memory hotplug: update zone pcp at memory online
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
55
56 /*
57 * Array of node states.
58 */
59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62 #ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 #ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66 #endif
67 [N_CPU] = { { [0] = 1UL } },
68 #endif /* NUMA */
69 };
70 EXPORT_SYMBOL(node_states);
71
72 unsigned long totalram_pages __read_mostly;
73 unsigned long totalreserve_pages __read_mostly;
74 unsigned long highest_memmap_pfn __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81
82 static void __free_pages_ok(struct page *page, unsigned int order);
83
84 /*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
94 */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 32,
104 #endif
105 32,
106 };
107
108 EXPORT_SYMBOL(totalram_pages);
109
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
122 };
123
124 int min_free_kbytes = 1024;
125
126 unsigned long __meminitdata nr_kernel_pages;
127 unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170
171 int page_group_by_mobility_disabled __read_mostly;
172
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181 }
182
183 bool oom_killer_disabled __read_mostly;
184
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
191
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
201 }
202
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
209
210 return 1;
211 }
212 /*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
221
222 return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 return 0;
228 }
229 #endif
230
231 static void bad_page(struct page *page)
232 {
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
258 current->comm, page_to_pfn(page));
259 printk(KERN_ALERT
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
263
264 dump_stack();
265 out:
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
268 add_taint(TAINT_BAD_PAGE);
269 }
270
271 /*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
284 */
285
286 static void free_compound_page(struct page *page)
287 {
288 __free_pages_ok(page, compound_order(page));
289 }
290
291 void prep_compound_page(struct page *page, unsigned long order)
292 {
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305 }
306
307 static int destroy_compound_page(struct page *page, unsigned long order)
308 {
309 int i;
310 int nr_pages = 1 << order;
311 int bad = 0;
312
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
315 bad_page(page);
316 bad++;
317 }
318
319 __ClearPageHead(page);
320
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
323
324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 bad_page(page);
326 bad++;
327 }
328 __ClearPageTail(p);
329 }
330
331 return bad;
332 }
333
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335 {
336 int i;
337
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345 }
346
347 static inline void set_page_order(struct page *page, int order)
348 {
349 set_page_private(page, order);
350 __SetPageBuddy(page);
351 }
352
353 static inline void rmv_page_order(struct page *page)
354 {
355 __ClearPageBuddy(page);
356 set_page_private(page, 0);
357 }
358
359 /*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375 */
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378 {
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382 }
383
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
386 {
387 return (page_idx & ~(1 << order));
388 }
389
390 /*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400 *
401 * For recording page's order, we use page_private(page).
402 */
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
405 {
406 if (!pfn_valid_within(page_to_pfn(buddy)))
407 return 0;
408
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 VM_BUG_ON(page_count(buddy) != 0);
414 return 1;
415 }
416 return 0;
417 }
418
419 /*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
443 static inline void __free_one_page(struct page *page,
444 struct zone *zone, unsigned int order,
445 int migratetype)
446 {
447 unsigned long page_idx;
448
449 if (unlikely(PageCompound(page)))
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
452
453 VM_BUG_ON(migratetype == -1);
454
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
457 VM_BUG_ON(page_idx & ((1 << order) - 1));
458 VM_BUG_ON(bad_range(zone, page));
459
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
462 struct page *buddy;
463
464 buddy = __page_find_buddy(page, page_idx, order);
465 if (!page_is_buddy(page, buddy, order))
466 break;
467
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy->lru);
470 zone->free_area[order].nr_free--;
471 rmv_page_order(buddy);
472 combined_idx = __find_combined_index(page_idx, order);
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
480 zone->free_area[order].nr_free++;
481 }
482
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484 /*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489 static inline void free_page_mlock(struct page *page)
490 {
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493 }
494 #else
495 static void free_page_mlock(struct page *page) { }
496 #endif
497
498 static inline int free_pages_check(struct page *page)
499 {
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
502 (atomic_read(&page->_count) != 0) |
503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504 bad_page(page);
505 return 1;
506 }
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
510 }
511
512 /*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
523 static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
525 {
526 spin_lock(&zone->lock);
527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528 zone->pages_scanned = 0;
529
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531 while (count--) {
532 struct page *page;
533
534 VM_BUG_ON(list_empty(list));
535 page = list_entry(list->prev, struct page, lru);
536 /* have to delete it as __free_one_page list manipulates */
537 list_del(&page->lru);
538 __free_one_page(page, zone, order, page_private(page));
539 }
540 spin_unlock(&zone->lock);
541 }
542
543 static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
545 {
546 spin_lock(&zone->lock);
547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548 zone->pages_scanned = 0;
549
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551 __free_one_page(page, zone, order, migratetype);
552 spin_unlock(&zone->lock);
553 }
554
555 static void __free_pages_ok(struct page *page, unsigned int order)
556 {
557 unsigned long flags;
558 int i;
559 int bad = 0;
560 int wasMlocked = TestClearPageMlocked(page);
561
562 kmemcheck_free_shadow(page, order);
563
564 for (i = 0 ; i < (1 << order) ; ++i)
565 bad += free_pages_check(page + i);
566 if (bad)
567 return;
568
569 if (!PageHighMem(page)) {
570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
573 }
574 arch_free_page(page, order);
575 kernel_map_pages(page, 1 << order, 0);
576
577 local_irq_save(flags);
578 if (unlikely(wasMlocked))
579 free_page_mlock(page);
580 __count_vm_events(PGFREE, 1 << order);
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
583 local_irq_restore(flags);
584 }
585
586 /*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
590 {
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
594 set_page_refcounted(page);
595 __free_page(page);
596 } else {
597 int loop;
598
599 prefetchw(page);
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
602
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
607 }
608
609 set_page_refcounted(page);
610 __free_pages(page, order);
611 }
612 }
613
614
615 /*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
629 static inline void expand(struct zone *zone, struct page *page,
630 int low, int high, struct free_area *area,
631 int migratetype)
632 {
633 unsigned long size = 1 << high;
634
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
639 VM_BUG_ON(bad_range(zone, &page[size]));
640 list_add(&page[size].lru, &area->free_list[migratetype]);
641 area->nr_free++;
642 set_page_order(&page[size], high);
643 }
644 }
645
646 /*
647 * This page is about to be returned from the page allocator
648 */
649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
650 {
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
653 (atomic_read(&page->_count) != 0) |
654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655 bad_page(page);
656 return 1;
657 }
658
659 set_page_private(page, 0);
660 set_page_refcounted(page);
661
662 arch_alloc_page(page, order);
663 kernel_map_pages(page, 1 << order, 1);
664
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
667
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
670
671 return 0;
672 }
673
674 /*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
678 static inline
679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680 int migratetype)
681 {
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
685
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
691
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
699 }
700
701 return NULL;
702 }
703
704
705 /*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
714 };
715
716 /*
717 * Move the free pages in a range to the free lists of the requested type.
718 * Note that start_page and end_pages are not aligned on a pageblock
719 * boundary. If alignment is required, use move_freepages_block()
720 */
721 static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
724 {
725 struct page *page;
726 unsigned long order;
727 int pages_moved = 0;
728
729 #ifndef CONFIG_HOLES_IN_ZONE
730 /*
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
735 * grouping pages by mobility
736 */
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738 #endif
739
740 for (page = start_page; page <= end_page;) {
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
747 }
748
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
752 }
753
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
759 pages_moved += 1 << order;
760 }
761
762 return pages_moved;
763 }
764
765 static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
767 {
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
770
771 start_pfn = page_to_pfn(page);
772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773 start_page = pfn_to_page(start_pfn);
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
776
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
782
783 return move_freepages(zone, start_page, end_page, migratetype);
784 }
785
786 /* Remove an element from the buddy allocator from the fallback list */
787 static inline struct page *
788 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
789 {
790 struct free_area * area;
791 int current_order;
792 struct page *page;
793 int migratetype, i;
794
795 /* Find the largest possible block of pages in the other list */
796 for (current_order = MAX_ORDER-1; current_order >= order;
797 --current_order) {
798 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 migratetype = fallbacks[start_migratetype][i];
800
801 /* MIGRATE_RESERVE handled later if necessary */
802 if (migratetype == MIGRATE_RESERVE)
803 continue;
804
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
808
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 area->nr_free--;
812
813 /*
814 * If breaking a large block of pages, move all free
815 * pages to the preferred allocation list. If falling
816 * back for a reclaimable kernel allocation, be more
817 * agressive about taking ownership of free pages
818 */
819 if (unlikely(current_order >= (pageblock_order >> 1)) ||
820 start_migratetype == MIGRATE_RECLAIMABLE ||
821 page_group_by_mobility_disabled) {
822 unsigned long pages;
823 pages = move_freepages_block(zone, page,
824 start_migratetype);
825
826 /* Claim the whole block if over half of it is free */
827 if (pages >= (1 << (pageblock_order-1)) ||
828 page_group_by_mobility_disabled)
829 set_pageblock_migratetype(page,
830 start_migratetype);
831
832 migratetype = start_migratetype;
833 }
834
835 /* Remove the page from the freelists */
836 list_del(&page->lru);
837 rmv_page_order(page);
838
839 if (current_order == pageblock_order)
840 set_pageblock_migratetype(page,
841 start_migratetype);
842
843 expand(zone, page, order, current_order, area, migratetype);
844 return page;
845 }
846 }
847
848 return NULL;
849 }
850
851 /*
852 * Do the hard work of removing an element from the buddy allocator.
853 * Call me with the zone->lock already held.
854 */
855 static struct page *__rmqueue(struct zone *zone, unsigned int order,
856 int migratetype)
857 {
858 struct page *page;
859
860 retry_reserve:
861 page = __rmqueue_smallest(zone, order, migratetype);
862
863 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
864 page = __rmqueue_fallback(zone, order, migratetype);
865
866 /*
867 * Use MIGRATE_RESERVE rather than fail an allocation. goto
868 * is used because __rmqueue_smallest is an inline function
869 * and we want just one call site
870 */
871 if (!page) {
872 migratetype = MIGRATE_RESERVE;
873 goto retry_reserve;
874 }
875 }
876
877 return page;
878 }
879
880 /*
881 * Obtain a specified number of elements from the buddy allocator, all under
882 * a single hold of the lock, for efficiency. Add them to the supplied list.
883 * Returns the number of new pages which were placed at *list.
884 */
885 static int rmqueue_bulk(struct zone *zone, unsigned int order,
886 unsigned long count, struct list_head *list,
887 int migratetype, int cold)
888 {
889 int i;
890
891 spin_lock(&zone->lock);
892 for (i = 0; i < count; ++i) {
893 struct page *page = __rmqueue(zone, order, migratetype);
894 if (unlikely(page == NULL))
895 break;
896
897 /*
898 * Split buddy pages returned by expand() are received here
899 * in physical page order. The page is added to the callers and
900 * list and the list head then moves forward. From the callers
901 * perspective, the linked list is ordered by page number in
902 * some conditions. This is useful for IO devices that can
903 * merge IO requests if the physical pages are ordered
904 * properly.
905 */
906 if (likely(cold == 0))
907 list_add(&page->lru, list);
908 else
909 list_add_tail(&page->lru, list);
910 set_page_private(page, migratetype);
911 list = &page->lru;
912 }
913 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
914 spin_unlock(&zone->lock);
915 return i;
916 }
917
918 #ifdef CONFIG_NUMA
919 /*
920 * Called from the vmstat counter updater to drain pagesets of this
921 * currently executing processor on remote nodes after they have
922 * expired.
923 *
924 * Note that this function must be called with the thread pinned to
925 * a single processor.
926 */
927 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
928 {
929 unsigned long flags;
930 int to_drain;
931
932 local_irq_save(flags);
933 if (pcp->count >= pcp->batch)
934 to_drain = pcp->batch;
935 else
936 to_drain = pcp->count;
937 free_pages_bulk(zone, to_drain, &pcp->list, 0);
938 pcp->count -= to_drain;
939 local_irq_restore(flags);
940 }
941 #endif
942
943 /*
944 * Drain pages of the indicated processor.
945 *
946 * The processor must either be the current processor and the
947 * thread pinned to the current processor or a processor that
948 * is not online.
949 */
950 static void drain_pages(unsigned int cpu)
951 {
952 unsigned long flags;
953 struct zone *zone;
954
955 for_each_populated_zone(zone) {
956 struct per_cpu_pageset *pset;
957 struct per_cpu_pages *pcp;
958
959 pset = zone_pcp(zone, cpu);
960
961 pcp = &pset->pcp;
962 local_irq_save(flags);
963 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
964 pcp->count = 0;
965 local_irq_restore(flags);
966 }
967 }
968
969 /*
970 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
971 */
972 void drain_local_pages(void *arg)
973 {
974 drain_pages(smp_processor_id());
975 }
976
977 /*
978 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
979 */
980 void drain_all_pages(void)
981 {
982 on_each_cpu(drain_local_pages, NULL, 1);
983 }
984
985 #ifdef CONFIG_HIBERNATION
986
987 void mark_free_pages(struct zone *zone)
988 {
989 unsigned long pfn, max_zone_pfn;
990 unsigned long flags;
991 int order, t;
992 struct list_head *curr;
993
994 if (!zone->spanned_pages)
995 return;
996
997 spin_lock_irqsave(&zone->lock, flags);
998
999 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1000 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1001 if (pfn_valid(pfn)) {
1002 struct page *page = pfn_to_page(pfn);
1003
1004 if (!swsusp_page_is_forbidden(page))
1005 swsusp_unset_page_free(page);
1006 }
1007
1008 for_each_migratetype_order(order, t) {
1009 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1010 unsigned long i;
1011
1012 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1013 for (i = 0; i < (1UL << order); i++)
1014 swsusp_set_page_free(pfn_to_page(pfn + i));
1015 }
1016 }
1017 spin_unlock_irqrestore(&zone->lock, flags);
1018 }
1019 #endif /* CONFIG_PM */
1020
1021 /*
1022 * Free a 0-order page
1023 */
1024 static void free_hot_cold_page(struct page *page, int cold)
1025 {
1026 struct zone *zone = page_zone(page);
1027 struct per_cpu_pages *pcp;
1028 unsigned long flags;
1029 int wasMlocked = TestClearPageMlocked(page);
1030
1031 kmemcheck_free_shadow(page, 0);
1032
1033 if (PageAnon(page))
1034 page->mapping = NULL;
1035 if (free_pages_check(page))
1036 return;
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1040 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1041 }
1042 arch_free_page(page, 0);
1043 kernel_map_pages(page, 1, 0);
1044
1045 pcp = &zone_pcp(zone, get_cpu())->pcp;
1046 set_page_private(page, get_pageblock_migratetype(page));
1047 local_irq_save(flags);
1048 if (unlikely(wasMlocked))
1049 free_page_mlock(page);
1050 __count_vm_event(PGFREE);
1051
1052 if (cold)
1053 list_add_tail(&page->lru, &pcp->list);
1054 else
1055 list_add(&page->lru, &pcp->list);
1056 pcp->count++;
1057 if (pcp->count >= pcp->high) {
1058 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1059 pcp->count -= pcp->batch;
1060 }
1061 local_irq_restore(flags);
1062 put_cpu();
1063 }
1064
1065 void free_hot_page(struct page *page)
1066 {
1067 free_hot_cold_page(page, 0);
1068 }
1069
1070 void free_cold_page(struct page *page)
1071 {
1072 free_hot_cold_page(page, 1);
1073 }
1074
1075 /*
1076 * split_page takes a non-compound higher-order page, and splits it into
1077 * n (1<<order) sub-pages: page[0..n]
1078 * Each sub-page must be freed individually.
1079 *
1080 * Note: this is probably too low level an operation for use in drivers.
1081 * Please consult with lkml before using this in your driver.
1082 */
1083 void split_page(struct page *page, unsigned int order)
1084 {
1085 int i;
1086
1087 VM_BUG_ON(PageCompound(page));
1088 VM_BUG_ON(!page_count(page));
1089
1090 #ifdef CONFIG_KMEMCHECK
1091 /*
1092 * Split shadow pages too, because free(page[0]) would
1093 * otherwise free the whole shadow.
1094 */
1095 if (kmemcheck_page_is_tracked(page))
1096 split_page(virt_to_page(page[0].shadow), order);
1097 #endif
1098
1099 for (i = 1; i < (1 << order); i++)
1100 set_page_refcounted(page + i);
1101 }
1102
1103 /*
1104 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1105 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1106 * or two.
