mm: vmscan: fix do_try_to_free_pages() livelock
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237
238 if (unlikely(page_group_by_mobility_disabled))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page)
299 {
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
306 page_mapcount_reset(page); /* remove PageBuddy */
307 return;
308 }
309
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
331 current->comm, page_to_pfn(page));
332 dump_page(page);
333
334 print_modules();
335 dump_stack();
336 out:
337 /* Leave bad fields for debug, except PageBuddy could make trouble */
338 page_mapcount_reset(page); /* remove PageBuddy */
339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341
342 /*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
351 *
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
355 */
356
357 static void free_compound_page(struct page *page)
358 {
359 __free_pages_ok(page, compound_order(page));
360 }
361
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
372 __SetPageTail(p);
373 set_page_count(p, 0);
374 p->first_page = page;
375 }
376 }
377
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 int i;
382 int nr_pages = 1 << order;
383 int bad = 0;
384
385 if (unlikely(compound_order(page) != order)) {
386 bad_page(page);
387 bad++;
388 }
389
390 __ClearPageHead(page);
391
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
394
395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 bad_page(page);
397 bad++;
398 }
399 __ClearPageTail(p);
400 }
401
402 return bad;
403 }
404
405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 {
407 int i;
408
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416 }
417
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 unsigned int _debug_guardpage_minorder;
420
421 static int __init debug_guardpage_minorder_setup(char *buf)
422 {
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432 }
433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435 static inline void set_page_guard_flag(struct page *page)
436 {
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438 }
439
440 static inline void clear_page_guard_flag(struct page *page)
441 {
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444 #else
445 static inline void set_page_guard_flag(struct page *page) { }
446 static inline void clear_page_guard_flag(struct page *page) { }
447 #endif
448
449 static inline void set_page_order(struct page *page, int order)
450 {
451 set_page_private(page, order);
452 __SetPageBuddy(page);
453 }
454
455 static inline void rmv_page_order(struct page *page)
456 {
457 __ClearPageBuddy(page);
458 set_page_private(page, 0);
459 }
460
461 /*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477 */
478 static inline unsigned long
479 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 {
481 return page_idx ^ (1 << order);
482 }
483
484 /*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
487 * (a) the buddy is not in a hole &&
488 * (b) the buddy is in the buddy system &&
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
491 *
492 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
493 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
494 *
495 * For recording page's order, we use page_private(page).
496 */
497 static inline int page_is_buddy(struct page *page, struct page *buddy,
498 int order)
499 {
500 if (!pfn_valid_within(page_to_pfn(buddy)))
501 return 0;
502
503 if (page_zone_id(page) != page_zone_id(buddy))
504 return 0;
505
506 if (page_is_guard(buddy) && page_order(buddy) == order) {
507 VM_BUG_ON(page_count(buddy) != 0);
508 return 1;
509 }
510
511 if (PageBuddy(buddy) && page_order(buddy) == order) {
512 VM_BUG_ON(page_count(buddy) != 0);
513 return 1;
514 }
515 return 0;
516 }
517
518 /*
519 * Freeing function for a buddy system allocator.
520 *
521 * The concept of a buddy system is to maintain direct-mapped table
522 * (containing bit values) for memory blocks of various "orders".
523 * The bottom level table contains the map for the smallest allocatable
524 * units of memory (here, pages), and each level above it describes
525 * pairs of units from the levels below, hence, "buddies".
526 * At a high level, all that happens here is marking the table entry
527 * at the bottom level available, and propagating the changes upward
528 * as necessary, plus some accounting needed to play nicely with other
529 * parts of the VM system.
530 * At each level, we keep a list of pages, which are heads of continuous
531 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
532 * order is recorded in page_private(page) field.
533 * So when we are allocating or freeing one, we can derive the state of the
534 * other. That is, if we allocate a small block, and both were
535 * free, the remainder of the region must be split into blocks.
536 * If a block is freed, and its buddy is also free, then this
537 * triggers coalescing into a block of larger size.
538 *
539 * -- nyc
540 */
541
542 static inline void __free_one_page(struct page *page,
543 struct zone *zone, unsigned int order,
544 int migratetype)
545 {
546 unsigned long page_idx;
547 unsigned long combined_idx;
548 unsigned long uninitialized_var(buddy_idx);
549 struct page *buddy;
550
551 VM_BUG_ON(!zone_is_initialized(zone));
552
553 if (unlikely(PageCompound(page)))
554 if (unlikely(destroy_compound_page(page, order)))
555 return;
556
557 VM_BUG_ON(migratetype == -1);
558
559 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
560
561 VM_BUG_ON(page_idx & ((1 << order) - 1));
562 VM_BUG_ON(bad_range(zone, page));
563
564 while (order < MAX_ORDER-1) {
565 buddy_idx = __find_buddy_index(page_idx, order);
566 buddy = page + (buddy_idx - page_idx);
567 if (!page_is_buddy(page, buddy, order))
568 break;
569 /*
570 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
571 * merge with it and move up one order.
572 */
573 if (page_is_guard(buddy)) {
574 clear_page_guard_flag(buddy);
575 set_page_private(page, 0);
576 __mod_zone_freepage_state(zone, 1 << order,
577 migratetype);
578 } else {
579 list_del(&buddy->lru);
580 zone->free_area[order].nr_free--;
581 rmv_page_order(buddy);
582 }
583 combined_idx = buddy_idx & page_idx;
584 page = page + (combined_idx - page_idx);
585 page_idx = combined_idx;
586 order++;
587 }
588 set_page_order(page, order);
589
590 /*
591 * If this is not the largest possible page, check if the buddy
592 * of the next-highest order is free. If it is, it's possible
593 * that pages are being freed that will coalesce soon. In case,
594 * that is happening, add the free page to the tail of the list
595 * so it's less likely to be used soon and more likely to be merged
596 * as a higher order page
597 */
598 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
599 struct page *higher_page, *higher_buddy;
600 combined_idx = buddy_idx & page_idx;
601 higher_page = page + (combined_idx - page_idx);
602 buddy_idx = __find_buddy_index(combined_idx, order + 1);
603 higher_buddy = higher_page + (buddy_idx - combined_idx);
604 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
605 list_add_tail(&page->lru,
606 &zone->free_area[order].free_list[migratetype]);
607 goto out;
608 }
609 }
610
611 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
612 out:
613 zone->free_area[order].nr_free++;
614 }
615
616 static inline int free_pages_check(struct page *page)
617 {
618 if (unlikely(page_mapcount(page) |
619 (page->mapping != NULL) |
620 (atomic_read(&page->_count) != 0) |
621 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
622 (mem_cgroup_bad_page_check(page)))) {
623 bad_page(page);
624 return 1;
625 }
626 page_nid_reset_last(page);
627 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
628 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
629 return 0;
630 }
631
632 /*
633 * Frees a number of pages from the PCP lists
634 * Assumes all pages on list are in same zone, and of same order.
635 * count is the number of pages to free.
636 *
637 * If the zone was previously in an "all pages pinned" state then look to
638 * see if this freeing clears that state.
639 *
640 * And clear the zone's pages_scanned counter, to hold off the "all pages are
641 * pinned" detection logic.
642 */
643 static void free_pcppages_bulk(struct zone *zone, int count,
644 struct per_cpu_pages *pcp)
645 {
646 int migratetype = 0;
647 int batch_free = 0;
648 int to_free = count;
649
650 spin_lock(&zone->lock);
651 zone->pages_scanned = 0;
652
653 while (to_free) {
654 struct page *page;
655 struct list_head *list;
656
657 /*
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
662 * lists
663 */
664 do {
665 batch_free++;
666 if (++migratetype == MIGRATE_PCPTYPES)
667 migratetype = 0;
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
670
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
674
675 do {
676 int mt; /* migratetype of the to-be-freed page */
677
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
681 mt = get_freepage_migratetype(page);
682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
685 if (likely(!is_migrate_isolate_page(page))) {
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
689 }
690 } while (--to_free && --batch_free && !list_empty(list));
691 }
692 spin_unlock(&zone->lock);
693 }
694
695 static void free_one_page(struct zone *zone, struct page *page, int order,
696 int migratetype)
697 {
698 spin_lock(&zone->lock);
699 zone->pages_scanned = 0;
700
701 __free_one_page(page, zone, order, migratetype);
702 if (unlikely(!is_migrate_isolate(migratetype)))
703 __mod_zone_freepage_state(zone, 1 << order, migratetype);
704 spin_unlock(&zone->lock);
705 }
706
707 static bool free_pages_prepare(struct page *page, unsigned int order)
708 {
709 int i;
710 int bad = 0;
711
712 trace_mm_page_free(page, order);
713 kmemcheck_free_shadow(page, order);
714
715 if (PageAnon(page))
716 page->mapping = NULL;
717 for (i = 0; i < (1 << order); i++)
718 bad += free_pages_check(page + i);
719 if (bad)
720 return false;
721
722 if (!PageHighMem(page)) {
723 debug_check_no_locks_freed(page_address(page),
724 PAGE_SIZE << order);
725 debug_check_no_obj_freed(page_address(page),
726 PAGE_SIZE << order);
727 }
728 arch_free_page(page, order);
729 kernel_map_pages(page, 1 << order, 0);
730
731 return true;
732 }
733
734 static void __free_pages_ok(struct page *page, unsigned int order)
735 {
736 unsigned long flags;
737 int migratetype;
738
739 if (!free_pages_prepare(page, order))
740 return;
741
742 local_irq_save(flags);
743 __count_vm_events(PGFREE, 1 << order);
744 migratetype = get_pageblock_migratetype(page);
745 set_freepage_migratetype(page, migratetype);
746 free_one_page(page_zone(page), page, order, migratetype);
747 local_irq_restore(flags);
748 }
749
750 void __init __free_pages_bootmem(struct page *page, unsigned int order)
751 {
752 unsigned int nr_pages = 1 << order;
753 struct page *p = page;
754 unsigned int loop;
755
756 prefetchw(p);
757 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
758 prefetchw(p + 1);
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
761 }
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
764
765 page_zone(page)->managed_pages += nr_pages;
766 set_page_refcounted(page);
767 __free_pages(page, order);
768 }
769
770 #ifdef CONFIG_CMA
771 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
772 void __init init_cma_reserved_pageblock(struct page *page)
773 {
774 unsigned i = pageblock_nr_pages;
775 struct page *p = page;
776
777 do {
778 __ClearPageReserved(p);
779 set_page_count(p, 0);
780 } while (++p, --i);
781
782 set_page_refcounted(page);
783 set_pageblock_migratetype(page, MIGRATE_CMA);
784 __free_pages(page, pageblock_order);
785 adjust_managed_page_count(page, pageblock_nr_pages);
786 }
787 #endif
788
789 /*
790 * The order of subdivision here is critical for the IO subsystem.
791 * Please do not alter this order without good reasons and regression
792 * testing. Specifically, as large blocks of memory are subdivided,
793 * the order in which smaller blocks are delivered depends on the order
794 * they're subdivided in this function. This is the primary factor
795 * influencing the order in which pages are delivered to the IO
796 * subsystem according to empirical testing, and this is also justified
797 * by considering the behavior of a buddy system containing a single
798 * large block of memory acted on by a series of small allocations.
799 * This behavior is a critical factor in sglist merging's success.
800 *
801 * -- nyc
802 */
803 static inline void expand(struct zone *zone, struct page *page,
804 int low, int high, struct free_area *area,
805 int migratetype)
806 {
807 unsigned long size = 1 << high;
808
809 while (high > low) {
810 area--;
811 high--;
812 size >>= 1;
813 VM_BUG_ON(bad_range(zone, &page[size]));
814
815 #ifdef CONFIG_DEBUG_PAGEALLOC
816 if (high < debug_guardpage_minorder()) {
817 /*
818 * Mark as guard pages (or page), that will allow to
819 * merge back to allocator when buddy will be freed.
820 * Corresponding page table entries will not be touched,
821 * pages will stay not present in virtual address space
822 */
823 INIT_LIST_HEAD(&page[size].lru);
824 set_page_guard_flag(&page[size]);
825 set_page_private(&page[size], high);
826 /* Guard pages are not available for any usage */
827 __mod_zone_freepage_state(zone, -(1 << high),
828 migratetype);
829 continue;
830 }
831 #endif
832 list_add(&page[size].lru, &area->free_list[migratetype]);
833 area->nr_free++;
834 set_page_order(&page[size], high);
835 }
836 }
837
838 /*
839 * This page is about to be returned from the page allocator
840 */
841 static inline int check_new_page(struct page *page)
842 {
843 if (unlikely(page_mapcount(page) |
844 (page->mapping != NULL) |
845 (atomic_read(&page->_count) != 0) |
846 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
847 (mem_cgroup_bad_page_check(page)))) {
848 bad_page(page);
849 return 1;
850 }
851 return 0;
852 }
853
854 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
855 {
856 int i;
857
858 for (i = 0; i < (1 << order); i++) {
859 struct page *p = page + i;
860 if (unlikely(check_new_page(p)))
861 return 1;
862 }
863
864 set_page_private(page, 0);
865 set_page_refcounted(page);
866
867 arch_alloc_page(page, order);
868 kernel_map_pages(page, 1 << order, 1);
869
870 if (gfp_flags & __GFP_ZERO)
871 prep_zero_page(page, order, gfp_flags);
872
873 if (order && (gfp_flags & __GFP_COMP))
874 prep_compound_page(page, order);
875
876 return 0;
877 }
878
879 /*
880 * Go through the free lists for the given migratetype and remove
881 * the smallest available page from the freelists
882 */
883 static inline
884 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
885 int migratetype)
886 {
887 unsigned int current_order;
888 struct free_area *area;
889 struct page *page;
890
891 /* Find a page of the appropriate size in the preferred list */
892 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
893 area = &(zone->free_area[current_order]);
894 if (list_empty(&area->free_list[migratetype]))
895 continue;
896
897 page = list_entry(area->free_list[migratetype].next,
898 struct page, lru);
899 list_del(&page->lru);
900 rmv_page_order(page);
901 area->nr_free--;
902 expand(zone, page, order, current_order, area, migratetype);
903 return page;
904 }
905
906 return NULL;
907 }
908
909
910 /*
911 * This array describes the order lists are fallen back to when
912 * the free lists for the desirable migrate type are depleted
913 */
914 static int fallbacks[MIGRATE_TYPES][4] = {
915 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
916 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917 #ifdef CONFIG_CMA
918 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
920 #else
921 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 #endif
923 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
924 #ifdef CONFIG_MEMORY_ISOLATION
925 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
926 #endif
927 };
928
929 /*
930 * Move the free pages in a range to the free lists of the requested type.
931 * Note that start_page and end_pages are not aligned on a pageblock
932 * boundary. If alignment is required, use move_freepages_block()
933 */
934 int move_freepages(struct zone *zone,
935 struct page *start_page, struct page *end_page,
936 int migratetype)
937 {
938 struct page *page;
939 unsigned long order;
940 int pages_moved = 0;
941
942 #ifndef CONFIG_HOLES_IN_ZONE
943 /*
944 * page_zone is not safe to call in this context when
945 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
946 * anyway as we check zone boundaries in move_freepages_block().
947 * Remove at a later date when no bug reports exist related to
948 * grouping pages by mobility
949 */
950 BUG_ON(page_zone(start_page) != page_zone(end_page));
951 #endif
952
953 for (page = start_page; page <= end_page;) {
954 /* Make sure we are not inadvertently changing nodes */
955 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
956
957 if (!pfn_valid_within(page_to_pfn(page))) {
958 page++;
959 continue;
960 }
961
962 if (!PageBuddy(page)) {
963 page++;
964 continue;
965 }
966
967 order = page_order(page);
968 list_move(&page->lru,
969 &zone->free_area[order].free_list[migratetype]);
970 set_freepage_migratetype(page, migratetype);
971 page += 1 << order;
972 pages_moved += 1 << order;
973 }
974
975 return pages_moved;
976 }
977
978 int move_freepages_block(struct zone *zone, struct page *page,
979 int migratetype)
980 {
981 unsigned long start_pfn, end_pfn;
982 struct page *start_page, *end_page;
983
984 start_pfn = page_to_pfn(page);
985 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
986 start_page = pfn_to_page(start_pfn);
987 end_page = start_page + pageblock_nr_pages - 1;
988 end_pfn = start_pfn + pageblock_nr_pages - 1;
989
990 /* Do not cross zone boundaries */
991 if (!zone_spans_pfn(zone, start_pfn))
992 start_page = page;
993 if (!zone_spans_pfn(zone, end_pfn))
994 return 0;
995
996 return move_freepages(zone, start_page, end_page, migratetype);
997 }
998
999 static void change_pageblock_range(struct page *pageblock_page,
1000 int start_order, int migratetype)
1001 {
1002 int nr_pageblocks = 1 << (start_order - pageblock_order);
1003
1004 while (nr_pageblocks--) {
1005 set_pageblock_migratetype(pageblock_page, migratetype);
1006 pageblock_page += pageblock_nr_pages;
1007 }
1008 }
1009
1010 /*
1011 * If breaking a large block of pages, move all free pages to the preferred
1012 * allocation list. If falling back for a reclaimable kernel allocation, be
1013 * more aggressive about taking ownership of free pages.
1014 *
1015 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1016 * nor move CMA pages to different free lists. We don't want unmovable pages
1017 * to be allocated from MIGRATE_CMA areas.
1018 *
1019 * Returns the new migratetype of the pageblock (or the same old migratetype
1020 * if it was unchanged).
1021 */
1022 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1023 int start_type, int fallback_type)
1024 {
1025 int current_order = page_order(page);
1026
1027 if (is_migrate_cma(fallback_type))
1028 return fallback_type;
1029
1030 /* Take ownership for orders >= pageblock_order */
1031 if (current_order >= pageblock_order) {
1032 change_pageblock_range(page, current_order, start_type);
1033 return start_type;
1034 }
1035
1036 if (current_order >= pageblock_order / 2 ||
1037 start_type == MIGRATE_RECLAIMABLE ||
1038 page_group_by_mobility_disabled) {
1039 int pages;
1040
1041 pages = move_freepages_block(zone, page, start_type);
1042
1043 /* Claim the whole block if over half of it is free */
1044 if (pages >= (1 << (pageblock_order-1)) ||
1045 page_group_by_mobility_disabled) {
1046
1047 set_pageblock_migratetype(page, start_type);
1048 return start_type;
1049 }
1050
1051 }
1052
1053 return fallback_type;
1054 }
1055
1056 /* Remove an element from the buddy allocator from the fallback list */
1057 static inline struct page *
1058 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1059 {
1060 struct free_area *area;
1061 int current_order;
1062 struct page *page;
1063 int migratetype, new_type, i;
1064
1065 /* Find the largest possible block of pages in the other list */
1066 for (current_order = MAX_ORDER-1; current_order >= order;
1067 --current_order) {
1068 for (i = 0;; i++) {
1069 migratetype = fallbacks[start_migratetype][i];
1070
1071 /* MIGRATE_RESERVE handled later if necessary */
1072 if (migratetype == MIGRATE_RESERVE)
1073 break;
1074
1075 area = &(zone->free_area[current_order]);
1076 if (list_empty(&area->free_list[migratetype]))
1077 continue;
1078
1079 page = list_entry(area->free_list[migratetype].next,
1080 struct page, lru);
1081 area->nr_free--;
1082
1083 new_type = try_to_steal_freepages(zone, page,
1084 start_migratetype,
1085 migratetype);
1086
1087 /* Remove the page from the freelists */
1088 list_del(&page->lru);
1089 rmv_page_order(page);
1090
1091 /*
1092 * Borrow the excess buddy pages as well, irrespective
1093 * of whether we stole freepages, or took ownership of
1094 * the pageblock or not.
1095 *
1096 * Exception: When borrowing from MIGRATE_CMA, release
1097 * the excess buddy pages to CMA itself.
1098 */
1099 expand(zone, page, order, current_order, area,
1100 is_migrate_cma(migratetype)
1101 ? migratetype : start_migratetype);
1102
1103 trace_mm_page_alloc_extfrag(page, order,
1104 current_order, start_migratetype, migratetype,
1105 new_type == start_migratetype);
1106
1107 return page;
1108 }
1109 }
1110
1111 return NULL;
1112 }
1113
1114 /*
1115 * Do the hard work of removing an element from the buddy allocator.
1116 * Call me with the zone->lock already held.
1117 */
1118 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1119 int migratetype)
1120 {
1121 struct page *page;
1122
1123 retry_reserve:
1124 page = __rmqueue_smallest(zone, order, migratetype);
1125
1126 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1127 page = __rmqueue_fallback(zone, order, migratetype);
1128
1129 /*
1130 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1131 * is used because __rmqueue_smallest is an inline function
1132 * and we want just one call site
1133 */
1134 if (!page) {
1135 migratetype = MIGRATE_RESERVE;
1136 goto retry_reserve;
1137 }
1138 }
1139
1140 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1141 return page;
1142 }
1143
1144 /*
1145 * Obtain a specified number of elements from the buddy allocator, all under
1146 * a single hold of the lock, for efficiency. Add them to the supplied list.
1147 * Returns the number of new pages which were placed at *list.
1148 */
1149 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1150 unsigned long count, struct list_head *list,
1151 int migratetype, int cold)
1152 {
1153 int mt = migratetype, i;
1154
1155 spin_lock(&zone->lock);
1156 for (i = 0; i < count; ++i) {
1157 struct page *page = __rmqueue(zone, order, migratetype);
1158 if (unlikely(page == NULL))
1159 break;
1160
1161 /*
1162 * Split buddy pages returned by expand() are received here
1163 * in physical page order. The page is added to the callers and
1164 * list and the list head then moves forward. From the callers
1165 * perspective, the linked list is ordered by page number in
1166 * some conditions. This is useful for IO devices that can
1167 * merge IO requests if the physical pages are ordered
1168 * properly.
1169 */
1170 if (likely(cold == 0))
1171 list_add(&page->lru, list);
1172 else
1173 list_add_tail(&page->lru, list);
1174 if (IS_ENABLED(CONFIG_CMA)) {
1175 mt = get_pageblock_migratetype(page);
1176 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1177 mt = migratetype;
1178 }
1179 set_freepage_migratetype(page, mt);
1180 list = &page->lru;
1181 if (is_migrate_cma(mt))
1182 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1183 -(1 << order));
1184 }
1185 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1186 spin_unlock(&zone->lock);
1187 return i;
1188 }
1189
1190 #ifdef CONFIG_NUMA
1191 /*
1192 * Called from the vmstat counter updater to drain pagesets of this
1193 * currently executing processor on remote nodes after they have
1194 * expired.
1195 *
1196 * Note that this function must be called with the thread pinned to
1197 * a single processor.
1198 */
1199 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1200 {
1201 unsigned long flags;
1202 int to_drain;
1203 unsigned long batch;
1204
1205 local_irq_save(flags);
1206 batch = ACCESS_ONCE(pcp->batch);
1207 if (pcp->count >= batch)
1208 to_drain = batch;
1209 else
1210 to_drain = pcp->count;
1211 if (to_drain > 0) {
1212 free_pcppages_bulk(zone, to_drain, pcp);
1213 pcp->count -= to_drain;
1214 }
1215 local_irq_restore(flags);
1216 }
1217 #endif
1218
1219 /*
1220 * Drain pages of the indicated processor.
