 }
1000
1001 /* Remove an element from the buddy allocator from the fallback list */
1002 static inline struct page *
1003 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1004 {
1005 struct free_area * area;
1006 int current_order;
1007 struct page *page;
1008 int migratetype, i;
1009
1010 /* Find the largest possible block of pages in the other list */
1011 for (current_order = MAX_ORDER-1; current_order >= order;
1012 --current_order) {
1013 for (i = 0;; i++) {
1014 migratetype = fallbacks[start_migratetype][i];
1015
1016 /* MIGRATE_RESERVE handled later if necessary */
1017 if (migratetype == MIGRATE_RESERVE)
1018 break;
1019
1020 area = &(zone->free_area[current_order]);
1021 if (list_empty(&area->free_list[migratetype]))
1022 continue;
1023
1024 page = list_entry(area->free_list[migratetype].next,
1025 struct page, lru);
1026 area->nr_free--;
1027
1028 /*
1029 * If breaking a large block of pages, move all free
1030 * pages to the preferred allocation list. If falling
1031 * back for a reclaimable kernel allocation, be more
1032 * aggressive about taking ownership of free pages
1033 *
1034 * On the other hand, never change migration
1035 * type of MIGRATE_CMA pageblocks nor move CMA
1036 * pages on different free lists. We don't
1037 * want unmovable pages to be allocated from
1038 * MIGRATE_CMA areas.
1039 */
1040 if (!is_migrate_cma(migratetype) &&
1041 (unlikely(current_order >= pageblock_order / 2) ||
1042 start_migratetype == MIGRATE_RECLAIMABLE ||
1043 page_group_by_mobility_disabled)) {
1044 int pages;
1045 pages = move_freepages_block(zone, page,
1046 start_migratetype);
1047
1048 /* Claim the whole block if over half of it is free */
1049 if (pages >= (1 << (pageblock_order-1)) ||
1050 page_group_by_mobility_disabled)
1051 set_pageblock_migratetype(page,
1052 start_migratetype);
1053
1054 migratetype = start_migratetype;
1055 }
1056
1057 /* Remove the page from the freelists */
1058 list_del(&page->lru);
1059 rmv_page_order(page);
1060
1061 /* Take ownership for orders >= pageblock_order */
1062 if (current_order >= pageblock_order &&
1063 !is_migrate_cma(migratetype))
1064 change_pageblock_range(page, current_order,
1065 start_migratetype);
1066
1067 expand(zone, page, order, current_order, area,
1068 is_migrate_cma(migratetype)
1069 ? migratetype : start_migratetype);
1070
1071 trace_mm_page_alloc_extfrag(page, order, current_order,
1072 start_migratetype, migratetype);
1073
1074 return page;
1075 }
1076 }
1077
1078 return NULL;
1079 }
1080
1081 /*
1082 * Do the hard work of removing an element from the buddy allocator.
1083 * Call me with the zone->lock already held.
1084 */
1085 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1086 int migratetype)
1087 {
1088 struct page *page;
1089
1090 retry_reserve:
1091 page = __rmqueue_smallest(zone, order, migratetype);
1092
1093 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1094 page = __rmqueue_fallback(zone, order, migratetype);
1095
1096 /*
1097 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1098 * is used because __rmqueue_smallest is an inline function
1099 * and we want just one call site
1100 */
1101 if (!page) {
1102 migratetype = MIGRATE_RESERVE;
1103 goto retry_reserve;
1104 }
1105 }
1106
1107 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1108 return page;
1109 }
1110
1111 /*
1112 * Obtain a specified number of elements from the buddy allocator, all under
1113 * a single hold of the lock, for efficiency. Add them to the supplied list.
1114 * Returns the number of new pages which were placed at *list.
1115 */
1116 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1117 unsigned long count, struct list_head *list,
1118 int migratetype, int cold)
1119 {
1120 int mt = migratetype, i;
1121
1122 spin_lock(&zone->lock);
1123 for (i = 0; i < count; ++i) {
1124 struct page *page = __rmqueue(zone, order, migratetype);
1125 if (unlikely(page == NULL))
1126 break;
1127
1128 /*
1129 * Split buddy pages returned by expand() are received here
1130 * in physical page order. The page is added to the callers and
1131 * list and the list head then moves forward. From the callers
1132 * perspective, the linked list is ordered by page number in
1133 * some conditions. This is useful for IO devices that can
1134 * merge IO requests if the physical pages are ordered
1135 * properly.
1136 */
1137 if (likely(cold == 0))
1138 list_add(&page->lru, list);
1139 else
1140 list_add_tail(&page->lru, list);
1141 if (IS_ENABLED(CONFIG_CMA)) {
1142 mt = get_pageblock_migratetype(page);
1143 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1144 mt = migratetype;
1145 }
1146 set_page_private(page, mt);
1147 list = &page->lru;
1148 if (is_migrate_cma(mt))
1149 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1150 -(1 << order));
1151 }
1152 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1153 spin_unlock(&zone->lock);
1154 return i;
1155 }
1156
1157 #ifdef CONFIG_NUMA
1158 /*
1159 * Called from the vmstat counter updater to drain pagesets of this
1160 * currently executing processor on remote nodes after they have
1161 * expired.
1162 *
1163 * Note that this function must be called with the thread pinned to
1164 * a single processor.
1165 */
1166 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1167 {
1168 unsigned long flags;
1169 int to_drain;
1170
1171 local_irq_save(flags);
1172 if (pcp->count >= pcp->batch)
1173 to_drain = pcp->batch;
1174 else
1175 to_drain = pcp->count;
1176 if (to_drain > 0) {
1177 free_pcppages_bulk(zone, to_drain, pcp);
1178 pcp->count -= to_drain;
1179 }
1180 local_irq_restore(flags);
1181 }
1182 #endif
1183
1184 /*
1185 * Drain pages of the indicated processor.
1186 *
1187 * The processor must either be the current processor and the
1188 * thread pinned to the current processor or a processor that
1189 * is not online.
1190 */
1191 static void drain_pages(unsigned int cpu)
1192 {
1193 unsigned long flags;
1194 struct zone *zone;
1195
1196 for_each_populated_zone(zone) {
1197 struct per_cpu_pageset *pset;
1198 struct per_cpu_pages *pcp;
1199
1200 local_irq_save(flags);
1201 pset = per_cpu_ptr(zone->pageset, cpu);
1202
1203 pcp = &pset->pcp;
1204 if (pcp->count) {
1205 free_pcppages_bulk(zone, pcp->count, pcp);
1206 pcp->count = 0;
1207 }
1208 local_irq_restore(flags);
1209 }
1210 }
1211
1212 /*
1213 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1214 */
1215 void drain_local_pages(void *arg)
1216 {
1217 drain_pages(smp_processor_id());
1218 }
1219
1220 /*
1221 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1222 *
1223 * Note that this code is protected against sending an IPI to an offline
1224 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1225 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1226 * nothing keeps CPUs from showing up after we populated the cpumask and
1227 * before the call to on_each_cpu_mask().
1228 */
1229 void drain_all_pages(void)
1230 {
1231 int cpu;
1232 struct per_cpu_pageset *pcp;
1233 struct zone *zone;
1234
1235 /*
1236 * Allocate in the BSS so we wont require allocation in
1237 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1238 */
1239 static cpumask_t cpus_with_pcps;
1240
1241 /*
1242 * We don't care about racing with CPU hotplug event
1243 * as offline notification will cause the notified
1244 * cpu to drain that CPU pcps and on_each_cpu_mask
1245 * disables preemption as part of its processing
1246 */
1247 for_each_online_cpu(cpu) {
1248 bool has_pcps = false;
1249 for_each_populated_zone(zone) {
1250 pcp = per_cpu_ptr(zone->pageset, cpu);
1251 if (pcp->pcp.count) {
1252 has_pcps = true;
1253 break;
1254 }
1255 }
1256 if (has_pcps)
1257 cpumask_set_cpu(cpu, &cpus_with_pcps);
1258 else
1259 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1260 }
1261 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1262 }
1263
1264 #ifdef CONFIG_HIBERNATION
1265
1266 void mark_free_pages(struct zone *zone)
1267 {
1268 unsigned long pfn, max_zone_pfn;
1269 unsigned long flags;
1270 int order, t;
1271 struct list_head *curr;
1272
1273 if (!zone->spanned_pages)
1274 return;
1275
1276 spin_lock_irqsave(&zone->lock, flags);
1277
1278 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1279 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1280 if (pfn_valid(pfn)) {
1281 struct page *page = pfn_to_page(pfn);
1282
1283 if (!swsusp_page_is_forbidden(page))
1284 swsusp_unset_page_free(page);
1285 }
1286
1287 for_each_migratetype_order(order, t) {
1288 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1289 unsigned long i;
1290
1291 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1292 for (i = 0; i < (1UL << order); i++)
1293 swsusp_set_page_free(pfn_to_page(pfn + i));
1294 }
1295 }
1296 spin_unlock_irqrestore(&zone->lock, flags);
1297 }
1298 #endif /* CONFIG_PM */
1299
1300 /*
1301 * Free a 0-order page
1302 * cold == 1 ? free a cold page : free a hot page
1303 */
1304 void free_hot_cold_page(struct page *page, int cold)
1305 {
1306 struct zone *zone = page_zone(page);
1307 struct per_cpu_pages *pcp;
1308 unsigned long flags;
1309 int migratetype;
1310 int wasMlocked = __TestClearPageMlocked(page);
1311
1312 if (!free_pages_prepare(page, 0))
1313 return;
1314
1315 migratetype = get_pageblock_migratetype(page);
1316 set_page_private(page, migratetype);
1317 local_irq_save(flags);
1318 if (unlikely(wasMlocked))
1319 free_page_mlock(page);
1320 __count_vm_event(PGFREE);
1321
1322 /*
1323 * We only track unmovable, reclaimable and movable on pcp lists.
1324 * Free ISOLATE pages back to the allocator because they are being
1325 * offlined but treat RESERVE as movable pages so we can get those
1326 * areas back if necessary. Otherwise, we may have to free
1327 * excessively into the page allocator
1328 */
1329 if (migratetype >= MIGRATE_PCPTYPES) {
1330 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1331 free_one_page(zone, page, 0, migratetype);
1332 goto out;
1333 }
1334 migratetype = MIGRATE_MOVABLE;
1335 }
1336
1337 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1338 if (cold)
1339 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1340 else
1341 list_add(&page->lru, &pcp->lists[migratetype]);
1342 pcp->count++;
1343 if (pcp->count >= pcp->high) {
1344 free_pcppages_bulk(zone, pcp->batch, pcp);
1345 pcp->count -= pcp->batch;
1346 }
1347
1348 out:
1349 local_irq_restore(flags);
1350 }
1351
1352 /*
1353 * Free a list of 0-order pages
1354 */
1355 void free_hot_cold_page_list(struct list_head *list, int cold)
1356 {
1357 struct page *page, *next;
1358
1359 list_for_each_entry_safe(page, next, list, lru) {
1360 trace_mm_page_free_batched(page, cold);
1361 free_hot_cold_page(page, cold);
1362 }
1363 }
1364
1365 /*
1366 * split_page takes a non-compound higher-order page, and splits it into
1367 * n (1<<order) sub-pages: page[0..n]
1368 * Each sub-page must be freed individually.
1369 *
1370 * Note: this is probably too low level an operation for use in drivers.
1371 * Please consult with lkml before using this in your driver.
1372 */
1373 void split_page(struct page *page, unsigned int order)
1374 {
1375 int i;
1376
1377 VM_BUG_ON(PageCompound(page));
1378 VM_BUG_ON(!page_count(page));
1379
1380 #ifdef CONFIG_KMEMCHECK
1381 /*
1382 * Split shadow pages too, because free(page[0]) would
1383 * otherwise free the whole shadow.
1384 */
1385 if (kmemcheck_page_is_tracked(page))
1386 split_page(virt_to_page(page[0].shadow), order);
1387 #endif
1388
1389 for (i = 1; i < (1 << order); i++)
1390 set_page_refcounted(page + i);
1391 }
1392
1393 /*
1394 * Similar to the split_page family of functions except that the page
1395 * required at the given order and being isolated now to prevent races
1396 * with parallel allocators
1397 */
1398 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1399 {
1400 unsigned int order;
1401 unsigned long watermark;
1402 struct zone *zone;
1403 int mt;
1404
1405 BUG_ON(!PageBuddy(page));
1406
1407 zone = page_zone(page);
1408 order = page_order(page);
1409
1410 /* Obey watermarks as if the page was being allocated */
1411 watermark = low_wmark_pages(zone) + (1 << order);
1412 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1413 return 0;
1414
1415 /* Remove page from free list */
1416 list_del(&page->lru);
1417 zone->free_area[order].nr_free--;
1418 rmv_page_order(page);
1419
1420 mt = get_pageblock_migratetype(page);
1421 if (unlikely(mt != MIGRATE_ISOLATE))
1422 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1423
1424 if (alloc_order != order)
1425 expand(zone, page, alloc_order, order,
1426 &zone->free_area[order], migratetype);
1427
1428 /* Set the pageblock if the captured page is at least a pageblock */
1429 if (order >= pageblock_order - 1) {
1430 struct page *endpage = page + (1 << order) - 1;
1431 for (; page < endpage; page += pageblock_nr_pages) {
1432 int mt = get_pageblock_migratetype(page);
1433 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1434 set_pageblock_migratetype(page,
1435 MIGRATE_MOVABLE);
1436 }
1437 }
1438
1439 return 1UL << order;
1440 }
1441
1442 /*
1443 * Similar to split_page except the page is already free. As this is only
1444 * being used for migration, the migratetype of the block also changes.
1445 * As this is called with interrupts disabled, the caller is responsible
1446 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1447 * are enabled.
1448 *
1449 * Note: this is probably too low level an operation for use in drivers.
1450 * Please consult with lkml before using this in your driver.
1451 */
1452 int split_free_page(struct page *page)
1453 {
1454 unsigned int order;
1455 int nr_pages;
1456
1457 BUG_ON(!PageBuddy(page));
1458 order = page_order(page);
1459
1460 nr_pages = capture_free_page(page, order, 0);
1461 if (!nr_pages)
1462 return 0;
1463
1464 /* Split into individual pages */
1465 set_page_refcounted(page);
1466 split_page(page, order);
1467 return nr_pages;
1468 }
1469
1470 /*
1471 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1472 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1473 * or two.
1474 */
1475 static inline
1476 struct page *buffered_rmqueue(struct zone *preferred_zone,
1477 struct zone *zone, int order, gfp_t gfp_flags,
1478 int migratetype)
1479 {
1480 unsigned long flags;
1481 struct page *page;
1482 int cold = !!(gfp_flags & __GFP_COLD);
1483
1484 again:
1485 if (likely(order == 0)) {
1486 struct per_cpu_pages *pcp;
1487 struct list_head *list;
1488
1489 local_irq_save(flags);
1490 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1491 list = &pcp->lists[migratetype];
1492 if (list_empty(list)) {
1493 pcp->count += rmqueue_bulk(zone, 0,
1494 pcp->batch, list,
1495 migratetype, cold);
1496 if (unlikely(list_empty(list)))
1497 goto failed;
1498 }
1499
1500 if (cold)
1501 page = list_entry(list->prev, struct page, lru);
1502 else
1503 page = list_entry(list->next, struct page, lru);
1504
1505 list_del(&page->lru);
1506 pcp->count--;
1507 } else {
1508 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1509 /*
1510 * __GFP_NOFAIL is not to be used in new code.
1511 *
1512 * All __GFP_NOFAIL callers should be fixed so that they
1513 * properly detect and handle allocation failures.
1514 *
1515 * We most definitely don't want callers attempting to
1516 * allocate greater than order-1 page units with
1517 * __GFP_NOFAIL.
1518 */
1519 WARN_ON_ONCE(order > 1);
1520 }
1521 spin_lock_irqsave(&zone->lock, flags);
1522 page = __rmqueue(zone, order, migratetype);
1523 spin_unlock(&zone->lock);
1524 if (!page)
1525 goto failed;
1526 __mod_zone_freepage_state(zone, -(1 << order),
1527 get_pageblock_migratetype(page));
1528 }
1529
1530 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1531 zone_statistics(preferred_zone, zone, gfp_flags);
1532 local_irq_restore(flags);
1533
1534 VM_BUG_ON(bad_range(zone, page));
1535 if (prep_new_page(page, order, gfp_flags))
1536 goto again;
1537 return page;
1538
1539 failed:
1540 local_irq_restore(flags);
1541 return NULL;
1542 }
1543
1544 #ifdef CONFIG_FAIL_PAGE_ALLOC
1545
1546 static struct {
1547 struct fault_attr attr;
1548
1549 u32 ignore_gfp_highmem;
1550 u32 ignore_gfp_wait;
1551 u32 min_order;
1552 } fail_page_alloc = {
1553 .attr = FAULT_ATTR_INITIALIZER,
1554 .ignore_gfp_wait = 1,
1555 .ignore_gfp_highmem = 1,
1556 .min_order = 1,
1557 };
1558
1559 static int __init setup_fail_page_alloc(char *str)
1560 {
1561 return setup_fault_attr(&fail_page_alloc.attr, str);
1562 }
1563 __setup("fail_page_alloc=", setup_fail_page_alloc);
1564
1565 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1566 {
1567 if (order < fail_page_alloc.min_order)
1568 return false;
1569 if (gfp_mask & __GFP_NOFAIL)
1570 return false;
1571 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1572 return false;
1573 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1574 return false;
1575
1576 return should_fail(&fail_page_alloc.attr, 1 << order);
1577 }
1578
1579 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1580
1581 static int __init fail_page_alloc_debugfs(void)
1582 {
1583 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1584 struct dentry *dir;
1585
1586 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1587 &fail_page_alloc.attr);
1588 if (IS_ERR(dir))
1589 return PTR_ERR(dir);
1590
1591 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1592 &fail_page_alloc.ignore_gfp_wait))
1593 goto fail;
1594 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1595 &fail_page_alloc.ignore_gfp_highmem))
1596 goto fail;
1597 if (!debugfs_create_u32("min-order", mode, dir,
1598 &fail_page_alloc.min_order))
1599 goto fail;
1600
1601 return 0;
1602 fail:
1603 debugfs_remove_recursive(dir);
1604
1605 return -ENOMEM;
1606 }
1607
1608 late_initcall(fail_page_alloc_debugfs);
1609
1610 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1611
1612 #else /* CONFIG_FAIL_PAGE_ALLOC */
1613
1614 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1615 {
1616 return false;
1617 }
1618
1619 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1620
1621 /*
1622 * Return true if free pages are above 'mark'. This takes into account the order
1623 * of the allocation.
1624 */
1625 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1626 int classzone_idx, int alloc_flags, long free_pages)
1627 {
1628 /* free_pages my go negative - that's OK */
1629 long min = mark;
1630 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1631 int o;
1632
1633 free_pages -= (1 << order) - 1;
1634 if (alloc_flags & ALLOC_HIGH)
1635 min -= min / 2;
1636 if (alloc_flags & ALLOC_HARDER)
1637 min -= min / 4;
1638 #ifdef CONFIG_CMA
1639 /* If allocation can't use CMA areas don't use free CMA pages */
1640 if (!(alloc_flags & ALLOC_CMA))
1641 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1642 #endif
1643 if (free_pages <= min + lowmem_reserve)
1644 return false;
1645 for (o = 0; o < order; o++) {
1646 /* At the next order, this order's pages become unavailable */
1647 free_pages -= z->free_area[o].nr_free << o;
1648
1649 /* Require fewer higher order pages to be free */
1650 min >>= 1;
1651
1652 if (free_pages <= min)
1653 return false;
1654 }
1655 return true;
1656 }
1657
1658 #ifdef CONFIG_MEMORY_ISOLATION
1659 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1660 {
1661 if (unlikely(zone->nr_pageblock_isolate))
1662 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1663 return 0;
1664 }
1665 #else
1666 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1667 {
1668 return 0;
1669 }
1670 #endif
1671
1672 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1673 int classzone_idx, int alloc_flags)
1674 {
1675 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1676 zone_page_state(z, NR_FREE_PAGES));
1677 }
1678
1679 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1680 int classzone_idx, int alloc_flags)
1681 {
1682 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1683
1684 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1685 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1686
1687 /*
1688 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1689 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1690 * sleep although it could do so. But this is more desirable for memory
1691 * hotplug than sleeping which can cause a livelock in the direct
1692 * reclaim path.
