mm, oom: rework oom detection
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 /**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390 {
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416
417 /**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429 {
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454 }
455
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
461
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464 }
465
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
473
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
486
487 return ret;
488 }
489
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
496
497 return 1;
498 }
499 /*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
508
509 return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 return 0;
515 }
516 #endif
517
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
520 {
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
527 page_mapcount_reset(page); /* remove PageBuddy */
528 return;
529 }
530
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
541 pr_alert(
542 "BUG: Bad page state: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
552 current->comm, page_to_pfn(page));
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
558 dump_page_owner(page);
559
560 print_modules();
561 dump_stack();
562 out:
563 /* Leave bad fields for debug, except PageBuddy could make trouble */
564 page_mapcount_reset(page); /* remove PageBuddy */
565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
566 }
567
568 /*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572 *
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575 *
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
578 *
579 * The first tail page's ->compound_order holds the order of allocation.
580 * This usage means that zero-order pages may not be compound.
581 */
582
583 void free_compound_page(struct page *page)
584 {
585 __free_pages_ok(page, compound_order(page));
586 }
587
588 void prep_compound_page(struct page *page, unsigned int order)
589 {
590 int i;
591 int nr_pages = 1 << order;
592
593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
598 set_page_count(p, 0);
599 p->mapping = TAIL_MAPPING;
600 set_compound_head(p, page);
601 }
602 atomic_set(compound_mapcount_ptr(page), -1);
603 }
604
605 #ifdef CONFIG_DEBUG_PAGEALLOC
606 unsigned int _debug_guardpage_minorder;
607 bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
609 EXPORT_SYMBOL(_debug_pagealloc_enabled);
610 bool _debug_guardpage_enabled __read_mostly;
611
612 static int __init early_debug_pagealloc(char *buf)
613 {
614 if (!buf)
615 return -EINVAL;
616
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
619
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
622
623 return 0;
624 }
625 early_param("debug_pagealloc", early_debug_pagealloc);
626
627 static bool need_debug_guardpage(void)
628 {
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
633 return true;
634 }
635
636 static void init_debug_guardpage(void)
637 {
638 if (!debug_pagealloc_enabled())
639 return;
640
641 _debug_guardpage_enabled = true;
642 }
643
644 struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
647 };
648
649 static int __init debug_guardpage_minorder_setup(char *buf)
650 {
651 unsigned long res;
652
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
654 pr_err("Bad debug_guardpage_minorder value\n");
655 return 0;
656 }
657 _debug_guardpage_minorder = res;
658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
659 return 0;
660 }
661 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
662
663 static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
665 {
666 struct page_ext *page_ext;
667
668 if (!debug_guardpage_enabled())
669 return;
670
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
678 }
679
680 static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
682 {
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
694 }
695 #else
696 struct page_ext_operations debug_guardpage_ops = { NULL, };
697 static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699 static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
701 #endif
702
703 static inline void set_page_order(struct page *page, unsigned int order)
704 {
705 set_page_private(page, order);
706 __SetPageBuddy(page);
707 }
708
709 static inline void rmv_page_order(struct page *page)
710 {
711 __ClearPageBuddy(page);
712 set_page_private(page, 0);
713 }
714
715 /*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
718 * (a) the buddy is not in a hole &&
719 * (b) the buddy is in the buddy system &&
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
722 *
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
727 *
728 * For recording page's order, we use page_private(page).
729 */
730 static inline int page_is_buddy(struct page *page, struct page *buddy,
731 unsigned int order)
732 {
733 if (!pfn_valid_within(page_to_pfn(buddy)))
734 return 0;
735
736 if (page_is_guard(buddy) && page_order(buddy) == order) {
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
742 return 1;
743 }
744
745 if (PageBuddy(buddy) && page_order(buddy) == order) {
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
756 return 1;
757 }
758 return 0;
759 }
760
761 /*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
777 * So when we are allocating or freeing one, we can derive the state of the
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
780 * If a block is freed, and its buddy is also free, then this
781 * triggers coalescing into a block of larger size.
782 *
783 * -- nyc
784 */
785
786 static inline void __free_one_page(struct page *page,
787 unsigned long pfn,
788 struct zone *zone, unsigned int order,
789 int migratetype)
790 {
791 unsigned long page_idx;
792 unsigned long combined_idx;
793 unsigned long uninitialized_var(buddy_idx);
794 struct page *buddy;
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
805
806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
807
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
810
811 continue_merging:
812 while (order < max_order - 1) {
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
815 if (!page_is_buddy(page, buddy, order))
816 goto done_merging;
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
822 clear_page_guard(zone, buddy, order, migratetype);
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
828 combined_idx = buddy_idx & page_idx;
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858 done_merging:
859 set_page_order(page, order);
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
870 struct page *higher_page, *higher_buddy;
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
874 higher_buddy = higher_page + (buddy_idx - combined_idx);
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883 out:
884 zone->free_area[order].nr_free++;
885 }
886
887 /*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892 static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894 {
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900 #ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902 #endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907 }
908
909 static void free_pages_check_bad(struct page *page)
910 {
911 const char *bad_reason;
912 unsigned long bad_flags;
913
914 bad_reason = NULL;
915 bad_flags = 0;
916
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
921 if (unlikely(page_ref_count(page) != 0))
922 bad_reason = "nonzero _refcount";
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
927 #ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930 #endif
931 bad_page(page, bad_reason, bad_flags);
932 }
933
934 static inline int free_pages_check(struct page *page)
935 {
936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
937 return 0;
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
941 return 1;
942 }
943
944 static int free_tail_pages_check(struct page *head_page, struct page *page)
945 {
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988 out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992 }
993
994 static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
996 {
997 int bad = 0;
998
999 VM_BUG_ON_PAGE(PageTail(page), page);
1000
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
1003 kasan_free_pages(page, order);
1004
1005 /*
1006 * Check tail pages before head page information is cleared to
1007 * avoid checking PageCompound for order-0 pages.
1008 */
1009 if (unlikely(order)) {
1010 bool compound = PageCompound(page);
1011 int i;
1012
1013 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1014
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
1025 if (PageAnonHead(page))
1026 page->mapping = NULL;
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
1031
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
1035
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
1038 PAGE_SIZE << order);
1039 debug_check_no_obj_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 }
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
1045
1046 return true;
1047 }
1048
1049 #ifdef CONFIG_DEBUG_VM
1050 static inline bool free_pcp_prepare(struct page *page)
1051 {
1052 return free_pages_prepare(page, 0, true);
1053 }
1054
1055 static inline bool bulkfree_pcp_prepare(struct page *page)
1056 {
1057 return false;
1058 }
1059 #else
1060 static bool free_pcp_prepare(struct page *page)
1061 {
1062 return free_pages_prepare(page, 0, false);
1063 }
1064
1065 static bool bulkfree_pcp_prepare(struct page *page)
1066 {
1067 return free_pages_check(page);
1068 }
1069 #endif /* CONFIG_DEBUG_VM */
1070
1071 /*
1072 * Frees a number of pages from the PCP lists
1073 * Assumes all pages on list are in same zone, and of same order.
1074 * count is the number of pages to free.
1075 *
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1078 *
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1081 */
1082 static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1084 {
1085 int migratetype = 0;
1086 int batch_free = 0;
1087 unsigned long nr_scanned;
1088 bool isolated_pageblocks;
1089
1090 spin_lock(&zone->lock);
1091 isolated_pageblocks = has_isolate_pageblock(zone);
1092 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1093 if (nr_scanned)
1094 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1095
1096 while (count) {
1097 struct page *page;
1098 struct list_head *list;
1099
1100 /*
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
1106 */
1107 do {
1108 batch_free++;
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
1113
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
1116 batch_free = count;
1117
1118 do {
1119 int mt; /* migratetype of the to-be-freed page */
1120
1121 page = list_last_entry(list, struct page, lru);
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
1124
1125 mt = get_pcppage_migratetype(page);
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
1129 if (unlikely(isolated_pageblocks))
1130 mt = get_pageblock_migratetype(page);
1131
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1134
1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1136 trace_mm_page_pcpu_drain(page, 0, mt);
1137 } while (--count && --batch_free && !list_empty(list));
1138 }
1139 spin_unlock(&zone->lock);
1140 }
1141
1142 static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
1144 unsigned int order,
1145 int migratetype)
1146 {
1147 unsigned long nr_scanned;
1148 spin_lock(&zone->lock);
1149 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1150 if (nr_scanned)
1151 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1152
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
1156 }
1157 __free_one_page(page, pfn, zone, order, migratetype);
1158 spin_unlock(&zone->lock);
1159 }
1160
1161 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1163 {
1164 set_page_links(page, zone, nid, pfn);
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1168
1169 INIT_LIST_HEAD(&page->lru);
1170 #ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174 #endif
1175 }
1176
1177 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1179 {
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181 }
1182
1183 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184 static void init_reserved_page(unsigned long pfn)
1185 {
1186 pg_data_t *pgdat;
1187 int nid, zid;
1188
1189 if (!early_page_uninitialised(pfn))
1190 return;
1191
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1194
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1197
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1200 }
1201 __init_single_pfn(pfn, zid, nid);
1202 }
1203 #else
1204 static inline void init_reserved_page(unsigned long pfn)
1205 {
1206 }
1207 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208
1209 /*
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1214 */
1215 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1216 {
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1219
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1223
1224 init_reserved_page(start_pfn);
1225
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1228
1229 SetPageReserved(page);
1230 }
1231 }
1232 }
1233
1234 static void __free_pages_ok(struct page *page, unsigned int order)
1235 {
1236 unsigned long flags;
1237 int migratetype;
1238 unsigned long pfn = page_to_pfn(page);
1239
1240 if (!free_pages_prepare(page, order, true))
1241 return;
1242
1243 migratetype = get_pfnblock_migratetype(page, pfn);
1244 local_irq_save(flags);
1245 __count_vm_events(PGFREE, 1 << order);
1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
1247 local_irq_restore(flags);
1248 }
1249
1250 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1251 {
1252 unsigned int nr_pages = 1 << order;
1253 struct page *p = page;
1254 unsigned int loop;
1255
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
1261 }
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264
1265 page_zone(page)->managed_pages += nr_pages;
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
1268 }
1269
1270 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1272
1273 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1274
1275 int __meminit early_pfn_to_nid(unsigned long pfn)
1276 {
1277 static DEFINE_SPINLOCK(early_pfn_lock);
1278 int nid;
1279
1280 spin_lock(&early_pfn_lock);
1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1282 if (nid < 0)
1283 nid = 0;
1284 spin_unlock(&early_pfn_lock);
1285
1286 return nid;
1287 }
1288 #endif
1289
1290 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1293 {
1294 int nid;
1295
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1300 }
1301
1302 /* Only safe to use early in boot when initialisation is single-threaded */
1303 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304 {
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1306 }
1307
1308 #else
1309
1310 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311 {
1312 return true;
1313 }
1314 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316 {
1317 return true;
1318 }
1319 #endif
1320
1321
1322 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1323 unsigned int order)
1324 {
1325 if (early_page_uninitialised(pfn))
1326 return;
1327 return __free_pages_boot_core(page, order);
1328 }
1329
1330 /*
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1336 *
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 *
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1346 */
1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349 {
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_page(start_pfn);
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371 }
1372
1373 void set_zone_contiguous(struct zone *zone)
1374 {
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1377
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1382
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1384
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1388 }
1389
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1392 }
1393
1394 void clear_zone_contiguous(struct zone *zone)
1395 {
1396 zone->contiguous = false;
1397 }
1398
1399 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1400 static void __init deferred_free_range(struct page *page,
1401 unsigned long pfn, int nr_pages)
1402 {
1403 int i;
1404
1405 if (!page)
1406 return;
1407
1408 /* Free a large naturally-aligned chunk if possible */
1409 if (nr_pages == MAX_ORDER_NR_PAGES &&
1410 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1412 __free_pages_boot_core(page, MAX_ORDER-1);
1413 return;
1414 }
1415
1416 for (i = 0; i < nr_pages; i++, page++)
1417 __free_pages_boot_core(page, 0);
1418 }
1419
1420 /* Completion tracking for deferred_init_memmap() threads */
1421 static atomic_t pgdat_init_n_undone __initdata;
1422 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1423
1424 static inline void __init pgdat_init_report_one_done(void)
1425 {
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1428 }
1429
1430 /* Initialise remaining memory on a node */
1431 static int __init deferred_init_memmap(void *data)
1432 {
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1443
1444 if (first_init_pfn == ULONG_MAX) {
1445 pgdat_init_report_one_done();
1446 return 0;
1447 }
1448
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
1452
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1457
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1463 }
1464
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
1467 struct page *page = NULL;
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
1471
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1478
1479 for (; pfn < end_pfn; pfn++) {
1480 if (!pfn_valid_within(pfn))
1481 goto free_range;
1482
1483 /*
1484 * Ensure pfn_valid is checked every
1485 * MAX_ORDER_NR_PAGES for memory holes
1486 */
1487 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
1490 goto free_range;
1491 }
1492 }
1493
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1501 page++;
1502 } else {
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1511 }
1512
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
1515 goto free_range;
1516 }
1517
1518 __init_single_page(page, pfn, zid, nid);
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1523 }
1524 nr_to_free++;
1525
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528 free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
1535 }
1536
1537 first_init_pfn = max(end_pfn, first_init_pfn);
1538 }
1539
1540 /* Sanity check that the next zone really is unpopulated */
1541 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1542
1543 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1544 jiffies_to_msecs(jiffies - start));
1545
1546 pgdat_init_report_one_done();
1547 return 0;
1548 }
1549 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1550
1551 void __init page_alloc_init_late(void)
1552 {
1553 struct zone *zone;
1554
1555 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1556 int nid;
1557
1558 /* There will be num_node_state(N_MEMORY) threads */
1559 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1560 for_each_node_state(nid, N_MEMORY) {
1561 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1562 }
1563
1564 /* Block until all are initialised */
1565 wait_for_completion(&pgdat_init_all_done_comp);
1566
1567 /* Reinit limits that are based on free pages after the kernel is up */
1568 files_maxfiles_init();
1569 #endif
1570
1571 for_each_populated_zone(zone)
1572 set_zone_contiguous(zone);
1573 }
1574
1575 #ifdef CONFIG_CMA
1576 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1577 void __init init_cma_reserved_pageblock(struct page *page)
1578 {
1579 unsigned i = pageblock_nr_pages;
1580 struct page *p = page;
1581
1582 do {
1583 __ClearPageReserved(p);
1584 set_page_count(p, 0);
1585 } while (++p, --i);
1586
1587 set_pageblock_migratetype(page, MIGRATE_CMA);
1588
1589 if (pageblock_order >= MAX_ORDER) {
1590 i = pageblock_nr_pages;
1591 p = page;
1592 do {
1593 set_page_refcounted(p);
1594 __free_pages(p, MAX_ORDER - 1);
1595 p += MAX_ORDER_NR_PAGES;
1596 } while (i -= MAX_ORDER_NR_PAGES);
1597 } else {
1598 set_page_refcounted(page);
1599 __free_pages(page, pageblock_order);
1600 }
1601
1602 adjust_managed_page_count(page, pageblock_nr_pages);
1603 }
1604 #endif
1605
1606 /*
1607 * The order of subdivision here is critical for the IO subsystem.
1608 * Please do not alter this order without good reasons and regression
1609 * testing. Specifically, as large blocks of memory are subdivided,
1610 * the order in which smaller blocks are delivered depends on the order
1611 * they're subdivided in this function. This is the primary factor
1612 * influencing the order in which pages are delivered to the IO
1613 * subsystem according to empirical testing, and this is also justified
1614 * by considering the behavior of a buddy system containing a single
1615 * large block of memory acted on by a series of small allocations.
1616 * This behavior is a critical factor in sglist merging's success.
1617 *
1618 * -- nyc
1619 */
1620 static inline void expand(struct zone *zone, struct page *page,
1621 int low, int high, struct free_area *area,
1622 int migratetype)
1623 {
1624 unsigned long size = 1 << high;
1625
1626 while (high > low) {
1627 area--;
1628 high--;
1629 size >>= 1;
1630 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1631
1632 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1633 debug_guardpage_enabled() &&
1634 high < debug_guardpage_minorder()) {
1635 /*
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1640 */
1641 set_page_guard(zone, &page[size], high, migratetype);
1642 continue;
1643 }
1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1647 }
1648 }
1649
1650 static void check_new_page_bad(struct page *page)
1651 {
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
1654
1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
1659 if (unlikely(page_ref_count(page) != 0))
1660 bad_reason = "nonzero _count";
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
1664 }
1665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1666 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1667 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1668 }
1669 #ifdef CONFIG_MEMCG
1670 if (unlikely(page->mem_cgroup))
1671 bad_reason = "page still charged to cgroup";
1672 #endif
1673 bad_page(page, bad_reason, bad_flags);
1674 }
1675
1676 /*
1677 * This page is about to be returned from the page allocator
1678 */
1679 static inline int check_new_page(struct page *page)
1680 {
1681 if (likely(page_expected_state(page,
1682 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1683 return 0;
1684
1685 check_new_page_bad(page);
1686 return 1;
1687 }
1688
1689 static inline bool free_pages_prezeroed(bool poisoned)
1690 {
1691 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1692 page_poisoning_enabled() && poisoned;
1693 }
1694
1695 #ifdef CONFIG_DEBUG_VM
1696 static bool check_pcp_refill(struct page *page)
1697 {
1698 return false;
1699 }
1700
1701 static bool check_new_pcp(struct page *page)
1702 {
1703 return check_new_page(page);
1704 }
1705 #else
1706 static bool check_pcp_refill(struct page *page)
1707 {
1708 return check_new_page(page);
1709 }
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 return false;
1713 }
1714 #endif /* CONFIG_DEBUG_VM */
1715
1716 static bool check_new_pages(struct page *page, unsigned int order)
1717 {
1718 int i;
1719 for (i = 0; i < (1 << order); i++) {
1720 struct page *p = page + i;
1721
1722 if (unlikely(check_new_page(p)))
1723 return true;
1724 }
1725
1726 return false;
1727 }
1728
1729 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1730 unsigned int alloc_flags)
1731 {
1732 int i;
1733 bool poisoned = true;
1734
1735 for (i = 0; i < (1 << order); i++) {
1736 struct page *p = page + i;
1737 if (poisoned)
1738 poisoned &= page_is_poisoned(p);
1739 }
1740
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748
1749 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1750 for (i = 0; i < (1 << order); i++)
1751 clear_highpage(page + i);
1752
1753 if (order && (gfp_flags & __GFP_COMP))
1754 prep_compound_page(page, order);
1755
1756 set_page_owner(page, order, gfp_flags);
1757
1758 /*
1759 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1760 * allocate the page. The expectation is that the caller is taking
1761 * steps that will free more memory. The caller should avoid the page
1762 * being used for !PFMEMALLOC purposes.
1763 */
1764 if (alloc_flags & ALLOC_NO_WATERMARKS)
1765 set_page_pfmemalloc(page);
1766 else
1767 clear_page_pfmemalloc(page);
1768 }
1769
1770 /*
1771 * Go through the free lists for the given migratetype and remove
1772 * the smallest available page from the freelists
1773 */
1774 static inline
1775 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1776 int migratetype)
1777 {
1778 unsigned int current_order;
1779 struct free_area *area;
1780 struct page *page;
1781
1782 /* Find a page of the appropriate size in the preferred list */
1783 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1784 area = &(zone->free_area[current_order]);
1785 page = list_first_entry_or_null(&area->free_list[migratetype],
1786 struct page, lru);
1787 if (!page)
1788 continue;
1789 list_del(&page->lru);
1790 rmv_page_order(page);
1791 area->nr_free--;
1792 expand(zone, page, order, current_order, area, migratetype);
1793 set_pcppage_migratetype(page, migratetype);
1794 return page;
1795 }
1796
1797 return NULL;
1798 }
1799
1800
1801 /*
1802 * This array describes the order lists are fallen back to when
1803 * the free lists for the desirable migrate type are depleted
1804 */
1805 static int fallbacks[MIGRATE_TYPES][4] = {
1806 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1807 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1808 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1809 #ifdef CONFIG_CMA
1810 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1811 #endif
1812 #ifdef CONFIG_MEMORY_ISOLATION
1813 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1814 #endif
1815 };
1816
1817 #ifdef CONFIG_CMA
1818 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1819 unsigned int order)
1820 {
1821 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1822 }
1823 #else
1824 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1825 unsigned int order) { return NULL; }
1826 #endif
1827
1828 /*
1829 * Move the free pages in a range to the free lists of the requested type.
1830 * Note that start_page and end_pages are not aligned on a pageblock
1831 * boundary. If alignment is required, use move_freepages_block()
1832 */
1833 int move_freepages(struct zone *zone,
1834 struct page *start_page, struct page *end_page,
1835 int migratetype)
1836 {
1837 struct page *page;
1838 unsigned int order;
1839 int pages_moved = 0;
1840
1841 #ifndef CONFIG_HOLES_IN_ZONE
1842 /*
1843 * page_zone is not safe to call in this context when
1844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1845 * anyway as we check zone boundaries in move_freepages_block().
1846 * Remove at a later date when no bug reports exist related to
1847 * grouping pages by mobility
1848 */
1849 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1850 #endif
1851
1852 for (page = start_page; page <= end_page;) {
1853 /* Make sure we are not inadvertently changing nodes */
1854 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1855
1856 if (!pfn_valid_within(page_to_pfn(page))) {
1857 page++;
1858 continue;
1859 }
1860
1861 if (!PageBuddy(page)) {
1862 page++;
1863 continue;
1864 }
1865
1866 order = page_order(page);
1867 list_move(&page->lru,
1868 &zone->free_area[order].free_list[migratetype]);
1869 page += 1 << order;
1870 pages_moved += 1 << order;
1871 }
1872
1873 return pages_moved;
1874 }
1875
1876 int move_freepages_block(struct zone *zone, struct page *page,
1877 int migratetype)
1878 {
1879 unsigned long start_pfn, end_pfn;
1880 struct page *start_page, *end_page;
1881
1882 start_pfn = page_to_pfn(page);
1883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1884 start_page = pfn_to_page(start_pfn);
1885 end_page = start_page + pageblock_nr_pages - 1;
1886 end_pfn = start_pfn + pageblock_nr_pages - 1;
1887
1888 /* Do not cross zone boundaries */
1889 if (!zone_spans_pfn(zone, start_pfn))
1890 start_page = page;
1891 if (!zone_spans_pfn(zone, end_pfn))
1892 return 0;
1893
1894 return move_freepages(zone, start_page, end_page, migratetype);
1895 }
1896
1897 static void change_pageblock_range(struct page *pageblock_page,
1898 int start_order, int migratetype)
1899 {
1900 int nr_pageblocks = 1 << (start_order - pageblock_order);
1901
1902 while (nr_pageblocks--) {
1903 set_pageblock_migratetype(pageblock_page, migratetype);
1904 pageblock_page += pageblock_nr_pages;
1905 }
1906 }
1907
1908 /*
1909 * When we are falling back to another migratetype during allocation, try to
1910 * steal extra free pages from the same pageblocks to satisfy further
1911 * allocations, instead of polluting multiple pageblocks.
1912 *
1913 * If we are stealing a relatively large buddy page, it is likely there will
1914 * be more free pages in the pageblock, so try to steal them all. For
1915 * reclaimable and unmovable allocations, we steal regardless of page size,
1916 * as fragmentation caused by those allocations polluting movable pageblocks
1917 * is worse than movable allocations stealing from unmovable and reclaimable
1918 * pageblocks.
1919 */
1920 static bool can_steal_fallback(unsigned int order, int start_mt)
1921 {
1922 /*
1923 * Leaving this order check is intended, although there is
1924 * relaxed order check in next check. The reason is that
1925 * we can actually steal whole pageblock if this condition met,
1926 * but, below check doesn't guarantee it and that is just heuristic
1927 * so could be changed anytime.