1221 *
1222 * The processor must either be the current processor and the
1223 * thread pinned to the current processor or a processor that
1224 * is not online.
1225 */
1226 static void drain_pages(unsigned int cpu)
1227 {
1228 unsigned long flags;
1229 struct zone *zone;
1230
1231 for_each_populated_zone(zone) {
1232 struct per_cpu_pageset *pset;
1233 struct per_cpu_pages *pcp;
1234
1235 local_irq_save(flags);
1236 pset = per_cpu_ptr(zone->pageset, cpu);
1237
1238 pcp = &pset->pcp;
1239 if (pcp->count) {
1240 free_pcppages_bulk(zone, pcp->count, pcp);
1241 pcp->count = 0;
1242 }
1243 local_irq_restore(flags);
1244 }
1245 }
1246
1247 /*
1248 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1249 */
1250 void drain_local_pages(void *arg)
1251 {
1252 drain_pages(smp_processor_id());
1253 }
1254
1255 /*
1256 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1257 *
1258 * Note that this code is protected against sending an IPI to an offline
1259 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1260 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1261 * nothing keeps CPUs from showing up after we populated the cpumask and
1262 * before the call to on_each_cpu_mask().
1263 */
1264 void drain_all_pages(void)
1265 {
1266 int cpu;
1267 struct per_cpu_pageset *pcp;
1268 struct zone *zone;
1269
1270 /*
1271 * Allocate in the BSS so we wont require allocation in
1272 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1273 */
1274 static cpumask_t cpus_with_pcps;
1275
1276 /*
1277 * We don't care about racing with CPU hotplug event
1278 * as offline notification will cause the notified
1279 * cpu to drain that CPU pcps and on_each_cpu_mask
1280 * disables preemption as part of its processing
1281 */
1282 for_each_online_cpu(cpu) {
1283 bool has_pcps = false;
1284 for_each_populated_zone(zone) {
1285 pcp = per_cpu_ptr(zone->pageset, cpu);
1286 if (pcp->pcp.count) {
1287 has_pcps = true;
1288 break;
1289 }
1290 }
1291 if (has_pcps)
1292 cpumask_set_cpu(cpu, &cpus_with_pcps);
1293 else
1294 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1295 }
1296 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1297 }
1298
1299 #ifdef CONFIG_HIBERNATION
1300
1301 void mark_free_pages(struct zone *zone)
1302 {
1303 unsigned long pfn, max_zone_pfn;
1304 unsigned long flags;
1305 int order, t;
1306 struct list_head *curr;
1307
1308 if (zone_is_empty(zone))
1309 return;
1310
1311 spin_lock_irqsave(&zone->lock, flags);
1312
1313 max_zone_pfn = zone_end_pfn(zone);
1314 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1315 if (pfn_valid(pfn)) {
1316 struct page *page = pfn_to_page(pfn);
1317
1318 if (!swsusp_page_is_forbidden(page))
1319 swsusp_unset_page_free(page);
1320 }
1321
1322 for_each_migratetype_order(order, t) {
1323 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1324 unsigned long i;
1325
1326 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1327 for (i = 0; i < (1UL << order); i++)
1328 swsusp_set_page_free(pfn_to_page(pfn + i));
1329 }
1330 }
1331 spin_unlock_irqrestore(&zone->lock, flags);
1332 }
1333 #endif /* CONFIG_PM */
1334
1335 /*
1336 * Free a 0-order page
1337 * cold == 1 ? free a cold page : free a hot page
1338 */
1339 void free_hot_cold_page(struct page *page, int cold)
1340 {
1341 struct zone *zone = page_zone(page);
1342 struct per_cpu_pages *pcp;
1343 unsigned long flags;
1344 int migratetype;
1345
1346 if (!free_pages_prepare(page, 0))
1347 return;
1348
1349 migratetype = get_pageblock_migratetype(page);
1350 set_freepage_migratetype(page, migratetype);
1351 local_irq_save(flags);
1352 __count_vm_event(PGFREE);
1353
1354 /*
1355 * We only track unmovable, reclaimable and movable on pcp lists.
1356 * Free ISOLATE pages back to the allocator because they are being
1357 * offlined but treat RESERVE as movable pages so we can get those
1358 * areas back if necessary. Otherwise, we may have to free
1359 * excessively into the page allocator
1360 */
1361 if (migratetype >= MIGRATE_PCPTYPES) {
1362 if (unlikely(is_migrate_isolate(migratetype))) {
1363 free_one_page(zone, page, 0, migratetype);
1364 goto out;
1365 }
1366 migratetype = MIGRATE_MOVABLE;
1367 }
1368
1369 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1370 if (cold)
1371 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1372 else
1373 list_add(&page->lru, &pcp->lists[migratetype]);
1374 pcp->count++;
1375 if (pcp->count >= pcp->high) {
1376 unsigned long batch = ACCESS_ONCE(pcp->batch);
1377 free_pcppages_bulk(zone, batch, pcp);
1378 pcp->count -= batch;
1379 }
1380
1381 out:
1382 local_irq_restore(flags);
1383 }
1384
1385 /*
1386 * Free a list of 0-order pages
1387 */
1388 void free_hot_cold_page_list(struct list_head *list, int cold)
1389 {
1390 struct page *page, *next;
1391
1392 list_for_each_entry_safe(page, next, list, lru) {
1393 trace_mm_page_free_batched(page, cold);
1394 free_hot_cold_page(page, cold);
1395 }
1396 }
1397
1398 /*
1399 * split_page takes a non-compound higher-order page, and splits it into
1400 * n (1<<order) sub-pages: page[0..n]
1401 * Each sub-page must be freed individually.
1402 *
1403 * Note: this is probably too low level an operation for use in drivers.
1404 * Please consult with lkml before using this in your driver.
1405 */
1406 void split_page(struct page *page, unsigned int order)
1407 {
1408 int i;
1409
1410 VM_BUG_ON(PageCompound(page));
1411 VM_BUG_ON(!page_count(page));
1412
1413 #ifdef CONFIG_KMEMCHECK
1414 /*
1415 * Split shadow pages too, because free(page[0]) would
1416 * otherwise free the whole shadow.
1417 */
1418 if (kmemcheck_page_is_tracked(page))
1419 split_page(virt_to_page(page[0].shadow), order);
1420 #endif
1421
1422 for (i = 1; i < (1 << order); i++)
1423 set_page_refcounted(page + i);
1424 }
1425 EXPORT_SYMBOL_GPL(split_page);
1426
1427 static int __isolate_free_page(struct page *page, unsigned int order)
1428 {
1429 unsigned long watermark;
1430 struct zone *zone;
1431 int mt;
1432
1433 BUG_ON(!PageBuddy(page));
1434
1435 zone = page_zone(page);
1436 mt = get_pageblock_migratetype(page);
1437
1438 if (!is_migrate_isolate(mt)) {
1439 /* Obey watermarks as if the page was being allocated */
1440 watermark = low_wmark_pages(zone) + (1 << order);
1441 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1442 return 0;
1443
1444 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1445 }
1446
1447 /* Remove page from free list */
1448 list_del(&page->lru);
1449 zone->free_area[order].nr_free--;
1450 rmv_page_order(page);
1451
1452 /* Set the pageblock if the isolated page is at least a pageblock */
1453 if (order >= pageblock_order - 1) {
1454 struct page *endpage = page + (1 << order) - 1;
1455 for (; page < endpage; page += pageblock_nr_pages) {
1456 int mt = get_pageblock_migratetype(page);
1457 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1458 set_pageblock_migratetype(page,
1459 MIGRATE_MOVABLE);
1460 }
1461 }
1462
1463 return 1UL << order;
1464 }
1465
1466 /*
1467 * Similar to split_page except the page is already free. As this is only
1468 * being used for migration, the migratetype of the block also changes.
1469 * As this is called with interrupts disabled, the caller is responsible
1470 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1471 * are enabled.
1472 *
1473 * Note: this is probably too low level an operation for use in drivers.
1474 * Please consult with lkml before using this in your driver.
1475 */
1476 int split_free_page(struct page *page)
1477 {
1478 unsigned int order;
1479 int nr_pages;
1480
1481 order = page_order(page);
1482
1483 nr_pages = __isolate_free_page(page, order);
1484 if (!nr_pages)
1485 return 0;
1486
1487 /* Split into individual pages */
1488 set_page_refcounted(page);
1489 split_page(page, order);
1490 return nr_pages;
1491 }
1492
1493 /*
1494 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1495 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1496 * or two.
1497 */
1498 static inline
1499 struct page *buffered_rmqueue(struct zone *preferred_zone,
1500 struct zone *zone, int order, gfp_t gfp_flags,
1501 int migratetype)
1502 {
1503 unsigned long flags;
1504 struct page *page;
1505 int cold = !!(gfp_flags & __GFP_COLD);
1506
1507 again:
1508 if (likely(order == 0)) {
1509 struct per_cpu_pages *pcp;
1510 struct list_head *list;
1511
1512 local_irq_save(flags);
1513 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1514 list = &pcp->lists[migratetype];
1515 if (list_empty(list)) {
1516 pcp->count += rmqueue_bulk(zone, 0,
1517 pcp->batch, list,
1518 migratetype, cold);
1519 if (unlikely(list_empty(list)))
1520 goto failed;
1521 }
1522
1523 if (cold)
1524 page = list_entry(list->prev, struct page, lru);
1525 else
1526 page = list_entry(list->next, struct page, lru);
1527
1528 list_del(&page->lru);
1529 pcp->count--;
1530 } else {
1531 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1532 /*
1533 * __GFP_NOFAIL is not to be used in new code.
1534 *
1535 * All __GFP_NOFAIL callers should be fixed so that they
1536 * properly detect and handle allocation failures.
1537 *
1538 * We most definitely don't want callers attempting to
1539 * allocate greater than order-1 page units with
1540 * __GFP_NOFAIL.
1541 */
1542 WARN_ON_ONCE(order > 1);
1543 }
1544 spin_lock_irqsave(&zone->lock, flags);
1545 page = __rmqueue(zone, order, migratetype);
1546 spin_unlock(&zone->lock);
1547 if (!page)
1548 goto failed;
1549 __mod_zone_freepage_state(zone, -(1 << order),
1550 get_pageblock_migratetype(page));
1551 }
1552
1553 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1554 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1555 zone_statistics(preferred_zone, zone, gfp_flags);
1556 local_irq_restore(flags);
1557
1558 VM_BUG_ON(bad_range(zone, page));
1559 if (prep_new_page(page, order, gfp_flags))
1560 goto again;
1561 return page;
1562
1563 failed:
1564 local_irq_restore(flags);
1565 return NULL;
1566 }
1567
1568 #ifdef CONFIG_FAIL_PAGE_ALLOC
1569
1570 static struct {
1571 struct fault_attr attr;
1572
1573 u32 ignore_gfp_highmem;
1574 u32 ignore_gfp_wait;
1575 u32 min_order;
1576 } fail_page_alloc = {
1577 .attr = FAULT_ATTR_INITIALIZER,
1578 .ignore_gfp_wait = 1,
1579 .ignore_gfp_highmem = 1,
1580 .min_order = 1,
1581 };
1582
1583 static int __init setup_fail_page_alloc(char *str)
1584 {
1585 return setup_fault_attr(&fail_page_alloc.attr, str);
1586 }
1587 __setup("fail_page_alloc=", setup_fail_page_alloc);
1588
1589 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1590 {
1591 if (order < fail_page_alloc.min_order)
1592 return false;
1593 if (gfp_mask & __GFP_NOFAIL)
1594 return false;
1595 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1596 return false;
1597 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1598 return false;
1599
1600 return should_fail(&fail_page_alloc.attr, 1 << order);
1601 }
1602
1603 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1604
1605 static int __init fail_page_alloc_debugfs(void)
1606 {
1607 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1608 struct dentry *dir;
1609
1610 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1611 &fail_page_alloc.attr);
1612 if (IS_ERR(dir))
1613 return PTR_ERR(dir);
1614
1615 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1616 &fail_page_alloc.ignore_gfp_wait))
1617 goto fail;
1618 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1619 &fail_page_alloc.ignore_gfp_highmem))
1620 goto fail;
1621 if (!debugfs_create_u32("min-order", mode, dir,
1622 &fail_page_alloc.min_order))
1623 goto fail;
1624
1625 return 0;
1626 fail:
1627 debugfs_remove_recursive(dir);
1628
1629 return -ENOMEM;
1630 }
1631
1632 late_initcall(fail_page_alloc_debugfs);
1633
1634 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1635
1636 #else /* CONFIG_FAIL_PAGE_ALLOC */
1637
1638 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1639 {
1640 return false;
1641 }
1642
1643 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1644
1645 /*
1646 * Return true if free pages are above 'mark'. This takes into account the order
1647 * of the allocation.
1648 */
1649 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1650 int classzone_idx, int alloc_flags, long free_pages)
1651 {
1652 /* free_pages my go negative - that's OK */
1653 long min = mark;
1654 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1655 int o;
1656 long free_cma = 0;
1657
1658 free_pages -= (1 << order) - 1;
1659 if (alloc_flags & ALLOC_HIGH)
1660 min -= min / 2;
1661 if (alloc_flags & ALLOC_HARDER)
1662 min -= min / 4;
1663 #ifdef CONFIG_CMA
1664 /* If allocation can't use CMA areas don't use free CMA pages */
1665 if (!(alloc_flags & ALLOC_CMA))
1666 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1667 #endif
1668
1669 if (free_pages - free_cma <= min + lowmem_reserve)
1670 return false;
1671 for (o = 0; o < order; o++) {
1672 /* At the next order, this order's pages become unavailable */
1673 free_pages -= z->free_area[o].nr_free << o;
1674
1675 /* Require fewer higher order pages to be free */
1676 min >>= 1;
1677
1678 if (free_pages <= min)
1679 return false;
1680 }
1681 return true;
1682 }
1683
1684 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1685 int classzone_idx, int alloc_flags)
1686 {
1687 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1688 zone_page_state(z, NR_FREE_PAGES));
1689 }
1690
1691 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1692 int classzone_idx, int alloc_flags)
1693 {
1694 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1695
1696 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1697 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1698
1699 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1700 free_pages);
1701 }
1702
1703 #ifdef CONFIG_NUMA
1704 /*
1705 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1706 * skip over zones that are not allowed by the cpuset, or that have
1707 * been recently (in last second) found to be nearly full. See further
1708 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1709 * that have to skip over a lot of full or unallowed zones.
1710 *
1711 * If the zonelist cache is present in the passed in zonelist, then
1712 * returns a pointer to the allowed node mask (either the current
1713 * tasks mems_allowed, or node_states[N_MEMORY].)
1714 *
1715 * If the zonelist cache is not available for this zonelist, does
1716 * nothing and returns NULL.
1717 *
1718 * If the fullzones BITMAP in the zonelist cache is stale (more than
1719 * a second since last zap'd) then we zap it out (clear its bits.)
1720 *
1721 * We hold off even calling zlc_setup, until after we've checked the
1722 * first zone in the zonelist, on the theory that most allocations will
1723 * be satisfied from that first zone, so best to examine that zone as
1724 * quickly as we can.
1725 */
1726 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1727 {
1728 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1729 nodemask_t *allowednodes; /* zonelist_cache approximation */
1730
1731 zlc = zonelist->zlcache_ptr;
1732 if (!zlc)
1733 return NULL;
1734
1735 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1736 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1737 zlc->last_full_zap = jiffies;
1738 }
1739
1740 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1741 &cpuset_current_mems_allowed :
1742 &node_states[N_MEMORY];
1743 return allowednodes;
1744 }
1745
1746 /*
1747 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1748 * if it is worth looking at further for free memory:
1749 * 1) Check that the zone isn't thought to be full (doesn't have its
1750 * bit set in the zonelist_cache fullzones BITMAP).
1751 * 2) Check that the zones node (obtained from the zonelist_cache
1752 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1753 * Return true (non-zero) if zone is worth looking at further, or
1754 * else return false (zero) if it is not.
1755 *
1756 * This check -ignores- the distinction between various watermarks,
1757 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1758 * found to be full for any variation of these watermarks, it will
1759 * be considered full for up to one second by all requests, unless
1760 * we are so low on memory on all allowed nodes that we are forced
1761 * into the second scan of the zonelist.
1762 *
1763 * In the second scan we ignore this zonelist cache and exactly
1764 * apply the watermarks to all zones, even it is slower to do so.
1765 * We are low on memory in the second scan, and should leave no stone
1766 * unturned looking for a free page.
1767 */
1768 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1769 nodemask_t *allowednodes)
1770 {
1771 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1772 int i; /* index of *z in zonelist zones */
1773 int n; /* node that zone *z is on */
1774
1775 zlc = zonelist->zlcache_ptr;
1776 if (!zlc)
1777 return 1;
1778
1779 i = z - zonelist->_zonerefs;
1780 n = zlc->z_to_n[i];
1781
1782 /* This zone is worth trying if it is allowed but not full */
1783 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1784 }
1785
1786 /*
1787 * Given 'z' scanning a zonelist, set the corresponding bit in
1788 * zlc->fullzones, so that subsequent attempts to allocate a page
1789 * from that zone don't waste time re-examining it.
1790 */
1791 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1792 {
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794 int i; /* index of *z in zonelist zones */
1795
1796 zlc = zonelist->zlcache_ptr;
1797 if (!zlc)
1798 return;
1799
1800 i = z - zonelist->_zonerefs;
1801
1802 set_bit(i, zlc->fullzones);
1803 }
1804
1805 /*
1806 * clear all zones full, called after direct reclaim makes progress so that
1807 * a zone that was recently full is not skipped over for up to a second
1808 */
1809 static void zlc_clear_zones_full(struct zonelist *zonelist)
1810 {
1811 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1812
1813 zlc = zonelist->zlcache_ptr;
1814 if (!zlc)
1815 return;
1816
1817 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1818 }
1819
1820 static bool zone_local(struct zone *local_zone, struct zone *zone)
1821 {
1822 return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
1823 }
1824
1825 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1826 {
1827 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1828 }
1829
1830 static void __paginginit init_zone_allows_reclaim(int nid)
1831 {
1832 int i;
1833
1834 for_each_online_node(i)
1835 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1836 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1837 else
1838 zone_reclaim_mode = 1;
1839 }
1840
1841 #else /* CONFIG_NUMA */
1842
1843 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1844 {
1845 return NULL;
1846 }
1847
1848 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1849 nodemask_t *allowednodes)
1850 {
1851 return 1;
1852 }
1853
1854 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1855 {
1856 }
1857
1858 static void zlc_clear_zones_full(struct zonelist *zonelist)
1859 {
1860 }
1861
1862 static bool zone_local(struct zone *local_zone, struct zone *zone)
1863 {
1864 return true;
1865 }
1866
1867 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1868 {
1869 return true;
1870 }
1871
1872 static inline void init_zone_allows_reclaim(int nid)
1873 {
1874 }
1875 #endif /* CONFIG_NUMA */
1876
1877 /*
1878 * get_page_from_freelist goes through the zonelist trying to allocate
1879 * a page.
1880 */
1881 static struct page *
1882 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1883 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1884 struct zone *preferred_zone, int migratetype)
1885 {
1886 struct zoneref *z;
1887 struct page *page = NULL;
1888 int classzone_idx;
1889 struct zone *zone;
1890 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1891 int zlc_active = 0; /* set if using zonelist_cache */
1892 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1893
1894 classzone_idx = zone_idx(preferred_zone);
1895 zonelist_scan:
1896 /*
1897 * Scan zonelist, looking for a zone with enough free.
1898 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1899 */
1900 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1901 high_zoneidx, nodemask) {
1902 unsigned long mark;
1903
1904 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1905 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1906 continue;
1907 if ((alloc_flags & ALLOC_CPUSET) &&
1908 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1909 continue;
1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1911 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1912 goto try_this_zone;
1913 /*
1914 * Distribute pages in proportion to the individual
1915 * zone size to ensure fair page aging. The zone a
1916 * page was allocated in should have no effect on the
1917 * time the page has in memory before being reclaimed.
1918 *
1919 * When zone_reclaim_mode is enabled, try to stay in
1920 * local zones in the fastpath. If that fails, the
1921 * slowpath is entered, which will do another pass
1922 * starting with the local zones, but ultimately fall
1923 * back to remote zones that do not partake in the
1924 * fairness round-robin cycle of this zonelist.
1925 */
1926 if (alloc_flags & ALLOC_WMARK_LOW) {
1927 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1928 continue;
1929 if (zone_reclaim_mode &&
1930 !zone_local(preferred_zone, zone))
1931 continue;
1932 }
1933 /*
1934 * When allocating a page cache page for writing, we
1935 * want to get it from a zone that is within its dirty
1936 * limit, such that no single zone holds more than its
1937 * proportional share of globally allowed dirty pages.
1938 * The dirty limits take into account the zone's
1939 * lowmem reserves and high watermark so that kswapd
1940 * should be able to balance it without having to
1941 * write pages from its LRU list.
1942 *
1943 * This may look like it could increase pressure on
1944 * lower zones by failing allocations in higher zones
1945 * before they are full. But the pages that do spill
1946 * over are limited as the lower zones are protected
1947 * by this very same mechanism. It should not become
1948 * a practical burden to them.
1949 *
1950 * XXX: For now, allow allocations to potentially
1951 * exceed the per-zone dirty limit in the slowpath
1952 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1953 * which is important when on a NUMA setup the allowed
1954 * zones are together not big enough to reach the
1955 * global limit. The proper fix for these situations
1956 * will require awareness of zones in the
1957 * dirty-throttling and the flusher threads.
1958 */
1959 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1960 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1961 goto this_zone_full;
1962
1963 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1964 if (!zone_watermark_ok(zone, order, mark,
1965 classzone_idx, alloc_flags)) {
1966 int ret;
1967
1968 if (IS_ENABLED(CONFIG_NUMA) &&
1969 !did_zlc_setup && nr_online_nodes > 1) {
1970 /*
1971 * we do zlc_setup if there are multiple nodes
1972 * and before considering the first zone allowed
1973 * by the cpuset.
1974 */
1975 allowednodes = zlc_setup(zonelist, alloc_flags);
1976 zlc_active = 1;
1977 did_zlc_setup = 1;
1978 }
1979
1980 if (zone_reclaim_mode == 0 ||
1981 !zone_allows_reclaim(preferred_zone, zone))
1982 goto this_zone_full;
1983
1984 /*
1985 * As we may have just activated ZLC, check if the first
1986 * eligible zone has failed zone_reclaim recently.
1987 */
1988 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1989 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1990 continue;
1991
1992 ret = zone_reclaim(zone, gfp_mask, order);
1993 switch (ret) {
1994 case ZONE_RECLAIM_NOSCAN:
1995 /* did not scan */
1996 continue;
1997 case ZONE_RECLAIM_FULL:
1998 /* scanned but unreclaimable */
1999 continue;
2000 default:
2001 /* did we reclaim enough */
2002 if (zone_watermark_ok(zone, order, mark,
2003 classzone_idx, alloc_flags))
2004 goto try_this_zone;
2005
2006 /*
2007 * Failed to reclaim enough to meet watermark.