1693 */
1694 free_pages -= nr_zone_isolate_freepages(z);
1695 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1696 free_pages);
1697 }
1698
1699 #ifdef CONFIG_NUMA
1700 /*
1701 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1702 * skip over zones that are not allowed by the cpuset, or that have
1703 * been recently (in last second) found to be nearly full. See further
1704 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1705 * that have to skip over a lot of full or unallowed zones.
1706 *
1707 * If the zonelist cache is present in the passed in zonelist, then
1708 * returns a pointer to the allowed node mask (either the current
1709 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1710 *
1711 * If the zonelist cache is not available for this zonelist, does
1712 * nothing and returns NULL.
1713 *
1714 * If the fullzones BITMAP in the zonelist cache is stale (more than
1715 * a second since last zap'd) then we zap it out (clear its bits.)
1716 *
1717 * We hold off even calling zlc_setup, until after we've checked the
1718 * first zone in the zonelist, on the theory that most allocations will
1719 * be satisfied from that first zone, so best to examine that zone as
1720 * quickly as we can.
1721 */
1722 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1723 {
1724 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1725 nodemask_t *allowednodes; /* zonelist_cache approximation */
1726
1727 zlc = zonelist->zlcache_ptr;
1728 if (!zlc)
1729 return NULL;
1730
1731 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1732 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1733 zlc->last_full_zap = jiffies;
1734 }
1735
1736 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1737 &cpuset_current_mems_allowed :
1738 &node_states[N_HIGH_MEMORY];
1739 return allowednodes;
1740 }
1741
1742 /*
1743 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1744 * if it is worth looking at further for free memory:
1745 * 1) Check that the zone isn't thought to be full (doesn't have its
1746 * bit set in the zonelist_cache fullzones BITMAP).
1747 * 2) Check that the zones node (obtained from the zonelist_cache
1748 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1749 * Return true (non-zero) if zone is worth looking at further, or
1750 * else return false (zero) if it is not.
1751 *
1752 * This check -ignores- the distinction between various watermarks,
1753 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1754 * found to be full for any variation of these watermarks, it will
1755 * be considered full for up to one second by all requests, unless
1756 * we are so low on memory on all allowed nodes that we are forced
1757 * into the second scan of the zonelist.
1758 *
1759 * In the second scan we ignore this zonelist cache and exactly
1760 * apply the watermarks to all zones, even it is slower to do so.
1761 * We are low on memory in the second scan, and should leave no stone
1762 * unturned looking for a free page.
1763 */
1764 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1765 nodemask_t *allowednodes)
1766 {
1767 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1768 int i; /* index of *z in zonelist zones */
1769 int n; /* node that zone *z is on */
1770
1771 zlc = zonelist->zlcache_ptr;
1772 if (!zlc)
1773 return 1;
1774
1775 i = z - zonelist->_zonerefs;
1776 n = zlc->z_to_n[i];
1777
1778 /* This zone is worth trying if it is allowed but not full */
1779 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1780 }
1781
1782 /*
1783 * Given 'z' scanning a zonelist, set the corresponding bit in
1784 * zlc->fullzones, so that subsequent attempts to allocate a page
1785 * from that zone don't waste time re-examining it.
1786 */
1787 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1788 {
1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1790 int i; /* index of *z in zonelist zones */
1791
1792 zlc = zonelist->zlcache_ptr;
1793 if (!zlc)
1794 return;
1795
1796 i = z - zonelist->_zonerefs;
1797
1798 set_bit(i, zlc->fullzones);
1799 }
1800
1801 /*
1802 * clear all zones full, called after direct reclaim makes progress so that
1803 * a zone that was recently full is not skipped over for up to a second
1804 */
1805 static void zlc_clear_zones_full(struct zonelist *zonelist)
1806 {
1807 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1808
1809 zlc = zonelist->zlcache_ptr;
1810 if (!zlc)
1811 return;
1812
1813 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1814 }
1815
1816 #else /* CONFIG_NUMA */
1817
1818 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1819 {
1820 return NULL;
1821 }
1822
1823 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1824 nodemask_t *allowednodes)
1825 {
1826 return 1;
1827 }
1828
1829 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1830 {
1831 }
1832
1833 static void zlc_clear_zones_full(struct zonelist *zonelist)
1834 {
1835 }
1836 #endif /* CONFIG_NUMA */
1837
1838 /*
1839 * get_page_from_freelist goes through the zonelist trying to allocate
1840 * a page.
1841 */
1842 static struct page *
1843 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1844 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1845 struct zone *preferred_zone, int migratetype)
1846 {
1847 struct zoneref *z;
1848 struct page *page = NULL;
1849 int classzone_idx;
1850 struct zone *zone;
1851 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1852 int zlc_active = 0; /* set if using zonelist_cache */
1853 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1854
1855 classzone_idx = zone_idx(preferred_zone);
1856 zonelist_scan:
1857 /*
1858 * Scan zonelist, looking for a zone with enough free.
1859 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1860 */
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1862 high_zoneidx, nodemask) {
1863 if (NUMA_BUILD && zlc_active &&
1864 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1865 continue;
1866 if ((alloc_flags & ALLOC_CPUSET) &&
1867 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1868 continue;
1869 /*
1870 * When allocating a page cache page for writing, we
1871 * want to get it from a zone that is within its dirty
1872 * limit, such that no single zone holds more than its
1873 * proportional share of globally allowed dirty pages.
1874 * The dirty limits take into account the zone's
1875 * lowmem reserves and high watermark so that kswapd
1876 * should be able to balance it without having to
1877 * write pages from its LRU list.
1878 *
1879 * This may look like it could increase pressure on
1880 * lower zones by failing allocations in higher zones
1881 * before they are full. But the pages that do spill
1882 * over are limited as the lower zones are protected
1883 * by this very same mechanism. It should not become
1884 * a practical burden to them.
1885 *
1886 * XXX: For now, allow allocations to potentially
1887 * exceed the per-zone dirty limit in the slowpath
1888 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1889 * which is important when on a NUMA setup the allowed
1890 * zones are together not big enough to reach the
1891 * global limit. The proper fix for these situations
1892 * will require awareness of zones in the
1893 * dirty-throttling and the flusher threads.
1894 */
1895 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1896 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1897 goto this_zone_full;
1898
1899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1900 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1901 unsigned long mark;
1902 int ret;
1903
1904 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1905 if (zone_watermark_ok(zone, order, mark,
1906 classzone_idx, alloc_flags))
1907 goto try_this_zone;
1908
1909 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1910 /*
1911 * we do zlc_setup if there are multiple nodes
1912 * and before considering the first zone allowed
1913 * by the cpuset.
1914 */
1915 allowednodes = zlc_setup(zonelist, alloc_flags);
1916 zlc_active = 1;
1917 did_zlc_setup = 1;
1918 }
1919
1920 if (zone_reclaim_mode == 0)
1921 goto this_zone_full;
1922
1923 /*
1924 * As we may have just activated ZLC, check if the first
1925 * eligible zone has failed zone_reclaim recently.
1926 */
1927 if (NUMA_BUILD && zlc_active &&
1928 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1929 continue;
1930
1931 ret = zone_reclaim(zone, gfp_mask, order);
1932 switch (ret) {
1933 case ZONE_RECLAIM_NOSCAN:
1934 /* did not scan */
1935 continue;
1936 case ZONE_RECLAIM_FULL:
1937 /* scanned but unreclaimable */
1938 continue;
1939 default:
1940 /* did we reclaim enough */
1941 if (!zone_watermark_ok(zone, order, mark,
1942 classzone_idx, alloc_flags))
1943 goto this_zone_full;
1944 }
1945 }
1946
1947 try_this_zone:
1948 page = buffered_rmqueue(preferred_zone, zone, order,
1949 gfp_mask, migratetype);
1950 if (page)
1951 break;
1952 this_zone_full:
1953 if (NUMA_BUILD)
1954 zlc_mark_zone_full(zonelist, z);
1955 }
1956
1957 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1958 /* Disable zlc cache for second zonelist scan */
1959 zlc_active = 0;
1960 goto zonelist_scan;
1961 }
1962
1963 if (page)
1964 /*
1965 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1966 * necessary to allocate the page. The expectation is
1967 * that the caller is taking steps that will free more
1968 * memory. The caller should avoid the page being used
1969 * for !PFMEMALLOC purposes.
1970 */
1971 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1972
1973 return page;
1974 }
1975
1976 /*
1977 * Large machines with many possible nodes should not always dump per-node
1978 * meminfo in irq context.
1979 */
1980 static inline bool should_suppress_show_mem(void)
1981 {
1982 bool ret = false;
1983
1984 #if NODES_SHIFT > 8
1985 ret = in_interrupt();
1986 #endif
1987 return ret;
1988 }
1989
1990 static DEFINE_RATELIMIT_STATE(nopage_rs,
1991 DEFAULT_RATELIMIT_INTERVAL,
1992 DEFAULT_RATELIMIT_BURST);
1993
1994 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1995 {
1996 unsigned int filter = SHOW_MEM_FILTER_NODES;
1997
1998 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1999 debug_guardpage_minorder() > 0)
2000 return;
2001
2002 /*
2003 * This documents exceptions given to allocations in certain
2004 * contexts that are allowed to allocate outside current's set
2005 * of allowed nodes.
2006 */
2007 if (!(gfp_mask & __GFP_NOMEMALLOC))
2008 if (test_thread_flag(TIF_MEMDIE) ||
2009 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2010 filter &= ~SHOW_MEM_FILTER_NODES;
2011 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2012 filter &= ~SHOW_MEM_FILTER_NODES;
2013
2014 if (fmt) {
2015 struct va_format vaf;
2016 va_list args;
2017
2018 va_start(args, fmt);
2019
2020 vaf.fmt = fmt;
2021 vaf.va = &args;
2022
2023 pr_warn("%pV", &vaf);
2024
2025 va_end(args);
2026 }
2027
2028 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2029 current->comm, order, gfp_mask);
2030
2031 dump_stack();
2032 if (!should_suppress_show_mem())
2033 show_mem(filter);
2034 }
2035
2036 static inline int
2037 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2038 unsigned long did_some_progress,
2039 unsigned long pages_reclaimed)
2040 {
2041 /* Do not loop if specifically requested */
2042 if (gfp_mask & __GFP_NORETRY)
2043 return 0;
2044
2045 /* Always retry if specifically requested */
2046 if (gfp_mask & __GFP_NOFAIL)
2047 return 1;
2048
2049 /*
2050 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2051 * making forward progress without invoking OOM. Suspend also disables
2052 * storage devices so kswapd will not help. Bail if we are suspending.
2053 */
2054 if (!did_some_progress && pm_suspended_storage())
2055 return 0;
2056
2057 /*
2058 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2059 * means __GFP_NOFAIL, but that may not be true in other
2060 * implementations.
2061 */
2062 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2063 return 1;
2064
2065 /*
2066 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2067 * specified, then we retry until we no longer reclaim any pages
2068 * (above), or we've reclaimed an order of pages at least as
2069 * large as the allocation's order. In both cases, if the
2070 * allocation still fails, we stop retrying.
2071 */
2072 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2073 return 1;
2074
2075 return 0;
2076 }
2077
2078 static inline struct page *
2079 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2080 struct zonelist *zonelist, enum zone_type high_zoneidx,
2081 nodemask_t *nodemask, struct zone *preferred_zone,
2082 int migratetype)
2083 {
2084 struct page *page;
2085
2086 /* Acquire the OOM killer lock for the zones in zonelist */
2087 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2088 schedule_timeout_uninterruptible(1);
2089 return NULL;
2090 }
2091
2092 /*
2093 * Go through the zonelist yet one more time, keep very high watermark
2094 * here, this is only to catch a parallel oom killing, we must fail if
2095 * we're still under heavy pressure.
2096 */
2097 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2098 order, zonelist, high_zoneidx,
2099 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2100 preferred_zone, migratetype);
2101 if (page)
2102 goto out;
2103
2104 if (!(gfp_mask & __GFP_NOFAIL)) {
2105 /* The OOM killer will not help higher order allocs */
2106 if (order > PAGE_ALLOC_COSTLY_ORDER)
2107 goto out;
2108 /* The OOM killer does not needlessly kill tasks for lowmem */
2109 if (high_zoneidx < ZONE_NORMAL)
2110 goto out;
2111 /*
2112 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2113 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2114 * The caller should handle page allocation failure by itself if
2115 * it specifies __GFP_THISNODE.
2116 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2117 */
2118 if (gfp_mask & __GFP_THISNODE)
2119 goto out;
2120 }
2121 /* Exhausted what can be done so it's blamo time */
2122 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2123
2124 out:
2125 clear_zonelist_oom(zonelist, gfp_mask);
2126 return page;
2127 }
2128
2129 #ifdef CONFIG_COMPACTION
2130 /* Try memory compaction for high-order allocations before reclaim */
2131 static struct page *
2132 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2133 struct zonelist *zonelist, enum zone_type high_zoneidx,
2134 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2135 int migratetype, bool sync_migration,
2136 bool *contended_compaction, bool *deferred_compaction,
2137 unsigned long *did_some_progress)
2138 {
2139 struct page *page = NULL;
2140
2141 if (!order)
2142 return NULL;
2143
2144 if (compaction_deferred(preferred_zone, order)) {
2145 *deferred_compaction = true;
2146 return NULL;
2147 }
2148
2149 current->flags |= PF_MEMALLOC;
2150 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2151 nodemask, sync_migration,
2152 contended_compaction, &page);
2153 current->flags &= ~PF_MEMALLOC;
2154
2155 /* If compaction captured a page, prep and use it */
2156 if (page) {
2157 prep_new_page(page, order, gfp_mask);
2158 goto got_page;
2159 }
2160
2161 if (*did_some_progress != COMPACT_SKIPPED) {
2162 /* Page migration frees to the PCP lists but we want merging */
2163 drain_pages(get_cpu());
2164 put_cpu();
2165
2166 page = get_page_from_freelist(gfp_mask, nodemask,
2167 order, zonelist, high_zoneidx,
2168 alloc_flags & ~ALLOC_NO_WATERMARKS,
2169 preferred_zone, migratetype);
2170 if (page) {
2171 got_page:
2172 preferred_zone->compact_considered = 0;
2173 preferred_zone->compact_defer_shift = 0;
2174 if (order >= preferred_zone->compact_order_failed)
2175 preferred_zone->compact_order_failed = order + 1;
2176 count_vm_event(COMPACTSUCCESS);
2177 return page;
2178 }
2179
2180 /*
2181 * It's bad if compaction run occurs and fails.
2182 * The most likely reason is that pages exist,
2183 * but not enough to satisfy watermarks.
2184 */
2185 count_vm_event(COMPACTFAIL);
2186
2187 /*
2188 * As async compaction considers a subset of pageblocks, only
2189 * defer if the failure was a sync compaction failure.
2190 */
2191 if (sync_migration)
2192 defer_compaction(preferred_zone, order);
2193
2194 cond_resched();
2195 }
2196
2197 return NULL;
2198 }
2199 #else
2200 static inline struct page *
2201 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2202 struct zonelist *zonelist, enum zone_type high_zoneidx,
2203 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2204 int migratetype, bool sync_migration,
2205 bool *contended_compaction, bool *deferred_compaction,
2206 unsigned long *did_some_progress)
2207 {
2208 return NULL;
2209 }
2210 #endif /* CONFIG_COMPACTION */
2211
2212 /* Perform direct synchronous page reclaim */
2213 static int
2214 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2215 nodemask_t *nodemask)
2216 {
2217 struct reclaim_state reclaim_state;
2218 int progress;
2219
2220 cond_resched();
2221
2222 /* We now go into synchronous reclaim */
2223 cpuset_memory_pressure_bump();
2224 current->flags |= PF_MEMALLOC;
2225 lockdep_set_current_reclaim_state(gfp_mask);
2226 reclaim_state.reclaimed_slab = 0;
2227 current->reclaim_state = &reclaim_state;
2228
2229 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2230
2231 current->reclaim_state = NULL;
2232 lockdep_clear_current_reclaim_state();
2233 current->flags &= ~PF_MEMALLOC;
2234
2235 cond_resched();
2236
2237 return progress;
2238 }
2239
2240 /* The really slow allocator path where we enter direct reclaim */
2241 static inline struct page *
2242 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2243 struct zonelist *zonelist, enum zone_type high_zoneidx,
2244 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2245 int migratetype, unsigned long *did_some_progress)
2246 {
2247 struct page *page = NULL;
2248 bool drained = false;
2249
2250 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2251 nodemask);
2252 if (unlikely(!(*did_some_progress)))
2253 return NULL;
2254
2255 /* After successful reclaim, reconsider all zones for allocation */
2256 if (NUMA_BUILD)
2257 zlc_clear_zones_full(zonelist);
2258
2259 retry:
2260 page = get_page_from_freelist(gfp_mask, nodemask, order,
2261 zonelist, high_zoneidx,
2262 alloc_flags & ~ALLOC_NO_WATERMARKS,
2263 preferred_zone, migratetype);
2264
2265 /*
2266 * If an allocation failed after direct reclaim, it could be because
2267 * pages are pinned on the per-cpu lists. Drain them and try again
2268 */
2269 if (!page && !drained) {
2270 drain_all_pages();
2271 drained = true;
2272 goto retry;
2273 }
2274
2275 return page;
2276 }
2277
2278 /*
2279 * This is called in the allocator slow-path if the allocation request is of
2280 * sufficient urgency to ignore watermarks and take other desperate measures
2281 */
2282 static inline struct page *
2283 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2284 struct zonelist *zonelist, enum zone_type high_zoneidx,
2285 nodemask_t *nodemask, struct zone *preferred_zone,
2286 int migratetype)
2287 {
2288 struct page *page;
2289
2290 do {
2291 page = get_page_from_freelist(gfp_mask, nodemask, order,
2292 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2293 preferred_zone, migratetype);
2294
2295 if (!page && gfp_mask & __GFP_NOFAIL)
2296 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2297 } while (!page && (gfp_mask & __GFP_NOFAIL));
2298
2299 return page;
2300 }
2301
2302 static inline
2303 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2304 enum zone_type high_zoneidx,
2305 enum zone_type classzone_idx)
2306 {
2307 struct zoneref *z;
2308 struct zone *zone;
2309
2310 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2311 wakeup_kswapd(zone, order, classzone_idx);
2312 }
2313
2314 static inline int
2315 gfp_to_alloc_flags(gfp_t gfp_mask)
2316 {
2317 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2318 const gfp_t wait = gfp_mask & __GFP_WAIT;
2319
2320 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2321 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2322
2323 /*
2324 * The caller may dip into page reserves a bit more if the caller
2325 * cannot run direct reclaim, or if the caller has realtime scheduling
2326 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2327 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2328 */
2329 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2330
2331 if (!wait) {
2332 /*
2333 * Not worth trying to allocate harder for
2334 * __GFP_NOMEMALLOC even if it can't schedule.