1107 */
1108 static inline
1109 struct page *buffered_rmqueue(struct zone *preferred_zone,
1110 struct zone *zone, int order, gfp_t gfp_flags,
1111 int migratetype)
1112 {
1113 unsigned long flags;
1114 struct page *page;
1115 int cold = !!(gfp_flags & __GFP_COLD);
1116 int cpu;
1117
1118 again:
1119 cpu = get_cpu();
1120 if (likely(order == 0)) {
1121 struct per_cpu_pages *pcp;
1122
1123 pcp = &zone_pcp(zone, cpu)->pcp;
1124 local_irq_save(flags);
1125 if (!pcp->count) {
1126 pcp->count = rmqueue_bulk(zone, 0,
1127 pcp->batch, &pcp->list,
1128 migratetype, cold);
1129 if (unlikely(!pcp->count))
1130 goto failed;
1131 }
1132
1133 /* Find a page of the appropriate migrate type */
1134 if (cold) {
1135 list_for_each_entry_reverse(page, &pcp->list, lru)
1136 if (page_private(page) == migratetype)
1137 break;
1138 } else {
1139 list_for_each_entry(page, &pcp->list, lru)
1140 if (page_private(page) == migratetype)
1141 break;
1142 }
1143
1144 /* Allocate more to the pcp list if necessary */
1145 if (unlikely(&page->lru == &pcp->list)) {
1146 pcp->count += rmqueue_bulk(zone, 0,
1147 pcp->batch, &pcp->list,
1148 migratetype, cold);
1149 page = list_entry(pcp->list.next, struct page, lru);
1150 }
1151
1152 list_del(&page->lru);
1153 pcp->count--;
1154 } else {
1155 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1156 /*
1157 * __GFP_NOFAIL is not to be used in new code.
1158 *
1159 * All __GFP_NOFAIL callers should be fixed so that they
1160 * properly detect and handle allocation failures.
1161 *
1162 * We most definitely don't want callers attempting to
1163 * allocate greater than order-1 page units with
1164 * __GFP_NOFAIL.
1165 */
1166 WARN_ON_ONCE(order > 1);
1167 }
1168 spin_lock_irqsave(&zone->lock, flags);
1169 page = __rmqueue(zone, order, migratetype);
1170 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1171 spin_unlock(&zone->lock);
1172 if (!page)
1173 goto failed;
1174 }
1175
1176 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1177 zone_statistics(preferred_zone, zone);
1178 local_irq_restore(flags);
1179 put_cpu();
1180
1181 VM_BUG_ON(bad_range(zone, page));
1182 if (prep_new_page(page, order, gfp_flags))
1183 goto again;
1184 return page;
1185
1186 failed:
1187 local_irq_restore(flags);
1188 put_cpu();
1189 return NULL;
1190 }
1191
1192 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1193 #define ALLOC_WMARK_MIN WMARK_MIN
1194 #define ALLOC_WMARK_LOW WMARK_LOW
1195 #define ALLOC_WMARK_HIGH WMARK_HIGH
1196 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1197
1198 /* Mask to get the watermark bits */
1199 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1200
1201 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1202 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1203 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1204
1205 #ifdef CONFIG_FAIL_PAGE_ALLOC
1206
1207 static struct fail_page_alloc_attr {
1208 struct fault_attr attr;
1209
1210 u32 ignore_gfp_highmem;
1211 u32 ignore_gfp_wait;
1212 u32 min_order;
1213
1214 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1215
1216 struct dentry *ignore_gfp_highmem_file;
1217 struct dentry *ignore_gfp_wait_file;
1218 struct dentry *min_order_file;
1219
1220 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1221
1222 } fail_page_alloc = {
1223 .attr = FAULT_ATTR_INITIALIZER,
1224 .ignore_gfp_wait = 1,
1225 .ignore_gfp_highmem = 1,
1226 .min_order = 1,
1227 };
1228
1229 static int __init setup_fail_page_alloc(char *str)
1230 {
1231 return setup_fault_attr(&fail_page_alloc.attr, str);
1232 }
1233 __setup("fail_page_alloc=", setup_fail_page_alloc);
1234
1235 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1236 {
1237 if (order < fail_page_alloc.min_order)
1238 return 0;
1239 if (gfp_mask & __GFP_NOFAIL)
1240 return 0;
1241 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1242 return 0;
1243 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1244 return 0;
1245
1246 return should_fail(&fail_page_alloc.attr, 1 << order);
1247 }
1248
1249 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1250
1251 static int __init fail_page_alloc_debugfs(void)
1252 {
1253 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1254 struct dentry *dir;
1255 int err;
1256
1257 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1258 "fail_page_alloc");
1259 if (err)
1260 return err;
1261 dir = fail_page_alloc.attr.dentries.dir;
1262
1263 fail_page_alloc.ignore_gfp_wait_file =
1264 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1265 &fail_page_alloc.ignore_gfp_wait);
1266
1267 fail_page_alloc.ignore_gfp_highmem_file =
1268 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1269 &fail_page_alloc.ignore_gfp_highmem);
1270 fail_page_alloc.min_order_file =
1271 debugfs_create_u32("min-order", mode, dir,
1272 &fail_page_alloc.min_order);
1273
1274 if (!fail_page_alloc.ignore_gfp_wait_file ||
1275 !fail_page_alloc.ignore_gfp_highmem_file ||
1276 !fail_page_alloc.min_order_file) {
1277 err = -ENOMEM;
1278 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1279 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1280 debugfs_remove(fail_page_alloc.min_order_file);
1281 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1282 }
1283
1284 return err;
1285 }
1286
1287 late_initcall(fail_page_alloc_debugfs);
1288
1289 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1290
1291 #else /* CONFIG_FAIL_PAGE_ALLOC */
1292
1293 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1294 {
1295 return 0;
1296 }
1297
1298 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1299
1300 /*
1301 * Return 1 if free pages are above 'mark'. This takes into account the order
1302 * of the allocation.
1303 */
1304 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1305 int classzone_idx, int alloc_flags)
1306 {
1307 /* free_pages my go negative - that's OK */
1308 long min = mark;
1309 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1310 int o;
1311
1312 if (alloc_flags & ALLOC_HIGH)
1313 min -= min / 2;
1314 if (alloc_flags & ALLOC_HARDER)
1315 min -= min / 4;
1316
1317 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1318 return 0;
1319 for (o = 0; o < order; o++) {
1320 /* At the next order, this order's pages become unavailable */
1321 free_pages -= z->free_area[o].nr_free << o;
1322
1323 /* Require fewer higher order pages to be free */
1324 min >>= 1;
1325
1326 if (free_pages <= min)
1327 return 0;
1328 }
1329 return 1;
1330 }
1331
1332 #ifdef CONFIG_NUMA
1333 /*
1334 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1335 * skip over zones that are not allowed by the cpuset, or that have
1336 * been recently (in last second) found to be nearly full. See further
1337 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1338 * that have to skip over a lot of full or unallowed zones.
1339 *
1340 * If the zonelist cache is present in the passed in zonelist, then
1341 * returns a pointer to the allowed node mask (either the current
1342 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1343 *
1344 * If the zonelist cache is not available for this zonelist, does
1345 * nothing and returns NULL.
1346 *
1347 * If the fullzones BITMAP in the zonelist cache is stale (more than
1348 * a second since last zap'd) then we zap it out (clear its bits.)
1349 *
1350 * We hold off even calling zlc_setup, until after we've checked the
1351 * first zone in the zonelist, on the theory that most allocations will
1352 * be satisfied from that first zone, so best to examine that zone as
1353 * quickly as we can.
1354 */
1355 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1356 {
1357 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1358 nodemask_t *allowednodes; /* zonelist_cache approximation */
1359
1360 zlc = zonelist->zlcache_ptr;
1361 if (!zlc)
1362 return NULL;
1363
1364 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1365 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1366 zlc->last_full_zap = jiffies;
1367 }
1368
1369 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1370 &cpuset_current_mems_allowed :
1371 &node_states[N_HIGH_MEMORY];
1372 return allowednodes;
1373 }
1374
1375 /*
1376 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1377 * if it is worth looking at further for free memory:
1378 * 1) Check that the zone isn't thought to be full (doesn't have its
1379 * bit set in the zonelist_cache fullzones BITMAP).
1380 * 2) Check that the zones node (obtained from the zonelist_cache
1381 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1382 * Return true (non-zero) if zone is worth looking at further, or
1383 * else return false (zero) if it is not.
1384 *
1385 * This check -ignores- the distinction between various watermarks,
1386 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1387 * found to be full for any variation of these watermarks, it will
1388 * be considered full for up to one second by all requests, unless
1389 * we are so low on memory on all allowed nodes that we are forced
1390 * into the second scan of the zonelist.
1391 *
1392 * In the second scan we ignore this zonelist cache and exactly
1393 * apply the watermarks to all zones, even it is slower to do so.
1394 * We are low on memory in the second scan, and should leave no stone
1395 * unturned looking for a free page.
1396 */
1397 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1398 nodemask_t *allowednodes)
1399 {
1400 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1401 int i; /* index of *z in zonelist zones */
1402 int n; /* node that zone *z is on */
1403
1404 zlc = zonelist->zlcache_ptr;
1405 if (!zlc)
1406 return 1;
1407
1408 i = z - zonelist->_zonerefs;
1409 n = zlc->z_to_n[i];
1410
1411 /* This zone is worth trying if it is allowed but not full */
1412 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1413 }
1414
1415 /*
1416 * Given 'z' scanning a zonelist, set the corresponding bit in
1417 * zlc->fullzones, so that subsequent attempts to allocate a page
1418 * from that zone don't waste time re-examining it.
1419 */
1420 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1421 {
1422 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1423 int i; /* index of *z in zonelist zones */
1424
1425 zlc = zonelist->zlcache_ptr;
1426 if (!zlc)
1427 return;
1428
1429 i = z - zonelist->_zonerefs;
1430
1431 set_bit(i, zlc->fullzones);
1432 }
1433
1434 #else /* CONFIG_NUMA */
1435
1436 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1437 {
1438 return NULL;
1439 }
1440
1441 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1442 nodemask_t *allowednodes)
1443 {
1444 return 1;
1445 }
1446
1447 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1448 {
1449 }
1450 #endif /* CONFIG_NUMA */
1451
1452 /*
1453 * get_page_from_freelist goes through the zonelist trying to allocate
1454 * a page.
1455 */
1456 static struct page *
1457 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1458 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1459 struct zone *preferred_zone, int migratetype)
1460 {
1461 struct zoneref *z;
1462 struct page *page = NULL;
1463 int classzone_idx;
1464 struct zone *zone;
1465 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1466 int zlc_active = 0; /* set if using zonelist_cache */
1467 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1468
1469 classzone_idx = zone_idx(preferred_zone);
1470 zonelist_scan:
1471 /*
1472 * Scan zonelist, looking for a zone with enough free.
1473 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1474 */
1475 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1476 high_zoneidx, nodemask) {
1477 if (NUMA_BUILD && zlc_active &&
1478 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1479 continue;
1480 if ((alloc_flags & ALLOC_CPUSET) &&
1481 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1482 goto try_next_zone;
1483
1484 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1485 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1486 unsigned long mark;
1487 int ret;
1488
1489 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1490 if (zone_watermark_ok(zone, order, mark,
1491 classzone_idx, alloc_flags))
1492 goto try_this_zone;
1493
1494 if (zone_reclaim_mode == 0)
1495 goto this_zone_full;
1496
1497 ret = zone_reclaim(zone, gfp_mask, order);
1498 switch (ret) {
1499 case ZONE_RECLAIM_NOSCAN:
1500 /* did not scan */
1501 goto try_next_zone;
1502 case ZONE_RECLAIM_FULL:
1503 /* scanned but unreclaimable */
1504 goto this_zone_full;
1505 default:
1506 /* did we reclaim enough */
1507 if (!zone_watermark_ok(zone, order, mark,
1508 classzone_idx, alloc_flags))
1509 goto this_zone_full;
1510 }
1511 }
1512
1513 try_this_zone:
1514 page = buffered_rmqueue(preferred_zone, zone, order,
1515 gfp_mask, migratetype);
1516 if (page)
1517 break;
1518 this_zone_full:
1519 if (NUMA_BUILD)
1520 zlc_mark_zone_full(zonelist, z);
1521 try_next_zone:
1522 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1523 /*
1524 * we do zlc_setup after the first zone is tried but only
1525 * if there are multiple nodes make it worthwhile
1526 */
1527 allowednodes = zlc_setup(zonelist, alloc_flags);
1528 zlc_active = 1;
1529 did_zlc_setup = 1;
1530 }
1531 }
1532
1533 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1534 /* Disable zlc cache for second zonelist scan */
1535 zlc_active = 0;
1536 goto zonelist_scan;
1537 }
1538 return page;
1539 }
1540
1541 static inline int
1542 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1543 unsigned long pages_reclaimed)
1544 {
1545 /* Do not loop if specifically requested */
1546 if (gfp_mask & __GFP_NORETRY)
1547 return 0;
1548
1549 /*
1550 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1551 * means __GFP_NOFAIL, but that may not be true in other
1552 * implementations.
1553 */
1554 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1555 return 1;
1556
1557 /*
1558 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1559 * specified, then we retry until we no longer reclaim any pages
1560 * (above), or we've reclaimed an order of pages at least as
1561 * large as the allocation's order. In both cases, if the
1562 * allocation still fails, we stop retrying.
1563 */
1564 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1565 return 1;
1566
1567 /*
1568 * Don't let big-order allocations loop unless the caller
1569 * explicitly requests that.
1570 */
1571 if (gfp_mask & __GFP_NOFAIL)
1572 return 1;
1573
1574 return 0;
1575 }
1576
1577 static inline struct page *
1578 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1579 struct zonelist *zonelist, enum zone_type high_zoneidx,
1580 nodemask_t *nodemask, struct zone *preferred_zone,
1581 int migratetype)
1582 {
1583 struct page *page;
1584
1585 /* Acquire the OOM killer lock for the zones in zonelist */
1586 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1587 schedule_timeout_uninterruptible(1);
1588 return NULL;
1589 }
1590
1591 /*
1592 * Go through the zonelist yet one more time, keep very high watermark
1593 * here, this is only to catch a parallel oom killing, we must fail if
1594 * we're still under heavy pressure.
1595 */
1596 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1597 order, zonelist, high_zoneidx,
1598 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1599 preferred_zone, migratetype);
1600 if (page)
1601 goto out;
1602
1603 /* The OOM killer will not help higher order allocs */
1604 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1605 goto out;
1606
1607 /* Exhausted what can be done so it's blamo time */
1608 out_of_memory(zonelist, gfp_mask, order);
1609
1610 out:
1611 clear_zonelist_oom(zonelist, gfp_mask);
1612 return page;
1613 }
1614
1615 /* The really slow allocator path where we enter direct reclaim */
1616 static inline struct page *
1617 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1618 struct zonelist *zonelist, enum zone_type high_zoneidx,
1619 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1620 int migratetype, unsigned long *did_some_progress)
1621 {
1622 struct page *page = NULL;
1623 struct reclaim_state reclaim_state;
1624 struct task_struct *p = current;
1625
1626 cond_resched();
1627
1628 /* We now go into synchronous reclaim */
1629 cpuset_memory_pressure_bump();
1630 p->flags |= PF_MEMALLOC;
1631 lockdep_set_current_reclaim_state(gfp_mask);
1632 reclaim_state.reclaimed_slab = 0;
1633 p->reclaim_state = &reclaim_state;
1634
1635 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1636
1637 p->reclaim_state = NULL;
1638 lockdep_clear_current_reclaim_state();
1639 p->flags &= ~PF_MEMALLOC;
1640
1641 cond_resched();
1642
1643 if (order != 0)
1644 drain_all_pages();
1645
1646 if (likely(*did_some_progress))
1647 page = get_page_from_freelist(gfp_mask, nodemask, order,
1648 zonelist, high_zoneidx,
1649 alloc_flags, preferred_zone,
1650 migratetype);
1651 return page;
1652 }
1653
1654 /*
1655 * This is called in the allocator slow-path if the allocation request is of
1656 * sufficient urgency to ignore watermarks and take other desperate measures
1657 */
1658 static inline struct page *
1659 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1660 struct zonelist *zonelist, enum zone_type high_zoneidx,
1661 nodemask_t *nodemask, struct zone *preferred_zone,
1662 int migratetype)
1663 {
1664 struct page *page;
1665
1666 do {
1667 page = get_page_from_freelist(gfp_mask, nodemask, order,
1668 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1669 preferred_zone, migratetype);
1670
1671 if (!page && gfp_mask & __GFP_NOFAIL)
1672 congestion_wait(BLK_RW_ASYNC, HZ/50);
1673 } while (!page && (gfp_mask & __GFP_NOFAIL));
1674
1675 return page;
1676 }
1677
1678 static inline
1679 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1680 enum zone_type high_zoneidx)
1681 {
1682 struct zoneref *z;
1683 struct zone *zone;
1684
1685 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1686 wakeup_kswapd(zone, order);
1687 }
1688
1689 static inline int
1690 gfp_to_alloc_flags(gfp_t gfp_mask)
1691 {
1692 struct task_struct *p = current;
1693 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1694 const gfp_t wait = gfp_mask & __GFP_WAIT;
1695
1696 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1697 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1698
1699 /*
1700 * The caller may dip into page reserves a bit more if the caller
1701 * cannot run direct reclaim, or if the caller has realtime scheduling
1702 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1703 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1704 */
1705 alloc_flags |= (gfp_mask & __GFP_HIGH);
1706
1707 if (!wait) {
1708 alloc_flags |= ALLOC_HARDER;
1709 /*
1710 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1711 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1712 */
1713 alloc_flags &= ~ALLOC_CPUSET;
1714 } else if (unlikely(rt_task(p)))
1715 alloc_flags |= ALLOC_HARDER;
1716
1717 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1718 if (!in_interrupt() &&
1719 ((p->flags & PF_MEMALLOC) ||
1720 unlikely(test_thread_flag(TIF_MEMDIE))))
1721 alloc_flags |= ALLOC_NO_WATERMARKS;
1722 }
1723
1724 return alloc_flags;
1725 }
1726
1727 static inline struct page *
1728 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1729 struct zonelist *zonelist, enum zone_type high_zoneidx,
1730 nodemask_t *nodemask, struct zone *preferred_zone,
1731 int migratetype)
1732 {
1733 const gfp_t wait = gfp_mask & __GFP_WAIT;
1734 struct page *page = NULL;
1735 int alloc_flags;
1736 unsigned long pages_reclaimed = 0;
1737 unsigned long did_some_progress;
1738 struct task_struct *p = current;
1739
1740 /*
1741 * In the slowpath, we sanity check order to avoid ever trying to
1742 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1743 * be using allocators in order of preference for an area that is
1744 * too large.
