[PATCH] mm: cleanup zone_pcp
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 /*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57
58 static void fastcall free_hot_cold_page(struct page *page, int cold);
59
60 /*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
70 */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
72
73 EXPORT_SYMBOL(totalram_pages);
74
75 /*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
81
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
84
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
87
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
90 {
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
94
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
104 }
105
106 static int page_is_consistent(struct zone *zone, struct page *page)
107 {
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
110 return 0;
111 #endif
112 if (zone != page_zone(page))
113 return 0;
114
115 return 1;
116 }
117 /*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120 static int bad_range(struct zone *zone, struct page *page)
121 {
122 if (page_outside_zone_boundaries(zone, page))
123 return 1;
124 if (!page_is_consistent(zone, page))
125 return 1;
126
127 return 0;
128 }
129
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
132 {
133 return 0;
134 }
135 #endif
136
137 static void bad_page(struct page *page)
138 {
139 printk(KERN_EMERG "Bad page state in process '%s'\n"
140 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 "Trying to fix it up, but a reboot is needed\n"
142 "Backtrace:\n",
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
146 dump_stack();
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
149 1 << PG_locked |
150 1 << PG_active |
151 1 << PG_dirty |
152 1 << PG_reclaim |
153 1 << PG_slab |
154 1 << PG_swapcache |
155 1 << PG_writeback );
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
159 add_taint(TAINT_BAD_PAGE);
160 }
161
162 /*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
172 * The first tail page's ->mapping, if non-zero, holds the address of the
173 * compound page's put_page() function.
174 *
175 * The order of the allocation is stored in the first tail page's ->index
176 * This is only for debug at present. This usage means that zero-order pages
177 * may not be compound.
178 */
179 static void prep_compound_page(struct page *page, unsigned long order)
180 {
181 int i;
182 int nr_pages = 1 << order;
183
184 page[1].mapping = NULL;
185 page[1].index = order;
186 for (i = 0; i < nr_pages; i++) {
187 struct page *p = page + i;
188
189 SetPageCompound(p);
190 set_page_private(p, (unsigned long)page);
191 }
192 }
193
194 static void destroy_compound_page(struct page *page, unsigned long order)
195 {
196 int i;
197 int nr_pages = 1 << order;
198
199 if (unlikely(page[1].index != order))
200 bad_page(page);
201
202 for (i = 0; i < nr_pages; i++) {
203 struct page *p = page + i;
204
205 if (unlikely(!PageCompound(p) |
206 (page_private(p) != (unsigned long)page)))
207 bad_page(page);
208 ClearPageCompound(p);
209 }
210 }
211
212 /*
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
216 */
217 static inline unsigned long page_order(struct page *page) {
218 return page_private(page);
219 }
220
221 static inline void set_page_order(struct page *page, int order) {
222 set_page_private(page, order);
223 __SetPagePrivate(page);
224 }
225
226 static inline void rmv_page_order(struct page *page)
227 {
228 __ClearPagePrivate(page);
229 set_page_private(page, 0);
230 }
231
232 /*
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
235 *
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
242 *
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
246 *
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
248 */
249 static inline struct page *
250 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
251 {
252 unsigned long buddy_idx = page_idx ^ (1 << order);
253
254 return page + (buddy_idx - page_idx);
255 }
256
257 static inline unsigned long
258 __find_combined_index(unsigned long page_idx, unsigned int order)
259 {
260 return (page_idx & ~(1 << order));
261 }
262
263 /*
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
270 * for recording page's order, we use page_private(page) and PG_private.
271 *
272 */
273 static inline int page_is_buddy(struct page *page, int order)
274 {
275 #ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278 #endif
279
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
282 page_count(page) == 0)
283 return 1;
284 return 0;
285 }
286
287 /*
288 * Freeing function for a buddy system allocator.
289 *
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
301 * order is recorded in page_private(page) field.
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
307 *
308 * -- wli
309 */
310
311 static inline void __free_pages_bulk (struct page *page,
312 struct zone *zone, unsigned int order)
313 {
314 unsigned long page_idx;
315 int order_size = 1 << order;
316
317 if (unlikely(PageCompound(page)))
318 destroy_compound_page(page, order);
319
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
321
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
324
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
330
331 buddy = __page_find_buddy(page, page_idx, order);
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
334
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
339 combined_idx = __find_combined_index(page_idx, order);
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
343 }
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
347 }
348
349 static inline int free_pages_check(struct page *page)
350 {
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
362 1 << PG_writeback |
363 1 << PG_reserved ))))
364 bad_page(page);
365 if (PageDirty(page))
366 __ClearPageDirty(page);
367 /*
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
371 */
372 return PageReserved(page);
373 }
374
375 /*
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
378 * count is the number of pages to free.
379 *
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
382 *
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
385 */
386 static int
387 free_pages_bulk(struct zone *zone, int count,
388 struct list_head *list, unsigned int order)
389 {
390 struct page *page = NULL;
391 int ret = 0;
392
393 spin_lock(&zone->lock);
394 zone->all_unreclaimable = 0;
395 zone->pages_scanned = 0;
396 while (!list_empty(list) && count--) {
397 page = list_entry(list->prev, struct page, lru);
398 /* have to delete it as __free_pages_bulk list manipulates */
399 list_del(&page->lru);
400 __free_pages_bulk(page, zone, order);
401 ret++;
402 }
403 spin_unlock(&zone->lock);
404 return ret;
405 }
406
407 void __free_pages_ok(struct page *page, unsigned int order)
408 {
409 unsigned long flags;
410 LIST_HEAD(list);
411 int i;
412 int reserved = 0;
413
414 arch_free_page(page, order);
415
416 #ifndef CONFIG_MMU
417 if (order > 0)
418 for (i = 1 ; i < (1 << order) ; ++i)
419 __put_page(page + i);
420 #endif
421
422 for (i = 0 ; i < (1 << order) ; ++i)
423 reserved += free_pages_check(page + i);
424 if (reserved)
425 return;
426
427 list_add(&page->lru, &list);
428 kernel_map_pages(page, 1<<order, 0);
429 local_irq_save(flags);
430 __mod_page_state(pgfree, 1 << order);
431 free_pages_bulk(page_zone(page), 1, &list, order);
432 local_irq_restore(flags);
433 }
434
435 /*
436 * permit the bootmem allocator to evade page validation on high-order frees
437 */
438 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
439 {
440 if (order == 0) {
441 __ClearPageReserved(page);
442 set_page_count(page, 0);
443
444 free_hot_cold_page(page, 0);
445 } else {
446 LIST_HEAD(list);
447 int loop;
448
449 for (loop = 0; loop < BITS_PER_LONG; loop++) {
450 struct page *p = &page[loop];
451
452 if (loop + 16 < BITS_PER_LONG)
453 prefetchw(p + 16);
454 __ClearPageReserved(p);
455 set_page_count(p, 0);
456 }
457
458 arch_free_page(page, order);
459
460 mod_page_state(pgfree, 1 << order);
461
462 list_add(&page->lru, &list);
463 kernel_map_pages(page, 1 << order, 0);
464 free_pages_bulk(page_zone(page), 1, &list, order);
465 }
466 }
467
468
469 /*
470 * The order of subdivision here is critical for the IO subsystem.
471 * Please do not alter this order without good reasons and regression
472 * testing. Specifically, as large blocks of memory are subdivided,
473 * the order in which smaller blocks are delivered depends on the order
474 * they're subdivided in this function. This is the primary factor
475 * influencing the order in which pages are delivered to the IO
476 * subsystem according to empirical testing, and this is also justified
477 * by considering the behavior of a buddy system containing a single
478 * large block of memory acted on by a series of small allocations.
479 * This behavior is a critical factor in sglist merging's success.
480 *
481 * -- wli
482 */
483 static inline void expand(struct zone *zone, struct page *page,
484 int low, int high, struct free_area *area)
485 {
486 unsigned long size = 1 << high;
487
488 while (high > low) {
489 area--;
490 high--;
491 size >>= 1;
492 BUG_ON(bad_range(zone, &page[size]));
493 list_add(&page[size].lru, &area->free_list);
494 area->nr_free++;
495 set_page_order(&page[size], high);
496 }
497 }
498
499 /*
500 * This page is about to be returned from the page allocator
501 */
502 static int prep_new_page(struct page *page, int order)
503 {
504 if (unlikely(page_mapcount(page) |
505 (page->mapping != NULL) |
506 (page_count(page) != 0) |
507 (page->flags & (
508 1 << PG_lru |
509 1 << PG_private |
510 1 << PG_locked |
511 1 << PG_active |
512 1 << PG_dirty |
513 1 << PG_reclaim |
514 1 << PG_slab |
515 1 << PG_swapcache |
516 1 << PG_writeback |
517 1 << PG_reserved ))))
518 bad_page(page);
519
520 /*
521 * For now, we report if PG_reserved was found set, but do not
522 * clear it, and do not allocate the page: as a safety net.
523 */
524 if (PageReserved(page))
525 return 1;
526
527 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
528 1 << PG_referenced | 1 << PG_arch_1 |
529 1 << PG_checked | 1 << PG_mappedtodisk);
530 set_page_private(page, 0);
531 set_page_refs(page, order);
532 kernel_map_pages(page, 1 << order, 1);
533 return 0;
534 }
535
536 /*
537 * Do the hard work of removing an element from the buddy allocator.