2335 */
2336 if (!(gfp_mask & __GFP_NOMEMALLOC))
2337 alloc_flags |= ALLOC_HARDER;
2338 /*
2339 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2340 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2341 */
2342 alloc_flags &= ~ALLOC_CPUSET;
2343 } else if (unlikely(rt_task(current)) && !in_interrupt())
2344 alloc_flags |= ALLOC_HARDER;
2345
2346 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2347 if (gfp_mask & __GFP_MEMALLOC)
2348 alloc_flags |= ALLOC_NO_WATERMARKS;
2349 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2350 alloc_flags |= ALLOC_NO_WATERMARKS;
2351 else if (!in_interrupt() &&
2352 ((current->flags & PF_MEMALLOC) ||
2353 unlikely(test_thread_flag(TIF_MEMDIE))))
2354 alloc_flags |= ALLOC_NO_WATERMARKS;
2355 }
2356 #ifdef CONFIG_CMA
2357 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2358 alloc_flags |= ALLOC_CMA;
2359 #endif
2360 return alloc_flags;
2361 }
2362
2363 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2364 {
2365 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2366 }
2367
2368 static inline struct page *
2369 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2370 struct zonelist *zonelist, enum zone_type high_zoneidx,
2371 nodemask_t *nodemask, struct zone *preferred_zone,
2372 int migratetype)
2373 {
2374 const gfp_t wait = gfp_mask & __GFP_WAIT;
2375 struct page *page = NULL;
2376 int alloc_flags;
2377 unsigned long pages_reclaimed = 0;
2378 unsigned long did_some_progress;
2379 bool sync_migration = false;
2380 bool deferred_compaction = false;
2381 bool contended_compaction = false;
2382
2383 /*
2384 * In the slowpath, we sanity check order to avoid ever trying to
2385 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2386 * be using allocators in order of preference for an area that is
2387 * too large.
2388 */
2389 if (order >= MAX_ORDER) {
2390 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2391 return NULL;
2392 }
2393
2394 /*
2395 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2396 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2397 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2398 * using a larger set of nodes after it has established that the
2399 * allowed per node queues are empty and that nodes are
2400 * over allocated.
2401 */
2402 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2403 goto nopage;
2404
2405 restart:
2406 wake_all_kswapd(order, zonelist, high_zoneidx,
2407 zone_idx(preferred_zone));
2408
2409 /*
2410 * OK, we're below the kswapd watermark and have kicked background
2411 * reclaim. Now things get more complex, so set up alloc_flags according
2412 * to how we want to proceed.
2413 */
2414 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2415
2416 /*
2417 * Find the true preferred zone if the allocation is unconstrained by
2418 * cpusets.
2419 */
2420 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2421 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2422 &preferred_zone);
2423
2424 rebalance:
2425 /* This is the last chance, in general, before the goto nopage. */
2426 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2427 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2428 preferred_zone, migratetype);
2429 if (page)
2430 goto got_pg;
2431
2432 /* Allocate without watermarks if the context allows */
2433 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2434 /*
2435 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2436 * the allocation is high priority and these type of
2437 * allocations are system rather than user orientated
2438 */
2439 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2440
2441 page = __alloc_pages_high_priority(gfp_mask, order,
2442 zonelist, high_zoneidx, nodemask,
2443 preferred_zone, migratetype);
2444 if (page) {
2445 goto got_pg;
2446 }
2447 }
2448
2449 /* Atomic allocations - we can't balance anything */
2450 if (!wait)
2451 goto nopage;
2452
2453 /* Avoid recursion of direct reclaim */
2454 if (current->flags & PF_MEMALLOC)
2455 goto nopage;
2456
2457 /* Avoid allocations with no watermarks from looping endlessly */
2458 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2459 goto nopage;
2460
2461 /*
2462 * Try direct compaction. The first pass is asynchronous. Subsequent
2463 * attempts after direct reclaim are synchronous
2464 */
2465 page = __alloc_pages_direct_compact(gfp_mask, order,
2466 zonelist, high_zoneidx,
2467 nodemask,
2468 alloc_flags, preferred_zone,
2469 migratetype, sync_migration,
2470 &contended_compaction,
2471 &deferred_compaction,
2472 &did_some_progress);
2473 if (page)
2474 goto got_pg;
2475 sync_migration = true;
2476
2477 /*
2478 * If compaction is deferred for high-order allocations, it is because
2479 * sync compaction recently failed. In this is the case and the caller
2480 * requested a movable allocation that does not heavily disrupt the
2481 * system then fail the allocation instead of entering direct reclaim.
2482 */
2483 if ((deferred_compaction || contended_compaction) &&
2484 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
2485 goto nopage;
2486
2487 /* Try direct reclaim and then allocating */
2488 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2489 zonelist, high_zoneidx,
2490 nodemask,
2491 alloc_flags, preferred_zone,
2492 migratetype, &did_some_progress);
2493 if (page)
2494 goto got_pg;
2495
2496 /*
2497 * If we failed to make any progress reclaiming, then we are
2498 * running out of options and have to consider going OOM
2499 */
2500 if (!did_some_progress) {
2501 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2502 if (oom_killer_disabled)
2503 goto nopage;
2504 /* Coredumps can quickly deplete all memory reserves */
2505 if ((current->flags & PF_DUMPCORE) &&
2506 !(gfp_mask & __GFP_NOFAIL))
2507 goto nopage;
2508 page = __alloc_pages_may_oom(gfp_mask, order,
2509 zonelist, high_zoneidx,
2510 nodemask, preferred_zone,
2511 migratetype);
2512 if (page)
2513 goto got_pg;
2514
2515 if (!(gfp_mask & __GFP_NOFAIL)) {
2516 /*
2517 * The oom killer is not called for high-order
2518 * allocations that may fail, so if no progress
2519 * is being made, there are no other options and
2520 * retrying is unlikely to help.
2521 */
2522 if (order > PAGE_ALLOC_COSTLY_ORDER)
2523 goto nopage;
2524 /*
2525 * The oom killer is not called for lowmem
2526 * allocations to prevent needlessly killing
2527 * innocent tasks.
2528 */
2529 if (high_zoneidx < ZONE_NORMAL)
2530 goto nopage;
2531 }
2532
2533 goto restart;
2534 }
2535 }
2536
2537 /* Check if we should retry the allocation */
2538 pages_reclaimed += did_some_progress;
2539 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2540 pages_reclaimed)) {
2541 /* Wait for some write requests to complete then retry */
2542 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2543 goto rebalance;
2544 } else {
2545 /*
2546 * High-order allocations do not necessarily loop after
2547 * direct reclaim and reclaim/compaction depends on compaction
2548 * being called after reclaim so call directly if necessary
2549 */
2550 page = __alloc_pages_direct_compact(gfp_mask, order,
2551 zonelist, high_zoneidx,
2552 nodemask,
2553 alloc_flags, preferred_zone,
2554 migratetype, sync_migration,
2555 &contended_compaction,
2556 &deferred_compaction,
2557 &did_some_progress);
2558 if (page)
2559 goto got_pg;
2560 }
2561
2562 nopage:
2563 warn_alloc_failed(gfp_mask, order, NULL);
2564 return page;
2565 got_pg:
2566 if (kmemcheck_enabled)
2567 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2568
2569 return page;
2570 }
2571
2572 /*
2573 * This is the 'heart' of the zoned buddy allocator.
2574 */
2575 struct page *
2576 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2577 struct zonelist *zonelist, nodemask_t *nodemask)
2578 {
2579 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2580 struct zone *preferred_zone;
2581 struct page *page = NULL;
2582 int migratetype = allocflags_to_migratetype(gfp_mask);
2583 unsigned int cpuset_mems_cookie;
2584 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2585
2586 gfp_mask &= gfp_allowed_mask;
2587
2588 lockdep_trace_alloc(gfp_mask);
2589
2590 might_sleep_if(gfp_mask & __GFP_WAIT);
2591
2592 if (should_fail_alloc_page(gfp_mask, order))
2593 return NULL;
2594
2595 /*
2596 * Check the zones suitable for the gfp_mask contain at least one
2597 * valid zone. It's possible to have an empty zonelist as a result
2598 * of GFP_THISNODE and a memoryless node
2599 */
2600 if (unlikely(!zonelist->_zonerefs->zone))
2601 return NULL;
2602
2603 retry_cpuset:
2604 cpuset_mems_cookie = get_mems_allowed();
2605
2606 /* The preferred zone is used for statistics later */
2607 first_zones_zonelist(zonelist, high_zoneidx,
2608 nodemask ? : &cpuset_current_mems_allowed,
2609 &preferred_zone);
2610 if (!preferred_zone)
2611 goto out;
2612
2613 #ifdef CONFIG_CMA
2614 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2615 alloc_flags |= ALLOC_CMA;
2616 #endif
2617 /* First allocation attempt */
2618 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2619 zonelist, high_zoneidx, alloc_flags,
2620 preferred_zone, migratetype);
2621 if (unlikely(!page))
2622 page = __alloc_pages_slowpath(gfp_mask, order,
2623 zonelist, high_zoneidx, nodemask,
2624 preferred_zone, migratetype);
2625
2626 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2627
2628 out:
2629 /*
2630 * When updating a task's mems_allowed, it is possible to race with
2631 * parallel threads in such a way that an allocation can fail while
2632 * the mask is being updated. If a page allocation is about to fail,
2633 * check if the cpuset changed during allocation and if so, retry.
2634 */
2635 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2636 goto retry_cpuset;
2637
2638 return page;
2639 }
2640 EXPORT_SYMBOL(__alloc_pages_nodemask);
2641
2642 /*
2643 * Common helper functions.
2644 */
2645 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2646 {
2647 struct page *page;
2648
2649 /*
2650 * __get_free_pages() returns a 32-bit address, which cannot represent
2651 * a highmem page
2652 */
2653 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2654
2655 page = alloc_pages(gfp_mask, order);
2656 if (!page)
2657 return 0;
2658 return (unsigned long) page_address(page);
2659 }
2660 EXPORT_SYMBOL(__get_free_pages);
2661
2662 unsigned long get_zeroed_page(gfp_t gfp_mask)
2663 {
2664 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2665 }
2666 EXPORT_SYMBOL(get_zeroed_page);
2667
2668 void __free_pages(struct page *page, unsigned int order)
2669 {
2670 if (put_page_testzero(page)) {
2671 if (order == 0)
2672 free_hot_cold_page(page, 0);
2673 else
2674 __free_pages_ok(page, order);
2675 }
2676 }
2677
2678 EXPORT_SYMBOL(__free_pages);
2679
2680 void free_pages(unsigned long addr, unsigned int order)
2681 {
2682 if (addr != 0) {
2683 VM_BUG_ON(!virt_addr_valid((void *)addr));
2684 __free_pages(virt_to_page((void *)addr), order);
2685 }
2686 }
2687
2688 EXPORT_SYMBOL(free_pages);
2689
2690 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2691 {
2692 if (addr) {
2693 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2694 unsigned long used = addr + PAGE_ALIGN(size);
2695
2696 split_page(virt_to_page((void *)addr), order);
2697 while (used < alloc_end) {
2698 free_page(used);
2699 used += PAGE_SIZE;
2700 }
2701 }
2702 return (void *)addr;
2703 }
2704
2705 /**
2706 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2707 * @size: the number of bytes to allocate
2708 * @gfp_mask: GFP flags for the allocation
2709 *
2710 * This function is similar to alloc_pages(), except that it allocates the
2711 * minimum number of pages to satisfy the request. alloc_pages() can only
2712 * allocate memory in power-of-two pages.
2713 *
2714 * This function is also limited by MAX_ORDER.
2715 *
2716 * Memory allocated by this function must be released by free_pages_exact().
2717 */
2718 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2719 {
2720 unsigned int order = get_order(size);
2721 unsigned long addr;
2722
2723 addr = __get_free_pages(gfp_mask, order);
2724 return make_alloc_exact(addr, order, size);
2725 }
2726 EXPORT_SYMBOL(alloc_pages_exact);
2727
2728 /**
2729 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2730 * pages on a node.
2731 * @nid: the preferred node ID where memory should be allocated
2732 * @size: the number of bytes to allocate
2733 * @gfp_mask: GFP flags for the allocation
2734 *
2735 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2736 * back.
2737 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2738 * but is not exact.
2739 */
2740 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2741 {
2742 unsigned order = get_order(size);
2743 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2744 if (!p)
2745 return NULL;
2746 return make_alloc_exact((unsigned long)page_address(p), order, size);
2747 }
2748 EXPORT_SYMBOL(alloc_pages_exact_nid);
2749
2750 /**
2751 * free_pages_exact - release memory allocated via alloc_pages_exact()
2752 * @virt: the value returned by alloc_pages_exact.
2753 * @size: size of allocation, same value as passed to alloc_pages_exact().
2754 *
2755 * Release the memory allocated by a previous call to alloc_pages_exact.
2756 */
2757 void free_pages_exact(void *virt, size_t size)
2758 {
2759 unsigned long addr = (unsigned long)virt;
2760 unsigned long end = addr + PAGE_ALIGN(size);
2761
2762 while (addr < end) {
2763 free_page(addr);
2764 addr += PAGE_SIZE;
2765 }
2766 }
2767 EXPORT_SYMBOL(free_pages_exact);
2768
2769 static unsigned int nr_free_zone_pages(int offset)
2770 {
2771 struct zoneref *z;
2772 struct zone *zone;
2773
2774 /* Just pick one node, since fallback list is circular */
2775 unsigned int sum = 0;
2776
2777 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2778
2779 for_each_zone_zonelist(zone, z, zonelist, offset) {
2780 unsigned long size = zone->present_pages;
2781 unsigned long high = high_wmark_pages(zone);
2782 if (size > high)
2783 sum += size - high;
2784 }
2785
2786 return sum;
2787 }
2788
2789 /*
2790 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2791 */
2792 unsigned int nr_free_buffer_pages(void)
2793 {
2794 return nr_free_zone_pages(gfp_zone(GFP_USER));
2795 }
2796 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2797
2798 /*
2799 * Amount of free RAM allocatable within all zones
2800 */
2801 unsigned int nr_free_pagecache_pages(void)
2802 {
2803 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2804 }
2805
2806 static inline void show_node(struct zone *zone)
2807 {
2808 if (NUMA_BUILD)
2809 printk("Node %d ", zone_to_nid(zone));
2810 }
2811
2812 void si_meminfo(struct sysinfo *val)
2813 {
2814 val->totalram = totalram_pages;
2815 val->sharedram = 0;
2816 val->freeram = global_page_state(NR_FREE_PAGES);
2817 val->bufferram = nr_blockdev_pages();
2818 val->totalhigh = totalhigh_pages;
2819 val->freehigh = nr_free_highpages();
2820 val->mem_unit = PAGE_SIZE;
2821 }
2822
2823 EXPORT_SYMBOL(si_meminfo);
2824
2825 #ifdef CONFIG_NUMA
2826 void si_meminfo_node(struct sysinfo *val, int nid)
2827 {
2828 pg_data_t *pgdat = NODE_DATA(nid);
2829
2830 val->totalram = pgdat->node_present_pages;
2831 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2832 #ifdef CONFIG_HIGHMEM
2833 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2834 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2835 NR_FREE_PAGES);
2836 #else
2837 val->totalhigh = 0;
2838 val->freehigh = 0;
2839 #endif
2840 val->mem_unit = PAGE_SIZE;
2841 }
2842 #endif
2843
2844 /*
2845 * Determine whether the node should be displayed or not, depending on whether
2846 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2847 */
2848 bool skip_free_areas_node(unsigned int flags, int nid)
2849 {
2850 bool ret = false;
2851 unsigned int cpuset_mems_cookie;
2852
2853 if (!(flags & SHOW_MEM_FILTER_NODES))
2854 goto out;
2855
2856 do {
2857 cpuset_mems_cookie = get_mems_allowed();
2858 ret = !node_isset(nid, cpuset_current_mems_allowed);
2859 } while (!put_mems_allowed(cpuset_mems_cookie));
2860 out:
2861 return ret;
2862 }
2863
2864 #define K(x) ((x) << (PAGE_SHIFT-10))
2865
2866 /*
2867 * Show free area list (used inside shift_scroll-lock stuff)
2868 * We also calculate the percentage fragmentation. We do this by counting the
2869 * memory on each free list with the exception of the first item on the list.
2870 * Suppresses nodes that are not allowed by current's cpuset if
2871 * SHOW_MEM_FILTER_NODES is passed.
2872 */
2873 void show_free_areas(unsigned int filter)
2874 {
2875 int cpu;
2876 struct zone *zone;
2877
2878 for_each_populated_zone(zone) {
2879 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2880 continue;
2881 show_node(zone);
2882 printk("%s per-cpu:\n", zone->name);
2883
2884 for_each_online_cpu(cpu) {
2885 struct per_cpu_pageset *pageset;
2886
2887 pageset = per_cpu_ptr(zone->pageset, cpu);
2888
2889 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2890 cpu, pageset->pcp.high,
2891 pageset->pcp.batch, pageset->pcp.count);
2892 }
2893 }
2894
2895 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2896 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2897 " unevictable:%lu"
2898 " dirty:%lu writeback:%lu unstable:%lu\n"
2899 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2900 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2901 " free_cma:%lu\n",
2902 global_page_state(NR_ACTIVE_ANON),
2903 global_page_state(NR_INACTIVE_ANON),
2904 global_page_state(NR_ISOLATED_ANON),
2905 global_page_state(NR_ACTIVE_FILE),
2906 global_page_state(NR_INACTIVE_FILE),
2907 global_page_state(NR_ISOLATED_FILE),
2908 global_page_state(NR_UNEVICTABLE),
2909 global_page_state(NR_FILE_DIRTY),
2910 global_page_state(NR_WRITEBACK),
2911 global_page_state(NR_UNSTABLE_NFS),
2912 global_page_state(NR_FREE_PAGES),
2913 global_page_state(NR_SLAB_RECLAIMABLE),
2914 global_page_state(NR_SLAB_UNRECLAIMABLE),
2915 global_page_state(NR_FILE_MAPPED),
2916 global_page_state(NR_SHMEM),
2917 global_page_state(NR_PAGETABLE),
2918 global_page_state(NR_BOUNCE),
2919 global_page_state(NR_FREE_CMA_PAGES));
2920
2921 for_each_populated_zone(zone) {
2922 int i;
2923
2924 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2925 continue;
2926 show_node(zone);
2927 printk("%s"
2928 " free:%lukB"
2929 " min:%lukB"
2930 " low:%lukB"
2931 " high:%lukB"
2932 " active_anon:%lukB"
2933 " inactive_anon:%lukB"
2934 " active_file:%lukB"
2935 " inactive_file:%lukB"
2936 " unevictable:%lukB"
2937 " isolated(anon):%lukB"
2938 " isolated(file):%lukB"
2939 " present:%lukB"
2940 " mlocked:%lukB"
2941 " dirty:%lukB"
2942 " writeback:%lukB"
2943 " mapped:%lukB"
2944 " shmem:%lukB"
2945 " slab_reclaimable:%lukB"
2946 " slab_unreclaimable:%lukB"
2947 " kernel_stack:%lukB"
2948 " pagetables:%lukB"
2949 " unstable:%lukB"
2950 " bounce:%lukB"
2951 " free_cma:%lukB"
2952 " writeback_tmp:%lukB"
2953 " pages_scanned:%lu"
2954 " all_unreclaimable? %s"
2955 "\n",
2956 zone->name,
2957 K(zone_page_state(zone, NR_FREE_PAGES)),
2958 K(min_wmark_pages(zone)),
2959 K(low_wmark_pages(zone)),
2960 K(high_wmark_pages(zone)),
2961 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2962 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2963 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2964 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2965 K(zone_page_state(zone, NR_UNEVICTABLE)),
2966 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2967 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2968 K(zone->present_pages),
2969 K(zone_page_state(zone, NR_MLOCK)),
2970 K(zone_page_state(zone, NR_FILE_DIRTY)),
2971 K(zone_page_state(zone, NR_WRITEBACK)),
2972 K(zone_page_state(zone, NR_FILE_MAPPED)),
2973 K(zone_page_state(zone, NR_SHMEM)),
2974 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2975 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2976 zone_page_state(zone, NR_KERNEL_STACK) *
2977 THREAD_SIZE / 1024,
2978 K(zone_page_state(zone, NR_PAGETABLE)),
2979 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2980 K(zone_page_state(zone, NR_BOUNCE)),
2981 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
2982 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2983 zone->pages_scanned,
2984 (zone->all_unreclaimable ? "yes" : "no")
2985 );
2986 printk("lowmem_reserve[]:");
2987 for (i = 0; i < MAX_NR_ZONES; i++)
2988 printk(" %lu", zone->lowmem_reserve[i]);
2989 printk("\n");
2990 }
2991
2992 for_each_populated_zone(zone) {
2993 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2994
2995 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2996 continue;
2997 show_node(zone);
2998 printk("%s: ", zone->name);
2999
3000 spin_lock_irqsave(&zone->lock, flags);
3001 for (order = 0; order < MAX_ORDER; order++) {
3002 nr[order] = zone->free_area[order].nr_free;
3003 total += nr[order] << order;
3004 }
3005 spin_unlock_irqrestore(&zone->lock, flags);
3006 for (order = 0; order < MAX_ORDER; order++)
3007 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3008 printk("= %lukB\n", K(total));
3009 }
3010
3011 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3012
3013 show_swap_cache_info();
3014 }
3015
3016 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3017 {
3018 zoneref->zone = zone;
3019 zoneref->zone_idx = zone_idx(zone);
3020 }
3021
3022 /*
3023 * Builds allocation fallback zone lists.