2008 * Only mark the zone full if checking the min
2009 * watermark or if we failed to reclaim just
2010 * 1<<order pages or else the page allocator
2011 * fastpath will prematurely mark zones full
2012 * when the watermark is between the low and
2013 * min watermarks.
2014 */
2015 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2016 ret == ZONE_RECLAIM_SOME)
2017 goto this_zone_full;
2018
2019 continue;
2020 }
2021 }
2022
2023 try_this_zone:
2024 page = buffered_rmqueue(preferred_zone, zone, order,
2025 gfp_mask, migratetype);
2026 if (page)
2027 break;
2028 this_zone_full:
2029 if (IS_ENABLED(CONFIG_NUMA))
2030 zlc_mark_zone_full(zonelist, z);
2031 }
2032
2033 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2034 /* Disable zlc cache for second zonelist scan */
2035 zlc_active = 0;
2036 goto zonelist_scan;
2037 }
2038
2039 if (page)
2040 /*
2041 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2042 * necessary to allocate the page. The expectation is
2043 * that the caller is taking steps that will free more
2044 * memory. The caller should avoid the page being used
2045 * for !PFMEMALLOC purposes.
2046 */
2047 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2048
2049 return page;
2050 }
2051
2052 /*
2053 * Large machines with many possible nodes should not always dump per-node
2054 * meminfo in irq context.
2055 */
2056 static inline bool should_suppress_show_mem(void)
2057 {
2058 bool ret = false;
2059
2060 #if NODES_SHIFT > 8
2061 ret = in_interrupt();
2062 #endif
2063 return ret;
2064 }
2065
2066 static DEFINE_RATELIMIT_STATE(nopage_rs,
2067 DEFAULT_RATELIMIT_INTERVAL,
2068 DEFAULT_RATELIMIT_BURST);
2069
2070 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2071 {
2072 unsigned int filter = SHOW_MEM_FILTER_NODES;
2073
2074 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2075 debug_guardpage_minorder() > 0)
2076 return;
2077
2078 /*
2079 * Walking all memory to count page types is very expensive and should
2080 * be inhibited in non-blockable contexts.
2081 */
2082 if (!(gfp_mask & __GFP_WAIT))
2083 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2084
2085 /*
2086 * This documents exceptions given to allocations in certain
2087 * contexts that are allowed to allocate outside current's set
2088 * of allowed nodes.
2089 */
2090 if (!(gfp_mask & __GFP_NOMEMALLOC))
2091 if (test_thread_flag(TIF_MEMDIE) ||
2092 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2093 filter &= ~SHOW_MEM_FILTER_NODES;
2094 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2095 filter &= ~SHOW_MEM_FILTER_NODES;
2096
2097 if (fmt) {
2098 struct va_format vaf;
2099 va_list args;
2100
2101 va_start(args, fmt);
2102
2103 vaf.fmt = fmt;
2104 vaf.va = &args;
2105
2106 pr_warn("%pV", &vaf);
2107
2108 va_end(args);
2109 }
2110
2111 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2112 current->comm, order, gfp_mask);
2113
2114 dump_stack();
2115 if (!should_suppress_show_mem())
2116 show_mem(filter);
2117 }
2118
2119 static inline int
2120 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2121 unsigned long did_some_progress,
2122 unsigned long pages_reclaimed)
2123 {
2124 /* Do not loop if specifically requested */
2125 if (gfp_mask & __GFP_NORETRY)
2126 return 0;
2127
2128 /* Always retry if specifically requested */
2129 if (gfp_mask & __GFP_NOFAIL)
2130 return 1;
2131
2132 /*
2133 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2134 * making forward progress without invoking OOM. Suspend also disables
2135 * storage devices so kswapd will not help. Bail if we are suspending.
2136 */
2137 if (!did_some_progress && pm_suspended_storage())
2138 return 0;
2139
2140 /*
2141 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2142 * means __GFP_NOFAIL, but that may not be true in other
2143 * implementations.
2144 */
2145 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2146 return 1;
2147
2148 /*
2149 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2150 * specified, then we retry until we no longer reclaim any pages
2151 * (above), or we've reclaimed an order of pages at least as
2152 * large as the allocation's order. In both cases, if the
2153 * allocation still fails, we stop retrying.
2154 */
2155 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2156 return 1;
2157
2158 return 0;
2159 }
2160
2161 static inline struct page *
2162 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2163 struct zonelist *zonelist, enum zone_type high_zoneidx,
2164 nodemask_t *nodemask, struct zone *preferred_zone,
2165 int migratetype)
2166 {
2167 struct page *page;
2168
2169 /* Acquire the OOM killer lock for the zones in zonelist */
2170 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2171 schedule_timeout_uninterruptible(1);
2172 return NULL;
2173 }
2174
2175 /*
2176 * Go through the zonelist yet one more time, keep very high watermark
2177 * here, this is only to catch a parallel oom killing, we must fail if
2178 * we're still under heavy pressure.
2179 */
2180 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2181 order, zonelist, high_zoneidx,
2182 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2183 preferred_zone, migratetype);
2184 if (page)
2185 goto out;
2186
2187 if (!(gfp_mask & __GFP_NOFAIL)) {
2188 /* The OOM killer will not help higher order allocs */
2189 if (order > PAGE_ALLOC_COSTLY_ORDER)
2190 goto out;
2191 /* The OOM killer does not needlessly kill tasks for lowmem */
2192 if (high_zoneidx < ZONE_NORMAL)
2193 goto out;
2194 /*
2195 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2196 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2197 * The caller should handle page allocation failure by itself if
2198 * it specifies __GFP_THISNODE.
2199 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2200 */
2201 if (gfp_mask & __GFP_THISNODE)
2202 goto out;
2203 }
2204 /* Exhausted what can be done so it's blamo time */
2205 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2206
2207 out:
2208 clear_zonelist_oom(zonelist, gfp_mask);
2209 return page;
2210 }
2211
2212 #ifdef CONFIG_COMPACTION
2213 /* Try memory compaction for high-order allocations before reclaim */
2214 static struct page *
2215 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2216 struct zonelist *zonelist, enum zone_type high_zoneidx,
2217 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2218 int migratetype, bool sync_migration,
2219 bool *contended_compaction, bool *deferred_compaction,
2220 unsigned long *did_some_progress)
2221 {
2222 if (!order)
2223 return NULL;
2224
2225 if (compaction_deferred(preferred_zone, order)) {
2226 *deferred_compaction = true;
2227 return NULL;
2228 }
2229
2230 current->flags |= PF_MEMALLOC;
2231 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2232 nodemask, sync_migration,
2233 contended_compaction);
2234 current->flags &= ~PF_MEMALLOC;
2235
2236 if (*did_some_progress != COMPACT_SKIPPED) {
2237 struct page *page;
2238
2239 /* Page migration frees to the PCP lists but we want merging */
2240 drain_pages(get_cpu());
2241 put_cpu();
2242
2243 page = get_page_from_freelist(gfp_mask, nodemask,
2244 order, zonelist, high_zoneidx,
2245 alloc_flags & ~ALLOC_NO_WATERMARKS,
2246 preferred_zone, migratetype);
2247 if (page) {
2248 preferred_zone->compact_blockskip_flush = false;
2249 preferred_zone->compact_considered = 0;
2250 preferred_zone->compact_defer_shift = 0;
2251 if (order >= preferred_zone->compact_order_failed)
2252 preferred_zone->compact_order_failed = order + 1;
2253 count_vm_event(COMPACTSUCCESS);
2254 return page;
2255 }
2256
2257 /*
2258 * It's bad if compaction run occurs and fails.
2259 * The most likely reason is that pages exist,
2260 * but not enough to satisfy watermarks.
2261 */
2262 count_vm_event(COMPACTFAIL);
2263
2264 /*
2265 * As async compaction considers a subset of pageblocks, only
2266 * defer if the failure was a sync compaction failure.
2267 */
2268 if (sync_migration)
2269 defer_compaction(preferred_zone, order);
2270
2271 cond_resched();
2272 }
2273
2274 return NULL;
2275 }
2276 #else
2277 static inline struct page *
2278 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2279 struct zonelist *zonelist, enum zone_type high_zoneidx,
2280 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2281 int migratetype, bool sync_migration,
2282 bool *contended_compaction, bool *deferred_compaction,
2283 unsigned long *did_some_progress)
2284 {
2285 return NULL;
2286 }
2287 #endif /* CONFIG_COMPACTION */
2288
2289 /* Perform direct synchronous page reclaim */
2290 static int
2291 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2292 nodemask_t *nodemask)
2293 {
2294 struct reclaim_state reclaim_state;
2295 int progress;
2296
2297 cond_resched();
2298
2299 /* We now go into synchronous reclaim */
2300 cpuset_memory_pressure_bump();
2301 current->flags |= PF_MEMALLOC;
2302 lockdep_set_current_reclaim_state(gfp_mask);
2303 reclaim_state.reclaimed_slab = 0;
2304 current->reclaim_state = &reclaim_state;
2305
2306 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2307
2308 current->reclaim_state = NULL;
2309 lockdep_clear_current_reclaim_state();
2310 current->flags &= ~PF_MEMALLOC;
2311
2312 cond_resched();
2313
2314 return progress;
2315 }
2316
2317 /* The really slow allocator path where we enter direct reclaim */
2318 static inline struct page *
2319 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2320 struct zonelist *zonelist, enum zone_type high_zoneidx,
2321 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2322 int migratetype, unsigned long *did_some_progress)
2323 {
2324 struct page *page = NULL;
2325 bool drained = false;
2326
2327 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2328 nodemask);
2329 if (unlikely(!(*did_some_progress)))
2330 return NULL;
2331
2332 /* After successful reclaim, reconsider all zones for allocation */
2333 if (IS_ENABLED(CONFIG_NUMA))
2334 zlc_clear_zones_full(zonelist);
2335
2336 retry:
2337 page = get_page_from_freelist(gfp_mask, nodemask, order,
2338 zonelist, high_zoneidx,
2339 alloc_flags & ~ALLOC_NO_WATERMARKS,
2340 preferred_zone, migratetype);
2341
2342 /*
2343 * If an allocation failed after direct reclaim, it could be because
2344 * pages are pinned on the per-cpu lists. Drain them and try again
2345 */
2346 if (!page && !drained) {
2347 drain_all_pages();
2348 drained = true;
2349 goto retry;
2350 }
2351
2352 return page;
2353 }
2354
2355 /*
2356 * This is called in the allocator slow-path if the allocation request is of
2357 * sufficient urgency to ignore watermarks and take other desperate measures
2358 */
2359 static inline struct page *
2360 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2361 struct zonelist *zonelist, enum zone_type high_zoneidx,
2362 nodemask_t *nodemask, struct zone *preferred_zone,
2363 int migratetype)
2364 {
2365 struct page *page;
2366
2367 do {
2368 page = get_page_from_freelist(gfp_mask, nodemask, order,
2369 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2370 preferred_zone, migratetype);
2371
2372 if (!page && gfp_mask & __GFP_NOFAIL)
2373 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2374 } while (!page && (gfp_mask & __GFP_NOFAIL));
2375
2376 return page;
2377 }
2378
2379 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2380 struct zonelist *zonelist,
2381 enum zone_type high_zoneidx,
2382 struct zone *preferred_zone)
2383 {
2384 struct zoneref *z;
2385 struct zone *zone;
2386
2387 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2388 if (!(gfp_mask & __GFP_NO_KSWAPD))
2389 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2390 /*
2391 * Only reset the batches of zones that were actually
2392 * considered in the fast path, we don't want to
2393 * thrash fairness information for zones that are not
2394 * actually part of this zonelist's round-robin cycle.
2395 */
2396 if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
2397 continue;
2398 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2399 high_wmark_pages(zone) -
2400 low_wmark_pages(zone) -
2401 zone_page_state(zone, NR_ALLOC_BATCH));
2402 }
2403 }
2404
2405 static inline int
2406 gfp_to_alloc_flags(gfp_t gfp_mask)
2407 {
2408 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2409 const gfp_t wait = gfp_mask & __GFP_WAIT;
2410
2411 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2412 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2413
2414 /*
2415 * The caller may dip into page reserves a bit more if the caller
2416 * cannot run direct reclaim, or if the caller has realtime scheduling
2417 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2418 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2419 */
2420 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2421
2422 if (!wait) {
2423 /*
2424 * Not worth trying to allocate harder for
2425 * __GFP_NOMEMALLOC even if it can't schedule.
2426 */
2427 if (!(gfp_mask & __GFP_NOMEMALLOC))
2428 alloc_flags |= ALLOC_HARDER;
2429 /*
2430 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2431 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2432 */
2433 alloc_flags &= ~ALLOC_CPUSET;
2434 } else if (unlikely(rt_task(current)) && !in_interrupt())
2435 alloc_flags |= ALLOC_HARDER;
2436
2437 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2438 if (gfp_mask & __GFP_MEMALLOC)
2439 alloc_flags |= ALLOC_NO_WATERMARKS;
2440 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2441 alloc_flags |= ALLOC_NO_WATERMARKS;
2442 else if (!in_interrupt() &&
2443 ((current->flags & PF_MEMALLOC) ||
2444 unlikely(test_thread_flag(TIF_MEMDIE))))
2445 alloc_flags |= ALLOC_NO_WATERMARKS;
2446 }
2447 #ifdef CONFIG_CMA
2448 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2449 alloc_flags |= ALLOC_CMA;
2450 #endif
2451 return alloc_flags;
2452 }
2453
2454 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2455 {
2456 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2457 }
2458
2459 static inline struct page *
2460 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2461 struct zonelist *zonelist, enum zone_type high_zoneidx,
2462 nodemask_t *nodemask, struct zone *preferred_zone,
2463 int migratetype)
2464 {
2465 const gfp_t wait = gfp_mask & __GFP_WAIT;
2466 struct page *page = NULL;
2467 int alloc_flags;
2468 unsigned long pages_reclaimed = 0;
2469 unsigned long did_some_progress;
2470 bool sync_migration = false;
2471 bool deferred_compaction = false;
2472 bool contended_compaction = false;
2473
2474 /*
2475 * In the slowpath, we sanity check order to avoid ever trying to
2476 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2477 * be using allocators in order of preference for an area that is
2478 * too large.
2479 */
2480 if (order >= MAX_ORDER) {
2481 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2482 return NULL;
2483 }
2484
2485 /*
2486 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2487 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2488 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2489 * using a larger set of nodes after it has established that the
2490 * allowed per node queues are empty and that nodes are
2491 * over allocated.
2492 */
2493 if (IS_ENABLED(CONFIG_NUMA) &&
2494 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2495 goto nopage;
2496
2497 restart:
2498 prepare_slowpath(gfp_mask, order, zonelist,
2499 high_zoneidx, preferred_zone);
2500
2501 /*
2502 * OK, we're below the kswapd watermark and have kicked background
2503 * reclaim. Now things get more complex, so set up alloc_flags according
2504 * to how we want to proceed.
2505 */
2506 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2507
2508 /*
2509 * Find the true preferred zone if the allocation is unconstrained by
2510 * cpusets.
2511 */
2512 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2513 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2514 &preferred_zone);
2515
2516 rebalance:
2517 /* This is the last chance, in general, before the goto nopage. */
2518 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2519 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2520 preferred_zone, migratetype);
2521 if (page)
2522 goto got_pg;
2523
2524 /* Allocate without watermarks if the context allows */
2525 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2526 /*
2527 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2528 * the allocation is high priority and these type of
2529 * allocations are system rather than user orientated
2530 */
2531 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2532
2533 page = __alloc_pages_high_priority(gfp_mask, order,
2534 zonelist, high_zoneidx, nodemask,
2535 preferred_zone, migratetype);
2536 if (page) {
2537 goto got_pg;
2538 }
2539 }
2540
2541 /* Atomic allocations - we can't balance anything */
2542 if (!wait)
2543 goto nopage;
2544
2545 /* Avoid recursion of direct reclaim */
2546 if (current->flags & PF_MEMALLOC)
2547 goto nopage;
2548
2549 /* Avoid allocations with no watermarks from looping endlessly */
2550 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2551 goto nopage;
2552
2553 /*
2554 * Try direct compaction. The first pass is asynchronous. Subsequent
2555 * attempts after direct reclaim are synchronous
2556 */
2557 page = __alloc_pages_direct_compact(gfp_mask, order,
2558 zonelist, high_zoneidx,
2559 nodemask,
2560 alloc_flags, preferred_zone,
2561 migratetype, sync_migration,
2562 &contended_compaction,
2563 &deferred_compaction,
2564 &did_some_progress);
2565 if (page)
2566 goto got_pg;
2567 sync_migration = true;
2568
2569 /*
2570 * If compaction is deferred for high-order allocations, it is because
2571 * sync compaction recently failed. In this is the case and the caller
2572 * requested a movable allocation that does not heavily disrupt the
2573 * system then fail the allocation instead of entering direct reclaim.
2574 */
2575 if ((deferred_compaction || contended_compaction) &&
2576 (gfp_mask & __GFP_NO_KSWAPD))
2577 goto nopage;
2578
2579 /* Try direct reclaim and then allocating */
2580 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
2583 alloc_flags, preferred_zone,
2584 migratetype, &did_some_progress);
2585 if (page)
2586 goto got_pg;
2587
2588 /*
2589 * If we failed to make any progress reclaiming, then we are
2590 * running out of options and have to consider going OOM
2591 */
2592 if (!did_some_progress) {
2593 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2594 if (oom_killer_disabled)
2595 goto nopage;
2596 /* Coredumps can quickly deplete all memory reserves */
2597 if ((current->flags & PF_DUMPCORE) &&
2598 !(gfp_mask & __GFP_NOFAIL))
2599 goto nopage;
2600 page = __alloc_pages_may_oom(gfp_mask, order,
2601 zonelist, high_zoneidx,
2602 nodemask, preferred_zone,
2603 migratetype);
2604 if (page)
2605 goto got_pg;
2606
2607 if (!(gfp_mask & __GFP_NOFAIL)) {
2608 /*
2609 * The oom killer is not called for high-order
2610 * allocations that may fail, so if no progress
2611 * is being made, there are no other options and
2612 * retrying is unlikely to help.
2613 */
2614 if (order > PAGE_ALLOC_COSTLY_ORDER)
2615 goto nopage;
2616 /*
2617 * The oom killer is not called for lowmem
2618 * allocations to prevent needlessly killing
2619 * innocent tasks.
2620 */
2621 if (high_zoneidx < ZONE_NORMAL)
2622 goto nopage;
2623 }
2624
2625 goto restart;
2626 }
2627 }
2628
2629 /* Check if we should retry the allocation */
2630 pages_reclaimed += did_some_progress;
2631 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2632 pages_reclaimed)) {
2633 /* Wait for some write requests to complete then retry */
2634 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2635 goto rebalance;
2636 } else {
2637 /*
2638 * High-order allocations do not necessarily loop after
2639 * direct reclaim and reclaim/compaction depends on compaction
2640 * being called after reclaim so call directly if necessary
2641 */
2642 page = __alloc_pages_direct_compact(gfp_mask, order,
2643 zonelist, high_zoneidx,
2644 nodemask,
2645 alloc_flags, preferred_zone,
2646 migratetype, sync_migration,
2647 &contended_compaction,
2648 &deferred_compaction,
2649 &did_some_progress);
2650 if (page)
2651 goto got_pg;
2652 }
2653
2654 nopage:
2655 warn_alloc_failed(gfp_mask, order, NULL);
2656 return page;
2657 got_pg:
2658 if (kmemcheck_enabled)
2659 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2660
2661 return page;
2662 }
2663
2664 /*
2665 * This is the 'heart' of the zoned buddy allocator.
2666 */
2667 struct page *
2668 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2669 struct zonelist *zonelist, nodemask_t *nodemask)
2670 {
2671 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2672 struct zone *preferred_zone;
2673 struct page *page = NULL;
2674 int migratetype = allocflags_to_migratetype(gfp_mask);
2675 unsigned int cpuset_mems_cookie;
2676 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2677 struct mem_cgroup *memcg = NULL;
2678
2679 gfp_mask &= gfp_allowed_mask;
2680
2681 lockdep_trace_alloc(gfp_mask);
2682
2683 might_sleep_if(gfp_mask & __GFP_WAIT);
2684
2685 if (should_fail_alloc_page(gfp_mask, order))
2686 return NULL;
2687
2688 /*
2689 * Check the zones suitable for the gfp_mask contain at least one
2690 * valid zone. It's possible to have an empty zonelist as a result
2691 * of GFP_THISNODE and a memoryless node
2692 */
2693 if (unlikely(!zonelist->_zonerefs->zone))
2694 return NULL;
2695
2696 /*
2697 * Will only have any effect when __GFP_KMEMCG is set. This is
2698 * verified in the (always inline) callee
2699 */
2700 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2701 return NULL;
2702
2703 retry_cpuset:
2704 cpuset_mems_cookie = get_mems_allowed();
2705
2706 /* The preferred zone is used for statistics later */
2707 first_zones_zonelist(zonelist, high_zoneidx,
2708 nodemask ? : &cpuset_current_mems_allowed,
2709 &preferred_zone);
2710 if (!preferred_zone)
2711 goto out;
2712
2713 #ifdef CONFIG_CMA
2714 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2715 alloc_flags |= ALLOC_CMA;
2716 #endif
2717 /* First allocation attempt */
2718 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2719 zonelist, high_zoneidx, alloc_flags,
2720 preferred_zone, migratetype);
2721 if (unlikely(!page)) {
2722 /*
2723 * Runtime PM, block IO and its error handling path
2724 * can deadlock because I/O on the device might not
2725 * complete.
2726 */
2727 gfp_mask = memalloc_noio_flags(gfp_mask);
2728 page = __alloc_pages_slowpath(gfp_mask, order,
2729 zonelist, high_zoneidx, nodemask,
2730 preferred_zone, migratetype);
2731 }
2732
2733 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2734
2735 out:
2736 /*
2737 * When updating a task's mems_allowed, it is possible to race with
2738 * parallel threads in such a way that an allocation can fail while
2739 * the mask is being updated. If a page allocation is about to fail,
2740 * check if the cpuset changed during allocation and if so, retry.
2741 */
2742 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2743 goto retry_cpuset;
2744
2745 memcg_kmem_commit_charge(page, memcg, order);
2746
2747 return page;
2748 }
2749 EXPORT_SYMBOL(__alloc_pages_nodemask);
2750
2751 /*
2752 * Common helper functions.
2753 */
2754 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2755 {
2756 struct page *page;
2757
2758 /*
2759 * __get_free_pages() returns a 32-bit address, which cannot represent
2760 * a highmem page
2761 */
2762 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2763
2764 page = alloc_pages(gfp_mask, order);
2765 if (!page)
2766 return 0;
2767 return (unsigned long) page_address(page);
2768 }
2769 EXPORT_SYMBOL(__get_free_pages);
2770
2771 unsigned long get_zeroed_page(gfp_t gfp_mask)
2772 {
2773 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2774 }
2775 EXPORT_SYMBOL(get_zeroed_page);
2776
2777 void __free_pages(struct page *page, unsigned int order)
2778 {
2779 if (put_page_testzero(page)) {
2780 if (order == 0)
2781 free_hot_cold_page(page, 0);
2782 else
2783 __free_pages_ok(page, order);
2784 }
2785 }
2786
2787 EXPORT_SYMBOL(__free_pages);
2788
2789 void free_pages(unsigned long addr, unsigned int order)
2790 {
2791 if (addr != 0) {
2792 VM_BUG_ON(!virt_addr_valid((void *)addr));
2793 __free_pages(virt_to_page((void *)addr), order);
2794 }
2795 }
2796
2797 EXPORT_SYMBOL(free_pages);
2798
2799 /*
2800 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2801 * pages allocated with __GFP_KMEMCG.