538 * Call me with the zone->lock already held.
539 */
540 static struct page *__rmqueue(struct zone *zone, unsigned int order)
541 {
542 struct free_area * area;
543 unsigned int current_order;
544 struct page *page;
545
546 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
547 area = zone->free_area + current_order;
548 if (list_empty(&area->free_list))
549 continue;
550
551 page = list_entry(area->free_list.next, struct page, lru);
552 list_del(&page->lru);
553 rmv_page_order(page);
554 area->nr_free--;
555 zone->free_pages -= 1UL << order;
556 expand(zone, page, order, current_order, area);
557 return page;
558 }
559
560 return NULL;
561 }
562
563 /*
564 * Obtain a specified number of elements from the buddy allocator, all under
565 * a single hold of the lock, for efficiency. Add them to the supplied list.
566 * Returns the number of new pages which were placed at *list.
567 */
568 static int rmqueue_bulk(struct zone *zone, unsigned int order,
569 unsigned long count, struct list_head *list)
570 {
571 int i;
572
573 spin_lock(&zone->lock);
574 for (i = 0; i < count; ++i) {
575 struct page *page = __rmqueue(zone, order);
576 if (unlikely(page == NULL))
577 break;
578 list_add_tail(&page->lru, list);
579 }
580 spin_unlock(&zone->lock);
581 return i;
582 }
583
584 #ifdef CONFIG_NUMA
585 /* Called from the slab reaper to drain remote pagesets */
586 void drain_remote_pages(void)
587 {
588 struct zone *zone;
589 int i;
590 unsigned long flags;
591
592 local_irq_save(flags);
593 for_each_zone(zone) {
594 struct per_cpu_pageset *pset;
595
596 /* Do not drain local pagesets */
597 if (zone->zone_pgdat->node_id == numa_node_id())
598 continue;
599
600 pset = zone_pcp(zone, smp_processor_id());
601 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
602 struct per_cpu_pages *pcp;
603
604 pcp = &pset->pcp[i];
605 if (pcp->count)
606 pcp->count -= free_pages_bulk(zone, pcp->count,
607 &pcp->list, 0);
608 }
609 }
610 local_irq_restore(flags);
611 }
612 #endif
613
614 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
615 static void __drain_pages(unsigned int cpu)
616 {
617 unsigned long flags;
618 struct zone *zone;
619 int i;
620
621 for_each_zone(zone) {
622 struct per_cpu_pageset *pset;
623
624 pset = zone_pcp(zone, cpu);
625 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
626 struct per_cpu_pages *pcp;
627
628 pcp = &pset->pcp[i];
629 local_irq_save(flags);
630 pcp->count -= free_pages_bulk(zone, pcp->count,
631 &pcp->list, 0);
632 local_irq_restore(flags);
633 }
634 }
635 }
636 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
637
638 #ifdef CONFIG_PM
639
640 void mark_free_pages(struct zone *zone)
641 {
642 unsigned long zone_pfn, flags;
643 int order;
644 struct list_head *curr;
645
646 if (!zone->spanned_pages)
647 return;
648
649 spin_lock_irqsave(&zone->lock, flags);
650 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
651 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
652
653 for (order = MAX_ORDER - 1; order >= 0; --order)
654 list_for_each(curr, &zone->free_area[order].free_list) {
655 unsigned long start_pfn, i;
656
657 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
658
659 for (i=0; i < (1<<order); i++)
660 SetPageNosaveFree(pfn_to_page(start_pfn+i));
661 }
662 spin_unlock_irqrestore(&zone->lock, flags);
663 }
664
665 /*
666 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
667 */
668 void drain_local_pages(void)
669 {
670 unsigned long flags;
671
672 local_irq_save(flags);
673 __drain_pages(smp_processor_id());
674 local_irq_restore(flags);
675 }
676 #endif /* CONFIG_PM */
677
678 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
679 {
680 #ifdef CONFIG_NUMA
681 pg_data_t *pg = z->zone_pgdat;
682 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
683 struct per_cpu_pageset *p;
684
685 p = zone_pcp(z, cpu);
686 if (pg == orig) {
687 p->numa_hit++;
688 } else {
689 p->numa_miss++;
690 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
691 }
692 if (pg == NODE_DATA(numa_node_id()))
693 p->local_node++;
694 else
695 p->other_node++;
696 #endif
697 }
698
699 /*
700 * Free a 0-order page
701 */
702 static void fastcall free_hot_cold_page(struct page *page, int cold)
703 {
704 struct zone *zone = page_zone(page);
705 struct per_cpu_pages *pcp;
706 unsigned long flags;
707
708 arch_free_page(page, 0);
709
710 if (PageAnon(page))
711 page->mapping = NULL;
712 if (free_pages_check(page))
713 return;
714
715 kernel_map_pages(page, 1, 0);
716
717 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
718 local_irq_save(flags);
719 __inc_page_state(pgfree);
720 list_add(&page->lru, &pcp->list);
721 pcp->count++;
722 if (pcp->count >= pcp->high)
723 pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
724 local_irq_restore(flags);
725 put_cpu();
726 }
727
728 void fastcall free_hot_page(struct page *page)
729 {
730 free_hot_cold_page(page, 0);
731 }
732
733 void fastcall free_cold_page(struct page *page)
734 {
735 free_hot_cold_page(page, 1);
736 }
737
738 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
739 {
740 int i;
741
742 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
743 for(i = 0; i < (1 << order); i++)
744 clear_highpage(page + i);
745 }
746
747 /*
748 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
749 * we cheat by calling it from here, in the order > 0 path. Saves a branch
750 * or two.
751 */
752 static struct page *buffered_rmqueue(struct zonelist *zonelist,
753 struct zone *zone, int order, gfp_t gfp_flags)
754 {
755 unsigned long flags;
756 struct page *page;
757 int cold = !!(gfp_flags & __GFP_COLD);
758 int cpu;
759
760 again:
761 cpu = get_cpu();
762 if (order == 0) {
763 struct per_cpu_pages *pcp;
764
765 pcp = &zone_pcp(zone, cpu)->pcp[cold];
766 local_irq_save(flags);
767 if (!pcp->count) {
768 pcp->count += rmqueue_bulk(zone, 0,
769 pcp->batch, &pcp->list);
770 if (unlikely(!pcp->count))
771 goto failed;
772 }
773 page = list_entry(pcp->list.next, struct page, lru);
774 list_del(&page->lru);
775 pcp->count--;
776 } else {
777 spin_lock_irqsave(&zone->lock, flags);
778 page = __rmqueue(zone, order);
779 spin_unlock(&zone->lock);
780 if (!page)
781 goto failed;
782 }
783
784 __mod_page_state_zone(zone, pgalloc, 1 << order);
785 zone_statistics(zonelist, zone, cpu);
786 local_irq_restore(flags);
787 put_cpu();
788
789 BUG_ON(bad_range(zone, page));
790 if (prep_new_page(page, order))
791 goto again;
792
793 if (gfp_flags & __GFP_ZERO)
794 prep_zero_page(page, order, gfp_flags);
795
796 if (order && (gfp_flags & __GFP_COMP))
797 prep_compound_page(page, order);
798 return page;
799
800 failed:
801 local_irq_restore(flags);
802 put_cpu();
803 return NULL;
804 }
805
806 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
807 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
808 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
809 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
810 #define ALLOC_HARDER 0x10 /* try to alloc harder */
811 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
812 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
813
814 /*
815 * Return 1 if free pages are above 'mark'. This takes into account the order
816 * of the allocation.
817 */
818 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
819 int classzone_idx, int alloc_flags)
820 {
821 /* free_pages my go negative - that's OK */
822 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
823 int o;
824
825 if (alloc_flags & ALLOC_HIGH)
826 min -= min / 2;
827 if (alloc_flags & ALLOC_HARDER)
828 min -= min / 4;
829
830 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
831 return 0;
832 for (o = 0; o < order; o++) {
833 /* At the next order, this order's pages become unavailable */
834 free_pages -= z->free_area[o].nr_free << o;
835
836 /* Require fewer higher order pages to be free */
837 min >>= 1;
838
839 if (free_pages <= min)
840 return 0;
841 }
842 return 1;
843 }
844
845 /*
846 * get_page_from_freeliest goes through the zonelist trying to allocate
847 * a page.
848 */
849 static struct page *
850 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
851 struct zonelist *zonelist, int alloc_flags)
852 {
853 struct zone **z = zonelist->zones;
854 struct page *page = NULL;
855 int classzone_idx = zone_idx(*z);
856
857 /*
858 * Go through the zonelist once, looking for a zone with enough free.
859 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
860 */
861 do {
862 if ((alloc_flags & ALLOC_CPUSET) &&
863 !cpuset_zone_allowed(*z, gfp_mask))
864 continue;
865
866 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
867 unsigned long mark;
868 if (alloc_flags & ALLOC_WMARK_MIN)
869 mark = (*z)->pages_min;
870 else if (alloc_flags & ALLOC_WMARK_LOW)
871 mark = (*z)->pages_low;
872 else
873 mark = (*z)->pages_high;
874 if (!zone_watermark_ok(*z, order, mark,
875 classzone_idx, alloc_flags))
876 continue;
877 }
878
879 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
880 if (page) {
881 break;
882 }
883 } while (*(++z) != NULL);
884 return page;
885 }
886
887 /*
888 * This is the 'heart' of the zoned buddy allocator.