1928 */
1929 if (order >= pageblock_order)
1930 return true;
1931
1932 if (order >= pageblock_order / 2 ||
1933 start_mt == MIGRATE_RECLAIMABLE ||
1934 start_mt == MIGRATE_UNMOVABLE ||
1935 page_group_by_mobility_disabled)
1936 return true;
1937
1938 return false;
1939 }
1940
1941 /*
1942 * This function implements actual steal behaviour. If order is large enough,
1943 * we can steal whole pageblock. If not, we first move freepages in this
1944 * pageblock and check whether half of pages are moved or not. If half of
1945 * pages are moved, we can change migratetype of pageblock and permanently
1946 * use it's pages as requested migratetype in the future.
1947 */
1948 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1949 int start_type)
1950 {
1951 unsigned int current_order = page_order(page);
1952 int pages;
1953
1954 /* Take ownership for orders >= pageblock_order */
1955 if (current_order >= pageblock_order) {
1956 change_pageblock_range(page, current_order, start_type);
1957 return;
1958 }
1959
1960 pages = move_freepages_block(zone, page, start_type);
1961
1962 /* Claim the whole block if over half of it is free */
1963 if (pages >= (1 << (pageblock_order-1)) ||
1964 page_group_by_mobility_disabled)
1965 set_pageblock_migratetype(page, start_type);
1966 }
1967
1968 /*
1969 * Check whether there is a suitable fallback freepage with requested order.
1970 * If only_stealable is true, this function returns fallback_mt only if
1971 * we can steal other freepages all together. This would help to reduce
1972 * fragmentation due to mixed migratetype pages in one pageblock.
1973 */
1974 int find_suitable_fallback(struct free_area *area, unsigned int order,
1975 int migratetype, bool only_stealable, bool *can_steal)
1976 {
1977 int i;
1978 int fallback_mt;
1979
1980 if (area->nr_free == 0)
1981 return -1;
1982
1983 *can_steal = false;
1984 for (i = 0;; i++) {
1985 fallback_mt = fallbacks[migratetype][i];
1986 if (fallback_mt == MIGRATE_TYPES)
1987 break;
1988
1989 if (list_empty(&area->free_list[fallback_mt]))
1990 continue;
1991
1992 if (can_steal_fallback(order, migratetype))
1993 *can_steal = true;
1994
1995 if (!only_stealable)
1996 return fallback_mt;
1997
1998 if (*can_steal)
1999 return fallback_mt;
2000 }
2001
2002 return -1;
2003 }
2004
2005 /*
2006 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2007 * there are no empty page blocks that contain a page with a suitable order
2008 */
2009 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2010 unsigned int alloc_order)
2011 {
2012 int mt;
2013 unsigned long max_managed, flags;
2014
2015 /*
2016 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2017 * Check is race-prone but harmless.
2018 */
2019 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2020 if (zone->nr_reserved_highatomic >= max_managed)
2021 return;
2022
2023 spin_lock_irqsave(&zone->lock, flags);
2024
2025 /* Recheck the nr_reserved_highatomic limit under the lock */
2026 if (zone->nr_reserved_highatomic >= max_managed)
2027 goto out_unlock;
2028
2029 /* Yoink! */
2030 mt = get_pageblock_migratetype(page);
2031 if (mt != MIGRATE_HIGHATOMIC &&
2032 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2033 zone->nr_reserved_highatomic += pageblock_nr_pages;
2034 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2035 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2036 }
2037
2038 out_unlock:
2039 spin_unlock_irqrestore(&zone->lock, flags);
2040 }
2041
2042 /*
2043 * Used when an allocation is about to fail under memory pressure. This
2044 * potentially hurts the reliability of high-order allocations when under
2045 * intense memory pressure but failed atomic allocations should be easier
2046 * to recover from than an OOM.
2047 */
2048 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2049 {
2050 struct zonelist *zonelist = ac->zonelist;
2051 unsigned long flags;
2052 struct zoneref *z;
2053 struct zone *zone;
2054 struct page *page;
2055 int order;
2056
2057 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2058 ac->nodemask) {
2059 /* Preserve at least one pageblock */
2060 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2061 continue;
2062
2063 spin_lock_irqsave(&zone->lock, flags);
2064 for (order = 0; order < MAX_ORDER; order++) {
2065 struct free_area *area = &(zone->free_area[order]);
2066
2067 page = list_first_entry_or_null(
2068 &area->free_list[MIGRATE_HIGHATOMIC],
2069 struct page, lru);
2070 if (!page)
2071 continue;
2072
2073 /*
2074 * It should never happen but changes to locking could
2075 * inadvertently allow a per-cpu drain to add pages
2076 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2077 * and watch for underflows.
2078 */
2079 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2080 zone->nr_reserved_highatomic);
2081
2082 /*
2083 * Convert to ac->migratetype and avoid the normal
2084 * pageblock stealing heuristics. Minimally, the caller
2085 * is doing the work and needs the pages. More
2086 * importantly, if the block was always converted to
2087 * MIGRATE_UNMOVABLE or another type then the number
2088 * of pageblocks that cannot be completely freed
2089 * may increase.
2090 */
2091 set_pageblock_migratetype(page, ac->migratetype);
2092 move_freepages_block(zone, page, ac->migratetype);
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 return;
2095 }
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 }
2098 }
2099
2100 /* Remove an element from the buddy allocator from the fallback list */
2101 static inline struct page *
2102 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2103 {
2104 struct free_area *area;
2105 unsigned int current_order;
2106 struct page *page;
2107 int fallback_mt;
2108 bool can_steal;
2109
2110 /* Find the largest possible block of pages in the other list */
2111 for (current_order = MAX_ORDER-1;
2112 current_order >= order && current_order <= MAX_ORDER-1;
2113 --current_order) {
2114 area = &(zone->free_area[current_order]);
2115 fallback_mt = find_suitable_fallback(area, current_order,
2116 start_migratetype, false, &can_steal);
2117 if (fallback_mt == -1)
2118 continue;
2119
2120 page = list_first_entry(&area->free_list[fallback_mt],
2121 struct page, lru);
2122 if (can_steal)
2123 steal_suitable_fallback(zone, page, start_migratetype);
2124
2125 /* Remove the page from the freelists */
2126 area->nr_free--;
2127 list_del(&page->lru);
2128 rmv_page_order(page);
2129
2130 expand(zone, page, order, current_order, area,
2131 start_migratetype);
2132 /*
2133 * The pcppage_migratetype may differ from pageblock's
2134 * migratetype depending on the decisions in
2135 * find_suitable_fallback(). This is OK as long as it does not
2136 * differ for MIGRATE_CMA pageblocks. Those can be used as
2137 * fallback only via special __rmqueue_cma_fallback() function
2138 */
2139 set_pcppage_migratetype(page, start_migratetype);
2140
2141 trace_mm_page_alloc_extfrag(page, order, current_order,
2142 start_migratetype, fallback_mt);
2143
2144 return page;
2145 }
2146
2147 return NULL;
2148 }
2149
2150 /*
2151 * Do the hard work of removing an element from the buddy allocator.
2152 * Call me with the zone->lock already held.
2153 */
2154 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2155 int migratetype)
2156 {
2157 struct page *page;
2158
2159 page = __rmqueue_smallest(zone, order, migratetype);
2160 if (unlikely(!page)) {
2161 if (migratetype == MIGRATE_MOVABLE)
2162 page = __rmqueue_cma_fallback(zone, order);
2163
2164 if (!page)
2165 page = __rmqueue_fallback(zone, order, migratetype);
2166 }
2167
2168 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2169 return page;
2170 }
2171
2172 /*
2173 * Obtain a specified number of elements from the buddy allocator, all under
2174 * a single hold of the lock, for efficiency. Add them to the supplied list.
2175 * Returns the number of new pages which were placed at *list.
2176 */
2177 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2178 unsigned long count, struct list_head *list,
2179 int migratetype, bool cold)
2180 {
2181 int i;
2182
2183 spin_lock(&zone->lock);
2184 for (i = 0; i < count; ++i) {
2185 struct page *page = __rmqueue(zone, order, migratetype);
2186 if (unlikely(page == NULL))
2187 break;
2188
2189 if (unlikely(check_pcp_refill(page)))
2190 continue;
2191
2192 /*
2193 * Split buddy pages returned by expand() are received here
2194 * in physical page order. The page is added to the callers and
2195 * list and the list head then moves forward. From the callers
2196 * perspective, the linked list is ordered by page number in
2197 * some conditions. This is useful for IO devices that can
2198 * merge IO requests if the physical pages are ordered
2199 * properly.
2200 */
2201 if (likely(!cold))
2202 list_add(&page->lru, list);
2203 else
2204 list_add_tail(&page->lru, list);
2205 list = &page->lru;
2206 if (is_migrate_cma(get_pcppage_migratetype(page)))
2207 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2208 -(1 << order));
2209 }
2210 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2211 spin_unlock(&zone->lock);
2212 return i;
2213 }
2214
2215 #ifdef CONFIG_NUMA
2216 /*
2217 * Called from the vmstat counter updater to drain pagesets of this
2218 * currently executing processor on remote nodes after they have
2219 * expired.
2220 *
2221 * Note that this function must be called with the thread pinned to
2222 * a single processor.
2223 */
2224 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2225 {
2226 unsigned long flags;
2227 int to_drain, batch;
2228
2229 local_irq_save(flags);
2230 batch = READ_ONCE(pcp->batch);
2231 to_drain = min(pcp->count, batch);
2232 if (to_drain > 0) {
2233 free_pcppages_bulk(zone, to_drain, pcp);
2234 pcp->count -= to_drain;
2235 }
2236 local_irq_restore(flags);
2237 }
2238 #endif
2239
2240 /*
2241 * Drain pcplists of the indicated processor and zone.
2242 *
2243 * The processor must either be the current processor and the
2244 * thread pinned to the current processor or a processor that
2245 * is not online.
2246 */
2247 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2248 {
2249 unsigned long flags;
2250 struct per_cpu_pageset *pset;
2251 struct per_cpu_pages *pcp;
2252
2253 local_irq_save(flags);
2254 pset = per_cpu_ptr(zone->pageset, cpu);
2255
2256 pcp = &pset->pcp;
2257 if (pcp->count) {
2258 free_pcppages_bulk(zone, pcp->count, pcp);
2259 pcp->count = 0;
2260 }
2261 local_irq_restore(flags);
2262 }
2263
2264 /*
2265 * Drain pcplists of all zones on the indicated processor.
2266 *
2267 * The processor must either be the current processor and the
2268 * thread pinned to the current processor or a processor that
2269 * is not online.
2270 */
2271 static void drain_pages(unsigned int cpu)
2272 {
2273 struct zone *zone;
2274
2275 for_each_populated_zone(zone) {
2276 drain_pages_zone(cpu, zone);
2277 }
2278 }
2279
2280 /*
2281 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2282 *
2283 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2284 * the single zone's pages.
2285 */
2286 void drain_local_pages(struct zone *zone)
2287 {
2288 int cpu = smp_processor_id();
2289
2290 if (zone)
2291 drain_pages_zone(cpu, zone);
2292 else
2293 drain_pages(cpu);
2294 }
2295
2296 /*
2297 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2298 *
2299 * When zone parameter is non-NULL, spill just the single zone's pages.
2300 *
2301 * Note that this code is protected against sending an IPI to an offline
2302 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2303 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2304 * nothing keeps CPUs from showing up after we populated the cpumask and
2305 * before the call to on_each_cpu_mask().
2306 */
2307 void drain_all_pages(struct zone *zone)
2308 {
2309 int cpu;
2310
2311 /*
2312 * Allocate in the BSS so we wont require allocation in
2313 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2314 */
2315 static cpumask_t cpus_with_pcps;
2316
2317 /*
2318 * We don't care about racing with CPU hotplug event
2319 * as offline notification will cause the notified
2320 * cpu to drain that CPU pcps and on_each_cpu_mask
2321 * disables preemption as part of its processing
2322 */
2323 for_each_online_cpu(cpu) {
2324 struct per_cpu_pageset *pcp;
2325 struct zone *z;
2326 bool has_pcps = false;
2327
2328 if (zone) {
2329 pcp = per_cpu_ptr(zone->pageset, cpu);
2330 if (pcp->pcp.count)
2331 has_pcps = true;
2332 } else {
2333 for_each_populated_zone(z) {
2334 pcp = per_cpu_ptr(z->pageset, cpu);
2335 if (pcp->pcp.count) {
2336 has_pcps = true;
2337 break;
2338 }
2339 }
2340 }
2341
2342 if (has_pcps)
2343 cpumask_set_cpu(cpu, &cpus_with_pcps);
2344 else
2345 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2346 }
2347 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2348 zone, 1);
2349 }
2350
2351 #ifdef CONFIG_HIBERNATION
2352
2353 void mark_free_pages(struct zone *zone)
2354 {
2355 unsigned long pfn, max_zone_pfn;
2356 unsigned long flags;
2357 unsigned int order, t;
2358 struct page *page;
2359
2360 if (zone_is_empty(zone))
2361 return;
2362
2363 spin_lock_irqsave(&zone->lock, flags);
2364
2365 max_zone_pfn = zone_end_pfn(zone);
2366 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2367 if (pfn_valid(pfn)) {
2368 page = pfn_to_page(pfn);
2369
2370 if (page_zone(page) != zone)
2371 continue;
2372
2373 if (!swsusp_page_is_forbidden(page))
2374 swsusp_unset_page_free(page);
2375 }
2376
2377 for_each_migratetype_order(order, t) {
2378 list_for_each_entry(page,
2379 &zone->free_area[order].free_list[t], lru) {
2380 unsigned long i;
2381
2382 pfn = page_to_pfn(page);
2383 for (i = 0; i < (1UL << order); i++)
2384 swsusp_set_page_free(pfn_to_page(pfn + i));
2385 }
2386 }
2387 spin_unlock_irqrestore(&zone->lock, flags);
2388 }
2389 #endif /* CONFIG_PM */
2390
2391 /*
2392 * Free a 0-order page
2393 * cold == true ? free a cold page : free a hot page
2394 */
2395 void free_hot_cold_page(struct page *page, bool cold)
2396 {
2397 struct zone *zone = page_zone(page);
2398 struct per_cpu_pages *pcp;
2399 unsigned long flags;
2400 unsigned long pfn = page_to_pfn(page);
2401 int migratetype;
2402
2403 if (!free_pcp_prepare(page))
2404 return;
2405
2406 migratetype = get_pfnblock_migratetype(page, pfn);
2407 set_pcppage_migratetype(page, migratetype);
2408 local_irq_save(flags);
2409 __count_vm_event(PGFREE);
2410
2411 /*
2412 * We only track unmovable, reclaimable and movable on pcp lists.
2413 * Free ISOLATE pages back to the allocator because they are being
2414 * offlined but treat RESERVE as movable pages so we can get those
2415 * areas back if necessary. Otherwise, we may have to free
2416 * excessively into the page allocator
2417 */
2418 if (migratetype >= MIGRATE_PCPTYPES) {
2419 if (unlikely(is_migrate_isolate(migratetype))) {
2420 free_one_page(zone, page, pfn, 0, migratetype);
2421 goto out;
2422 }
2423 migratetype = MIGRATE_MOVABLE;
2424 }
2425
2426 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2427 if (!cold)
2428 list_add(&page->lru, &pcp->lists[migratetype]);
2429 else
2430 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2431 pcp->count++;
2432 if (pcp->count >= pcp->high) {
2433 unsigned long batch = READ_ONCE(pcp->batch);
2434 free_pcppages_bulk(zone, batch, pcp);
2435 pcp->count -= batch;
2436 }
2437
2438 out:
2439 local_irq_restore(flags);
2440 }
2441
2442 /*
2443 * Free a list of 0-order pages
2444 */
2445 void free_hot_cold_page_list(struct list_head *list, bool cold)
2446 {
2447 struct page *page, *next;
2448
2449 list_for_each_entry_safe(page, next, list, lru) {
2450 trace_mm_page_free_batched(page, cold);
2451 free_hot_cold_page(page, cold);
2452 }
2453 }
2454
2455 /*
2456 * split_page takes a non-compound higher-order page, and splits it into
2457 * n (1<<order) sub-pages: page[0..n]
2458 * Each sub-page must be freed individually.
2459 *
2460 * Note: this is probably too low level an operation for use in drivers.
2461 * Please consult with lkml before using this in your driver.
2462 */
2463 void split_page(struct page *page, unsigned int order)
2464 {
2465 int i;
2466 gfp_t gfp_mask;
2467
2468 VM_BUG_ON_PAGE(PageCompound(page), page);
2469 VM_BUG_ON_PAGE(!page_count(page), page);
2470
2471 #ifdef CONFIG_KMEMCHECK
2472 /*
2473 * Split shadow pages too, because free(page[0]) would
2474 * otherwise free the whole shadow.
2475 */
2476 if (kmemcheck_page_is_tracked(page))
2477 split_page(virt_to_page(page[0].shadow), order);
2478 #endif
2479
2480 gfp_mask = get_page_owner_gfp(page);
2481 set_page_owner(page, 0, gfp_mask);
2482 for (i = 1; i < (1 << order); i++) {
2483 set_page_refcounted(page + i);
2484 set_page_owner(page + i, 0, gfp_mask);
2485 }
2486 }
2487 EXPORT_SYMBOL_GPL(split_page);
2488
2489 int __isolate_free_page(struct page *page, unsigned int order)
2490 {
2491 unsigned long watermark;
2492 struct zone *zone;
2493 int mt;
2494
2495 BUG_ON(!PageBuddy(page));
2496
2497 zone = page_zone(page);
2498 mt = get_pageblock_migratetype(page);
2499
2500 if (!is_migrate_isolate(mt)) {
2501 /* Obey watermarks as if the page was being allocated */
2502 watermark = low_wmark_pages(zone) + (1 << order);
2503 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2504 return 0;
2505
2506 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2507 }
2508
2509 /* Remove page from free list */
2510 list_del(&page->lru);
2511 zone->free_area[order].nr_free--;
2512 rmv_page_order(page);
2513
2514 set_page_owner(page, order, __GFP_MOVABLE);
2515
2516 /* Set the pageblock if the isolated page is at least a pageblock */
2517 if (order >= pageblock_order - 1) {
2518 struct page *endpage = page + (1 << order) - 1;
2519 for (; page < endpage; page += pageblock_nr_pages) {
2520 int mt = get_pageblock_migratetype(page);
2521 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2522 set_pageblock_migratetype(page,
2523 MIGRATE_MOVABLE);
2524 }
2525 }
2526
2527
2528 return 1UL << order;
2529 }
2530
2531 /*
2532 * Similar to split_page except the page is already free. As this is only
2533 * being used for migration, the migratetype of the block also changes.
2534 * As this is called with interrupts disabled, the caller is responsible
2535 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2536 * are enabled.
2537 *
2538 * Note: this is probably too low level an operation for use in drivers.
2539 * Please consult with lkml before using this in your driver.
2540 */
2541 int split_free_page(struct page *page)
2542 {
2543 unsigned int order;
2544 int nr_pages;
2545
2546 order = page_order(page);
2547
2548 nr_pages = __isolate_free_page(page, order);
2549 if (!nr_pages)
2550 return 0;
2551
2552 /* Split into individual pages */
2553 set_page_refcounted(page);
2554 split_page(page, order);
2555 return nr_pages;
2556 }
2557
2558 /*
2559 * Update NUMA hit/miss statistics
2560 *
2561 * Must be called with interrupts disabled.
2562 *
2563 * When __GFP_OTHER_NODE is set assume the node of the preferred
2564 * zone is the local node. This is useful for daemons who allocate
2565 * memory on behalf of other processes.
2566 */
2567 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2568 gfp_t flags)
2569 {
2570 #ifdef CONFIG_NUMA
2571 int local_nid = numa_node_id();
2572 enum zone_stat_item local_stat = NUMA_LOCAL;
2573
2574 if (unlikely(flags & __GFP_OTHER_NODE)) {
2575 local_stat = NUMA_OTHER;
2576 local_nid = preferred_zone->node;
2577 }
2578
2579 if (z->node == local_nid) {
2580 __inc_zone_state(z, NUMA_HIT);
2581 __inc_zone_state(z, local_stat);
2582 } else {
2583 __inc_zone_state(z, NUMA_MISS);
2584 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2585 }
2586 #endif
2587 }
2588
2589 /*
2590 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2591 */
2592 static inline
2593 struct page *buffered_rmqueue(struct zone *preferred_zone,
2594 struct zone *zone, unsigned int order,
2595 gfp_t gfp_flags, unsigned int alloc_flags,
2596 int migratetype)
2597 {
2598 unsigned long flags;
2599 struct page *page;
2600 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2601
2602 if (likely(order == 0)) {
2603 struct per_cpu_pages *pcp;
2604 struct list_head *list;
2605
2606 local_irq_save(flags);
2607 do {
2608 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2609 list = &pcp->lists[migratetype];
2610 if (list_empty(list)) {
2611 pcp->count += rmqueue_bulk(zone, 0,
2612 pcp->batch, list,
2613 migratetype, cold);
2614 if (unlikely(list_empty(list)))
2615 goto failed;
2616 }
2617
2618 if (cold)
2619 page = list_last_entry(list, struct page, lru);
2620 else
2621 page = list_first_entry(list, struct page, lru);
2622 } while (page && check_new_pcp(page));
2623
2624 __dec_zone_state(zone, NR_ALLOC_BATCH);
2625 list_del(&page->lru);
2626 pcp->count--;
2627 } else {
2628 /*
2629 * We most definitely don't want callers attempting to
2630 * allocate greater than order-1 page units with __GFP_NOFAIL.
2631 */
2632 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2633 spin_lock_irqsave(&zone->lock, flags);
2634
2635 do {
2636 page = NULL;
2637 if (alloc_flags & ALLOC_HARDER) {
2638 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2639 if (page)
2640 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2641 }
2642 if (!page)
2643 page = __rmqueue(zone, order, migratetype);
2644 } while (page && check_new_pages(page, order));
2645 spin_unlock(&zone->lock);
2646 if (!page)
2647 goto failed;
2648 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2649 __mod_zone_freepage_state(zone, -(1 << order),
2650 get_pcppage_migratetype(page));
2651 }
2652
2653 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2654 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2655 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2656
2657 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2658 zone_statistics(preferred_zone, zone, gfp_flags);
2659 local_irq_restore(flags);
2660
2661 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2662 return page;
2663
2664 failed:
2665 local_irq_restore(flags);
2666 return NULL;
2667 }
2668
2669 #ifdef CONFIG_FAIL_PAGE_ALLOC
2670
2671 static struct {
2672 struct fault_attr attr;
2673
2674 bool ignore_gfp_highmem;
2675 bool ignore_gfp_reclaim;
2676 u32 min_order;
2677 } fail_page_alloc = {
2678 .attr = FAULT_ATTR_INITIALIZER,
2679 .ignore_gfp_reclaim = true,
2680 .ignore_gfp_highmem = true,
2681 .min_order = 1,
2682 };
2683
2684 static int __init setup_fail_page_alloc(char *str)
2685 {
2686 return setup_fault_attr(&fail_page_alloc.attr, str);
2687 }
2688 __setup("fail_page_alloc=", setup_fail_page_alloc);
2689
2690 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2691 {
2692 if (order < fail_page_alloc.min_order)
2693 return false;
2694 if (gfp_mask & __GFP_NOFAIL)
2695 return false;
2696 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2697 return false;
2698 if (fail_page_alloc.ignore_gfp_reclaim &&
2699 (gfp_mask & __GFP_DIRECT_RECLAIM))
2700 return false;
2701
2702 return should_fail(&fail_page_alloc.attr, 1 << order);
2703 }
2704
2705 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2706
2707 static int __init fail_page_alloc_debugfs(void)
2708 {
2709 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2710 struct dentry *dir;
2711
2712 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2713 &fail_page_alloc.attr);
2714 if (IS_ERR(dir))
2715 return PTR_ERR(dir);
2716
2717 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2718 &fail_page_alloc.ignore_gfp_reclaim))
2719 goto fail;
2720 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2721 &fail_page_alloc.ignore_gfp_highmem))
2722 goto fail;
2723 if (!debugfs_create_u32("min-order", mode, dir,
2724 &fail_page_alloc.min_order))
2725 goto fail;
2726
2727 return 0;
2728 fail:
2729 debugfs_remove_recursive(dir);
2730
2731 return -ENOMEM;
2732 }
2733
2734 late_initcall(fail_page_alloc_debugfs);
2735
2736 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2737
2738 #else /* CONFIG_FAIL_PAGE_ALLOC */
2739
2740 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2741 {
2742 return false;
2743 }
2744
2745 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2746
2747 /*
2748 * Return true if free base pages are above 'mark'. For high-order checks it
2749 * will return true of the order-0 watermark is reached and there is at least
2750 * one free page of a suitable size. Checking now avoids taking the zone lock
2751 * to check in the allocation paths if no pages are free.