1745 */
1746 if (order >= MAX_ORDER) {
1747 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1748 return NULL;
1749 }
1750
1751 /*
1752 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1753 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1754 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1755 * using a larger set of nodes after it has established that the
1756 * allowed per node queues are empty and that nodes are
1757 * over allocated.
1758 */
1759 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1760 goto nopage;
1761
1762 wake_all_kswapd(order, zonelist, high_zoneidx);
1763
1764 /*
1765 * OK, we're below the kswapd watermark and have kicked background
1766 * reclaim. Now things get more complex, so set up alloc_flags according
1767 * to how we want to proceed.
1768 */
1769 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1770
1771 restart:
1772 /* This is the last chance, in general, before the goto nopage. */
1773 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1774 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1775 preferred_zone, migratetype);
1776 if (page)
1777 goto got_pg;
1778
1779 rebalance:
1780 /* Allocate without watermarks if the context allows */
1781 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1782 page = __alloc_pages_high_priority(gfp_mask, order,
1783 zonelist, high_zoneidx, nodemask,
1784 preferred_zone, migratetype);
1785 if (page)
1786 goto got_pg;
1787 }
1788
1789 /* Atomic allocations - we can't balance anything */
1790 if (!wait)
1791 goto nopage;
1792
1793 /* Avoid recursion of direct reclaim */
1794 if (p->flags & PF_MEMALLOC)
1795 goto nopage;
1796
1797 /* Avoid allocations with no watermarks from looping endlessly */
1798 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1799 goto nopage;
1800
1801 /* Try direct reclaim and then allocating */
1802 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1803 zonelist, high_zoneidx,
1804 nodemask,
1805 alloc_flags, preferred_zone,
1806 migratetype, &did_some_progress);
1807 if (page)
1808 goto got_pg;
1809
1810 /*
1811 * If we failed to make any progress reclaiming, then we are
1812 * running out of options and have to consider going OOM
1813 */
1814 if (!did_some_progress) {
1815 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1816 if (oom_killer_disabled)
1817 goto nopage;
1818 page = __alloc_pages_may_oom(gfp_mask, order,
1819 zonelist, high_zoneidx,
1820 nodemask, preferred_zone,
1821 migratetype);
1822 if (page)
1823 goto got_pg;
1824
1825 /*
1826 * The OOM killer does not trigger for high-order
1827 * ~__GFP_NOFAIL allocations so if no progress is being
1828 * made, there are no other options and retrying is
1829 * unlikely to help.
1830 */
1831 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1832 !(gfp_mask & __GFP_NOFAIL))
1833 goto nopage;
1834
1835 goto restart;
1836 }
1837 }
1838
1839 /* Check if we should retry the allocation */
1840 pages_reclaimed += did_some_progress;
1841 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1842 /* Wait for some write requests to complete then retry */
1843 congestion_wait(BLK_RW_ASYNC, HZ/50);
1844 goto rebalance;
1845 }
1846
1847 nopage:
1848 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1849 printk(KERN_WARNING "%s: page allocation failure."
1850 " order:%d, mode:0x%x\n",
1851 p->comm, order, gfp_mask);
1852 dump_stack();
1853 show_mem();
1854 }
1855 return page;
1856 got_pg:
1857 if (kmemcheck_enabled)
1858 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1859 return page;
1860
1861 }
1862
1863 /*
1864 * This is the 'heart' of the zoned buddy allocator.
1865 */
1866 struct page *
1867 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1868 struct zonelist *zonelist, nodemask_t *nodemask)
1869 {
1870 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1871 struct zone *preferred_zone;
1872 struct page *page;
1873 int migratetype = allocflags_to_migratetype(gfp_mask);
1874
1875 gfp_mask &= gfp_allowed_mask;
1876
1877 lockdep_trace_alloc(gfp_mask);
1878
1879 might_sleep_if(gfp_mask & __GFP_WAIT);
1880
1881 if (should_fail_alloc_page(gfp_mask, order))
1882 return NULL;
1883
1884 /*
1885 * Check the zones suitable for the gfp_mask contain at least one
1886 * valid zone. It's possible to have an empty zonelist as a result
1887 * of GFP_THISNODE and a memoryless node
1888 */
1889 if (unlikely(!zonelist->_zonerefs->zone))
1890 return NULL;
1891
1892 /* The preferred zone is used for statistics later */
1893 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1894 if (!preferred_zone)
1895 return NULL;
1896
1897 /* First allocation attempt */
1898 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1899 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1900 preferred_zone, migratetype);
1901 if (unlikely(!page))
1902 page = __alloc_pages_slowpath(gfp_mask, order,
1903 zonelist, high_zoneidx, nodemask,
1904 preferred_zone, migratetype);
1905
1906 return page;
1907 }
1908 EXPORT_SYMBOL(__alloc_pages_nodemask);
1909
1910 /*
1911 * Common helper functions.
1912 */
1913 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1914 {
1915 struct page * page;
1916 page = alloc_pages(gfp_mask, order);
1917 if (!page)
1918 return 0;
1919 return (unsigned long) page_address(page);
1920 }
1921
1922 EXPORT_SYMBOL(__get_free_pages);
1923
1924 unsigned long get_zeroed_page(gfp_t gfp_mask)
1925 {
1926 struct page * page;
1927
1928 /*
1929 * get_zeroed_page() returns a 32-bit address, which cannot represent
1930 * a highmem page
1931 */
1932 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1933
1934 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1935 if (page)
1936 return (unsigned long) page_address(page);
1937 return 0;
1938 }
1939
1940 EXPORT_SYMBOL(get_zeroed_page);
1941
1942 void __pagevec_free(struct pagevec *pvec)
1943 {
1944 int i = pagevec_count(pvec);
1945
1946 while (--i >= 0)
1947 free_hot_cold_page(pvec->pages[i], pvec->cold);
1948 }
1949
1950 void __free_pages(struct page *page, unsigned int order)
1951 {
1952 if (put_page_testzero(page)) {
1953 if (order == 0)
1954 free_hot_page(page);
1955 else
1956 __free_pages_ok(page, order);
1957 }
1958 }
1959
1960 EXPORT_SYMBOL(__free_pages);
1961
1962 void free_pages(unsigned long addr, unsigned int order)
1963 {
1964 if (addr != 0) {
1965 VM_BUG_ON(!virt_addr_valid((void *)addr));
1966 __free_pages(virt_to_page((void *)addr), order);
1967 }
1968 }
1969
1970 EXPORT_SYMBOL(free_pages);
1971
1972 /**
1973 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1974 * @size: the number of bytes to allocate
1975 * @gfp_mask: GFP flags for the allocation
1976 *
1977 * This function is similar to alloc_pages(), except that it allocates the
1978 * minimum number of pages to satisfy the request. alloc_pages() can only
1979 * allocate memory in power-of-two pages.
1980 *
1981 * This function is also limited by MAX_ORDER.
1982 *
1983 * Memory allocated by this function must be released by free_pages_exact().
1984 */
1985 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1986 {
1987 unsigned int order = get_order(size);
1988 unsigned long addr;
1989
1990 addr = __get_free_pages(gfp_mask, order);
1991 if (addr) {
1992 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1993 unsigned long used = addr + PAGE_ALIGN(size);
1994
1995 split_page(virt_to_page((void *)addr), order);
1996 while (used < alloc_end) {
1997 free_page(used);
1998 used += PAGE_SIZE;
1999 }
2000 }
2001
2002 return (void *)addr;
2003 }
2004 EXPORT_SYMBOL(alloc_pages_exact);
2005
2006 /**
2007 * free_pages_exact - release memory allocated via alloc_pages_exact()
2008 * @virt: the value returned by alloc_pages_exact.
2009 * @size: size of allocation, same value as passed to alloc_pages_exact().
2010 *
2011 * Release the memory allocated by a previous call to alloc_pages_exact.
2012 */
2013 void free_pages_exact(void *virt, size_t size)
2014 {
2015 unsigned long addr = (unsigned long)virt;
2016 unsigned long end = addr + PAGE_ALIGN(size);
2017
2018 while (addr < end) {
2019 free_page(addr);
2020 addr += PAGE_SIZE;
2021 }
2022 }
2023 EXPORT_SYMBOL(free_pages_exact);
2024
2025 static unsigned int nr_free_zone_pages(int offset)
2026 {
2027 struct zoneref *z;
2028 struct zone *zone;
2029
2030 /* Just pick one node, since fallback list is circular */
2031 unsigned int sum = 0;
2032
2033 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2034
2035 for_each_zone_zonelist(zone, z, zonelist, offset) {
2036 unsigned long size = zone->present_pages;
2037 unsigned long high = high_wmark_pages(zone);
2038 if (size > high)
2039 sum += size - high;
2040 }
2041
2042 return sum;
2043 }
2044
2045 /*
2046 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2047 */
2048 unsigned int nr_free_buffer_pages(void)
2049 {
2050 return nr_free_zone_pages(gfp_zone(GFP_USER));
2051 }
2052 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2053
2054 /*
2055 * Amount of free RAM allocatable within all zones
2056 */
2057 unsigned int nr_free_pagecache_pages(void)
2058 {
2059 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2060 }
2061
2062 static inline void show_node(struct zone *zone)
2063 {
2064 if (NUMA_BUILD)
2065 printk("Node %d ", zone_to_nid(zone));
2066 }
2067
2068 void si_meminfo(struct sysinfo *val)
2069 {
2070 val->totalram = totalram_pages;
2071 val->sharedram = 0;
2072 val->freeram = global_page_state(NR_FREE_PAGES);
2073 val->bufferram = nr_blockdev_pages();
2074 val->totalhigh = totalhigh_pages;
2075 val->freehigh = nr_free_highpages();
2076 val->mem_unit = PAGE_SIZE;
2077 }
2078
2079 EXPORT_SYMBOL(si_meminfo);
2080
2081 #ifdef CONFIG_NUMA
2082 void si_meminfo_node(struct sysinfo *val, int nid)
2083 {
2084 pg_data_t *pgdat = NODE_DATA(nid);
2085
2086 val->totalram = pgdat->node_present_pages;
2087 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2088 #ifdef CONFIG_HIGHMEM
2089 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2090 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2091 NR_FREE_PAGES);
2092 #else
2093 val->totalhigh = 0;
2094 val->freehigh = 0;
2095 #endif
2096 val->mem_unit = PAGE_SIZE;
2097 }
2098 #endif
2099
2100 #define K(x) ((x) << (PAGE_SHIFT-10))
2101
2102 /*
2103 * Show free area list (used inside shift_scroll-lock stuff)
2104 * We also calculate the percentage fragmentation. We do this by counting the
2105 * memory on each free list with the exception of the first item on the list.
2106 */
2107 void show_free_areas(void)
2108 {
2109 int cpu;
2110 struct zone *zone;
2111
2112 for_each_populated_zone(zone) {
2113 show_node(zone);
2114 printk("%s per-cpu:\n", zone->name);
2115
2116 for_each_online_cpu(cpu) {
2117 struct per_cpu_pageset *pageset;
2118
2119 pageset = zone_pcp(zone, cpu);
2120
2121 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2122 cpu, pageset->pcp.high,
2123 pageset->pcp.batch, pageset->pcp.count);
2124 }
2125 }
2126
2127 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2128 " inactive_file:%lu"
2129 " unevictable:%lu"
2130 " dirty:%lu writeback:%lu unstable:%lu\n"
2131 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
2132 global_page_state(NR_ACTIVE_ANON),
2133 global_page_state(NR_ACTIVE_FILE),
2134 global_page_state(NR_INACTIVE_ANON),
2135 global_page_state(NR_INACTIVE_FILE),
2136 global_page_state(NR_UNEVICTABLE),
2137 global_page_state(NR_FILE_DIRTY),
2138 global_page_state(NR_WRITEBACK),
2139 global_page_state(NR_UNSTABLE_NFS),
2140 global_page_state(NR_FREE_PAGES),
2141 global_page_state(NR_SLAB_RECLAIMABLE) +
2142 global_page_state(NR_SLAB_UNRECLAIMABLE),
2143 global_page_state(NR_FILE_MAPPED),
2144 global_page_state(NR_PAGETABLE),
2145 global_page_state(NR_BOUNCE));
2146
2147 for_each_populated_zone(zone) {
2148 int i;
2149
2150 show_node(zone);
2151 printk("%s"
2152 " free:%lukB"
2153 " min:%lukB"
2154 " low:%lukB"
2155 " high:%lukB"
2156 " active_anon:%lukB"
2157 " inactive_anon:%lukB"
2158 " active_file:%lukB"
2159 " inactive_file:%lukB"
2160 " unevictable:%lukB"
2161 " present:%lukB"
2162 " pages_scanned:%lu"
2163 " all_unreclaimable? %s"
2164 "\n",
2165 zone->name,
2166 K(zone_page_state(zone, NR_FREE_PAGES)),
2167 K(min_wmark_pages(zone)),
2168 K(low_wmark_pages(zone)),
2169 K(high_wmark_pages(zone)),
2170 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2171 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2172 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2173 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2174 K(zone_page_state(zone, NR_UNEVICTABLE)),
2175 K(zone->present_pages),
2176 zone->pages_scanned,
2177 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2178 );
2179 printk("lowmem_reserve[]:");
2180 for (i = 0; i < MAX_NR_ZONES; i++)
2181 printk(" %lu", zone->lowmem_reserve[i]);
2182 printk("\n");
2183 }
2184
2185 for_each_populated_zone(zone) {
2186 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2187
2188 show_node(zone);
2189 printk("%s: ", zone->name);
2190
2191 spin_lock_irqsave(&zone->lock, flags);
2192 for (order = 0; order < MAX_ORDER; order++) {
2193 nr[order] = zone->free_area[order].nr_free;
2194 total += nr[order] << order;
2195 }
2196 spin_unlock_irqrestore(&zone->lock, flags);
2197 for (order = 0; order < MAX_ORDER; order++)
2198 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2199 printk("= %lukB\n", K(total));
2200 }
2201
2202 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2203
2204 show_swap_cache_info();
2205 }
2206
2207 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2208 {
2209 zoneref->zone = zone;
2210 zoneref->zone_idx = zone_idx(zone);
2211 }
2212
2213 /*
2214 * Builds allocation fallback zone lists.
2215 *
2216 * Add all populated zones of a node to the zonelist.
2217 */
2218 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2219 int nr_zones, enum zone_type zone_type)
2220 {
2221 struct zone *zone;
2222
2223 BUG_ON(zone_type >= MAX_NR_ZONES);
2224 zone_type++;
2225
2226 do {
2227 zone_type--;
2228 zone = pgdat->node_zones + zone_type;
2229 if (populated_zone(zone)) {
2230 zoneref_set_zone(zone,
2231 &zonelist->_zonerefs[nr_zones++]);
2232 check_highest_zone(zone_type);
2233 }
2234
2235 } while (zone_type);
2236 return nr_zones;
2237 }
2238
2239
2240 /*
2241 * zonelist_order:
2242 * 0 = automatic detection of better ordering.
2243 * 1 = order by ([node] distance, -zonetype)
2244 * 2 = order by (-zonetype, [node] distance)
2245 *
2246 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2247 * the same zonelist. So only NUMA can configure this param.
2248 */
2249 #define ZONELIST_ORDER_DEFAULT 0
2250 #define ZONELIST_ORDER_NODE 1
2251 #define ZONELIST_ORDER_ZONE 2
2252
2253 /* zonelist order in the kernel.
2254 * set_zonelist_order() will set this to NODE or ZONE.
2255 */
2256 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2257 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2258
2259
2260 #ifdef CONFIG_NUMA
2261 /* The value user specified ....changed by config */
2262 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2263 /* string for sysctl */
2264 #define NUMA_ZONELIST_ORDER_LEN 16
2265 char numa_zonelist_order[16] = "default";
2266
2267 /*
2268 * interface for configure zonelist ordering.