889 */
890 struct page * fastcall
891 __alloc_pages(gfp_t gfp_mask, unsigned int order,
892 struct zonelist *zonelist)
893 {
894 const gfp_t wait = gfp_mask & __GFP_WAIT;
895 struct zone **z;
896 struct page *page;
897 struct reclaim_state reclaim_state;
898 struct task_struct *p = current;
899 int do_retry;
900 int alloc_flags;
901 int did_some_progress;
902
903 might_sleep_if(wait);
904
905 restart:
906 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
907
908 if (unlikely(*z == NULL)) {
909 /* Should this ever happen?? */
910 return NULL;
911 }
912
913 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
914 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
915 if (page)
916 goto got_pg;
917
918 do {
919 wakeup_kswapd(*z, order);
920 } while (*(++z));
921
922 /*
923 * OK, we're below the kswapd watermark and have kicked background
924 * reclaim. Now things get more complex, so set up alloc_flags according
925 * to how we want to proceed.
926 *
927 * The caller may dip into page reserves a bit more if the caller
928 * cannot run direct reclaim, or if the caller has realtime scheduling
929 * policy.
930 */
931 alloc_flags = ALLOC_WMARK_MIN;
932 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
933 alloc_flags |= ALLOC_HARDER;
934 if (gfp_mask & __GFP_HIGH)
935 alloc_flags |= ALLOC_HIGH;
936 alloc_flags |= ALLOC_CPUSET;
937
938 /*
939 * Go through the zonelist again. Let __GFP_HIGH and allocations
940 * coming from realtime tasks go deeper into reserves.
941 *
942 * This is the last chance, in general, before the goto nopage.
943 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
944 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
945 */
946 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
947 if (page)
948 goto got_pg;
949
950 /* This allocation should allow future memory freeing. */
951
952 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
953 && !in_interrupt()) {
954 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
955 nofail_alloc:
956 /* go through the zonelist yet again, ignoring mins */
957 page = get_page_from_freelist(gfp_mask, order,
958 zonelist, ALLOC_NO_WATERMARKS);
959 if (page)
960 goto got_pg;
961 if (gfp_mask & __GFP_NOFAIL) {
962 blk_congestion_wait(WRITE, HZ/50);
963 goto nofail_alloc;
964 }
965 }
966 goto nopage;
967 }
968
969 /* Atomic allocations - we can't balance anything */
970 if (!wait)
971 goto nopage;
972
973 rebalance:
974 cond_resched();
975
976 /* We now go into synchronous reclaim */
977 p->flags |= PF_MEMALLOC;
978 reclaim_state.reclaimed_slab = 0;
979 p->reclaim_state = &reclaim_state;
980
981 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
982
983 p->reclaim_state = NULL;
984 p->flags &= ~PF_MEMALLOC;
985
986 cond_resched();
987
988 if (likely(did_some_progress)) {
989 page = get_page_from_freelist(gfp_mask, order,
990 zonelist, alloc_flags);
991 if (page)
992 goto got_pg;
993 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
994 /*
995 * Go through the zonelist yet one more time, keep
996 * very high watermark here, this is only to catch
997 * a parallel oom killing, we must fail if we're still
998 * under heavy pressure.
999 */
1000 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1001 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1002 if (page)
1003 goto got_pg;
1004
1005 out_of_memory(gfp_mask, order);
1006 goto restart;
1007 }
1008
1009 /*
1010 * Don't let big-order allocations loop unless the caller explicitly
1011 * requests that. Wait for some write requests to complete then retry.
1012 *
1013 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1014 * <= 3, but that may not be true in other implementations.
1015 */
1016 do_retry = 0;
1017 if (!(gfp_mask & __GFP_NORETRY)) {
1018 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1019 do_retry = 1;
1020 if (gfp_mask & __GFP_NOFAIL)
1021 do_retry = 1;
1022 }
1023 if (do_retry) {
1024 blk_congestion_wait(WRITE, HZ/50);
1025 goto rebalance;
1026 }
1027
1028 nopage:
1029 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1030 printk(KERN_WARNING "%s: page allocation failure."
1031 " order:%d, mode:0x%x\n",
1032 p->comm, order, gfp_mask);
1033 dump_stack();
1034 show_mem();
1035 }
1036 got_pg:
1037 return page;
1038 }
1039
1040 EXPORT_SYMBOL(__alloc_pages);
1041
1042 /*
1043 * Common helper functions.
1044 */
1045 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1046 {
1047 struct page * page;
1048 page = alloc_pages(gfp_mask, order);
1049 if (!page)
1050 return 0;
1051 return (unsigned long) page_address(page);
1052 }
1053
1054 EXPORT_SYMBOL(__get_free_pages);
1055
1056 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1057 {
1058 struct page * page;
1059
1060 /*
1061 * get_zeroed_page() returns a 32-bit address, which cannot represent
1062 * a highmem page
1063 */
1064 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1065
1066 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1067 if (page)
1068 return (unsigned long) page_address(page);
1069 return 0;
1070 }
1071
1072 EXPORT_SYMBOL(get_zeroed_page);
1073
1074 void __pagevec_free(struct pagevec *pvec)
1075 {
1076 int i = pagevec_count(pvec);
1077
1078 while (--i >= 0)
1079 free_hot_cold_page(pvec->pages[i], pvec->cold);
1080 }
1081
1082 fastcall void __free_pages(struct page *page, unsigned int order)
1083 {
1084 if (put_page_testzero(page)) {
1085 if (order == 0)
1086 free_hot_page(page);
1087 else
1088 __free_pages_ok(page, order);
1089 }
1090 }
1091
1092 EXPORT_SYMBOL(__free_pages);
1093
1094 fastcall void free_pages(unsigned long addr, unsigned int order)
1095 {
1096 if (addr != 0) {
1097 BUG_ON(!virt_addr_valid((void *)addr));
1098 __free_pages(virt_to_page((void *)addr), order);
1099 }
1100 }
1101
1102 EXPORT_SYMBOL(free_pages);
1103
1104 /*
1105 * Total amount of free (allocatable) RAM:
1106 */
1107 unsigned int nr_free_pages(void)
1108 {
1109 unsigned int sum = 0;
1110 struct zone *zone;
1111
1112 for_each_zone(zone)
1113 sum += zone->free_pages;
1114
1115 return sum;
1116 }
1117
1118 EXPORT_SYMBOL(nr_free_pages);
1119
1120 #ifdef CONFIG_NUMA
1121 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1122 {
1123 unsigned int i, sum = 0;
1124
1125 for (i = 0; i < MAX_NR_ZONES; i++)
1126 sum += pgdat->node_zones[i].free_pages;
1127
1128 return sum;
1129 }
1130 #endif
1131
1132 static unsigned int nr_free_zone_pages(int offset)
1133 {
1134 /* Just pick one node, since fallback list is circular */
1135 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1136 unsigned int sum = 0;
1137
1138 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1139 struct zone **zonep = zonelist->zones;
1140 struct zone *zone;
1141
1142 for (zone = *zonep++; zone; zone = *zonep++) {
1143 unsigned long size = zone->present_pages;
1144 unsigned long high = zone->pages_high;
1145 if (size > high)
1146 sum += size - high;
1147 }
1148
1149 return sum;
1150 }
1151
1152 /*
1153 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1154 */
1155 unsigned int nr_free_buffer_pages(void)
1156 {
1157 return nr_free_zone_pages(gfp_zone(GFP_USER));
1158 }
1159
1160 /*
1161 * Amount of free RAM allocatable within all zones
1162 */
1163 unsigned int nr_free_pagecache_pages(void)
1164 {
1165 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1166 }
1167
1168 #ifdef CONFIG_HIGHMEM
1169 unsigned int nr_free_highpages (void)
1170 {
1171 pg_data_t *pgdat;
1172 unsigned int pages = 0;
1173
1174 for_each_pgdat(pgdat)
1175 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1176
1177 return pages;
1178 }
1179 #endif
1180
1181 #ifdef CONFIG_NUMA
1182 static void show_node(struct zone *zone)
1183 {
1184 printk("Node %d ", zone->zone_pgdat->node_id);
1185 }
1186 #else
1187 #define show_node(zone) do { } while (0)
1188 #endif
1189
1190 /*
1191 * Accumulate the page_state information across all CPUs.
1192 * The result is unavoidably approximate - it can change
1193 * during and after execution of this function.