2752 */
2753 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2754 unsigned long mark, int classzone_idx,
2755 unsigned int alloc_flags,
2756 long free_pages)
2757 {
2758 long min = mark;
2759 int o;
2760 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2761
2762 /* free_pages may go negative - that's OK */
2763 free_pages -= (1 << order) - 1;
2764
2765 if (alloc_flags & ALLOC_HIGH)
2766 min -= min / 2;
2767
2768 /*
2769 * If the caller does not have rights to ALLOC_HARDER then subtract
2770 * the high-atomic reserves. This will over-estimate the size of the
2771 * atomic reserve but it avoids a search.
2772 */
2773 if (likely(!alloc_harder))
2774 free_pages -= z->nr_reserved_highatomic;
2775 else
2776 min -= min / 4;
2777
2778 #ifdef CONFIG_CMA
2779 /* If allocation can't use CMA areas don't use free CMA pages */
2780 if (!(alloc_flags & ALLOC_CMA))
2781 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2782 #endif
2783
2784 /*
2785 * Check watermarks for an order-0 allocation request. If these
2786 * are not met, then a high-order request also cannot go ahead
2787 * even if a suitable page happened to be free.
2788 */
2789 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2790 return false;
2791
2792 /* If this is an order-0 request then the watermark is fine */
2793 if (!order)
2794 return true;
2795
2796 /* For a high-order request, check at least one suitable page is free */
2797 for (o = order; o < MAX_ORDER; o++) {
2798 struct free_area *area = &z->free_area[o];
2799 int mt;
2800
2801 if (!area->nr_free)
2802 continue;
2803
2804 if (alloc_harder)
2805 return true;
2806
2807 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2808 if (!list_empty(&area->free_list[mt]))
2809 return true;
2810 }
2811
2812 #ifdef CONFIG_CMA
2813 if ((alloc_flags & ALLOC_CMA) &&
2814 !list_empty(&area->free_list[MIGRATE_CMA])) {
2815 return true;
2816 }
2817 #endif
2818 }
2819 return false;
2820 }
2821
2822 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2823 int classzone_idx, unsigned int alloc_flags)
2824 {
2825 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2826 zone_page_state(z, NR_FREE_PAGES));
2827 }
2828
2829 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2830 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2831 {
2832 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2833 long cma_pages = 0;
2834
2835 #ifdef CONFIG_CMA
2836 /* If allocation can't use CMA areas don't use free CMA pages */
2837 if (!(alloc_flags & ALLOC_CMA))
2838 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2839 #endif
2840
2841 /*
2842 * Fast check for order-0 only. If this fails then the reserves
2843 * need to be calculated. There is a corner case where the check
2844 * passes but only the high-order atomic reserve are free. If
2845 * the caller is !atomic then it'll uselessly search the free
2846 * list. That corner case is then slower but it is harmless.
2847 */
2848 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2849 return true;
2850
2851 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2852 free_pages);
2853 }
2854
2855 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2856 unsigned long mark, int classzone_idx)
2857 {
2858 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2859
2860 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2861 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2862
2863 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2864 free_pages);
2865 }
2866
2867 #ifdef CONFIG_NUMA
2868 static bool zone_local(struct zone *local_zone, struct zone *zone)
2869 {
2870 return local_zone->node == zone->node;
2871 }
2872
2873 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2874 {
2875 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2876 RECLAIM_DISTANCE;
2877 }
2878 #else /* CONFIG_NUMA */
2879 static bool zone_local(struct zone *local_zone, struct zone *zone)
2880 {
2881 return true;
2882 }
2883
2884 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885 {
2886 return true;
2887 }
2888 #endif /* CONFIG_NUMA */
2889
2890 static void reset_alloc_batches(struct zone *preferred_zone)
2891 {
2892 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2893
2894 do {
2895 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2896 high_wmark_pages(zone) - low_wmark_pages(zone) -
2897 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2898 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2899 } while (zone++ != preferred_zone);
2900 }
2901
2902 /*
2903 * get_page_from_freelist goes through the zonelist trying to allocate
2904 * a page.
2905 */
2906 static struct page *
2907 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2908 const struct alloc_context *ac)
2909 {
2910 struct zoneref *z = ac->preferred_zoneref;
2911 struct zone *zone;
2912 bool fair_skipped = false;
2913 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2914
2915 zonelist_scan:
2916 /*
2917 * Scan zonelist, looking for a zone with enough free.
2918 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2919 */
2920 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2921 ac->nodemask) {
2922 struct page *page;
2923 unsigned long mark;
2924
2925 if (cpusets_enabled() &&
2926 (alloc_flags & ALLOC_CPUSET) &&
2927 !__cpuset_zone_allowed(zone, gfp_mask))
2928 continue;
2929 /*
2930 * Distribute pages in proportion to the individual
2931 * zone size to ensure fair page aging. The zone a
2932 * page was allocated in should have no effect on the
2933 * time the page has in memory before being reclaimed.
2934 */
2935 if (apply_fair) {
2936 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2937 fair_skipped = true;
2938 continue;
2939 }
2940 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2941 if (fair_skipped)
2942 goto reset_fair;
2943 apply_fair = false;
2944 }
2945 }
2946 /*
2947 * When allocating a page cache page for writing, we
2948 * want to get it from a zone that is within its dirty
2949 * limit, such that no single zone holds more than its
2950 * proportional share of globally allowed dirty pages.
2951 * The dirty limits take into account the zone's
2952 * lowmem reserves and high watermark so that kswapd
2953 * should be able to balance it without having to
2954 * write pages from its LRU list.
2955 *
2956 * This may look like it could increase pressure on
2957 * lower zones by failing allocations in higher zones
2958 * before they are full. But the pages that do spill
2959 * over are limited as the lower zones are protected
2960 * by this very same mechanism. It should not become
2961 * a practical burden to them.
2962 *
2963 * XXX: For now, allow allocations to potentially
2964 * exceed the per-zone dirty limit in the slowpath
2965 * (spread_dirty_pages unset) before going into reclaim,
2966 * which is important when on a NUMA setup the allowed
2967 * zones are together not big enough to reach the
2968 * global limit. The proper fix for these situations
2969 * will require awareness of zones in the
2970 * dirty-throttling and the flusher threads.
2971 */
2972 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2973 continue;
2974
2975 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2976 if (!zone_watermark_fast(zone, order, mark,
2977 ac_classzone_idx(ac), alloc_flags)) {
2978 int ret;
2979
2980 /* Checked here to keep the fast path fast */
2981 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2982 if (alloc_flags & ALLOC_NO_WATERMARKS)
2983 goto try_this_zone;
2984
2985 if (zone_reclaim_mode == 0 ||
2986 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2987 continue;
2988
2989 ret = zone_reclaim(zone, gfp_mask, order);
2990 switch (ret) {
2991 case ZONE_RECLAIM_NOSCAN:
2992 /* did not scan */
2993 continue;
2994 case ZONE_RECLAIM_FULL:
2995 /* scanned but unreclaimable */
2996 continue;
2997 default:
2998 /* did we reclaim enough */
2999 if (zone_watermark_ok(zone, order, mark,
3000 ac_classzone_idx(ac), alloc_flags))
3001 goto try_this_zone;
3002
3003 continue;
3004 }
3005 }
3006
3007 try_this_zone:
3008 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
3009 gfp_mask, alloc_flags, ac->migratetype);
3010 if (page) {
3011 prep_new_page(page, order, gfp_mask, alloc_flags);
3012
3013 /*
3014 * If this is a high-order atomic allocation then check
3015 * if the pageblock should be reserved for the future
3016 */
3017 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3018 reserve_highatomic_pageblock(page, zone, order);
3019
3020 return page;
3021 }
3022 }
3023
3024 /*
3025 * The first pass makes sure allocations are spread fairly within the
3026 * local node. However, the local node might have free pages left
3027 * after the fairness batches are exhausted, and remote zones haven't
3028 * even been considered yet. Try once more without fairness, and
3029 * include remote zones now, before entering the slowpath and waking
3030 * kswapd: prefer spilling to a remote zone over swapping locally.
3031 */
3032 if (fair_skipped) {
3033 reset_fair:
3034 apply_fair = false;
3035 fair_skipped = false;
3036 reset_alloc_batches(ac->preferred_zoneref->zone);
3037 goto zonelist_scan;
3038 }
3039
3040 return NULL;
3041 }
3042
3043 /*
3044 * Large machines with many possible nodes should not always dump per-node
3045 * meminfo in irq context.
3046 */
3047 static inline bool should_suppress_show_mem(void)
3048 {
3049 bool ret = false;
3050
3051 #if NODES_SHIFT > 8
3052 ret = in_interrupt();
3053 #endif
3054 return ret;
3055 }
3056
3057 static DEFINE_RATELIMIT_STATE(nopage_rs,
3058 DEFAULT_RATELIMIT_INTERVAL,
3059 DEFAULT_RATELIMIT_BURST);
3060
3061 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3062 {
3063 unsigned int filter = SHOW_MEM_FILTER_NODES;
3064
3065 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3066 debug_guardpage_minorder() > 0)
3067 return;
3068
3069 /*
3070 * This documents exceptions given to allocations in certain
3071 * contexts that are allowed to allocate outside current's set
3072 * of allowed nodes.
3073 */
3074 if (!(gfp_mask & __GFP_NOMEMALLOC))
3075 if (test_thread_flag(TIF_MEMDIE) ||
3076 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3077 filter &= ~SHOW_MEM_FILTER_NODES;
3078 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3079 filter &= ~SHOW_MEM_FILTER_NODES;
3080
3081 if (fmt) {
3082 struct va_format vaf;
3083 va_list args;
3084
3085 va_start(args, fmt);
3086
3087 vaf.fmt = fmt;
3088 vaf.va = &args;
3089
3090 pr_warn("%pV", &vaf);
3091
3092 va_end(args);
3093 }
3094
3095 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3096 current->comm, order, gfp_mask, &gfp_mask);
3097 dump_stack();
3098 if (!should_suppress_show_mem())
3099 show_mem(filter);
3100 }
3101
3102 static inline struct page *
3103 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3104 const struct alloc_context *ac, unsigned long *did_some_progress)
3105 {
3106 struct oom_control oc = {
3107 .zonelist = ac->zonelist,
3108 .nodemask = ac->nodemask,
3109 .gfp_mask = gfp_mask,
3110 .order = order,
3111 };
3112 struct page *page;
3113
3114 *did_some_progress = 0;
3115
3116 /*
3117 * Acquire the oom lock. If that fails, somebody else is
3118 * making progress for us.
3119 */
3120 if (!mutex_trylock(&oom_lock)) {
3121 *did_some_progress = 1;
3122 schedule_timeout_uninterruptible(1);
3123 return NULL;
3124 }
3125
3126 /*
3127 * Go through the zonelist yet one more time, keep very high watermark
3128 * here, this is only to catch a parallel oom killing, we must fail if
3129 * we're still under heavy pressure.
3130 */
3131 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3132 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3133 if (page)
3134 goto out;
3135
3136 if (!(gfp_mask & __GFP_NOFAIL)) {
3137 /* Coredumps can quickly deplete all memory reserves */
3138 if (current->flags & PF_DUMPCORE)
3139 goto out;
3140 /* The OOM killer will not help higher order allocs */
3141 if (order > PAGE_ALLOC_COSTLY_ORDER)
3142 goto out;
3143 /* The OOM killer does not needlessly kill tasks for lowmem */
3144 if (ac->high_zoneidx < ZONE_NORMAL)
3145 goto out;
3146 if (pm_suspended_storage())
3147 goto out;
3148 /*
3149 * XXX: GFP_NOFS allocations should rather fail than rely on
3150 * other request to make a forward progress.
3151 * We are in an unfortunate situation where out_of_memory cannot
3152 * do much for this context but let's try it to at least get
3153 * access to memory reserved if the current task is killed (see
3154 * out_of_memory). Once filesystems are ready to handle allocation
3155 * failures more gracefully we should just bail out here.
3156 */
3157
3158 /* The OOM killer may not free memory on a specific node */
3159 if (gfp_mask & __GFP_THISNODE)
3160 goto out;
3161 }
3162 /* Exhausted what can be done so it's blamo time */
3163 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3164 *did_some_progress = 1;
3165
3166 if (gfp_mask & __GFP_NOFAIL) {
3167 page = get_page_from_freelist(gfp_mask, order,
3168 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3169 /*
3170 * fallback to ignore cpuset restriction if our nodes
3171 * are depleted
3172 */
3173 if (!page)
3174 page = get_page_from_freelist(gfp_mask, order,
3175 ALLOC_NO_WATERMARKS, ac);
3176 }
3177 }
3178 out:
3179 mutex_unlock(&oom_lock);
3180 return page;
3181 }
3182
3183 #ifdef CONFIG_COMPACTION
3184 /* Try memory compaction for high-order allocations before reclaim */
3185 static struct page *
3186 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3187 unsigned int alloc_flags, const struct alloc_context *ac,
3188 enum migrate_mode mode, enum compact_result *compact_result)
3189 {
3190 struct page *page;
3191 int contended_compaction;
3192
3193 if (!order)
3194 return NULL;
3195
3196 current->flags |= PF_MEMALLOC;
3197 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3198 mode, &contended_compaction);
3199 current->flags &= ~PF_MEMALLOC;
3200
3201 if (*compact_result <= COMPACT_INACTIVE)
3202 return NULL;
3203
3204 /*
3205 * At least in one zone compaction wasn't deferred or skipped, so let's
3206 * count a compaction stall
3207 */
3208 count_vm_event(COMPACTSTALL);
3209
3210 page = get_page_from_freelist(gfp_mask, order,
3211 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3212
3213 if (page) {
3214 struct zone *zone = page_zone(page);
3215
3216 zone->compact_blockskip_flush = false;
3217 compaction_defer_reset(zone, order, true);
3218 count_vm_event(COMPACTSUCCESS);
3219 return page;
3220 }
3221
3222 /*
3223 * It's bad if compaction run occurs and fails. The most likely reason
3224 * is that pages exist, but not enough to satisfy watermarks.
3225 */
3226 count_vm_event(COMPACTFAIL);
3227
3228 /*
3229 * In all zones where compaction was attempted (and not
3230 * deferred or skipped), lock contention has been detected.
3231 * For THP allocation we do not want to disrupt the others
3232 * so we fallback to base pages instead.
3233 */
3234 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3235 *compact_result = COMPACT_CONTENDED;
3236
3237 /*
3238 * If compaction was aborted due to need_resched(), we do not
3239 * want to further increase allocation latency, unless it is
3240 * khugepaged trying to collapse.
3241 */
3242 if (contended_compaction == COMPACT_CONTENDED_SCHED
3243 && !(current->flags & PF_KTHREAD))
3244 *compact_result = COMPACT_CONTENDED;
3245
3246 cond_resched();
3247
3248 return NULL;
3249 }
3250 #else
3251 static inline struct page *
3252 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3253 unsigned int alloc_flags, const struct alloc_context *ac,
3254 enum migrate_mode mode, enum compact_result *compact_result)
3255 {
3256 return NULL;
3257 }
3258 #endif /* CONFIG_COMPACTION */
3259
3260 /* Perform direct synchronous page reclaim */
3261 static int
3262 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3263 const struct alloc_context *ac)
3264 {
3265 struct reclaim_state reclaim_state;
3266 int progress;
3267
3268 cond_resched();
3269
3270 /* We now go into synchronous reclaim */
3271 cpuset_memory_pressure_bump();
3272 current->flags |= PF_MEMALLOC;
3273 lockdep_set_current_reclaim_state(gfp_mask);
3274 reclaim_state.reclaimed_slab = 0;
3275 current->reclaim_state = &reclaim_state;
3276
3277 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3278 ac->nodemask);
3279
3280 current->reclaim_state = NULL;
3281 lockdep_clear_current_reclaim_state();
3282 current->flags &= ~PF_MEMALLOC;
3283
3284 cond_resched();
3285
3286 return progress;
3287 }
3288
3289 /* The really slow allocator path where we enter direct reclaim */
3290 static inline struct page *
3291 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3292 unsigned int alloc_flags, const struct alloc_context *ac,
3293 unsigned long *did_some_progress)
3294 {
3295 struct page *page = NULL;
3296 bool drained = false;
3297
3298 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3299 if (unlikely(!(*did_some_progress)))
3300 return NULL;
3301
3302 retry:
3303 page = get_page_from_freelist(gfp_mask, order,
3304 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3305
3306 /*
3307 * If an allocation failed after direct reclaim, it could be because
3308 * pages are pinned on the per-cpu lists or in high alloc reserves.
3309 * Shrink them them and try again
3310 */
3311 if (!page && !drained) {
3312 unreserve_highatomic_pageblock(ac);
3313 drain_all_pages(NULL);
3314 drained = true;
3315 goto retry;
3316 }
3317
3318 return page;
3319 }
3320
3321 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3322 {
3323 struct zoneref *z;
3324 struct zone *zone;
3325
3326 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3327 ac->high_zoneidx, ac->nodemask)
3328 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3329 }
3330
3331 static inline unsigned int
3332 gfp_to_alloc_flags(gfp_t gfp_mask)
3333 {
3334 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3335
3336 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3337 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3338
3339 /*
3340 * The caller may dip into page reserves a bit more if the caller
3341 * cannot run direct reclaim, or if the caller has realtime scheduling
3342 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3343 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3344 */
3345 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3346
3347 if (gfp_mask & __GFP_ATOMIC) {
3348 /*
3349 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3350 * if it can't schedule.
3351 */
3352 if (!(gfp_mask & __GFP_NOMEMALLOC))
3353 alloc_flags |= ALLOC_HARDER;
3354 /*
3355 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3356 * comment for __cpuset_node_allowed().
3357 */
3358 alloc_flags &= ~ALLOC_CPUSET;
3359 } else if (unlikely(rt_task(current)) && !in_interrupt())
3360 alloc_flags |= ALLOC_HARDER;
3361
3362 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3363 if (gfp_mask & __GFP_MEMALLOC)
3364 alloc_flags |= ALLOC_NO_WATERMARKS;
3365 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3366 alloc_flags |= ALLOC_NO_WATERMARKS;
3367 else if (!in_interrupt() &&
3368 ((current->flags & PF_MEMALLOC) ||
3369 unlikely(test_thread_flag(TIF_MEMDIE))))
3370 alloc_flags |= ALLOC_NO_WATERMARKS;
3371 }
3372 #ifdef CONFIG_CMA
3373 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3374 alloc_flags |= ALLOC_CMA;
3375 #endif
3376 return alloc_flags;
3377 }
3378
3379 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3380 {
3381 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3382 }
3383
3384 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3385 {
3386 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3387 }
3388
3389 /*
3390 * Maximum number of reclaim retries without any progress before OOM killer
3391 * is consider as the only way to move forward.
3392 */
3393 #define MAX_RECLAIM_RETRIES 16
3394
3395 /*
3396 * Checks whether it makes sense to retry the reclaim to make a forward progress
3397 * for the given allocation request.
3398 * The reclaim feedback represented by did_some_progress (any progress during
3399 * the last reclaim round), pages_reclaimed (cumulative number of reclaimed
3400 * pages) and no_progress_loops (number of reclaim rounds without any progress
3401 * in a row) is considered as well as the reclaimable pages on the applicable
3402 * zone list (with a backoff mechanism which is a function of no_progress_loops).
3403 *
3404 * Returns true if a retry is viable or false to enter the oom path.
3405 */
3406 static inline bool
3407 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3408 struct alloc_context *ac, int alloc_flags,
3409 bool did_some_progress, unsigned long pages_reclaimed,
3410 int no_progress_loops)
3411 {
3412 struct zone *zone;
3413 struct zoneref *z;
3414
3415 /*
3416 * Make sure we converge to OOM if we cannot make any progress
3417 * several times in the row.
3418 */
3419 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3420 return false;
3421
3422 if (order > PAGE_ALLOC_COSTLY_ORDER) {
3423 if (pages_reclaimed >= (1<<order))
3424 return false;
3425
3426 if (did_some_progress)
3427 return true;
3428 }
3429
3430 /*
3431 * Keep reclaiming pages while there is a chance this will lead somewhere.
3432 * If none of the target zones can satisfy our allocation request even
3433 * if all reclaimable pages are considered then we are screwed and have
3434 * to go OOM.
3435 */
3436 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3437 ac->nodemask) {
3438 unsigned long available;
3439
3440 available = zone_reclaimable_pages(zone);
3441 available -= DIV_ROUND_UP(no_progress_loops * available,
3442 MAX_RECLAIM_RETRIES);
3443 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3444
3445 /*
3446 * Would the allocation succeed if we reclaimed the whole
3447 * available?
3448 */
3449 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3450 ac->high_zoneidx, alloc_flags, available)) {
3451 /* Wait for some write requests to complete then retry */
3452 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/50);
3453 return true;
3454 }
3455 }
3456
3457 return false;
3458 }
3459
3460 static inline struct page *
3461 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3462 struct alloc_context *ac)
3463 {
3464 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3465 struct page *page = NULL;
3466 unsigned int alloc_flags;
3467 unsigned long pages_reclaimed = 0;
3468 unsigned long did_some_progress;
3469 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3470 enum compact_result compact_result;
3471 int no_progress_loops = 0;
3472
3473 /*
3474 * In the slowpath, we sanity check order to avoid ever trying to
3475 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3476 * be using allocators in order of preference for an area that is
3477 * too large.
3478 */
3479 if (order >= MAX_ORDER) {
3480 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3481 return NULL;
3482 }
3483
3484 /*
3485 * We also sanity check to catch abuse of atomic reserves being used by
3486 * callers that are not in atomic context.
3487 */
3488 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3489 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3490 gfp_mask &= ~__GFP_ATOMIC;
3491
3492 retry:
3493 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3494 wake_all_kswapds(order, ac);
3495
3496 /*
3497 * OK, we're below the kswapd watermark and have kicked background
3498 * reclaim. Now things get more complex, so set up alloc_flags according
3499 * to how we want to proceed.
3500 */
3501 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3502
3503 /* This is the last chance, in general, before the goto nopage. */
3504 page = get_page_from_freelist(gfp_mask, order,
3505 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3506 if (page)
3507 goto got_pg;
3508
3509 /* Allocate without watermarks if the context allows */
3510 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3511 /*
3512 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3513 * the allocation is high priority and these type of
3514 * allocations are system rather than user orientated
3515 */
3516 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3517 page = get_page_from_freelist(gfp_mask, order,
3518 ALLOC_NO_WATERMARKS, ac);
3519 if (page)
3520 goto got_pg;
3521 }
3522
3523 /* Caller is not willing to reclaim, we can't balance anything */
3524 if (!can_direct_reclaim) {
3525 /*
3526 * All existing users of the __GFP_NOFAIL are blockable, so warn
3527 * of any new users that actually allow this type of allocation
3528 * to fail.
3529 */
3530 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3531 goto nopage;
3532 }
3533
3534 /* Avoid recursion of direct reclaim */
3535 if (current->flags & PF_MEMALLOC) {
3536 /*
3537 * __GFP_NOFAIL request from this context is rather bizarre
3538 * because we cannot reclaim anything and only can loop waiting
3539 * for somebody to do a work for us.
3540 */
3541 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3542 cond_resched();
3543 goto retry;
3544 }
3545 goto nopage;
3546 }
3547
3548 /* Avoid allocations with no watermarks from looping endlessly */
3549 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3550 goto nopage;
3551
3552 /*
3553 * Try direct compaction. The first pass is asynchronous. Subsequent
3554 * attempts after direct reclaim are synchronous
3555 */
3556 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3557 migration_mode,
3558 &compact_result);
3559 if (page)
3560 goto got_pg;
3561
3562 /* Checks for THP-specific high-order allocations */
3563 if (is_thp_gfp_mask(gfp_mask)) {
3564 /*
3565 * If compaction is deferred for high-order allocations, it is
3566 * because sync compaction recently failed. If this is the case
3567 * and the caller requested a THP allocation, we do not want
3568 * to heavily disrupt the system, so we fail the allocation
3569 * instead of entering direct reclaim.