3024 *
3025 * Add all populated zones of a node to the zonelist.
3026 */
3027 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3028 int nr_zones, enum zone_type zone_type)
3029 {
3030 struct zone *zone;
3031
3032 BUG_ON(zone_type >= MAX_NR_ZONES);
3033 zone_type++;
3034
3035 do {
3036 zone_type--;
3037 zone = pgdat->node_zones + zone_type;
3038 if (populated_zone(zone)) {
3039 zoneref_set_zone(zone,
3040 &zonelist->_zonerefs[nr_zones++]);
3041 check_highest_zone(zone_type);
3042 }
3043
3044 } while (zone_type);
3045 return nr_zones;
3046 }
3047
3048
3049 /*
3050 * zonelist_order:
3051 * 0 = automatic detection of better ordering.
3052 * 1 = order by ([node] distance, -zonetype)
3053 * 2 = order by (-zonetype, [node] distance)
3054 *
3055 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3056 * the same zonelist. So only NUMA can configure this param.
3057 */
3058 #define ZONELIST_ORDER_DEFAULT 0
3059 #define ZONELIST_ORDER_NODE 1
3060 #define ZONELIST_ORDER_ZONE 2
3061
3062 /* zonelist order in the kernel.
3063 * set_zonelist_order() will set this to NODE or ZONE.
3064 */
3065 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3066 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3067
3068
3069 #ifdef CONFIG_NUMA
3070 /* The value user specified ....changed by config */
3071 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3072 /* string for sysctl */
3073 #define NUMA_ZONELIST_ORDER_LEN 16
3074 char numa_zonelist_order[16] = "default";
3075
3076 /*
3077 * interface for configure zonelist ordering.
3078 * command line option "numa_zonelist_order"
3079 * = "[dD]efault - default, automatic configuration.
3080 * = "[nN]ode - order by node locality, then by zone within node
3081 * = "[zZ]one - order by zone, then by locality within zone
3082 */
3083
3084 static int __parse_numa_zonelist_order(char *s)
3085 {
3086 if (*s == 'd' || *s == 'D') {
3087 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3088 } else if (*s == 'n' || *s == 'N') {
3089 user_zonelist_order = ZONELIST_ORDER_NODE;
3090 } else if (*s == 'z' || *s == 'Z') {
3091 user_zonelist_order = ZONELIST_ORDER_ZONE;
3092 } else {
3093 printk(KERN_WARNING
3094 "Ignoring invalid numa_zonelist_order value: "
3095 "%s\n", s);
3096 return -EINVAL;
3097 }
3098 return 0;
3099 }
3100
3101 static __init int setup_numa_zonelist_order(char *s)
3102 {
3103 int ret;
3104
3105 if (!s)
3106 return 0;
3107
3108 ret = __parse_numa_zonelist_order(s);
3109 if (ret == 0)
3110 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3111
3112 return ret;
3113 }
3114 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3115
3116 /*
3117 * sysctl handler for numa_zonelist_order
3118 */
3119 int numa_zonelist_order_handler(ctl_table *table, int write,
3120 void __user *buffer, size_t *length,
3121 loff_t *ppos)
3122 {
3123 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3124 int ret;
3125 static DEFINE_MUTEX(zl_order_mutex);
3126
3127 mutex_lock(&zl_order_mutex);
3128 if (write)
3129 strcpy(saved_string, (char*)table->data);
3130 ret = proc_dostring(table, write, buffer, length, ppos);
3131 if (ret)
3132 goto out;
3133 if (write) {
3134 int oldval = user_zonelist_order;
3135 if (__parse_numa_zonelist_order((char*)table->data)) {
3136 /*
3137 * bogus value. restore saved string
3138 */
3139 strncpy((char*)table->data, saved_string,
3140 NUMA_ZONELIST_ORDER_LEN);
3141 user_zonelist_order = oldval;
3142 } else if (oldval != user_zonelist_order) {
3143 mutex_lock(&zonelists_mutex);
3144 build_all_zonelists(NULL, NULL);
3145 mutex_unlock(&zonelists_mutex);
3146 }
3147 }
3148 out:
3149 mutex_unlock(&zl_order_mutex);
3150 return ret;
3151 }
3152
3153
3154 #define MAX_NODE_LOAD (nr_online_nodes)
3155 static int node_load[MAX_NUMNODES];
3156
3157 /**
3158 * find_next_best_node - find the next node that should appear in a given node's fallback list
3159 * @node: node whose fallback list we're appending
3160 * @used_node_mask: nodemask_t of already used nodes
3161 *
3162 * We use a number of factors to determine which is the next node that should
3163 * appear on a given node's fallback list. The node should not have appeared
3164 * already in @node's fallback list, and it should be the next closest node
3165 * according to the distance array (which contains arbitrary distance values
3166 * from each node to each node in the system), and should also prefer nodes
3167 * with no CPUs, since presumably they'll have very little allocation pressure
3168 * on them otherwise.
3169 * It returns -1 if no node is found.
3170 */
3171 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3172 {
3173 int n, val;
3174 int min_val = INT_MAX;
3175 int best_node = -1;
3176 const struct cpumask *tmp = cpumask_of_node(0);
3177
3178 /* Use the local node if we haven't already */
3179 if (!node_isset(node, *used_node_mask)) {
3180 node_set(node, *used_node_mask);
3181 return node;
3182 }
3183
3184 for_each_node_state(n, N_HIGH_MEMORY) {
3185
3186 /* Don't want a node to appear more than once */
3187 if (node_isset(n, *used_node_mask))
3188 continue;
3189
3190 /* Use the distance array to find the distance */
3191 val = node_distance(node, n);
3192
3193 /* Penalize nodes under us ("prefer the next node") */
3194 val += (n < node);
3195
3196 /* Give preference to headless and unused nodes */
3197 tmp = cpumask_of_node(n);
3198 if (!cpumask_empty(tmp))
3199 val += PENALTY_FOR_NODE_WITH_CPUS;
3200
3201 /* Slight preference for less loaded node */
3202 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3203 val += node_load[n];
3204
3205 if (val < min_val) {
3206 min_val = val;
3207 best_node = n;
3208 }
3209 }
3210
3211 if (best_node >= 0)
3212 node_set(best_node, *used_node_mask);
3213
3214 return best_node;
3215 }
3216
3217
3218 /*
3219 * Build zonelists ordered by node and zones within node.
3220 * This results in maximum locality--normal zone overflows into local
3221 * DMA zone, if any--but risks exhausting DMA zone.
3222 */
3223 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3224 {
3225 int j;
3226 struct zonelist *zonelist;
3227
3228 zonelist = &pgdat->node_zonelists[0];
3229 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3230 ;
3231 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3232 MAX_NR_ZONES - 1);
3233 zonelist->_zonerefs[j].zone = NULL;
3234 zonelist->_zonerefs[j].zone_idx = 0;
3235 }
3236
3237 /*
3238 * Build gfp_thisnode zonelists
3239 */
3240 static void build_thisnode_zonelists(pg_data_t *pgdat)
3241 {
3242 int j;
3243 struct zonelist *zonelist;
3244
3245 zonelist = &pgdat->node_zonelists[1];
3246 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3247 zonelist->_zonerefs[j].zone = NULL;
3248 zonelist->_zonerefs[j].zone_idx = 0;
3249 }
3250
3251 /*
3252 * Build zonelists ordered by zone and nodes within zones.
3253 * This results in conserving DMA zone[s] until all Normal memory is
3254 * exhausted, but results in overflowing to remote node while memory
3255 * may still exist in local DMA zone.
3256 */
3257 static int node_order[MAX_NUMNODES];
3258
3259 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3260 {
3261 int pos, j, node;
3262 int zone_type; /* needs to be signed */
3263 struct zone *z;
3264 struct zonelist *zonelist;
3265
3266 zonelist = &pgdat->node_zonelists[0];
3267 pos = 0;
3268 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3269 for (j = 0; j < nr_nodes; j++) {
3270 node = node_order[j];
3271 z = &NODE_DATA(node)->node_zones[zone_type];
3272 if (populated_zone(z)) {
3273 zoneref_set_zone(z,
3274 &zonelist->_zonerefs[pos++]);
3275 check_highest_zone(zone_type);
3276 }
3277 }
3278 }
3279 zonelist->_zonerefs[pos].zone = NULL;
3280 zonelist->_zonerefs[pos].zone_idx = 0;
3281 }
3282
3283 static int default_zonelist_order(void)
3284 {
3285 int nid, zone_type;
3286 unsigned long low_kmem_size,total_size;
3287 struct zone *z;
3288 int average_size;
3289 /*
3290 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3291 * If they are really small and used heavily, the system can fall
3292 * into OOM very easily.
3293 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3294 */
3295 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3296 low_kmem_size = 0;
3297 total_size = 0;
3298 for_each_online_node(nid) {
3299 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3300 z = &NODE_DATA(nid)->node_zones[zone_type];
3301 if (populated_zone(z)) {
3302 if (zone_type < ZONE_NORMAL)
3303 low_kmem_size += z->present_pages;
3304 total_size += z->present_pages;
3305 } else if (zone_type == ZONE_NORMAL) {
3306 /*
3307 * If any node has only lowmem, then node order
3308 * is preferred to allow kernel allocations
3309 * locally; otherwise, they can easily infringe
3310 * on other nodes when there is an abundance of
3311 * lowmem available to allocate from.
3312 */
3313 return ZONELIST_ORDER_NODE;
3314 }
3315 }
3316 }
3317 if (!low_kmem_size || /* there are no DMA area. */
3318 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3319 return ZONELIST_ORDER_NODE;
3320 /*
3321 * look into each node's config.
3322 * If there is a node whose DMA/DMA32 memory is very big area on
3323 * local memory, NODE_ORDER may be suitable.
3324 */
3325 average_size = total_size /
3326 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3327 for_each_online_node(nid) {
3328 low_kmem_size = 0;
3329 total_size = 0;
3330 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3331 z = &NODE_DATA(nid)->node_zones[zone_type];
3332 if (populated_zone(z)) {
3333 if (zone_type < ZONE_NORMAL)
3334 low_kmem_size += z->present_pages;
3335 total_size += z->present_pages;
3336 }
3337 }
3338 if (low_kmem_size &&
3339 total_size > average_size && /* ignore small node */
3340 low_kmem_size > total_size * 70/100)
3341 return ZONELIST_ORDER_NODE;
3342 }
3343 return ZONELIST_ORDER_ZONE;
3344 }
3345
3346 static void set_zonelist_order(void)
3347 {
3348 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3349 current_zonelist_order = default_zonelist_order();
3350 else
3351 current_zonelist_order = user_zonelist_order;
3352 }
3353
3354 static void build_zonelists(pg_data_t *pgdat)
3355 {
3356 int j, node, load;
3357 enum zone_type i;
3358 nodemask_t used_mask;
3359 int local_node, prev_node;
3360 struct zonelist *zonelist;
3361 int order = current_zonelist_order;
3362
3363 /* initialize zonelists */
3364 for (i = 0; i < MAX_ZONELISTS; i++) {
3365 zonelist = pgdat->node_zonelists + i;
3366 zonelist->_zonerefs[0].zone = NULL;
3367 zonelist->_zonerefs[0].zone_idx = 0;
3368 }
3369
3370 /* NUMA-aware ordering of nodes */
3371 local_node = pgdat->node_id;
3372 load = nr_online_nodes;
3373 prev_node = local_node;
3374 nodes_clear(used_mask);
3375
3376 memset(node_order, 0, sizeof(node_order));
3377 j = 0;
3378
3379 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3380 int distance = node_distance(local_node, node);
3381
3382 /*
3383 * If another node is sufficiently far away then it is better
3384 * to reclaim pages in a zone before going off node.
3385 */
3386 if (distance > RECLAIM_DISTANCE)
3387 zone_reclaim_mode = 1;
3388
3389 /*
3390 * We don't want to pressure a particular node.
3391 * So adding penalty to the first node in same
3392 * distance group to make it round-robin.
3393 */
3394 if (distance != node_distance(local_node, prev_node))
3395 node_load[node] = load;
3396
3397 prev_node = node;
3398 load--;
3399 if (order == ZONELIST_ORDER_NODE)
3400 build_zonelists_in_node_order(pgdat, node);
3401 else
3402 node_order[j++] = node; /* remember order */
3403 }
3404
3405 if (order == ZONELIST_ORDER_ZONE) {
3406 /* calculate node order -- i.e., DMA last! */
3407 build_zonelists_in_zone_order(pgdat, j);
3408 }
3409
3410 build_thisnode_zonelists(pgdat);
3411 }
3412
3413 /* Construct the zonelist performance cache - see further mmzone.h */
3414 static void build_zonelist_cache(pg_data_t *pgdat)
3415 {
3416 struct zonelist *zonelist;
3417 struct zonelist_cache *zlc;
3418 struct zoneref *z;
3419
3420 zonelist = &pgdat->node_zonelists[0];
3421 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3422 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3423 for (z = zonelist->_zonerefs; z->zone; z++)
3424 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3425 }
3426
3427 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3428 /*
3429 * Return node id of node used for "local" allocations.
3430 * I.e., first node id of first zone in arg node's generic zonelist.
3431 * Used for initializing percpu 'numa_mem', which is used primarily
3432 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3433 */
3434 int local_memory_node(int node)
3435 {
3436 struct zone *zone;
3437
3438 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3439 gfp_zone(GFP_KERNEL),
3440 NULL,
3441 &zone);
3442 return zone->node;
3443 }
3444 #endif
3445
3446 #else /* CONFIG_NUMA */
3447
3448 static void set_zonelist_order(void)
3449 {
3450 current_zonelist_order = ZONELIST_ORDER_ZONE;
3451 }
3452
3453 static void build_zonelists(pg_data_t *pgdat)
3454 {
3455 int node, local_node;
3456 enum zone_type j;
3457 struct zonelist *zonelist;
3458
3459 local_node = pgdat->node_id;
3460
3461 zonelist = &pgdat->node_zonelists[0];
3462 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3463
3464 /*
3465 * Now we build the zonelist so that it contains the zones
3466 * of all the other nodes.
3467 * We don't want to pressure a particular node, so when
3468 * building the zones for node N, we make sure that the
3469 * zones coming right after the local ones are those from
3470 * node N+1 (modulo N)
3471 */
3472 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3473 if (!node_online(node))
3474 continue;
3475 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3476 MAX_NR_ZONES - 1);
3477 }
3478 for (node = 0; node < local_node; node++) {
3479 if (!node_online(node))
3480 continue;
3481 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3482 MAX_NR_ZONES - 1);
3483 }
3484
3485 zonelist->_zonerefs[j].zone = NULL;
3486 zonelist->_zonerefs[j].zone_idx = 0;
3487 }
3488
3489 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3490 static void build_zonelist_cache(pg_data_t *pgdat)
3491 {
3492 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3493 }
3494
3495 #endif /* CONFIG_NUMA */
3496
3497 /*
3498 * Boot pageset table. One per cpu which is going to be used for all
3499 * zones and all nodes. The parameters will be set in such a way
3500 * that an item put on a list will immediately be handed over to
3501 * the buddy list. This is safe since pageset manipulation is done
3502 * with interrupts disabled.
3503 *
3504 * The boot_pagesets must be kept even after bootup is complete for
3505 * unused processors and/or zones. They do play a role for bootstrapping
3506 * hotplugged processors.
3507 *
3508 * zoneinfo_show() and maybe other functions do
3509 * not check if the processor is online before following the pageset pointer.
3510 * Other parts of the kernel may not check if the zone is available.
3511 */
3512 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3513 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3514 static void setup_zone_pageset(struct zone *zone);
3515
3516 /*
3517 * Global mutex to protect against size modification of zonelists
3518 * as well as to serialize pageset setup for the new populated zone.
3519 */
3520 DEFINE_MUTEX(zonelists_mutex);
3521
3522 /* return values int ....just for stop_machine() */
3523 static int __build_all_zonelists(void *data)
3524 {
3525 int nid;
3526 int cpu;
3527 pg_data_t *self = data;
3528
3529 #ifdef CONFIG_NUMA
3530 memset(node_load, 0, sizeof(node_load));
3531 #endif
3532
3533 if (self && !node_online(self->node_id)) {
3534 build_zonelists(self);
3535 build_zonelist_cache(self);
3536 }
3537
3538 for_each_online_node(nid) {
3539 pg_data_t *pgdat = NODE_DATA(nid);
3540
3541 build_zonelists(pgdat);
3542 build_zonelist_cache(pgdat);
3543 }
3544
3545 /*
3546 * Initialize the boot_pagesets that are going to be used
3547 * for bootstrapping processors. The real pagesets for
3548 * each zone will be allocated later when the per cpu
3549 * allocator is available.
3550 *
3551 * boot_pagesets are used also for bootstrapping offline
3552 * cpus if the system is already booted because the pagesets
3553 * are needed to initialize allocators on a specific cpu too.
3554 * F.e. the percpu allocator needs the page allocator which
3555 * needs the percpu allocator in order to allocate its pagesets
3556 * (a chicken-egg dilemma).
3557 */
3558 for_each_possible_cpu(cpu) {
3559 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3560
3561 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3562 /*
3563 * We now know the "local memory node" for each node--
3564 * i.e., the node of the first zone in the generic zonelist.
3565 * Set up numa_mem percpu variable for on-line cpus. During
3566 * boot, only the boot cpu should be on-line; we'll init the
3567 * secondary cpus' numa_mem as they come on-line. During
3568 * node/memory hotplug, we'll fixup all on-line cpus.