1194 */
1195 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1196
1197 atomic_t nr_pagecache = ATOMIC_INIT(0);
1198 EXPORT_SYMBOL(nr_pagecache);
1199 #ifdef CONFIG_SMP
1200 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1201 #endif
1202
1203 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1204 {
1205 int cpu = 0;
1206
1207 memset(ret, 0, sizeof(*ret));
1208 cpus_and(*cpumask, *cpumask, cpu_online_map);
1209
1210 cpu = first_cpu(*cpumask);
1211 while (cpu < NR_CPUS) {
1212 unsigned long *in, *out, off;
1213
1214 in = (unsigned long *)&per_cpu(page_states, cpu);
1215
1216 cpu = next_cpu(cpu, *cpumask);
1217
1218 if (cpu < NR_CPUS)
1219 prefetch(&per_cpu(page_states, cpu));
1220
1221 out = (unsigned long *)ret;
1222 for (off = 0; off < nr; off++)
1223 *out++ += *in++;
1224 }
1225 }
1226
1227 void get_page_state_node(struct page_state *ret, int node)
1228 {
1229 int nr;
1230 cpumask_t mask = node_to_cpumask(node);
1231
1232 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1233 nr /= sizeof(unsigned long);
1234
1235 __get_page_state(ret, nr+1, &mask);
1236 }
1237
1238 void get_page_state(struct page_state *ret)
1239 {
1240 int nr;
1241 cpumask_t mask = CPU_MASK_ALL;
1242
1243 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1244 nr /= sizeof(unsigned long);
1245
1246 __get_page_state(ret, nr + 1, &mask);
1247 }
1248
1249 void get_full_page_state(struct page_state *ret)
1250 {
1251 cpumask_t mask = CPU_MASK_ALL;
1252
1253 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1254 }
1255
1256 unsigned long read_page_state_offset(unsigned long offset)
1257 {
1258 unsigned long ret = 0;
1259 int cpu;
1260
1261 for_each_online_cpu(cpu) {
1262 unsigned long in;
1263
1264 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1265 ret += *((unsigned long *)in);
1266 }
1267 return ret;
1268 }
1269
1270 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1271 {
1272 void *ptr;
1273
1274 ptr = &__get_cpu_var(page_states);
1275 *(unsigned long *)(ptr + offset) += delta;
1276 }
1277 EXPORT_SYMBOL(__mod_page_state_offset);
1278
1279 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1280 {
1281 unsigned long flags;
1282 void *ptr;
1283
1284 local_irq_save(flags);
1285 ptr = &__get_cpu_var(page_states);
1286 *(unsigned long *)(ptr + offset) += delta;
1287 local_irq_restore(flags);
1288 }
1289 EXPORT_SYMBOL(mod_page_state_offset);
1290
1291 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1292 unsigned long *free, struct pglist_data *pgdat)
1293 {
1294 struct zone *zones = pgdat->node_zones;
1295 int i;
1296
1297 *active = 0;
1298 *inactive = 0;
1299 *free = 0;
1300 for (i = 0; i < MAX_NR_ZONES; i++) {
1301 *active += zones[i].nr_active;
1302 *inactive += zones[i].nr_inactive;
1303 *free += zones[i].free_pages;
1304 }
1305 }
1306
1307 void get_zone_counts(unsigned long *active,
1308 unsigned long *inactive, unsigned long *free)
1309 {
1310 struct pglist_data *pgdat;
1311
1312 *active = 0;
1313 *inactive = 0;
1314 *free = 0;
1315 for_each_pgdat(pgdat) {
1316 unsigned long l, m, n;
1317 __get_zone_counts(&l, &m, &n, pgdat);
1318 *active += l;
1319 *inactive += m;
1320 *free += n;
1321 }
1322 }
1323
1324 void si_meminfo(struct sysinfo *val)
1325 {
1326 val->totalram = totalram_pages;
1327 val->sharedram = 0;
1328 val->freeram = nr_free_pages();
1329 val->bufferram = nr_blockdev_pages();
1330 #ifdef CONFIG_HIGHMEM
1331 val->totalhigh = totalhigh_pages;
1332 val->freehigh = nr_free_highpages();
1333 #else
1334 val->totalhigh = 0;
1335 val->freehigh = 0;
1336 #endif
1337 val->mem_unit = PAGE_SIZE;
1338 }
1339
1340 EXPORT_SYMBOL(si_meminfo);
1341
1342 #ifdef CONFIG_NUMA
1343 void si_meminfo_node(struct sysinfo *val, int nid)
1344 {
1345 pg_data_t *pgdat = NODE_DATA(nid);
1346
1347 val->totalram = pgdat->node_present_pages;
1348 val->freeram = nr_free_pages_pgdat(pgdat);
1349 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1350 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1351 val->mem_unit = PAGE_SIZE;
1352 }
1353 #endif
1354
1355 #define K(x) ((x) << (PAGE_SHIFT-10))
1356
1357 /*
1358 * Show free area list (used inside shift_scroll-lock stuff)
1359 * We also calculate the percentage fragmentation. We do this by counting the
1360 * memory on each free list with the exception of the first item on the list.
1361 */
1362 void show_free_areas(void)
1363 {
1364 struct page_state ps;
1365 int cpu, temperature;
1366 unsigned long active;
1367 unsigned long inactive;
1368 unsigned long free;
1369 struct zone *zone;
1370
1371 for_each_zone(zone) {
1372 show_node(zone);
1373 printk("%s per-cpu:", zone->name);
1374
1375 if (!populated_zone(zone)) {
1376 printk(" empty\n");
1377 continue;
1378 } else
1379 printk("\n");
1380
1381 for_each_online_cpu(cpu) {
1382 struct per_cpu_pageset *pageset;
1383
1384 pageset = zone_pcp(zone, cpu);
1385
1386 for (temperature = 0; temperature < 2; temperature++)
1387 printk("cpu %d %s: high %d, batch %d used:%d\n",
1388 cpu,
1389 temperature ? "cold" : "hot",
1390 pageset->pcp[temperature].high,
1391 pageset->pcp[temperature].batch,
1392 pageset->pcp[temperature].count);
1393 }
1394 }
1395
1396 get_page_state(&ps);
1397 get_zone_counts(&active, &inactive, &free);
1398
1399 printk("Free pages: %11ukB (%ukB HighMem)\n",
1400 K(nr_free_pages()),
1401 K(nr_free_highpages()));
1402
1403 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1404 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1405 active,
1406 inactive,
1407 ps.nr_dirty,
1408 ps.nr_writeback,
1409 ps.nr_unstable,
1410 nr_free_pages(),
1411 ps.nr_slab,
1412 ps.nr_mapped,
1413 ps.nr_page_table_pages);
1414
1415 for_each_zone(zone) {
1416 int i;
1417
1418 show_node(zone);
1419 printk("%s"
1420 " free:%lukB"
1421 " min:%lukB"
1422 " low:%lukB"
1423 " high:%lukB"
1424 " active:%lukB"
1425 " inactive:%lukB"
1426 " present:%lukB"
1427 " pages_scanned:%lu"
1428 " all_unreclaimable? %s"
1429 "\n",
1430 zone->name,
1431 K(zone->free_pages),
1432 K(zone->pages_min),
1433 K(zone->pages_low),
1434 K(zone->pages_high),
1435 K(zone->nr_active),
1436 K(zone->nr_inactive),
1437 K(zone->present_pages),
1438 zone->pages_scanned,
1439 (zone->all_unreclaimable ? "yes" : "no")
1440 );
1441 printk("lowmem_reserve[]:");
1442 for (i = 0; i < MAX_NR_ZONES; i++)
1443 printk(" %lu", zone->lowmem_reserve[i]);
1444 printk("\n");
1445 }
1446
1447 for_each_zone(zone) {
1448 unsigned long nr, flags, order, total = 0;
1449
1450 show_node(zone);
1451 printk("%s: ", zone->name);
1452 if (!populated_zone(zone)) {
1453 printk("empty\n");
1454 continue;
1455 }
1456
1457 spin_lock_irqsave(&zone->lock, flags);
1458 for (order = 0; order < MAX_ORDER; order++) {
1459 nr = zone->free_area[order].nr_free;
1460 total += nr << order;
1461 printk("%lu*%lukB ", nr, K(1UL) << order);
1462 }
1463 spin_unlock_irqrestore(&zone->lock, flags);
1464 printk("= %lukB\n", K(total));
1465 }
1466
1467 show_swap_cache_info();
1468 }
1469
1470 /*
1471 * Builds allocation fallback zone lists.
1472 *
1473 * Add all populated zones of a node to the zonelist.
1474 */
1475 static int __init build_zonelists_node(pg_data_t *pgdat,
1476 struct zonelist *zonelist, int nr_zones, int zone_type)
1477 {
1478 struct zone *zone;
1479
1480 BUG_ON(zone_type > ZONE_HIGHMEM);
1481
1482 do {
1483 zone = pgdat->node_zones + zone_type;
1484 if (populated_zone(zone)) {
1485 #ifndef CONFIG_HIGHMEM
1486 BUG_ON(zone_type > ZONE_NORMAL);
1487 #endif
1488 zonelist->zones[nr_zones++] = zone;
1489 check_highest_zone(zone_type);
1490 }
1491 zone_type--;
1492
1493 } while (zone_type >= 0);
1494 return nr_zones;
1495 }
1496
1497 static inline int highest_zone(int zone_bits)
1498 {
1499 int res = ZONE_NORMAL;
1500 if (zone_bits & (__force int)__GFP_HIGHMEM)
1501 res = ZONE_HIGHMEM;
1502 if (zone_bits & (__force int)__GFP_DMA32)
1503 res = ZONE_DMA32;
1504 if (zone_bits & (__force int)__GFP_DMA)
1505 res = ZONE_DMA;
1506 return res;
1507 }
1508
1509 #ifdef CONFIG_NUMA
1510 #define MAX_NODE_LOAD (num_online_nodes())
1511 static int __initdata node_load[MAX_NUMNODES];
1512 /**
1513 * find_next_best_node - find the next node that should appear in a given node's fallback list
1514 * @node: node whose fallback list we're appending
1515 * @used_node_mask: nodemask_t of already used nodes
1516 *
1517 * We use a number of factors to determine which is the next node that should
1518 * appear on a given node's fallback list. The node should not have appeared
1519 * already in @node's fallback list, and it should be the next closest node
1520 * according to the distance array (which contains arbitrary distance values
1521 * from each node to each node in the system), and should also prefer nodes
1522 * with no CPUs, since presumably they'll have very little allocation pressure
1523 * on them otherwise.