2269 * command line option "numa_zonelist_order"
2270 * = "[dD]efault - default, automatic configuration.
2271 * = "[nN]ode - order by node locality, then by zone within node
2272 * = "[zZ]one - order by zone, then by locality within zone
2273 */
2274
2275 static int __parse_numa_zonelist_order(char *s)
2276 {
2277 if (*s == 'd' || *s == 'D') {
2278 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2279 } else if (*s == 'n' || *s == 'N') {
2280 user_zonelist_order = ZONELIST_ORDER_NODE;
2281 } else if (*s == 'z' || *s == 'Z') {
2282 user_zonelist_order = ZONELIST_ORDER_ZONE;
2283 } else {
2284 printk(KERN_WARNING
2285 "Ignoring invalid numa_zonelist_order value: "
2286 "%s\n", s);
2287 return -EINVAL;
2288 }
2289 return 0;
2290 }
2291
2292 static __init int setup_numa_zonelist_order(char *s)
2293 {
2294 if (s)
2295 return __parse_numa_zonelist_order(s);
2296 return 0;
2297 }
2298 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2299
2300 /*
2301 * sysctl handler for numa_zonelist_order
2302 */
2303 int numa_zonelist_order_handler(ctl_table *table, int write,
2304 struct file *file, void __user *buffer, size_t *length,
2305 loff_t *ppos)
2306 {
2307 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2308 int ret;
2309
2310 if (write)
2311 strncpy(saved_string, (char*)table->data,
2312 NUMA_ZONELIST_ORDER_LEN);
2313 ret = proc_dostring(table, write, file, buffer, length, ppos);
2314 if (ret)
2315 return ret;
2316 if (write) {
2317 int oldval = user_zonelist_order;
2318 if (__parse_numa_zonelist_order((char*)table->data)) {
2319 /*
2320 * bogus value. restore saved string
2321 */
2322 strncpy((char*)table->data, saved_string,
2323 NUMA_ZONELIST_ORDER_LEN);
2324 user_zonelist_order = oldval;
2325 } else if (oldval != user_zonelist_order)
2326 build_all_zonelists();
2327 }
2328 return 0;
2329 }
2330
2331
2332 #define MAX_NODE_LOAD (nr_online_nodes)
2333 static int node_load[MAX_NUMNODES];
2334
2335 /**
2336 * find_next_best_node - find the next node that should appear in a given node's fallback list
2337 * @node: node whose fallback list we're appending
2338 * @used_node_mask: nodemask_t of already used nodes
2339 *
2340 * We use a number of factors to determine which is the next node that should
2341 * appear on a given node's fallback list. The node should not have appeared
2342 * already in @node's fallback list, and it should be the next closest node
2343 * according to the distance array (which contains arbitrary distance values
2344 * from each node to each node in the system), and should also prefer nodes
2345 * with no CPUs, since presumably they'll have very little allocation pressure
2346 * on them otherwise.
2347 * It returns -1 if no node is found.
2348 */
2349 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2350 {
2351 int n, val;
2352 int min_val = INT_MAX;
2353 int best_node = -1;
2354 const struct cpumask *tmp = cpumask_of_node(0);
2355
2356 /* Use the local node if we haven't already */
2357 if (!node_isset(node, *used_node_mask)) {
2358 node_set(node, *used_node_mask);
2359 return node;
2360 }
2361
2362 for_each_node_state(n, N_HIGH_MEMORY) {
2363
2364 /* Don't want a node to appear more than once */
2365 if (node_isset(n, *used_node_mask))
2366 continue;
2367
2368 /* Use the distance array to find the distance */
2369 val = node_distance(node, n);
2370
2371 /* Penalize nodes under us ("prefer the next node") */
2372 val += (n < node);
2373
2374 /* Give preference to headless and unused nodes */
2375 tmp = cpumask_of_node(n);
2376 if (!cpumask_empty(tmp))
2377 val += PENALTY_FOR_NODE_WITH_CPUS;
2378
2379 /* Slight preference for less loaded node */
2380 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2381 val += node_load[n];
2382
2383 if (val < min_val) {
2384 min_val = val;
2385 best_node = n;
2386 }
2387 }
2388
2389 if (best_node >= 0)
2390 node_set(best_node, *used_node_mask);
2391
2392 return best_node;
2393 }
2394
2395
2396 /*
2397 * Build zonelists ordered by node and zones within node.
2398 * This results in maximum locality--normal zone overflows into local
2399 * DMA zone, if any--but risks exhausting DMA zone.
2400 */
2401 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2402 {
2403 int j;
2404 struct zonelist *zonelist;
2405
2406 zonelist = &pgdat->node_zonelists[0];
2407 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2408 ;
2409 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2410 MAX_NR_ZONES - 1);
2411 zonelist->_zonerefs[j].zone = NULL;
2412 zonelist->_zonerefs[j].zone_idx = 0;
2413 }
2414
2415 /*
2416 * Build gfp_thisnode zonelists
2417 */
2418 static void build_thisnode_zonelists(pg_data_t *pgdat)
2419 {
2420 int j;
2421 struct zonelist *zonelist;
2422
2423 zonelist = &pgdat->node_zonelists[1];
2424 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2425 zonelist->_zonerefs[j].zone = NULL;
2426 zonelist->_zonerefs[j].zone_idx = 0;
2427 }
2428
2429 /*
2430 * Build zonelists ordered by zone and nodes within zones.
2431 * This results in conserving DMA zone[s] until all Normal memory is
2432 * exhausted, but results in overflowing to remote node while memory
2433 * may still exist in local DMA zone.
2434 */
2435 static int node_order[MAX_NUMNODES];
2436
2437 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2438 {
2439 int pos, j, node;
2440 int zone_type; /* needs to be signed */
2441 struct zone *z;
2442 struct zonelist *zonelist;
2443
2444 zonelist = &pgdat->node_zonelists[0];
2445 pos = 0;
2446 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2447 for (j = 0; j < nr_nodes; j++) {
2448 node = node_order[j];
2449 z = &NODE_DATA(node)->node_zones[zone_type];
2450 if (populated_zone(z)) {
2451 zoneref_set_zone(z,
2452 &zonelist->_zonerefs[pos++]);
2453 check_highest_zone(zone_type);
2454 }
2455 }
2456 }
2457 zonelist->_zonerefs[pos].zone = NULL;
2458 zonelist->_zonerefs[pos].zone_idx = 0;
2459 }
2460
2461 static int default_zonelist_order(void)
2462 {
2463 int nid, zone_type;
2464 unsigned long low_kmem_size,total_size;
2465 struct zone *z;
2466 int average_size;
2467 /*
2468 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2469 * If they are really small and used heavily, the system can fall
2470 * into OOM very easily.
2471 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2472 */
2473 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2474 low_kmem_size = 0;
2475 total_size = 0;
2476 for_each_online_node(nid) {
2477 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2478 z = &NODE_DATA(nid)->node_zones[zone_type];
2479 if (populated_zone(z)) {
2480 if (zone_type < ZONE_NORMAL)
2481 low_kmem_size += z->present_pages;
2482 total_size += z->present_pages;
2483 }
2484 }
2485 }
2486 if (!low_kmem_size || /* there are no DMA area. */
2487 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2488 return ZONELIST_ORDER_NODE;
2489 /*
2490 * look into each node's config.
2491 * If there is a node whose DMA/DMA32 memory is very big area on
2492 * local memory, NODE_ORDER may be suitable.
2493 */
2494 average_size = total_size /
2495 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2496 for_each_online_node(nid) {
2497 low_kmem_size = 0;
2498 total_size = 0;
2499 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2500 z = &NODE_DATA(nid)->node_zones[zone_type];
2501 if (populated_zone(z)) {
2502 if (zone_type < ZONE_NORMAL)
2503 low_kmem_size += z->present_pages;
2504 total_size += z->present_pages;
2505 }
2506 }
2507 if (low_kmem_size &&
2508 total_size > average_size && /* ignore small node */
2509 low_kmem_size > total_size * 70/100)
2510 return ZONELIST_ORDER_NODE;
2511 }
2512 return ZONELIST_ORDER_ZONE;
2513 }
2514
2515 static void set_zonelist_order(void)
2516 {
2517 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2518 current_zonelist_order = default_zonelist_order();
2519 else
2520 current_zonelist_order = user_zonelist_order;
2521 }
2522
2523 static void build_zonelists(pg_data_t *pgdat)
2524 {
2525 int j, node, load;
2526 enum zone_type i;
2527 nodemask_t used_mask;
2528 int local_node, prev_node;
2529 struct zonelist *zonelist;
2530 int order = current_zonelist_order;
2531
2532 /* initialize zonelists */
2533 for (i = 0; i < MAX_ZONELISTS; i++) {
2534 zonelist = pgdat->node_zonelists + i;
2535 zonelist->_zonerefs[0].zone = NULL;
2536 zonelist->_zonerefs[0].zone_idx = 0;
2537 }
2538
2539 /* NUMA-aware ordering of nodes */
2540 local_node = pgdat->node_id;
2541 load = nr_online_nodes;
2542 prev_node = local_node;
2543 nodes_clear(used_mask);
2544
2545 memset(node_order, 0, sizeof(node_order));
2546 j = 0;
2547
2548 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2549 int distance = node_distance(local_node, node);
2550
2551 /*
2552 * If another node is sufficiently far away then it is better
2553 * to reclaim pages in a zone before going off node.
2554 */
2555 if (distance > RECLAIM_DISTANCE)
2556 zone_reclaim_mode = 1;
2557
2558 /*
2559 * We don't want to pressure a particular node.
2560 * So adding penalty to the first node in same
2561 * distance group to make it round-robin.
2562 */
2563 if (distance != node_distance(local_node, prev_node))
2564 node_load[node] = load;
2565
2566 prev_node = node;
2567 load--;
2568 if (order == ZONELIST_ORDER_NODE)
2569 build_zonelists_in_node_order(pgdat, node);
2570 else
2571 node_order[j++] = node; /* remember order */
2572 }
2573
2574 if (order == ZONELIST_ORDER_ZONE) {
2575 /* calculate node order -- i.e., DMA last! */
2576 build_zonelists_in_zone_order(pgdat, j);
2577 }
2578
2579 build_thisnode_zonelists(pgdat);
2580 }
2581
2582 /* Construct the zonelist performance cache - see further mmzone.h */
2583 static void build_zonelist_cache(pg_data_t *pgdat)
2584 {
2585 struct zonelist *zonelist;
2586 struct zonelist_cache *zlc;
2587 struct zoneref *z;
2588
2589 zonelist = &pgdat->node_zonelists[0];
2590 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2591 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2592 for (z = zonelist->_zonerefs; z->zone; z++)
2593 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2594 }
2595
2596
2597 #else /* CONFIG_NUMA */
2598
2599 static void set_zonelist_order(void)
2600 {
2601 current_zonelist_order = ZONELIST_ORDER_ZONE;
2602 }
2603
2604 static void build_zonelists(pg_data_t *pgdat)
2605 {
2606 int node, local_node;
2607 enum zone_type j;
2608 struct zonelist *zonelist;
2609
2610 local_node = pgdat->node_id;
2611
2612 zonelist = &pgdat->node_zonelists[0];
2613 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2614
2615 /*
2616 * Now we build the zonelist so that it contains the zones
2617 * of all the other nodes.
2618 * We don't want to pressure a particular node, so when
2619 * building the zones for node N, we make sure that the
2620 * zones coming right after the local ones are those from
2621 * node N+1 (modulo N)
2622 */
2623 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2624 if (!node_online(node))
2625 continue;
2626 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2627 MAX_NR_ZONES - 1);
2628 }
2629 for (node = 0; node < local_node; node++) {
2630 if (!node_online(node))
2631 continue;
2632 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2633 MAX_NR_ZONES - 1);
2634 }
2635
2636 zonelist->_zonerefs[j].zone = NULL;
2637 zonelist->_zonerefs[j].zone_idx = 0;
2638 }
2639
2640 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2641 static void build_zonelist_cache(pg_data_t *pgdat)
2642 {
2643 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2644 }
2645
2646 #endif /* CONFIG_NUMA */
2647
2648 /* return values int ....just for stop_machine() */
2649 static int __build_all_zonelists(void *dummy)
2650 {
2651 int nid;
2652
2653 #ifdef CONFIG_NUMA
2654 memset(node_load, 0, sizeof(node_load));
2655 #endif
2656 for_each_online_node(nid) {
2657 pg_data_t *pgdat = NODE_DATA(nid);
2658
2659 build_zonelists(pgdat);
2660 build_zonelist_cache(pgdat);
2661 }
2662 return 0;
2663 }
2664
2665 void build_all_zonelists(void)
2666 {
2667 set_zonelist_order();
2668
2669 if (system_state == SYSTEM_BOOTING) {
2670 __build_all_zonelists(NULL);
2671 mminit_verify_zonelist();
2672 cpuset_init_current_mems_allowed();
2673 } else {
2674 /* we have to stop all cpus to guarantee there is no user
2675 of zonelist */
2676 stop_machine(__build_all_zonelists, NULL, NULL);
2677 /* cpuset refresh routine should be here */
2678 }
2679 vm_total_pages = nr_free_pagecache_pages();
2680 /*
2681 * Disable grouping by mobility if the number of pages in the
2682 * system is too low to allow the mechanism to work. It would be
2683 * more accurate, but expensive to check per-zone. This check is
2684 * made on memory-hotadd so a system can start with mobility
2685 * disabled and enable it later
2686 */
2687 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2688 page_group_by_mobility_disabled = 1;
2689 else
2690 page_group_by_mobility_disabled = 0;
2691
2692 printk("Built %i zonelists in %s order, mobility grouping %s. "
2693 "Total pages: %ld\n",
2694 nr_online_nodes,
2695 zonelist_order_name[current_zonelist_order],
2696 page_group_by_mobility_disabled ? "off" : "on",
2697 vm_total_pages);
2698 #ifdef CONFIG_NUMA
2699 printk("Policy zone: %s\n", zone_names[policy_zone]);
2700 #endif
2701 }
2702
2703 /*
2704 * Helper functions to size the waitqueue hash table.
2705 * Essentially these want to choose hash table sizes sufficiently
2706 * large so that collisions trying to wait on pages are rare.
2707 * But in fact, the number of active page waitqueues on typical
2708 * systems is ridiculously low, less than 200. So this is even
2709 * conservative, even though it seems large.
2710 *
2711 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2712 * waitqueues, i.e. the size of the waitq table given the number of pages.
2713 */
2714 #define PAGES_PER_WAITQUEUE 256
2715
2716 #ifndef CONFIG_MEMORY_HOTPLUG
2717 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2718 {
2719 unsigned long size = 1;
2720
2721 pages /= PAGES_PER_WAITQUEUE;
2722
2723 while (size < pages)
2724 size <<= 1;
2725
2726 /*
2727 * Once we have dozens or even hundreds of threads sleeping
2728 * on IO we've got bigger problems than wait queue collision.
2729 * Limit the size of the wait table to a reasonable size.
2730 */
2731 size = min(size, 4096UL);
2732
2733 return max(size, 4UL);
2734 }
2735 #else
2736 /*
2737 * A zone's size might be changed by hot-add, so it is not possible to determine
2738 * a suitable size for its wait_table. So we use the maximum size now.
2739 *
2740 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2741 *
2742 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2743 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2744 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2745 *
2746 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2747 * or more by the traditional way. (See above). It equals:
2748 *
2749 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2750 * ia64(16K page size) : = ( 8G + 4M)byte.
2751 * powerpc (64K page size) : = (32G +16M)byte.
2752 */
2753 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2754 {
2755 return 4096UL;
2756 }
2757 #endif
2758
2759 /*
2760 * This is an integer logarithm so that shifts can be used later
2761 * to extract the more random high bits from the multiplicative
2762 * hash function before the remainder is taken.
2763 */
2764 static inline unsigned long wait_table_bits(unsigned long size)
2765 {
2766 return ffz(~size);
2767 }
2768
2769 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2770
2771 /*
2772 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2773 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2774 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2775 * higher will lead to a bigger reserve which will get freed as contiguous
2776 * blocks as reclaim kicks in
2777 */
2778 static void setup_zone_migrate_reserve(struct zone *zone)
2779 {
2780 unsigned long start_pfn, pfn, end_pfn;
2781 struct page *page;
2782 unsigned long reserve, block_migratetype;
2783
2784 /* Get the start pfn, end pfn and the number of blocks to reserve */
2785 start_pfn = zone->zone_start_pfn;
2786 end_pfn = start_pfn + zone->spanned_pages;
2787 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2788 pageblock_order;
2789
2790 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2791 if (!pfn_valid(pfn))
2792 continue;
2793 page = pfn_to_page(pfn);
2794
2795 /* Watch out for overlapping nodes */
2796 if (page_to_nid(page) != zone_to_nid(zone))
2797 continue;
2798
2799 /* Blocks with reserved pages will never free, skip them. */
2800 if (PageReserved(page))
2801 continue;
2802
2803 block_migratetype = get_pageblock_migratetype(page);
2804
2805 /* If this block is reserved, account for it */
2806 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2807 reserve--;
2808 continue;
2809 }
2810
2811 /* Suitable for reserving if this block is movable */
2812 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2813 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2814 move_freepages_block(zone, page, MIGRATE_RESERVE);
2815 reserve--;
2816 continue;
2817 }
2818
2819 /*
2820 * If the reserve is met and this is a previous reserved block,
2821 * take it back
2822 */
2823 if (block_migratetype == MIGRATE_RESERVE) {
2824 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2825 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2826 }
2827 }
2828 }
2829
2830 /*
2831 * Initially all pages are reserved - free ones are freed
2832 * up by free_all_bootmem() once the early boot process is
2833 * done. Non-atomic initialization, single-pass.