3569 */
3570 if (cpu_online(cpu))
3571 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3572 #endif
3573 }
3574
3575 return 0;
3576 }
3577
3578 /*
3579 * Called with zonelists_mutex held always
3580 * unless system_state == SYSTEM_BOOTING.
3581 */
3582 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3583 {
3584 set_zonelist_order();
3585
3586 if (system_state == SYSTEM_BOOTING) {
3587 __build_all_zonelists(NULL);
3588 mminit_verify_zonelist();
3589 cpuset_init_current_mems_allowed();
3590 } else {
3591 /* we have to stop all cpus to guarantee there is no user
3592 of zonelist */
3593 #ifdef CONFIG_MEMORY_HOTPLUG
3594 if (zone)
3595 setup_zone_pageset(zone);
3596 #endif
3597 stop_machine(__build_all_zonelists, pgdat, NULL);
3598 /* cpuset refresh routine should be here */
3599 }
3600 vm_total_pages = nr_free_pagecache_pages();
3601 /*
3602 * Disable grouping by mobility if the number of pages in the
3603 * system is too low to allow the mechanism to work. It would be
3604 * more accurate, but expensive to check per-zone. This check is
3605 * made on memory-hotadd so a system can start with mobility
3606 * disabled and enable it later
3607 */
3608 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3609 page_group_by_mobility_disabled = 1;
3610 else
3611 page_group_by_mobility_disabled = 0;
3612
3613 printk("Built %i zonelists in %s order, mobility grouping %s. "
3614 "Total pages: %ld\n",
3615 nr_online_nodes,
3616 zonelist_order_name[current_zonelist_order],
3617 page_group_by_mobility_disabled ? "off" : "on",
3618 vm_total_pages);
3619 #ifdef CONFIG_NUMA
3620 printk("Policy zone: %s\n", zone_names[policy_zone]);
3621 #endif
3622 }
3623
3624 /*
3625 * Helper functions to size the waitqueue hash table.
3626 * Essentially these want to choose hash table sizes sufficiently
3627 * large so that collisions trying to wait on pages are rare.
3628 * But in fact, the number of active page waitqueues on typical
3629 * systems is ridiculously low, less than 200. So this is even
3630 * conservative, even though it seems large.
3631 *
3632 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3633 * waitqueues, i.e. the size of the waitq table given the number of pages.
3634 */
3635 #define PAGES_PER_WAITQUEUE 256
3636
3637 #ifndef CONFIG_MEMORY_HOTPLUG
3638 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3639 {
3640 unsigned long size = 1;
3641
3642 pages /= PAGES_PER_WAITQUEUE;
3643
3644 while (size < pages)
3645 size <<= 1;
3646
3647 /*
3648 * Once we have dozens or even hundreds of threads sleeping
3649 * on IO we've got bigger problems than wait queue collision.
3650 * Limit the size of the wait table to a reasonable size.
3651 */
3652 size = min(size, 4096UL);
3653
3654 return max(size, 4UL);
3655 }
3656 #else
3657 /*
3658 * A zone's size might be changed by hot-add, so it is not possible to determine
3659 * a suitable size for its wait_table. So we use the maximum size now.
3660 *
3661 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3662 *
3663 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3664 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3665 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3666 *
3667 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3668 * or more by the traditional way. (See above). It equals:
3669 *
3670 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3671 * ia64(16K page size) : = ( 8G + 4M)byte.
3672 * powerpc (64K page size) : = (32G +16M)byte.
3673 */
3674 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3675 {
3676 return 4096UL;
3677 }
3678 #endif
3679
3680 /*
3681 * This is an integer logarithm so that shifts can be used later
3682 * to extract the more random high bits from the multiplicative
3683 * hash function before the remainder is taken.
3684 */
3685 static inline unsigned long wait_table_bits(unsigned long size)
3686 {
3687 return ffz(~size);
3688 }
3689
3690 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3691
3692 /*
3693 * Check if a pageblock contains reserved pages
3694 */
3695 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3696 {
3697 unsigned long pfn;
3698
3699 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3700 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3701 return 1;
3702 }
3703 return 0;
3704 }
3705
3706 /*
3707 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3708 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3709 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3710 * higher will lead to a bigger reserve which will get freed as contiguous
3711 * blocks as reclaim kicks in
3712 */
3713 static void setup_zone_migrate_reserve(struct zone *zone)
3714 {
3715 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3716 struct page *page;
3717 unsigned long block_migratetype;
3718 int reserve;
3719
3720 /*
3721 * Get the start pfn, end pfn and the number of blocks to reserve
3722 * We have to be careful to be aligned to pageblock_nr_pages to
3723 * make sure that we always check pfn_valid for the first page in
3724 * the block.
3725 */
3726 start_pfn = zone->zone_start_pfn;
3727 end_pfn = start_pfn + zone->spanned_pages;
3728 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3729 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3730 pageblock_order;
3731
3732 /*
3733 * Reserve blocks are generally in place to help high-order atomic
3734 * allocations that are short-lived. A min_free_kbytes value that
3735 * would result in more than 2 reserve blocks for atomic allocations
3736 * is assumed to be in place to help anti-fragmentation for the
3737 * future allocation of hugepages at runtime.
3738 */
3739 reserve = min(2, reserve);
3740
3741 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3742 if (!pfn_valid(pfn))
3743 continue;
3744 page = pfn_to_page(pfn);
3745
3746 /* Watch out for overlapping nodes */
3747 if (page_to_nid(page) != zone_to_nid(zone))
3748 continue;
3749
3750 block_migratetype = get_pageblock_migratetype(page);
3751
3752 /* Only test what is necessary when the reserves are not met */
3753 if (reserve > 0) {
3754 /*
3755 * Blocks with reserved pages will never free, skip
3756 * them.
3757 */
3758 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3759 if (pageblock_is_reserved(pfn, block_end_pfn))
3760 continue;
3761
3762 /* If this block is reserved, account for it */
3763 if (block_migratetype == MIGRATE_RESERVE) {
3764 reserve--;
3765 continue;
3766 }
3767
3768 /* Suitable for reserving if this block is movable */
3769 if (block_migratetype == MIGRATE_MOVABLE) {
3770 set_pageblock_migratetype(page,
3771 MIGRATE_RESERVE);
3772 move_freepages_block(zone, page,
3773 MIGRATE_RESERVE);
3774 reserve--;
3775 continue;
3776 }
3777 }
3778
3779 /*
3780 * If the reserve is met and this is a previous reserved block,
3781 * take it back
3782 */
3783 if (block_migratetype == MIGRATE_RESERVE) {
3784 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3785 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3786 }
3787 }
3788 }
3789
3790 /*
3791 * Initially all pages are reserved - free ones are freed
3792 * up by free_all_bootmem() once the early boot process is
3793 * done. Non-atomic initialization, single-pass.
3794 */
3795 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3796 unsigned long start_pfn, enum memmap_context context)
3797 {
3798 struct page *page;
3799 unsigned long end_pfn = start_pfn + size;
3800 unsigned long pfn;
3801 struct zone *z;
3802
3803 if (highest_memmap_pfn < end_pfn - 1)
3804 highest_memmap_pfn = end_pfn - 1;
3805
3806 z = &NODE_DATA(nid)->node_zones[zone];
3807 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3808 /*
3809 * There can be holes in boot-time mem_map[]s
3810 * handed to this function. They do not
3811 * exist on hotplugged memory.
3812 */
3813 if (context == MEMMAP_EARLY) {
3814 if (!early_pfn_valid(pfn))
3815 continue;
3816 if (!early_pfn_in_nid(pfn, nid))
3817 continue;
3818 }
3819 page = pfn_to_page(pfn);
3820 set_page_links(page, zone, nid, pfn);
3821 mminit_verify_page_links(page, zone, nid, pfn);
3822 init_page_count(page);
3823 reset_page_mapcount(page);
3824 SetPageReserved(page);
3825 /*
3826 * Mark the block movable so that blocks are reserved for
3827 * movable at startup. This will force kernel allocations
3828 * to reserve their blocks rather than leaking throughout
3829 * the address space during boot when many long-lived
3830 * kernel allocations are made. Later some blocks near
3831 * the start are marked MIGRATE_RESERVE by
3832 * setup_zone_migrate_reserve()
3833 *
3834 * bitmap is created for zone's valid pfn range. but memmap
3835 * can be created for invalid pages (for alignment)
3836 * check here not to call set_pageblock_migratetype() against
3837 * pfn out of zone.
3838 */
3839 if ((z->zone_start_pfn <= pfn)
3840 && (pfn < z->zone_start_pfn + z->spanned_pages)
3841 && !(pfn & (pageblock_nr_pages - 1)))
3842 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3843
3844 INIT_LIST_HEAD(&page->lru);
3845 #ifdef WANT_PAGE_VIRTUAL
3846 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3847 if (!is_highmem_idx(zone))
3848 set_page_address(page, __va(pfn << PAGE_SHIFT));
3849 #endif
3850 }
3851 }
3852
3853 static void __meminit zone_init_free_lists(struct zone *zone)
3854 {
3855 int order, t;
3856 for_each_migratetype_order(order, t) {
3857 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3858 zone->free_area[order].nr_free = 0;
3859 }
3860 }
3861
3862 #ifndef __HAVE_ARCH_MEMMAP_INIT
3863 #define memmap_init(size, nid, zone, start_pfn) \
3864 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3865 #endif
3866
3867 static int __meminit zone_batchsize(struct zone *zone)
3868 {
3869 #ifdef CONFIG_MMU
3870 int batch;
3871
3872 /*
3873 * The per-cpu-pages pools are set to around 1000th of the
3874 * size of the zone. But no more than 1/2 of a meg.
3875 *
3876 * OK, so we don't know how big the cache is. So guess.
3877 */
3878 batch = zone->present_pages / 1024;
3879 if (batch * PAGE_SIZE > 512 * 1024)
3880 batch = (512 * 1024) / PAGE_SIZE;
3881 batch /= 4; /* We effectively *= 4 below */
3882 if (batch < 1)
3883 batch = 1;
3884
3885 /*
3886 * Clamp the batch to a 2^n - 1 value. Having a power
3887 * of 2 value was found to be more likely to have
3888 * suboptimal cache aliasing properties in some cases.
3889 *
3890 * For example if 2 tasks are alternately allocating
3891 * batches of pages, one task can end up with a lot
3892 * of pages of one half of the possible page colors
3893 * and the other with pages of the other colors.
3894 */
3895 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3896
3897 return batch;
3898
3899 #else
3900 /* The deferral and batching of frees should be suppressed under NOMMU
3901 * conditions.
3902 *
3903 * The problem is that NOMMU needs to be able to allocate large chunks
3904 * of contiguous memory as there's no hardware page translation to
3905 * assemble apparent contiguous memory from discontiguous pages.
3906 *
3907 * Queueing large contiguous runs of pages for batching, however,
3908 * causes the pages to actually be freed in smaller chunks. As there
3909 * can be a significant delay between the individual batches being
3910 * recycled, this leads to the once large chunks of space being
3911 * fragmented and becoming unavailable for high-order allocations.
3912 */
3913 return 0;
3914 #endif
3915 }
3916
3917 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3918 {
3919 struct per_cpu_pages *pcp;
3920 int migratetype;
3921
3922 memset(p, 0, sizeof(*p));
3923
3924 pcp = &p->pcp;
3925 pcp->count = 0;
3926 pcp->high = 6 * batch;
3927 pcp->batch = max(1UL, 1 * batch);
3928 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3929 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3930 }
3931
3932 /*
3933 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3934 * to the value high for the pageset p.
3935 */
3936
3937 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3938 unsigned long high)
3939 {
3940 struct per_cpu_pages *pcp;
3941
3942 pcp = &p->pcp;
3943 pcp->high = high;
3944 pcp->batch = max(1UL, high/4);
3945 if ((high/4) > (PAGE_SHIFT * 8))
3946 pcp->batch = PAGE_SHIFT * 8;
3947 }
3948
3949 static void __meminit setup_zone_pageset(struct zone *zone)
3950 {
3951 int cpu;
3952
3953 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3954
3955 for_each_possible_cpu(cpu) {
3956 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3957
3958 setup_pageset(pcp, zone_batchsize(zone));
3959
3960 if (percpu_pagelist_fraction)
3961 setup_pagelist_highmark(pcp,
3962 (zone->present_pages /
3963 percpu_pagelist_fraction));
3964 }
3965 }
3966
3967 /*
3968 * Allocate per cpu pagesets and initialize them.
3969 * Before this call only boot pagesets were available.
3970 */
3971 void __init setup_per_cpu_pageset(void)
3972 {
3973 struct zone *zone;
3974
3975 for_each_populated_zone(zone)
3976 setup_zone_pageset(zone);
3977 }
3978
3979 static noinline __init_refok
3980 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3981 {
3982 int i;
3983 struct pglist_data *pgdat = zone->zone_pgdat;
3984 size_t alloc_size;
3985
3986 /*
3987 * The per-page waitqueue mechanism uses hashed waitqueues
3988 * per zone.
3989 */
3990 zone->wait_table_hash_nr_entries =
3991 wait_table_hash_nr_entries(zone_size_pages);
3992 zone->wait_table_bits =
3993 wait_table_bits(zone->wait_table_hash_nr_entries);
3994 alloc_size = zone->wait_table_hash_nr_entries
3995 * sizeof(wait_queue_head_t);
3996
3997 if (!slab_is_available()) {
3998 zone->wait_table = (wait_queue_head_t *)
3999 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4000 } else {
4001 /*
4002 * This case means that a zone whose size was 0 gets new memory
4003 * via memory hot-add.
4004 * But it may be the case that a new node was hot-added. In
4005 * this case vmalloc() will not be able to use this new node's
4006 * memory - this wait_table must be initialized to use this new
4007 * node itself as well.
4008 * To use this new node's memory, further consideration will be
4009 * necessary.
4010 */
4011 zone->wait_table = vmalloc(alloc_size);
4012 }
4013 if (!zone->wait_table)
4014 return -ENOMEM;
4015
4016 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4017 init_waitqueue_head(zone->wait_table + i);
4018
4019 return 0;
4020 }
4021
4022 static __meminit void zone_pcp_init(struct zone *zone)
4023 {
4024 /*
4025 * per cpu subsystem is not up at this point. The following code
4026 * relies on the ability of the linker to provide the
4027 * offset of a (static) per cpu variable into the per cpu area.
4028 */
4029 zone->pageset = &boot_pageset;
4030
4031 if (zone->present_pages)
4032 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4033 zone->name, zone->present_pages,
4034 zone_batchsize(zone));
4035 }
4036
4037 int __meminit init_currently_empty_zone(struct zone *zone,
4038 unsigned long zone_start_pfn,
4039 unsigned long size,
4040 enum memmap_context context)
4041 {
4042 struct pglist_data *pgdat = zone->zone_pgdat;
4043 int ret;
4044 ret = zone_wait_table_init(zone, size);
4045 if (ret)
4046 return ret;
4047 pgdat->nr_zones = zone_idx(zone) + 1;
4048
4049 zone->zone_start_pfn = zone_start_pfn;
4050
4051 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4052 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4053 pgdat->node_id,
4054 (unsigned long)zone_idx(zone),
4055 zone_start_pfn, (zone_start_pfn + size));
4056
4057 zone_init_free_lists(zone);
4058
4059 return 0;
4060 }
4061
4062 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4063 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4064 /*
4065 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4066 * Architectures may implement their own version but if add_active_range()
4067 * was used and there are no special requirements, this is a convenient
4068 * alternative
4069 */
4070 int __meminit __early_pfn_to_nid(unsigned long pfn)
4071 {
4072 unsigned long start_pfn, end_pfn;
4073 int i, nid;
4074
4075 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4076 if (start_pfn <= pfn && pfn < end_pfn)
4077 return nid;
4078 /* This is a memory hole */
4079 return -1;
4080 }
4081 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4082
4083 int __meminit early_pfn_to_nid(unsigned long pfn)
4084 {
4085 int nid;
4086
4087 nid = __early_pfn_to_nid(pfn);
4088 if (nid >= 0)
4089 return nid;
4090 /* just returns 0 */
4091 return 0;
4092 }
4093
4094 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4095 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4096 {
4097 int nid;
4098
4099 nid = __early_pfn_to_nid(pfn);
4100 if (nid >= 0 && nid != node)
4101 return false;
4102 return true;
4103 }
4104 #endif
4105
4106 /**
4107 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4108 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4109 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4110 *
4111 * If an architecture guarantees that all ranges registered with
4112 * add_active_ranges() contain no holes and may be freed, this
4113 * this function may be used instead of calling free_bootmem() manually.
4114 */
4115 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4116 {
4117 unsigned long start_pfn, end_pfn;
4118 int i, this_nid;
4119
4120 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4121 start_pfn = min(start_pfn, max_low_pfn);
4122 end_pfn = min(end_pfn, max_low_pfn);
4123
4124 if (start_pfn < end_pfn)
4125 free_bootmem_node(NODE_DATA(this_nid),
4126 PFN_PHYS(start_pfn),
4127 (end_pfn - start_pfn) << PAGE_SHIFT);
4128 }
4129 }
4130
4131 /**
4132 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4133 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4134 *
4135 * If an architecture guarantees that all ranges registered with
4136 * add_active_ranges() contain no holes and may be freed, this
4137 * function may be used instead of calling memory_present() manually.
4138 */
4139 void __init sparse_memory_present_with_active_regions(int nid)
4140 {
4141 unsigned long start_pfn, end_pfn;
4142 int i, this_nid;
4143
4144 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4145 memory_present(this_nid, start_pfn, end_pfn);
4146 }
4147
4148 /**
4149 * get_pfn_range_for_nid - Return the start and end page frames for a node
4150 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4151 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4152 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4153 *
4154 * It returns the start and end page frame of a node based on information
4155 * provided by an arch calling add_active_range(). If called for a node
4156 * with no available memory, a warning is printed and the start and end
4157 * PFNs will be 0.