1524 * It returns -1 if no node is found.
1525 */
1526 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1527 {
1528 int i, n, val;
1529 int min_val = INT_MAX;
1530 int best_node = -1;
1531
1532 for_each_online_node(i) {
1533 cpumask_t tmp;
1534
1535 /* Start from local node */
1536 n = (node+i) % num_online_nodes();
1537
1538 /* Don't want a node to appear more than once */
1539 if (node_isset(n, *used_node_mask))
1540 continue;
1541
1542 /* Use the local node if we haven't already */
1543 if (!node_isset(node, *used_node_mask)) {
1544 best_node = node;
1545 break;
1546 }
1547
1548 /* Use the distance array to find the distance */
1549 val = node_distance(node, n);
1550
1551 /* Give preference to headless and unused nodes */
1552 tmp = node_to_cpumask(n);
1553 if (!cpus_empty(tmp))
1554 val += PENALTY_FOR_NODE_WITH_CPUS;
1555
1556 /* Slight preference for less loaded node */
1557 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1558 val += node_load[n];
1559
1560 if (val < min_val) {
1561 min_val = val;
1562 best_node = n;
1563 }
1564 }
1565
1566 if (best_node >= 0)
1567 node_set(best_node, *used_node_mask);
1568
1569 return best_node;
1570 }
1571
1572 static void __init build_zonelists(pg_data_t *pgdat)
1573 {
1574 int i, j, k, node, local_node;
1575 int prev_node, load;
1576 struct zonelist *zonelist;
1577 nodemask_t used_mask;
1578
1579 /* initialize zonelists */
1580 for (i = 0; i < GFP_ZONETYPES; i++) {
1581 zonelist = pgdat->node_zonelists + i;
1582 zonelist->zones[0] = NULL;
1583 }
1584
1585 /* NUMA-aware ordering of nodes */
1586 local_node = pgdat->node_id;
1587 load = num_online_nodes();
1588 prev_node = local_node;
1589 nodes_clear(used_mask);
1590 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1591 /*
1592 * We don't want to pressure a particular node.
1593 * So adding penalty to the first node in same
1594 * distance group to make it round-robin.
1595 */
1596 if (node_distance(local_node, node) !=
1597 node_distance(local_node, prev_node))
1598 node_load[node] += load;
1599 prev_node = node;
1600 load--;
1601 for (i = 0; i < GFP_ZONETYPES; i++) {
1602 zonelist = pgdat->node_zonelists + i;
1603 for (j = 0; zonelist->zones[j] != NULL; j++);
1604
1605 k = highest_zone(i);
1606
1607 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1608 zonelist->zones[j] = NULL;
1609 }
1610 }
1611 }
1612
1613 #else /* CONFIG_NUMA */
1614
1615 static void __init build_zonelists(pg_data_t *pgdat)
1616 {
1617 int i, j, k, node, local_node;
1618
1619 local_node = pgdat->node_id;
1620 for (i = 0; i < GFP_ZONETYPES; i++) {
1621 struct zonelist *zonelist;
1622
1623 zonelist = pgdat->node_zonelists + i;
1624
1625 j = 0;
1626 k = highest_zone(i);
1627 j = build_zonelists_node(pgdat, zonelist, j, k);
1628 /*
1629 * Now we build the zonelist so that it contains the zones
1630 * of all the other nodes.
1631 * We don't want to pressure a particular node, so when
1632 * building the zones for node N, we make sure that the
1633 * zones coming right after the local ones are those from
1634 * node N+1 (modulo N)
1635 */
1636 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1637 if (!node_online(node))
1638 continue;
1639 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1640 }
1641 for (node = 0; node < local_node; node++) {
1642 if (!node_online(node))
1643 continue;
1644 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1645 }
1646
1647 zonelist->zones[j] = NULL;
1648 }
1649 }
1650
1651 #endif /* CONFIG_NUMA */
1652
1653 void __init build_all_zonelists(void)
1654 {
1655 int i;
1656
1657 for_each_online_node(i)
1658 build_zonelists(NODE_DATA(i));
1659 printk("Built %i zonelists\n", num_online_nodes());
1660 cpuset_init_current_mems_allowed();
1661 }
1662
1663 /*
1664 * Helper functions to size the waitqueue hash table.
1665 * Essentially these want to choose hash table sizes sufficiently
1666 * large so that collisions trying to wait on pages are rare.
1667 * But in fact, the number of active page waitqueues on typical
1668 * systems is ridiculously low, less than 200. So this is even
1669 * conservative, even though it seems large.
1670 *
1671 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1672 * waitqueues, i.e. the size of the waitq table given the number of pages.
1673 */
1674 #define PAGES_PER_WAITQUEUE 256
1675
1676 static inline unsigned long wait_table_size(unsigned long pages)
1677 {
1678 unsigned long size = 1;
1679
1680 pages /= PAGES_PER_WAITQUEUE;
1681
1682 while (size < pages)
1683 size <<= 1;
1684
1685 /*
1686 * Once we have dozens or even hundreds of threads sleeping
1687 * on IO we've got bigger problems than wait queue collision.
1688 * Limit the size of the wait table to a reasonable size.
1689 */
1690 size = min(size, 4096UL);
1691
1692 return max(size, 4UL);
1693 }
1694
1695 /*
1696 * This is an integer logarithm so that shifts can be used later
1697 * to extract the more random high bits from the multiplicative
1698 * hash function before the remainder is taken.
1699 */
1700 static inline unsigned long wait_table_bits(unsigned long size)
1701 {
1702 return ffz(~size);
1703 }
1704
1705 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1706
1707 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1708 unsigned long *zones_size, unsigned long *zholes_size)
1709 {
1710 unsigned long realtotalpages, totalpages = 0;
1711 int i;
1712
1713 for (i = 0; i < MAX_NR_ZONES; i++)
1714 totalpages += zones_size[i];
1715 pgdat->node_spanned_pages = totalpages;
1716
1717 realtotalpages = totalpages;
1718 if (zholes_size)
1719 for (i = 0; i < MAX_NR_ZONES; i++)
1720 realtotalpages -= zholes_size[i];
1721 pgdat->node_present_pages = realtotalpages;
1722 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1723 }
1724
1725
1726 /*
1727 * Initially all pages are reserved - free ones are freed
1728 * up by free_all_bootmem() once the early boot process is
1729 * done. Non-atomic initialization, single-pass.
1730 */
1731 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1732 unsigned long start_pfn)
1733 {
1734 struct page *page;
1735 unsigned long end_pfn = start_pfn + size;
1736 unsigned long pfn;
1737
1738 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1739 if (!early_pfn_valid(pfn))
1740 continue;
1741 page = pfn_to_page(pfn);
1742 set_page_links(page, zone, nid, pfn);
1743 set_page_count(page, 1);
1744 reset_page_mapcount(page);
1745 SetPageReserved(page);
1746 INIT_LIST_HEAD(&page->lru);
1747 #ifdef WANT_PAGE_VIRTUAL
1748 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1749 if (!is_highmem_idx(zone))
1750 set_page_address(page, __va(pfn << PAGE_SHIFT));
1751 #endif
1752 }
1753 }
1754
1755 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1756 unsigned long size)
1757 {
1758 int order;
1759 for (order = 0; order < MAX_ORDER ; order++) {
1760 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1761 zone->free_area[order].nr_free = 0;
1762 }
1763 }
1764
1765 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1766 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1767 unsigned long size)
1768 {
1769 unsigned long snum = pfn_to_section_nr(pfn);
1770 unsigned long end = pfn_to_section_nr(pfn + size);
1771
1772 if (FLAGS_HAS_NODE)
1773 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1774 else
1775 for (; snum <= end; snum++)
1776 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1777 }
1778
1779 #ifndef __HAVE_ARCH_MEMMAP_INIT
1780 #define memmap_init(size, nid, zone, start_pfn) \
1781 memmap_init_zone((size), (nid), (zone), (start_pfn))
1782 #endif
1783
1784 static int __devinit zone_batchsize(struct zone *zone)
1785 {
1786 int batch;
1787
1788 /*
1789 * The per-cpu-pages pools are set to around 1000th of the
1790 * size of the zone. But no more than 1/2 of a meg.
1791 *
1792 * OK, so we don't know how big the cache is. So guess.
1793 */
1794 batch = zone->present_pages / 1024;
1795 if (batch * PAGE_SIZE > 512 * 1024)
1796 batch = (512 * 1024) / PAGE_SIZE;
1797 batch /= 4; /* We effectively *= 4 below */
1798 if (batch < 1)
1799 batch = 1;
1800
1801 /*
1802 * Clamp the batch to a 2^n - 1 value. Having a power
1803 * of 2 value was found to be more likely to have
1804 * suboptimal cache aliasing properties in some cases.