2802 *
2803 * Those pages are accounted to a particular memcg, embedded in the
2804 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2805 * for that information only to find out that it is NULL for users who have no
2806 * interest in that whatsoever, we provide these functions.
2807 *
2808 * The caller knows better which flags it relies on.
2809 */
2810 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2811 {
2812 memcg_kmem_uncharge_pages(page, order);
2813 __free_pages(page, order);
2814 }
2815
2816 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2817 {
2818 if (addr != 0) {
2819 VM_BUG_ON(!virt_addr_valid((void *)addr));
2820 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2821 }
2822 }
2823
2824 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2825 {
2826 if (addr) {
2827 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2828 unsigned long used = addr + PAGE_ALIGN(size);
2829
2830 split_page(virt_to_page((void *)addr), order);
2831 while (used < alloc_end) {
2832 free_page(used);
2833 used += PAGE_SIZE;
2834 }
2835 }
2836 return (void *)addr;
2837 }
2838
2839 /**
2840 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2841 * @size: the number of bytes to allocate
2842 * @gfp_mask: GFP flags for the allocation
2843 *
2844 * This function is similar to alloc_pages(), except that it allocates the
2845 * minimum number of pages to satisfy the request. alloc_pages() can only
2846 * allocate memory in power-of-two pages.
2847 *
2848 * This function is also limited by MAX_ORDER.
2849 *
2850 * Memory allocated by this function must be released by free_pages_exact().
2851 */
2852 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2853 {
2854 unsigned int order = get_order(size);
2855 unsigned long addr;
2856
2857 addr = __get_free_pages(gfp_mask, order);
2858 return make_alloc_exact(addr, order, size);
2859 }
2860 EXPORT_SYMBOL(alloc_pages_exact);
2861
2862 /**
2863 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2864 * pages on a node.
2865 * @nid: the preferred node ID where memory should be allocated
2866 * @size: the number of bytes to allocate
2867 * @gfp_mask: GFP flags for the allocation
2868 *
2869 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2870 * back.
2871 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2872 * but is not exact.
2873 */
2874 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2875 {
2876 unsigned order = get_order(size);
2877 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2878 if (!p)
2879 return NULL;
2880 return make_alloc_exact((unsigned long)page_address(p), order, size);
2881 }
2882 EXPORT_SYMBOL(alloc_pages_exact_nid);
2883
2884 /**
2885 * free_pages_exact - release memory allocated via alloc_pages_exact()
2886 * @virt: the value returned by alloc_pages_exact.
2887 * @size: size of allocation, same value as passed to alloc_pages_exact().
2888 *
2889 * Release the memory allocated by a previous call to alloc_pages_exact.
2890 */
2891 void free_pages_exact(void *virt, size_t size)
2892 {
2893 unsigned long addr = (unsigned long)virt;
2894 unsigned long end = addr + PAGE_ALIGN(size);
2895
2896 while (addr < end) {
2897 free_page(addr);
2898 addr += PAGE_SIZE;
2899 }
2900 }
2901 EXPORT_SYMBOL(free_pages_exact);
2902
2903 /**
2904 * nr_free_zone_pages - count number of pages beyond high watermark
2905 * @offset: The zone index of the highest zone
2906 *
2907 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2908 * high watermark within all zones at or below a given zone index. For each
2909 * zone, the number of pages is calculated as:
2910 * managed_pages - high_pages
2911 */
2912 static unsigned long nr_free_zone_pages(int offset)
2913 {
2914 struct zoneref *z;
2915 struct zone *zone;
2916
2917 /* Just pick one node, since fallback list is circular */
2918 unsigned long sum = 0;
2919
2920 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2921
2922 for_each_zone_zonelist(zone, z, zonelist, offset) {
2923 unsigned long size = zone->managed_pages;
2924 unsigned long high = high_wmark_pages(zone);
2925 if (size > high)
2926 sum += size - high;
2927 }
2928
2929 return sum;
2930 }
2931
2932 /**
2933 * nr_free_buffer_pages - count number of pages beyond high watermark
2934 *
2935 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2936 * watermark within ZONE_DMA and ZONE_NORMAL.
2937 */
2938 unsigned long nr_free_buffer_pages(void)
2939 {
2940 return nr_free_zone_pages(gfp_zone(GFP_USER));
2941 }
2942 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2943
2944 /**
2945 * nr_free_pagecache_pages - count number of pages beyond high watermark
2946 *
2947 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2948 * high watermark within all zones.
2949 */
2950 unsigned long nr_free_pagecache_pages(void)
2951 {
2952 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2953 }
2954
2955 static inline void show_node(struct zone *zone)
2956 {
2957 if (IS_ENABLED(CONFIG_NUMA))
2958 printk("Node %d ", zone_to_nid(zone));
2959 }
2960
2961 void si_meminfo(struct sysinfo *val)
2962 {
2963 val->totalram = totalram_pages;
2964 val->sharedram = 0;
2965 val->freeram = global_page_state(NR_FREE_PAGES);
2966 val->bufferram = nr_blockdev_pages();
2967 val->totalhigh = totalhigh_pages;
2968 val->freehigh = nr_free_highpages();
2969 val->mem_unit = PAGE_SIZE;
2970 }
2971
2972 EXPORT_SYMBOL(si_meminfo);
2973
2974 #ifdef CONFIG_NUMA
2975 void si_meminfo_node(struct sysinfo *val, int nid)
2976 {
2977 int zone_type; /* needs to be signed */
2978 unsigned long managed_pages = 0;
2979 pg_data_t *pgdat = NODE_DATA(nid);
2980
2981 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2982 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2983 val->totalram = managed_pages;
2984 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2985 #ifdef CONFIG_HIGHMEM
2986 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2987 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2988 NR_FREE_PAGES);
2989 #else
2990 val->totalhigh = 0;
2991 val->freehigh = 0;
2992 #endif
2993 val->mem_unit = PAGE_SIZE;
2994 }
2995 #endif
2996
2997 /*
2998 * Determine whether the node should be displayed or not, depending on whether
2999 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3000 */
3001 bool skip_free_areas_node(unsigned int flags, int nid)
3002 {
3003 bool ret = false;
3004 unsigned int cpuset_mems_cookie;
3005
3006 if (!(flags & SHOW_MEM_FILTER_NODES))
3007 goto out;
3008
3009 do {
3010 cpuset_mems_cookie = get_mems_allowed();
3011 ret = !node_isset(nid, cpuset_current_mems_allowed);
3012 } while (!put_mems_allowed(cpuset_mems_cookie));
3013 out:
3014 return ret;
3015 }
3016
3017 #define K(x) ((x) << (PAGE_SHIFT-10))
3018
3019 static void show_migration_types(unsigned char type)
3020 {
3021 static const char types[MIGRATE_TYPES] = {
3022 [MIGRATE_UNMOVABLE] = 'U',
3023 [MIGRATE_RECLAIMABLE] = 'E',
3024 [MIGRATE_MOVABLE] = 'M',
3025 [MIGRATE_RESERVE] = 'R',
3026 #ifdef CONFIG_CMA
3027 [MIGRATE_CMA] = 'C',
3028 #endif
3029 #ifdef CONFIG_MEMORY_ISOLATION
3030 [MIGRATE_ISOLATE] = 'I',
3031 #endif
3032 };
3033 char tmp[MIGRATE_TYPES + 1];
3034 char *p = tmp;
3035 int i;
3036
3037 for (i = 0; i < MIGRATE_TYPES; i++) {
3038 if (type & (1 << i))
3039 *p++ = types[i];
3040 }
3041
3042 *p = '\0';
3043 printk("(%s) ", tmp);
3044 }
3045
3046 /*
3047 * Show free area list (used inside shift_scroll-lock stuff)
3048 * We also calculate the percentage fragmentation. We do this by counting the
3049 * memory on each free list with the exception of the first item on the list.
3050 * Suppresses nodes that are not allowed by current's cpuset if
3051 * SHOW_MEM_FILTER_NODES is passed.
3052 */
3053 void show_free_areas(unsigned int filter)
3054 {
3055 int cpu;
3056 struct zone *zone;
3057
3058 for_each_populated_zone(zone) {
3059 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3060 continue;
3061 show_node(zone);
3062 printk("%s per-cpu:\n", zone->name);
3063
3064 for_each_online_cpu(cpu) {
3065 struct per_cpu_pageset *pageset;
3066
3067 pageset = per_cpu_ptr(zone->pageset, cpu);
3068
3069 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3070 cpu, pageset->pcp.high,
3071 pageset->pcp.batch, pageset->pcp.count);
3072 }
3073 }
3074
3075 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3076 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3077 " unevictable:%lu"
3078 " dirty:%lu writeback:%lu unstable:%lu\n"
3079 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3080 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3081 " free_cma:%lu\n",
3082 global_page_state(NR_ACTIVE_ANON),
3083 global_page_state(NR_INACTIVE_ANON),
3084 global_page_state(NR_ISOLATED_ANON),
3085 global_page_state(NR_ACTIVE_FILE),
3086 global_page_state(NR_INACTIVE_FILE),
3087 global_page_state(NR_ISOLATED_FILE),
3088 global_page_state(NR_UNEVICTABLE),
3089 global_page_state(NR_FILE_DIRTY),
3090 global_page_state(NR_WRITEBACK),
3091 global_page_state(NR_UNSTABLE_NFS),
3092 global_page_state(NR_FREE_PAGES),
3093 global_page_state(NR_SLAB_RECLAIMABLE),
3094 global_page_state(NR_SLAB_UNRECLAIMABLE),
3095 global_page_state(NR_FILE_MAPPED),
3096 global_page_state(NR_SHMEM),
3097 global_page_state(NR_PAGETABLE),
3098 global_page_state(NR_BOUNCE),
3099 global_page_state(NR_FREE_CMA_PAGES));
3100
3101 for_each_populated_zone(zone) {
3102 int i;
3103
3104 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3105 continue;
3106 show_node(zone);
3107 printk("%s"
3108 " free:%lukB"
3109 " min:%lukB"
3110 " low:%lukB"
3111 " high:%lukB"
3112 " active_anon:%lukB"
3113 " inactive_anon:%lukB"
3114 " active_file:%lukB"
3115 " inactive_file:%lukB"
3116 " unevictable:%lukB"
3117 " isolated(anon):%lukB"
3118 " isolated(file):%lukB"
3119 " present:%lukB"
3120 " managed:%lukB"
3121 " mlocked:%lukB"
3122 " dirty:%lukB"
3123 " writeback:%lukB"
3124 " mapped:%lukB"
3125 " shmem:%lukB"
3126 " slab_reclaimable:%lukB"
3127 " slab_unreclaimable:%lukB"
3128 " kernel_stack:%lukB"
3129 " pagetables:%lukB"
3130 " unstable:%lukB"
3131 " bounce:%lukB"
3132 " free_cma:%lukB"
3133 " writeback_tmp:%lukB"
3134 " pages_scanned:%lu"
3135 " all_unreclaimable? %s"
3136 "\n",
3137 zone->name,
3138 K(zone_page_state(zone, NR_FREE_PAGES)),
3139 K(min_wmark_pages(zone)),
3140 K(low_wmark_pages(zone)),
3141 K(high_wmark_pages(zone)),
3142 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3143 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3144 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3145 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3146 K(zone_page_state(zone, NR_UNEVICTABLE)),
3147 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3148 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3149 K(zone->present_pages),
3150 K(zone->managed_pages),
3151 K(zone_page_state(zone, NR_MLOCK)),
3152 K(zone_page_state(zone, NR_FILE_DIRTY)),
3153 K(zone_page_state(zone, NR_WRITEBACK)),
3154 K(zone_page_state(zone, NR_FILE_MAPPED)),
3155 K(zone_page_state(zone, NR_SHMEM)),
3156 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3157 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3158 zone_page_state(zone, NR_KERNEL_STACK) *
3159 THREAD_SIZE / 1024,
3160 K(zone_page_state(zone, NR_PAGETABLE)),
3161 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3162 K(zone_page_state(zone, NR_BOUNCE)),
3163 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3164 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3165 zone->pages_scanned,
3166 (!zone_reclaimable(zone) ? "yes" : "no")
3167 );
3168 printk("lowmem_reserve[]:");
3169 for (i = 0; i < MAX_NR_ZONES; i++)
3170 printk(" %lu", zone->lowmem_reserve[i]);
3171 printk("\n");
3172 }
3173
3174 for_each_populated_zone(zone) {
3175 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3176 unsigned char types[MAX_ORDER];
3177
3178 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3179 continue;
3180 show_node(zone);
3181 printk("%s: ", zone->name);
3182
3183 spin_lock_irqsave(&zone->lock, flags);
3184 for (order = 0; order < MAX_ORDER; order++) {
3185 struct free_area *area = &zone->free_area[order];
3186 int type;
3187
3188 nr[order] = area->nr_free;
3189 total += nr[order] << order;
3190
3191 types[order] = 0;
3192 for (type = 0; type < MIGRATE_TYPES; type++) {
3193 if (!list_empty(&area->free_list[type]))
3194 types[order] |= 1 << type;
3195 }
3196 }
3197 spin_unlock_irqrestore(&zone->lock, flags);
3198 for (order = 0; order < MAX_ORDER; order++) {
3199 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3200 if (nr[order])
3201 show_migration_types(types[order]);
3202 }
3203 printk("= %lukB\n", K(total));
3204 }
3205
3206 hugetlb_show_meminfo();
3207
3208 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3209
3210 show_swap_cache_info();
3211 }
3212
3213 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3214 {
3215 zoneref->zone = zone;
3216 zoneref->zone_idx = zone_idx(zone);
3217 }
3218
3219 /*
3220 * Builds allocation fallback zone lists.
3221 *
3222 * Add all populated zones of a node to the zonelist.
3223 */
3224 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3225 int nr_zones)
3226 {
3227 struct zone *zone;
3228 enum zone_type zone_type = MAX_NR_ZONES;
3229
3230 do {
3231 zone_type--;
3232 zone = pgdat->node_zones + zone_type;
3233 if (populated_zone(zone)) {
3234 zoneref_set_zone(zone,
3235 &zonelist->_zonerefs[nr_zones++]);
3236 check_highest_zone(zone_type);
3237 }
3238 } while (zone_type);
3239
3240 return nr_zones;
3241 }
3242
3243
3244 /*
3245 * zonelist_order:
3246 * 0 = automatic detection of better ordering.
3247 * 1 = order by ([node] distance, -zonetype)
3248 * 2 = order by (-zonetype, [node] distance)
3249 *
3250 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3251 * the same zonelist. So only NUMA can configure this param.
3252 */
3253 #define ZONELIST_ORDER_DEFAULT 0
3254 #define ZONELIST_ORDER_NODE 1
3255 #define ZONELIST_ORDER_ZONE 2
3256
3257 /* zonelist order in the kernel.
3258 * set_zonelist_order() will set this to NODE or ZONE.
3259 */
3260 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3261 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3262
3263
3264 #ifdef CONFIG_NUMA
3265 /* The value user specified ....changed by config */
3266 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3267 /* string for sysctl */
3268 #define NUMA_ZONELIST_ORDER_LEN 16
3269 char numa_zonelist_order[16] = "default";
3270
3271 /*
3272 * interface for configure zonelist ordering.
3273 * command line option "numa_zonelist_order"
3274 * = "[dD]efault - default, automatic configuration.
3275 * = "[nN]ode - order by node locality, then by zone within node
3276 * = "[zZ]one - order by zone, then by locality within zone
3277 */
3278
3279 static int __parse_numa_zonelist_order(char *s)
3280 {
3281 if (*s == 'd' || *s == 'D') {
3282 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3283 } else if (*s == 'n' || *s == 'N') {
3284 user_zonelist_order = ZONELIST_ORDER_NODE;
3285 } else if (*s == 'z' || *s == 'Z') {
3286 user_zonelist_order = ZONELIST_ORDER_ZONE;
3287 } else {
3288 printk(KERN_WARNING
3289 "Ignoring invalid numa_zonelist_order value: "
3290 "%s\n", s);
3291 return -EINVAL;
3292 }
3293 return 0;
3294 }
3295
3296 static __init int setup_numa_zonelist_order(char *s)
3297 {
3298 int ret;
3299
3300 if (!s)
3301 return 0;
3302
3303 ret = __parse_numa_zonelist_order(s);
3304 if (ret == 0)
3305 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3306
3307 return ret;
3308 }
3309 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3310
3311 /*
3312 * sysctl handler for numa_zonelist_order
3313 */
3314 int numa_zonelist_order_handler(ctl_table *table, int write,
3315 void __user *buffer, size_t *length,
3316 loff_t *ppos)
3317 {
3318 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3319 int ret;
3320 static DEFINE_MUTEX(zl_order_mutex);
3321
3322 mutex_lock(&zl_order_mutex);
3323 if (write) {
3324 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3325 ret = -EINVAL;
3326 goto out;
3327 }
3328 strcpy(saved_string, (char *)table->data);
3329 }
3330 ret = proc_dostring(table, write, buffer, length, ppos);
3331 if (ret)
3332 goto out;
3333 if (write) {
3334 int oldval = user_zonelist_order;
3335
3336 ret = __parse_numa_zonelist_order((char *)table->data);
3337 if (ret) {
3338 /*
3339 * bogus value. restore saved string
3340 */
3341 strncpy((char *)table->data, saved_string,
3342 NUMA_ZONELIST_ORDER_LEN);
3343 user_zonelist_order = oldval;
3344 } else if (oldval != user_zonelist_order) {
3345 mutex_lock(&zonelists_mutex);
3346 build_all_zonelists(NULL, NULL);
3347 mutex_unlock(&zonelists_mutex);
3348 }
3349 }
3350 out:
3351 mutex_unlock(&zl_order_mutex);
3352 return ret;
3353 }
3354
3355
3356 #define MAX_NODE_LOAD (nr_online_nodes)
3357 static int node_load[MAX_NUMNODES];
3358
3359 /**
3360 * find_next_best_node - find the next node that should appear in a given node's fallback list
3361 * @node: node whose fallback list we're appending
3362 * @used_node_mask: nodemask_t of already used nodes
3363 *
3364 * We use a number of factors to determine which is the next node that should
3365 * appear on a given node's fallback list. The node should not have appeared
3366 * already in @node's fallback list, and it should be the next closest node
3367 * according to the distance array (which contains arbitrary distance values
3368 * from each node to each node in the system), and should also prefer nodes
3369 * with no CPUs, since presumably they'll have very little allocation pressure
3370 * on them otherwise.
3371 * It returns -1 if no node is found.
3372 */
3373 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3374 {
3375 int n, val;
3376 int min_val = INT_MAX;
3377 int best_node = NUMA_NO_NODE;
3378 const struct cpumask *tmp = cpumask_of_node(0);
3379
3380 /* Use the local node if we haven't already */
3381 if (!node_isset(node, *used_node_mask)) {
3382 node_set(node, *used_node_mask);
3383 return node;
3384 }
3385
3386 for_each_node_state(n, N_MEMORY) {
3387
3388 /* Don't want a node to appear more than once */
3389 if (node_isset(n, *used_node_mask))
3390 continue;
3391
3392 /* Use the distance array to find the distance */
3393 val = node_distance(node, n);
3394
3395 /* Penalize nodes under us ("prefer the next node") */
3396 val += (n < node);
3397
3398 /* Give preference to headless and unused nodes */
3399 tmp = cpumask_of_node(n);
3400 if (!cpumask_empty(tmp))
3401 val += PENALTY_FOR_NODE_WITH_CPUS;
3402
3403 /* Slight preference for less loaded node */
3404 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3405 val += node_load[n];
3406
3407 if (val < min_val) {
3408 min_val = val;
3409 best_node = n;
3410 }
3411 }
3412
3413 if (best_node >= 0)
3414 node_set(best_node, *used_node_mask);
3415
3416 return best_node;
3417 }
3418
3419
3420 /*
3421 * Build zonelists ordered by node and zones within node.
3422 * This results in maximum locality--normal zone overflows into local
3423 * DMA zone, if any--but risks exhausting DMA zone.
3424 */
3425 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3426 {
3427 int j;
3428 struct zonelist *zonelist;
3429
3430 zonelist = &pgdat->node_zonelists[0];
3431 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3432 ;
3433 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3434 zonelist->_zonerefs[j].zone = NULL;
3435 zonelist->_zonerefs[j].zone_idx = 0;
3436 }
3437
3438 /*
3439 * Build gfp_thisnode zonelists
3440 */
3441 static void build_thisnode_zonelists(pg_data_t *pgdat)
3442 {
3443 int j;
3444 struct zonelist *zonelist;
3445
3446 zonelist = &pgdat->node_zonelists[1];
3447 j = build_zonelists_node(pgdat, zonelist, 0);
3448 zonelist->_zonerefs[j].zone = NULL;
3449 zonelist->_zonerefs[j].zone_idx = 0;
3450 }
3451
3452 /*
3453 * Build zonelists ordered by zone and nodes within zones.
3454 * This results in conserving DMA zone[s] until all Normal memory is
3455 * exhausted, but results in overflowing to remote node while memory
3456 * may still exist in local DMA zone.
3457 */
3458 static int node_order[MAX_NUMNODES];
3459
3460 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3461 {
3462 int pos, j, node;
3463 int zone_type; /* needs to be signed */
3464 struct zone *z;
3465 struct zonelist *zonelist;
3466
3467 zonelist = &pgdat->node_zonelists[0];
3468 pos = 0;
3469 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3470 for (j = 0; j < nr_nodes; j++) {
3471 node = node_order[j];
3472 z = &NODE_DATA(node)->node_zones[zone_type];
3473 if (populated_zone(z)) {
3474 zoneref_set_zone(z,
3475 &zonelist->_zonerefs[pos++]);
3476 check_highest_zone(zone_type);
3477 }
3478 }
3479 }
3480 zonelist->_zonerefs[pos].zone = NULL;
3481 zonelist->_zonerefs[pos].zone_idx = 0;
3482 }
3483
3484 static int default_zonelist_order(void)
3485 {
3486 int nid, zone_type;
3487 unsigned long low_kmem_size, total_size;
3488 struct zone *z;
3489 int average_size;
3490 /*
3491 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3492 * If they are really small and used heavily, the system can fall
3493 * into OOM very easily.
3494 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3495 */
3496 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3497 low_kmem_size = 0;
3498 total_size = 0;
3499 for_each_online_node(nid) {
3500 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3501 z = &NODE_DATA(nid)->node_zones[zone_type];
3502 if (populated_zone(z)) {
3503 if (zone_type < ZONE_NORMAL)
3504 low_kmem_size += z->managed_pages;
3505 total_size += z->managed_pages;
3506 } else if (zone_type == ZONE_NORMAL) {
3507 /*
3508 * If any node has only lowmem, then node order
3509 * is preferred to allow kernel allocations
3510 * locally; otherwise, they can easily infringe
3511 * on other nodes when there is an abundance of
3512 * lowmem available to allocate from.