4158 */
4159 void __meminit get_pfn_range_for_nid(unsigned int nid,
4160 unsigned long *start_pfn, unsigned long *end_pfn)
4161 {
4162 unsigned long this_start_pfn, this_end_pfn;
4163 int i;
4164
4165 *start_pfn = -1UL;
4166 *end_pfn = 0;
4167
4168 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4169 *start_pfn = min(*start_pfn, this_start_pfn);
4170 *end_pfn = max(*end_pfn, this_end_pfn);
4171 }
4172
4173 if (*start_pfn == -1UL)
4174 *start_pfn = 0;
4175 }
4176
4177 /*
4178 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4179 * assumption is made that zones within a node are ordered in monotonic
4180 * increasing memory addresses so that the "highest" populated zone is used
4181 */
4182 static void __init find_usable_zone_for_movable(void)
4183 {
4184 int zone_index;
4185 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4186 if (zone_index == ZONE_MOVABLE)
4187 continue;
4188
4189 if (arch_zone_highest_possible_pfn[zone_index] >
4190 arch_zone_lowest_possible_pfn[zone_index])
4191 break;
4192 }
4193
4194 VM_BUG_ON(zone_index == -1);
4195 movable_zone = zone_index;
4196 }
4197
4198 /*
4199 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4200 * because it is sized independent of architecture. Unlike the other zones,
4201 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4202 * in each node depending on the size of each node and how evenly kernelcore
4203 * is distributed. This helper function adjusts the zone ranges
4204 * provided by the architecture for a given node by using the end of the
4205 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4206 * zones within a node are in order of monotonic increases memory addresses
4207 */
4208 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4209 unsigned long zone_type,
4210 unsigned long node_start_pfn,
4211 unsigned long node_end_pfn,
4212 unsigned long *zone_start_pfn,
4213 unsigned long *zone_end_pfn)
4214 {
4215 /* Only adjust if ZONE_MOVABLE is on this node */
4216 if (zone_movable_pfn[nid]) {
4217 /* Size ZONE_MOVABLE */
4218 if (zone_type == ZONE_MOVABLE) {
4219 *zone_start_pfn = zone_movable_pfn[nid];
4220 *zone_end_pfn = min(node_end_pfn,
4221 arch_zone_highest_possible_pfn[movable_zone]);
4222
4223 /* Adjust for ZONE_MOVABLE starting within this range */
4224 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4225 *zone_end_pfn > zone_movable_pfn[nid]) {
4226 *zone_end_pfn = zone_movable_pfn[nid];
4227
4228 /* Check if this whole range is within ZONE_MOVABLE */
4229 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4230 *zone_start_pfn = *zone_end_pfn;
4231 }
4232 }
4233
4234 /*
4235 * Return the number of pages a zone spans in a node, including holes
4236 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4237 */
4238 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4239 unsigned long zone_type,
4240 unsigned long *ignored)
4241 {
4242 unsigned long node_start_pfn, node_end_pfn;
4243 unsigned long zone_start_pfn, zone_end_pfn;
4244
4245 /* Get the start and end of the node and zone */
4246 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4247 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4248 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4249 adjust_zone_range_for_zone_movable(nid, zone_type,
4250 node_start_pfn, node_end_pfn,
4251 &zone_start_pfn, &zone_end_pfn);
4252
4253 /* Check that this node has pages within the zone's required range */
4254 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4255 return 0;
4256
4257 /* Move the zone boundaries inside the node if necessary */
4258 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4259 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4260
4261 /* Return the spanned pages */
4262 return zone_end_pfn - zone_start_pfn;
4263 }
4264
4265 /*
4266 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4267 * then all holes in the requested range will be accounted for.
4268 */
4269 unsigned long __meminit __absent_pages_in_range(int nid,
4270 unsigned long range_start_pfn,
4271 unsigned long range_end_pfn)
4272 {
4273 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4274 unsigned long start_pfn, end_pfn;
4275 int i;
4276
4277 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4278 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4279 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4280 nr_absent -= end_pfn - start_pfn;
4281 }
4282 return nr_absent;
4283 }
4284
4285 /**
4286 * absent_pages_in_range - Return number of page frames in holes within a range
4287 * @start_pfn: The start PFN to start searching for holes
4288 * @end_pfn: The end PFN to stop searching for holes
4289 *
4290 * It returns the number of pages frames in memory holes within a range.
4291 */
4292 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4293 unsigned long end_pfn)
4294 {
4295 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4296 }
4297
4298 /* Return the number of page frames in holes in a zone on a node */
4299 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4300 unsigned long zone_type,
4301 unsigned long *ignored)
4302 {
4303 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4304 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4305 unsigned long node_start_pfn, node_end_pfn;
4306 unsigned long zone_start_pfn, zone_end_pfn;
4307
4308 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4309 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4310 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4311
4312 adjust_zone_range_for_zone_movable(nid, zone_type,
4313 node_start_pfn, node_end_pfn,
4314 &zone_start_pfn, &zone_end_pfn);
4315 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4316 }
4317
4318 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4319 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4320 unsigned long zone_type,
4321 unsigned long *zones_size)
4322 {
4323 return zones_size[zone_type];
4324 }
4325
4326 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4327 unsigned long zone_type,
4328 unsigned long *zholes_size)
4329 {
4330 if (!zholes_size)
4331 return 0;
4332
4333 return zholes_size[zone_type];
4334 }
4335
4336 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4337
4338 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4339 unsigned long *zones_size, unsigned long *zholes_size)
4340 {
4341 unsigned long realtotalpages, totalpages = 0;
4342 enum zone_type i;
4343
4344 for (i = 0; i < MAX_NR_ZONES; i++)
4345 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4346 zones_size);
4347 pgdat->node_spanned_pages = totalpages;
4348
4349 realtotalpages = totalpages;
4350 for (i = 0; i < MAX_NR_ZONES; i++)
4351 realtotalpages -=
4352 zone_absent_pages_in_node(pgdat->node_id, i,
4353 zholes_size);
4354 pgdat->node_present_pages = realtotalpages;
4355 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4356 realtotalpages);
4357 }
4358
4359 #ifndef CONFIG_SPARSEMEM
4360 /*
4361 * Calculate the size of the zone->blockflags rounded to an unsigned long
4362 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4363 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4364 * round what is now in bits to nearest long in bits, then return it in
4365 * bytes.
4366 */
4367 static unsigned long __init usemap_size(unsigned long zonesize)
4368 {
4369 unsigned long usemapsize;
4370
4371 usemapsize = roundup(zonesize, pageblock_nr_pages);
4372 usemapsize = usemapsize >> pageblock_order;
4373 usemapsize *= NR_PAGEBLOCK_BITS;
4374 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4375
4376 return usemapsize / 8;
4377 }
4378
4379 static void __init setup_usemap(struct pglist_data *pgdat,
4380 struct zone *zone, unsigned long zonesize)
4381 {
4382 unsigned long usemapsize = usemap_size(zonesize);
4383 zone->pageblock_flags = NULL;
4384 if (usemapsize)
4385 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4386 usemapsize);
4387 }
4388 #else
4389 static inline void setup_usemap(struct pglist_data *pgdat,
4390 struct zone *zone, unsigned long zonesize) {}
4391 #endif /* CONFIG_SPARSEMEM */
4392
4393 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4394
4395 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4396 void __init set_pageblock_order(void)
4397 {
4398 unsigned int order;
4399
4400 /* Check that pageblock_nr_pages has not already been setup */
4401 if (pageblock_order)
4402 return;
4403
4404 if (HPAGE_SHIFT > PAGE_SHIFT)
4405 order = HUGETLB_PAGE_ORDER;
4406 else
4407 order = MAX_ORDER - 1;
4408
4409 /*
4410 * Assume the largest contiguous order of interest is a huge page.
4411 * This value may be variable depending on boot parameters on IA64 and
4412 * powerpc.
4413 */
4414 pageblock_order = order;
4415 }
4416 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4417
4418 /*
4419 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4420 * is unused as pageblock_order is set at compile-time. See
4421 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4422 * the kernel config
4423 */
4424 void __init set_pageblock_order(void)
4425 {
4426 }
4427
4428 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4429
4430 /*
4431 * Set up the zone data structures:
4432 * - mark all pages reserved
4433 * - mark all memory queues empty
4434 * - clear the memory bitmaps
4435 *
4436 * NOTE: pgdat should get zeroed by caller.
4437 */
4438 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4439 unsigned long *zones_size, unsigned long *zholes_size)
4440 {
4441 enum zone_type j;
4442 int nid = pgdat->node_id;
4443 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4444 int ret;
4445
4446 pgdat_resize_init(pgdat);
4447 init_waitqueue_head(&pgdat->kswapd_wait);
4448 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4449 pgdat_page_cgroup_init(pgdat);
4450
4451 for (j = 0; j < MAX_NR_ZONES; j++) {
4452 struct zone *zone = pgdat->node_zones + j;
4453 unsigned long size, realsize, memmap_pages;
4454
4455 size = zone_spanned_pages_in_node(nid, j, zones_size);
4456 realsize = size - zone_absent_pages_in_node(nid, j,
4457 zholes_size);
4458
4459 /*
4460 * Adjust realsize so that it accounts for how much memory
4461 * is used by this zone for memmap. This affects the watermark
4462 * and per-cpu initialisations
4463 */
4464 memmap_pages =
4465 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4466 if (realsize >= memmap_pages) {
4467 realsize -= memmap_pages;
4468 if (memmap_pages)
4469 printk(KERN_DEBUG
4470 " %s zone: %lu pages used for memmap\n",
4471 zone_names[j], memmap_pages);
4472 } else
4473 printk(KERN_WARNING
4474 " %s zone: %lu pages exceeds realsize %lu\n",
4475 zone_names[j], memmap_pages, realsize);
4476
4477 /* Account for reserved pages */
4478 if (j == 0 && realsize > dma_reserve) {
4479 realsize -= dma_reserve;
4480 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4481 zone_names[0], dma_reserve);
4482 }
4483
4484 if (!is_highmem_idx(j))
4485 nr_kernel_pages += realsize;
4486 nr_all_pages += realsize;
4487
4488 zone->spanned_pages = size;
4489 zone->present_pages = realsize;
4490 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4491 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4492 zone->spanned_pages;
4493 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4494 #endif
4495 #ifdef CONFIG_NUMA
4496 zone->node = nid;
4497 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4498 / 100;
4499 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4500 #endif
4501 zone->name = zone_names[j];
4502 spin_lock_init(&zone->lock);
4503 spin_lock_init(&zone->lru_lock);
4504 zone_seqlock_init(zone);
4505 zone->zone_pgdat = pgdat;
4506
4507 zone_pcp_init(zone);
4508 lruvec_init(&zone->lruvec, zone);
4509 if (!size)
4510 continue;
4511
4512 set_pageblock_order();
4513 setup_usemap(pgdat, zone, size);
4514 ret = init_currently_empty_zone(zone, zone_start_pfn,
4515 size, MEMMAP_EARLY);
4516 BUG_ON(ret);
4517 memmap_init(size, nid, j, zone_start_pfn);
4518 zone_start_pfn += size;
4519 }
4520 }
4521
4522 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4523 {
4524 /* Skip empty nodes */
4525 if (!pgdat->node_spanned_pages)
4526 return;
4527
4528 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4529 /* ia64 gets its own node_mem_map, before this, without bootmem */
4530 if (!pgdat->node_mem_map) {
4531 unsigned long size, start, end;
4532 struct page *map;
4533
4534 /*
4535 * The zone's endpoints aren't required to be MAX_ORDER
4536 * aligned but the node_mem_map endpoints must be in order
4537 * for the buddy allocator to function correctly.
4538 */
4539 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4540 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4541 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4542 size = (end - start) * sizeof(struct page);
4543 map = alloc_remap(pgdat->node_id, size);
4544 if (!map)
4545 map = alloc_bootmem_node_nopanic(pgdat, size);
4546 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4547 }
4548 #ifndef CONFIG_NEED_MULTIPLE_NODES
4549 /*
4550 * With no DISCONTIG, the global mem_map is just set as node 0's
4551 */
4552 if (pgdat == NODE_DATA(0)) {
4553 mem_map = NODE_DATA(0)->node_mem_map;
4554 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4555 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4556 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4557 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4558 }
4559 #endif
4560 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4561 }
4562
4563 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4564 unsigned long node_start_pfn, unsigned long *zholes_size)
4565 {
4566 pg_data_t *pgdat = NODE_DATA(nid);
4567
4568 /* pg_data_t should be reset to zero when it's allocated */
4569 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4570
4571 pgdat->node_id = nid;
4572 pgdat->node_start_pfn = node_start_pfn;
4573 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4574
4575 alloc_node_mem_map(pgdat);
4576 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4577 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4578 nid, (unsigned long)pgdat,
4579 (unsigned long)pgdat->node_mem_map);
4580 #endif
4581
4582 free_area_init_core(pgdat, zones_size, zholes_size);
4583 }
4584
4585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4586
4587 #if MAX_NUMNODES > 1
4588 /*
4589 * Figure out the number of possible node ids.
4590 */
4591 static void __init setup_nr_node_ids(void)
4592 {
4593 unsigned int node;
4594 unsigned int highest = 0;
4595
4596 for_each_node_mask(node, node_possible_map)
4597 highest = node;
4598 nr_node_ids = highest + 1;
4599 }
4600 #else
4601 static inline void setup_nr_node_ids(void)
4602 {
4603 }
4604 #endif
4605
4606 /**
4607 * node_map_pfn_alignment - determine the maximum internode alignment
4608 *
4609 * This function should be called after node map is populated and sorted.
4610 * It calculates the maximum power of two alignment which can distinguish
4611 * all the nodes.
4612 *
4613 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4614 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4615 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4616 * shifted, 1GiB is enough and this function will indicate so.
4617 *
4618 * This is used to test whether pfn -> nid mapping of the chosen memory
4619 * model has fine enough granularity to avoid incorrect mapping for the
4620 * populated node map.
4621 *
4622 * Returns the determined alignment in pfn's. 0 if there is no alignment
4623 * requirement (single node).
4624 */
4625 unsigned long __init node_map_pfn_alignment(void)
4626 {
4627 unsigned long accl_mask = 0, last_end = 0;
4628 unsigned long start, end, mask;
4629 int last_nid = -1;
4630 int i, nid;
4631
4632 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4633 if (!start || last_nid < 0 || last_nid == nid) {
4634 last_nid = nid;
4635 last_end = end;
4636 continue;
4637 }
4638
4639 /*
4640 * Start with a mask granular enough to pin-point to the
4641 * start pfn and tick off bits one-by-one until it becomes
4642 * too coarse to separate the current node from the last.
4643 */
4644 mask = ~((1 << __ffs(start)) - 1);
4645 while (mask && last_end <= (start & (mask << 1)))
4646 mask <<= 1;
4647
4648 /* accumulate all internode masks */
4649 accl_mask |= mask;
4650 }
4651
4652 /* convert mask to number of pages */
4653 return ~accl_mask + 1;
4654 }
4655
4656 /* Find the lowest pfn for a node */
4657 static unsigned long __init find_min_pfn_for_node(int nid)
4658 {
4659 unsigned long min_pfn = ULONG_MAX;
4660 unsigned long start_pfn;
4661 int i;
4662
4663 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4664 min_pfn = min(min_pfn, start_pfn);
4665
4666 if (min_pfn == ULONG_MAX) {
4667 printk(KERN_WARNING
4668 "Could not find start_pfn for node %d\n", nid);
4669 return 0;
4670 }
4671
4672 return min_pfn;
4673 }
4674
4675 /**
4676 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4677 *
4678 * It returns the minimum PFN based on information provided via
4679 * add_active_range().
4680 */
4681 unsigned long __init find_min_pfn_with_active_regions(void)
4682 {
4683 return find_min_pfn_for_node(MAX_NUMNODES);
4684 }
4685
4686 /*
4687 * early_calculate_totalpages()
4688 * Sum pages in active regions for movable zone.
4689 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4690 */
4691 static unsigned long __init early_calculate_totalpages(void)
4692 {
4693 unsigned long totalpages = 0;
4694 unsigned long start_pfn, end_pfn;
4695 int i, nid;
4696
4697 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4698 unsigned long pages = end_pfn - start_pfn;
4699
4700 totalpages += pages;
4701 if (pages)
4702 node_set_state(nid, N_HIGH_MEMORY);
4703 }
4704 return totalpages;
4705 }
4706
4707 /*
4708 * Find the PFN the Movable zone begins in each node. Kernel memory
4709 * is spread evenly between nodes as long as the nodes have enough
4710 * memory. When they don't, some nodes will have more kernelcore than
4711 * others
4712 */
4713 static void __init find_zone_movable_pfns_for_nodes(void)
4714 {
4715 int i, nid;
4716 unsigned long usable_startpfn;
4717 unsigned long kernelcore_node, kernelcore_remaining;
4718 /* save the state before borrow the nodemask */
4719 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4720 unsigned long totalpages = early_calculate_totalpages();
4721 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4722
4723 /*
4724 * If movablecore was specified, calculate what size of
4725 * kernelcore that corresponds so that memory usable for
4726 * any allocation type is evenly spread. If both kernelcore
4727 * and movablecore are specified, then the value of kernelcore
4728 * will be used for required_kernelcore if it's greater than
4729 * what movablecore would have allowed.
4730 */
4731 if (required_movablecore) {
4732 unsigned long corepages;
4733
4734 /*
4735 * Round-up so that ZONE_MOVABLE is at least as large as what
4736 * was requested by the user
4737 */
4738 required_movablecore =
4739 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4740 corepages = totalpages - required_movablecore;
4741
4742 required_kernelcore = max(required_kernelcore, corepages);
4743 }
4744
4745 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4746 if (!required_kernelcore)
4747 goto out;
4748
4749 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4750 find_usable_zone_for_movable();
4751 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4752
4753 restart:
4754 /* Spread kernelcore memory as evenly as possible throughout nodes */
4755 kernelcore_node = required_kernelcore / usable_nodes;
4756 for_each_node_state(nid, N_HIGH_MEMORY) {
4757 unsigned long start_pfn, end_pfn;
4758
4759 /*
4760 * Recalculate kernelcore_node if the division per node
4761 * now exceeds what is necessary to satisfy the requested
4762 * amount of memory for the kernel
4763 */
4764 if (required_kernelcore < kernelcore_node)
4765 kernelcore_node = required_kernelcore / usable_nodes;
4766
4767 /*
4768 * As the map is walked, we track how much memory is usable
4769 * by the kernel using kernelcore_remaining. When it is
4770 * 0, the rest of the node is usable by ZONE_MOVABLE
4771 */
4772 kernelcore_remaining = kernelcore_node;
4773
4774 /* Go through each range of PFNs within this node */
4775 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4776 unsigned long size_pages;
4777
4778 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4779 if (start_pfn >= end_pfn)
4780 continue;
4781
4782 /* Account for what is only usable for kernelcore */
4783 if (start_pfn < usable_startpfn) {
4784 unsigned long kernel_pages;
4785 kernel_pages = min(end_pfn, usable_startpfn)
4786 - start_pfn;
4787
4788 kernelcore_remaining -= min(kernel_pages,
4789 kernelcore_remaining);
4790 required_kernelcore -= min(kernel_pages,
4791 required_kernelcore);
4792
4793 /* Continue if range is now fully accounted */
4794 if (end_pfn <= usable_startpfn) {
4795
4796 /*
4797 * Push zone_movable_pfn to the end so
4798 * that if we have to rebalance
4799 * kernelcore across nodes, we will
4800 * not double account here
4801 */
4802 zone_movable_pfn[nid] = end_pfn;
4803 continue;
4804 }
4805 start_pfn = usable_startpfn;
4806 }
4807
4808 /*
4809 * The usable PFN range for ZONE_MOVABLE is from
4810 * start_pfn->end_pfn. Calculate size_pages as the
4811 * number of pages used as kernelcore
4812 */
4813 size_pages = end_pfn - start_pfn;
4814 if (size_pages > kernelcore_remaining)
4815 size_pages = kernelcore_remaining;
4816 zone_movable_pfn[nid] = start_pfn + size_pages;
4817
4818 /*
4819 * Some kernelcore has been met, update counts and
4820 * break if the kernelcore for this node has been
4821 * satisified
4822 */
4823 required_kernelcore -= min(required_kernelcore,
4824 size_pages);
4825 kernelcore_remaining -= size_pages;
4826 if (!kernelcore_remaining)
4827 break;
4828 }
4829 }
4830
4831 /*
4832 * If there is still required_kernelcore, we do another pass with one
4833 * less node in the count. This will push zone_movable_pfn[nid] further
4834 * along on the nodes that still have memory until kernelcore is
4835 * satisified
4836 */
4837 usable_nodes--;
4838 if (usable_nodes && required_kernelcore > usable_nodes)
4839 goto restart;
4840
4841 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4842 for (nid = 0; nid < MAX_NUMNODES; nid++)
4843 zone_movable_pfn[nid] =
4844 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4845
4846 out:
4847 /* restore the node_state */
4848 node_states[N_HIGH_MEMORY] = saved_node_state;
4849 }
4850
4851 /* Any regular memory on that node ? */
4852 static void __init check_for_regular_memory(pg_data_t *pgdat)
4853 {
4854 #ifdef CONFIG_HIGHMEM
4855 enum zone_type zone_type;
4856
4857 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4858 struct zone *zone = &pgdat->node_zones[zone_type];
4859 if (zone->present_pages) {
4860 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4861 break;
4862 }
4863 }
4864 #endif
4865 }
4866
4867 /**
4868 * free_area_init_nodes - Initialise all pg_data_t and zone data
4869 * @max_zone_pfn: an array of max PFNs for each zone
4870 *
4871 * This will call free_area_init_node() for each active node in the system.