3570 */
3571 if (compact_result == COMPACT_DEFERRED)
3572 goto nopage;
3573
3574 /*
3575 * Compaction is contended so rather back off than cause
3576 * excessive stalls.
3577 */
3578 if(compact_result == COMPACT_CONTENDED)
3579 goto nopage;
3580 }
3581
3582 /*
3583 * It can become very expensive to allocate transparent hugepages at
3584 * fault, so use asynchronous memory compaction for THP unless it is
3585 * khugepaged trying to collapse.
3586 */
3587 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3588 migration_mode = MIGRATE_SYNC_LIGHT;
3589
3590 /* Try direct reclaim and then allocating */
3591 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3592 &did_some_progress);
3593 if (page)
3594 goto got_pg;
3595
3596 /* Do not loop if specifically requested */
3597 if (gfp_mask & __GFP_NORETRY)
3598 goto noretry;
3599
3600 /*
3601 * Do not retry costly high order allocations unless they are
3602 * __GFP_REPEAT
3603 */
3604 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3605 goto noretry;
3606
3607 if (did_some_progress) {
3608 no_progress_loops = 0;
3609 pages_reclaimed += did_some_progress;
3610 } else {
3611 no_progress_loops++;
3612 }
3613
3614 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3615 did_some_progress > 0, pages_reclaimed,
3616 no_progress_loops))
3617 goto retry;
3618
3619 /* Reclaim has failed us, start killing things */
3620 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3621 if (page)
3622 goto got_pg;
3623
3624 /* Retry as long as the OOM killer is making progress */
3625 if (did_some_progress) {
3626 no_progress_loops = 0;
3627 goto retry;
3628 }
3629
3630 noretry:
3631 /*
3632 * High-order allocations do not necessarily loop after
3633 * direct reclaim and reclaim/compaction depends on compaction
3634 * being called after reclaim so call directly if necessary
3635 */
3636 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3637 ac, migration_mode,
3638 &compact_result);
3639 if (page)
3640 goto got_pg;
3641 nopage:
3642 warn_alloc_failed(gfp_mask, order, NULL);
3643 got_pg:
3644 return page;
3645 }
3646
3647 /*
3648 * This is the 'heart' of the zoned buddy allocator.
3649 */
3650 struct page *
3651 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3652 struct zonelist *zonelist, nodemask_t *nodemask)
3653 {
3654 struct page *page;
3655 unsigned int cpuset_mems_cookie;
3656 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3657 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3658 struct alloc_context ac = {
3659 .high_zoneidx = gfp_zone(gfp_mask),
3660 .zonelist = zonelist,
3661 .nodemask = nodemask,
3662 .migratetype = gfpflags_to_migratetype(gfp_mask),
3663 };
3664
3665 if (cpusets_enabled()) {
3666 alloc_mask |= __GFP_HARDWALL;
3667 alloc_flags |= ALLOC_CPUSET;
3668 if (!ac.nodemask)
3669 ac.nodemask = &cpuset_current_mems_allowed;
3670 }
3671
3672 gfp_mask &= gfp_allowed_mask;
3673
3674 lockdep_trace_alloc(gfp_mask);
3675
3676 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3677
3678 if (should_fail_alloc_page(gfp_mask, order))
3679 return NULL;
3680
3681 /*
3682 * Check the zones suitable for the gfp_mask contain at least one
3683 * valid zone. It's possible to have an empty zonelist as a result
3684 * of __GFP_THISNODE and a memoryless node
3685 */
3686 if (unlikely(!zonelist->_zonerefs->zone))
3687 return NULL;
3688
3689 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3690 alloc_flags |= ALLOC_CMA;
3691
3692 retry_cpuset:
3693 cpuset_mems_cookie = read_mems_allowed_begin();
3694
3695 /* Dirty zone balancing only done in the fast path */
3696 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3697
3698 /* The preferred zone is used for statistics later */
3699 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3700 ac.high_zoneidx, ac.nodemask);
3701 if (!ac.preferred_zoneref) {
3702 page = NULL;
3703 goto no_zone;
3704 }
3705
3706 /* First allocation attempt */
3707 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3708 if (likely(page))
3709 goto out;
3710
3711 /*
3712 * Runtime PM, block IO and its error handling path can deadlock
3713 * because I/O on the device might not complete.
3714 */
3715 alloc_mask = memalloc_noio_flags(gfp_mask);
3716 ac.spread_dirty_pages = false;
3717
3718 /*
3719 * Restore the original nodemask if it was potentially replaced with
3720 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3721 */
3722 if (cpusets_enabled())
3723 ac.nodemask = nodemask;
3724 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3725
3726 no_zone:
3727 /*
3728 * When updating a task's mems_allowed, it is possible to race with
3729 * parallel threads in such a way that an allocation can fail while
3730 * the mask is being updated. If a page allocation is about to fail,
3731 * check if the cpuset changed during allocation and if so, retry.
3732 */
3733 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3734 alloc_mask = gfp_mask;
3735 goto retry_cpuset;
3736 }
3737
3738 out:
3739 if (kmemcheck_enabled && page)
3740 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3741
3742 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3743
3744 return page;
3745 }
3746 EXPORT_SYMBOL(__alloc_pages_nodemask);
3747
3748 /*
3749 * Common helper functions.
3750 */
3751 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3752 {
3753 struct page *page;
3754
3755 /*
3756 * __get_free_pages() returns a 32-bit address, which cannot represent
3757 * a highmem page
3758 */
3759 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3760
3761 page = alloc_pages(gfp_mask, order);
3762 if (!page)
3763 return 0;
3764 return (unsigned long) page_address(page);
3765 }
3766 EXPORT_SYMBOL(__get_free_pages);
3767
3768 unsigned long get_zeroed_page(gfp_t gfp_mask)
3769 {
3770 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3771 }
3772 EXPORT_SYMBOL(get_zeroed_page);
3773
3774 void __free_pages(struct page *page, unsigned int order)
3775 {
3776 if (put_page_testzero(page)) {
3777 if (order == 0)
3778 free_hot_cold_page(page, false);
3779 else
3780 __free_pages_ok(page, order);
3781 }
3782 }
3783
3784 EXPORT_SYMBOL(__free_pages);
3785
3786 void free_pages(unsigned long addr, unsigned int order)
3787 {
3788 if (addr != 0) {
3789 VM_BUG_ON(!virt_addr_valid((void *)addr));
3790 __free_pages(virt_to_page((void *)addr), order);
3791 }
3792 }
3793
3794 EXPORT_SYMBOL(free_pages);
3795
3796 /*
3797 * Page Fragment:
3798 * An arbitrary-length arbitrary-offset area of memory which resides
3799 * within a 0 or higher order page. Multiple fragments within that page
3800 * are individually refcounted, in the page's reference counter.
3801 *
3802 * The page_frag functions below provide a simple allocation framework for
3803 * page fragments. This is used by the network stack and network device
3804 * drivers to provide a backing region of memory for use as either an
3805 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3806 */
3807 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3808 gfp_t gfp_mask)
3809 {
3810 struct page *page = NULL;
3811 gfp_t gfp = gfp_mask;
3812
3813 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3814 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3815 __GFP_NOMEMALLOC;
3816 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3817 PAGE_FRAG_CACHE_MAX_ORDER);
3818 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3819 #endif
3820 if (unlikely(!page))
3821 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3822
3823 nc->va = page ? page_address(page) : NULL;
3824
3825 return page;
3826 }
3827
3828 void *__alloc_page_frag(struct page_frag_cache *nc,
3829 unsigned int fragsz, gfp_t gfp_mask)
3830 {
3831 unsigned int size = PAGE_SIZE;
3832 struct page *page;
3833 int offset;
3834
3835 if (unlikely(!nc->va)) {
3836 refill:
3837 page = __page_frag_refill(nc, gfp_mask);
3838 if (!page)
3839 return NULL;
3840
3841 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3842 /* if size can vary use size else just use PAGE_SIZE */
3843 size = nc->size;
3844 #endif
3845 /* Even if we own the page, we do not use atomic_set().
3846 * This would break get_page_unless_zero() users.
3847 */
3848 page_ref_add(page, size - 1);
3849
3850 /* reset page count bias and offset to start of new frag */
3851 nc->pfmemalloc = page_is_pfmemalloc(page);
3852 nc->pagecnt_bias = size;
3853 nc->offset = size;
3854 }
3855
3856 offset = nc->offset - fragsz;
3857 if (unlikely(offset < 0)) {
3858 page = virt_to_page(nc->va);
3859
3860 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3861 goto refill;
3862
3863 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3864 /* if size can vary use size else just use PAGE_SIZE */
3865 size = nc->size;
3866 #endif
3867 /* OK, page count is 0, we can safely set it */
3868 set_page_count(page, size);
3869
3870 /* reset page count bias and offset to start of new frag */
3871 nc->pagecnt_bias = size;
3872 offset = size - fragsz;
3873 }
3874
3875 nc->pagecnt_bias--;
3876 nc->offset = offset;
3877
3878 return nc->va + offset;
3879 }
3880 EXPORT_SYMBOL(__alloc_page_frag);
3881
3882 /*
3883 * Frees a page fragment allocated out of either a compound or order 0 page.
3884 */
3885 void __free_page_frag(void *addr)
3886 {
3887 struct page *page = virt_to_head_page(addr);
3888
3889 if (unlikely(put_page_testzero(page)))
3890 __free_pages_ok(page, compound_order(page));
3891 }
3892 EXPORT_SYMBOL(__free_page_frag);
3893
3894 /*
3895 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3896 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3897 * equivalent to alloc_pages.
3898 *
3899 * It should be used when the caller would like to use kmalloc, but since the
3900 * allocation is large, it has to fall back to the page allocator.
3901 */
3902 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3903 {
3904 struct page *page;
3905
3906 page = alloc_pages(gfp_mask, order);
3907 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3908 __free_pages(page, order);
3909 page = NULL;
3910 }
3911 return page;
3912 }
3913
3914 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3915 {
3916 struct page *page;
3917
3918 page = alloc_pages_node(nid, gfp_mask, order);
3919 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3920 __free_pages(page, order);
3921 page = NULL;
3922 }
3923 return page;
3924 }
3925
3926 /*
3927 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3928 * alloc_kmem_pages.
3929 */
3930 void __free_kmem_pages(struct page *page, unsigned int order)
3931 {
3932 memcg_kmem_uncharge(page, order);
3933 __free_pages(page, order);
3934 }
3935
3936 void free_kmem_pages(unsigned long addr, unsigned int order)
3937 {
3938 if (addr != 0) {
3939 VM_BUG_ON(!virt_addr_valid((void *)addr));
3940 __free_kmem_pages(virt_to_page((void *)addr), order);
3941 }
3942 }
3943
3944 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3945 size_t size)
3946 {
3947 if (addr) {
3948 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3949 unsigned long used = addr + PAGE_ALIGN(size);
3950
3951 split_page(virt_to_page((void *)addr), order);
3952 while (used < alloc_end) {
3953 free_page(used);
3954 used += PAGE_SIZE;
3955 }
3956 }
3957 return (void *)addr;
3958 }
3959
3960 /**
3961 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3962 * @size: the number of bytes to allocate
3963 * @gfp_mask: GFP flags for the allocation
3964 *
3965 * This function is similar to alloc_pages(), except that it allocates the
3966 * minimum number of pages to satisfy the request. alloc_pages() can only
3967 * allocate memory in power-of-two pages.
3968 *
3969 * This function is also limited by MAX_ORDER.
3970 *
3971 * Memory allocated by this function must be released by free_pages_exact().
3972 */
3973 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3974 {
3975 unsigned int order = get_order(size);
3976 unsigned long addr;
3977
3978 addr = __get_free_pages(gfp_mask, order);
3979 return make_alloc_exact(addr, order, size);
3980 }
3981 EXPORT_SYMBOL(alloc_pages_exact);
3982
3983 /**
3984 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3985 * pages on a node.
3986 * @nid: the preferred node ID where memory should be allocated
3987 * @size: the number of bytes to allocate
3988 * @gfp_mask: GFP flags for the allocation
3989 *
3990 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3991 * back.
3992 */
3993 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3994 {
3995 unsigned int order = get_order(size);
3996 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3997 if (!p)
3998 return NULL;
3999 return make_alloc_exact((unsigned long)page_address(p), order, size);
4000 }
4001
4002 /**
4003 * free_pages_exact - release memory allocated via alloc_pages_exact()
4004 * @virt: the value returned by alloc_pages_exact.
4005 * @size: size of allocation, same value as passed to alloc_pages_exact().
4006 *
4007 * Release the memory allocated by a previous call to alloc_pages_exact.
4008 */
4009 void free_pages_exact(void *virt, size_t size)
4010 {
4011 unsigned long addr = (unsigned long)virt;
4012 unsigned long end = addr + PAGE_ALIGN(size);
4013
4014 while (addr < end) {
4015 free_page(addr);
4016 addr += PAGE_SIZE;
4017 }
4018 }
4019 EXPORT_SYMBOL(free_pages_exact);
4020
4021 /**
4022 * nr_free_zone_pages - count number of pages beyond high watermark
4023 * @offset: The zone index of the highest zone
4024 *
4025 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4026 * high watermark within all zones at or below a given zone index. For each
4027 * zone, the number of pages is calculated as:
4028 * managed_pages - high_pages
4029 */
4030 static unsigned long nr_free_zone_pages(int offset)
4031 {
4032 struct zoneref *z;
4033 struct zone *zone;
4034
4035 /* Just pick one node, since fallback list is circular */
4036 unsigned long sum = 0;
4037
4038 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4039
4040 for_each_zone_zonelist(zone, z, zonelist, offset) {
4041 unsigned long size = zone->managed_pages;
4042 unsigned long high = high_wmark_pages(zone);
4043 if (size > high)
4044 sum += size - high;
4045 }
4046
4047 return sum;
4048 }
4049
4050 /**
4051 * nr_free_buffer_pages - count number of pages beyond high watermark
4052 *
4053 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4054 * watermark within ZONE_DMA and ZONE_NORMAL.
4055 */
4056 unsigned long nr_free_buffer_pages(void)
4057 {
4058 return nr_free_zone_pages(gfp_zone(GFP_USER));
4059 }
4060 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4061
4062 /**
4063 * nr_free_pagecache_pages - count number of pages beyond high watermark
4064 *
4065 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4066 * high watermark within all zones.
4067 */
4068 unsigned long nr_free_pagecache_pages(void)
4069 {
4070 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4071 }
4072
4073 static inline void show_node(struct zone *zone)
4074 {
4075 if (IS_ENABLED(CONFIG_NUMA))
4076 printk("Node %d ", zone_to_nid(zone));
4077 }
4078
4079 long si_mem_available(void)
4080 {
4081 long available;
4082 unsigned long pagecache;
4083 unsigned long wmark_low = 0;
4084 unsigned long pages[NR_LRU_LISTS];
4085 struct zone *zone;
4086 int lru;
4087
4088 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4089 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4090
4091 for_each_zone(zone)
4092 wmark_low += zone->watermark[WMARK_LOW];
4093
4094 /*
4095 * Estimate the amount of memory available for userspace allocations,
4096 * without causing swapping.
4097 */
4098 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4099
4100 /*
4101 * Not all the page cache can be freed, otherwise the system will
4102 * start swapping. Assume at least half of the page cache, or the
4103 * low watermark worth of cache, needs to stay.
4104 */
4105 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4106 pagecache -= min(pagecache / 2, wmark_low);
4107 available += pagecache;
4108
4109 /*
4110 * Part of the reclaimable slab consists of items that are in use,
4111 * and cannot be freed. Cap this estimate at the low watermark.
4112 */
4113 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4114 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4115
4116 if (available < 0)
4117 available = 0;
4118 return available;
4119 }
4120 EXPORT_SYMBOL_GPL(si_mem_available);
4121
4122 void si_meminfo(struct sysinfo *val)
4123 {
4124 val->totalram = totalram_pages;
4125 val->sharedram = global_page_state(NR_SHMEM);
4126 val->freeram = global_page_state(NR_FREE_PAGES);
4127 val->bufferram = nr_blockdev_pages();
4128 val->totalhigh = totalhigh_pages;
4129 val->freehigh = nr_free_highpages();
4130 val->mem_unit = PAGE_SIZE;
4131 }
4132
4133 EXPORT_SYMBOL(si_meminfo);
4134
4135 #ifdef CONFIG_NUMA
4136 void si_meminfo_node(struct sysinfo *val, int nid)
4137 {
4138 int zone_type; /* needs to be signed */
4139 unsigned long managed_pages = 0;
4140 unsigned long managed_highpages = 0;
4141 unsigned long free_highpages = 0;
4142 pg_data_t *pgdat = NODE_DATA(nid);
4143
4144 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4145 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4146 val->totalram = managed_pages;
4147 val->sharedram = node_page_state(nid, NR_SHMEM);
4148 val->freeram = node_page_state(nid, NR_FREE_PAGES);
4149 #ifdef CONFIG_HIGHMEM
4150 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4151 struct zone *zone = &pgdat->node_zones[zone_type];
4152
4153 if (is_highmem(zone)) {
4154 managed_highpages += zone->managed_pages;
4155 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4156 }
4157 }
4158 val->totalhigh = managed_highpages;
4159 val->freehigh = free_highpages;
4160 #else
4161 val->totalhigh = managed_highpages;
4162 val->freehigh = free_highpages;
4163 #endif
4164 val->mem_unit = PAGE_SIZE;
4165 }
4166 #endif
4167
4168 /*
4169 * Determine whether the node should be displayed or not, depending on whether
4170 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4171 */
4172 bool skip_free_areas_node(unsigned int flags, int nid)
4173 {
4174 bool ret = false;
4175 unsigned int cpuset_mems_cookie;
4176
4177 if (!(flags & SHOW_MEM_FILTER_NODES))
4178 goto out;
4179
4180 do {
4181 cpuset_mems_cookie = read_mems_allowed_begin();
4182 ret = !node_isset(nid, cpuset_current_mems_allowed);
4183 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4184 out:
4185 return ret;
4186 }
4187
4188 #define K(x) ((x) << (PAGE_SHIFT-10))
4189
4190 static void show_migration_types(unsigned char type)
4191 {
4192 static const char types[MIGRATE_TYPES] = {
4193 [MIGRATE_UNMOVABLE] = 'U',
4194 [MIGRATE_MOVABLE] = 'M',
4195 [MIGRATE_RECLAIMABLE] = 'E',
4196 [MIGRATE_HIGHATOMIC] = 'H',
4197 #ifdef CONFIG_CMA
4198 [MIGRATE_CMA] = 'C',
4199 #endif
4200 #ifdef CONFIG_MEMORY_ISOLATION
4201 [MIGRATE_ISOLATE] = 'I',
4202 #endif
4203 };
4204 char tmp[MIGRATE_TYPES + 1];
4205 char *p = tmp;
4206 int i;
4207
4208 for (i = 0; i < MIGRATE_TYPES; i++) {
4209 if (type & (1 << i))
4210 *p++ = types[i];
4211 }
4212
4213 *p = '\0';
4214 printk("(%s) ", tmp);
4215 }
4216
4217 /*
4218 * Show free area list (used inside shift_scroll-lock stuff)
4219 * We also calculate the percentage fragmentation. We do this by counting the
4220 * memory on each free list with the exception of the first item on the list.
4221 *
4222 * Bits in @filter:
4223 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4224 * cpuset.
4225 */
4226 void show_free_areas(unsigned int filter)
4227 {
4228 unsigned long free_pcp = 0;
4229 int cpu;
4230 struct zone *zone;
4231
4232 for_each_populated_zone(zone) {
4233 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4234 continue;
4235
4236 for_each_online_cpu(cpu)
4237 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4238 }
4239
4240 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4241 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4242 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4243 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4244 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4245 " free:%lu free_pcp:%lu free_cma:%lu\n",
4246 global_page_state(NR_ACTIVE_ANON),
4247 global_page_state(NR_INACTIVE_ANON),
4248 global_page_state(NR_ISOLATED_ANON),
4249 global_page_state(NR_ACTIVE_FILE),
4250 global_page_state(NR_INACTIVE_FILE),
4251 global_page_state(NR_ISOLATED_FILE),
4252 global_page_state(NR_UNEVICTABLE),
4253 global_page_state(NR_FILE_DIRTY),
4254 global_page_state(NR_WRITEBACK),
4255 global_page_state(NR_UNSTABLE_NFS),
4256 global_page_state(NR_SLAB_RECLAIMABLE),
4257 global_page_state(NR_SLAB_UNRECLAIMABLE),
4258 global_page_state(NR_FILE_MAPPED),
4259 global_page_state(NR_SHMEM),
4260 global_page_state(NR_PAGETABLE),
4261 global_page_state(NR_BOUNCE),
4262 global_page_state(NR_FREE_PAGES),
4263 free_pcp,
4264 global_page_state(NR_FREE_CMA_PAGES));
4265
4266 for_each_populated_zone(zone) {
4267 int i;
4268
4269 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4270 continue;
4271
4272 free_pcp = 0;
4273 for_each_online_cpu(cpu)
4274 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4275
4276 show_node(zone);
4277 printk("%s"
4278 " free:%lukB"
4279 " min:%lukB"
4280 " low:%lukB"
4281 " high:%lukB"
4282 " active_anon:%lukB"
4283 " inactive_anon:%lukB"
4284 " active_file:%lukB"
4285 " inactive_file:%lukB"
4286 " unevictable:%lukB"
4287 " isolated(anon):%lukB"
4288 " isolated(file):%lukB"
4289 " present:%lukB"
4290 " managed:%lukB"
4291 " mlocked:%lukB"
4292 " dirty:%lukB"
4293 " writeback:%lukB"
4294 " mapped:%lukB"
4295 " shmem:%lukB"
4296 " slab_reclaimable:%lukB"
4297 " slab_unreclaimable:%lukB"
4298 " kernel_stack:%lukB"
4299 " pagetables:%lukB"
4300 " unstable:%lukB"
4301 " bounce:%lukB"
4302 " free_pcp:%lukB"
4303 " local_pcp:%ukB"
4304 " free_cma:%lukB"
4305 " writeback_tmp:%lukB"
4306 " pages_scanned:%lu"
4307 " all_unreclaimable? %s"
4308 "\n",
4309 zone->name,
4310 K(zone_page_state(zone, NR_FREE_PAGES)),
4311 K(min_wmark_pages(zone)),
4312 K(low_wmark_pages(zone)),
4313 K(high_wmark_pages(zone)),
4314 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4315 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4316 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4317 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4318 K(zone_page_state(zone, NR_UNEVICTABLE)),
4319 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4320 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4321 K(zone->present_pages),
4322 K(zone->managed_pages),
4323 K(zone_page_state(zone, NR_MLOCK)),
4324 K(zone_page_state(zone, NR_FILE_DIRTY)),
4325 K(zone_page_state(zone, NR_WRITEBACK)),
4326 K(zone_page_state(zone, NR_FILE_MAPPED)),
4327 K(zone_page_state(zone, NR_SHMEM)),
4328 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4329 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4330 zone_page_state(zone, NR_KERNEL_STACK) *
4331 THREAD_SIZE / 1024,
4332 K(zone_page_state(zone, NR_PAGETABLE)),
4333 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4334 K(zone_page_state(zone, NR_BOUNCE)),
4335 K(free_pcp),
4336 K(this_cpu_read(zone->pageset->pcp.count)),
4337 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4338 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4339 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4340 (!zone_reclaimable(zone) ? "yes" : "no")
4341 );
4342 printk("lowmem_reserve[]:");
4343 for (i = 0; i < MAX_NR_ZONES; i++)
4344 printk(" %ld", zone->lowmem_reserve[i]);
4345 printk("\n");
4346 }
4347
4348 for_each_populated_zone(zone) {
4349 unsigned int order;
4350 unsigned long nr[MAX_ORDER], flags, total = 0;
4351 unsigned char types[MAX_ORDER];
4352
4353 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4354 continue;
4355 show_node(zone);
4356 printk("%s: ", zone->name);
4357
4358 spin_lock_irqsave(&zone->lock, flags);
4359 for (order = 0; order < MAX_ORDER; order++) {
4360 struct free_area *area = &zone->free_area[order];
4361 int type;
4362
4363 nr[order] = area->nr_free;
4364 total += nr[order] << order;
4365
4366 types[order] = 0;
4367 for (type = 0; type < MIGRATE_TYPES; type++) {
4368 if (!list_empty(&area->free_list[type]))
4369 types[order] |= 1 << type;
4370 }
4371 }
4372 spin_unlock_irqrestore(&zone->lock, flags);
4373 for (order = 0; order < MAX_ORDER; order++) {
4374 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4375 if (nr[order])
4376 show_migration_types(types[order]);
4377 }
4378 printk("= %lukB\n", K(total));
4379 }
4380
4381 hugetlb_show_meminfo();
4382
4383 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4384
4385 show_swap_cache_info();
4386 }
4387
4388 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4389 {
4390 zoneref->zone = zone;
4391 zoneref->zone_idx = zone_idx(zone);
4392 }
4393
4394 /*
4395 * Builds allocation fallback zone lists.