2834 */
2835 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2836 unsigned long start_pfn, enum memmap_context context)
2837 {
2838 struct page *page;
2839 unsigned long end_pfn = start_pfn + size;
2840 unsigned long pfn;
2841 struct zone *z;
2842
2843 if (highest_memmap_pfn < end_pfn - 1)
2844 highest_memmap_pfn = end_pfn - 1;
2845
2846 z = &NODE_DATA(nid)->node_zones[zone];
2847 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2848 /*
2849 * There can be holes in boot-time mem_map[]s
2850 * handed to this function. They do not
2851 * exist on hotplugged memory.
2852 */
2853 if (context == MEMMAP_EARLY) {
2854 if (!early_pfn_valid(pfn))
2855 continue;
2856 if (!early_pfn_in_nid(pfn, nid))
2857 continue;
2858 }
2859 page = pfn_to_page(pfn);
2860 set_page_links(page, zone, nid, pfn);
2861 mminit_verify_page_links(page, zone, nid, pfn);
2862 init_page_count(page);
2863 reset_page_mapcount(page);
2864 SetPageReserved(page);
2865 /*
2866 * Mark the block movable so that blocks are reserved for
2867 * movable at startup. This will force kernel allocations
2868 * to reserve their blocks rather than leaking throughout
2869 * the address space during boot when many long-lived
2870 * kernel allocations are made. Later some blocks near
2871 * the start are marked MIGRATE_RESERVE by
2872 * setup_zone_migrate_reserve()
2873 *
2874 * bitmap is created for zone's valid pfn range. but memmap
2875 * can be created for invalid pages (for alignment)
2876 * check here not to call set_pageblock_migratetype() against
2877 * pfn out of zone.
2878 */
2879 if ((z->zone_start_pfn <= pfn)
2880 && (pfn < z->zone_start_pfn + z->spanned_pages)
2881 && !(pfn & (pageblock_nr_pages - 1)))
2882 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2883
2884 INIT_LIST_HEAD(&page->lru);
2885 #ifdef WANT_PAGE_VIRTUAL
2886 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2887 if (!is_highmem_idx(zone))
2888 set_page_address(page, __va(pfn << PAGE_SHIFT));
2889 #endif
2890 }
2891 }
2892
2893 static void __meminit zone_init_free_lists(struct zone *zone)
2894 {
2895 int order, t;
2896 for_each_migratetype_order(order, t) {
2897 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2898 zone->free_area[order].nr_free = 0;
2899 }
2900 }
2901
2902 #ifndef __HAVE_ARCH_MEMMAP_INIT
2903 #define memmap_init(size, nid, zone, start_pfn) \
2904 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2905 #endif
2906
2907 static int zone_batchsize(struct zone *zone)
2908 {
2909 #ifdef CONFIG_MMU
2910 int batch;
2911
2912 /*
2913 * The per-cpu-pages pools are set to around 1000th of the
2914 * size of the zone. But no more than 1/2 of a meg.
2915 *
2916 * OK, so we don't know how big the cache is. So guess.
2917 */
2918 batch = zone->present_pages / 1024;
2919 if (batch * PAGE_SIZE > 512 * 1024)
2920 batch = (512 * 1024) / PAGE_SIZE;
2921 batch /= 4; /* We effectively *= 4 below */
2922 if (batch < 1)
2923 batch = 1;
2924
2925 /*
2926 * Clamp the batch to a 2^n - 1 value. Having a power
2927 * of 2 value was found to be more likely to have
2928 * suboptimal cache aliasing properties in some cases.
2929 *
2930 * For example if 2 tasks are alternately allocating
2931 * batches of pages, one task can end up with a lot
2932 * of pages of one half of the possible page colors
2933 * and the other with pages of the other colors.
2934 */
2935 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2936
2937 return batch;
2938
2939 #else
2940 /* The deferral and batching of frees should be suppressed under NOMMU
2941 * conditions.
2942 *
2943 * The problem is that NOMMU needs to be able to allocate large chunks
2944 * of contiguous memory as there's no hardware page translation to
2945 * assemble apparent contiguous memory from discontiguous pages.
2946 *
2947 * Queueing large contiguous runs of pages for batching, however,
2948 * causes the pages to actually be freed in smaller chunks. As there
2949 * can be a significant delay between the individual batches being
2950 * recycled, this leads to the once large chunks of space being
2951 * fragmented and becoming unavailable for high-order allocations.
2952 */
2953 return 0;
2954 #endif
2955 }
2956
2957 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2958 {
2959 struct per_cpu_pages *pcp;
2960
2961 memset(p, 0, sizeof(*p));
2962
2963 pcp = &p->pcp;
2964 pcp->count = 0;
2965 pcp->high = 6 * batch;
2966 pcp->batch = max(1UL, 1 * batch);
2967 INIT_LIST_HEAD(&pcp->list);
2968 }
2969
2970 /*
2971 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2972 * to the value high for the pageset p.
2973 */
2974
2975 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2976 unsigned long high)
2977 {
2978 struct per_cpu_pages *pcp;
2979
2980 pcp = &p->pcp;
2981 pcp->high = high;
2982 pcp->batch = max(1UL, high/4);
2983 if ((high/4) > (PAGE_SHIFT * 8))
2984 pcp->batch = PAGE_SHIFT * 8;
2985 }
2986
2987
2988 #ifdef CONFIG_NUMA
2989 /*
2990 * Boot pageset table. One per cpu which is going to be used for all
2991 * zones and all nodes. The parameters will be set in such a way
2992 * that an item put on a list will immediately be handed over to
2993 * the buddy list. This is safe since pageset manipulation is done
2994 * with interrupts disabled.
2995 *
2996 * Some NUMA counter updates may also be caught by the boot pagesets.
2997 *
2998 * The boot_pagesets must be kept even after bootup is complete for
2999 * unused processors and/or zones. They do play a role for bootstrapping
3000 * hotplugged processors.
3001 *
3002 * zoneinfo_show() and maybe other functions do
3003 * not check if the processor is online before following the pageset pointer.
3004 * Other parts of the kernel may not check if the zone is available.
3005 */
3006 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3007
3008 /*
3009 * Dynamically allocate memory for the
3010 * per cpu pageset array in struct zone.
3011 */
3012 static int __cpuinit process_zones(int cpu)
3013 {
3014 struct zone *zone, *dzone;
3015 int node = cpu_to_node(cpu);
3016
3017 node_set_state(node, N_CPU); /* this node has a cpu */
3018
3019 for_each_populated_zone(zone) {
3020 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3021 GFP_KERNEL, node);
3022 if (!zone_pcp(zone, cpu))
3023 goto bad;
3024
3025 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3026
3027 if (percpu_pagelist_fraction)
3028 setup_pagelist_highmark(zone_pcp(zone, cpu),
3029 (zone->present_pages / percpu_pagelist_fraction));
3030 }
3031
3032 return 0;
3033 bad:
3034 for_each_zone(dzone) {
3035 if (!populated_zone(dzone))
3036 continue;
3037 if (dzone == zone)
3038 break;
3039 kfree(zone_pcp(dzone, cpu));
3040 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3041 }
3042 return -ENOMEM;
3043 }
3044
3045 static inline void free_zone_pagesets(int cpu)
3046 {
3047 struct zone *zone;
3048
3049 for_each_zone(zone) {
3050 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3051
3052 /* Free per_cpu_pageset if it is slab allocated */
3053 if (pset != &boot_pageset[cpu])
3054 kfree(pset);
3055 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3056 }
3057 }
3058
3059 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3060 unsigned long action,
3061 void *hcpu)
3062 {
3063 int cpu = (long)hcpu;
3064 int ret = NOTIFY_OK;
3065
3066 switch (action) {
3067 case CPU_UP_PREPARE:
3068 case CPU_UP_PREPARE_FROZEN:
3069 if (process_zones(cpu))
3070 ret = NOTIFY_BAD;
3071 break;
3072 case CPU_UP_CANCELED:
3073 case CPU_UP_CANCELED_FROZEN:
3074 case CPU_DEAD:
3075 case CPU_DEAD_FROZEN:
3076 free_zone_pagesets(cpu);
3077 break;
3078 default:
3079 break;
3080 }
3081 return ret;
3082 }
3083
3084 static struct notifier_block __cpuinitdata pageset_notifier =
3085 { &pageset_cpuup_callback, NULL, 0 };
3086
3087 void __init setup_per_cpu_pageset(void)
3088 {
3089 int err;
3090
3091 /* Initialize per_cpu_pageset for cpu 0.
3092 * A cpuup callback will do this for every cpu
3093 * as it comes online
3094 */
3095 err = process_zones(smp_processor_id());
3096 BUG_ON(err);
3097 register_cpu_notifier(&pageset_notifier);
3098 }
3099
3100 #endif
3101
3102 static noinline __init_refok
3103 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3104 {
3105 int i;
3106 struct pglist_data *pgdat = zone->zone_pgdat;
3107 size_t alloc_size;
3108
3109 /*
3110 * The per-page waitqueue mechanism uses hashed waitqueues
3111 * per zone.
3112 */
3113 zone->wait_table_hash_nr_entries =
3114 wait_table_hash_nr_entries(zone_size_pages);
3115 zone->wait_table_bits =
3116 wait_table_bits(zone->wait_table_hash_nr_entries);
3117 alloc_size = zone->wait_table_hash_nr_entries
3118 * sizeof(wait_queue_head_t);
3119
3120 if (!slab_is_available()) {
3121 zone->wait_table = (wait_queue_head_t *)
3122 alloc_bootmem_node(pgdat, alloc_size);
3123 } else {
3124 /*
3125 * This case means that a zone whose size was 0 gets new memory
3126 * via memory hot-add.
3127 * But it may be the case that a new node was hot-added. In
3128 * this case vmalloc() will not be able to use this new node's
3129 * memory - this wait_table must be initialized to use this new
3130 * node itself as well.
3131 * To use this new node's memory, further consideration will be
3132 * necessary.
3133 */
3134 zone->wait_table = vmalloc(alloc_size);
3135 }
3136 if (!zone->wait_table)
3137 return -ENOMEM;
3138
3139 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3140 init_waitqueue_head(zone->wait_table + i);
3141
3142 return 0;
3143 }
3144
3145 static int __zone_pcp_update(void *data)
3146 {
3147 struct zone *zone = data;
3148 int cpu;
3149 unsigned long batch = zone_batchsize(zone), flags;
3150
3151 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3152 struct per_cpu_pageset *pset;
3153 struct per_cpu_pages *pcp;
3154
3155 pset = zone_pcp(zone, cpu);
3156 pcp = &pset->pcp;
3157
3158 local_irq_save(flags);
3159 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3160 setup_pageset(pset, batch);
3161 local_irq_restore(flags);
3162 }
3163 return 0;
3164 }
3165
3166 void zone_pcp_update(struct zone *zone)
3167 {
3168 stop_machine(__zone_pcp_update, zone, NULL);
3169 }
3170
3171 static __meminit void zone_pcp_init(struct zone *zone)
3172 {
3173 int cpu;
3174 unsigned long batch = zone_batchsize(zone);
3175
3176 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3177 #ifdef CONFIG_NUMA
3178 /* Early boot. Slab allocator not functional yet */
3179 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3180 setup_pageset(&boot_pageset[cpu],0);
3181 #else
3182 setup_pageset(zone_pcp(zone,cpu), batch);
3183 #endif
3184 }
3185 if (zone->present_pages)
3186 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3187 zone->name, zone->present_pages, batch);
3188 }
3189
3190 __meminit int init_currently_empty_zone(struct zone *zone,
3191 unsigned long zone_start_pfn,
3192 unsigned long size,
3193 enum memmap_context context)
3194 {
3195 struct pglist_data *pgdat = zone->zone_pgdat;
3196 int ret;
3197 ret = zone_wait_table_init(zone, size);
3198 if (ret)
3199 return ret;
3200 pgdat->nr_zones = zone_idx(zone) + 1;
3201
3202 zone->zone_start_pfn = zone_start_pfn;
3203
3204 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3205 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3206 pgdat->node_id,
3207 (unsigned long)zone_idx(zone),
3208 zone_start_pfn, (zone_start_pfn + size));
3209
3210 zone_init_free_lists(zone);
3211
3212 return 0;
3213 }
3214
3215 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3216 /*
3217 * Basic iterator support. Return the first range of PFNs for a node
3218 * Note: nid == MAX_NUMNODES returns first region regardless of node
3219 */
3220 static int __meminit first_active_region_index_in_nid(int nid)
3221 {
3222 int i;
3223
3224 for (i = 0; i < nr_nodemap_entries; i++)
3225 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3226 return i;
3227
3228 return -1;
3229 }
3230
3231 /*
3232 * Basic iterator support. Return the next active range of PFNs for a node
3233 * Note: nid == MAX_NUMNODES returns next region regardless of node
3234 */
3235 static int __meminit next_active_region_index_in_nid(int index, int nid)
3236 {
3237 for (index = index + 1; index < nr_nodemap_entries; index++)
3238 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3239 return index;
3240
3241 return -1;
3242 }
3243
3244 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3245 /*
3246 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3247 * Architectures may implement their own version but if add_active_range()
3248 * was used and there are no special requirements, this is a convenient
3249 * alternative
3250 */
3251 int __meminit __early_pfn_to_nid(unsigned long pfn)
3252 {
3253 int i;
3254
3255 for (i = 0; i < nr_nodemap_entries; i++) {
3256 unsigned long start_pfn = early_node_map[i].start_pfn;
3257 unsigned long end_pfn = early_node_map[i].end_pfn;
3258
3259 if (start_pfn <= pfn && pfn < end_pfn)
3260 return early_node_map[i].nid;
3261 }
3262 /* This is a memory hole */
3263 return -1;
3264 }
3265 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3266
3267 int __meminit early_pfn_to_nid(unsigned long pfn)
3268 {
3269 int nid;
3270
3271 nid = __early_pfn_to_nid(pfn);
3272 if (nid >= 0)
3273 return nid;
3274 /* just returns 0 */
3275 return 0;
3276 }
3277
3278 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3279 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3280 {
3281 int nid;
3282
3283 nid = __early_pfn_to_nid(pfn);
3284 if (nid >= 0 && nid != node)
3285 return false;
3286 return true;
3287 }
3288 #endif
3289
3290 /* Basic iterator support to walk early_node_map[] */
3291 #define for_each_active_range_index_in_nid(i, nid) \
3292 for (i = first_active_region_index_in_nid(nid); i != -1; \
3293 i = next_active_region_index_in_nid(i, nid))
3294
3295 /**
3296 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3297 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3298 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3299 *
3300 * If an architecture guarantees that all ranges registered with
3301 * add_active_ranges() contain no holes and may be freed, this
3302 * this function may be used instead of calling free_bootmem() manually.
3303 */
3304 void __init free_bootmem_with_active_regions(int nid,
3305 unsigned long max_low_pfn)
3306 {
3307 int i;
3308
3309 for_each_active_range_index_in_nid(i, nid) {
3310 unsigned long size_pages = 0;
3311 unsigned long end_pfn = early_node_map[i].end_pfn;
3312
3313 if (early_node_map[i].start_pfn >= max_low_pfn)
3314 continue;
3315
3316 if (end_pfn > max_low_pfn)
3317 end_pfn = max_low_pfn;
3318
3319 size_pages = end_pfn - early_node_map[i].start_pfn;
3320 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3321 PFN_PHYS(early_node_map[i].start_pfn),
3322 size_pages << PAGE_SHIFT);
3323 }
3324 }
3325
3326 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3327 {
3328 int i;
3329 int ret;
3330
3331 for_each_active_range_index_in_nid(i, nid) {
3332 ret = work_fn(early_node_map[i].start_pfn,
3333 early_node_map[i].end_pfn, data);
3334 if (ret)
3335 break;
3336 }
3337 }
3338 /**
3339 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3340 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3341 *
3342 * If an architecture guarantees that all ranges registered with
3343 * add_active_ranges() contain no holes and may be freed, this
3344 * function may be used instead of calling memory_present() manually.
3345 */
3346 void __init sparse_memory_present_with_active_regions(int nid)
3347 {
3348 int i;
3349
3350 for_each_active_range_index_in_nid(i, nid)
3351 memory_present(early_node_map[i].nid,
3352 early_node_map[i].start_pfn,
3353 early_node_map[i].end_pfn);
3354 }
3355
3356 /**
3357 * get_pfn_range_for_nid - Return the start and end page frames for a node
3358 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3359 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3360 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3361 *
3362 * It returns the start and end page frame of a node based on information
3363 * provided by an arch calling add_active_range(). If called for a node
3364 * with no available memory, a warning is printed and the start and end
3365 * PFNs will be 0.