4872 * Using the page ranges provided by add_active_range(), the size of each
4873 * zone in each node and their holes is calculated. If the maximum PFN
4874 * between two adjacent zones match, it is assumed that the zone is empty.
4875 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4876 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4877 * starts where the previous one ended. For example, ZONE_DMA32 starts
4878 * at arch_max_dma_pfn.
4879 */
4880 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4881 {
4882 unsigned long start_pfn, end_pfn;
4883 int i, nid;
4884
4885 /* Record where the zone boundaries are */
4886 memset(arch_zone_lowest_possible_pfn, 0,
4887 sizeof(arch_zone_lowest_possible_pfn));
4888 memset(arch_zone_highest_possible_pfn, 0,
4889 sizeof(arch_zone_highest_possible_pfn));
4890 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4891 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4892 for (i = 1; i < MAX_NR_ZONES; i++) {
4893 if (i == ZONE_MOVABLE)
4894 continue;
4895 arch_zone_lowest_possible_pfn[i] =
4896 arch_zone_highest_possible_pfn[i-1];
4897 arch_zone_highest_possible_pfn[i] =
4898 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4899 }
4900 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4901 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4902
4903 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4904 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4905 find_zone_movable_pfns_for_nodes();
4906
4907 /* Print out the zone ranges */
4908 printk("Zone ranges:\n");
4909 for (i = 0; i < MAX_NR_ZONES; i++) {
4910 if (i == ZONE_MOVABLE)
4911 continue;
4912 printk(KERN_CONT " %-8s ", zone_names[i]);
4913 if (arch_zone_lowest_possible_pfn[i] ==
4914 arch_zone_highest_possible_pfn[i])
4915 printk(KERN_CONT "empty\n");
4916 else
4917 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4918 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4919 (arch_zone_highest_possible_pfn[i]
4920 << PAGE_SHIFT) - 1);
4921 }
4922
4923 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4924 printk("Movable zone start for each node\n");
4925 for (i = 0; i < MAX_NUMNODES; i++) {
4926 if (zone_movable_pfn[i])
4927 printk(" Node %d: %#010lx\n", i,
4928 zone_movable_pfn[i] << PAGE_SHIFT);
4929 }
4930
4931 /* Print out the early_node_map[] */
4932 printk("Early memory node ranges\n");
4933 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4934 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4935 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4936
4937 /* Initialise every node */
4938 mminit_verify_pageflags_layout();
4939 setup_nr_node_ids();
4940 for_each_online_node(nid) {
4941 pg_data_t *pgdat = NODE_DATA(nid);
4942 free_area_init_node(nid, NULL,
4943 find_min_pfn_for_node(nid), NULL);
4944
4945 /* Any memory on that node */
4946 if (pgdat->node_present_pages)
4947 node_set_state(nid, N_HIGH_MEMORY);
4948 check_for_regular_memory(pgdat);
4949 }
4950 }
4951
4952 static int __init cmdline_parse_core(char *p, unsigned long *core)
4953 {
4954 unsigned long long coremem;
4955 if (!p)
4956 return -EINVAL;
4957
4958 coremem = memparse(p, &p);
4959 *core = coremem >> PAGE_SHIFT;
4960
4961 /* Paranoid check that UL is enough for the coremem value */
4962 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4963
4964 return 0;
4965 }
4966
4967 /*
4968 * kernelcore=size sets the amount of memory for use for allocations that
4969 * cannot be reclaimed or migrated.
4970 */
4971 static int __init cmdline_parse_kernelcore(char *p)
4972 {
4973 return cmdline_parse_core(p, &required_kernelcore);
4974 }
4975
4976 /*
4977 * movablecore=size sets the amount of memory for use for allocations that
4978 * can be reclaimed or migrated.
4979 */
4980 static int __init cmdline_parse_movablecore(char *p)
4981 {
4982 return cmdline_parse_core(p, &required_movablecore);
4983 }
4984
4985 early_param("kernelcore", cmdline_parse_kernelcore);
4986 early_param("movablecore", cmdline_parse_movablecore);
4987
4988 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4989
4990 /**
4991 * set_dma_reserve - set the specified number of pages reserved in the first zone
4992 * @new_dma_reserve: The number of pages to mark reserved
4993 *
4994 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4995 * In the DMA zone, a significant percentage may be consumed by kernel image
4996 * and other unfreeable allocations which can skew the watermarks badly. This
4997 * function may optionally be used to account for unfreeable pages in the
4998 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4999 * smaller per-cpu batchsize.
5000 */
5001 void __init set_dma_reserve(unsigned long new_dma_reserve)
5002 {
5003 dma_reserve = new_dma_reserve;
5004 }
5005
5006 void __init free_area_init(unsigned long *zones_size)
5007 {
5008 free_area_init_node(0, zones_size,
5009 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5010 }
5011
5012 static int page_alloc_cpu_notify(struct notifier_block *self,
5013 unsigned long action, void *hcpu)
5014 {
5015 int cpu = (unsigned long)hcpu;
5016
5017 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5018 lru_add_drain_cpu(cpu);
5019 drain_pages(cpu);
5020
5021 /*
5022 * Spill the event counters of the dead processor
5023 * into the current processors event counters.
5024 * This artificially elevates the count of the current
5025 * processor.
5026 */
5027 vm_events_fold_cpu(cpu);
5028
5029 /*
5030 * Zero the differential counters of the dead processor
5031 * so that the vm statistics are consistent.
5032 *
5033 * This is only okay since the processor is dead and cannot
5034 * race with what we are doing.
5035 */
5036 refresh_cpu_vm_stats(cpu);
5037 }
5038 return NOTIFY_OK;
5039 }
5040
5041 void __init page_alloc_init(void)
5042 {
5043 hotcpu_notifier(page_alloc_cpu_notify, 0);
5044 }
5045
5046 /*
5047 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5048 * or min_free_kbytes changes.
5049 */
5050 static void calculate_totalreserve_pages(void)
5051 {
5052 struct pglist_data *pgdat;
5053 unsigned long reserve_pages = 0;
5054 enum zone_type i, j;
5055
5056 for_each_online_pgdat(pgdat) {
5057 for (i = 0; i < MAX_NR_ZONES; i++) {
5058 struct zone *zone = pgdat->node_zones + i;
5059 unsigned long max = 0;
5060
5061 /* Find valid and maximum lowmem_reserve in the zone */
5062 for (j = i; j < MAX_NR_ZONES; j++) {
5063 if (zone->lowmem_reserve[j] > max)
5064 max = zone->lowmem_reserve[j];
5065 }
5066
5067 /* we treat the high watermark as reserved pages. */
5068 max += high_wmark_pages(zone);
5069
5070 if (max > zone->present_pages)
5071 max = zone->present_pages;
5072 reserve_pages += max;
5073 /*
5074 * Lowmem reserves are not available to
5075 * GFP_HIGHUSER page cache allocations and
5076 * kswapd tries to balance zones to their high
5077 * watermark. As a result, neither should be
5078 * regarded as dirtyable memory, to prevent a
5079 * situation where reclaim has to clean pages
5080 * in order to balance the zones.
5081 */
5082 zone->dirty_balance_reserve = max;
5083 }
5084 }
5085 dirty_balance_reserve = reserve_pages;
5086 totalreserve_pages = reserve_pages;
5087 }
5088
5089 /*
5090 * setup_per_zone_lowmem_reserve - called whenever
5091 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5092 * has a correct pages reserved value, so an adequate number of
5093 * pages are left in the zone after a successful __alloc_pages().
5094 */
5095 static void setup_per_zone_lowmem_reserve(void)
5096 {
5097 struct pglist_data *pgdat;
5098 enum zone_type j, idx;
5099
5100 for_each_online_pgdat(pgdat) {
5101 for (j = 0; j < MAX_NR_ZONES; j++) {
5102 struct zone *zone = pgdat->node_zones + j;
5103 unsigned long present_pages = zone->present_pages;
5104
5105 zone->lowmem_reserve[j] = 0;
5106
5107 idx = j;
5108 while (idx) {
5109 struct zone *lower_zone;
5110
5111 idx--;
5112
5113 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5114 sysctl_lowmem_reserve_ratio[idx] = 1;
5115
5116 lower_zone = pgdat->node_zones + idx;
5117 lower_zone->lowmem_reserve[j] = present_pages /
5118 sysctl_lowmem_reserve_ratio[idx];
5119 present_pages += lower_zone->present_pages;
5120 }
5121 }
5122 }
5123
5124 /* update totalreserve_pages */
5125 calculate_totalreserve_pages();
5126 }
5127
5128 static void __setup_per_zone_wmarks(void)
5129 {
5130 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5131 unsigned long lowmem_pages = 0;
5132 struct zone *zone;
5133 unsigned long flags;
5134
5135 /* Calculate total number of !ZONE_HIGHMEM pages */
5136 for_each_zone(zone) {
5137 if (!is_highmem(zone))
5138 lowmem_pages += zone->present_pages;
5139 }
5140
5141 for_each_zone(zone) {
5142 u64 tmp;
5143
5144 spin_lock_irqsave(&zone->lock, flags);
5145 tmp = (u64)pages_min * zone->present_pages;
5146 do_div(tmp, lowmem_pages);
5147 if (is_highmem(zone)) {
5148 /*
5149 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5150 * need highmem pages, so cap pages_min to a small
5151 * value here.
5152 *
5153 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5154 * deltas controls asynch page reclaim, and so should
5155 * not be capped for highmem.
5156 */
5157 int min_pages;
5158
5159 min_pages = zone->present_pages / 1024;
5160 if (min_pages < SWAP_CLUSTER_MAX)
5161 min_pages = SWAP_CLUSTER_MAX;
5162 if (min_pages > 128)
5163 min_pages = 128;
5164 zone->watermark[WMARK_MIN] = min_pages;
5165 } else {
5166 /*
5167 * If it's a lowmem zone, reserve a number of pages
5168 * proportionate to the zone's size.
5169 */
5170 zone->watermark[WMARK_MIN] = tmp;
5171 }
5172
5173 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5174 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5175
5176 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5177 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5178 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5179
5180 setup_zone_migrate_reserve(zone);
5181 spin_unlock_irqrestore(&zone->lock, flags);
5182 }
5183
5184 /* update totalreserve_pages */
5185 calculate_totalreserve_pages();
5186 }
5187
5188 /**
5189 * setup_per_zone_wmarks - called when min_free_kbytes changes
5190 * or when memory is hot-{added|removed}
5191 *
5192 * Ensures that the watermark[min,low,high] values for each zone are set
5193 * correctly with respect to min_free_kbytes.
5194 */
5195 void setup_per_zone_wmarks(void)
5196 {
5197 mutex_lock(&zonelists_mutex);
5198 __setup_per_zone_wmarks();
5199 mutex_unlock(&zonelists_mutex);
5200 }
5201
5202 /*
5203 * The inactive anon list should be small enough that the VM never has to
5204 * do too much work, but large enough that each inactive page has a chance
5205 * to be referenced again before it is swapped out.
5206 *
5207 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5208 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5209 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5210 * the anonymous pages are kept on the inactive list.
5211 *
5212 * total target max
5213 * memory ratio inactive anon
5214 * -------------------------------------
5215 * 10MB 1 5MB
5216 * 100MB 1 50MB
5217 * 1GB 3 250MB
5218 * 10GB 10 0.9GB
5219 * 100GB 31 3GB
5220 * 1TB 101 10GB
5221 * 10TB 320 32GB
5222 */
5223 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5224 {
5225 unsigned int gb, ratio;
5226
5227 /* Zone size in gigabytes */
5228 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5229 if (gb)
5230 ratio = int_sqrt(10 * gb);
5231 else
5232 ratio = 1;
5233
5234 zone->inactive_ratio = ratio;
5235 }
5236
5237 static void __meminit setup_per_zone_inactive_ratio(void)
5238 {
5239 struct zone *zone;
5240
5241 for_each_zone(zone)
5242 calculate_zone_inactive_ratio(zone);
5243 }
5244
5245 /*
5246 * Initialise min_free_kbytes.
5247 *
5248 * For small machines we want it small (128k min). For large machines
5249 * we want it large (64MB max). But it is not linear, because network
5250 * bandwidth does not increase linearly with machine size. We use
5251 *
5252 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5253 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5254 *
5255 * which yields
5256 *
5257 * 16MB: 512k
5258 * 32MB: 724k
5259 * 64MB: 1024k
5260 * 128MB: 1448k
5261 * 256MB: 2048k
5262 * 512MB: 2896k
5263 * 1024MB: 4096k
5264 * 2048MB: 5792k
5265 * 4096MB: 8192k
5266 * 8192MB: 11584k
5267 * 16384MB: 16384k
5268 */
5269 int __meminit init_per_zone_wmark_min(void)
5270 {
5271 unsigned long lowmem_kbytes;
5272
5273 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5274
5275 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5276 if (min_free_kbytes < 128)
5277 min_free_kbytes = 128;
5278 if (min_free_kbytes > 65536)
5279 min_free_kbytes = 65536;
5280 setup_per_zone_wmarks();
5281 refresh_zone_stat_thresholds();
5282 setup_per_zone_lowmem_reserve();
5283 setup_per_zone_inactive_ratio();
5284 return 0;
5285 }
5286 module_init(init_per_zone_wmark_min)
5287
5288 /*
5289 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5290 * that we can call two helper functions whenever min_free_kbytes
5291 * changes.
5292 */
5293 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5294 void __user *buffer, size_t *length, loff_t *ppos)
5295 {
5296 proc_dointvec(table, write, buffer, length, ppos);
5297 if (write)
5298 setup_per_zone_wmarks();
5299 return 0;
5300 }
5301
5302 #ifdef CONFIG_NUMA
5303 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5304 void __user *buffer, size_t *length, loff_t *ppos)
5305 {
5306 struct zone *zone;
5307 int rc;
5308
5309 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5310 if (rc)
5311 return rc;
5312
5313 for_each_zone(zone)
5314 zone->min_unmapped_pages = (zone->present_pages *
5315 sysctl_min_unmapped_ratio) / 100;
5316 return 0;
5317 }
5318
5319 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5320 void __user *buffer, size_t *length, loff_t *ppos)
5321 {
5322 struct zone *zone;
5323 int rc;
5324
5325 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5326 if (rc)
5327 return rc;
5328
5329 for_each_zone(zone)
5330 zone->min_slab_pages = (zone->present_pages *
5331 sysctl_min_slab_ratio) / 100;
5332 return 0;
5333 }
5334 #endif
5335
5336 /*
5337 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5338 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5339 * whenever sysctl_lowmem_reserve_ratio changes.
5340 *
5341 * The reserve ratio obviously has absolutely no relation with the
5342 * minimum watermarks. The lowmem reserve ratio can only make sense
5343 * if in function of the boot time zone sizes.
5344 */
5345 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5346 void __user *buffer, size_t *length, loff_t *ppos)
5347 {
5348 proc_dointvec_minmax(table, write, buffer, length, ppos);
5349 setup_per_zone_lowmem_reserve();
5350 return 0;
5351 }
5352
5353 /*
5354 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5355 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5356 * can have before it gets flushed back to buddy allocator.
5357 */
5358
5359 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5360 void __user *buffer, size_t *length, loff_t *ppos)
5361 {
5362 struct zone *zone;
5363 unsigned int cpu;
5364 int ret;
5365
5366 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5367 if (!write || (ret < 0))
5368 return ret;
5369 for_each_populated_zone(zone) {
5370 for_each_possible_cpu(cpu) {
5371 unsigned long high;
5372 high = zone->present_pages / percpu_pagelist_fraction;
5373 setup_pagelist_highmark(
5374 per_cpu_ptr(zone->pageset, cpu), high);
5375 }
5376 }
5377 return 0;
5378 }
5379
5380 int hashdist = HASHDIST_DEFAULT;
5381
5382 #ifdef CONFIG_NUMA
5383 static int __init set_hashdist(char *str)
5384 {
5385 if (!str)
5386 return 0;
5387 hashdist = simple_strtoul(str, &str, 0);
5388 return 1;
5389 }
5390 __setup("hashdist=", set_hashdist);
5391 #endif
5392
5393 /*
5394 * allocate a large system hash table from bootmem
5395 * - it is assumed that the hash table must contain an exact power-of-2
5396 * quantity of entries
5397 * - limit is the number of hash buckets, not the total allocation size
5398 */
5399 void *__init alloc_large_system_hash(const char *tablename,
5400 unsigned long bucketsize,
5401 unsigned long numentries,
5402 int scale,
5403 int flags,
5404 unsigned int *_hash_shift,
5405 unsigned int *_hash_mask,
5406 unsigned long low_limit,
5407 unsigned long high_limit)
5408 {
5409 unsigned long long max = high_limit;
5410 unsigned long log2qty, size;
5411 void *table = NULL;
5412
5413 /* allow the kernel cmdline to have a say */
5414 if (!numentries) {
5415 /* round applicable memory size up to nearest megabyte */
5416 numentries = nr_kernel_pages;
5417 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5418 numentries >>= 20 - PAGE_SHIFT;
5419 numentries <<= 20 - PAGE_SHIFT;
5420
5421 /* limit to 1 bucket per 2^scale bytes of low memory */
5422 if (scale > PAGE_SHIFT)
5423 numentries >>= (scale - PAGE_SHIFT);
5424 else
5425 numentries <<= (PAGE_SHIFT - scale);
5426
5427 /* Make sure we've got at least a 0-order allocation.. */
5428 if (unlikely(flags & HASH_SMALL)) {
5429 /* Makes no sense without HASH_EARLY */
5430 WARN_ON(!(flags & HASH_EARLY));
5431 if (!(numentries >> *_hash_shift)) {
5432 numentries = 1UL << *_hash_shift;
5433 BUG_ON(!numentries);
5434 }
5435 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5436 numentries = PAGE_SIZE / bucketsize;
5437 }
5438 numentries = roundup_pow_of_two(numentries);
5439
5440 /* limit allocation size to 1/16 total memory by default */
5441 if (max == 0) {
5442 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5443 do_div(max, bucketsize);
5444 }
5445 max = min(max, 0x80000000ULL);
5446
5447 if (numentries < low_limit)
5448 numentries = low_limit;
5449 if (numentries > max)
5450 numentries = max;
5451
5452 log2qty = ilog2(numentries);
5453
5454 do {
5455 size = bucketsize << log2qty;
5456 if (flags & HASH_EARLY)
5457 table = alloc_bootmem_nopanic(size);
5458 else if (hashdist)
5459 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5460 else {
5461 /*
5462 * If bucketsize is not a power-of-two, we may free
5463 * some pages at the end of hash table which
5464 * alloc_pages_exact() automatically does
5465 */
5466 if (get_order(size) < MAX_ORDER) {
5467 table = alloc_pages_exact(size, GFP_ATOMIC);
5468 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5469 }
5470 }
5471 } while (!table && size > PAGE_SIZE && --log2qty);
5472
5473 if (!table)
5474 panic("Failed to allocate %s hash table\n", tablename);
5475
5476 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5477 tablename,
5478 (1UL << log2qty),
5479 ilog2(size) - PAGE_SHIFT,
5480 size);
5481
5482 if (_hash_shift)
5483 *_hash_shift = log2qty;
5484 if (_hash_mask)
5485 *_hash_mask = (1 << log2qty) - 1;
5486
5487 return table;
5488 }
5489
5490 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5491 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5492 unsigned long pfn)
5493 {
5494 #ifdef CONFIG_SPARSEMEM
5495 return __pfn_to_section(pfn)->pageblock_flags;
5496 #else
5497 return zone->pageblock_flags;
5498 #endif /* CONFIG_SPARSEMEM */
5499 }
5500
5501 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5502 {
5503 #ifdef CONFIG_SPARSEMEM
5504 pfn &= (PAGES_PER_SECTION-1);
5505 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5506 #else
5507 pfn = pfn - zone->zone_start_pfn;
5508 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5509 #endif /* CONFIG_SPARSEMEM */
5510 }
5511
5512 /**
5513 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5514 * @page: The page within the block of interest
5515 * @start_bitidx: The first bit of interest to retrieve
5516 * @end_bitidx: The last bit of interest
5517 * returns pageblock_bits flags
5518 */
5519 unsigned long get_pageblock_flags_group(struct page *page,
5520 int start_bitidx, int end_bitidx)
5521 {
5522 struct zone *zone;
5523 unsigned long *bitmap;
5524 unsigned long pfn, bitidx;
5525 unsigned long flags = 0;
5526 unsigned long value = 1;
5527
5528 zone = page_zone(page);
5529 pfn = page_to_pfn(page);
5530 bitmap = get_pageblock_bitmap(zone, pfn);
5531 bitidx = pfn_to_bitidx(zone, pfn);
5532
5533 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5534 if (test_bit(bitidx + start_bitidx, bitmap))
5535 flags |= value;
5536
5537 return flags;
5538 }
5539
5540 /**
5541 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5542 * @page: The page within the block of interest
5543 * @start_bitidx: The first bit of interest
5544 * @end_bitidx: The last bit of interest
5545 * @flags: The flags to set
5546 */
5547 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5548 int start_bitidx, int end_bitidx)
5549 {
5550 struct zone *zone;
5551 unsigned long *bitmap;
5552 unsigned long pfn, bitidx;
5553 unsigned long value = 1;
5554
5555 zone = page_zone(page);
5556 pfn = page_to_pfn(page);
5557 bitmap = get_pageblock_bitmap(zone, pfn);
5558 bitidx = pfn_to_bitidx(zone, pfn);
5559 VM_BUG_ON(pfn < zone->zone_start_pfn);
5560 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5561
5562 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5563 if (flags & value)
5564 __set_bit(bitidx + start_bitidx, bitmap);
5565 else
5566 __clear_bit(bitidx + start_bitidx, bitmap);
5567 }
5568
5569 /*
5570 * This function checks whether pageblock includes unmovable pages or not.