4396 *
4397 * Add all populated zones of a node to the zonelist.
4398 */
4399 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4400 int nr_zones)
4401 {
4402 struct zone *zone;
4403 enum zone_type zone_type = MAX_NR_ZONES;
4404
4405 do {
4406 zone_type--;
4407 zone = pgdat->node_zones + zone_type;
4408 if (populated_zone(zone)) {
4409 zoneref_set_zone(zone,
4410 &zonelist->_zonerefs[nr_zones++]);
4411 check_highest_zone(zone_type);
4412 }
4413 } while (zone_type);
4414
4415 return nr_zones;
4416 }
4417
4418
4419 /*
4420 * zonelist_order:
4421 * 0 = automatic detection of better ordering.
4422 * 1 = order by ([node] distance, -zonetype)
4423 * 2 = order by (-zonetype, [node] distance)
4424 *
4425 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4426 * the same zonelist. So only NUMA can configure this param.
4427 */
4428 #define ZONELIST_ORDER_DEFAULT 0
4429 #define ZONELIST_ORDER_NODE 1
4430 #define ZONELIST_ORDER_ZONE 2
4431
4432 /* zonelist order in the kernel.
4433 * set_zonelist_order() will set this to NODE or ZONE.
4434 */
4435 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4436 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4437
4438
4439 #ifdef CONFIG_NUMA
4440 /* The value user specified ....changed by config */
4441 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4442 /* string for sysctl */
4443 #define NUMA_ZONELIST_ORDER_LEN 16
4444 char numa_zonelist_order[16] = "default";
4445
4446 /*
4447 * interface for configure zonelist ordering.
4448 * command line option "numa_zonelist_order"
4449 * = "[dD]efault - default, automatic configuration.
4450 * = "[nN]ode - order by node locality, then by zone within node
4451 * = "[zZ]one - order by zone, then by locality within zone
4452 */
4453
4454 static int __parse_numa_zonelist_order(char *s)
4455 {
4456 if (*s == 'd' || *s == 'D') {
4457 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4458 } else if (*s == 'n' || *s == 'N') {
4459 user_zonelist_order = ZONELIST_ORDER_NODE;
4460 } else if (*s == 'z' || *s == 'Z') {
4461 user_zonelist_order = ZONELIST_ORDER_ZONE;
4462 } else {
4463 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4464 return -EINVAL;
4465 }
4466 return 0;
4467 }
4468
4469 static __init int setup_numa_zonelist_order(char *s)
4470 {
4471 int ret;
4472
4473 if (!s)
4474 return 0;
4475
4476 ret = __parse_numa_zonelist_order(s);
4477 if (ret == 0)
4478 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4479
4480 return ret;
4481 }
4482 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4483
4484 /*
4485 * sysctl handler for numa_zonelist_order
4486 */
4487 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4488 void __user *buffer, size_t *length,
4489 loff_t *ppos)
4490 {
4491 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4492 int ret;
4493 static DEFINE_MUTEX(zl_order_mutex);
4494
4495 mutex_lock(&zl_order_mutex);
4496 if (write) {
4497 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4498 ret = -EINVAL;
4499 goto out;
4500 }
4501 strcpy(saved_string, (char *)table->data);
4502 }
4503 ret = proc_dostring(table, write, buffer, length, ppos);
4504 if (ret)
4505 goto out;
4506 if (write) {
4507 int oldval = user_zonelist_order;
4508
4509 ret = __parse_numa_zonelist_order((char *)table->data);
4510 if (ret) {
4511 /*
4512 * bogus value. restore saved string
4513 */
4514 strncpy((char *)table->data, saved_string,
4515 NUMA_ZONELIST_ORDER_LEN);
4516 user_zonelist_order = oldval;
4517 } else if (oldval != user_zonelist_order) {
4518 mutex_lock(&zonelists_mutex);
4519 build_all_zonelists(NULL, NULL);
4520 mutex_unlock(&zonelists_mutex);
4521 }
4522 }
4523 out:
4524 mutex_unlock(&zl_order_mutex);
4525 return ret;
4526 }
4527
4528
4529 #define MAX_NODE_LOAD (nr_online_nodes)
4530 static int node_load[MAX_NUMNODES];
4531
4532 /**
4533 * find_next_best_node - find the next node that should appear in a given node's fallback list
4534 * @node: node whose fallback list we're appending
4535 * @used_node_mask: nodemask_t of already used nodes
4536 *
4537 * We use a number of factors to determine which is the next node that should
4538 * appear on a given node's fallback list. The node should not have appeared
4539 * already in @node's fallback list, and it should be the next closest node
4540 * according to the distance array (which contains arbitrary distance values
4541 * from each node to each node in the system), and should also prefer nodes
4542 * with no CPUs, since presumably they'll have very little allocation pressure
4543 * on them otherwise.
4544 * It returns -1 if no node is found.
4545 */
4546 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4547 {
4548 int n, val;
4549 int min_val = INT_MAX;
4550 int best_node = NUMA_NO_NODE;
4551 const struct cpumask *tmp = cpumask_of_node(0);
4552
4553 /* Use the local node if we haven't already */
4554 if (!node_isset(node, *used_node_mask)) {
4555 node_set(node, *used_node_mask);
4556 return node;
4557 }
4558
4559 for_each_node_state(n, N_MEMORY) {
4560
4561 /* Don't want a node to appear more than once */
4562 if (node_isset(n, *used_node_mask))
4563 continue;
4564
4565 /* Use the distance array to find the distance */
4566 val = node_distance(node, n);
4567
4568 /* Penalize nodes under us ("prefer the next node") */
4569 val += (n < node);
4570
4571 /* Give preference to headless and unused nodes */
4572 tmp = cpumask_of_node(n);
4573 if (!cpumask_empty(tmp))
4574 val += PENALTY_FOR_NODE_WITH_CPUS;
4575
4576 /* Slight preference for less loaded node */
4577 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4578 val += node_load[n];
4579
4580 if (val < min_val) {
4581 min_val = val;
4582 best_node = n;
4583 }
4584 }
4585
4586 if (best_node >= 0)
4587 node_set(best_node, *used_node_mask);
4588
4589 return best_node;
4590 }
4591
4592
4593 /*
4594 * Build zonelists ordered by node and zones within node.
4595 * This results in maximum locality--normal zone overflows into local
4596 * DMA zone, if any--but risks exhausting DMA zone.
4597 */
4598 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4599 {
4600 int j;
4601 struct zonelist *zonelist;
4602
4603 zonelist = &pgdat->node_zonelists[0];
4604 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4605 ;
4606 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4607 zonelist->_zonerefs[j].zone = NULL;
4608 zonelist->_zonerefs[j].zone_idx = 0;
4609 }
4610
4611 /*
4612 * Build gfp_thisnode zonelists
4613 */
4614 static void build_thisnode_zonelists(pg_data_t *pgdat)
4615 {
4616 int j;
4617 struct zonelist *zonelist;
4618
4619 zonelist = &pgdat->node_zonelists[1];
4620 j = build_zonelists_node(pgdat, zonelist, 0);
4621 zonelist->_zonerefs[j].zone = NULL;
4622 zonelist->_zonerefs[j].zone_idx = 0;
4623 }
4624
4625 /*
4626 * Build zonelists ordered by zone and nodes within zones.
4627 * This results in conserving DMA zone[s] until all Normal memory is
4628 * exhausted, but results in overflowing to remote node while memory
4629 * may still exist in local DMA zone.
4630 */
4631 static int node_order[MAX_NUMNODES];
4632
4633 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4634 {
4635 int pos, j, node;
4636 int zone_type; /* needs to be signed */
4637 struct zone *z;
4638 struct zonelist *zonelist;
4639
4640 zonelist = &pgdat->node_zonelists[0];
4641 pos = 0;
4642 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4643 for (j = 0; j < nr_nodes; j++) {
4644 node = node_order[j];
4645 z = &NODE_DATA(node)->node_zones[zone_type];
4646 if (populated_zone(z)) {
4647 zoneref_set_zone(z,
4648 &zonelist->_zonerefs[pos++]);
4649 check_highest_zone(zone_type);
4650 }
4651 }
4652 }
4653 zonelist->_zonerefs[pos].zone = NULL;
4654 zonelist->_zonerefs[pos].zone_idx = 0;
4655 }
4656
4657 #if defined(CONFIG_64BIT)
4658 /*
4659 * Devices that require DMA32/DMA are relatively rare and do not justify a
4660 * penalty to every machine in case the specialised case applies. Default
4661 * to Node-ordering on 64-bit NUMA machines
4662 */
4663 static int default_zonelist_order(void)
4664 {
4665 return ZONELIST_ORDER_NODE;
4666 }
4667 #else
4668 /*
4669 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4670 * by the kernel. If processes running on node 0 deplete the low memory zone
4671 * then reclaim will occur more frequency increasing stalls and potentially
4672 * be easier to OOM if a large percentage of the zone is under writeback or
4673 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4674 * Hence, default to zone ordering on 32-bit.
4675 */
4676 static int default_zonelist_order(void)
4677 {
4678 return ZONELIST_ORDER_ZONE;
4679 }
4680 #endif /* CONFIG_64BIT */
4681
4682 static void set_zonelist_order(void)
4683 {
4684 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4685 current_zonelist_order = default_zonelist_order();
4686 else
4687 current_zonelist_order = user_zonelist_order;
4688 }
4689
4690 static void build_zonelists(pg_data_t *pgdat)
4691 {
4692 int i, node, load;
4693 nodemask_t used_mask;
4694 int local_node, prev_node;
4695 struct zonelist *zonelist;
4696 unsigned int order = current_zonelist_order;
4697
4698 /* initialize zonelists */
4699 for (i = 0; i < MAX_ZONELISTS; i++) {
4700 zonelist = pgdat->node_zonelists + i;
4701 zonelist->_zonerefs[0].zone = NULL;
4702 zonelist->_zonerefs[0].zone_idx = 0;
4703 }
4704
4705 /* NUMA-aware ordering of nodes */
4706 local_node = pgdat->node_id;
4707 load = nr_online_nodes;
4708 prev_node = local_node;
4709 nodes_clear(used_mask);
4710
4711 memset(node_order, 0, sizeof(node_order));
4712 i = 0;
4713
4714 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4715 /*
4716 * We don't want to pressure a particular node.
4717 * So adding penalty to the first node in same
4718 * distance group to make it round-robin.
4719 */
4720 if (node_distance(local_node, node) !=
4721 node_distance(local_node, prev_node))
4722 node_load[node] = load;
4723
4724 prev_node = node;
4725 load--;
4726 if (order == ZONELIST_ORDER_NODE)
4727 build_zonelists_in_node_order(pgdat, node);
4728 else
4729 node_order[i++] = node; /* remember order */
4730 }
4731
4732 if (order == ZONELIST_ORDER_ZONE) {
4733 /* calculate node order -- i.e., DMA last! */
4734 build_zonelists_in_zone_order(pgdat, i);
4735 }
4736
4737 build_thisnode_zonelists(pgdat);
4738 }
4739
4740 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4741 /*
4742 * Return node id of node used for "local" allocations.
4743 * I.e., first node id of first zone in arg node's generic zonelist.
4744 * Used for initializing percpu 'numa_mem', which is used primarily
4745 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4746 */
4747 int local_memory_node(int node)
4748 {
4749 struct zoneref *z;
4750
4751 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4752 gfp_zone(GFP_KERNEL),
4753 NULL);
4754 return z->zone->node;
4755 }
4756 #endif
4757
4758 #else /* CONFIG_NUMA */
4759
4760 static void set_zonelist_order(void)
4761 {
4762 current_zonelist_order = ZONELIST_ORDER_ZONE;
4763 }
4764
4765 static void build_zonelists(pg_data_t *pgdat)
4766 {
4767 int node, local_node;
4768 enum zone_type j;
4769 struct zonelist *zonelist;
4770
4771 local_node = pgdat->node_id;
4772
4773 zonelist = &pgdat->node_zonelists[0];
4774 j = build_zonelists_node(pgdat, zonelist, 0);
4775
4776 /*
4777 * Now we build the zonelist so that it contains the zones
4778 * of all the other nodes.
4779 * We don't want to pressure a particular node, so when
4780 * building the zones for node N, we make sure that the
4781 * zones coming right after the local ones are those from
4782 * node N+1 (modulo N)
4783 */
4784 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4785 if (!node_online(node))
4786 continue;
4787 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4788 }
4789 for (node = 0; node < local_node; node++) {
4790 if (!node_online(node))
4791 continue;
4792 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4793 }
4794
4795 zonelist->_zonerefs[j].zone = NULL;
4796 zonelist->_zonerefs[j].zone_idx = 0;
4797 }
4798
4799 #endif /* CONFIG_NUMA */
4800
4801 /*
4802 * Boot pageset table. One per cpu which is going to be used for all
4803 * zones and all nodes. The parameters will be set in such a way
4804 * that an item put on a list will immediately be handed over to
4805 * the buddy list. This is safe since pageset manipulation is done
4806 * with interrupts disabled.
4807 *
4808 * The boot_pagesets must be kept even after bootup is complete for
4809 * unused processors and/or zones. They do play a role for bootstrapping
4810 * hotplugged processors.
4811 *
4812 * zoneinfo_show() and maybe other functions do
4813 * not check if the processor is online before following the pageset pointer.
4814 * Other parts of the kernel may not check if the zone is available.
4815 */
4816 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4817 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4818 static void setup_zone_pageset(struct zone *zone);
4819
4820 /*
4821 * Global mutex to protect against size modification of zonelists
4822 * as well as to serialize pageset setup for the new populated zone.
4823 */
4824 DEFINE_MUTEX(zonelists_mutex);
4825
4826 /* return values int ....just for stop_machine() */
4827 static int __build_all_zonelists(void *data)
4828 {
4829 int nid;
4830 int cpu;
4831 pg_data_t *self = data;
4832
4833 #ifdef CONFIG_NUMA
4834 memset(node_load, 0, sizeof(node_load));
4835 #endif
4836
4837 if (self && !node_online(self->node_id)) {
4838 build_zonelists(self);
4839 }
4840
4841 for_each_online_node(nid) {
4842 pg_data_t *pgdat = NODE_DATA(nid);
4843
4844 build_zonelists(pgdat);
4845 }
4846
4847 /*
4848 * Initialize the boot_pagesets that are going to be used
4849 * for bootstrapping processors. The real pagesets for
4850 * each zone will be allocated later when the per cpu
4851 * allocator is available.
4852 *
4853 * boot_pagesets are used also for bootstrapping offline
4854 * cpus if the system is already booted because the pagesets
4855 * are needed to initialize allocators on a specific cpu too.
4856 * F.e. the percpu allocator needs the page allocator which
4857 * needs the percpu allocator in order to allocate its pagesets
4858 * (a chicken-egg dilemma).
4859 */
4860 for_each_possible_cpu(cpu) {
4861 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4862
4863 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4864 /*
4865 * We now know the "local memory node" for each node--
4866 * i.e., the node of the first zone in the generic zonelist.
4867 * Set up numa_mem percpu variable for on-line cpus. During
4868 * boot, only the boot cpu should be on-line; we'll init the
4869 * secondary cpus' numa_mem as they come on-line. During
4870 * node/memory hotplug, we'll fixup all on-line cpus.
4871 */
4872 if (cpu_online(cpu))
4873 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4874 #endif
4875 }
4876
4877 return 0;
4878 }
4879
4880 static noinline void __init
4881 build_all_zonelists_init(void)
4882 {
4883 __build_all_zonelists(NULL);
4884 mminit_verify_zonelist();
4885 cpuset_init_current_mems_allowed();
4886 }
4887
4888 /*
4889 * Called with zonelists_mutex held always
4890 * unless system_state == SYSTEM_BOOTING.
4891 *
4892 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4893 * [we're only called with non-NULL zone through __meminit paths] and
4894 * (2) call of __init annotated helper build_all_zonelists_init
4895 * [protected by SYSTEM_BOOTING].
4896 */
4897 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4898 {
4899 set_zonelist_order();
4900
4901 if (system_state == SYSTEM_BOOTING) {
4902 build_all_zonelists_init();
4903 } else {
4904 #ifdef CONFIG_MEMORY_HOTPLUG
4905 if (zone)
4906 setup_zone_pageset(zone);
4907 #endif
4908 /* we have to stop all cpus to guarantee there is no user
4909 of zonelist */
4910 stop_machine(__build_all_zonelists, pgdat, NULL);
4911 /* cpuset refresh routine should be here */
4912 }
4913 vm_total_pages = nr_free_pagecache_pages();
4914 /*
4915 * Disable grouping by mobility if the number of pages in the
4916 * system is too low to allow the mechanism to work. It would be
4917 * more accurate, but expensive to check per-zone. This check is
4918 * made on memory-hotadd so a system can start with mobility
4919 * disabled and enable it later
4920 */
4921 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4922 page_group_by_mobility_disabled = 1;
4923 else
4924 page_group_by_mobility_disabled = 0;
4925
4926 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4927 nr_online_nodes,
4928 zonelist_order_name[current_zonelist_order],
4929 page_group_by_mobility_disabled ? "off" : "on",
4930 vm_total_pages);
4931 #ifdef CONFIG_NUMA
4932 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4933 #endif
4934 }
4935
4936 /*
4937 * Helper functions to size the waitqueue hash table.
4938 * Essentially these want to choose hash table sizes sufficiently
4939 * large so that collisions trying to wait on pages are rare.
4940 * But in fact, the number of active page waitqueues on typical
4941 * systems is ridiculously low, less than 200. So this is even
4942 * conservative, even though it seems large.
4943 *
4944 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4945 * waitqueues, i.e. the size of the waitq table given the number of pages.
4946 */
4947 #define PAGES_PER_WAITQUEUE 256
4948
4949 #ifndef CONFIG_MEMORY_HOTPLUG
4950 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4951 {
4952 unsigned long size = 1;
4953
4954 pages /= PAGES_PER_WAITQUEUE;
4955
4956 while (size < pages)
4957 size <<= 1;
4958
4959 /*
4960 * Once we have dozens or even hundreds of threads sleeping
4961 * on IO we've got bigger problems than wait queue collision.
4962 * Limit the size of the wait table to a reasonable size.
4963 */
4964 size = min(size, 4096UL);
4965
4966 return max(size, 4UL);
4967 }
4968 #else
4969 /*
4970 * A zone's size might be changed by hot-add, so it is not possible to determine
4971 * a suitable size for its wait_table. So we use the maximum size now.
4972 *
4973 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4974 *
4975 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4976 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4977 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4978 *
4979 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4980 * or more by the traditional way. (See above). It equals:
4981 *
4982 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4983 * ia64(16K page size) : = ( 8G + 4M)byte.
4984 * powerpc (64K page size) : = (32G +16M)byte.
4985 */
4986 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4987 {
4988 return 4096UL;
4989 }
4990 #endif
4991
4992 /*
4993 * This is an integer logarithm so that shifts can be used later
4994 * to extract the more random high bits from the multiplicative
4995 * hash function before the remainder is taken.
4996 */
4997 static inline unsigned long wait_table_bits(unsigned long size)
4998 {
4999 return ffz(~size);
5000 }
5001
5002 /*
5003 * Initially all pages are reserved - free ones are freed
5004 * up by free_all_bootmem() once the early boot process is
5005 * done. Non-atomic initialization, single-pass.
5006 */
5007 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5008 unsigned long start_pfn, enum memmap_context context)
5009 {
5010 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5011 unsigned long end_pfn = start_pfn + size;
5012 pg_data_t *pgdat = NODE_DATA(nid);
5013 unsigned long pfn;
5014 unsigned long nr_initialised = 0;
5015 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5016 struct memblock_region *r = NULL, *tmp;
5017 #endif
5018
5019 if (highest_memmap_pfn < end_pfn - 1)
5020 highest_memmap_pfn = end_pfn - 1;
5021
5022 /*
5023 * Honor reservation requested by the driver for this ZONE_DEVICE
5024 * memory
5025 */
5026 if (altmap && start_pfn == altmap->base_pfn)
5027 start_pfn += altmap->reserve;
5028
5029 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5030 /*
5031 * There can be holes in boot-time mem_map[]s handed to this
5032 * function. They do not exist on hotplugged memory.
5033 */
5034 if (context != MEMMAP_EARLY)
5035 goto not_early;
5036
5037 if (!early_pfn_valid(pfn))
5038 continue;
5039 if (!early_pfn_in_nid(pfn, nid))
5040 continue;
5041 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5042 break;
5043
5044 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5045 /*
5046 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5047 * from zone_movable_pfn[nid] to end of each node should be
5048 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5049 */
5050 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5051 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5052 continue;
5053
5054 /*
5055 * Check given memblock attribute by firmware which can affect
5056 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5057 * mirrored, it's an overlapped memmap init. skip it.
5058 */
5059 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5060 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5061 for_each_memblock(memory, tmp)
5062 if (pfn < memblock_region_memory_end_pfn(tmp))
5063 break;
5064 r = tmp;
5065 }
5066 if (pfn >= memblock_region_memory_base_pfn(r) &&
5067 memblock_is_mirror(r)) {
5068 /* already initialized as NORMAL */
5069 pfn = memblock_region_memory_end_pfn(r);
5070 continue;
5071 }
5072 }
5073 #endif
5074
5075 not_early:
5076 /*
5077 * Mark the block movable so that blocks are reserved for
5078 * movable at startup. This will force kernel allocations
5079 * to reserve their blocks rather than leaking throughout
5080 * the address space during boot when many long-lived
5081 * kernel allocations are made.
5082 *
5083 * bitmap is created for zone's valid pfn range. but memmap
5084 * can be created for invalid pages (for alignment)
5085 * check here not to call set_pageblock_migratetype() against
5086 * pfn out of zone.
5087 */
5088 if (!(pfn & (pageblock_nr_pages - 1))) {
5089 struct page *page = pfn_to_page(pfn);
5090
5091 __init_single_page(page, pfn, zone, nid);
5092 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5093 } else {
5094 __init_single_pfn(pfn, zone, nid);
5095 }
5096 }
5097 }
5098
5099 static void __meminit zone_init_free_lists(struct zone *zone)
5100 {
5101 unsigned int order, t;
5102 for_each_migratetype_order(order, t) {
5103 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5104 zone->free_area[order].nr_free = 0;
5105 }
5106 }
5107
5108 #ifndef __HAVE_ARCH_MEMMAP_INIT
5109 #define memmap_init(size, nid, zone, start_pfn) \
5110 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5111 #endif
5112
5113 static int zone_batchsize(struct zone *zone)
5114 {
5115 #ifdef CONFIG_MMU
5116 int batch;
5117
5118 /*
5119 * The per-cpu-pages pools are set to around 1000th of the
5120 * size of the zone. But no more than 1/2 of a meg.
5121 *
5122 * OK, so we don't know how big the cache is. So guess.
5123 */
5124 batch = zone->managed_pages / 1024;
5125 if (batch * PAGE_SIZE > 512 * 1024)
5126 batch = (512 * 1024) / PAGE_SIZE;
5127 batch /= 4; /* We effectively *= 4 below */
5128 if (batch < 1)
5129 batch = 1;
5130
5131 /*
5132 * Clamp the batch to a 2^n - 1 value. Having a power
5133 * of 2 value was found to be more likely to have
5134 * suboptimal cache aliasing properties in some cases.