3513 */
3514 return ZONELIST_ORDER_NODE;
3515 }
3516 }
3517 }
3518 if (!low_kmem_size || /* there are no DMA area. */
3519 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3520 return ZONELIST_ORDER_NODE;
3521 /*
3522 * look into each node's config.
3523 * If there is a node whose DMA/DMA32 memory is very big area on
3524 * local memory, NODE_ORDER may be suitable.
3525 */
3526 average_size = total_size /
3527 (nodes_weight(node_states[N_MEMORY]) + 1);
3528 for_each_online_node(nid) {
3529 low_kmem_size = 0;
3530 total_size = 0;
3531 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3532 z = &NODE_DATA(nid)->node_zones[zone_type];
3533 if (populated_zone(z)) {
3534 if (zone_type < ZONE_NORMAL)
3535 low_kmem_size += z->present_pages;
3536 total_size += z->present_pages;
3537 }
3538 }
3539 if (low_kmem_size &&
3540 total_size > average_size && /* ignore small node */
3541 low_kmem_size > total_size * 70/100)
3542 return ZONELIST_ORDER_NODE;
3543 }
3544 return ZONELIST_ORDER_ZONE;
3545 }
3546
3547 static void set_zonelist_order(void)
3548 {
3549 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3550 current_zonelist_order = default_zonelist_order();
3551 else
3552 current_zonelist_order = user_zonelist_order;
3553 }
3554
3555 static void build_zonelists(pg_data_t *pgdat)
3556 {
3557 int j, node, load;
3558 enum zone_type i;
3559 nodemask_t used_mask;
3560 int local_node, prev_node;
3561 struct zonelist *zonelist;
3562 int order = current_zonelist_order;
3563
3564 /* initialize zonelists */
3565 for (i = 0; i < MAX_ZONELISTS; i++) {
3566 zonelist = pgdat->node_zonelists + i;
3567 zonelist->_zonerefs[0].zone = NULL;
3568 zonelist->_zonerefs[0].zone_idx = 0;
3569 }
3570
3571 /* NUMA-aware ordering of nodes */
3572 local_node = pgdat->node_id;
3573 load = nr_online_nodes;
3574 prev_node = local_node;
3575 nodes_clear(used_mask);
3576
3577 memset(node_order, 0, sizeof(node_order));
3578 j = 0;
3579
3580 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3581 /*
3582 * We don't want to pressure a particular node.
3583 * So adding penalty to the first node in same
3584 * distance group to make it round-robin.
3585 */
3586 if (node_distance(local_node, node) !=
3587 node_distance(local_node, prev_node))
3588 node_load[node] = load;
3589
3590 prev_node = node;
3591 load--;
3592 if (order == ZONELIST_ORDER_NODE)
3593 build_zonelists_in_node_order(pgdat, node);
3594 else
3595 node_order[j++] = node; /* remember order */
3596 }
3597
3598 if (order == ZONELIST_ORDER_ZONE) {
3599 /* calculate node order -- i.e., DMA last! */
3600 build_zonelists_in_zone_order(pgdat, j);
3601 }
3602
3603 build_thisnode_zonelists(pgdat);
3604 }
3605
3606 /* Construct the zonelist performance cache - see further mmzone.h */
3607 static void build_zonelist_cache(pg_data_t *pgdat)
3608 {
3609 struct zonelist *zonelist;
3610 struct zonelist_cache *zlc;
3611 struct zoneref *z;
3612
3613 zonelist = &pgdat->node_zonelists[0];
3614 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3615 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3616 for (z = zonelist->_zonerefs; z->zone; z++)
3617 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3618 }
3619
3620 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3621 /*
3622 * Return node id of node used for "local" allocations.
3623 * I.e., first node id of first zone in arg node's generic zonelist.
3624 * Used for initializing percpu 'numa_mem', which is used primarily
3625 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3626 */
3627 int local_memory_node(int node)
3628 {
3629 struct zone *zone;
3630
3631 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3632 gfp_zone(GFP_KERNEL),
3633 NULL,
3634 &zone);
3635 return zone->node;
3636 }
3637 #endif
3638
3639 #else /* CONFIG_NUMA */
3640
3641 static void set_zonelist_order(void)
3642 {
3643 current_zonelist_order = ZONELIST_ORDER_ZONE;
3644 }
3645
3646 static void build_zonelists(pg_data_t *pgdat)
3647 {
3648 int node, local_node;
3649 enum zone_type j;
3650 struct zonelist *zonelist;
3651
3652 local_node = pgdat->node_id;
3653
3654 zonelist = &pgdat->node_zonelists[0];
3655 j = build_zonelists_node(pgdat, zonelist, 0);
3656
3657 /*
3658 * Now we build the zonelist so that it contains the zones
3659 * of all the other nodes.
3660 * We don't want to pressure a particular node, so when
3661 * building the zones for node N, we make sure that the
3662 * zones coming right after the local ones are those from
3663 * node N+1 (modulo N)
3664 */
3665 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3666 if (!node_online(node))
3667 continue;
3668 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3669 }
3670 for (node = 0; node < local_node; node++) {
3671 if (!node_online(node))
3672 continue;
3673 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3674 }
3675
3676 zonelist->_zonerefs[j].zone = NULL;
3677 zonelist->_zonerefs[j].zone_idx = 0;
3678 }
3679
3680 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3681 static void build_zonelist_cache(pg_data_t *pgdat)
3682 {
3683 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3684 }
3685
3686 #endif /* CONFIG_NUMA */
3687
3688 /*
3689 * Boot pageset table. One per cpu which is going to be used for all
3690 * zones and all nodes. The parameters will be set in such a way
3691 * that an item put on a list will immediately be handed over to
3692 * the buddy list. This is safe since pageset manipulation is done
3693 * with interrupts disabled.
3694 *
3695 * The boot_pagesets must be kept even after bootup is complete for
3696 * unused processors and/or zones. They do play a role for bootstrapping
3697 * hotplugged processors.
3698 *
3699 * zoneinfo_show() and maybe other functions do
3700 * not check if the processor is online before following the pageset pointer.
3701 * Other parts of the kernel may not check if the zone is available.
3702 */
3703 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3704 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3705 static void setup_zone_pageset(struct zone *zone);
3706
3707 /*
3708 * Global mutex to protect against size modification of zonelists
3709 * as well as to serialize pageset setup for the new populated zone.
3710 */
3711 DEFINE_MUTEX(zonelists_mutex);
3712
3713 /* return values int ....just for stop_machine() */
3714 static int __build_all_zonelists(void *data)
3715 {
3716 int nid;
3717 int cpu;
3718 pg_data_t *self = data;
3719
3720 #ifdef CONFIG_NUMA
3721 memset(node_load, 0, sizeof(node_load));
3722 #endif
3723
3724 if (self && !node_online(self->node_id)) {
3725 build_zonelists(self);
3726 build_zonelist_cache(self);
3727 }
3728
3729 for_each_online_node(nid) {
3730 pg_data_t *pgdat = NODE_DATA(nid);
3731
3732 build_zonelists(pgdat);
3733 build_zonelist_cache(pgdat);
3734 }
3735
3736 /*
3737 * Initialize the boot_pagesets that are going to be used
3738 * for bootstrapping processors. The real pagesets for
3739 * each zone will be allocated later when the per cpu
3740 * allocator is available.
3741 *
3742 * boot_pagesets are used also for bootstrapping offline
3743 * cpus if the system is already booted because the pagesets
3744 * are needed to initialize allocators on a specific cpu too.
3745 * F.e. the percpu allocator needs the page allocator which
3746 * needs the percpu allocator in order to allocate its pagesets
3747 * (a chicken-egg dilemma).
3748 */
3749 for_each_possible_cpu(cpu) {
3750 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3751
3752 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3753 /*
3754 * We now know the "local memory node" for each node--
3755 * i.e., the node of the first zone in the generic zonelist.
3756 * Set up numa_mem percpu variable for on-line cpus. During
3757 * boot, only the boot cpu should be on-line; we'll init the
3758 * secondary cpus' numa_mem as they come on-line. During
3759 * node/memory hotplug, we'll fixup all on-line cpus.
3760 */
3761 if (cpu_online(cpu))
3762 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3763 #endif
3764 }
3765
3766 return 0;
3767 }
3768
3769 /*
3770 * Called with zonelists_mutex held always
3771 * unless system_state == SYSTEM_BOOTING.
3772 */
3773 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3774 {
3775 set_zonelist_order();
3776
3777 if (system_state == SYSTEM_BOOTING) {
3778 __build_all_zonelists(NULL);
3779 mminit_verify_zonelist();
3780 cpuset_init_current_mems_allowed();
3781 } else {
3782 #ifdef CONFIG_MEMORY_HOTPLUG
3783 if (zone)
3784 setup_zone_pageset(zone);
3785 #endif
3786 /* we have to stop all cpus to guarantee there is no user
3787 of zonelist */
3788 stop_machine(__build_all_zonelists, pgdat, NULL);
3789 /* cpuset refresh routine should be here */
3790 }
3791 vm_total_pages = nr_free_pagecache_pages();
3792 /*
3793 * Disable grouping by mobility if the number of pages in the
3794 * system is too low to allow the mechanism to work. It would be
3795 * more accurate, but expensive to check per-zone. This check is
3796 * made on memory-hotadd so a system can start with mobility
3797 * disabled and enable it later
3798 */
3799 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3800 page_group_by_mobility_disabled = 1;
3801 else
3802 page_group_by_mobility_disabled = 0;
3803
3804 printk("Built %i zonelists in %s order, mobility grouping %s. "
3805 "Total pages: %ld\n",
3806 nr_online_nodes,
3807 zonelist_order_name[current_zonelist_order],
3808 page_group_by_mobility_disabled ? "off" : "on",
3809 vm_total_pages);
3810 #ifdef CONFIG_NUMA
3811 printk("Policy zone: %s\n", zone_names[policy_zone]);
3812 #endif
3813 }
3814
3815 /*
3816 * Helper functions to size the waitqueue hash table.
3817 * Essentially these want to choose hash table sizes sufficiently
3818 * large so that collisions trying to wait on pages are rare.
3819 * But in fact, the number of active page waitqueues on typical
3820 * systems is ridiculously low, less than 200. So this is even
3821 * conservative, even though it seems large.
3822 *
3823 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3824 * waitqueues, i.e. the size of the waitq table given the number of pages.
3825 */
3826 #define PAGES_PER_WAITQUEUE 256
3827
3828 #ifndef CONFIG_MEMORY_HOTPLUG
3829 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3830 {
3831 unsigned long size = 1;
3832
3833 pages /= PAGES_PER_WAITQUEUE;
3834
3835 while (size < pages)
3836 size <<= 1;
3837
3838 /*
3839 * Once we have dozens or even hundreds of threads sleeping
3840 * on IO we've got bigger problems than wait queue collision.
3841 * Limit the size of the wait table to a reasonable size.
3842 */
3843 size = min(size, 4096UL);
3844
3845 return max(size, 4UL);
3846 }
3847 #else
3848 /*
3849 * A zone's size might be changed by hot-add, so it is not possible to determine
3850 * a suitable size for its wait_table. So we use the maximum size now.
3851 *
3852 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3853 *
3854 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3855 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3856 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3857 *
3858 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3859 * or more by the traditional way. (See above). It equals:
3860 *
3861 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3862 * ia64(16K page size) : = ( 8G + 4M)byte.
3863 * powerpc (64K page size) : = (32G +16M)byte.
3864 */
3865 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3866 {
3867 return 4096UL;
3868 }
3869 #endif
3870
3871 /*
3872 * This is an integer logarithm so that shifts can be used later
3873 * to extract the more random high bits from the multiplicative
3874 * hash function before the remainder is taken.
3875 */
3876 static inline unsigned long wait_table_bits(unsigned long size)
3877 {
3878 return ffz(~size);
3879 }
3880
3881 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3882
3883 /*
3884 * Check if a pageblock contains reserved pages
3885 */
3886 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3887 {
3888 unsigned long pfn;
3889
3890 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3891 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3892 return 1;
3893 }
3894 return 0;
3895 }
3896
3897 /*
3898 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3899 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3900 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3901 * higher will lead to a bigger reserve which will get freed as contiguous
3902 * blocks as reclaim kicks in
3903 */
3904 static void setup_zone_migrate_reserve(struct zone *zone)
3905 {
3906 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3907 struct page *page;
3908 unsigned long block_migratetype;
3909 int reserve;
3910
3911 /*
3912 * Get the start pfn, end pfn and the number of blocks to reserve
3913 * We have to be careful to be aligned to pageblock_nr_pages to
3914 * make sure that we always check pfn_valid for the first page in
3915 * the block.
3916 */
3917 start_pfn = zone->zone_start_pfn;
3918 end_pfn = zone_end_pfn(zone);
3919 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3920 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3921 pageblock_order;
3922
3923 /*
3924 * Reserve blocks are generally in place to help high-order atomic
3925 * allocations that are short-lived. A min_free_kbytes value that
3926 * would result in more than 2 reserve blocks for atomic allocations
3927 * is assumed to be in place to help anti-fragmentation for the
3928 * future allocation of hugepages at runtime.
3929 */
3930 reserve = min(2, reserve);
3931
3932 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3933 if (!pfn_valid(pfn))
3934 continue;
3935 page = pfn_to_page(pfn);
3936
3937 /* Watch out for overlapping nodes */
3938 if (page_to_nid(page) != zone_to_nid(zone))
3939 continue;
3940
3941 block_migratetype = get_pageblock_migratetype(page);
3942
3943 /* Only test what is necessary when the reserves are not met */
3944 if (reserve > 0) {
3945 /*
3946 * Blocks with reserved pages will never free, skip
3947 * them.
3948 */
3949 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3950 if (pageblock_is_reserved(pfn, block_end_pfn))
3951 continue;
3952
3953 /* If this block is reserved, account for it */
3954 if (block_migratetype == MIGRATE_RESERVE) {
3955 reserve--;
3956 continue;
3957 }
3958
3959 /* Suitable for reserving if this block is movable */
3960 if (block_migratetype == MIGRATE_MOVABLE) {
3961 set_pageblock_migratetype(page,
3962 MIGRATE_RESERVE);
3963 move_freepages_block(zone, page,
3964 MIGRATE_RESERVE);
3965 reserve--;
3966 continue;
3967 }
3968 }
3969
3970 /*
3971 * If the reserve is met and this is a previous reserved block,
3972 * take it back
3973 */
3974 if (block_migratetype == MIGRATE_RESERVE) {
3975 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3976 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3977 }
3978 }
3979 }
3980
3981 /*
3982 * Initially all pages are reserved - free ones are freed
3983 * up by free_all_bootmem() once the early boot process is
3984 * done. Non-atomic initialization, single-pass.
3985 */
3986 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3987 unsigned long start_pfn, enum memmap_context context)
3988 {
3989 struct page *page;
3990 unsigned long end_pfn = start_pfn + size;
3991 unsigned long pfn;
3992 struct zone *z;
3993
3994 if (highest_memmap_pfn < end_pfn - 1)
3995 highest_memmap_pfn = end_pfn - 1;
3996
3997 z = &NODE_DATA(nid)->node_zones[zone];
3998 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3999 /*
4000 * There can be holes in boot-time mem_map[]s
4001 * handed to this function. They do not
4002 * exist on hotplugged memory.
4003 */
4004 if (context == MEMMAP_EARLY) {
4005 if (!early_pfn_valid(pfn))
4006 continue;
4007 if (!early_pfn_in_nid(pfn, nid))
4008 continue;
4009 }
4010 page = pfn_to_page(pfn);
4011 set_page_links(page, zone, nid, pfn);
4012 mminit_verify_page_links(page, zone, nid, pfn);
4013 init_page_count(page);
4014 page_mapcount_reset(page);
4015 page_nid_reset_last(page);
4016 SetPageReserved(page);
4017 /*
4018 * Mark the block movable so that blocks are reserved for
4019 * movable at startup. This will force kernel allocations
4020 * to reserve their blocks rather than leaking throughout
4021 * the address space during boot when many long-lived
4022 * kernel allocations are made. Later some blocks near
4023 * the start are marked MIGRATE_RESERVE by
4024 * setup_zone_migrate_reserve()
4025 *
4026 * bitmap is created for zone's valid pfn range. but memmap
4027 * can be created for invalid pages (for alignment)
4028 * check here not to call set_pageblock_migratetype() against
4029 * pfn out of zone.
4030 */
4031 if ((z->zone_start_pfn <= pfn)
4032 && (pfn < zone_end_pfn(z))
4033 && !(pfn & (pageblock_nr_pages - 1)))
4034 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4035
4036 INIT_LIST_HEAD(&page->lru);
4037 #ifdef WANT_PAGE_VIRTUAL
4038 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4039 if (!is_highmem_idx(zone))
4040 set_page_address(page, __va(pfn << PAGE_SHIFT));
4041 #endif
4042 }
4043 }
4044
4045 static void __meminit zone_init_free_lists(struct zone *zone)
4046 {
4047 int order, t;
4048 for_each_migratetype_order(order, t) {
4049 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4050 zone->free_area[order].nr_free = 0;
4051 }
4052 }
4053
4054 #ifndef __HAVE_ARCH_MEMMAP_INIT
4055 #define memmap_init(size, nid, zone, start_pfn) \
4056 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4057 #endif
4058
4059 static int __meminit zone_batchsize(struct zone *zone)
4060 {
4061 #ifdef CONFIG_MMU
4062 int batch;
4063
4064 /*
4065 * The per-cpu-pages pools are set to around 1000th of the
4066 * size of the zone. But no more than 1/2 of a meg.
4067 *
4068 * OK, so we don't know how big the cache is. So guess.
4069 */
4070 batch = zone->managed_pages / 1024;
4071 if (batch * PAGE_SIZE > 512 * 1024)
4072 batch = (512 * 1024) / PAGE_SIZE;
4073 batch /= 4; /* We effectively *= 4 below */
4074 if (batch < 1)
4075 batch = 1;
4076
4077 /*
4078 * Clamp the batch to a 2^n - 1 value. Having a power
4079 * of 2 value was found to be more likely to have
4080 * suboptimal cache aliasing properties in some cases.
4081 *
4082 * For example if 2 tasks are alternately allocating
4083 * batches of pages, one task can end up with a lot
4084 * of pages of one half of the possible page colors
4085 * and the other with pages of the other colors.
4086 */
4087 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4088
4089 return batch;
4090
4091 #else
4092 /* The deferral and batching of frees should be suppressed under NOMMU
4093 * conditions.
4094 *
4095 * The problem is that NOMMU needs to be able to allocate large chunks
4096 * of contiguous memory as there's no hardware page translation to
4097 * assemble apparent contiguous memory from discontiguous pages.
4098 *
4099 * Queueing large contiguous runs of pages for batching, however,
4100 * causes the pages to actually be freed in smaller chunks. As there
4101 * can be a significant delay between the individual batches being
4102 * recycled, this leads to the once large chunks of space being
4103 * fragmented and becoming unavailable for high-order allocations.
4104 */
4105 return 0;
4106 #endif
4107 }
4108
4109 /*
4110 * pcp->high and pcp->batch values are related and dependent on one another:
4111 * ->batch must never be higher then ->high.
4112 * The following function updates them in a safe manner without read side
4113 * locking.
4114 *
4115 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4116 * those fields changing asynchronously (acording the the above rule).
4117 *
4118 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4119 * outside of boot time (or some other assurance that no concurrent updaters
4120 * exist).
4121 */
4122 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4123 unsigned long batch)
4124 {
4125 /* start with a fail safe value for batch */
4126 pcp->batch = 1;
4127 smp_wmb();
4128
4129 /* Update high, then batch, in order */
4130 pcp->high = high;
4131 smp_wmb();
4132
4133 pcp->batch = batch;
4134 }
4135
4136 /* a companion to pageset_set_high() */
4137 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4138 {
4139 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4140 }
4141
4142 static void pageset_init(struct per_cpu_pageset *p)
4143 {
4144 struct per_cpu_pages *pcp;
4145 int migratetype;
4146
4147 memset(p, 0, sizeof(*p));
4148
4149 pcp = &p->pcp;
4150 pcp->count = 0;
4151 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4152 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4153 }
4154
4155 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4156 {
4157 pageset_init(p);
4158 pageset_set_batch(p, batch);
4159 }
4160
4161 /*
4162 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4163 * to the value high for the pageset p.
4164 */
4165 static void pageset_set_high(struct per_cpu_pageset *p,
4166 unsigned long high)
4167 {
4168 unsigned long batch = max(1UL, high / 4);
4169 if ((high / 4) > (PAGE_SHIFT * 8))
4170 batch = PAGE_SHIFT * 8;
4171
4172 pageset_update(&p->pcp, high, batch);
4173 }
4174
4175 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4176 struct per_cpu_pageset *pcp)
4177 {
4178 if (percpu_pagelist_fraction)
4179 pageset_set_high(pcp,
4180 (zone->managed_pages /
4181 percpu_pagelist_fraction));
4182 else
4183 pageset_set_batch(pcp, zone_batchsize(zone));
4184 }
4185
4186 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4187 {
4188 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4189
4190 pageset_init(pcp);
4191 pageset_set_high_and_batch(zone, pcp);
4192 }
4193
4194 static void __meminit setup_zone_pageset(struct zone *zone)
4195 {
4196 int cpu;
4197 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4198 for_each_possible_cpu(cpu)
4199 zone_pageset_init(zone, cpu);
4200 }
4201
4202 /*
4203 * Allocate per cpu pagesets and initialize them.
4204 * Before this call only boot pagesets were available.
4205 */
4206 void __init setup_per_cpu_pageset(void)
4207 {
4208 struct zone *zone;
4209
4210 for_each_populated_zone(zone)
4211 setup_zone_pageset(zone);
4212 }
4213
4214 static noinline __init_refok
4215 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4216 {
4217 int i;
4218 struct pglist_data *pgdat = zone->zone_pgdat;
4219 size_t alloc_size;
4220
4221 /*
4222 * The per-page waitqueue mechanism uses hashed waitqueues
4223 * per zone.
4224 */
4225 zone->wait_table_hash_nr_entries =
4226 wait_table_hash_nr_entries(zone_size_pages);
4227 zone->wait_table_bits =
4228 wait_table_bits(zone->wait_table_hash_nr_entries);
4229 alloc_size = zone->wait_table_hash_nr_entries
4230 * sizeof(wait_queue_head_t);
4231
4232 if (!slab_is_available()) {
4233 zone->wait_table = (wait_queue_head_t *)
4234 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4235 } else {
4236 /*
4237 * This case means that a zone whose size was 0 gets new memory
4238 * via memory hot-add.
4239 * But it may be the case that a new node was hot-added. In
4240 * this case vmalloc() will not be able to use this new node's
4241 * memory - this wait_table must be initialized to use this new
4242 * node itself as well.
4243 * To use this new node's memory, further consideration will be
4244 * necessary.