1805 *
1806 * For example if 2 tasks are alternately allocating
1807 * batches of pages, one task can end up with a lot
1808 * of pages of one half of the possible page colors
1809 * and the other with pages of the other colors.
1810 */
1811 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1812
1813 return batch;
1814 }
1815
1816 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1817 {
1818 struct per_cpu_pages *pcp;
1819
1820 memset(p, 0, sizeof(*p));
1821
1822 pcp = &p->pcp[0]; /* hot */
1823 pcp->count = 0;
1824 pcp->high = 6 * batch;
1825 pcp->batch = max(1UL, 1 * batch);
1826 INIT_LIST_HEAD(&pcp->list);
1827
1828 pcp = &p->pcp[1]; /* cold*/
1829 pcp->count = 0;
1830 pcp->high = 2 * batch;
1831 pcp->batch = max(1UL, batch/2);
1832 INIT_LIST_HEAD(&pcp->list);
1833 }
1834
1835 /*
1836 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1837 * to the value high for the pageset p.
1838 */
1839
1840 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1841 unsigned long high)
1842 {
1843 struct per_cpu_pages *pcp;
1844
1845 pcp = &p->pcp[0]; /* hot list */
1846 pcp->high = high;
1847 pcp->batch = max(1UL, high/4);
1848 if ((high/4) > (PAGE_SHIFT * 8))
1849 pcp->batch = PAGE_SHIFT * 8;
1850 }
1851
1852
1853 #ifdef CONFIG_NUMA
1854 /*
1855 * Boot pageset table. One per cpu which is going to be used for all
1856 * zones and all nodes. The parameters will be set in such a way
1857 * that an item put on a list will immediately be handed over to
1858 * the buddy list. This is safe since pageset manipulation is done
1859 * with interrupts disabled.
1860 *
1861 * Some NUMA counter updates may also be caught by the boot pagesets.
1862 *
1863 * The boot_pagesets must be kept even after bootup is complete for
1864 * unused processors and/or zones. They do play a role for bootstrapping
1865 * hotplugged processors.
1866 *
1867 * zoneinfo_show() and maybe other functions do
1868 * not check if the processor is online before following the pageset pointer.
1869 * Other parts of the kernel may not check if the zone is available.
1870 */
1871 static struct per_cpu_pageset
1872 boot_pageset[NR_CPUS];
1873
1874 /*
1875 * Dynamically allocate memory for the
1876 * per cpu pageset array in struct zone.
1877 */
1878 static int __devinit process_zones(int cpu)
1879 {
1880 struct zone *zone, *dzone;
1881
1882 for_each_zone(zone) {
1883
1884 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1885 GFP_KERNEL, cpu_to_node(cpu));
1886 if (!zone_pcp(zone, cpu))
1887 goto bad;
1888
1889 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1890
1891 if (percpu_pagelist_fraction)
1892 setup_pagelist_highmark(zone_pcp(zone, cpu),
1893 (zone->present_pages / percpu_pagelist_fraction));
1894 }
1895
1896 return 0;
1897 bad:
1898 for_each_zone(dzone) {
1899 if (dzone == zone)
1900 break;
1901 kfree(zone_pcp(dzone, cpu));
1902 zone_pcp(dzone, cpu) = NULL;
1903 }
1904 return -ENOMEM;
1905 }
1906
1907 static inline void free_zone_pagesets(int cpu)
1908 {
1909 struct zone *zone;
1910
1911 for_each_zone(zone) {
1912 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1913
1914 zone_pcp(zone, cpu) = NULL;
1915 kfree(pset);
1916 }
1917 }
1918
1919 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1920 unsigned long action,
1921 void *hcpu)
1922 {
1923 int cpu = (long)hcpu;
1924 int ret = NOTIFY_OK;
1925
1926 switch (action) {
1927 case CPU_UP_PREPARE:
1928 if (process_zones(cpu))
1929 ret = NOTIFY_BAD;
1930 break;
1931 case CPU_UP_CANCELED:
1932 case CPU_DEAD:
1933 free_zone_pagesets(cpu);
1934 break;
1935 default:
1936 break;
1937 }
1938 return ret;
1939 }
1940
1941 static struct notifier_block pageset_notifier =
1942 { &pageset_cpuup_callback, NULL, 0 };
1943
1944 void __init setup_per_cpu_pageset(void)
1945 {
1946 int err;
1947
1948 /* Initialize per_cpu_pageset for cpu 0.
1949 * A cpuup callback will do this for every cpu
1950 * as it comes online
1951 */
1952 err = process_zones(smp_processor_id());
1953 BUG_ON(err);
1954 register_cpu_notifier(&pageset_notifier);
1955 }
1956
1957 #endif
1958
1959 static __devinit
1960 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1961 {
1962 int i;
1963 struct pglist_data *pgdat = zone->zone_pgdat;
1964
1965 /*
1966 * The per-page waitqueue mechanism uses hashed waitqueues
1967 * per zone.
1968 */
1969 zone->wait_table_size = wait_table_size(zone_size_pages);
1970 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1971 zone->wait_table = (wait_queue_head_t *)
1972 alloc_bootmem_node(pgdat, zone->wait_table_size
1973 * sizeof(wait_queue_head_t));
1974
1975 for(i = 0; i < zone->wait_table_size; ++i)
1976 init_waitqueue_head(zone->wait_table + i);
1977 }
1978
1979 static __devinit void zone_pcp_init(struct zone *zone)
1980 {
1981 int cpu;
1982 unsigned long batch = zone_batchsize(zone);
1983
1984 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1985 #ifdef CONFIG_NUMA
1986 /* Early boot. Slab allocator not functional yet */
1987 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1988 setup_pageset(&boot_pageset[cpu],0);
1989 #else
1990 setup_pageset(zone_pcp(zone,cpu), batch);
1991 #endif
1992 }
1993 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1994 zone->name, zone->present_pages, batch);
1995 }
1996
1997 static __devinit void init_currently_empty_zone(struct zone *zone,
1998 unsigned long zone_start_pfn, unsigned long size)
1999 {
2000 struct pglist_data *pgdat = zone->zone_pgdat;
2001
2002 zone_wait_table_init(zone, size);
2003 pgdat->nr_zones = zone_idx(zone) + 1;
2004
2005 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2006 zone->zone_start_pfn = zone_start_pfn;
2007
2008 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2009
2010 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2011 }
2012
2013 /*
2014 * Set up the zone data structures:
2015 * - mark all pages reserved
2016 * - mark all memory queues empty
2017 * - clear the memory bitmaps
2018 */
2019 static void __init free_area_init_core(struct pglist_data *pgdat,
2020 unsigned long *zones_size, unsigned long *zholes_size)
2021 {
2022 unsigned long j;
2023 int nid = pgdat->node_id;
2024 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2025
2026 pgdat_resize_init(pgdat);
2027 pgdat->nr_zones = 0;
2028 init_waitqueue_head(&pgdat->kswapd_wait);
2029 pgdat->kswapd_max_order = 0;
2030
2031 for (j = 0; j < MAX_NR_ZONES; j++) {
2032 struct zone *zone = pgdat->node_zones + j;
2033 unsigned long size, realsize;
2034
2035 realsize = size = zones_size[j];
2036 if (zholes_size)
2037 realsize -= zholes_size[j];
2038
2039 if (j < ZONE_HIGHMEM)
2040 nr_kernel_pages += realsize;
2041 nr_all_pages += realsize;
2042
2043 zone->spanned_pages = size;
2044 zone->present_pages = realsize;
2045 zone->name = zone_names[j];
2046 spin_lock_init(&zone->lock);
2047 spin_lock_init(&zone->lru_lock);
2048 zone_seqlock_init(zone);
2049 zone->zone_pgdat = pgdat;
2050 zone->free_pages = 0;
2051
2052 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2053
2054 zone_pcp_init(zone);
2055 INIT_LIST_HEAD(&zone->active_list);
2056 INIT_LIST_HEAD(&zone->inactive_list);
2057 zone->nr_scan_active = 0;
2058 zone->nr_scan_inactive = 0;
2059 zone->nr_active = 0;
2060 zone->nr_inactive = 0;
2061 atomic_set(&zone->reclaim_in_progress, 0);
2062 if (!size)
2063 continue;
2064
2065 zonetable_add(zone, nid, j, zone_start_pfn, size);
2066 init_currently_empty_zone(zone, zone_start_pfn, size);
2067 zone_start_pfn += size;
2068 }
2069 }
2070
2071 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2072 {
2073 /* Skip empty nodes */
2074 if (!pgdat->node_spanned_pages)
2075 return;
2076
2077 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2078 /* ia64 gets its own node_mem_map, before this, without bootmem */
2079 if (!pgdat->node_mem_map) {
2080 unsigned long size;
2081 struct page *map;
2082
2083 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2084 map = alloc_remap(pgdat->node_id, size);
2085 if (!map)
2086 map = alloc_bootmem_node(pgdat, size);
2087 pgdat->node_mem_map = map;
2088 }
2089 #ifdef CONFIG_FLATMEM
2090 /*
2091 * With no DISCONTIG, the global mem_map is just set as node 0's
2092 */
2093 if (pgdat == NODE_DATA(0))
2094 mem_map = NODE_DATA(0)->node_mem_map;
2095 #endif
2096 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2097 }
2098
2099 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2100 unsigned long *zones_size, unsigned long node_start_pfn,
2101 unsigned long *zholes_size)
2102 {
2103 pgdat->node_id = nid;
2104 pgdat->node_start_pfn = node_start_pfn;
2105 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2106
2107 alloc_node_mem_map(pgdat);
2108
2109 free_area_init_core(pgdat, zones_size, zholes_size);
2110 }
2111
2112 #ifndef CONFIG_NEED_MULTIPLE_NODES
2113 static bootmem_data_t contig_bootmem_data;
2114 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2115
2116 EXPORT_SYMBOL(contig_page_data);
2117 #endif
2118
2119 void __init free_area_init(unsigned long *zones_size)
2120 {
2121 free_area_init_node(0, NODE_DATA(0), zones_size,
2122 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2123 }
2124
2125 #ifdef CONFIG_PROC_FS
2126
2127 #include <linux/seq_file.h>
2128
2129 static void *frag_start(struct seq_file *m, loff_t *pos)
2130 {
2131 pg_data_t *pgdat;
2132 loff_t node = *pos;
2133
2134 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2135 --node;
2136
2137 return pgdat;
2138 }
2139
2140 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2141 {
2142 pg_data_t *pgdat = (pg_data_t *)arg;
2143
2144 (*pos)++;
2145 return pgdat->pgdat_next;
2146 }
2147
2148 static void frag_stop(struct seq_file *m, void *arg)
2149 {
2150 }
2151
2152 /*
2153 * This walks the free areas for each zone.