5135 *
5136 * For example if 2 tasks are alternately allocating
5137 * batches of pages, one task can end up with a lot
5138 * of pages of one half of the possible page colors
5139 * and the other with pages of the other colors.
5140 */
5141 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5142
5143 return batch;
5144
5145 #else
5146 /* The deferral and batching of frees should be suppressed under NOMMU
5147 * conditions.
5148 *
5149 * The problem is that NOMMU needs to be able to allocate large chunks
5150 * of contiguous memory as there's no hardware page translation to
5151 * assemble apparent contiguous memory from discontiguous pages.
5152 *
5153 * Queueing large contiguous runs of pages for batching, however,
5154 * causes the pages to actually be freed in smaller chunks. As there
5155 * can be a significant delay between the individual batches being
5156 * recycled, this leads to the once large chunks of space being
5157 * fragmented and becoming unavailable for high-order allocations.
5158 */
5159 return 0;
5160 #endif
5161 }
5162
5163 /*
5164 * pcp->high and pcp->batch values are related and dependent on one another:
5165 * ->batch must never be higher then ->high.
5166 * The following function updates them in a safe manner without read side
5167 * locking.
5168 *
5169 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5170 * those fields changing asynchronously (acording the the above rule).
5171 *
5172 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5173 * outside of boot time (or some other assurance that no concurrent updaters
5174 * exist).
5175 */
5176 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5177 unsigned long batch)
5178 {
5179 /* start with a fail safe value for batch */
5180 pcp->batch = 1;
5181 smp_wmb();
5182
5183 /* Update high, then batch, in order */
5184 pcp->high = high;
5185 smp_wmb();
5186
5187 pcp->batch = batch;
5188 }
5189
5190 /* a companion to pageset_set_high() */
5191 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5192 {
5193 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5194 }
5195
5196 static void pageset_init(struct per_cpu_pageset *p)
5197 {
5198 struct per_cpu_pages *pcp;
5199 int migratetype;
5200
5201 memset(p, 0, sizeof(*p));
5202
5203 pcp = &p->pcp;
5204 pcp->count = 0;
5205 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5206 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5207 }
5208
5209 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5210 {
5211 pageset_init(p);
5212 pageset_set_batch(p, batch);
5213 }
5214
5215 /*
5216 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5217 * to the value high for the pageset p.
5218 */
5219 static void pageset_set_high(struct per_cpu_pageset *p,
5220 unsigned long high)
5221 {
5222 unsigned long batch = max(1UL, high / 4);
5223 if ((high / 4) > (PAGE_SHIFT * 8))
5224 batch = PAGE_SHIFT * 8;
5225
5226 pageset_update(&p->pcp, high, batch);
5227 }
5228
5229 static void pageset_set_high_and_batch(struct zone *zone,
5230 struct per_cpu_pageset *pcp)
5231 {
5232 if (percpu_pagelist_fraction)
5233 pageset_set_high(pcp,
5234 (zone->managed_pages /
5235 percpu_pagelist_fraction));
5236 else
5237 pageset_set_batch(pcp, zone_batchsize(zone));
5238 }
5239
5240 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5241 {
5242 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5243
5244 pageset_init(pcp);
5245 pageset_set_high_and_batch(zone, pcp);
5246 }
5247
5248 static void __meminit setup_zone_pageset(struct zone *zone)
5249 {
5250 int cpu;
5251 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5252 for_each_possible_cpu(cpu)
5253 zone_pageset_init(zone, cpu);
5254 }
5255
5256 /*
5257 * Allocate per cpu pagesets and initialize them.
5258 * Before this call only boot pagesets were available.
5259 */
5260 void __init setup_per_cpu_pageset(void)
5261 {
5262 struct zone *zone;
5263
5264 for_each_populated_zone(zone)
5265 setup_zone_pageset(zone);
5266 }
5267
5268 static noinline __init_refok
5269 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5270 {
5271 int i;
5272 size_t alloc_size;
5273
5274 /*
5275 * The per-page waitqueue mechanism uses hashed waitqueues
5276 * per zone.
5277 */
5278 zone->wait_table_hash_nr_entries =
5279 wait_table_hash_nr_entries(zone_size_pages);
5280 zone->wait_table_bits =
5281 wait_table_bits(zone->wait_table_hash_nr_entries);
5282 alloc_size = zone->wait_table_hash_nr_entries
5283 * sizeof(wait_queue_head_t);
5284
5285 if (!slab_is_available()) {
5286 zone->wait_table = (wait_queue_head_t *)
5287 memblock_virt_alloc_node_nopanic(
5288 alloc_size, zone->zone_pgdat->node_id);
5289 } else {
5290 /*
5291 * This case means that a zone whose size was 0 gets new memory
5292 * via memory hot-add.
5293 * But it may be the case that a new node was hot-added. In
5294 * this case vmalloc() will not be able to use this new node's
5295 * memory - this wait_table must be initialized to use this new
5296 * node itself as well.
5297 * To use this new node's memory, further consideration will be
5298 * necessary.
5299 */
5300 zone->wait_table = vmalloc(alloc_size);
5301 }
5302 if (!zone->wait_table)
5303 return -ENOMEM;
5304
5305 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5306 init_waitqueue_head(zone->wait_table + i);
5307
5308 return 0;
5309 }
5310
5311 static __meminit void zone_pcp_init(struct zone *zone)
5312 {
5313 /*
5314 * per cpu subsystem is not up at this point. The following code
5315 * relies on the ability of the linker to provide the
5316 * offset of a (static) per cpu variable into the per cpu area.
5317 */
5318 zone->pageset = &boot_pageset;
5319
5320 if (populated_zone(zone))
5321 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5322 zone->name, zone->present_pages,
5323 zone_batchsize(zone));
5324 }
5325
5326 int __meminit init_currently_empty_zone(struct zone *zone,
5327 unsigned long zone_start_pfn,
5328 unsigned long size)
5329 {
5330 struct pglist_data *pgdat = zone->zone_pgdat;
5331 int ret;
5332 ret = zone_wait_table_init(zone, size);
5333 if (ret)
5334 return ret;
5335 pgdat->nr_zones = zone_idx(zone) + 1;
5336
5337 zone->zone_start_pfn = zone_start_pfn;
5338
5339 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5340 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5341 pgdat->node_id,
5342 (unsigned long)zone_idx(zone),
5343 zone_start_pfn, (zone_start_pfn + size));
5344
5345 zone_init_free_lists(zone);
5346
5347 return 0;
5348 }
5349
5350 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5351 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5352
5353 /*
5354 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5355 */
5356 int __meminit __early_pfn_to_nid(unsigned long pfn,
5357 struct mminit_pfnnid_cache *state)
5358 {
5359 unsigned long start_pfn, end_pfn;
5360 int nid;
5361
5362 if (state->last_start <= pfn && pfn < state->last_end)
5363 return state->last_nid;
5364
5365 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5366 if (nid != -1) {
5367 state->last_start = start_pfn;
5368 state->last_end = end_pfn;
5369 state->last_nid = nid;
5370 }
5371
5372 return nid;
5373 }
5374 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5375
5376 /**
5377 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5378 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5379 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5380 *
5381 * If an architecture guarantees that all ranges registered contain no holes
5382 * and may be freed, this this function may be used instead of calling
5383 * memblock_free_early_nid() manually.
5384 */
5385 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5386 {
5387 unsigned long start_pfn, end_pfn;
5388 int i, this_nid;
5389
5390 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5391 start_pfn = min(start_pfn, max_low_pfn);
5392 end_pfn = min(end_pfn, max_low_pfn);
5393
5394 if (start_pfn < end_pfn)
5395 memblock_free_early_nid(PFN_PHYS(start_pfn),
5396 (end_pfn - start_pfn) << PAGE_SHIFT,
5397 this_nid);
5398 }
5399 }
5400
5401 /**
5402 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5403 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5404 *
5405 * If an architecture guarantees that all ranges registered contain no holes and may
5406 * be freed, this function may be used instead of calling memory_present() manually.
5407 */
5408 void __init sparse_memory_present_with_active_regions(int nid)
5409 {
5410 unsigned long start_pfn, end_pfn;
5411 int i, this_nid;
5412
5413 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5414 memory_present(this_nid, start_pfn, end_pfn);
5415 }
5416
5417 /**
5418 * get_pfn_range_for_nid - Return the start and end page frames for a node
5419 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5420 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5421 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5422 *
5423 * It returns the start and end page frame of a node based on information
5424 * provided by memblock_set_node(). If called for a node
5425 * with no available memory, a warning is printed and the start and end
5426 * PFNs will be 0.
5427 */
5428 void __meminit get_pfn_range_for_nid(unsigned int nid,
5429 unsigned long *start_pfn, unsigned long *end_pfn)
5430 {
5431 unsigned long this_start_pfn, this_end_pfn;
5432 int i;
5433
5434 *start_pfn = -1UL;
5435 *end_pfn = 0;
5436
5437 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5438 *start_pfn = min(*start_pfn, this_start_pfn);
5439 *end_pfn = max(*end_pfn, this_end_pfn);
5440 }
5441
5442 if (*start_pfn == -1UL)
5443 *start_pfn = 0;
5444 }
5445
5446 /*
5447 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5448 * assumption is made that zones within a node are ordered in monotonic
5449 * increasing memory addresses so that the "highest" populated zone is used
5450 */
5451 static void __init find_usable_zone_for_movable(void)
5452 {
5453 int zone_index;
5454 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5455 if (zone_index == ZONE_MOVABLE)
5456 continue;
5457
5458 if (arch_zone_highest_possible_pfn[zone_index] >
5459 arch_zone_lowest_possible_pfn[zone_index])
5460 break;
5461 }
5462
5463 VM_BUG_ON(zone_index == -1);
5464 movable_zone = zone_index;
5465 }
5466
5467 /*
5468 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5469 * because it is sized independent of architecture. Unlike the other zones,
5470 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5471 * in each node depending on the size of each node and how evenly kernelcore
5472 * is distributed. This helper function adjusts the zone ranges
5473 * provided by the architecture for a given node by using the end of the
5474 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5475 * zones within a node are in order of monotonic increases memory addresses
5476 */
5477 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5478 unsigned long zone_type,
5479 unsigned long node_start_pfn,
5480 unsigned long node_end_pfn,
5481 unsigned long *zone_start_pfn,
5482 unsigned long *zone_end_pfn)
5483 {
5484 /* Only adjust if ZONE_MOVABLE is on this node */
5485 if (zone_movable_pfn[nid]) {
5486 /* Size ZONE_MOVABLE */
5487 if (zone_type == ZONE_MOVABLE) {
5488 *zone_start_pfn = zone_movable_pfn[nid];
5489 *zone_end_pfn = min(node_end_pfn,
5490 arch_zone_highest_possible_pfn[movable_zone]);
5491
5492 /* Check if this whole range is within ZONE_MOVABLE */
5493 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5494 *zone_start_pfn = *zone_end_pfn;
5495 }
5496 }
5497
5498 /*
5499 * Return the number of pages a zone spans in a node, including holes
5500 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5501 */
5502 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5503 unsigned long zone_type,
5504 unsigned long node_start_pfn,
5505 unsigned long node_end_pfn,
5506 unsigned long *zone_start_pfn,
5507 unsigned long *zone_end_pfn,
5508 unsigned long *ignored)
5509 {
5510 /* When hotadd a new node from cpu_up(), the node should be empty */
5511 if (!node_start_pfn && !node_end_pfn)
5512 return 0;
5513
5514 /* Get the start and end of the zone */
5515 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5516 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5517 adjust_zone_range_for_zone_movable(nid, zone_type,
5518 node_start_pfn, node_end_pfn,
5519 zone_start_pfn, zone_end_pfn);
5520
5521 /* Check that this node has pages within the zone's required range */
5522 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5523 return 0;
5524
5525 /* Move the zone boundaries inside the node if necessary */
5526 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5527 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5528
5529 /* Return the spanned pages */
5530 return *zone_end_pfn - *zone_start_pfn;
5531 }
5532
5533 /*
5534 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5535 * then all holes in the requested range will be accounted for.
5536 */
5537 unsigned long __meminit __absent_pages_in_range(int nid,
5538 unsigned long range_start_pfn,
5539 unsigned long range_end_pfn)
5540 {
5541 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5542 unsigned long start_pfn, end_pfn;
5543 int i;
5544
5545 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5546 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5547 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5548 nr_absent -= end_pfn - start_pfn;
5549 }
5550 return nr_absent;
5551 }
5552
5553 /**
5554 * absent_pages_in_range - Return number of page frames in holes within a range
5555 * @start_pfn: The start PFN to start searching for holes
5556 * @end_pfn: The end PFN to stop searching for holes
5557 *
5558 * It returns the number of pages frames in memory holes within a range.
5559 */
5560 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5561 unsigned long end_pfn)
5562 {
5563 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5564 }
5565
5566 /* Return the number of page frames in holes in a zone on a node */
5567 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5568 unsigned long zone_type,
5569 unsigned long node_start_pfn,
5570 unsigned long node_end_pfn,
5571 unsigned long *ignored)
5572 {
5573 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5574 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5575 unsigned long zone_start_pfn, zone_end_pfn;
5576 unsigned long nr_absent;
5577
5578 /* When hotadd a new node from cpu_up(), the node should be empty */
5579 if (!node_start_pfn && !node_end_pfn)
5580 return 0;
5581
5582 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5583 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5584
5585 adjust_zone_range_for_zone_movable(nid, zone_type,
5586 node_start_pfn, node_end_pfn,
5587 &zone_start_pfn, &zone_end_pfn);
5588 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5589
5590 /*
5591 * ZONE_MOVABLE handling.
5592 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5593 * and vice versa.
5594 */
5595 if (zone_movable_pfn[nid]) {
5596 if (mirrored_kernelcore) {
5597 unsigned long start_pfn, end_pfn;
5598 struct memblock_region *r;
5599
5600 for_each_memblock(memory, r) {
5601 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5602 zone_start_pfn, zone_end_pfn);
5603 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5604 zone_start_pfn, zone_end_pfn);
5605
5606 if (zone_type == ZONE_MOVABLE &&
5607 memblock_is_mirror(r))
5608 nr_absent += end_pfn - start_pfn;
5609
5610 if (zone_type == ZONE_NORMAL &&
5611 !memblock_is_mirror(r))
5612 nr_absent += end_pfn - start_pfn;
5613 }
5614 } else {
5615 if (zone_type == ZONE_NORMAL)
5616 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5617 }
5618 }
5619
5620 return nr_absent;
5621 }
5622
5623 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5624 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5625 unsigned long zone_type,
5626 unsigned long node_start_pfn,
5627 unsigned long node_end_pfn,
5628 unsigned long *zone_start_pfn,
5629 unsigned long *zone_end_pfn,
5630 unsigned long *zones_size)
5631 {
5632 unsigned int zone;
5633
5634 *zone_start_pfn = node_start_pfn;
5635 for (zone = 0; zone < zone_type; zone++)
5636 *zone_start_pfn += zones_size[zone];
5637
5638 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5639
5640 return zones_size[zone_type];
5641 }
5642
5643 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5644 unsigned long zone_type,
5645 unsigned long node_start_pfn,
5646 unsigned long node_end_pfn,
5647 unsigned long *zholes_size)
5648 {
5649 if (!zholes_size)
5650 return 0;
5651
5652 return zholes_size[zone_type];
5653 }
5654
5655 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5656
5657 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5658 unsigned long node_start_pfn,
5659 unsigned long node_end_pfn,
5660 unsigned long *zones_size,
5661 unsigned long *zholes_size)
5662 {
5663 unsigned long realtotalpages = 0, totalpages = 0;
5664 enum zone_type i;
5665
5666 for (i = 0; i < MAX_NR_ZONES; i++) {
5667 struct zone *zone = pgdat->node_zones + i;
5668 unsigned long zone_start_pfn, zone_end_pfn;
5669 unsigned long size, real_size;
5670
5671 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5672 node_start_pfn,
5673 node_end_pfn,
5674 &zone_start_pfn,
5675 &zone_end_pfn,
5676 zones_size);
5677 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5678 node_start_pfn, node_end_pfn,
5679 zholes_size);
5680 if (size)
5681 zone->zone_start_pfn = zone_start_pfn;
5682 else
5683 zone->zone_start_pfn = 0;
5684 zone->spanned_pages = size;
5685 zone->present_pages = real_size;
5686
5687 totalpages += size;
5688 realtotalpages += real_size;
5689 }
5690
5691 pgdat->node_spanned_pages = totalpages;
5692 pgdat->node_present_pages = realtotalpages;
5693 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5694 realtotalpages);
5695 }
5696
5697 #ifndef CONFIG_SPARSEMEM
5698 /*
5699 * Calculate the size of the zone->blockflags rounded to an unsigned long
5700 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5701 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5702 * round what is now in bits to nearest long in bits, then return it in
5703 * bytes.
5704 */
5705 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5706 {
5707 unsigned long usemapsize;
5708
5709 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5710 usemapsize = roundup(zonesize, pageblock_nr_pages);
5711 usemapsize = usemapsize >> pageblock_order;
5712 usemapsize *= NR_PAGEBLOCK_BITS;
5713 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5714
5715 return usemapsize / 8;
5716 }
5717
5718 static void __init setup_usemap(struct pglist_data *pgdat,
5719 struct zone *zone,
5720 unsigned long zone_start_pfn,
5721 unsigned long zonesize)
5722 {
5723 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5724 zone->pageblock_flags = NULL;
5725 if (usemapsize)
5726 zone->pageblock_flags =
5727 memblock_virt_alloc_node_nopanic(usemapsize,
5728 pgdat->node_id);
5729 }
5730 #else
5731 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5732 unsigned long zone_start_pfn, unsigned long zonesize) {}
5733 #endif /* CONFIG_SPARSEMEM */
5734
5735 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5736
5737 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5738 void __paginginit set_pageblock_order(void)
5739 {
5740 unsigned int order;
5741
5742 /* Check that pageblock_nr_pages has not already been setup */
5743 if (pageblock_order)
5744 return;
5745
5746 if (HPAGE_SHIFT > PAGE_SHIFT)
5747 order = HUGETLB_PAGE_ORDER;
5748 else
5749 order = MAX_ORDER - 1;
5750
5751 /*
5752 * Assume the largest contiguous order of interest is a huge page.
5753 * This value may be variable depending on boot parameters on IA64 and
5754 * powerpc.
5755 */
5756 pageblock_order = order;
5757 }
5758 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5759
5760 /*
5761 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5762 * is unused as pageblock_order is set at compile-time. See
5763 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5764 * the kernel config
5765 */
5766 void __paginginit set_pageblock_order(void)
5767 {
5768 }
5769
5770 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5771
5772 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5773 unsigned long present_pages)
5774 {
5775 unsigned long pages = spanned_pages;
5776
5777 /*
5778 * Provide a more accurate estimation if there are holes within
5779 * the zone and SPARSEMEM is in use. If there are holes within the
5780 * zone, each populated memory region may cost us one or two extra
5781 * memmap pages due to alignment because memmap pages for each
5782 * populated regions may not naturally algined on page boundary.
5783 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5784 */
5785 if (spanned_pages > present_pages + (present_pages >> 4) &&
5786 IS_ENABLED(CONFIG_SPARSEMEM))
5787 pages = present_pages;
5788
5789 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5790 }
5791
5792 /*
5793 * Set up the zone data structures:
5794 * - mark all pages reserved
5795 * - mark all memory queues empty
5796 * - clear the memory bitmaps
5797 *
5798 * NOTE: pgdat should get zeroed by caller.
5799 */
5800 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5801 {
5802 enum zone_type j;
5803 int nid = pgdat->node_id;
5804 int ret;
5805
5806 pgdat_resize_init(pgdat);
5807 #ifdef CONFIG_NUMA_BALANCING
5808 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5809 pgdat->numabalancing_migrate_nr_pages = 0;
5810 pgdat->numabalancing_migrate_next_window = jiffies;
5811 #endif
5812 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5813 spin_lock_init(&pgdat->split_queue_lock);
5814 INIT_LIST_HEAD(&pgdat->split_queue);
5815 pgdat->split_queue_len = 0;
5816 #endif
5817 init_waitqueue_head(&pgdat->kswapd_wait);
5818 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5819 #ifdef CONFIG_COMPACTION
5820 init_waitqueue_head(&pgdat->kcompactd_wait);
5821 #endif
5822 pgdat_page_ext_init(pgdat);
5823
5824 for (j = 0; j < MAX_NR_ZONES; j++) {
5825 struct zone *zone = pgdat->node_zones + j;
5826 unsigned long size, realsize, freesize, memmap_pages;
5827 unsigned long zone_start_pfn = zone->zone_start_pfn;
5828
5829 size = zone->spanned_pages;
5830 realsize = freesize = zone->present_pages;
5831
5832 /*
5833 * Adjust freesize so that it accounts for how much memory
5834 * is used by this zone for memmap. This affects the watermark
5835 * and per-cpu initialisations
5836 */
5837 memmap_pages = calc_memmap_size(size, realsize);
5838 if (!is_highmem_idx(j)) {
5839 if (freesize >= memmap_pages) {
5840 freesize -= memmap_pages;
5841 if (memmap_pages)
5842 printk(KERN_DEBUG
5843 " %s zone: %lu pages used for memmap\n",
5844 zone_names[j], memmap_pages);
5845 } else
5846 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5847 zone_names[j], memmap_pages, freesize);
5848 }
5849
5850 /* Account for reserved pages */
5851 if (j == 0 && freesize > dma_reserve) {
5852 freesize -= dma_reserve;
5853 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5854 zone_names[0], dma_reserve);
5855 }
5856
5857 if (!is_highmem_idx(j))
5858 nr_kernel_pages += freesize;
5859 /* Charge for highmem memmap if there are enough kernel pages */
5860 else if (nr_kernel_pages > memmap_pages * 2)
5861 nr_kernel_pages -= memmap_pages;
5862 nr_all_pages += freesize;
5863
5864 /*
5865 * Set an approximate value for lowmem here, it will be adjusted
5866 * when the bootmem allocator frees pages into the buddy system.
5867 * And all highmem pages will be managed by the buddy system.
5868 */
5869 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5870 #ifdef CONFIG_NUMA
5871 zone->node = nid;
5872 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5873 / 100;
5874 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5875 #endif
5876 zone->name = zone_names[j];
5877 spin_lock_init(&zone->lock);
5878 spin_lock_init(&zone->lru_lock);
5879 zone_seqlock_init(zone);
5880 zone->zone_pgdat = pgdat;
5881 zone_pcp_init(zone);
5882
5883 /* For bootup, initialized properly in watermark setup */
5884 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5885
5886 lruvec_init(&zone->lruvec);
5887 if (!size)
5888 continue;
5889
5890 set_pageblock_order();
5891 setup_usemap(pgdat, zone, zone_start_pfn, size);
5892 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5893 BUG_ON(ret);
5894 memmap_init(size, nid, j, zone_start_pfn);
5895 }
5896 }
5897
5898 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5899 {
5900 unsigned long __maybe_unused start = 0;
5901 unsigned long __maybe_unused offset = 0;
5902
5903 /* Skip empty nodes */
5904 if (!pgdat->node_spanned_pages)
5905 return;
5906
5907 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5908 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5909 offset = pgdat->node_start_pfn - start;
5910 /* ia64 gets its own node_mem_map, before this, without bootmem */
5911 if (!pgdat->node_mem_map) {
5912 unsigned long size, end;
5913 struct page *map;
5914
5915 /*
5916 * The zone's endpoints aren't required to be MAX_ORDER
5917 * aligned but the node_mem_map endpoints must be in order
5918 * for the buddy allocator to function correctly.