4245 */
4246 zone->wait_table = vmalloc(alloc_size);
4247 }
4248 if (!zone->wait_table)
4249 return -ENOMEM;
4250
4251 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4252 init_waitqueue_head(zone->wait_table + i);
4253
4254 return 0;
4255 }
4256
4257 static __meminit void zone_pcp_init(struct zone *zone)
4258 {
4259 /*
4260 * per cpu subsystem is not up at this point. The following code
4261 * relies on the ability of the linker to provide the
4262 * offset of a (static) per cpu variable into the per cpu area.
4263 */
4264 zone->pageset = &boot_pageset;
4265
4266 if (zone->present_pages)
4267 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4268 zone->name, zone->present_pages,
4269 zone_batchsize(zone));
4270 }
4271
4272 int __meminit init_currently_empty_zone(struct zone *zone,
4273 unsigned long zone_start_pfn,
4274 unsigned long size,
4275 enum memmap_context context)
4276 {
4277 struct pglist_data *pgdat = zone->zone_pgdat;
4278 int ret;
4279 ret = zone_wait_table_init(zone, size);
4280 if (ret)
4281 return ret;
4282 pgdat->nr_zones = zone_idx(zone) + 1;
4283
4284 zone->zone_start_pfn = zone_start_pfn;
4285
4286 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4287 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4288 pgdat->node_id,
4289 (unsigned long)zone_idx(zone),
4290 zone_start_pfn, (zone_start_pfn + size));
4291
4292 zone_init_free_lists(zone);
4293
4294 return 0;
4295 }
4296
4297 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4298 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4299 /*
4300 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4301 * Architectures may implement their own version but if add_active_range()
4302 * was used and there are no special requirements, this is a convenient
4303 * alternative
4304 */
4305 int __meminit __early_pfn_to_nid(unsigned long pfn)
4306 {
4307 unsigned long start_pfn, end_pfn;
4308 int nid;
4309 /*
4310 * NOTE: The following SMP-unsafe globals are only used early in boot
4311 * when the kernel is running single-threaded.
4312 */
4313 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4314 static int __meminitdata last_nid;
4315
4316 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4317 return last_nid;
4318
4319 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4320 if (nid != -1) {
4321 last_start_pfn = start_pfn;
4322 last_end_pfn = end_pfn;
4323 last_nid = nid;
4324 }
4325
4326 return nid;
4327 }
4328 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4329
4330 int __meminit early_pfn_to_nid(unsigned long pfn)
4331 {
4332 int nid;
4333
4334 nid = __early_pfn_to_nid(pfn);
4335 if (nid >= 0)
4336 return nid;
4337 /* just returns 0 */
4338 return 0;
4339 }
4340
4341 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4342 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4343 {
4344 int nid;
4345
4346 nid = __early_pfn_to_nid(pfn);
4347 if (nid >= 0 && nid != node)
4348 return false;
4349 return true;
4350 }
4351 #endif
4352
4353 /**
4354 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4355 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4356 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4357 *
4358 * If an architecture guarantees that all ranges registered with
4359 * add_active_ranges() contain no holes and may be freed, this
4360 * this function may be used instead of calling free_bootmem() manually.
4361 */
4362 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4363 {
4364 unsigned long start_pfn, end_pfn;
4365 int i, this_nid;
4366
4367 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4368 start_pfn = min(start_pfn, max_low_pfn);
4369 end_pfn = min(end_pfn, max_low_pfn);
4370
4371 if (start_pfn < end_pfn)
4372 free_bootmem_node(NODE_DATA(this_nid),
4373 PFN_PHYS(start_pfn),
4374 (end_pfn - start_pfn) << PAGE_SHIFT);
4375 }
4376 }
4377
4378 /**
4379 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4380 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4381 *
4382 * If an architecture guarantees that all ranges registered with
4383 * add_active_ranges() contain no holes and may be freed, this
4384 * function may be used instead of calling memory_present() manually.
4385 */
4386 void __init sparse_memory_present_with_active_regions(int nid)
4387 {
4388 unsigned long start_pfn, end_pfn;
4389 int i, this_nid;
4390
4391 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4392 memory_present(this_nid, start_pfn, end_pfn);
4393 }
4394
4395 /**
4396 * get_pfn_range_for_nid - Return the start and end page frames for a node
4397 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4398 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4399 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4400 *
4401 * It returns the start and end page frame of a node based on information
4402 * provided by an arch calling add_active_range(). If called for a node
4403 * with no available memory, a warning is printed and the start and end
4404 * PFNs will be 0.
4405 */
4406 void __meminit get_pfn_range_for_nid(unsigned int nid,
4407 unsigned long *start_pfn, unsigned long *end_pfn)
4408 {
4409 unsigned long this_start_pfn, this_end_pfn;
4410 int i;
4411
4412 *start_pfn = -1UL;
4413 *end_pfn = 0;
4414
4415 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4416 *start_pfn = min(*start_pfn, this_start_pfn);
4417 *end_pfn = max(*end_pfn, this_end_pfn);
4418 }
4419
4420 if (*start_pfn == -1UL)
4421 *start_pfn = 0;
4422 }
4423
4424 /*
4425 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4426 * assumption is made that zones within a node are ordered in monotonic
4427 * increasing memory addresses so that the "highest" populated zone is used
4428 */
4429 static void __init find_usable_zone_for_movable(void)
4430 {
4431 int zone_index;
4432 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4433 if (zone_index == ZONE_MOVABLE)
4434 continue;
4435
4436 if (arch_zone_highest_possible_pfn[zone_index] >
4437 arch_zone_lowest_possible_pfn[zone_index])
4438 break;
4439 }
4440
4441 VM_BUG_ON(zone_index == -1);
4442 movable_zone = zone_index;
4443 }
4444
4445 /*
4446 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4447 * because it is sized independent of architecture. Unlike the other zones,
4448 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4449 * in each node depending on the size of each node and how evenly kernelcore
4450 * is distributed. This helper function adjusts the zone ranges
4451 * provided by the architecture for a given node by using the end of the
4452 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4453 * zones within a node are in order of monotonic increases memory addresses
4454 */
4455 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4456 unsigned long zone_type,
4457 unsigned long node_start_pfn,
4458 unsigned long node_end_pfn,
4459 unsigned long *zone_start_pfn,
4460 unsigned long *zone_end_pfn)
4461 {
4462 /* Only adjust if ZONE_MOVABLE is on this node */
4463 if (zone_movable_pfn[nid]) {
4464 /* Size ZONE_MOVABLE */
4465 if (zone_type == ZONE_MOVABLE) {
4466 *zone_start_pfn = zone_movable_pfn[nid];
4467 *zone_end_pfn = min(node_end_pfn,
4468 arch_zone_highest_possible_pfn[movable_zone]);
4469
4470 /* Adjust for ZONE_MOVABLE starting within this range */
4471 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4472 *zone_end_pfn > zone_movable_pfn[nid]) {
4473 *zone_end_pfn = zone_movable_pfn[nid];
4474
4475 /* Check if this whole range is within ZONE_MOVABLE */
4476 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4477 *zone_start_pfn = *zone_end_pfn;
4478 }
4479 }
4480
4481 /*
4482 * Return the number of pages a zone spans in a node, including holes
4483 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4484 */
4485 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4486 unsigned long zone_type,
4487 unsigned long node_start_pfn,
4488 unsigned long node_end_pfn,
4489 unsigned long *ignored)
4490 {
4491 unsigned long zone_start_pfn, zone_end_pfn;
4492
4493 /* Get the start and end of the zone */
4494 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4495 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4496 adjust_zone_range_for_zone_movable(nid, zone_type,
4497 node_start_pfn, node_end_pfn,
4498 &zone_start_pfn, &zone_end_pfn);
4499
4500 /* Check that this node has pages within the zone's required range */
4501 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4502 return 0;
4503
4504 /* Move the zone boundaries inside the node if necessary */
4505 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4506 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4507
4508 /* Return the spanned pages */
4509 return zone_end_pfn - zone_start_pfn;
4510 }
4511
4512 /*
4513 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4514 * then all holes in the requested range will be accounted for.
4515 */
4516 unsigned long __meminit __absent_pages_in_range(int nid,
4517 unsigned long range_start_pfn,
4518 unsigned long range_end_pfn)
4519 {
4520 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4521 unsigned long start_pfn, end_pfn;
4522 int i;
4523
4524 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4525 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4526 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4527 nr_absent -= end_pfn - start_pfn;
4528 }
4529 return nr_absent;
4530 }
4531
4532 /**
4533 * absent_pages_in_range - Return number of page frames in holes within a range
4534 * @start_pfn: The start PFN to start searching for holes
4535 * @end_pfn: The end PFN to stop searching for holes
4536 *
4537 * It returns the number of pages frames in memory holes within a range.
4538 */
4539 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4540 unsigned long end_pfn)
4541 {
4542 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4543 }
4544
4545 /* Return the number of page frames in holes in a zone on a node */
4546 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4547 unsigned long zone_type,
4548 unsigned long node_start_pfn,
4549 unsigned long node_end_pfn,
4550 unsigned long *ignored)
4551 {
4552 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4553 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4554 unsigned long zone_start_pfn, zone_end_pfn;
4555
4556 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4557 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4558
4559 adjust_zone_range_for_zone_movable(nid, zone_type,
4560 node_start_pfn, node_end_pfn,
4561 &zone_start_pfn, &zone_end_pfn);
4562 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4563 }
4564
4565 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4566 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4567 unsigned long zone_type,
4568 unsigned long node_start_pfn,
4569 unsigned long node_end_pfn,
4570 unsigned long *zones_size)
4571 {
4572 return zones_size[zone_type];
4573 }
4574
4575 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4576 unsigned long zone_type,
4577 unsigned long node_start_pfn,
4578 unsigned long node_end_pfn,
4579 unsigned long *zholes_size)
4580 {
4581 if (!zholes_size)
4582 return 0;
4583
4584 return zholes_size[zone_type];
4585 }
4586
4587 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4588
4589 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4590 unsigned long node_start_pfn,
4591 unsigned long node_end_pfn,
4592 unsigned long *zones_size,
4593 unsigned long *zholes_size)
4594 {
4595 unsigned long realtotalpages, totalpages = 0;
4596 enum zone_type i;
4597
4598 for (i = 0; i < MAX_NR_ZONES; i++)
4599 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4600 node_start_pfn,
4601 node_end_pfn,
4602 zones_size);
4603 pgdat->node_spanned_pages = totalpages;
4604
4605 realtotalpages = totalpages;
4606 for (i = 0; i < MAX_NR_ZONES; i++)
4607 realtotalpages -=
4608 zone_absent_pages_in_node(pgdat->node_id, i,
4609 node_start_pfn, node_end_pfn,
4610 zholes_size);
4611 pgdat->node_present_pages = realtotalpages;
4612 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4613 realtotalpages);
4614 }
4615
4616 #ifndef CONFIG_SPARSEMEM
4617 /*
4618 * Calculate the size of the zone->blockflags rounded to an unsigned long
4619 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4620 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4621 * round what is now in bits to nearest long in bits, then return it in
4622 * bytes.
4623 */
4624 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4625 {
4626 unsigned long usemapsize;
4627
4628 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4629 usemapsize = roundup(zonesize, pageblock_nr_pages);
4630 usemapsize = usemapsize >> pageblock_order;
4631 usemapsize *= NR_PAGEBLOCK_BITS;
4632 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4633
4634 return usemapsize / 8;
4635 }
4636
4637 static void __init setup_usemap(struct pglist_data *pgdat,
4638 struct zone *zone,
4639 unsigned long zone_start_pfn,
4640 unsigned long zonesize)
4641 {
4642 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4643 zone->pageblock_flags = NULL;
4644 if (usemapsize)
4645 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4646 usemapsize);
4647 }
4648 #else
4649 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4650 unsigned long zone_start_pfn, unsigned long zonesize) {}
4651 #endif /* CONFIG_SPARSEMEM */
4652
4653 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4654
4655 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4656 void __paginginit set_pageblock_order(void)
4657 {
4658 unsigned int order;
4659
4660 /* Check that pageblock_nr_pages has not already been setup */
4661 if (pageblock_order)
4662 return;
4663
4664 if (HPAGE_SHIFT > PAGE_SHIFT)
4665 order = HUGETLB_PAGE_ORDER;
4666 else
4667 order = MAX_ORDER - 1;
4668
4669 /*
4670 * Assume the largest contiguous order of interest is a huge page.
4671 * This value may be variable depending on boot parameters on IA64 and
4672 * powerpc.
4673 */
4674 pageblock_order = order;
4675 }
4676 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4677
4678 /*
4679 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4680 * is unused as pageblock_order is set at compile-time. See
4681 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4682 * the kernel config
4683 */
4684 void __paginginit set_pageblock_order(void)
4685 {
4686 }
4687
4688 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4689
4690 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4691 unsigned long present_pages)
4692 {
4693 unsigned long pages = spanned_pages;
4694
4695 /*
4696 * Provide a more accurate estimation if there are holes within
4697 * the zone and SPARSEMEM is in use. If there are holes within the
4698 * zone, each populated memory region may cost us one or two extra
4699 * memmap pages due to alignment because memmap pages for each
4700 * populated regions may not naturally algined on page boundary.
4701 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4702 */
4703 if (spanned_pages > present_pages + (present_pages >> 4) &&
4704 IS_ENABLED(CONFIG_SPARSEMEM))
4705 pages = present_pages;
4706
4707 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4708 }
4709
4710 /*
4711 * Set up the zone data structures:
4712 * - mark all pages reserved
4713 * - mark all memory queues empty
4714 * - clear the memory bitmaps
4715 *
4716 * NOTE: pgdat should get zeroed by caller.
4717 */
4718 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4719 unsigned long node_start_pfn, unsigned long node_end_pfn,
4720 unsigned long *zones_size, unsigned long *zholes_size)
4721 {
4722 enum zone_type j;
4723 int nid = pgdat->node_id;
4724 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4725 int ret;
4726
4727 pgdat_resize_init(pgdat);
4728 #ifdef CONFIG_NUMA_BALANCING
4729 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4730 pgdat->numabalancing_migrate_nr_pages = 0;
4731 pgdat->numabalancing_migrate_next_window = jiffies;
4732 #endif
4733 init_waitqueue_head(&pgdat->kswapd_wait);
4734 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4735 pgdat_page_cgroup_init(pgdat);
4736
4737 for (j = 0; j < MAX_NR_ZONES; j++) {
4738 struct zone *zone = pgdat->node_zones + j;
4739 unsigned long size, realsize, freesize, memmap_pages;
4740
4741 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4742 node_end_pfn, zones_size);
4743 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4744 node_start_pfn,
4745 node_end_pfn,
4746 zholes_size);
4747
4748 /*
4749 * Adjust freesize so that it accounts for how much memory
4750 * is used by this zone for memmap. This affects the watermark
4751 * and per-cpu initialisations
4752 */
4753 memmap_pages = calc_memmap_size(size, realsize);
4754 if (freesize >= memmap_pages) {
4755 freesize -= memmap_pages;
4756 if (memmap_pages)
4757 printk(KERN_DEBUG
4758 " %s zone: %lu pages used for memmap\n",
4759 zone_names[j], memmap_pages);
4760 } else
4761 printk(KERN_WARNING
4762 " %s zone: %lu pages exceeds freesize %lu\n",
4763 zone_names[j], memmap_pages, freesize);
4764
4765 /* Account for reserved pages */
4766 if (j == 0 && freesize > dma_reserve) {
4767 freesize -= dma_reserve;
4768 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4769 zone_names[0], dma_reserve);
4770 }
4771
4772 if (!is_highmem_idx(j))
4773 nr_kernel_pages += freesize;
4774 /* Charge for highmem memmap if there are enough kernel pages */
4775 else if (nr_kernel_pages > memmap_pages * 2)
4776 nr_kernel_pages -= memmap_pages;
4777 nr_all_pages += freesize;
4778
4779 zone->spanned_pages = size;
4780 zone->present_pages = realsize;
4781 /*
4782 * Set an approximate value for lowmem here, it will be adjusted
4783 * when the bootmem allocator frees pages into the buddy system.
4784 * And all highmem pages will be managed by the buddy system.
4785 */
4786 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4787 #ifdef CONFIG_NUMA
4788 zone->node = nid;
4789 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4790 / 100;
4791 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4792 #endif
4793 zone->name = zone_names[j];
4794 spin_lock_init(&zone->lock);
4795 spin_lock_init(&zone->lru_lock);
4796 zone_seqlock_init(zone);
4797 zone->zone_pgdat = pgdat;
4798 zone_pcp_init(zone);
4799
4800 /* For bootup, initialized properly in watermark setup */
4801 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4802
4803 lruvec_init(&zone->lruvec);
4804 if (!size)
4805 continue;
4806
4807 set_pageblock_order();
4808 setup_usemap(pgdat, zone, zone_start_pfn, size);
4809 ret = init_currently_empty_zone(zone, zone_start_pfn,
4810 size, MEMMAP_EARLY);
4811 BUG_ON(ret);
4812 memmap_init(size, nid, j, zone_start_pfn);
4813 zone_start_pfn += size;
4814 }
4815 }
4816
4817 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4818 {
4819 /* Skip empty nodes */
4820 if (!pgdat->node_spanned_pages)
4821 return;
4822
4823 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4824 /* ia64 gets its own node_mem_map, before this, without bootmem */
4825 if (!pgdat->node_mem_map) {
4826 unsigned long size, start, end;
4827 struct page *map;
4828
4829 /*
4830 * The zone's endpoints aren't required to be MAX_ORDER
4831 * aligned but the node_mem_map endpoints must be in order
4832 * for the buddy allocator to function correctly.
4833 */
4834 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4835 end = pgdat_end_pfn(pgdat);
4836 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4837 size = (end - start) * sizeof(struct page);
4838 map = alloc_remap(pgdat->node_id, size);
4839 if (!map)
4840 map = alloc_bootmem_node_nopanic(pgdat, size);
4841 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4842 }
4843 #ifndef CONFIG_NEED_MULTIPLE_NODES
4844 /*
4845 * With no DISCONTIG, the global mem_map is just set as node 0's
4846 */
4847 if (pgdat == NODE_DATA(0)) {
4848 mem_map = NODE_DATA(0)->node_mem_map;
4849 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4850 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4851 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4852 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4853 }
4854 #endif
4855 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4856 }
4857
4858 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4859 unsigned long node_start_pfn, unsigned long *zholes_size)
4860 {
4861 pg_data_t *pgdat = NODE_DATA(nid);
4862 unsigned long start_pfn = 0;
4863 unsigned long end_pfn = 0;
4864
4865 /* pg_data_t should be reset to zero when it's allocated */
4866 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4867
4868 pgdat->node_id = nid;
4869 pgdat->node_start_pfn = node_start_pfn;
4870 init_zone_allows_reclaim(nid);
4871 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4872 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4873 #endif
4874 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4875 zones_size, zholes_size);
4876
4877 alloc_node_mem_map(pgdat);
4878 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4879 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4880 nid, (unsigned long)pgdat,
4881 (unsigned long)pgdat->node_mem_map);
4882 #endif
4883
4884 free_area_init_core(pgdat, start_pfn, end_pfn,
4885 zones_size, zholes_size);
4886 }
4887
4888 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4889
4890 #if MAX_NUMNODES > 1
4891 /*
4892 * Figure out the number of possible node ids.
4893 */
4894 void __init setup_nr_node_ids(void)
4895 {
4896 unsigned int node;
4897 unsigned int highest = 0;
4898
4899 for_each_node_mask(node, node_possible_map)
4900 highest = node;
4901 nr_node_ids = highest + 1;
4902 }
4903 #endif
4904
4905 /**
4906 * node_map_pfn_alignment - determine the maximum internode alignment
4907 *
4908 * This function should be called after node map is populated and sorted.
4909 * It calculates the maximum power of two alignment which can distinguish
4910 * all the nodes.
4911 *
4912 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4913 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4914 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4915 * shifted, 1GiB is enough and this function will indicate so.
4916 *
4917 * This is used to test whether pfn -> nid mapping of the chosen memory
4918 * model has fine enough granularity to avoid incorrect mapping for the
4919 * populated node map.
4920 *
4921 * Returns the determined alignment in pfn's. 0 if there is no alignment
4922 * requirement (single node).
4923 */
4924 unsigned long __init node_map_pfn_alignment(void)
4925 {
4926 unsigned long accl_mask = 0, last_end = 0;
4927 unsigned long start, end, mask;
4928 int last_nid = -1;
4929 int i, nid;
4930
4931 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4932 if (!start || last_nid < 0 || last_nid == nid) {
4933 last_nid = nid;
4934 last_end = end;
4935 continue;
4936 }
4937
4938 /*
4939 * Start with a mask granular enough to pin-point to the
4940 * start pfn and tick off bits one-by-one until it becomes
4941 * too coarse to separate the current node from the last.
4942 */
4943 mask = ~((1 << __ffs(start)) - 1);
4944 while (mask && last_end <= (start & (mask << 1)))
4945 mask <<= 1;
4946
4947 /* accumulate all internode masks */
4948 accl_mask |= mask;
4949 }
4950
4951 /* convert mask to number of pages */
4952 return ~accl_mask + 1;
4953 }
4954
4955 /* Find the lowest pfn for a node */
4956 static unsigned long __init find_min_pfn_for_node(int nid)
4957 {
4958 unsigned long min_pfn = ULONG_MAX;
4959 unsigned long start_pfn;
4960 int i;
4961
4962 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4963 min_pfn = min(min_pfn, start_pfn);
4964
4965 if (min_pfn == ULONG_MAX) {
4966 printk(KERN_WARNING
4967 "Could not find start_pfn for node %d\n", nid);
4968 return 0;
4969 }
4970
4971 return min_pfn;
4972 }
4973
4974 /**
4975 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4976 *
4977 * It returns the minimum PFN based on information provided via
4978 * add_active_range().
4979 */
4980 unsigned long __init find_min_pfn_with_active_regions(void)
4981 {
4982 return find_min_pfn_for_node(MAX_NUMNODES);
4983 }
4984
4985 /*
4986 * early_calculate_totalpages()
4987 * Sum pages in active regions for movable zone.
4988 * Populate N_MEMORY for calculating usable_nodes.
4989 */
4990 static unsigned long __init early_calculate_totalpages(void)
4991 {
4992 unsigned long totalpages = 0;
4993 unsigned long start_pfn, end_pfn;
4994 int i, nid;
4995
4996 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4997 unsigned long pages = end_pfn - start_pfn;
4998
4999 totalpages += pages;
5000 if (pages)
5001 node_set_state(nid, N_MEMORY);
5002 }
5003 return totalpages;
5004 }
5005
5006 /*
5007 * Find the PFN the Movable zone begins in each node. Kernel memory
5008 * is spread evenly between nodes as long as the nodes have enough
5009 * memory. When they don't, some nodes will have more kernelcore than
5010 * others
5011 */
5012 static void __init find_zone_movable_pfns_for_nodes(void)
5013 {
5014 int i, nid;
5015 unsigned long usable_startpfn;
5016 unsigned long kernelcore_node, kernelcore_remaining;
5017 /* save the state before borrow the nodemask */
5018 nodemask_t saved_node_state = node_states[N_MEMORY];
5019 unsigned long totalpages = early_calculate_totalpages();
5020 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5021
5022 /*
5023 * If movablecore was specified, calculate what size of
5024 * kernelcore that corresponds so that memory usable for
5025 * any allocation type is evenly spread. If both kernelcore
5026 * and movablecore are specified, then the value of kernelcore
5027 * will be used for required_kernelcore if it's greater than
5028 * what movablecore would have allowed.