2154 */
2155 static int frag_show(struct seq_file *m, void *arg)
2156 {
2157 pg_data_t *pgdat = (pg_data_t *)arg;
2158 struct zone *zone;
2159 struct zone *node_zones = pgdat->node_zones;
2160 unsigned long flags;
2161 int order;
2162
2163 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2164 if (!populated_zone(zone))
2165 continue;
2166
2167 spin_lock_irqsave(&zone->lock, flags);
2168 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2169 for (order = 0; order < MAX_ORDER; ++order)
2170 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2171 spin_unlock_irqrestore(&zone->lock, flags);
2172 seq_putc(m, '\n');
2173 }
2174 return 0;
2175 }
2176
2177 struct seq_operations fragmentation_op = {
2178 .start = frag_start,
2179 .next = frag_next,
2180 .stop = frag_stop,
2181 .show = frag_show,
2182 };
2183
2184 /*
2185 * Output information about zones in @pgdat.
2186 */
2187 static int zoneinfo_show(struct seq_file *m, void *arg)
2188 {
2189 pg_data_t *pgdat = arg;
2190 struct zone *zone;
2191 struct zone *node_zones = pgdat->node_zones;
2192 unsigned long flags;
2193
2194 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2195 int i;
2196
2197 if (!populated_zone(zone))
2198 continue;
2199
2200 spin_lock_irqsave(&zone->lock, flags);
2201 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2202 seq_printf(m,
2203 "\n pages free %lu"
2204 "\n min %lu"
2205 "\n low %lu"
2206 "\n high %lu"
2207 "\n active %lu"
2208 "\n inactive %lu"
2209 "\n scanned %lu (a: %lu i: %lu)"
2210 "\n spanned %lu"
2211 "\n present %lu",
2212 zone->free_pages,
2213 zone->pages_min,
2214 zone->pages_low,
2215 zone->pages_high,
2216 zone->nr_active,
2217 zone->nr_inactive,
2218 zone->pages_scanned,
2219 zone->nr_scan_active, zone->nr_scan_inactive,
2220 zone->spanned_pages,
2221 zone->present_pages);
2222 seq_printf(m,
2223 "\n protection: (%lu",
2224 zone->lowmem_reserve[0]);
2225 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2226 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2227 seq_printf(m,
2228 ")"
2229 "\n pagesets");
2230 for_each_online_cpu(i) {
2231 struct per_cpu_pageset *pageset;
2232 int j;
2233
2234 pageset = zone_pcp(zone, i);
2235 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2236 if (pageset->pcp[j].count)
2237 break;
2238 }
2239 if (j == ARRAY_SIZE(pageset->pcp))
2240 continue;
2241 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2242 seq_printf(m,
2243 "\n cpu: %i pcp: %i"
2244 "\n count: %i"
2245 "\n high: %i"
2246 "\n batch: %i",
2247 i, j,
2248 pageset->pcp[j].count,
2249 pageset->pcp[j].high,
2250 pageset->pcp[j].batch);
2251 }
2252 #ifdef CONFIG_NUMA
2253 seq_printf(m,
2254 "\n numa_hit: %lu"
2255 "\n numa_miss: %lu"
2256 "\n numa_foreign: %lu"
2257 "\n interleave_hit: %lu"
2258 "\n local_node: %lu"
2259 "\n other_node: %lu",
2260 pageset->numa_hit,
2261 pageset->numa_miss,
2262 pageset->numa_foreign,
2263 pageset->interleave_hit,
2264 pageset->local_node,
2265 pageset->other_node);
2266 #endif
2267 }
2268 seq_printf(m,
2269 "\n all_unreclaimable: %u"
2270 "\n prev_priority: %i"
2271 "\n temp_priority: %i"
2272 "\n start_pfn: %lu",
2273 zone->all_unreclaimable,
2274 zone->prev_priority,
2275 zone->temp_priority,
2276 zone->zone_start_pfn);
2277 spin_unlock_irqrestore(&zone->lock, flags);
2278 seq_putc(m, '\n');
2279 }
2280 return 0;
2281 }
2282
2283 struct seq_operations zoneinfo_op = {
2284 .start = frag_start, /* iterate over all zones. The same as in
2285 * fragmentation. */
2286 .next = frag_next,
2287 .stop = frag_stop,
2288 .show = zoneinfo_show,
2289 };
2290
2291 static char *vmstat_text[] = {
2292 "nr_dirty",
2293 "nr_writeback",
2294 "nr_unstable",
2295 "nr_page_table_pages",
2296 "nr_mapped",
2297 "nr_slab",
2298
2299 "pgpgin",
2300 "pgpgout",
2301 "pswpin",
2302 "pswpout",
2303
2304 "pgalloc_high",
2305 "pgalloc_normal",
2306 "pgalloc_dma32",
2307 "pgalloc_dma",
2308
2309 "pgfree",
2310 "pgactivate",
2311 "pgdeactivate",
2312
2313 "pgfault",
2314 "pgmajfault",
2315
2316 "pgrefill_high",
2317 "pgrefill_normal",
2318 "pgrefill_dma32",
2319 "pgrefill_dma",
2320
2321 "pgsteal_high",
2322 "pgsteal_normal",
2323 "pgsteal_dma32",
2324 "pgsteal_dma",
2325
2326 "pgscan_kswapd_high",
2327 "pgscan_kswapd_normal",
2328 "pgscan_kswapd_dma32",
2329 "pgscan_kswapd_dma",
2330
2331 "pgscan_direct_high",
2332 "pgscan_direct_normal",
2333 "pgscan_direct_dma32",
2334 "pgscan_direct_dma",
2335
2336 "pginodesteal",
2337 "slabs_scanned",
2338 "kswapd_steal",
2339 "kswapd_inodesteal",
2340 "pageoutrun",
2341 "allocstall",
2342
2343 "pgrotated",
2344 "nr_bounce",
2345 };
2346
2347 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2348 {
2349 struct page_state *ps;
2350
2351 if (*pos >= ARRAY_SIZE(vmstat_text))
2352 return NULL;
2353
2354 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2355 m->private = ps;
2356 if (!ps)
2357 return ERR_PTR(-ENOMEM);
2358 get_full_page_state(ps);
2359 ps->pgpgin /= 2; /* sectors -> kbytes */
2360 ps->pgpgout /= 2;
2361 return (unsigned long *)ps + *pos;
2362 }
2363
2364 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2365 {
2366 (*pos)++;
2367 if (*pos >= ARRAY_SIZE(vmstat_text))
2368 return NULL;
2369 return (unsigned long *)m->private + *pos;
2370 }
2371
2372 static int vmstat_show(struct seq_file *m, void *arg)
2373 {
2374 unsigned long *l = arg;
2375 unsigned long off = l - (unsigned long *)m->private;
2376
2377 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2378 return 0;
2379 }
2380
2381 static void vmstat_stop(struct seq_file *m, void *arg)
2382 {
2383 kfree(m->private);
2384 m->private = NULL;
2385 }
2386
2387 struct seq_operations vmstat_op = {
2388 .start = vmstat_start,
2389 .next = vmstat_next,
2390 .stop = vmstat_stop,
2391 .show = vmstat_show,
2392 };
2393
2394 #endif /* CONFIG_PROC_FS */
2395
2396 #ifdef CONFIG_HOTPLUG_CPU
2397 static int page_alloc_cpu_notify(struct notifier_block *self,
2398 unsigned long action, void *hcpu)
2399 {
2400 int cpu = (unsigned long)hcpu;
2401 long *count;
2402 unsigned long *src, *dest;
2403
2404 if (action == CPU_DEAD) {
2405 int i;
2406
2407 /* Drain local pagecache count. */
2408 count = &per_cpu(nr_pagecache_local, cpu);
2409 atomic_add(*count, &nr_pagecache);
2410 *count = 0;
2411 local_irq_disable();
2412 __drain_pages(cpu);
2413
2414 /* Add dead cpu's page_states to our own. */
2415 dest = (unsigned long *)&__get_cpu_var(page_states);
2416 src = (unsigned long *)&per_cpu(page_states, cpu);
2417
2418 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2419 i++) {
2420 dest[i] += src[i];
2421 src[i] = 0;
2422 }
2423
2424 local_irq_enable();
2425 }
2426 return NOTIFY_OK;
2427 }
2428 #endif /* CONFIG_HOTPLUG_CPU */
2429
2430 void __init page_alloc_init(void)
2431 {
2432 hotcpu_notifier(page_alloc_cpu_notify, 0);
2433 }
2434
2435 /*
2436 * setup_per_zone_lowmem_reserve - called whenever
2437 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2438 * has a correct pages reserved value, so an adequate number of
2439 * pages are left in the zone after a successful __alloc_pages().