5919 */
5920 end = pgdat_end_pfn(pgdat);
5921 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5922 size = (end - start) * sizeof(struct page);
5923 map = alloc_remap(pgdat->node_id, size);
5924 if (!map)
5925 map = memblock_virt_alloc_node_nopanic(size,
5926 pgdat->node_id);
5927 pgdat->node_mem_map = map + offset;
5928 }
5929 #ifndef CONFIG_NEED_MULTIPLE_NODES
5930 /*
5931 * With no DISCONTIG, the global mem_map is just set as node 0's
5932 */
5933 if (pgdat == NODE_DATA(0)) {
5934 mem_map = NODE_DATA(0)->node_mem_map;
5935 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5936 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5937 mem_map -= offset;
5938 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5939 }
5940 #endif
5941 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5942 }
5943
5944 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5945 unsigned long node_start_pfn, unsigned long *zholes_size)
5946 {
5947 pg_data_t *pgdat = NODE_DATA(nid);
5948 unsigned long start_pfn = 0;
5949 unsigned long end_pfn = 0;
5950
5951 /* pg_data_t should be reset to zero when it's allocated */
5952 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5953
5954 reset_deferred_meminit(pgdat);
5955 pgdat->node_id = nid;
5956 pgdat->node_start_pfn = node_start_pfn;
5957 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5958 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5959 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5960 (u64)start_pfn << PAGE_SHIFT,
5961 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5962 #else
5963 start_pfn = node_start_pfn;
5964 #endif
5965 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5966 zones_size, zholes_size);
5967
5968 alloc_node_mem_map(pgdat);
5969 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5970 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5971 nid, (unsigned long)pgdat,
5972 (unsigned long)pgdat->node_mem_map);
5973 #endif
5974
5975 free_area_init_core(pgdat);
5976 }
5977
5978 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5979
5980 #if MAX_NUMNODES > 1
5981 /*
5982 * Figure out the number of possible node ids.
5983 */
5984 void __init setup_nr_node_ids(void)
5985 {
5986 unsigned int highest;
5987
5988 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5989 nr_node_ids = highest + 1;
5990 }
5991 #endif
5992
5993 /**
5994 * node_map_pfn_alignment - determine the maximum internode alignment
5995 *
5996 * This function should be called after node map is populated and sorted.
5997 * It calculates the maximum power of two alignment which can distinguish
5998 * all the nodes.
5999 *
6000 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6001 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6002 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6003 * shifted, 1GiB is enough and this function will indicate so.
6004 *
6005 * This is used to test whether pfn -> nid mapping of the chosen memory
6006 * model has fine enough granularity to avoid incorrect mapping for the
6007 * populated node map.
6008 *
6009 * Returns the determined alignment in pfn's. 0 if there is no alignment
6010 * requirement (single node).
6011 */
6012 unsigned long __init node_map_pfn_alignment(void)
6013 {
6014 unsigned long accl_mask = 0, last_end = 0;
6015 unsigned long start, end, mask;
6016 int last_nid = -1;
6017 int i, nid;
6018
6019 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6020 if (!start || last_nid < 0 || last_nid == nid) {
6021 last_nid = nid;
6022 last_end = end;
6023 continue;
6024 }
6025
6026 /*
6027 * Start with a mask granular enough to pin-point to the
6028 * start pfn and tick off bits one-by-one until it becomes
6029 * too coarse to separate the current node from the last.
6030 */
6031 mask = ~((1 << __ffs(start)) - 1);
6032 while (mask && last_end <= (start & (mask << 1)))
6033 mask <<= 1;
6034
6035 /* accumulate all internode masks */
6036 accl_mask |= mask;
6037 }
6038
6039 /* convert mask to number of pages */
6040 return ~accl_mask + 1;
6041 }
6042
6043 /* Find the lowest pfn for a node */
6044 static unsigned long __init find_min_pfn_for_node(int nid)
6045 {
6046 unsigned long min_pfn = ULONG_MAX;
6047 unsigned long start_pfn;
6048 int i;
6049
6050 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6051 min_pfn = min(min_pfn, start_pfn);
6052
6053 if (min_pfn == ULONG_MAX) {
6054 pr_warn("Could not find start_pfn for node %d\n", nid);
6055 return 0;
6056 }
6057
6058 return min_pfn;
6059 }
6060
6061 /**
6062 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6063 *
6064 * It returns the minimum PFN based on information provided via
6065 * memblock_set_node().
6066 */
6067 unsigned long __init find_min_pfn_with_active_regions(void)
6068 {
6069 return find_min_pfn_for_node(MAX_NUMNODES);
6070 }
6071
6072 /*
6073 * early_calculate_totalpages()
6074 * Sum pages in active regions for movable zone.
6075 * Populate N_MEMORY for calculating usable_nodes.
6076 */
6077 static unsigned long __init early_calculate_totalpages(void)
6078 {
6079 unsigned long totalpages = 0;
6080 unsigned long start_pfn, end_pfn;
6081 int i, nid;
6082
6083 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6084 unsigned long pages = end_pfn - start_pfn;
6085
6086 totalpages += pages;
6087 if (pages)
6088 node_set_state(nid, N_MEMORY);
6089 }
6090 return totalpages;
6091 }
6092
6093 /*
6094 * Find the PFN the Movable zone begins in each node. Kernel memory
6095 * is spread evenly between nodes as long as the nodes have enough
6096 * memory. When they don't, some nodes will have more kernelcore than
6097 * others
6098 */
6099 static void __init find_zone_movable_pfns_for_nodes(void)
6100 {
6101 int i, nid;
6102 unsigned long usable_startpfn;
6103 unsigned long kernelcore_node, kernelcore_remaining;
6104 /* save the state before borrow the nodemask */
6105 nodemask_t saved_node_state = node_states[N_MEMORY];
6106 unsigned long totalpages = early_calculate_totalpages();
6107 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6108 struct memblock_region *r;
6109
6110 /* Need to find movable_zone earlier when movable_node is specified. */
6111 find_usable_zone_for_movable();
6112
6113 /*
6114 * If movable_node is specified, ignore kernelcore and movablecore
6115 * options.
6116 */
6117 if (movable_node_is_enabled()) {
6118 for_each_memblock(memory, r) {
6119 if (!memblock_is_hotpluggable(r))
6120 continue;
6121
6122 nid = r->nid;
6123
6124 usable_startpfn = PFN_DOWN(r->base);
6125 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6126 min(usable_startpfn, zone_movable_pfn[nid]) :
6127 usable_startpfn;
6128 }
6129
6130 goto out2;
6131 }
6132
6133 /*
6134 * If kernelcore=mirror is specified, ignore movablecore option
6135 */
6136 if (mirrored_kernelcore) {
6137 bool mem_below_4gb_not_mirrored = false;
6138
6139 for_each_memblock(memory, r) {
6140 if (memblock_is_mirror(r))
6141 continue;
6142
6143 nid = r->nid;
6144
6145 usable_startpfn = memblock_region_memory_base_pfn(r);
6146
6147 if (usable_startpfn < 0x100000) {
6148 mem_below_4gb_not_mirrored = true;
6149 continue;
6150 }
6151
6152 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6153 min(usable_startpfn, zone_movable_pfn[nid]) :
6154 usable_startpfn;
6155 }
6156
6157 if (mem_below_4gb_not_mirrored)
6158 pr_warn("This configuration results in unmirrored kernel memory.");
6159
6160 goto out2;
6161 }
6162
6163 /*
6164 * If movablecore=nn[KMG] was specified, calculate what size of
6165 * kernelcore that corresponds so that memory usable for
6166 * any allocation type is evenly spread. If both kernelcore
6167 * and movablecore are specified, then the value of kernelcore
6168 * will be used for required_kernelcore if it's greater than
6169 * what movablecore would have allowed.
6170 */
6171 if (required_movablecore) {
6172 unsigned long corepages;
6173
6174 /*
6175 * Round-up so that ZONE_MOVABLE is at least as large as what
6176 * was requested by the user
6177 */
6178 required_movablecore =
6179 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6180 required_movablecore = min(totalpages, required_movablecore);
6181 corepages = totalpages - required_movablecore;
6182
6183 required_kernelcore = max(required_kernelcore, corepages);
6184 }
6185
6186 /*
6187 * If kernelcore was not specified or kernelcore size is larger
6188 * than totalpages, there is no ZONE_MOVABLE.
6189 */
6190 if (!required_kernelcore || required_kernelcore >= totalpages)
6191 goto out;
6192
6193 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6194 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6195
6196 restart:
6197 /* Spread kernelcore memory as evenly as possible throughout nodes */
6198 kernelcore_node = required_kernelcore / usable_nodes;
6199 for_each_node_state(nid, N_MEMORY) {
6200 unsigned long start_pfn, end_pfn;
6201
6202 /*
6203 * Recalculate kernelcore_node if the division per node
6204 * now exceeds what is necessary to satisfy the requested
6205 * amount of memory for the kernel
6206 */
6207 if (required_kernelcore < kernelcore_node)
6208 kernelcore_node = required_kernelcore / usable_nodes;
6209
6210 /*
6211 * As the map is walked, we track how much memory is usable
6212 * by the kernel using kernelcore_remaining. When it is
6213 * 0, the rest of the node is usable by ZONE_MOVABLE
6214 */
6215 kernelcore_remaining = kernelcore_node;
6216
6217 /* Go through each range of PFNs within this node */
6218 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6219 unsigned long size_pages;
6220
6221 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6222 if (start_pfn >= end_pfn)
6223 continue;
6224
6225 /* Account for what is only usable for kernelcore */
6226 if (start_pfn < usable_startpfn) {
6227 unsigned long kernel_pages;
6228 kernel_pages = min(end_pfn, usable_startpfn)
6229 - start_pfn;
6230
6231 kernelcore_remaining -= min(kernel_pages,
6232 kernelcore_remaining);
6233 required_kernelcore -= min(kernel_pages,
6234 required_kernelcore);
6235
6236 /* Continue if range is now fully accounted */
6237 if (end_pfn <= usable_startpfn) {
6238
6239 /*
6240 * Push zone_movable_pfn to the end so
6241 * that if we have to rebalance
6242 * kernelcore across nodes, we will
6243 * not double account here
6244 */
6245 zone_movable_pfn[nid] = end_pfn;
6246 continue;
6247 }
6248 start_pfn = usable_startpfn;
6249 }
6250
6251 /*
6252 * The usable PFN range for ZONE_MOVABLE is from
6253 * start_pfn->end_pfn. Calculate size_pages as the
6254 * number of pages used as kernelcore
6255 */
6256 size_pages = end_pfn - start_pfn;
6257 if (size_pages > kernelcore_remaining)
6258 size_pages = kernelcore_remaining;
6259 zone_movable_pfn[nid] = start_pfn + size_pages;
6260
6261 /*
6262 * Some kernelcore has been met, update counts and
6263 * break if the kernelcore for this node has been
6264 * satisfied
6265 */
6266 required_kernelcore -= min(required_kernelcore,
6267 size_pages);
6268 kernelcore_remaining -= size_pages;
6269 if (!kernelcore_remaining)
6270 break;
6271 }
6272 }
6273
6274 /*
6275 * If there is still required_kernelcore, we do another pass with one
6276 * less node in the count. This will push zone_movable_pfn[nid] further
6277 * along on the nodes that still have memory until kernelcore is
6278 * satisfied
6279 */
6280 usable_nodes--;
6281 if (usable_nodes && required_kernelcore > usable_nodes)
6282 goto restart;
6283
6284 out2:
6285 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6286 for (nid = 0; nid < MAX_NUMNODES; nid++)
6287 zone_movable_pfn[nid] =
6288 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6289
6290 out:
6291 /* restore the node_state */
6292 node_states[N_MEMORY] = saved_node_state;
6293 }
6294
6295 /* Any regular or high memory on that node ? */
6296 static void check_for_memory(pg_data_t *pgdat, int nid)
6297 {
6298 enum zone_type zone_type;
6299
6300 if (N_MEMORY == N_NORMAL_MEMORY)
6301 return;
6302
6303 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6304 struct zone *zone = &pgdat->node_zones[zone_type];
6305 if (populated_zone(zone)) {
6306 node_set_state(nid, N_HIGH_MEMORY);
6307 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6308 zone_type <= ZONE_NORMAL)
6309 node_set_state(nid, N_NORMAL_MEMORY);
6310 break;
6311 }
6312 }
6313 }
6314
6315 /**
6316 * free_area_init_nodes - Initialise all pg_data_t and zone data
6317 * @max_zone_pfn: an array of max PFNs for each zone
6318 *
6319 * This will call free_area_init_node() for each active node in the system.
6320 * Using the page ranges provided by memblock_set_node(), the size of each
6321 * zone in each node and their holes is calculated. If the maximum PFN
6322 * between two adjacent zones match, it is assumed that the zone is empty.
6323 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6324 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6325 * starts where the previous one ended. For example, ZONE_DMA32 starts
6326 * at arch_max_dma_pfn.
6327 */
6328 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6329 {
6330 unsigned long start_pfn, end_pfn;
6331 int i, nid;
6332
6333 /* Record where the zone boundaries are */
6334 memset(arch_zone_lowest_possible_pfn, 0,
6335 sizeof(arch_zone_lowest_possible_pfn));
6336 memset(arch_zone_highest_possible_pfn, 0,
6337 sizeof(arch_zone_highest_possible_pfn));
6338 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6339 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6340 for (i = 1; i < MAX_NR_ZONES; i++) {
6341 if (i == ZONE_MOVABLE)
6342 continue;
6343 arch_zone_lowest_possible_pfn[i] =
6344 arch_zone_highest_possible_pfn[i-1];
6345 arch_zone_highest_possible_pfn[i] =
6346 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6347 }
6348 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6349 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6350
6351 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6352 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6353 find_zone_movable_pfns_for_nodes();
6354
6355 /* Print out the zone ranges */
6356 pr_info("Zone ranges:\n");
6357 for (i = 0; i < MAX_NR_ZONES; i++) {
6358 if (i == ZONE_MOVABLE)
6359 continue;
6360 pr_info(" %-8s ", zone_names[i]);
6361 if (arch_zone_lowest_possible_pfn[i] ==
6362 arch_zone_highest_possible_pfn[i])
6363 pr_cont("empty\n");
6364 else
6365 pr_cont("[mem %#018Lx-%#018Lx]\n",
6366 (u64)arch_zone_lowest_possible_pfn[i]
6367 << PAGE_SHIFT,
6368 ((u64)arch_zone_highest_possible_pfn[i]
6369 << PAGE_SHIFT) - 1);
6370 }
6371
6372 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6373 pr_info("Movable zone start for each node\n");
6374 for (i = 0; i < MAX_NUMNODES; i++) {
6375 if (zone_movable_pfn[i])
6376 pr_info(" Node %d: %#018Lx\n", i,
6377 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6378 }
6379
6380 /* Print out the early node map */
6381 pr_info("Early memory node ranges\n");
6382 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6383 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6384 (u64)start_pfn << PAGE_SHIFT,
6385 ((u64)end_pfn << PAGE_SHIFT) - 1);
6386
6387 /* Initialise every node */
6388 mminit_verify_pageflags_layout();
6389 setup_nr_node_ids();
6390 for_each_online_node(nid) {
6391 pg_data_t *pgdat = NODE_DATA(nid);
6392 free_area_init_node(nid, NULL,
6393 find_min_pfn_for_node(nid), NULL);
6394
6395 /* Any memory on that node */
6396 if (pgdat->node_present_pages)
6397 node_set_state(nid, N_MEMORY);
6398 check_for_memory(pgdat, nid);
6399 }
6400 }
6401
6402 static int __init cmdline_parse_core(char *p, unsigned long *core)
6403 {
6404 unsigned long long coremem;
6405 if (!p)
6406 return -EINVAL;
6407
6408 coremem = memparse(p, &p);
6409 *core = coremem >> PAGE_SHIFT;
6410
6411 /* Paranoid check that UL is enough for the coremem value */
6412 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6413
6414 return 0;
6415 }
6416
6417 /*
6418 * kernelcore=size sets the amount of memory for use for allocations that
6419 * cannot be reclaimed or migrated.
6420 */
6421 static int __init cmdline_parse_kernelcore(char *p)
6422 {
6423 /* parse kernelcore=mirror */
6424 if (parse_option_str(p, "mirror")) {
6425 mirrored_kernelcore = true;
6426 return 0;
6427 }
6428
6429 return cmdline_parse_core(p, &required_kernelcore);
6430 }
6431
6432 /*
6433 * movablecore=size sets the amount of memory for use for allocations that
6434 * can be reclaimed or migrated.
6435 */
6436 static int __init cmdline_parse_movablecore(char *p)
6437 {
6438 return cmdline_parse_core(p, &required_movablecore);
6439 }
6440
6441 early_param("kernelcore", cmdline_parse_kernelcore);
6442 early_param("movablecore", cmdline_parse_movablecore);
6443
6444 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6445
6446 void adjust_managed_page_count(struct page *page, long count)
6447 {
6448 spin_lock(&managed_page_count_lock);
6449 page_zone(page)->managed_pages += count;
6450 totalram_pages += count;
6451 #ifdef CONFIG_HIGHMEM
6452 if (PageHighMem(page))
6453 totalhigh_pages += count;
6454 #endif
6455 spin_unlock(&managed_page_count_lock);
6456 }
6457 EXPORT_SYMBOL(adjust_managed_page_count);
6458
6459 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6460 {
6461 void *pos;
6462 unsigned long pages = 0;
6463
6464 start = (void *)PAGE_ALIGN((unsigned long)start);
6465 end = (void *)((unsigned long)end & PAGE_MASK);
6466 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6467 if ((unsigned int)poison <= 0xFF)
6468 memset(pos, poison, PAGE_SIZE);
6469 free_reserved_page(virt_to_page(pos));
6470 }
6471
6472 if (pages && s)
6473 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6474 s, pages << (PAGE_SHIFT - 10), start, end);
6475
6476 return pages;
6477 }
6478 EXPORT_SYMBOL(free_reserved_area);
6479
6480 #ifdef CONFIG_HIGHMEM
6481 void free_highmem_page(struct page *page)
6482 {
6483 __free_reserved_page(page);
6484 totalram_pages++;
6485 page_zone(page)->managed_pages++;
6486 totalhigh_pages++;
6487 }
6488 #endif
6489
6490
6491 void __init mem_init_print_info(const char *str)
6492 {
6493 unsigned long physpages, codesize, datasize, rosize, bss_size;
6494 unsigned long init_code_size, init_data_size;
6495
6496 physpages = get_num_physpages();
6497 codesize = _etext - _stext;
6498 datasize = _edata - _sdata;
6499 rosize = __end_rodata - __start_rodata;
6500 bss_size = __bss_stop - __bss_start;
6501 init_data_size = __init_end - __init_begin;
6502 init_code_size = _einittext - _sinittext;
6503
6504 /*
6505 * Detect special cases and adjust section sizes accordingly:
6506 * 1) .init.* may be embedded into .data sections
6507 * 2) .init.text.* may be out of [__init_begin, __init_end],
6508 * please refer to arch/tile/kernel/vmlinux.lds.S.
6509 * 3) .rodata.* may be embedded into .text or .data sections.
6510 */
6511 #define adj_init_size(start, end, size, pos, adj) \
6512 do { \
6513 if (start <= pos && pos < end && size > adj) \
6514 size -= adj; \
6515 } while (0)
6516
6517 adj_init_size(__init_begin, __init_end, init_data_size,
6518 _sinittext, init_code_size);
6519 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6520 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6521 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6522 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6523
6524 #undef adj_init_size
6525
6526 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6527 #ifdef CONFIG_HIGHMEM
6528 ", %luK highmem"
6529 #endif
6530 "%s%s)\n",
6531 nr_free_pages() << (PAGE_SHIFT - 10),
6532 physpages << (PAGE_SHIFT - 10),
6533 codesize >> 10, datasize >> 10, rosize >> 10,
6534 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6535 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6536 totalcma_pages << (PAGE_SHIFT - 10),
6537 #ifdef CONFIG_HIGHMEM
6538 totalhigh_pages << (PAGE_SHIFT - 10),
6539 #endif
6540 str ? ", " : "", str ? str : "");
6541 }
6542
6543 /**
6544 * set_dma_reserve - set the specified number of pages reserved in the first zone
6545 * @new_dma_reserve: The number of pages to mark reserved
6546 *
6547 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6548 * In the DMA zone, a significant percentage may be consumed by kernel image
6549 * and other unfreeable allocations which can skew the watermarks badly. This
6550 * function may optionally be used to account for unfreeable pages in the
6551 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6552 * smaller per-cpu batchsize.
6553 */
6554 void __init set_dma_reserve(unsigned long new_dma_reserve)
6555 {
6556 dma_reserve = new_dma_reserve;
6557 }
6558
6559 void __init free_area_init(unsigned long *zones_size)
6560 {
6561 free_area_init_node(0, zones_size,
6562 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6563 }
6564
6565 static int page_alloc_cpu_notify(struct notifier_block *self,
6566 unsigned long action, void *hcpu)
6567 {
6568 int cpu = (unsigned long)hcpu;
6569
6570 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6571 lru_add_drain_cpu(cpu);
6572 drain_pages(cpu);
6573
6574 /*
6575 * Spill the event counters of the dead processor
6576 * into the current processors event counters.
6577 * This artificially elevates the count of the current
6578 * processor.
6579 */
6580 vm_events_fold_cpu(cpu);
6581
6582 /*
6583 * Zero the differential counters of the dead processor
6584 * so that the vm statistics are consistent.
6585 *
6586 * This is only okay since the processor is dead and cannot
6587 * race with what we are doing.
6588 */
6589 cpu_vm_stats_fold(cpu);
6590 }
6591 return NOTIFY_OK;
6592 }
6593
6594 void __init page_alloc_init(void)
6595 {
6596 hotcpu_notifier(page_alloc_cpu_notify, 0);
6597 }
6598
6599 /*
6600 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6601 * or min_free_kbytes changes.
6602 */
6603 static void calculate_totalreserve_pages(void)
6604 {
6605 struct pglist_data *pgdat;
6606 unsigned long reserve_pages = 0;
6607 enum zone_type i, j;
6608
6609 for_each_online_pgdat(pgdat) {
6610 for (i = 0; i < MAX_NR_ZONES; i++) {
6611 struct zone *zone = pgdat->node_zones + i;
6612 long max = 0;
6613
6614 /* Find valid and maximum lowmem_reserve in the zone */
6615 for (j = i; j < MAX_NR_ZONES; j++) {
6616 if (zone->lowmem_reserve[j] > max)
6617 max = zone->lowmem_reserve[j];
6618 }
6619
6620 /* we treat the high watermark as reserved pages. */
6621 max += high_wmark_pages(zone);
6622
6623 if (max > zone->managed_pages)
6624 max = zone->managed_pages;
6625
6626 zone->totalreserve_pages = max;
6627
6628 reserve_pages += max;
6629 }
6630 }
6631 totalreserve_pages = reserve_pages;
6632 }
6633
6634 /*
6635 * setup_per_zone_lowmem_reserve - called whenever
6636 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6637 * has a correct pages reserved value, so an adequate number of
6638 * pages are left in the zone after a successful __alloc_pages().
6639 */
6640 static void setup_per_zone_lowmem_reserve(void)
6641 {
6642 struct pglist_data *pgdat;
6643 enum zone_type j, idx;
6644
6645 for_each_online_pgdat(pgdat) {
6646 for (j = 0; j < MAX_NR_ZONES; j++) {
6647 struct zone *zone = pgdat->node_zones + j;
6648 unsigned long managed_pages = zone->managed_pages;
6649
6650 zone->lowmem_reserve[j] = 0;
6651
6652 idx = j;
6653 while (idx) {
6654 struct zone *lower_zone;
6655
6656 idx--;
6657
6658 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6659 sysctl_lowmem_reserve_ratio[idx] = 1;
6660
6661 lower_zone = pgdat->node_zones + idx;
6662 lower_zone->lowmem_reserve[j] = managed_pages /
6663 sysctl_lowmem_reserve_ratio[idx];
6664 managed_pages += lower_zone->managed_pages;
6665 }
6666 }
6667 }
6668
6669 /* update totalreserve_pages */
6670 calculate_totalreserve_pages();
6671 }
6672
6673 static void __setup_per_zone_wmarks(void)
6674 {
6675 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6676 unsigned long lowmem_pages = 0;
6677 struct zone *zone;
6678 unsigned long flags;
6679
6680 /* Calculate total number of !ZONE_HIGHMEM pages */
6681 for_each_zone(zone) {
6682 if (!is_highmem(zone))
6683 lowmem_pages += zone->managed_pages;
6684 }
6685
6686 for_each_zone(zone) {
6687 u64 tmp;
6688
6689 spin_lock_irqsave(&zone->lock, flags);
6690 tmp = (u64)pages_min * zone->managed_pages;
6691 do_div(tmp, lowmem_pages);
6692 if (is_highmem(zone)) {
6693 /*
6694 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6695 * need highmem pages, so cap pages_min to a small
6696 * value here.