5029 */
5030 if (required_movablecore) {
5031 unsigned long corepages;
5032
5033 /*
5034 * Round-up so that ZONE_MOVABLE is at least as large as what
5035 * was requested by the user
5036 */
5037 required_movablecore =
5038 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5039 corepages = totalpages - required_movablecore;
5040
5041 required_kernelcore = max(required_kernelcore, corepages);
5042 }
5043
5044 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5045 if (!required_kernelcore)
5046 goto out;
5047
5048 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5049 find_usable_zone_for_movable();
5050 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5051
5052 restart:
5053 /* Spread kernelcore memory as evenly as possible throughout nodes */
5054 kernelcore_node = required_kernelcore / usable_nodes;
5055 for_each_node_state(nid, N_MEMORY) {
5056 unsigned long start_pfn, end_pfn;
5057
5058 /*
5059 * Recalculate kernelcore_node if the division per node
5060 * now exceeds what is necessary to satisfy the requested
5061 * amount of memory for the kernel
5062 */
5063 if (required_kernelcore < kernelcore_node)
5064 kernelcore_node = required_kernelcore / usable_nodes;
5065
5066 /*
5067 * As the map is walked, we track how much memory is usable
5068 * by the kernel using kernelcore_remaining. When it is
5069 * 0, the rest of the node is usable by ZONE_MOVABLE
5070 */
5071 kernelcore_remaining = kernelcore_node;
5072
5073 /* Go through each range of PFNs within this node */
5074 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5075 unsigned long size_pages;
5076
5077 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5078 if (start_pfn >= end_pfn)
5079 continue;
5080
5081 /* Account for what is only usable for kernelcore */
5082 if (start_pfn < usable_startpfn) {
5083 unsigned long kernel_pages;
5084 kernel_pages = min(end_pfn, usable_startpfn)
5085 - start_pfn;
5086
5087 kernelcore_remaining -= min(kernel_pages,
5088 kernelcore_remaining);
5089 required_kernelcore -= min(kernel_pages,
5090 required_kernelcore);
5091
5092 /* Continue if range is now fully accounted */
5093 if (end_pfn <= usable_startpfn) {
5094
5095 /*
5096 * Push zone_movable_pfn to the end so
5097 * that if we have to rebalance
5098 * kernelcore across nodes, we will
5099 * not double account here
5100 */
5101 zone_movable_pfn[nid] = end_pfn;
5102 continue;
5103 }
5104 start_pfn = usable_startpfn;
5105 }
5106
5107 /*
5108 * The usable PFN range for ZONE_MOVABLE is from
5109 * start_pfn->end_pfn. Calculate size_pages as the
5110 * number of pages used as kernelcore
5111 */
5112 size_pages = end_pfn - start_pfn;
5113 if (size_pages > kernelcore_remaining)
5114 size_pages = kernelcore_remaining;
5115 zone_movable_pfn[nid] = start_pfn + size_pages;
5116
5117 /*
5118 * Some kernelcore has been met, update counts and
5119 * break if the kernelcore for this node has been
5120 * satisfied
5121 */
5122 required_kernelcore -= min(required_kernelcore,
5123 size_pages);
5124 kernelcore_remaining -= size_pages;
5125 if (!kernelcore_remaining)
5126 break;
5127 }
5128 }
5129
5130 /*
5131 * If there is still required_kernelcore, we do another pass with one
5132 * less node in the count. This will push zone_movable_pfn[nid] further
5133 * along on the nodes that still have memory until kernelcore is
5134 * satisfied
5135 */
5136 usable_nodes--;
5137 if (usable_nodes && required_kernelcore > usable_nodes)
5138 goto restart;
5139
5140 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5141 for (nid = 0; nid < MAX_NUMNODES; nid++)
5142 zone_movable_pfn[nid] =
5143 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5144
5145 out:
5146 /* restore the node_state */
5147 node_states[N_MEMORY] = saved_node_state;
5148 }
5149
5150 /* Any regular or high memory on that node ? */
5151 static void check_for_memory(pg_data_t *pgdat, int nid)
5152 {
5153 enum zone_type zone_type;
5154
5155 if (N_MEMORY == N_NORMAL_MEMORY)
5156 return;
5157
5158 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5159 struct zone *zone = &pgdat->node_zones[zone_type];
5160 if (zone->present_pages) {
5161 node_set_state(nid, N_HIGH_MEMORY);
5162 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5163 zone_type <= ZONE_NORMAL)
5164 node_set_state(nid, N_NORMAL_MEMORY);
5165 break;
5166 }
5167 }
5168 }
5169
5170 /**
5171 * free_area_init_nodes - Initialise all pg_data_t and zone data
5172 * @max_zone_pfn: an array of max PFNs for each zone
5173 *
5174 * This will call free_area_init_node() for each active node in the system.
5175 * Using the page ranges provided by add_active_range(), the size of each
5176 * zone in each node and their holes is calculated. If the maximum PFN
5177 * between two adjacent zones match, it is assumed that the zone is empty.
5178 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5179 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5180 * starts where the previous one ended. For example, ZONE_DMA32 starts
5181 * at arch_max_dma_pfn.
5182 */
5183 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5184 {
5185 unsigned long start_pfn, end_pfn;
5186 int i, nid;
5187
5188 /* Record where the zone boundaries are */
5189 memset(arch_zone_lowest_possible_pfn, 0,
5190 sizeof(arch_zone_lowest_possible_pfn));
5191 memset(arch_zone_highest_possible_pfn, 0,
5192 sizeof(arch_zone_highest_possible_pfn));
5193 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5194 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5195 for (i = 1; i < MAX_NR_ZONES; i++) {
5196 if (i == ZONE_MOVABLE)
5197 continue;
5198 arch_zone_lowest_possible_pfn[i] =
5199 arch_zone_highest_possible_pfn[i-1];
5200 arch_zone_highest_possible_pfn[i] =
5201 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5202 }
5203 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5204 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5205
5206 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5207 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5208 find_zone_movable_pfns_for_nodes();
5209
5210 /* Print out the zone ranges */
5211 printk("Zone ranges:\n");
5212 for (i = 0; i < MAX_NR_ZONES; i++) {
5213 if (i == ZONE_MOVABLE)
5214 continue;
5215 printk(KERN_CONT " %-8s ", zone_names[i]);
5216 if (arch_zone_lowest_possible_pfn[i] ==
5217 arch_zone_highest_possible_pfn[i])
5218 printk(KERN_CONT "empty\n");
5219 else
5220 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5221 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5222 (arch_zone_highest_possible_pfn[i]
5223 << PAGE_SHIFT) - 1);
5224 }
5225
5226 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5227 printk("Movable zone start for each node\n");
5228 for (i = 0; i < MAX_NUMNODES; i++) {
5229 if (zone_movable_pfn[i])
5230 printk(" Node %d: %#010lx\n", i,
5231 zone_movable_pfn[i] << PAGE_SHIFT);
5232 }
5233
5234 /* Print out the early node map */
5235 printk("Early memory node ranges\n");
5236 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5237 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5238 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5239
5240 /* Initialise every node */
5241 mminit_verify_pageflags_layout();
5242 setup_nr_node_ids();
5243 for_each_online_node(nid) {
5244 pg_data_t *pgdat = NODE_DATA(nid);
5245 free_area_init_node(nid, NULL,
5246 find_min_pfn_for_node(nid), NULL);
5247
5248 /* Any memory on that node */
5249 if (pgdat->node_present_pages)
5250 node_set_state(nid, N_MEMORY);
5251 check_for_memory(pgdat, nid);
5252 }
5253 }
5254
5255 static int __init cmdline_parse_core(char *p, unsigned long *core)
5256 {
5257 unsigned long long coremem;
5258 if (!p)
5259 return -EINVAL;
5260
5261 coremem = memparse(p, &p);
5262 *core = coremem >> PAGE_SHIFT;
5263
5264 /* Paranoid check that UL is enough for the coremem value */
5265 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5266
5267 return 0;
5268 }
5269
5270 /*
5271 * kernelcore=size sets the amount of memory for use for allocations that
5272 * cannot be reclaimed or migrated.
5273 */
5274 static int __init cmdline_parse_kernelcore(char *p)
5275 {
5276 return cmdline_parse_core(p, &required_kernelcore);
5277 }
5278
5279 /*
5280 * movablecore=size sets the amount of memory for use for allocations that
5281 * can be reclaimed or migrated.
5282 */
5283 static int __init cmdline_parse_movablecore(char *p)
5284 {
5285 return cmdline_parse_core(p, &required_movablecore);
5286 }
5287
5288 early_param("kernelcore", cmdline_parse_kernelcore);
5289 early_param("movablecore", cmdline_parse_movablecore);
5290
5291 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5292
5293 void adjust_managed_page_count(struct page *page, long count)
5294 {
5295 spin_lock(&managed_page_count_lock);
5296 page_zone(page)->managed_pages += count;
5297 totalram_pages += count;
5298 #ifdef CONFIG_HIGHMEM
5299 if (PageHighMem(page))
5300 totalhigh_pages += count;
5301 #endif
5302 spin_unlock(&managed_page_count_lock);
5303 }
5304 EXPORT_SYMBOL(adjust_managed_page_count);
5305
5306 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5307 {
5308 void *pos;
5309 unsigned long pages = 0;
5310
5311 start = (void *)PAGE_ALIGN((unsigned long)start);
5312 end = (void *)((unsigned long)end & PAGE_MASK);
5313 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5314 if ((unsigned int)poison <= 0xFF)
5315 memset(pos, poison, PAGE_SIZE);
5316 free_reserved_page(virt_to_page(pos));
5317 }
5318
5319 if (pages && s)
5320 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5321 s, pages << (PAGE_SHIFT - 10), start, end);
5322
5323 return pages;
5324 }
5325 EXPORT_SYMBOL(free_reserved_area);
5326
5327 #ifdef CONFIG_HIGHMEM
5328 void free_highmem_page(struct page *page)
5329 {
5330 __free_reserved_page(page);
5331 totalram_pages++;
5332 page_zone(page)->managed_pages++;
5333 totalhigh_pages++;
5334 }
5335 #endif
5336
5337
5338 void __init mem_init_print_info(const char *str)
5339 {
5340 unsigned long physpages, codesize, datasize, rosize, bss_size;
5341 unsigned long init_code_size, init_data_size;
5342
5343 physpages = get_num_physpages();
5344 codesize = _etext - _stext;
5345 datasize = _edata - _sdata;
5346 rosize = __end_rodata - __start_rodata;
5347 bss_size = __bss_stop - __bss_start;
5348 init_data_size = __init_end - __init_begin;
5349 init_code_size = _einittext - _sinittext;
5350
5351 /*
5352 * Detect special cases and adjust section sizes accordingly:
5353 * 1) .init.* may be embedded into .data sections
5354 * 2) .init.text.* may be out of [__init_begin, __init_end],
5355 * please refer to arch/tile/kernel/vmlinux.lds.S.
5356 * 3) .rodata.* may be embedded into .text or .data sections.
5357 */
5358 #define adj_init_size(start, end, size, pos, adj) \
5359 do { \
5360 if (start <= pos && pos < end && size > adj) \
5361 size -= adj; \
5362 } while (0)
5363
5364 adj_init_size(__init_begin, __init_end, init_data_size,
5365 _sinittext, init_code_size);
5366 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5367 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5368 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5369 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5370
5371 #undef adj_init_size
5372
5373 printk("Memory: %luK/%luK available "
5374 "(%luK kernel code, %luK rwdata, %luK rodata, "
5375 "%luK init, %luK bss, %luK reserved"
5376 #ifdef CONFIG_HIGHMEM
5377 ", %luK highmem"
5378 #endif
5379 "%s%s)\n",
5380 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5381 codesize >> 10, datasize >> 10, rosize >> 10,
5382 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5383 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5384 #ifdef CONFIG_HIGHMEM
5385 totalhigh_pages << (PAGE_SHIFT-10),
5386 #endif
5387 str ? ", " : "", str ? str : "");
5388 }
5389
5390 /**
5391 * set_dma_reserve - set the specified number of pages reserved in the first zone
5392 * @new_dma_reserve: The number of pages to mark reserved
5393 *
5394 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5395 * In the DMA zone, a significant percentage may be consumed by kernel image
5396 * and other unfreeable allocations which can skew the watermarks badly. This
5397 * function may optionally be used to account for unfreeable pages in the
5398 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5399 * smaller per-cpu batchsize.
5400 */
5401 void __init set_dma_reserve(unsigned long new_dma_reserve)
5402 {
5403 dma_reserve = new_dma_reserve;
5404 }
5405
5406 void __init free_area_init(unsigned long *zones_size)
5407 {
5408 free_area_init_node(0, zones_size,
5409 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5410 }
5411
5412 static int page_alloc_cpu_notify(struct notifier_block *self,
5413 unsigned long action, void *hcpu)
5414 {
5415 int cpu = (unsigned long)hcpu;
5416
5417 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5418 lru_add_drain_cpu(cpu);
5419 drain_pages(cpu);
5420
5421 /*
5422 * Spill the event counters of the dead processor
5423 * into the current processors event counters.
5424 * This artificially elevates the count of the current
5425 * processor.
5426 */
5427 vm_events_fold_cpu(cpu);
5428
5429 /*
5430 * Zero the differential counters of the dead processor
5431 * so that the vm statistics are consistent.
5432 *
5433 * This is only okay since the processor is dead and cannot
5434 * race with what we are doing.
5435 */
5436 cpu_vm_stats_fold(cpu);
5437 }
5438 return NOTIFY_OK;
5439 }
5440
5441 void __init page_alloc_init(void)
5442 {
5443 hotcpu_notifier(page_alloc_cpu_notify, 0);
5444 }
5445
5446 /*
5447 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5448 * or min_free_kbytes changes.
5449 */
5450 static void calculate_totalreserve_pages(void)
5451 {
5452 struct pglist_data *pgdat;
5453 unsigned long reserve_pages = 0;
5454 enum zone_type i, j;
5455
5456 for_each_online_pgdat(pgdat) {
5457 for (i = 0; i < MAX_NR_ZONES; i++) {
5458 struct zone *zone = pgdat->node_zones + i;
5459 unsigned long max = 0;
5460
5461 /* Find valid and maximum lowmem_reserve in the zone */
5462 for (j = i; j < MAX_NR_ZONES; j++) {
5463 if (zone->lowmem_reserve[j] > max)
5464 max = zone->lowmem_reserve[j];
5465 }
5466
5467 /* we treat the high watermark as reserved pages. */
5468 max += high_wmark_pages(zone);
5469
5470 if (max > zone->managed_pages)
5471 max = zone->managed_pages;
5472 reserve_pages += max;
5473 /*
5474 * Lowmem reserves are not available to
5475 * GFP_HIGHUSER page cache allocations and
5476 * kswapd tries to balance zones to their high
5477 * watermark. As a result, neither should be
5478 * regarded as dirtyable memory, to prevent a
5479 * situation where reclaim has to clean pages
5480 * in order to balance the zones.
5481 */
5482 zone->dirty_balance_reserve = max;
5483 }
5484 }
5485 dirty_balance_reserve = reserve_pages;
5486 totalreserve_pages = reserve_pages;
5487 }
5488
5489 /*
5490 * setup_per_zone_lowmem_reserve - called whenever
5491 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5492 * has a correct pages reserved value, so an adequate number of
5493 * pages are left in the zone after a successful __alloc_pages().
5494 */
5495 static void setup_per_zone_lowmem_reserve(void)
5496 {
5497 struct pglist_data *pgdat;
5498 enum zone_type j, idx;
5499
5500 for_each_online_pgdat(pgdat) {
5501 for (j = 0; j < MAX_NR_ZONES; j++) {
5502 struct zone *zone = pgdat->node_zones + j;
5503 unsigned long managed_pages = zone->managed_pages;
5504
5505 zone->lowmem_reserve[j] = 0;
5506
5507 idx = j;
5508 while (idx) {
5509 struct zone *lower_zone;
5510
5511 idx--;
5512
5513 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5514 sysctl_lowmem_reserve_ratio[idx] = 1;
5515
5516 lower_zone = pgdat->node_zones + idx;
5517 lower_zone->lowmem_reserve[j] = managed_pages /
5518 sysctl_lowmem_reserve_ratio[idx];
5519 managed_pages += lower_zone->managed_pages;
5520 }
5521 }
5522 }
5523
5524 /* update totalreserve_pages */
5525 calculate_totalreserve_pages();
5526 }
5527
5528 static void __setup_per_zone_wmarks(void)
5529 {
5530 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5531 unsigned long lowmem_pages = 0;
5532 struct zone *zone;
5533 unsigned long flags;
5534
5535 /* Calculate total number of !ZONE_HIGHMEM pages */
5536 for_each_zone(zone) {
5537 if (!is_highmem(zone))
5538 lowmem_pages += zone->managed_pages;
5539 }
5540
5541 for_each_zone(zone) {
5542 u64 tmp;
5543
5544 spin_lock_irqsave(&zone->lock, flags);
5545 tmp = (u64)pages_min * zone->managed_pages;
5546 do_div(tmp, lowmem_pages);
5547 if (is_highmem(zone)) {
5548 /*
5549 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5550 * need highmem pages, so cap pages_min to a small
5551 * value here.
5552 *
5553 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5554 * deltas controls asynch page reclaim, and so should
5555 * not be capped for highmem.
5556 */
5557 unsigned long min_pages;
5558
5559 min_pages = zone->managed_pages / 1024;
5560 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5561 zone->watermark[WMARK_MIN] = min_pages;
5562 } else {
5563 /*
5564 * If it's a lowmem zone, reserve a number of pages
5565 * proportionate to the zone's size.
5566 */
5567 zone->watermark[WMARK_MIN] = tmp;
5568 }
5569
5570 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5571 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5572
5573 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5574 high_wmark_pages(zone) -
5575 low_wmark_pages(zone) -
5576 zone_page_state(zone, NR_ALLOC_BATCH));
5577
5578 setup_zone_migrate_reserve(zone);
5579 spin_unlock_irqrestore(&zone->lock, flags);
5580 }
5581
5582 /* update totalreserve_pages */
5583 calculate_totalreserve_pages();
5584 }
5585
5586 /**
5587 * setup_per_zone_wmarks - called when min_free_kbytes changes
5588 * or when memory is hot-{added|removed}
5589 *
5590 * Ensures that the watermark[min,low,high] values for each zone are set
5591 * correctly with respect to min_free_kbytes.
5592 */
5593 void setup_per_zone_wmarks(void)
5594 {
5595 mutex_lock(&zonelists_mutex);
5596 __setup_per_zone_wmarks();
5597 mutex_unlock(&zonelists_mutex);
5598 }
5599
5600 /*
5601 * The inactive anon list should be small enough that the VM never has to
5602 * do too much work, but large enough that each inactive page has a chance
5603 * to be referenced again before it is swapped out.
5604 *
5605 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5606 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5607 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5608 * the anonymous pages are kept on the inactive list.
5609 *
5610 * total target max
5611 * memory ratio inactive anon
5612 * -------------------------------------
5613 * 10MB 1 5MB
5614 * 100MB 1 50MB
5615 * 1GB 3 250MB
5616 * 10GB 10 0.9GB
5617 * 100GB 31 3GB
5618 * 1TB 101 10GB
5619 * 10TB 320 32GB
5620 */
5621 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5622 {
5623 unsigned int gb, ratio;
5624
5625 /* Zone size in gigabytes */
5626 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5627 if (gb)
5628 ratio = int_sqrt(10 * gb);
5629 else
5630 ratio = 1;
5631
5632 zone->inactive_ratio = ratio;
5633 }
5634
5635 static void __meminit setup_per_zone_inactive_ratio(void)
5636 {
5637 struct zone *zone;
5638
5639 for_each_zone(zone)
5640 calculate_zone_inactive_ratio(zone);
5641 }
5642
5643 /*
5644 * Initialise min_free_kbytes.
5645 *
5646 * For small machines we want it small (128k min). For large machines
5647 * we want it large (64MB max). But it is not linear, because network
5648 * bandwidth does not increase linearly with machine size. We use
5649 *
5650 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5651 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5652 *
5653 * which yields
5654 *
5655 * 16MB: 512k
5656 * 32MB: 724k
5657 * 64MB: 1024k
5658 * 128MB: 1448k
5659 * 256MB: 2048k
5660 * 512MB: 2896k
5661 * 1024MB: 4096k
5662 * 2048MB: 5792k
5663 * 4096MB: 8192k
5664 * 8192MB: 11584k
5665 * 16384MB: 16384k
5666 */
5667 int __meminit init_per_zone_wmark_min(void)
5668 {
5669 unsigned long lowmem_kbytes;
5670 int new_min_free_kbytes;
5671
5672 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5673 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5674
5675 if (new_min_free_kbytes > user_min_free_kbytes) {
5676 min_free_kbytes = new_min_free_kbytes;
5677 if (min_free_kbytes < 128)
5678 min_free_kbytes = 128;
5679 if (min_free_kbytes > 65536)
5680 min_free_kbytes = 65536;
5681 } else {
5682 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5683 new_min_free_kbytes, user_min_free_kbytes);
5684 }
5685 setup_per_zone_wmarks();
5686 refresh_zone_stat_thresholds();
5687 setup_per_zone_lowmem_reserve();
5688 setup_per_zone_inactive_ratio();
5689 return 0;
5690 }
5691 module_init(init_per_zone_wmark_min)
5692
5693 /*
5694 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5695 * that we can call two helper functions whenever min_free_kbytes
5696 * changes.
5697 */
5698 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5699 void __user *buffer, size_t *length, loff_t *ppos)
5700 {
5701 proc_dointvec(table, write, buffer, length, ppos);
5702 if (write) {
5703 user_min_free_kbytes = min_free_kbytes;
5704 setup_per_zone_wmarks();
5705 }
5706 return 0;
5707 }
5708
5709 #ifdef CONFIG_NUMA
5710 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5711 void __user *buffer, size_t *length, loff_t *ppos)
5712 {
5713 struct zone *zone;
5714 int rc;
5715
5716 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5717 if (rc)
5718 return rc;
5719
5720 for_each_zone(zone)
5721 zone->min_unmapped_pages = (zone->managed_pages *
5722 sysctl_min_unmapped_ratio) / 100;
5723 return 0;
5724 }
5725
5726 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5727 void __user *buffer, size_t *length, loff_t *ppos)
5728 {
5729 struct zone *zone;
5730 int rc;
5731
5732 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5733 if (rc)
5734 return rc;
5735
5736 for_each_zone(zone)
5737 zone->min_slab_pages = (zone->managed_pages *
5738 sysctl_min_slab_ratio) / 100;
5739 return 0;
5740 }
5741 #endif
5742
5743 /*
5744 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5745 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5746 * whenever sysctl_lowmem_reserve_ratio changes.
5747 *
5748 * The reserve ratio obviously has absolutely no relation with the
5749 * minimum watermarks. The lowmem reserve ratio can only make sense
5750 * if in function of the boot time zone sizes.