5571 * If @count is not zero, it is okay to include less @count unmovable pages
5572 *
5573 * PageLRU check wihtout isolation or lru_lock could race so that
5574 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5575 * expect this function should be exact.
5576 */
5577 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5578 {
5579 unsigned long pfn, iter, found;
5580 int mt;
5581
5582 /*
5583 * For avoiding noise data, lru_add_drain_all() should be called
5584 * If ZONE_MOVABLE, the zone never contains unmovable pages
5585 */
5586 if (zone_idx(zone) == ZONE_MOVABLE)
5587 return false;
5588 mt = get_pageblock_migratetype(page);
5589 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5590 return false;
5591
5592 pfn = page_to_pfn(page);
5593 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5594 unsigned long check = pfn + iter;
5595
5596 if (!pfn_valid_within(check))
5597 continue;
5598
5599 page = pfn_to_page(check);
5600 /*
5601 * We can't use page_count without pin a page
5602 * because another CPU can free compound page.
5603 * This check already skips compound tails of THP
5604 * because their page->_count is zero at all time.
5605 */
5606 if (!atomic_read(&page->_count)) {
5607 if (PageBuddy(page))
5608 iter += (1 << page_order(page)) - 1;
5609 continue;
5610 }
5611
5612 if (!PageLRU(page))
5613 found++;
5614 /*
5615 * If there are RECLAIMABLE pages, we need to check it.
5616 * But now, memory offline itself doesn't call shrink_slab()
5617 * and it still to be fixed.
5618 */
5619 /*
5620 * If the page is not RAM, page_count()should be 0.
5621 * we don't need more check. This is an _used_ not-movable page.
5622 *
5623 * The problematic thing here is PG_reserved pages. PG_reserved
5624 * is set to both of a memory hole page and a _used_ kernel
5625 * page at boot.
5626 */
5627 if (found > count)
5628 return true;
5629 }
5630 return false;
5631 }
5632
5633 bool is_pageblock_removable_nolock(struct page *page)
5634 {
5635 struct zone *zone;
5636 unsigned long pfn;
5637
5638 /*
5639 * We have to be careful here because we are iterating over memory
5640 * sections which are not zone aware so we might end up outside of
5641 * the zone but still within the section.
5642 * We have to take care about the node as well. If the node is offline
5643 * its NODE_DATA will be NULL - see page_zone.
5644 */
5645 if (!node_online(page_to_nid(page)))
5646 return false;
5647
5648 zone = page_zone(page);
5649 pfn = page_to_pfn(page);
5650 if (zone->zone_start_pfn > pfn ||
5651 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5652 return false;
5653
5654 return !has_unmovable_pages(zone, page, 0);
5655 }
5656
5657 #ifdef CONFIG_CMA
5658
5659 static unsigned long pfn_max_align_down(unsigned long pfn)
5660 {
5661 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5662 pageblock_nr_pages) - 1);
5663 }
5664
5665 static unsigned long pfn_max_align_up(unsigned long pfn)
5666 {
5667 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5668 pageblock_nr_pages));
5669 }
5670
5671 static struct page *
5672 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5673 int **resultp)
5674 {
5675 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5676
5677 if (PageHighMem(page))
5678 gfp_mask |= __GFP_HIGHMEM;
5679
5680 return alloc_page(gfp_mask);
5681 }
5682
5683 /* [start, end) must belong to a single zone. */
5684 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5685 {
5686 /* This function is based on compact_zone() from compaction.c. */
5687
5688 unsigned long pfn = start;
5689 unsigned int tries = 0;
5690 int ret = 0;
5691
5692 struct compact_control cc = {
5693 .nr_migratepages = 0,
5694 .order = -1,
5695 .zone = page_zone(pfn_to_page(start)),
5696 .sync = true,
5697 };
5698 INIT_LIST_HEAD(&cc.migratepages);
5699
5700 migrate_prep_local();
5701
5702 while (pfn < end || !list_empty(&cc.migratepages)) {
5703 if (fatal_signal_pending(current)) {
5704 ret = -EINTR;
5705 break;
5706 }
5707
5708 if (list_empty(&cc.migratepages)) {
5709 cc.nr_migratepages = 0;
5710 pfn = isolate_migratepages_range(cc.zone, &cc,
5711 pfn, end);
5712 if (!pfn) {
5713 ret = -EINTR;
5714 break;
5715 }
5716 tries = 0;
5717 } else if (++tries == 5) {
5718 ret = ret < 0 ? ret : -EBUSY;
5719 break;
5720 }
5721
5722 reclaim_clean_pages_from_list(cc.zone, &cc.migratepages);
5723
5724 ret = migrate_pages(&cc.migratepages,
5725 __alloc_contig_migrate_alloc,
5726 0, false, MIGRATE_SYNC);
5727 }
5728
5729 putback_lru_pages(&cc.migratepages);
5730 return ret > 0 ? 0 : ret;
5731 }
5732
5733 /*
5734 * Update zone's cma pages counter used for watermark level calculation.
5735 */
5736 static inline void __update_cma_watermarks(struct zone *zone, int count)
5737 {
5738 unsigned long flags;
5739 spin_lock_irqsave(&zone->lock, flags);
5740 zone->min_cma_pages += count;
5741 spin_unlock_irqrestore(&zone->lock, flags);
5742 setup_per_zone_wmarks();
5743 }
5744
5745 /*
5746 * Trigger memory pressure bump to reclaim some pages in order to be able to
5747 * allocate 'count' pages in single page units. Does similar work as
5748 *__alloc_pages_slowpath() function.
5749 */
5750 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5751 {
5752 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5753 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5754 int did_some_progress = 0;
5755 int order = 1;
5756
5757 /*
5758 * Increase level of watermarks to force kswapd do his job
5759 * to stabilise at new watermark level.
5760 */
5761 __update_cma_watermarks(zone, count);
5762
5763 /* Obey watermarks as if the page was being allocated */
5764 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5765 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5766
5767 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5768 NULL);
5769 if (!did_some_progress) {
5770 /* Exhausted what can be done so it's blamo time */
5771 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5772 }
5773 }
5774
5775 /* Restore original watermark levels. */
5776 __update_cma_watermarks(zone, -count);
5777
5778 return count;
5779 }
5780
5781 /**
5782 * alloc_contig_range() -- tries to allocate given range of pages
5783 * @start: start PFN to allocate
5784 * @end: one-past-the-last PFN to allocate
5785 * @migratetype: migratetype of the underlaying pageblocks (either
5786 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5787 * in range must have the same migratetype and it must
5788 * be either of the two.
5789 *
5790 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5791 * aligned, however it's the caller's responsibility to guarantee that
5792 * we are the only thread that changes migrate type of pageblocks the
5793 * pages fall in.
5794 *
5795 * The PFN range must belong to a single zone.
5796 *
5797 * Returns zero on success or negative error code. On success all
5798 * pages which PFN is in [start, end) are allocated for the caller and
5799 * need to be freed with free_contig_range().
5800 */
5801 int alloc_contig_range(unsigned long start, unsigned long end,
5802 unsigned migratetype)
5803 {
5804 struct zone *zone = page_zone(pfn_to_page(start));
5805 unsigned long outer_start, outer_end;
5806 int ret = 0, order;
5807
5808 /*
5809 * What we do here is we mark all pageblocks in range as
5810 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5811 * have different sizes, and due to the way page allocator
5812 * work, we align the range to biggest of the two pages so
5813 * that page allocator won't try to merge buddies from
5814 * different pageblocks and change MIGRATE_ISOLATE to some
5815 * other migration type.
5816 *
5817 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5818 * migrate the pages from an unaligned range (ie. pages that
5819 * we are interested in). This will put all the pages in
5820 * range back to page allocator as MIGRATE_ISOLATE.
5821 *
5822 * When this is done, we take the pages in range from page
5823 * allocator removing them from the buddy system. This way
5824 * page allocator will never consider using them.
5825 *
5826 * This lets us mark the pageblocks back as
5827 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5828 * aligned range but not in the unaligned, original range are
5829 * put back to page allocator so that buddy can use them.
5830 */
5831
5832 ret = start_isolate_page_range(pfn_max_align_down(start),
5833 pfn_max_align_up(end), migratetype);
5834 if (ret)
5835 goto done;
5836
5837 ret = __alloc_contig_migrate_range(start, end);
5838 if (ret)
5839 goto done;
5840
5841 /*
5842 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5843 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5844 * more, all pages in [start, end) are free in page allocator.
5845 * What we are going to do is to allocate all pages from
5846 * [start, end) (that is remove them from page allocator).
5847 *
5848 * The only problem is that pages at the beginning and at the
5849 * end of interesting range may be not aligned with pages that
5850 * page allocator holds, ie. they can be part of higher order
5851 * pages. Because of this, we reserve the bigger range and
5852 * once this is done free the pages we are not interested in.
5853 *
5854 * We don't have to hold zone->lock here because the pages are
5855 * isolated thus they won't get removed from buddy.
5856 */
5857
5858 lru_add_drain_all();
5859 drain_all_pages();
5860
5861 order = 0;
5862 outer_start = start;
5863 while (!PageBuddy(pfn_to_page(outer_start))) {
5864 if (++order >= MAX_ORDER) {
5865 ret = -EBUSY;
5866 goto done;
5867 }
5868 outer_start &= ~0UL << order;
5869 }
5870
5871 /* Make sure the range is really isolated. */
5872 if (test_pages_isolated(outer_start, end)) {
5873 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5874 outer_start, end);
5875 ret = -EBUSY;
5876 goto done;
5877 }
5878
5879 /*
5880 * Reclaim enough pages to make sure that contiguous allocation
5881 * will not starve the system.
5882 */
5883 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5884
5885 /* Grab isolated pages from freelists. */
5886 outer_end = isolate_freepages_range(outer_start, end);
5887 if (!outer_end) {
5888 ret = -EBUSY;
5889 goto done;
5890 }
5891
5892 /* Free head and tail (if any) */
5893 if (start != outer_start)
5894 free_contig_range(outer_start, start - outer_start);
5895 if (end != outer_end)
5896 free_contig_range(end, outer_end - end);
5897
5898 done:
5899 undo_isolate_page_range(pfn_max_align_down(start),
5900 pfn_max_align_up(end), migratetype);
5901 return ret;
5902 }
5903
5904 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5905 {
5906 for (; nr_pages--; ++pfn)
5907 __free_page(pfn_to_page(pfn));
5908 }
5909 #endif
5910
5911 #ifdef CONFIG_MEMORY_HOTPLUG
5912 static int __meminit __zone_pcp_update(void *data)
5913 {
5914 struct zone *zone = data;
5915 int cpu;
5916 unsigned long batch = zone_batchsize(zone), flags;
5917
5918 for_each_possible_cpu(cpu) {
5919 struct per_cpu_pageset *pset;
5920 struct per_cpu_pages *pcp;
5921
5922 pset = per_cpu_ptr(zone->pageset, cpu);
5923 pcp = &pset->pcp;
5924
5925 local_irq_save(flags);
5926 if (pcp->count > 0)
5927 free_pcppages_bulk(zone, pcp->count, pcp);
5928 setup_pageset(pset, batch);
5929 local_irq_restore(flags);
5930 }
5931 return 0;
5932 }
5933
5934 void __meminit zone_pcp_update(struct zone *zone)
5935 {
5936 stop_machine(__zone_pcp_update, zone, NULL);
5937 }
5938 #endif
5939
5940 #ifdef CONFIG_MEMORY_HOTREMOVE
5941 void zone_pcp_reset(struct zone *zone)
5942 {
5943 unsigned long flags;
5944
5945 /* avoid races with drain_pages() */
5946 local_irq_save(flags);
5947 if (zone->pageset != &boot_pageset) {
5948 free_percpu(zone->pageset);
5949 zone->pageset = &boot_pageset;
5950 }
5951 local_irq_restore(flags);
5952 }
5953
5954 /*
5955 * All pages in the range must be isolated before calling this.
5956 */
5957 void
5958 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5959 {
5960 struct page *page;
5961 struct zone *zone;
5962 int order, i;
5963 unsigned long pfn;
5964 unsigned long flags;
5965 /* find the first valid pfn */
5966 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5967 if (pfn_valid(pfn))
5968 break;
5969 if (pfn == end_pfn)
5970 return;
5971 zone = page_zone(pfn_to_page(pfn));
5972 spin_lock_irqsave(&zone->lock, flags);
5973 pfn = start_pfn;
5974 while (pfn < end_pfn) {
5975 if (!pfn_valid(pfn)) {
5976 pfn++;
5977 continue;
5978 }
5979 page = pfn_to_page(pfn);
5980 BUG_ON(page_count(page));
5981 BUG_ON(!PageBuddy(page));
5982 order = page_order(page);
5983 #ifdef CONFIG_DEBUG_VM
5984 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5985 pfn, 1 << order, end_pfn);
5986 #endif
5987 list_del(&page->lru);
5988 rmv_page_order(page);
5989 zone->free_area[order].nr_free--;
5990 __mod_zone_page_state(zone, NR_FREE_PAGES,
5991 - (1UL << order));
5992 for (i = 0; i < (1 << order); i++)
5993 SetPageReserved((page+i));
5994 pfn += (1 << order);
5995 }
5996 spin_unlock_irqrestore(&zone->lock, flags);
5997 }
5998 #endif
5999
6000 #ifdef CONFIG_MEMORY_FAILURE
6001 bool is_free_buddy_page(struct page *page)
6002 {
6003 struct zone *zone = page_zone(page);
6004 unsigned long pfn = page_to_pfn(page);
6005 unsigned long flags;
6006 int order;
6007
6008 spin_lock_irqsave(&zone->lock, flags);
6009 for (order = 0; order < MAX_ORDER; order++) {
6010 struct page *page_head = page - (pfn & ((1 << order) - 1));
6011
6012 if (PageBuddy(page_head) && page_order(page_head) >= order)
6013 break;
6014 }
6015 spin_unlock_irqrestore(&zone->lock, flags);
6016
6017 return order < MAX_ORDER;
6018 }
6019 #endif
6020
6021 static const struct trace_print_flags pageflag_names[] = {
6022 {1UL << PG_locked, "locked" },
6023 {1UL << PG_error, "error" },
6024 {1UL << PG_referenced, "referenced" },
6025 {1UL << PG_uptodate, "uptodate" },
6026 {1UL << PG_dirty, "dirty" },
6027 {1UL << PG_lru, "lru" },
6028 {1UL << PG_active, "active" },
6029 {1UL << PG_slab, "slab" },
6030 {1UL << PG_owner_priv_1, "owner_priv_1" },
6031 {1UL << PG_arch_1, "arch_1" },
6032 {1UL << PG_reserved, "reserved" },
6033 {1UL << PG_private, "private" },
6034 {1UL << PG_private_2, "private_2" },
6035 {1UL << PG_writeback, "writeback" },
6036 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6037 {1UL << PG_head, "head" },
6038 {1UL << PG_tail, "tail" },
6039 #else
6040 {1UL << PG_compound, "compound" },
6041 #endif
6042 {1UL << PG_swapcache, "swapcache" },
6043 {1UL << PG_mappedtodisk, "mappedtodisk" },
6044 {1UL << PG_reclaim, "reclaim" },
6045 {1UL << PG_swapbacked, "swapbacked" },
6046 {1UL << PG_unevictable, "unevictable" },
6047 #ifdef CONFIG_MMU
6048 {1UL << PG_mlocked, "mlocked" },
6049 #endif
6050 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6051 {1UL << PG_uncached, "uncached" },
6052 #endif
6053 #ifdef CONFIG_MEMORY_FAILURE
6054 {1UL << PG_hwpoison, "hwpoison" },
6055 #endif
6056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6057 {1UL << PG_compound_lock, "compound_lock" },
6058 #endif
6059 };
6060
6061 static void dump_page_flags(unsigned long flags)
6062 {
6063 const char *delim = "";
6064 unsigned long mask;
6065 int i;
6066
6067 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6068
6069 printk(KERN_ALERT "page flags: %#lx(", flags);
6070
6071 /* remove zone id */
6072 flags &= (1UL << NR_PAGEFLAGS) - 1;
6073
6074 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6075
6076 mask = pageflag_names[i].mask;
6077 if ((flags & mask) != mask)
6078 continue;
6079
6080 flags &= ~mask;
6081 printk("%s%s", delim, pageflag_names[i].name);
6082 delim = "|";
6083 }
6084
6085 /* check for left over flags */
6086 if (flags)
6087 printk("%s%#lx", delim, flags);
6088
6089 printk(")\n");
6090 }
6091
6092 void dump_page(struct page *page)
6093 {
6094 printk(KERN_ALERT
6095 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6096 page, atomic_read(&page->_count), page_mapcount(page),
6097 page->mapping, page->index);
6098 dump_page_flags(page->flags);
6099 mem_cgroup_print_bad_page(page);
6100 }
This page took 0.164014 seconds and 5 git commands to generate.