3366 */
3367 void __meminit get_pfn_range_for_nid(unsigned int nid,
3368 unsigned long *start_pfn, unsigned long *end_pfn)
3369 {
3370 int i;
3371 *start_pfn = -1UL;
3372 *end_pfn = 0;
3373
3374 for_each_active_range_index_in_nid(i, nid) {
3375 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3376 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3377 }
3378
3379 if (*start_pfn == -1UL)
3380 *start_pfn = 0;
3381 }
3382
3383 /*
3384 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3385 * assumption is made that zones within a node are ordered in monotonic
3386 * increasing memory addresses so that the "highest" populated zone is used
3387 */
3388 static void __init find_usable_zone_for_movable(void)
3389 {
3390 int zone_index;
3391 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3392 if (zone_index == ZONE_MOVABLE)
3393 continue;
3394
3395 if (arch_zone_highest_possible_pfn[zone_index] >
3396 arch_zone_lowest_possible_pfn[zone_index])
3397 break;
3398 }
3399
3400 VM_BUG_ON(zone_index == -1);
3401 movable_zone = zone_index;
3402 }
3403
3404 /*
3405 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3406 * because it is sized independant of architecture. Unlike the other zones,
3407 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3408 * in each node depending on the size of each node and how evenly kernelcore
3409 * is distributed. This helper function adjusts the zone ranges
3410 * provided by the architecture for a given node by using the end of the
3411 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3412 * zones within a node are in order of monotonic increases memory addresses
3413 */
3414 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3415 unsigned long zone_type,
3416 unsigned long node_start_pfn,
3417 unsigned long node_end_pfn,
3418 unsigned long *zone_start_pfn,
3419 unsigned long *zone_end_pfn)
3420 {
3421 /* Only adjust if ZONE_MOVABLE is on this node */
3422 if (zone_movable_pfn[nid]) {
3423 /* Size ZONE_MOVABLE */
3424 if (zone_type == ZONE_MOVABLE) {
3425 *zone_start_pfn = zone_movable_pfn[nid];
3426 *zone_end_pfn = min(node_end_pfn,
3427 arch_zone_highest_possible_pfn[movable_zone]);
3428
3429 /* Adjust for ZONE_MOVABLE starting within this range */
3430 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3431 *zone_end_pfn > zone_movable_pfn[nid]) {
3432 *zone_end_pfn = zone_movable_pfn[nid];
3433
3434 /* Check if this whole range is within ZONE_MOVABLE */
3435 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3436 *zone_start_pfn = *zone_end_pfn;
3437 }
3438 }
3439
3440 /*
3441 * Return the number of pages a zone spans in a node, including holes
3442 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3443 */
3444 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3445 unsigned long zone_type,
3446 unsigned long *ignored)
3447 {
3448 unsigned long node_start_pfn, node_end_pfn;
3449 unsigned long zone_start_pfn, zone_end_pfn;
3450
3451 /* Get the start and end of the node and zone */
3452 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3453 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3454 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3455 adjust_zone_range_for_zone_movable(nid, zone_type,
3456 node_start_pfn, node_end_pfn,
3457 &zone_start_pfn, &zone_end_pfn);
3458
3459 /* Check that this node has pages within the zone's required range */
3460 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3461 return 0;
3462
3463 /* Move the zone boundaries inside the node if necessary */
3464 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3465 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3466
3467 /* Return the spanned pages */
3468 return zone_end_pfn - zone_start_pfn;
3469 }
3470
3471 /*
3472 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3473 * then all holes in the requested range will be accounted for.
3474 */
3475 static unsigned long __meminit __absent_pages_in_range(int nid,
3476 unsigned long range_start_pfn,
3477 unsigned long range_end_pfn)
3478 {
3479 int i = 0;
3480 unsigned long prev_end_pfn = 0, hole_pages = 0;
3481 unsigned long start_pfn;
3482
3483 /* Find the end_pfn of the first active range of pfns in the node */
3484 i = first_active_region_index_in_nid(nid);
3485 if (i == -1)
3486 return 0;
3487
3488 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3489
3490 /* Account for ranges before physical memory on this node */
3491 if (early_node_map[i].start_pfn > range_start_pfn)
3492 hole_pages = prev_end_pfn - range_start_pfn;
3493
3494 /* Find all holes for the zone within the node */
3495 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3496
3497 /* No need to continue if prev_end_pfn is outside the zone */
3498 if (prev_end_pfn >= range_end_pfn)
3499 break;
3500
3501 /* Make sure the end of the zone is not within the hole */
3502 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3503 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3504
3505 /* Update the hole size cound and move on */
3506 if (start_pfn > range_start_pfn) {
3507 BUG_ON(prev_end_pfn > start_pfn);
3508 hole_pages += start_pfn - prev_end_pfn;
3509 }
3510 prev_end_pfn = early_node_map[i].end_pfn;
3511 }
3512
3513 /* Account for ranges past physical memory on this node */
3514 if (range_end_pfn > prev_end_pfn)
3515 hole_pages += range_end_pfn -
3516 max(range_start_pfn, prev_end_pfn);
3517
3518 return hole_pages;
3519 }
3520
3521 /**
3522 * absent_pages_in_range - Return number of page frames in holes within a range
3523 * @start_pfn: The start PFN to start searching for holes
3524 * @end_pfn: The end PFN to stop searching for holes
3525 *
3526 * It returns the number of pages frames in memory holes within a range.
3527 */
3528 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3529 unsigned long end_pfn)
3530 {
3531 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3532 }
3533
3534 /* Return the number of page frames in holes in a zone on a node */
3535 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3536 unsigned long zone_type,
3537 unsigned long *ignored)
3538 {
3539 unsigned long node_start_pfn, node_end_pfn;
3540 unsigned long zone_start_pfn, zone_end_pfn;
3541
3542 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3543 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3544 node_start_pfn);
3545 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3546 node_end_pfn);
3547
3548 adjust_zone_range_for_zone_movable(nid, zone_type,
3549 node_start_pfn, node_end_pfn,
3550 &zone_start_pfn, &zone_end_pfn);
3551 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3552 }
3553
3554 #else
3555 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3556 unsigned long zone_type,
3557 unsigned long *zones_size)
3558 {
3559 return zones_size[zone_type];
3560 }
3561
3562 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3563 unsigned long zone_type,
3564 unsigned long *zholes_size)
3565 {
3566 if (!zholes_size)
3567 return 0;
3568
3569 return zholes_size[zone_type];
3570 }
3571
3572 #endif
3573
3574 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3575 unsigned long *zones_size, unsigned long *zholes_size)
3576 {
3577 unsigned long realtotalpages, totalpages = 0;
3578 enum zone_type i;
3579
3580 for (i = 0; i < MAX_NR_ZONES; i++)
3581 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3582 zones_size);
3583 pgdat->node_spanned_pages = totalpages;
3584
3585 realtotalpages = totalpages;
3586 for (i = 0; i < MAX_NR_ZONES; i++)
3587 realtotalpages -=
3588 zone_absent_pages_in_node(pgdat->node_id, i,
3589 zholes_size);
3590 pgdat->node_present_pages = realtotalpages;
3591 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3592 realtotalpages);
3593 }
3594
3595 #ifndef CONFIG_SPARSEMEM
3596 /*
3597 * Calculate the size of the zone->blockflags rounded to an unsigned long
3598 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3599 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3600 * round what is now in bits to nearest long in bits, then return it in
3601 * bytes.
3602 */
3603 static unsigned long __init usemap_size(unsigned long zonesize)
3604 {
3605 unsigned long usemapsize;
3606
3607 usemapsize = roundup(zonesize, pageblock_nr_pages);
3608 usemapsize = usemapsize >> pageblock_order;
3609 usemapsize *= NR_PAGEBLOCK_BITS;
3610 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3611
3612 return usemapsize / 8;
3613 }
3614
3615 static void __init setup_usemap(struct pglist_data *pgdat,
3616 struct zone *zone, unsigned long zonesize)
3617 {
3618 unsigned long usemapsize = usemap_size(zonesize);
3619 zone->pageblock_flags = NULL;
3620 if (usemapsize)
3621 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3622 }
3623 #else
3624 static void inline setup_usemap(struct pglist_data *pgdat,
3625 struct zone *zone, unsigned long zonesize) {}
3626 #endif /* CONFIG_SPARSEMEM */
3627
3628 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3629
3630 /* Return a sensible default order for the pageblock size. */
3631 static inline int pageblock_default_order(void)
3632 {
3633 if (HPAGE_SHIFT > PAGE_SHIFT)
3634 return HUGETLB_PAGE_ORDER;
3635
3636 return MAX_ORDER-1;
3637 }
3638
3639 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3640 static inline void __init set_pageblock_order(unsigned int order)
3641 {
3642 /* Check that pageblock_nr_pages has not already been setup */
3643 if (pageblock_order)
3644 return;
3645
3646 /*
3647 * Assume the largest contiguous order of interest is a huge page.
3648 * This value may be variable depending on boot parameters on IA64
3649 */
3650 pageblock_order = order;
3651 }
3652 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3653
3654 /*
3655 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3656 * and pageblock_default_order() are unused as pageblock_order is set
3657 * at compile-time. See include/linux/pageblock-flags.h for the values of
3658 * pageblock_order based on the kernel config
3659 */
3660 static inline int pageblock_default_order(unsigned int order)
3661 {
3662 return MAX_ORDER-1;
3663 }
3664 #define set_pageblock_order(x) do {} while (0)
3665
3666 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3667
3668 /*
3669 * Set up the zone data structures:
3670 * - mark all pages reserved
3671 * - mark all memory queues empty
3672 * - clear the memory bitmaps
3673 */
3674 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3675 unsigned long *zones_size, unsigned long *zholes_size)
3676 {
3677 enum zone_type j;
3678 int nid = pgdat->node_id;
3679 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3680 int ret;
3681
3682 pgdat_resize_init(pgdat);
3683 pgdat->nr_zones = 0;
3684 init_waitqueue_head(&pgdat->kswapd_wait);
3685 pgdat->kswapd_max_order = 0;
3686 pgdat_page_cgroup_init(pgdat);
3687
3688 for (j = 0; j < MAX_NR_ZONES; j++) {
3689 struct zone *zone = pgdat->node_zones + j;
3690 unsigned long size, realsize, memmap_pages;
3691 enum lru_list l;
3692
3693 size = zone_spanned_pages_in_node(nid, j, zones_size);
3694 realsize = size - zone_absent_pages_in_node(nid, j,
3695 zholes_size);
3696
3697 /*
3698 * Adjust realsize so that it accounts for how much memory
3699 * is used by this zone for memmap. This affects the watermark
3700 * and per-cpu initialisations
3701 */
3702 memmap_pages =
3703 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3704 if (realsize >= memmap_pages) {
3705 realsize -= memmap_pages;
3706 if (memmap_pages)
3707 printk(KERN_DEBUG
3708 " %s zone: %lu pages used for memmap\n",
3709 zone_names[j], memmap_pages);
3710 } else
3711 printk(KERN_WARNING
3712 " %s zone: %lu pages exceeds realsize %lu\n",
3713 zone_names[j], memmap_pages, realsize);
3714
3715 /* Account for reserved pages */
3716 if (j == 0 && realsize > dma_reserve) {
3717 realsize -= dma_reserve;
3718 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3719 zone_names[0], dma_reserve);
3720 }
3721
3722 if (!is_highmem_idx(j))
3723 nr_kernel_pages += realsize;
3724 nr_all_pages += realsize;
3725
3726 zone->spanned_pages = size;
3727 zone->present_pages = realsize;
3728 #ifdef CONFIG_NUMA
3729 zone->node = nid;
3730 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3731 / 100;
3732 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3733 #endif
3734 zone->name = zone_names[j];
3735 spin_lock_init(&zone->lock);
3736 spin_lock_init(&zone->lru_lock);
3737 zone_seqlock_init(zone);
3738 zone->zone_pgdat = pgdat;
3739
3740 zone->prev_priority = DEF_PRIORITY;
3741
3742 zone_pcp_init(zone);
3743 for_each_lru(l) {
3744 INIT_LIST_HEAD(&zone->lru[l].list);
3745 zone->lru[l].nr_saved_scan = 0;
3746 }
3747 zone->reclaim_stat.recent_rotated[0] = 0;
3748 zone->reclaim_stat.recent_rotated[1] = 0;
3749 zone->reclaim_stat.recent_scanned[0] = 0;
3750 zone->reclaim_stat.recent_scanned[1] = 0;
3751 zap_zone_vm_stats(zone);
3752 zone->flags = 0;
3753 if (!size)
3754 continue;
3755
3756 set_pageblock_order(pageblock_default_order());
3757 setup_usemap(pgdat, zone, size);
3758 ret = init_currently_empty_zone(zone, zone_start_pfn,
3759 size, MEMMAP_EARLY);
3760 BUG_ON(ret);
3761 memmap_init(size, nid, j, zone_start_pfn);
3762 zone_start_pfn += size;
3763 }
3764 }
3765
3766 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3767 {
3768 /* Skip empty nodes */
3769 if (!pgdat->node_spanned_pages)
3770 return;
3771
3772 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3773 /* ia64 gets its own node_mem_map, before this, without bootmem */
3774 if (!pgdat->node_mem_map) {
3775 unsigned long size, start, end;
3776 struct page *map;
3777
3778 /*
3779 * The zone's endpoints aren't required to be MAX_ORDER
3780 * aligned but the node_mem_map endpoints must be in order
3781 * for the buddy allocator to function correctly.
3782 */
3783 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3784 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3785 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3786 size = (end - start) * sizeof(struct page);
3787 map = alloc_remap(pgdat->node_id, size);
3788 if (!map)
3789 map = alloc_bootmem_node(pgdat, size);
3790 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3791 }
3792 #ifndef CONFIG_NEED_MULTIPLE_NODES
3793 /*
3794 * With no DISCONTIG, the global mem_map is just set as node 0's
3795 */
3796 if (pgdat == NODE_DATA(0)) {
3797 mem_map = NODE_DATA(0)->node_mem_map;
3798 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3799 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3800 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3801 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3802 }
3803 #endif
3804 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3805 }
3806
3807 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3808 unsigned long node_start_pfn, unsigned long *zholes_size)
3809 {
3810 pg_data_t *pgdat = NODE_DATA(nid);
3811
3812 pgdat->node_id = nid;
3813 pgdat->node_start_pfn = node_start_pfn;
3814 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3815
3816 alloc_node_mem_map(pgdat);
3817 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3818 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3819 nid, (unsigned long)pgdat,
3820 (unsigned long)pgdat->node_mem_map);
3821 #endif
3822
3823 free_area_init_core(pgdat, zones_size, zholes_size);
3824 }
3825
3826 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3827
3828 #if MAX_NUMNODES > 1
3829 /*
3830 * Figure out the number of possible node ids.
3831 */
3832 static void __init setup_nr_node_ids(void)
3833 {
3834 unsigned int node;
3835 unsigned int highest = 0;
3836
3837 for_each_node_mask(node, node_possible_map)
3838 highest = node;
3839 nr_node_ids = highest + 1;
3840 }
3841 #else
3842 static inline void setup_nr_node_ids(void)
3843 {
3844 }
3845 #endif
3846
3847 /**
3848 * add_active_range - Register a range of PFNs backed by physical memory
3849 * @nid: The node ID the range resides on
3850 * @start_pfn: The start PFN of the available physical memory
3851 * @end_pfn: The end PFN of the available physical memory
3852 *
3853 * These ranges are stored in an early_node_map[] and later used by
3854 * free_area_init_nodes() to calculate zone sizes and holes. If the
3855 * range spans a memory hole, it is up to the architecture to ensure
3856 * the memory is not freed by the bootmem allocator. If possible
3857 * the range being registered will be merged with existing ranges.