5751 */
5752 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5753 void __user *buffer, size_t *length, loff_t *ppos)
5754 {
5755 proc_dointvec_minmax(table, write, buffer, length, ppos);
5756 setup_per_zone_lowmem_reserve();
5757 return 0;
5758 }
5759
5760 /*
5761 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5762 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5763 * pagelist can have before it gets flushed back to buddy allocator.
5764 */
5765 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5766 void __user *buffer, size_t *length, loff_t *ppos)
5767 {
5768 struct zone *zone;
5769 unsigned int cpu;
5770 int ret;
5771
5772 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5773 if (!write || (ret < 0))
5774 return ret;
5775
5776 mutex_lock(&pcp_batch_high_lock);
5777 for_each_populated_zone(zone) {
5778 unsigned long high;
5779 high = zone->managed_pages / percpu_pagelist_fraction;
5780 for_each_possible_cpu(cpu)
5781 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5782 high);
5783 }
5784 mutex_unlock(&pcp_batch_high_lock);
5785 return 0;
5786 }
5787
5788 int hashdist = HASHDIST_DEFAULT;
5789
5790 #ifdef CONFIG_NUMA
5791 static int __init set_hashdist(char *str)
5792 {
5793 if (!str)
5794 return 0;
5795 hashdist = simple_strtoul(str, &str, 0);
5796 return 1;
5797 }
5798 __setup("hashdist=", set_hashdist);
5799 #endif
5800
5801 /*
5802 * allocate a large system hash table from bootmem
5803 * - it is assumed that the hash table must contain an exact power-of-2
5804 * quantity of entries
5805 * - limit is the number of hash buckets, not the total allocation size
5806 */
5807 void *__init alloc_large_system_hash(const char *tablename,
5808 unsigned long bucketsize,
5809 unsigned long numentries,
5810 int scale,
5811 int flags,
5812 unsigned int *_hash_shift,
5813 unsigned int *_hash_mask,
5814 unsigned long low_limit,
5815 unsigned long high_limit)
5816 {
5817 unsigned long long max = high_limit;
5818 unsigned long log2qty, size;
5819 void *table = NULL;
5820
5821 /* allow the kernel cmdline to have a say */
5822 if (!numentries) {
5823 /* round applicable memory size up to nearest megabyte */
5824 numentries = nr_kernel_pages;
5825
5826 /* It isn't necessary when PAGE_SIZE >= 1MB */
5827 if (PAGE_SHIFT < 20)
5828 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5829
5830 /* limit to 1 bucket per 2^scale bytes of low memory */
5831 if (scale > PAGE_SHIFT)
5832 numentries >>= (scale - PAGE_SHIFT);
5833 else
5834 numentries <<= (PAGE_SHIFT - scale);
5835
5836 /* Make sure we've got at least a 0-order allocation.. */
5837 if (unlikely(flags & HASH_SMALL)) {
5838 /* Makes no sense without HASH_EARLY */
5839 WARN_ON(!(flags & HASH_EARLY));
5840 if (!(numentries >> *_hash_shift)) {
5841 numentries = 1UL << *_hash_shift;
5842 BUG_ON(!numentries);
5843 }
5844 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5845 numentries = PAGE_SIZE / bucketsize;
5846 }
5847 numentries = roundup_pow_of_two(numentries);
5848
5849 /* limit allocation size to 1/16 total memory by default */
5850 if (max == 0) {
5851 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5852 do_div(max, bucketsize);
5853 }
5854 max = min(max, 0x80000000ULL);
5855
5856 if (numentries < low_limit)
5857 numentries = low_limit;
5858 if (numentries > max)
5859 numentries = max;
5860
5861 log2qty = ilog2(numentries);
5862
5863 do {
5864 size = bucketsize << log2qty;
5865 if (flags & HASH_EARLY)
5866 table = alloc_bootmem_nopanic(size);
5867 else if (hashdist)
5868 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5869 else {
5870 /*
5871 * If bucketsize is not a power-of-two, we may free
5872 * some pages at the end of hash table which
5873 * alloc_pages_exact() automatically does
5874 */
5875 if (get_order(size) < MAX_ORDER) {
5876 table = alloc_pages_exact(size, GFP_ATOMIC);
5877 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5878 }
5879 }
5880 } while (!table && size > PAGE_SIZE && --log2qty);
5881
5882 if (!table)
5883 panic("Failed to allocate %s hash table\n", tablename);
5884
5885 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5886 tablename,
5887 (1UL << log2qty),
5888 ilog2(size) - PAGE_SHIFT,
5889 size);
5890
5891 if (_hash_shift)
5892 *_hash_shift = log2qty;
5893 if (_hash_mask)
5894 *_hash_mask = (1 << log2qty) - 1;
5895
5896 return table;
5897 }
5898
5899 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5900 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5901 unsigned long pfn)
5902 {
5903 #ifdef CONFIG_SPARSEMEM
5904 return __pfn_to_section(pfn)->pageblock_flags;
5905 #else
5906 return zone->pageblock_flags;
5907 #endif /* CONFIG_SPARSEMEM */
5908 }
5909
5910 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5911 {
5912 #ifdef CONFIG_SPARSEMEM
5913 pfn &= (PAGES_PER_SECTION-1);
5914 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5915 #else
5916 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5917 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5918 #endif /* CONFIG_SPARSEMEM */
5919 }
5920
5921 /**
5922 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5923 * @page: The page within the block of interest
5924 * @start_bitidx: The first bit of interest to retrieve
5925 * @end_bitidx: The last bit of interest
5926 * returns pageblock_bits flags
5927 */
5928 unsigned long get_pageblock_flags_group(struct page *page,
5929 int start_bitidx, int end_bitidx)
5930 {
5931 struct zone *zone;
5932 unsigned long *bitmap;
5933 unsigned long pfn, bitidx;
5934 unsigned long flags = 0;
5935 unsigned long value = 1;
5936
5937 zone = page_zone(page);
5938 pfn = page_to_pfn(page);
5939 bitmap = get_pageblock_bitmap(zone, pfn);
5940 bitidx = pfn_to_bitidx(zone, pfn);
5941
5942 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5943 if (test_bit(bitidx + start_bitidx, bitmap))
5944 flags |= value;
5945
5946 return flags;
5947 }
5948
5949 /**
5950 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5951 * @page: The page within the block of interest
5952 * @start_bitidx: The first bit of interest
5953 * @end_bitidx: The last bit of interest
5954 * @flags: The flags to set
5955 */
5956 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5957 int start_bitidx, int end_bitidx)
5958 {
5959 struct zone *zone;
5960 unsigned long *bitmap;
5961 unsigned long pfn, bitidx;
5962 unsigned long value = 1;
5963
5964 zone = page_zone(page);
5965 pfn = page_to_pfn(page);
5966 bitmap = get_pageblock_bitmap(zone, pfn);
5967 bitidx = pfn_to_bitidx(zone, pfn);
5968 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5969
5970 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5971 if (flags & value)
5972 __set_bit(bitidx + start_bitidx, bitmap);
5973 else
5974 __clear_bit(bitidx + start_bitidx, bitmap);
5975 }
5976
5977 /*
5978 * This function checks whether pageblock includes unmovable pages or not.
5979 * If @count is not zero, it is okay to include less @count unmovable pages
5980 *
5981 * PageLRU check without isolation or lru_lock could race so that
5982 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5983 * expect this function should be exact.
5984 */
5985 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5986 bool skip_hwpoisoned_pages)
5987 {
5988 unsigned long pfn, iter, found;
5989 int mt;
5990
5991 /*
5992 * For avoiding noise data, lru_add_drain_all() should be called
5993 * If ZONE_MOVABLE, the zone never contains unmovable pages
5994 */
5995 if (zone_idx(zone) == ZONE_MOVABLE)
5996 return false;
5997 mt = get_pageblock_migratetype(page);
5998 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5999 return false;
6000
6001 pfn = page_to_pfn(page);
6002 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6003 unsigned long check = pfn + iter;
6004
6005 if (!pfn_valid_within(check))
6006 continue;
6007
6008 page = pfn_to_page(check);
6009
6010 /*
6011 * Hugepages are not in LRU lists, but they're movable.
6012 * We need not scan over tail pages bacause we don't
6013 * handle each tail page individually in migration.
6014 */
6015 if (PageHuge(page)) {
6016 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6017 continue;
6018 }
6019
6020 /*
6021 * We can't use page_count without pin a page
6022 * because another CPU can free compound page.
6023 * This check already skips compound tails of THP
6024 * because their page->_count is zero at all time.
6025 */
6026 if (!atomic_read(&page->_count)) {
6027 if (PageBuddy(page))
6028 iter += (1 << page_order(page)) - 1;
6029 continue;
6030 }
6031
6032 /*
6033 * The HWPoisoned page may be not in buddy system, and
6034 * page_count() is not 0.
6035 */
6036 if (skip_hwpoisoned_pages && PageHWPoison(page))
6037 continue;
6038
6039 if (!PageLRU(page))
6040 found++;
6041 /*
6042 * If there are RECLAIMABLE pages, we need to check it.
6043 * But now, memory offline itself doesn't call shrink_slab()
6044 * and it still to be fixed.
6045 */
6046 /*
6047 * If the page is not RAM, page_count()should be 0.
6048 * we don't need more check. This is an _used_ not-movable page.
6049 *
6050 * The problematic thing here is PG_reserved pages. PG_reserved
6051 * is set to both of a memory hole page and a _used_ kernel
6052 * page at boot.
6053 */
6054 if (found > count)
6055 return true;
6056 }
6057 return false;
6058 }
6059
6060 bool is_pageblock_removable_nolock(struct page *page)
6061 {
6062 struct zone *zone;
6063 unsigned long pfn;
6064
6065 /*
6066 * We have to be careful here because we are iterating over memory
6067 * sections which are not zone aware so we might end up outside of
6068 * the zone but still within the section.
6069 * We have to take care about the node as well. If the node is offline
6070 * its NODE_DATA will be NULL - see page_zone.
6071 */
6072 if (!node_online(page_to_nid(page)))
6073 return false;
6074
6075 zone = page_zone(page);
6076 pfn = page_to_pfn(page);
6077 if (!zone_spans_pfn(zone, pfn))
6078 return false;
6079
6080 return !has_unmovable_pages(zone, page, 0, true);
6081 }
6082
6083 #ifdef CONFIG_CMA
6084
6085 static unsigned long pfn_max_align_down(unsigned long pfn)
6086 {
6087 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6088 pageblock_nr_pages) - 1);
6089 }
6090
6091 static unsigned long pfn_max_align_up(unsigned long pfn)
6092 {
6093 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6094 pageblock_nr_pages));
6095 }
6096
6097 /* [start, end) must belong to a single zone. */
6098 static int __alloc_contig_migrate_range(struct compact_control *cc,
6099 unsigned long start, unsigned long end)
6100 {
6101 /* This function is based on compact_zone() from compaction.c. */
6102 unsigned long nr_reclaimed;
6103 unsigned long pfn = start;
6104 unsigned int tries = 0;
6105 int ret = 0;
6106
6107 migrate_prep();
6108
6109 while (pfn < end || !list_empty(&cc->migratepages)) {
6110 if (fatal_signal_pending(current)) {
6111 ret = -EINTR;
6112 break;
6113 }
6114
6115 if (list_empty(&cc->migratepages)) {
6116 cc->nr_migratepages = 0;
6117 pfn = isolate_migratepages_range(cc->zone, cc,
6118 pfn, end, true);
6119 if (!pfn) {
6120 ret = -EINTR;
6121 break;
6122 }
6123 tries = 0;
6124 } else if (++tries == 5) {
6125 ret = ret < 0 ? ret : -EBUSY;
6126 break;
6127 }
6128
6129 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6130 &cc->migratepages);
6131 cc->nr_migratepages -= nr_reclaimed;
6132
6133 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6134 0, MIGRATE_SYNC, MR_CMA);
6135 }
6136 if (ret < 0) {
6137 putback_movable_pages(&cc->migratepages);
6138 return ret;
6139 }
6140 return 0;
6141 }
6142
6143 /**
6144 * alloc_contig_range() -- tries to allocate given range of pages
6145 * @start: start PFN to allocate
6146 * @end: one-past-the-last PFN to allocate
6147 * @migratetype: migratetype of the underlaying pageblocks (either
6148 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6149 * in range must have the same migratetype and it must
6150 * be either of the two.
6151 *
6152 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6153 * aligned, however it's the caller's responsibility to guarantee that
6154 * we are the only thread that changes migrate type of pageblocks the
6155 * pages fall in.
6156 *
6157 * The PFN range must belong to a single zone.
6158 *
6159 * Returns zero on success or negative error code. On success all
6160 * pages which PFN is in [start, end) are allocated for the caller and
6161 * need to be freed with free_contig_range().
6162 */
6163 int alloc_contig_range(unsigned long start, unsigned long end,
6164 unsigned migratetype)
6165 {
6166 unsigned long outer_start, outer_end;
6167 int ret = 0, order;
6168
6169 struct compact_control cc = {
6170 .nr_migratepages = 0,
6171 .order = -1,
6172 .zone = page_zone(pfn_to_page(start)),
6173 .sync = true,
6174 .ignore_skip_hint = true,
6175 };
6176 INIT_LIST_HEAD(&cc.migratepages);
6177
6178 /*
6179 * What we do here is we mark all pageblocks in range as
6180 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6181 * have different sizes, and due to the way page allocator
6182 * work, we align the range to biggest of the two pages so
6183 * that page allocator won't try to merge buddies from
6184 * different pageblocks and change MIGRATE_ISOLATE to some
6185 * other migration type.
6186 *
6187 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6188 * migrate the pages from an unaligned range (ie. pages that
6189 * we are interested in). This will put all the pages in
6190 * range back to page allocator as MIGRATE_ISOLATE.
6191 *
6192 * When this is done, we take the pages in range from page
6193 * allocator removing them from the buddy system. This way
6194 * page allocator will never consider using them.
6195 *
6196 * This lets us mark the pageblocks back as
6197 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6198 * aligned range but not in the unaligned, original range are
6199 * put back to page allocator so that buddy can use them.
6200 */
6201
6202 ret = start_isolate_page_range(pfn_max_align_down(start),
6203 pfn_max_align_up(end), migratetype,
6204 false);
6205 if (ret)
6206 return ret;
6207
6208 ret = __alloc_contig_migrate_range(&cc, start, end);
6209 if (ret)
6210 goto done;
6211
6212 /*
6213 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6214 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6215 * more, all pages in [start, end) are free in page allocator.
6216 * What we are going to do is to allocate all pages from
6217 * [start, end) (that is remove them from page allocator).
6218 *
6219 * The only problem is that pages at the beginning and at the
6220 * end of interesting range may be not aligned with pages that
6221 * page allocator holds, ie. they can be part of higher order
6222 * pages. Because of this, we reserve the bigger range and
6223 * once this is done free the pages we are not interested in.
6224 *
6225 * We don't have to hold zone->lock here because the pages are
6226 * isolated thus they won't get removed from buddy.
6227 */
6228
6229 lru_add_drain_all();
6230 drain_all_pages();
6231
6232 order = 0;
6233 outer_start = start;
6234 while (!PageBuddy(pfn_to_page(outer_start))) {
6235 if (++order >= MAX_ORDER) {
6236 ret = -EBUSY;
6237 goto done;
6238 }
6239 outer_start &= ~0UL << order;
6240 }
6241
6242 /* Make sure the range is really isolated. */
6243 if (test_pages_isolated(outer_start, end, false)) {
6244 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6245 outer_start, end);
6246 ret = -EBUSY;
6247 goto done;
6248 }
6249
6250
6251 /* Grab isolated pages from freelists. */
6252 outer_end = isolate_freepages_range(&cc, outer_start, end);
6253 if (!outer_end) {
6254 ret = -EBUSY;
6255 goto done;
6256 }
6257
6258 /* Free head and tail (if any) */
6259 if (start != outer_start)
6260 free_contig_range(outer_start, start - outer_start);
6261 if (end != outer_end)
6262 free_contig_range(end, outer_end - end);
6263
6264 done:
6265 undo_isolate_page_range(pfn_max_align_down(start),
6266 pfn_max_align_up(end), migratetype);
6267 return ret;
6268 }
6269
6270 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6271 {
6272 unsigned int count = 0;
6273
6274 for (; nr_pages--; pfn++) {
6275 struct page *page = pfn_to_page(pfn);
6276
6277 count += page_count(page) != 1;
6278 __free_page(page);
6279 }
6280 WARN(count != 0, "%d pages are still in use!\n", count);
6281 }
6282 #endif
6283
6284 #ifdef CONFIG_MEMORY_HOTPLUG
6285 /*
6286 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6287 * page high values need to be recalulated.
6288 */
6289 void __meminit zone_pcp_update(struct zone *zone)
6290 {
6291 unsigned cpu;
6292 mutex_lock(&pcp_batch_high_lock);
6293 for_each_possible_cpu(cpu)
6294 pageset_set_high_and_batch(zone,
6295 per_cpu_ptr(zone->pageset, cpu));
6296 mutex_unlock(&pcp_batch_high_lock);
6297 }
6298 #endif
6299
6300 void zone_pcp_reset(struct zone *zone)
6301 {
6302 unsigned long flags;
6303 int cpu;
6304 struct per_cpu_pageset *pset;
6305
6306 /* avoid races with drain_pages() */
6307 local_irq_save(flags);
6308 if (zone->pageset != &boot_pageset) {
6309 for_each_online_cpu(cpu) {
6310 pset = per_cpu_ptr(zone->pageset, cpu);
6311 drain_zonestat(zone, pset);
6312 }
6313 free_percpu(zone->pageset);
6314 zone->pageset = &boot_pageset;
6315 }
6316 local_irq_restore(flags);
6317 }
6318
6319 #ifdef CONFIG_MEMORY_HOTREMOVE
6320 /*
6321 * All pages in the range must be isolated before calling this.
6322 */
6323 void
6324 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6325 {
6326 struct page *page;
6327 struct zone *zone;
6328 int order, i;
6329 unsigned long pfn;
6330 unsigned long flags;
6331 /* find the first valid pfn */
6332 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6333 if (pfn_valid(pfn))
6334 break;
6335 if (pfn == end_pfn)
6336 return;
6337 zone = page_zone(pfn_to_page(pfn));
6338 spin_lock_irqsave(&zone->lock, flags);
6339 pfn = start_pfn;
6340 while (pfn < end_pfn) {
6341 if (!pfn_valid(pfn)) {
6342 pfn++;
6343 continue;
6344 }
6345 page = pfn_to_page(pfn);
6346 /*
6347 * The HWPoisoned page may be not in buddy system, and
6348 * page_count() is not 0.
6349 */
6350 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6351 pfn++;
6352 SetPageReserved(page);
6353 continue;
6354 }
6355
6356 BUG_ON(page_count(page));
6357 BUG_ON(!PageBuddy(page));
6358 order = page_order(page);
6359 #ifdef CONFIG_DEBUG_VM
6360 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6361 pfn, 1 << order, end_pfn);
6362 #endif
6363 list_del(&page->lru);
6364 rmv_page_order(page);
6365 zone->free_area[order].nr_free--;
6366 #ifdef CONFIG_HIGHMEM
6367 if (PageHighMem(page))
6368 totalhigh_pages -= 1 << order;
6369 #endif
6370 for (i = 0; i < (1 << order); i++)
6371 SetPageReserved((page+i));
6372 pfn += (1 << order);
6373 }
6374 spin_unlock_irqrestore(&zone->lock, flags);
6375 }
6376 #endif
6377
6378 #ifdef CONFIG_MEMORY_FAILURE
6379 bool is_free_buddy_page(struct page *page)
6380 {
6381 struct zone *zone = page_zone(page);
6382 unsigned long pfn = page_to_pfn(page);
6383 unsigned long flags;
6384 int order;
6385
6386 spin_lock_irqsave(&zone->lock, flags);
6387 for (order = 0; order < MAX_ORDER; order++) {
6388 struct page *page_head = page - (pfn & ((1 << order) - 1));
6389
6390 if (PageBuddy(page_head) && page_order(page_head) >= order)
6391 break;
6392 }
6393 spin_unlock_irqrestore(&zone->lock, flags);
6394
6395 return order < MAX_ORDER;
6396 }
6397 #endif
6398
6399 static const struct trace_print_flags pageflag_names[] = {
6400 {1UL << PG_locked, "locked" },
6401 {1UL << PG_error, "error" },
6402 {1UL << PG_referenced, "referenced" },
6403 {1UL << PG_uptodate, "uptodate" },
6404 {1UL << PG_dirty, "dirty" },
6405 {1UL << PG_lru, "lru" },
6406 {1UL << PG_active, "active" },
6407 {1UL << PG_slab, "slab" },
6408 {1UL << PG_owner_priv_1, "owner_priv_1" },
6409 {1UL << PG_arch_1, "arch_1" },
6410 {1UL << PG_reserved, "reserved" },
6411 {1UL << PG_private, "private" },
6412 {1UL << PG_private_2, "private_2" },
6413 {1UL << PG_writeback, "writeback" },
6414 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6415 {1UL << PG_head, "head" },
6416 {1UL << PG_tail, "tail" },
6417 #else
6418 {1UL << PG_compound, "compound" },
6419 #endif
6420 {1UL << PG_swapcache, "swapcache" },
6421 {1UL << PG_mappedtodisk, "mappedtodisk" },
6422 {1UL << PG_reclaim, "reclaim" },
6423 {1UL << PG_swapbacked, "swapbacked" },
6424 {1UL << PG_unevictable, "unevictable" },
6425 #ifdef CONFIG_MMU
6426 {1UL << PG_mlocked, "mlocked" },
6427 #endif
6428 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6429 {1UL << PG_uncached, "uncached" },
6430 #endif
6431 #ifdef CONFIG_MEMORY_FAILURE
6432 {1UL << PG_hwpoison, "hwpoison" },
6433 #endif
6434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6435 {1UL << PG_compound_lock, "compound_lock" },
6436 #endif
6437 };
6438
6439 static void dump_page_flags(unsigned long flags)
6440 {
6441 const char *delim = "";
6442 unsigned long mask;
6443 int i;
6444
6445 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6446
6447 printk(KERN_ALERT "page flags: %#lx(", flags);
6448
6449 /* remove zone id */
6450 flags &= (1UL << NR_PAGEFLAGS) - 1;
6451
6452 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6453
6454 mask = pageflag_names[i].mask;
6455 if ((flags & mask) != mask)
6456 continue;
6457
6458 flags &= ~mask;
6459 printk("%s%s", delim, pageflag_names[i].name);
6460 delim = "|";
6461 }
6462
6463 /* check for left over flags */
6464 if (flags)
6465 printk("%s%#lx", delim, flags);
6466
6467 printk(")\n");
6468 }
6469
6470 void dump_page(struct page *page)
6471 {
6472 printk(KERN_ALERT
6473 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6474 page, atomic_read(&page->_count), page_mapcount(page),
6475 page->mapping, page->index);
6476 dump_page_flags(page->flags);
6477 mem_cgroup_print_bad_page(page);
6478 }
This page took 0.282308 seconds and 5 git commands to generate.