6697 *
6698 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6699 * deltas control asynch page reclaim, and so should
6700 * not be capped for highmem.
6701 */
6702 unsigned long min_pages;
6703
6704 min_pages = zone->managed_pages / 1024;
6705 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6706 zone->watermark[WMARK_MIN] = min_pages;
6707 } else {
6708 /*
6709 * If it's a lowmem zone, reserve a number of pages
6710 * proportionate to the zone's size.
6711 */
6712 zone->watermark[WMARK_MIN] = tmp;
6713 }
6714
6715 /*
6716 * Set the kswapd watermarks distance according to the
6717 * scale factor in proportion to available memory, but
6718 * ensure a minimum size on small systems.
6719 */
6720 tmp = max_t(u64, tmp >> 2,
6721 mult_frac(zone->managed_pages,
6722 watermark_scale_factor, 10000));
6723
6724 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6725 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6726
6727 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6728 high_wmark_pages(zone) - low_wmark_pages(zone) -
6729 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6730
6731 spin_unlock_irqrestore(&zone->lock, flags);
6732 }
6733
6734 /* update totalreserve_pages */
6735 calculate_totalreserve_pages();
6736 }
6737
6738 /**
6739 * setup_per_zone_wmarks - called when min_free_kbytes changes
6740 * or when memory is hot-{added|removed}
6741 *
6742 * Ensures that the watermark[min,low,high] values for each zone are set
6743 * correctly with respect to min_free_kbytes.
6744 */
6745 void setup_per_zone_wmarks(void)
6746 {
6747 mutex_lock(&zonelists_mutex);
6748 __setup_per_zone_wmarks();
6749 mutex_unlock(&zonelists_mutex);
6750 }
6751
6752 /*
6753 * Initialise min_free_kbytes.
6754 *
6755 * For small machines we want it small (128k min). For large machines
6756 * we want it large (64MB max). But it is not linear, because network
6757 * bandwidth does not increase linearly with machine size. We use
6758 *
6759 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6760 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6761 *
6762 * which yields
6763 *
6764 * 16MB: 512k
6765 * 32MB: 724k
6766 * 64MB: 1024k
6767 * 128MB: 1448k
6768 * 256MB: 2048k
6769 * 512MB: 2896k
6770 * 1024MB: 4096k
6771 * 2048MB: 5792k
6772 * 4096MB: 8192k
6773 * 8192MB: 11584k
6774 * 16384MB: 16384k
6775 */
6776 int __meminit init_per_zone_wmark_min(void)
6777 {
6778 unsigned long lowmem_kbytes;
6779 int new_min_free_kbytes;
6780
6781 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6782 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6783
6784 if (new_min_free_kbytes > user_min_free_kbytes) {
6785 min_free_kbytes = new_min_free_kbytes;
6786 if (min_free_kbytes < 128)
6787 min_free_kbytes = 128;
6788 if (min_free_kbytes > 65536)
6789 min_free_kbytes = 65536;
6790 } else {
6791 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6792 new_min_free_kbytes, user_min_free_kbytes);
6793 }
6794 setup_per_zone_wmarks();
6795 refresh_zone_stat_thresholds();
6796 setup_per_zone_lowmem_reserve();
6797 return 0;
6798 }
6799 core_initcall(init_per_zone_wmark_min)
6800
6801 /*
6802 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6803 * that we can call two helper functions whenever min_free_kbytes
6804 * changes.
6805 */
6806 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6807 void __user *buffer, size_t *length, loff_t *ppos)
6808 {
6809 int rc;
6810
6811 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6812 if (rc)
6813 return rc;
6814
6815 if (write) {
6816 user_min_free_kbytes = min_free_kbytes;
6817 setup_per_zone_wmarks();
6818 }
6819 return 0;
6820 }
6821
6822 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6823 void __user *buffer, size_t *length, loff_t *ppos)
6824 {
6825 int rc;
6826
6827 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6828 if (rc)
6829 return rc;
6830
6831 if (write)
6832 setup_per_zone_wmarks();
6833
6834 return 0;
6835 }
6836
6837 #ifdef CONFIG_NUMA
6838 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6839 void __user *buffer, size_t *length, loff_t *ppos)
6840 {
6841 struct zone *zone;
6842 int rc;
6843
6844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6845 if (rc)
6846 return rc;
6847
6848 for_each_zone(zone)
6849 zone->min_unmapped_pages = (zone->managed_pages *
6850 sysctl_min_unmapped_ratio) / 100;
6851 return 0;
6852 }
6853
6854 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6855 void __user *buffer, size_t *length, loff_t *ppos)
6856 {
6857 struct zone *zone;
6858 int rc;
6859
6860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6861 if (rc)
6862 return rc;
6863
6864 for_each_zone(zone)
6865 zone->min_slab_pages = (zone->managed_pages *
6866 sysctl_min_slab_ratio) / 100;
6867 return 0;
6868 }
6869 #endif
6870
6871 /*
6872 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6873 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6874 * whenever sysctl_lowmem_reserve_ratio changes.
6875 *
6876 * The reserve ratio obviously has absolutely no relation with the
6877 * minimum watermarks. The lowmem reserve ratio can only make sense
6878 * if in function of the boot time zone sizes.
6879 */
6880 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6881 void __user *buffer, size_t *length, loff_t *ppos)
6882 {
6883 proc_dointvec_minmax(table, write, buffer, length, ppos);
6884 setup_per_zone_lowmem_reserve();
6885 return 0;
6886 }
6887
6888 /*
6889 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6890 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6891 * pagelist can have before it gets flushed back to buddy allocator.
6892 */
6893 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6894 void __user *buffer, size_t *length, loff_t *ppos)
6895 {
6896 struct zone *zone;
6897 int old_percpu_pagelist_fraction;
6898 int ret;
6899
6900 mutex_lock(&pcp_batch_high_lock);
6901 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6902
6903 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6904 if (!write || ret < 0)
6905 goto out;
6906
6907 /* Sanity checking to avoid pcp imbalance */
6908 if (percpu_pagelist_fraction &&
6909 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6910 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6911 ret = -EINVAL;
6912 goto out;
6913 }
6914
6915 /* No change? */
6916 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6917 goto out;
6918
6919 for_each_populated_zone(zone) {
6920 unsigned int cpu;
6921
6922 for_each_possible_cpu(cpu)
6923 pageset_set_high_and_batch(zone,
6924 per_cpu_ptr(zone->pageset, cpu));
6925 }
6926 out:
6927 mutex_unlock(&pcp_batch_high_lock);
6928 return ret;
6929 }
6930
6931 #ifdef CONFIG_NUMA
6932 int hashdist = HASHDIST_DEFAULT;
6933
6934 static int __init set_hashdist(char *str)
6935 {
6936 if (!str)
6937 return 0;
6938 hashdist = simple_strtoul(str, &str, 0);
6939 return 1;
6940 }
6941 __setup("hashdist=", set_hashdist);
6942 #endif
6943
6944 /*
6945 * allocate a large system hash table from bootmem
6946 * - it is assumed that the hash table must contain an exact power-of-2
6947 * quantity of entries
6948 * - limit is the number of hash buckets, not the total allocation size
6949 */
6950 void *__init alloc_large_system_hash(const char *tablename,
6951 unsigned long bucketsize,
6952 unsigned long numentries,
6953 int scale,
6954 int flags,
6955 unsigned int *_hash_shift,
6956 unsigned int *_hash_mask,
6957 unsigned long low_limit,
6958 unsigned long high_limit)
6959 {
6960 unsigned long long max = high_limit;
6961 unsigned long log2qty, size;
6962 void *table = NULL;
6963
6964 /* allow the kernel cmdline to have a say */
6965 if (!numentries) {
6966 /* round applicable memory size up to nearest megabyte */
6967 numentries = nr_kernel_pages;
6968
6969 /* It isn't necessary when PAGE_SIZE >= 1MB */
6970 if (PAGE_SHIFT < 20)
6971 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6972
6973 /* limit to 1 bucket per 2^scale bytes of low memory */
6974 if (scale > PAGE_SHIFT)
6975 numentries >>= (scale - PAGE_SHIFT);
6976 else
6977 numentries <<= (PAGE_SHIFT - scale);
6978
6979 /* Make sure we've got at least a 0-order allocation.. */
6980 if (unlikely(flags & HASH_SMALL)) {
6981 /* Makes no sense without HASH_EARLY */
6982 WARN_ON(!(flags & HASH_EARLY));
6983 if (!(numentries >> *_hash_shift)) {
6984 numentries = 1UL << *_hash_shift;
6985 BUG_ON(!numentries);
6986 }
6987 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6988 numentries = PAGE_SIZE / bucketsize;
6989 }
6990 numentries = roundup_pow_of_two(numentries);
6991
6992 /* limit allocation size to 1/16 total memory by default */
6993 if (max == 0) {
6994 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6995 do_div(max, bucketsize);
6996 }
6997 max = min(max, 0x80000000ULL);
6998
6999 if (numentries < low_limit)
7000 numentries = low_limit;
7001 if (numentries > max)
7002 numentries = max;
7003
7004 log2qty = ilog2(numentries);
7005
7006 do {
7007 size = bucketsize << log2qty;
7008 if (flags & HASH_EARLY)
7009 table = memblock_virt_alloc_nopanic(size, 0);
7010 else if (hashdist)
7011 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7012 else {
7013 /*
7014 * If bucketsize is not a power-of-two, we may free
7015 * some pages at the end of hash table which
7016 * alloc_pages_exact() automatically does
7017 */
7018 if (get_order(size) < MAX_ORDER) {
7019 table = alloc_pages_exact(size, GFP_ATOMIC);
7020 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7021 }
7022 }
7023 } while (!table && size > PAGE_SIZE && --log2qty);
7024
7025 if (!table)
7026 panic("Failed to allocate %s hash table\n", tablename);
7027
7028 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7029 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7030
7031 if (_hash_shift)
7032 *_hash_shift = log2qty;
7033 if (_hash_mask)
7034 *_hash_mask = (1 << log2qty) - 1;
7035
7036 return table;
7037 }
7038
7039 /*
7040 * This function checks whether pageblock includes unmovable pages or not.
7041 * If @count is not zero, it is okay to include less @count unmovable pages
7042 *
7043 * PageLRU check without isolation or lru_lock could race so that
7044 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7045 * expect this function should be exact.
7046 */
7047 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7048 bool skip_hwpoisoned_pages)
7049 {
7050 unsigned long pfn, iter, found;
7051 int mt;
7052
7053 /*
7054 * For avoiding noise data, lru_add_drain_all() should be called
7055 * If ZONE_MOVABLE, the zone never contains unmovable pages
7056 */
7057 if (zone_idx(zone) == ZONE_MOVABLE)
7058 return false;
7059 mt = get_pageblock_migratetype(page);
7060 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7061 return false;
7062
7063 pfn = page_to_pfn(page);
7064 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7065 unsigned long check = pfn + iter;
7066
7067 if (!pfn_valid_within(check))
7068 continue;
7069
7070 page = pfn_to_page(check);
7071
7072 /*
7073 * Hugepages are not in LRU lists, but they're movable.
7074 * We need not scan over tail pages bacause we don't
7075 * handle each tail page individually in migration.
7076 */
7077 if (PageHuge(page)) {
7078 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7079 continue;
7080 }
7081
7082 /*
7083 * We can't use page_count without pin a page
7084 * because another CPU can free compound page.
7085 * This check already skips compound tails of THP
7086 * because their page->_refcount is zero at all time.
7087 */
7088 if (!page_ref_count(page)) {
7089 if (PageBuddy(page))
7090 iter += (1 << page_order(page)) - 1;
7091 continue;
7092 }
7093
7094 /*
7095 * The HWPoisoned page may be not in buddy system, and
7096 * page_count() is not 0.
7097 */
7098 if (skip_hwpoisoned_pages && PageHWPoison(page))
7099 continue;
7100
7101 if (!PageLRU(page))
7102 found++;
7103 /*
7104 * If there are RECLAIMABLE pages, we need to check
7105 * it. But now, memory offline itself doesn't call
7106 * shrink_node_slabs() and it still to be fixed.
7107 */
7108 /*
7109 * If the page is not RAM, page_count()should be 0.
7110 * we don't need more check. This is an _used_ not-movable page.
7111 *
7112 * The problematic thing here is PG_reserved pages. PG_reserved
7113 * is set to both of a memory hole page and a _used_ kernel
7114 * page at boot.
7115 */
7116 if (found > count)
7117 return true;
7118 }
7119 return false;
7120 }
7121
7122 bool is_pageblock_removable_nolock(struct page *page)
7123 {
7124 struct zone *zone;
7125 unsigned long pfn;
7126
7127 /*
7128 * We have to be careful here because we are iterating over memory
7129 * sections which are not zone aware so we might end up outside of
7130 * the zone but still within the section.
7131 * We have to take care about the node as well. If the node is offline
7132 * its NODE_DATA will be NULL - see page_zone.
7133 */
7134 if (!node_online(page_to_nid(page)))
7135 return false;
7136
7137 zone = page_zone(page);
7138 pfn = page_to_pfn(page);
7139 if (!zone_spans_pfn(zone, pfn))
7140 return false;
7141
7142 return !has_unmovable_pages(zone, page, 0, true);
7143 }
7144
7145 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7146
7147 static unsigned long pfn_max_align_down(unsigned long pfn)
7148 {
7149 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7150 pageblock_nr_pages) - 1);
7151 }
7152
7153 static unsigned long pfn_max_align_up(unsigned long pfn)
7154 {
7155 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7156 pageblock_nr_pages));
7157 }
7158
7159 /* [start, end) must belong to a single zone. */
7160 static int __alloc_contig_migrate_range(struct compact_control *cc,
7161 unsigned long start, unsigned long end)
7162 {
7163 /* This function is based on compact_zone() from compaction.c. */
7164 unsigned long nr_reclaimed;
7165 unsigned long pfn = start;
7166 unsigned int tries = 0;
7167 int ret = 0;
7168
7169 migrate_prep();
7170
7171 while (pfn < end || !list_empty(&cc->migratepages)) {
7172 if (fatal_signal_pending(current)) {
7173 ret = -EINTR;
7174 break;
7175 }
7176
7177 if (list_empty(&cc->migratepages)) {
7178 cc->nr_migratepages = 0;
7179 pfn = isolate_migratepages_range(cc, pfn, end);
7180 if (!pfn) {
7181 ret = -EINTR;
7182 break;
7183 }
7184 tries = 0;
7185 } else if (++tries == 5) {
7186 ret = ret < 0 ? ret : -EBUSY;
7187 break;
7188 }
7189
7190 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7191 &cc->migratepages);
7192 cc->nr_migratepages -= nr_reclaimed;
7193
7194 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7195 NULL, 0, cc->mode, MR_CMA);
7196 }
7197 if (ret < 0) {
7198 putback_movable_pages(&cc->migratepages);
7199 return ret;
7200 }
7201 return 0;
7202 }
7203
7204 /**
7205 * alloc_contig_range() -- tries to allocate given range of pages
7206 * @start: start PFN to allocate
7207 * @end: one-past-the-last PFN to allocate
7208 * @migratetype: migratetype of the underlaying pageblocks (either
7209 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7210 * in range must have the same migratetype and it must
7211 * be either of the two.
7212 *
7213 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7214 * aligned, however it's the caller's responsibility to guarantee that
7215 * we are the only thread that changes migrate type of pageblocks the
7216 * pages fall in.
7217 *
7218 * The PFN range must belong to a single zone.
7219 *
7220 * Returns zero on success or negative error code. On success all
7221 * pages which PFN is in [start, end) are allocated for the caller and
7222 * need to be freed with free_contig_range().
7223 */
7224 int alloc_contig_range(unsigned long start, unsigned long end,
7225 unsigned migratetype)
7226 {
7227 unsigned long outer_start, outer_end;
7228 unsigned int order;
7229 int ret = 0;
7230
7231 struct compact_control cc = {
7232 .nr_migratepages = 0,
7233 .order = -1,
7234 .zone = page_zone(pfn_to_page(start)),
7235 .mode = MIGRATE_SYNC,
7236 .ignore_skip_hint = true,
7237 };
7238 INIT_LIST_HEAD(&cc.migratepages);
7239
7240 /*
7241 * What we do here is we mark all pageblocks in range as
7242 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7243 * have different sizes, and due to the way page allocator
7244 * work, we align the range to biggest of the two pages so
7245 * that page allocator won't try to merge buddies from
7246 * different pageblocks and change MIGRATE_ISOLATE to some
7247 * other migration type.
7248 *
7249 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7250 * migrate the pages from an unaligned range (ie. pages that
7251 * we are interested in). This will put all the pages in
7252 * range back to page allocator as MIGRATE_ISOLATE.
7253 *
7254 * When this is done, we take the pages in range from page
7255 * allocator removing them from the buddy system. This way
7256 * page allocator will never consider using them.
7257 *
7258 * This lets us mark the pageblocks back as
7259 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7260 * aligned range but not in the unaligned, original range are
7261 * put back to page allocator so that buddy can use them.
7262 */
7263
7264 ret = start_isolate_page_range(pfn_max_align_down(start),
7265 pfn_max_align_up(end), migratetype,
7266 false);
7267 if (ret)
7268 return ret;
7269
7270 /*
7271 * In case of -EBUSY, we'd like to know which page causes problem.
7272 * So, just fall through. We will check it in test_pages_isolated().
7273 */
7274 ret = __alloc_contig_migrate_range(&cc, start, end);
7275 if (ret && ret != -EBUSY)
7276 goto done;
7277
7278 /*
7279 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7280 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7281 * more, all pages in [start, end) are free in page allocator.
7282 * What we are going to do is to allocate all pages from
7283 * [start, end) (that is remove them from page allocator).
7284 *
7285 * The only problem is that pages at the beginning and at the
7286 * end of interesting range may be not aligned with pages that
7287 * page allocator holds, ie. they can be part of higher order
7288 * pages. Because of this, we reserve the bigger range and
7289 * once this is done free the pages we are not interested in.
7290 *
7291 * We don't have to hold zone->lock here because the pages are
7292 * isolated thus they won't get removed from buddy.
7293 */
7294
7295 lru_add_drain_all();
7296 drain_all_pages(cc.zone);
7297
7298 order = 0;
7299 outer_start = start;
7300 while (!PageBuddy(pfn_to_page(outer_start))) {
7301 if (++order >= MAX_ORDER) {
7302 outer_start = start;
7303 break;
7304 }
7305 outer_start &= ~0UL << order;
7306 }
7307
7308 if (outer_start != start) {
7309 order = page_order(pfn_to_page(outer_start));
7310
7311 /*
7312 * outer_start page could be small order buddy page and
7313 * it doesn't include start page. Adjust outer_start
7314 * in this case to report failed page properly
7315 * on tracepoint in test_pages_isolated()
7316 */
7317 if (outer_start + (1UL << order) <= start)
7318 outer_start = start;
7319 }
7320
7321 /* Make sure the range is really isolated. */
7322 if (test_pages_isolated(outer_start, end, false)) {
7323 pr_info("%s: [%lx, %lx) PFNs busy\n",
7324 __func__, outer_start, end);
7325 ret = -EBUSY;
7326 goto done;
7327 }
7328
7329 /* Grab isolated pages from freelists. */
7330 outer_end = isolate_freepages_range(&cc, outer_start, end);
7331 if (!outer_end) {
7332 ret = -EBUSY;
7333 goto done;
7334 }
7335
7336 /* Free head and tail (if any) */
7337 if (start != outer_start)
7338 free_contig_range(outer_start, start - outer_start);
7339 if (end != outer_end)
7340 free_contig_range(end, outer_end - end);
7341
7342 done:
7343 undo_isolate_page_range(pfn_max_align_down(start),
7344 pfn_max_align_up(end), migratetype);
7345 return ret;
7346 }
7347
7348 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7349 {
7350 unsigned int count = 0;
7351
7352 for (; nr_pages--; pfn++) {
7353 struct page *page = pfn_to_page(pfn);
7354
7355 count += page_count(page) != 1;
7356 __free_page(page);
7357 }
7358 WARN(count != 0, "%d pages are still in use!\n", count);
7359 }
7360 #endif
7361
7362 #ifdef CONFIG_MEMORY_HOTPLUG
7363 /*
7364 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7365 * page high values need to be recalulated.
7366 */
7367 void __meminit zone_pcp_update(struct zone *zone)
7368 {
7369 unsigned cpu;
7370 mutex_lock(&pcp_batch_high_lock);
7371 for_each_possible_cpu(cpu)
7372 pageset_set_high_and_batch(zone,
7373 per_cpu_ptr(zone->pageset, cpu));
7374 mutex_unlock(&pcp_batch_high_lock);
7375 }
7376 #endif
7377
7378 void zone_pcp_reset(struct zone *zone)
7379 {
7380 unsigned long flags;
7381 int cpu;
7382 struct per_cpu_pageset *pset;
7383
7384 /* avoid races with drain_pages() */
7385 local_irq_save(flags);
7386 if (zone->pageset != &boot_pageset) {
7387 for_each_online_cpu(cpu) {
7388 pset = per_cpu_ptr(zone->pageset, cpu);
7389 drain_zonestat(zone, pset);
7390 }
7391 free_percpu(zone->pageset);
7392 zone->pageset = &boot_pageset;
7393 }
7394 local_irq_restore(flags);
7395 }
7396
7397 #ifdef CONFIG_MEMORY_HOTREMOVE
7398 /*
7399 * All pages in the range must be in a single zone and isolated
7400 * before calling this.
7401 */
7402 void
7403 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7404 {
7405 struct page *page;
7406 struct zone *zone;
7407 unsigned int order, i;
7408 unsigned long pfn;
7409 unsigned long flags;
7410 /* find the first valid pfn */
7411 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7412 if (pfn_valid(pfn))
7413 break;
7414 if (pfn == end_pfn)
7415 return;
7416 zone = page_zone(pfn_to_page(pfn));
7417 spin_lock_irqsave(&zone->lock, flags);
7418 pfn = start_pfn;
7419 while (pfn < end_pfn) {
7420 if (!pfn_valid(pfn)) {
7421 pfn++;
7422 continue;
7423 }
7424 page = pfn_to_page(pfn);
7425 /*
7426 * The HWPoisoned page may be not in buddy system, and
7427 * page_count() is not 0.
7428 */
7429 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7430 pfn++;
7431 SetPageReserved(page);
7432 continue;
7433 }
7434
7435 BUG_ON(page_count(page));
7436 BUG_ON(!PageBuddy(page));
7437 order = page_order(page);
7438 #ifdef CONFIG_DEBUG_VM
7439 pr_info("remove from free list %lx %d %lx\n",
7440 pfn, 1 << order, end_pfn);
7441 #endif
7442 list_del(&page->lru);
7443 rmv_page_order(page);
7444 zone->free_area[order].nr_free--;
7445 for (i = 0; i < (1 << order); i++)
7446 SetPageReserved((page+i));
7447 pfn += (1 << order);
7448 }
7449 spin_unlock_irqrestore(&zone->lock, flags);
7450 }
7451 #endif
7452
7453 bool is_free_buddy_page(struct page *page)
7454 {
7455 struct zone *zone = page_zone(page);
7456 unsigned long pfn = page_to_pfn(page);
7457 unsigned long flags;
7458 unsigned int order;
7459
7460 spin_lock_irqsave(&zone->lock, flags);
7461 for (order = 0; order < MAX_ORDER; order++) {
7462 struct page *page_head = page - (pfn & ((1 << order) - 1));
7463
7464 if (PageBuddy(page_head) && page_order(page_head) >= order)
7465 break;
7466 }
7467 spin_unlock_irqrestore(&zone->lock, flags);
7468
7469 return order < MAX_ORDER;
7470 }
This page took 0.18685 seconds and 6 git commands to generate.