3858 */
3859 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3860 unsigned long end_pfn)
3861 {
3862 int i;
3863
3864 mminit_dprintk(MMINIT_TRACE, "memory_register",
3865 "Entering add_active_range(%d, %#lx, %#lx) "
3866 "%d entries of %d used\n",
3867 nid, start_pfn, end_pfn,
3868 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3869
3870 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3871
3872 /* Merge with existing active regions if possible */
3873 for (i = 0; i < nr_nodemap_entries; i++) {
3874 if (early_node_map[i].nid != nid)
3875 continue;
3876
3877 /* Skip if an existing region covers this new one */
3878 if (start_pfn >= early_node_map[i].start_pfn &&
3879 end_pfn <= early_node_map[i].end_pfn)
3880 return;
3881
3882 /* Merge forward if suitable */
3883 if (start_pfn <= early_node_map[i].end_pfn &&
3884 end_pfn > early_node_map[i].end_pfn) {
3885 early_node_map[i].end_pfn = end_pfn;
3886 return;
3887 }
3888
3889 /* Merge backward if suitable */
3890 if (start_pfn < early_node_map[i].end_pfn &&
3891 end_pfn >= early_node_map[i].start_pfn) {
3892 early_node_map[i].start_pfn = start_pfn;
3893 return;
3894 }
3895 }
3896
3897 /* Check that early_node_map is large enough */
3898 if (i >= MAX_ACTIVE_REGIONS) {
3899 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3900 MAX_ACTIVE_REGIONS);
3901 return;
3902 }
3903
3904 early_node_map[i].nid = nid;
3905 early_node_map[i].start_pfn = start_pfn;
3906 early_node_map[i].end_pfn = end_pfn;
3907 nr_nodemap_entries = i + 1;
3908 }
3909
3910 /**
3911 * remove_active_range - Shrink an existing registered range of PFNs
3912 * @nid: The node id the range is on that should be shrunk
3913 * @start_pfn: The new PFN of the range
3914 * @end_pfn: The new PFN of the range
3915 *
3916 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3917 * The map is kept near the end physical page range that has already been
3918 * registered. This function allows an arch to shrink an existing registered
3919 * range.
3920 */
3921 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3922 unsigned long end_pfn)
3923 {
3924 int i, j;
3925 int removed = 0;
3926
3927 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3928 nid, start_pfn, end_pfn);
3929
3930 /* Find the old active region end and shrink */
3931 for_each_active_range_index_in_nid(i, nid) {
3932 if (early_node_map[i].start_pfn >= start_pfn &&
3933 early_node_map[i].end_pfn <= end_pfn) {
3934 /* clear it */
3935 early_node_map[i].start_pfn = 0;
3936 early_node_map[i].end_pfn = 0;
3937 removed = 1;
3938 continue;
3939 }
3940 if (early_node_map[i].start_pfn < start_pfn &&
3941 early_node_map[i].end_pfn > start_pfn) {
3942 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3943 early_node_map[i].end_pfn = start_pfn;
3944 if (temp_end_pfn > end_pfn)
3945 add_active_range(nid, end_pfn, temp_end_pfn);
3946 continue;
3947 }
3948 if (early_node_map[i].start_pfn >= start_pfn &&
3949 early_node_map[i].end_pfn > end_pfn &&
3950 early_node_map[i].start_pfn < end_pfn) {
3951 early_node_map[i].start_pfn = end_pfn;
3952 continue;
3953 }
3954 }
3955
3956 if (!removed)
3957 return;
3958
3959 /* remove the blank ones */
3960 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3961 if (early_node_map[i].nid != nid)
3962 continue;
3963 if (early_node_map[i].end_pfn)
3964 continue;
3965 /* we found it, get rid of it */
3966 for (j = i; j < nr_nodemap_entries - 1; j++)
3967 memcpy(&early_node_map[j], &early_node_map[j+1],
3968 sizeof(early_node_map[j]));
3969 j = nr_nodemap_entries - 1;
3970 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3971 nr_nodemap_entries--;
3972 }
3973 }
3974
3975 /**
3976 * remove_all_active_ranges - Remove all currently registered regions
3977 *
3978 * During discovery, it may be found that a table like SRAT is invalid
3979 * and an alternative discovery method must be used. This function removes
3980 * all currently registered regions.
3981 */
3982 void __init remove_all_active_ranges(void)
3983 {
3984 memset(early_node_map, 0, sizeof(early_node_map));
3985 nr_nodemap_entries = 0;
3986 }
3987
3988 /* Compare two active node_active_regions */
3989 static int __init cmp_node_active_region(const void *a, const void *b)
3990 {
3991 struct node_active_region *arange = (struct node_active_region *)a;
3992 struct node_active_region *brange = (struct node_active_region *)b;
3993
3994 /* Done this way to avoid overflows */
3995 if (arange->start_pfn > brange->start_pfn)
3996 return 1;
3997 if (arange->start_pfn < brange->start_pfn)
3998 return -1;
3999
4000 return 0;
4001 }
4002
4003 /* sort the node_map by start_pfn */
4004 static void __init sort_node_map(void)
4005 {
4006 sort(early_node_map, (size_t)nr_nodemap_entries,
4007 sizeof(struct node_active_region),
4008 cmp_node_active_region, NULL);
4009 }
4010
4011 /* Find the lowest pfn for a node */
4012 static unsigned long __init find_min_pfn_for_node(int nid)
4013 {
4014 int i;
4015 unsigned long min_pfn = ULONG_MAX;
4016
4017 /* Assuming a sorted map, the first range found has the starting pfn */
4018 for_each_active_range_index_in_nid(i, nid)
4019 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4020
4021 if (min_pfn == ULONG_MAX) {
4022 printk(KERN_WARNING
4023 "Could not find start_pfn for node %d\n", nid);
4024 return 0;
4025 }
4026
4027 return min_pfn;
4028 }
4029
4030 /**
4031 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4032 *
4033 * It returns the minimum PFN based on information provided via
4034 * add_active_range().
4035 */
4036 unsigned long __init find_min_pfn_with_active_regions(void)
4037 {
4038 return find_min_pfn_for_node(MAX_NUMNODES);
4039 }
4040
4041 /*
4042 * early_calculate_totalpages()
4043 * Sum pages in active regions for movable zone.
4044 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4045 */
4046 static unsigned long __init early_calculate_totalpages(void)
4047 {
4048 int i;
4049 unsigned long totalpages = 0;
4050
4051 for (i = 0; i < nr_nodemap_entries; i++) {
4052 unsigned long pages = early_node_map[i].end_pfn -
4053 early_node_map[i].start_pfn;
4054 totalpages += pages;
4055 if (pages)
4056 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4057 }
4058 return totalpages;
4059 }
4060
4061 /*
4062 * Find the PFN the Movable zone begins in each node. Kernel memory
4063 * is spread evenly between nodes as long as the nodes have enough
4064 * memory. When they don't, some nodes will have more kernelcore than
4065 * others
4066 */
4067 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4068 {
4069 int i, nid;
4070 unsigned long usable_startpfn;
4071 unsigned long kernelcore_node, kernelcore_remaining;
4072 /* save the state before borrow the nodemask */
4073 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4074 unsigned long totalpages = early_calculate_totalpages();
4075 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4076
4077 /*
4078 * If movablecore was specified, calculate what size of
4079 * kernelcore that corresponds so that memory usable for
4080 * any allocation type is evenly spread. If both kernelcore
4081 * and movablecore are specified, then the value of kernelcore
4082 * will be used for required_kernelcore if it's greater than
4083 * what movablecore would have allowed.
4084 */
4085 if (required_movablecore) {
4086 unsigned long corepages;
4087
4088 /*
4089 * Round-up so that ZONE_MOVABLE is at least as large as what
4090 * was requested by the user
4091 */
4092 required_movablecore =
4093 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4094 corepages = totalpages - required_movablecore;
4095
4096 required_kernelcore = max(required_kernelcore, corepages);
4097 }
4098
4099 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4100 if (!required_kernelcore)
4101 goto out;
4102
4103 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4104 find_usable_zone_for_movable();
4105 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4106
4107 restart:
4108 /* Spread kernelcore memory as evenly as possible throughout nodes */
4109 kernelcore_node = required_kernelcore / usable_nodes;
4110 for_each_node_state(nid, N_HIGH_MEMORY) {
4111 /*
4112 * Recalculate kernelcore_node if the division per node
4113 * now exceeds what is necessary to satisfy the requested
4114 * amount of memory for the kernel
4115 */
4116 if (required_kernelcore < kernelcore_node)
4117 kernelcore_node = required_kernelcore / usable_nodes;
4118
4119 /*
4120 * As the map is walked, we track how much memory is usable
4121 * by the kernel using kernelcore_remaining. When it is
4122 * 0, the rest of the node is usable by ZONE_MOVABLE
4123 */
4124 kernelcore_remaining = kernelcore_node;
4125
4126 /* Go through each range of PFNs within this node */
4127 for_each_active_range_index_in_nid(i, nid) {
4128 unsigned long start_pfn, end_pfn;
4129 unsigned long size_pages;
4130
4131 start_pfn = max(early_node_map[i].start_pfn,
4132 zone_movable_pfn[nid]);
4133 end_pfn = early_node_map[i].end_pfn;
4134 if (start_pfn >= end_pfn)
4135 continue;
4136
4137 /* Account for what is only usable for kernelcore */
4138 if (start_pfn < usable_startpfn) {
4139 unsigned long kernel_pages;
4140 kernel_pages = min(end_pfn, usable_startpfn)
4141 - start_pfn;
4142
4143 kernelcore_remaining -= min(kernel_pages,
4144 kernelcore_remaining);
4145 required_kernelcore -= min(kernel_pages,
4146 required_kernelcore);
4147
4148 /* Continue if range is now fully accounted */
4149 if (end_pfn <= usable_startpfn) {
4150
4151 /*
4152 * Push zone_movable_pfn to the end so
4153 * that if we have to rebalance
4154 * kernelcore across nodes, we will
4155 * not double account here
4156 */
4157 zone_movable_pfn[nid] = end_pfn;
4158 continue;
4159 }
4160 start_pfn = usable_startpfn;
4161 }
4162
4163 /*
4164 * The usable PFN range for ZONE_MOVABLE is from
4165 * start_pfn->end_pfn. Calculate size_pages as the
4166 * number of pages used as kernelcore
4167 */
4168 size_pages = end_pfn - start_pfn;
4169 if (size_pages > kernelcore_remaining)
4170 size_pages = kernelcore_remaining;
4171 zone_movable_pfn[nid] = start_pfn + size_pages;
4172
4173 /*
4174 * Some kernelcore has been met, update counts and
4175 * break if the kernelcore for this node has been
4176 * satisified
4177 */
4178 required_kernelcore -= min(required_kernelcore,
4179 size_pages);
4180 kernelcore_remaining -= size_pages;
4181 if (!kernelcore_remaining)
4182 break;
4183 }
4184 }
4185
4186 /*
4187 * If there is still required_kernelcore, we do another pass with one
4188 * less node in the count. This will push zone_movable_pfn[nid] further
4189 * along on the nodes that still have memory until kernelcore is
4190 * satisified
4191 */
4192 usable_nodes--;
4193 if (usable_nodes && required_kernelcore > usable_nodes)
4194 goto restart;
4195
4196 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4197 for (nid = 0; nid < MAX_NUMNODES; nid++)
4198 zone_movable_pfn[nid] =
4199 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4200
4201 out:
4202 /* restore the node_state */
4203 node_states[N_HIGH_MEMORY] = saved_node_state;
4204 }
4205
4206 /* Any regular memory on that node ? */
4207 static void check_for_regular_memory(pg_data_t *pgdat)
4208 {
4209 #ifdef CONFIG_HIGHMEM
4210 enum zone_type zone_type;
4211
4212 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4213 struct zone *zone = &pgdat->node_zones[zone_type];
4214 if (zone->present_pages)
4215 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4216 }
4217 #endif
4218 }
4219
4220 /**
4221 * free_area_init_nodes - Initialise all pg_data_t and zone data
4222 * @max_zone_pfn: an array of max PFNs for each zone
4223 *
4224 * This will call free_area_init_node() for each active node in the system.
4225 * Using the page ranges provided by add_active_range(), the size of each
4226 * zone in each node and their holes is calculated. If the maximum PFN
4227 * between two adjacent zones match, it is assumed that the zone is empty.
4228 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4229 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4230 * starts where the previous one ended. For example, ZONE_DMA32 starts
4231 * at arch_max_dma_pfn.
4232 */
4233 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4234 {
4235 unsigned long nid;
4236 int i;
4237
4238 /* Sort early_node_map as initialisation assumes it is sorted */
4239 sort_node_map();
4240
4241 /* Record where the zone boundaries are */
4242 memset(arch_zone_lowest_possible_pfn, 0,
4243 sizeof(arch_zone_lowest_possible_pfn));
4244 memset(arch_zone_highest_possible_pfn, 0,
4245 sizeof(arch_zone_highest_possible_pfn));
4246 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4247 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4248 for (i = 1; i < MAX_NR_ZONES; i++) {
4249 if (i == ZONE_MOVABLE)
4250 continue;
4251 arch_zone_lowest_possible_pfn[i] =
4252 arch_zone_highest_possible_pfn[i-1];
4253 arch_zone_highest_possible_pfn[i] =
4254 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4255 }
4256 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4257 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4258
4259 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4260 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4261 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4262
4263 /* Print out the zone ranges */
4264 printk("Zone PFN ranges:\n");
4265 for (i = 0; i < MAX_NR_ZONES; i++) {
4266 if (i == ZONE_MOVABLE)
4267 continue;
4268 printk(" %-8s %0#10lx -> %0#10lx\n",
4269 zone_names[i],
4270 arch_zone_lowest_possible_pfn[i],
4271 arch_zone_highest_possible_pfn[i]);
4272 }
4273
4274 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4275 printk("Movable zone start PFN for each node\n");
4276 for (i = 0; i < MAX_NUMNODES; i++) {
4277 if (zone_movable_pfn[i])
4278 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4279 }
4280
4281 /* Print out the early_node_map[] */
4282 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4283 for (i = 0; i < nr_nodemap_entries; i++)
4284 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4285 early_node_map[i].start_pfn,
4286 early_node_map[i].end_pfn);
4287
4288 /* Initialise every node */
4289 mminit_verify_pageflags_layout();
4290 setup_nr_node_ids();
4291 for_each_online_node(nid) {
4292 pg_data_t *pgdat = NODE_DATA(nid);
4293 free_area_init_node(nid, NULL,
4294 find_min_pfn_for_node(nid), NULL);
4295
4296 /* Any memory on that node */
4297 if (pgdat->node_present_pages)
4298 node_set_state(nid, N_HIGH_MEMORY);
4299 check_for_regular_memory(pgdat);
4300 }
4301 }
4302
4303 static int __init cmdline_parse_core(char *p, unsigned long *core)
4304 {
4305 unsigned long long coremem;
4306 if (!p)
4307 return -EINVAL;
4308
4309 coremem = memparse(p, &p);
4310 *core = coremem >> PAGE_SHIFT;
4311
4312 /* Paranoid check that UL is enough for the coremem value */
4313 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4314
4315 return 0;
4316 }
4317
4318 /*
4319 * kernelcore=size sets the amount of memory for use for allocations that
4320 * cannot be reclaimed or migrated.
4321 */
4322 static int __init cmdline_parse_kernelcore(char *p)
4323 {
4324 return cmdline_parse_core(p, &required_kernelcore);
4325 }
4326
4327 /*
4328 * movablecore=size sets the amount of memory for use for allocations that
4329 * can be reclaimed or migrated.
4330 */
4331 static int __init cmdline_parse_movablecore(char *p)
4332 {
4333 return cmdline_parse_core(p, &required_movablecore);
4334 }
4335
4336 early_param("kernelcore", cmdline_parse_kernelcore);
4337 early_param("movablecore", cmdline_parse_movablecore);
4338
4339 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4340
4341 /**
4342 * set_dma_reserve - set the specified number of pages reserved in the first zone
4343 * @new_dma_reserve: The number of pages to mark reserved
4344 *
4345 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4346 * In the DMA zone, a significant percentage may be consumed by kernel image
4347 * and other unfreeable allocations which can skew the watermarks badly. This
4348 * function may optionally be used to account for unfreeable pages in the
4349 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4350 * smaller per-cpu batchsize.
4351 */
4352 void __init set_dma_reserve(unsigned long new_dma_reserve)
4353 {
4354 dma_reserve = new_dma_reserve;
4355 }
4356
4357 #ifndef CONFIG_NEED_MULTIPLE_NODES
4358 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4359 EXPORT_SYMBOL(contig_page_data);
4360 #endif
4361
4362 void __init free_area_init(unsigned long *zones_size)
4363 {
4364 free_area_init_node(0, zones_size,
4365 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4366 }
4367
4368 static int page_alloc_cpu_notify(struct notifier_block *self,
4369 unsigned long action, void *hcpu)
4370 {
4371 int cpu = (unsigned long)hcpu;
4372
4373 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4374 drain_pages(cpu);
4375
4376 /*
4377 * Spill the event counters of the dead processor
4378 * into the current processors event counters.
4379 * This artificially elevates the count of the current
4380 * processor.
4381 */
4382 vm_events_fold_cpu(cpu);
4383
4384 /*
4385 * Zero the differential counters of the dead processor
4386 * so that the vm statistics are consistent.
4387 *
4388 * This is only okay since the processor is dead and cannot
4389 * race with what we are doing.
4390 */
4391 refresh_cpu_vm_stats(cpu);
4392 }
4393 return NOTIFY_OK;
4394 }
4395
4396 void __init page_alloc_init(void)
4397 {
4398 hotcpu_notifier(page_alloc_cpu_notify, 0);
4399 }
4400
4401 /*
4402 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4403 * or min_free_kbytes changes.