2440 */
2441 static void setup_per_zone_lowmem_reserve(void)
2442 {
2443 struct pglist_data *pgdat;
2444 int j, idx;
2445
2446 for_each_pgdat(pgdat) {
2447 for (j = 0; j < MAX_NR_ZONES; j++) {
2448 struct zone *zone = pgdat->node_zones + j;
2449 unsigned long present_pages = zone->present_pages;
2450
2451 zone->lowmem_reserve[j] = 0;
2452
2453 for (idx = j-1; idx >= 0; idx--) {
2454 struct zone *lower_zone;
2455
2456 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2457 sysctl_lowmem_reserve_ratio[idx] = 1;
2458
2459 lower_zone = pgdat->node_zones + idx;
2460 lower_zone->lowmem_reserve[j] = present_pages /
2461 sysctl_lowmem_reserve_ratio[idx];
2462 present_pages += lower_zone->present_pages;
2463 }
2464 }
2465 }
2466 }
2467
2468 /*
2469 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2470 * that the pages_{min,low,high} values for each zone are set correctly
2471 * with respect to min_free_kbytes.
2472 */
2473 void setup_per_zone_pages_min(void)
2474 {
2475 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2476 unsigned long lowmem_pages = 0;
2477 struct zone *zone;
2478 unsigned long flags;
2479
2480 /* Calculate total number of !ZONE_HIGHMEM pages */
2481 for_each_zone(zone) {
2482 if (!is_highmem(zone))
2483 lowmem_pages += zone->present_pages;
2484 }
2485
2486 for_each_zone(zone) {
2487 unsigned long tmp;
2488 spin_lock_irqsave(&zone->lru_lock, flags);
2489 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2490 if (is_highmem(zone)) {
2491 /*
2492 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2493 * need highmem pages, so cap pages_min to a small
2494 * value here.
2495 *
2496 * The (pages_high-pages_low) and (pages_low-pages_min)
2497 * deltas controls asynch page reclaim, and so should
2498 * not be capped for highmem.
2499 */
2500 int min_pages;
2501
2502 min_pages = zone->present_pages / 1024;
2503 if (min_pages < SWAP_CLUSTER_MAX)
2504 min_pages = SWAP_CLUSTER_MAX;
2505 if (min_pages > 128)
2506 min_pages = 128;
2507 zone->pages_min = min_pages;
2508 } else {
2509 /*
2510 * If it's a lowmem zone, reserve a number of pages
2511 * proportionate to the zone's size.
2512 */
2513 zone->pages_min = tmp;
2514 }
2515
2516 zone->pages_low = zone->pages_min + tmp / 4;
2517 zone->pages_high = zone->pages_min + tmp / 2;
2518 spin_unlock_irqrestore(&zone->lru_lock, flags);
2519 }
2520 }
2521
2522 /*
2523 * Initialise min_free_kbytes.
2524 *
2525 * For small machines we want it small (128k min). For large machines
2526 * we want it large (64MB max). But it is not linear, because network
2527 * bandwidth does not increase linearly with machine size. We use
2528 *
2529 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2530 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2531 *
2532 * which yields
2533 *
2534 * 16MB: 512k
2535 * 32MB: 724k
2536 * 64MB: 1024k
2537 * 128MB: 1448k
2538 * 256MB: 2048k
2539 * 512MB: 2896k
2540 * 1024MB: 4096k
2541 * 2048MB: 5792k
2542 * 4096MB: 8192k
2543 * 8192MB: 11584k
2544 * 16384MB: 16384k
2545 */
2546 static int __init init_per_zone_pages_min(void)
2547 {
2548 unsigned long lowmem_kbytes;
2549
2550 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2551
2552 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2553 if (min_free_kbytes < 128)
2554 min_free_kbytes = 128;
2555 if (min_free_kbytes > 65536)
2556 min_free_kbytes = 65536;
2557 setup_per_zone_pages_min();
2558 setup_per_zone_lowmem_reserve();
2559 return 0;
2560 }
2561 module_init(init_per_zone_pages_min)
2562
2563 /*
2564 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2565 * that we can call two helper functions whenever min_free_kbytes
2566 * changes.
2567 */
2568 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2569 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2570 {
2571 proc_dointvec(table, write, file, buffer, length, ppos);
2572 setup_per_zone_pages_min();
2573 return 0;
2574 }
2575
2576 /*
2577 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2578 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2579 * whenever sysctl_lowmem_reserve_ratio changes.
2580 *
2581 * The reserve ratio obviously has absolutely no relation with the
2582 * pages_min watermarks. The lowmem reserve ratio can only make sense
2583 * if in function of the boot time zone sizes.
2584 */
2585 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2586 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2587 {
2588 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2589 setup_per_zone_lowmem_reserve();
2590 return 0;
2591 }
2592
2593 /*
2594 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2595 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2596 * can have before it gets flushed back to buddy allocator.
2597 */
2598
2599 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2600 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2601 {
2602 struct zone *zone;
2603 unsigned int cpu;
2604 int ret;
2605
2606 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2607 if (!write || (ret == -EINVAL))
2608 return ret;
2609 for_each_zone(zone) {
2610 for_each_online_cpu(cpu) {
2611 unsigned long high;
2612 high = zone->present_pages / percpu_pagelist_fraction;
2613 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2614 }
2615 }
2616 return 0;
2617 }
2618
2619 __initdata int hashdist = HASHDIST_DEFAULT;
2620
2621 #ifdef CONFIG_NUMA
2622 static int __init set_hashdist(char *str)
2623 {
2624 if (!str)
2625 return 0;
2626 hashdist = simple_strtoul(str, &str, 0);
2627 return 1;
2628 }
2629 __setup("hashdist=", set_hashdist);
2630 #endif
2631
2632 /*
2633 * allocate a large system hash table from bootmem
2634 * - it is assumed that the hash table must contain an exact power-of-2
2635 * quantity of entries
2636 * - limit is the number of hash buckets, not the total allocation size
2637 */
2638 void *__init alloc_large_system_hash(const char *tablename,
2639 unsigned long bucketsize,
2640 unsigned long numentries,
2641 int scale,
2642 int flags,
2643 unsigned int *_hash_shift,
2644 unsigned int *_hash_mask,
2645 unsigned long limit)
2646 {
2647 unsigned long long max = limit;
2648 unsigned long log2qty, size;
2649 void *table = NULL;
2650
2651 /* allow the kernel cmdline to have a say */
2652 if (!numentries) {
2653 /* round applicable memory size up to nearest megabyte */
2654 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2655 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2656 numentries >>= 20 - PAGE_SHIFT;
2657 numentries <<= 20 - PAGE_SHIFT;
2658
2659 /* limit to 1 bucket per 2^scale bytes of low memory */
2660 if (scale > PAGE_SHIFT)
2661 numentries >>= (scale - PAGE_SHIFT);
2662 else
2663 numentries <<= (PAGE_SHIFT - scale);
2664 }
2665 /* rounded up to nearest power of 2 in size */
2666 numentries = 1UL << (long_log2(numentries) + 1);
2667
2668 /* limit allocation size to 1/16 total memory by default */
2669 if (max == 0) {
2670 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2671 do_div(max, bucketsize);
2672 }
2673
2674 if (numentries > max)
2675 numentries = max;
2676
2677 log2qty = long_log2(numentries);
2678
2679 do {
2680 size = bucketsize << log2qty;
2681 if (flags & HASH_EARLY)
2682 table = alloc_bootmem(size);
2683 else if (hashdist)
2684 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2685 else {
2686 unsigned long order;
2687 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2688 ;
2689 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2690 }
2691 } while (!table && size > PAGE_SIZE && --log2qty);
2692
2693 if (!table)
2694 panic("Failed to allocate %s hash table\n", tablename);
2695
2696 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2697 tablename,
2698 (1U << log2qty),
2699 long_log2(size) - PAGE_SHIFT,
2700 size);
2701
2702 if (_hash_shift)
2703 *_hash_shift = log2qty;
2704 if (_hash_mask)
2705 *_hash_mask = (1 << log2qty) - 1;
2706
2707 return table;
2708 }
This page took 0.12078 seconds and 6 git commands to generate.