4404 */
4405 static void calculate_totalreserve_pages(void)
4406 {
4407 struct pglist_data *pgdat;
4408 unsigned long reserve_pages = 0;
4409 enum zone_type i, j;
4410
4411 for_each_online_pgdat(pgdat) {
4412 for (i = 0; i < MAX_NR_ZONES; i++) {
4413 struct zone *zone = pgdat->node_zones + i;
4414 unsigned long max = 0;
4415
4416 /* Find valid and maximum lowmem_reserve in the zone */
4417 for (j = i; j < MAX_NR_ZONES; j++) {
4418 if (zone->lowmem_reserve[j] > max)
4419 max = zone->lowmem_reserve[j];
4420 }
4421
4422 /* we treat the high watermark as reserved pages. */
4423 max += high_wmark_pages(zone);
4424
4425 if (max > zone->present_pages)
4426 max = zone->present_pages;
4427 reserve_pages += max;
4428 }
4429 }
4430 totalreserve_pages = reserve_pages;
4431 }
4432
4433 /*
4434 * setup_per_zone_lowmem_reserve - called whenever
4435 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4436 * has a correct pages reserved value, so an adequate number of
4437 * pages are left in the zone after a successful __alloc_pages().
4438 */
4439 static void setup_per_zone_lowmem_reserve(void)
4440 {
4441 struct pglist_data *pgdat;
4442 enum zone_type j, idx;
4443
4444 for_each_online_pgdat(pgdat) {
4445 for (j = 0; j < MAX_NR_ZONES; j++) {
4446 struct zone *zone = pgdat->node_zones + j;
4447 unsigned long present_pages = zone->present_pages;
4448
4449 zone->lowmem_reserve[j] = 0;
4450
4451 idx = j;
4452 while (idx) {
4453 struct zone *lower_zone;
4454
4455 idx--;
4456
4457 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4458 sysctl_lowmem_reserve_ratio[idx] = 1;
4459
4460 lower_zone = pgdat->node_zones + idx;
4461 lower_zone->lowmem_reserve[j] = present_pages /
4462 sysctl_lowmem_reserve_ratio[idx];
4463 present_pages += lower_zone->present_pages;
4464 }
4465 }
4466 }
4467
4468 /* update totalreserve_pages */
4469 calculate_totalreserve_pages();
4470 }
4471
4472 /**
4473 * setup_per_zone_wmarks - called when min_free_kbytes changes
4474 * or when memory is hot-{added|removed}
4475 *
4476 * Ensures that the watermark[min,low,high] values for each zone are set
4477 * correctly with respect to min_free_kbytes.
4478 */
4479 void setup_per_zone_wmarks(void)
4480 {
4481 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4482 unsigned long lowmem_pages = 0;
4483 struct zone *zone;
4484 unsigned long flags;
4485
4486 /* Calculate total number of !ZONE_HIGHMEM pages */
4487 for_each_zone(zone) {
4488 if (!is_highmem(zone))
4489 lowmem_pages += zone->present_pages;
4490 }
4491
4492 for_each_zone(zone) {
4493 u64 tmp;
4494
4495 spin_lock_irqsave(&zone->lock, flags);
4496 tmp = (u64)pages_min * zone->present_pages;
4497 do_div(tmp, lowmem_pages);
4498 if (is_highmem(zone)) {
4499 /*
4500 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4501 * need highmem pages, so cap pages_min to a small
4502 * value here.
4503 *
4504 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4505 * deltas controls asynch page reclaim, and so should
4506 * not be capped for highmem.
4507 */
4508 int min_pages;
4509
4510 min_pages = zone->present_pages / 1024;
4511 if (min_pages < SWAP_CLUSTER_MAX)
4512 min_pages = SWAP_CLUSTER_MAX;
4513 if (min_pages > 128)
4514 min_pages = 128;
4515 zone->watermark[WMARK_MIN] = min_pages;
4516 } else {
4517 /*
4518 * If it's a lowmem zone, reserve a number of pages
4519 * proportionate to the zone's size.
4520 */
4521 zone->watermark[WMARK_MIN] = tmp;
4522 }
4523
4524 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4525 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4526 setup_zone_migrate_reserve(zone);
4527 spin_unlock_irqrestore(&zone->lock, flags);
4528 }
4529
4530 /* update totalreserve_pages */
4531 calculate_totalreserve_pages();
4532 }
4533
4534 /**
4535 * The inactive anon list should be small enough that the VM never has to
4536 * do too much work, but large enough that each inactive page has a chance
4537 * to be referenced again before it is swapped out.
4538 *
4539 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4540 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4541 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4542 * the anonymous pages are kept on the inactive list.
4543 *
4544 * total target max
4545 * memory ratio inactive anon
4546 * -------------------------------------
4547 * 10MB 1 5MB
4548 * 100MB 1 50MB
4549 * 1GB 3 250MB
4550 * 10GB 10 0.9GB
4551 * 100GB 31 3GB
4552 * 1TB 101 10GB
4553 * 10TB 320 32GB
4554 */
4555 void calculate_zone_inactive_ratio(struct zone *zone)
4556 {
4557 unsigned int gb, ratio;
4558
4559 /* Zone size in gigabytes */
4560 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4561 if (gb)
4562 ratio = int_sqrt(10 * gb);
4563 else
4564 ratio = 1;
4565
4566 zone->inactive_ratio = ratio;
4567 }
4568
4569 static void __init setup_per_zone_inactive_ratio(void)
4570 {
4571 struct zone *zone;
4572
4573 for_each_zone(zone)
4574 calculate_zone_inactive_ratio(zone);
4575 }
4576
4577 /*
4578 * Initialise min_free_kbytes.
4579 *
4580 * For small machines we want it small (128k min). For large machines
4581 * we want it large (64MB max). But it is not linear, because network
4582 * bandwidth does not increase linearly with machine size. We use
4583 *
4584 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4585 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4586 *
4587 * which yields
4588 *
4589 * 16MB: 512k
4590 * 32MB: 724k
4591 * 64MB: 1024k
4592 * 128MB: 1448k
4593 * 256MB: 2048k
4594 * 512MB: 2896k
4595 * 1024MB: 4096k
4596 * 2048MB: 5792k
4597 * 4096MB: 8192k
4598 * 8192MB: 11584k
4599 * 16384MB: 16384k
4600 */
4601 static int __init init_per_zone_wmark_min(void)
4602 {
4603 unsigned long lowmem_kbytes;
4604
4605 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4606
4607 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4608 if (min_free_kbytes < 128)
4609 min_free_kbytes = 128;
4610 if (min_free_kbytes > 65536)
4611 min_free_kbytes = 65536;
4612 setup_per_zone_wmarks();
4613 setup_per_zone_lowmem_reserve();
4614 setup_per_zone_inactive_ratio();
4615 return 0;
4616 }
4617 module_init(init_per_zone_wmark_min)
4618
4619 /*
4620 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4621 * that we can call two helper functions whenever min_free_kbytes
4622 * changes.
4623 */
4624 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4625 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4626 {
4627 proc_dointvec(table, write, file, buffer, length, ppos);
4628 if (write)
4629 setup_per_zone_wmarks();
4630 return 0;
4631 }
4632
4633 #ifdef CONFIG_NUMA
4634 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4635 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4636 {
4637 struct zone *zone;
4638 int rc;
4639
4640 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4641 if (rc)
4642 return rc;
4643
4644 for_each_zone(zone)
4645 zone->min_unmapped_pages = (zone->present_pages *
4646 sysctl_min_unmapped_ratio) / 100;
4647 return 0;
4648 }
4649
4650 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4651 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4652 {
4653 struct zone *zone;
4654 int rc;
4655
4656 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4657 if (rc)
4658 return rc;
4659
4660 for_each_zone(zone)
4661 zone->min_slab_pages = (zone->present_pages *
4662 sysctl_min_slab_ratio) / 100;
4663 return 0;
4664 }
4665 #endif
4666
4667 /*
4668 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4669 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4670 * whenever sysctl_lowmem_reserve_ratio changes.
4671 *
4672 * The reserve ratio obviously has absolutely no relation with the
4673 * minimum watermarks. The lowmem reserve ratio can only make sense
4674 * if in function of the boot time zone sizes.
4675 */
4676 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4677 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4678 {
4679 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4680 setup_per_zone_lowmem_reserve();
4681 return 0;
4682 }
4683
4684 /*
4685 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4686 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4687 * can have before it gets flushed back to buddy allocator.
4688 */
4689
4690 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4691 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4692 {
4693 struct zone *zone;
4694 unsigned int cpu;
4695 int ret;
4696
4697 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4698 if (!write || (ret == -EINVAL))
4699 return ret;
4700 for_each_populated_zone(zone) {
4701 for_each_online_cpu(cpu) {
4702 unsigned long high;
4703 high = zone->present_pages / percpu_pagelist_fraction;
4704 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4705 }
4706 }
4707 return 0;
4708 }
4709
4710 int hashdist = HASHDIST_DEFAULT;
4711
4712 #ifdef CONFIG_NUMA
4713 static int __init set_hashdist(char *str)
4714 {
4715 if (!str)
4716 return 0;
4717 hashdist = simple_strtoul(str, &str, 0);
4718 return 1;
4719 }
4720 __setup("hashdist=", set_hashdist);
4721 #endif
4722
4723 /*
4724 * allocate a large system hash table from bootmem
4725 * - it is assumed that the hash table must contain an exact power-of-2
4726 * quantity of entries
4727 * - limit is the number of hash buckets, not the total allocation size
4728 */
4729 void *__init alloc_large_system_hash(const char *tablename,
4730 unsigned long bucketsize,
4731 unsigned long numentries,
4732 int scale,
4733 int flags,
4734 unsigned int *_hash_shift,
4735 unsigned int *_hash_mask,
4736 unsigned long limit)
4737 {
4738 unsigned long long max = limit;
4739 unsigned long log2qty, size;
4740 void *table = NULL;
4741
4742 /* allow the kernel cmdline to have a say */
4743 if (!numentries) {
4744 /* round applicable memory size up to nearest megabyte */
4745 numentries = nr_kernel_pages;
4746 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4747 numentries >>= 20 - PAGE_SHIFT;
4748 numentries <<= 20 - PAGE_SHIFT;
4749
4750 /* limit to 1 bucket per 2^scale bytes of low memory */
4751 if (scale > PAGE_SHIFT)
4752 numentries >>= (scale - PAGE_SHIFT);
4753 else
4754 numentries <<= (PAGE_SHIFT - scale);
4755
4756 /* Make sure we've got at least a 0-order allocation.. */
4757 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4758 numentries = PAGE_SIZE / bucketsize;
4759 }
4760 numentries = roundup_pow_of_two(numentries);
4761
4762 /* limit allocation size to 1/16 total memory by default */
4763 if (max == 0) {
4764 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4765 do_div(max, bucketsize);
4766 }
4767
4768 if (numentries > max)
4769 numentries = max;
4770
4771 log2qty = ilog2(numentries);
4772
4773 do {
4774 size = bucketsize << log2qty;
4775 if (flags & HASH_EARLY)
4776 table = alloc_bootmem_nopanic(size);
4777 else if (hashdist)
4778 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4779 else {
4780 /*
4781 * If bucketsize is not a power-of-two, we may free
4782 * some pages at the end of hash table which
4783 * alloc_pages_exact() automatically does
4784 */
4785 if (get_order(size) < MAX_ORDER) {
4786 table = alloc_pages_exact(size, GFP_ATOMIC);
4787 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4788 }
4789 }
4790 } while (!table && size > PAGE_SIZE && --log2qty);
4791
4792 if (!table)
4793 panic("Failed to allocate %s hash table\n", tablename);
4794
4795 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4796 tablename,
4797 (1U << log2qty),
4798 ilog2(size) - PAGE_SHIFT,
4799 size);
4800
4801 if (_hash_shift)
4802 *_hash_shift = log2qty;
4803 if (_hash_mask)
4804 *_hash_mask = (1 << log2qty) - 1;
4805
4806 return table;
4807 }
4808
4809 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4810 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4811 unsigned long pfn)
4812 {
4813 #ifdef CONFIG_SPARSEMEM
4814 return __pfn_to_section(pfn)->pageblock_flags;
4815 #else
4816 return zone->pageblock_flags;
4817 #endif /* CONFIG_SPARSEMEM */
4818 }
4819
4820 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4821 {
4822 #ifdef CONFIG_SPARSEMEM
4823 pfn &= (PAGES_PER_SECTION-1);
4824 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4825 #else
4826 pfn = pfn - zone->zone_start_pfn;
4827 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4828 #endif /* CONFIG_SPARSEMEM */
4829 }
4830
4831 /**
4832 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4833 * @page: The page within the block of interest
4834 * @start_bitidx: The first bit of interest to retrieve
4835 * @end_bitidx: The last bit of interest
4836 * returns pageblock_bits flags
4837 */
4838 unsigned long get_pageblock_flags_group(struct page *page,
4839 int start_bitidx, int end_bitidx)
4840 {
4841 struct zone *zone;
4842 unsigned long *bitmap;
4843 unsigned long pfn, bitidx;
4844 unsigned long flags = 0;
4845 unsigned long value = 1;
4846
4847 zone = page_zone(page);
4848 pfn = page_to_pfn(page);
4849 bitmap = get_pageblock_bitmap(zone, pfn);
4850 bitidx = pfn_to_bitidx(zone, pfn);
4851
4852 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4853 if (test_bit(bitidx + start_bitidx, bitmap))
4854 flags |= value;
4855
4856 return flags;
4857 }
4858
4859 /**
4860 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4861 * @page: The page within the block of interest
4862 * @start_bitidx: The first bit of interest
4863 * @end_bitidx: The last bit of interest
4864 * @flags: The flags to set
4865 */
4866 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4867 int start_bitidx, int end_bitidx)
4868 {
4869 struct zone *zone;
4870 unsigned long *bitmap;
4871 unsigned long pfn, bitidx;
4872 unsigned long value = 1;
4873
4874 zone = page_zone(page);
4875 pfn = page_to_pfn(page);
4876 bitmap = get_pageblock_bitmap(zone, pfn);
4877 bitidx = pfn_to_bitidx(zone, pfn);
4878 VM_BUG_ON(pfn < zone->zone_start_pfn);
4879 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4880
4881 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4882 if (flags & value)
4883 __set_bit(bitidx + start_bitidx, bitmap);
4884 else
4885 __clear_bit(bitidx + start_bitidx, bitmap);
4886 }
4887
4888 /*
4889 * This is designed as sub function...plz see page_isolation.c also.
4890 * set/clear page block's type to be ISOLATE.
4891 * page allocater never alloc memory from ISOLATE block.
4892 */
4893
4894 int set_migratetype_isolate(struct page *page)
4895 {
4896 struct zone *zone;
4897 unsigned long flags;
4898 int ret = -EBUSY;
4899
4900 zone = page_zone(page);
4901 spin_lock_irqsave(&zone->lock, flags);
4902 /*
4903 * In future, more migrate types will be able to be isolation target.
4904 */
4905 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4906 goto out;
4907 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4908 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4909 ret = 0;
4910 out:
4911 spin_unlock_irqrestore(&zone->lock, flags);
4912 if (!ret)
4913 drain_all_pages();
4914 return ret;
4915 }
4916
4917 void unset_migratetype_isolate(struct page *page)
4918 {
4919 struct zone *zone;
4920 unsigned long flags;
4921 zone = page_zone(page);
4922 spin_lock_irqsave(&zone->lock, flags);
4923 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4924 goto out;
4925 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4926 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4927 out:
4928 spin_unlock_irqrestore(&zone->lock, flags);
4929 }
4930
4931 #ifdef CONFIG_MEMORY_HOTREMOVE
4932 /*
4933 * All pages in the range must be isolated before calling this.
4934 */
4935 void
4936 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4937 {
4938 struct page *page;
4939 struct zone *zone;
4940 int order, i;
4941 unsigned long pfn;
4942 unsigned long flags;
4943 /* find the first valid pfn */
4944 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4945 if (pfn_valid(pfn))
4946 break;
4947 if (pfn == end_pfn)
4948 return;
4949 zone = page_zone(pfn_to_page(pfn));
4950 spin_lock_irqsave(&zone->lock, flags);
4951 pfn = start_pfn;
4952 while (pfn < end_pfn) {
4953 if (!pfn_valid(pfn)) {
4954 pfn++;
4955 continue;
4956 }
4957 page = pfn_to_page(pfn);
4958 BUG_ON(page_count(page));
4959 BUG_ON(!PageBuddy(page));
4960 order = page_order(page);
4961 #ifdef CONFIG_DEBUG_VM
4962 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4963 pfn, 1 << order, end_pfn);
4964 #endif
4965 list_del(&page->lru);
4966 rmv_page_order(page);
4967 zone->free_area[order].nr_free--;
4968 __mod_zone_page_state(zone, NR_FREE_PAGES,
4969 - (1UL << order));
4970 for (i = 0; i < (1 << order); i++)
4971 SetPageReserved((page+i));
4972 pfn += (1 << order);
4973 }
4974 spin_unlock_irqrestore(&zone->lock, flags);
4975 }
4976 #endif
This page took 0.134105 seconds and 6 git commands to generate.