mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 /*
95 * Array of node states.
96 */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 [N_CPU] = { { [0] = 1UL } },
109 #endif /* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 /*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 return page->index;
134 }
135
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 page->index = migratetype;
139 }
140
141 #ifdef CONFIG_PM_SLEEP
142 /*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
150
151 static gfp_t saved_gfp_mask;
152
153 void pm_restore_gfp_mask(void)
154 {
155 WARN_ON(!mutex_is_locked(&pm_mutex));
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
160 }
161
162 void pm_restrict_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169
170 bool pm_suspended_storage(void)
171 {
172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 return false;
174 return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181
182 static void __free_pages_ok(struct page *page, unsigned int order);
183
184 /*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
194 */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 32,
204 #endif
205 32,
206 };
207
208 EXPORT_SYMBOL(totalram_pages);
209
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 "DMA32",
216 #endif
217 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 "HighMem",
220 #endif
221 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 "Device",
224 #endif
225 };
226
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232 #ifdef CONFIG_CMA
233 "CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237 #endif
238 };
239
240 compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248 #endif
249 };
250
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 return true;
294
295 return false;
296 }
297
298 /*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305 {
306 unsigned long max_initialise;
307
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
317
318 (*nr_initialised)++;
319 if ((*nr_initialised > max_initialise) &&
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 return false;
335 }
336
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340 {
341 return true;
342 }
343 #endif
344
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 /**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380 {
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398 {
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406
407 /**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419 {
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444 }
445
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
450 migratetype = MIGRATE_UNMOVABLE;
451
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454 }
455
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
462 unsigned long sp, start_pfn;
463
464 do {
465 seq = zone_span_seqbegin(zone);
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
468 if (!zone_spans_pfn(zone, pfn))
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
472 if (ret)
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
476
477 return ret;
478 }
479
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 if (!pfn_valid_within(page_to_pfn(page)))
483 return 0;
484 if (zone != page_zone(page))
485 return 0;
486
487 return 1;
488 }
489 /*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 if (page_outside_zone_boundaries(zone, page))
495 return 1;
496 if (!page_is_consistent(zone, page))
497 return 1;
498
499 return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 return 0;
505 }
506 #endif
507
508 static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
510 {
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
525 pr_alert(
526 "BUG: Bad page state: %lu messages suppressed\n",
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
536 current->comm, page_to_pfn(page));
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
542 dump_page_owner(page);
543
544 print_modules();
545 dump_stack();
546 out:
547 /* Leave bad fields for debug, except PageBuddy could make trouble */
548 page_mapcount_reset(page); /* remove PageBuddy */
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556 *
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559 *
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
562 *
563 * The first tail page's ->compound_order holds the order of allocation.
564 * This usage means that zero-order pages may not be compound.
565 */
566
567 void free_compound_page(struct page *page)
568 {
569 __free_pages_ok(page, compound_order(page));
570 }
571
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 int i;
575 int nr_pages = 1 << order;
576
577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
582 set_page_count(p, 0);
583 p->mapping = TAIL_MAPPING;
584 set_compound_head(p, page);
585 }
586 atomic_set(compound_mapcount_ptr(page), -1);
587 }
588
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 if (!buf)
599 return -EINVAL;
600 return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603
604 static bool need_debug_guardpage(void)
605 {
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
610 return true;
611 }
612
613 static void init_debug_guardpage(void)
614 {
615 if (!debug_pagealloc_enabled())
616 return;
617
618 _debug_guardpage_enabled = true;
619 }
620
621 struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624 };
625
626 static int __init debug_guardpage_minorder_setup(char *buf)
627 {
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
631 pr_err("Bad debug_guardpage_minorder value\n");
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
636 return 0;
637 }
638 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
640 static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
642 {
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
649 if (unlikely(!page_ext))
650 return;
651
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
658 }
659
660 static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
662 {
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
670 return;
671
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
677 }
678 #else
679 struct page_ext_operations debug_guardpage_ops = { NULL, };
680 static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
684 #endif
685
686 static inline void set_page_order(struct page *page, unsigned int order)
687 {
688 set_page_private(page, order);
689 __SetPageBuddy(page);
690 }
691
692 static inline void rmv_page_order(struct page *page)
693 {
694 __ClearPageBuddy(page);
695 set_page_private(page, 0);
696 }
697
698 /*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
701 * (a) the buddy is not in a hole &&
702 * (b) the buddy is in the buddy system &&
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
705 *
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
710 *
711 * For recording page's order, we use page_private(page).
712 */
713 static inline int page_is_buddy(struct page *page, struct page *buddy,
714 unsigned int order)
715 {
716 if (!pfn_valid_within(page_to_pfn(buddy)))
717 return 0;
718
719 if (page_is_guard(buddy) && page_order(buddy) == order) {
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
725 return 1;
726 }
727
728 if (PageBuddy(buddy) && page_order(buddy) == order) {
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
739 return 1;
740 }
741 return 0;
742 }
743
744 /*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
760 * So when we are allocating or freeing one, we can derive the state of the
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
763 * If a block is freed, and its buddy is also free, then this
764 * triggers coalescing into a block of larger size.
765 *
766 * -- nyc
767 */
768
769 static inline void __free_one_page(struct page *page,
770 unsigned long pfn,
771 struct zone *zone, unsigned int order,
772 int migratetype)
773 {
774 unsigned long page_idx;
775 unsigned long combined_idx;
776 unsigned long uninitialized_var(buddy_idx);
777 struct page *buddy;
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
781
782 VM_BUG_ON(!zone_is_initialized(zone));
783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784
785 VM_BUG_ON(migratetype == -1);
786 if (likely(!is_migrate_isolate(migratetype)))
787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
788
789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
790
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
793
794 continue_merging:
795 while (order < max_order - 1) {
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
798 if (!page_is_buddy(page, buddy, order))
799 goto done_merging;
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
805 clear_page_guard(zone, buddy, order, migratetype);
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
811 combined_idx = buddy_idx & page_idx;
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841 done_merging:
842 set_page_order(page, order);
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
853 struct page *higher_page, *higher_buddy;
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
857 higher_buddy = higher_page + (buddy_idx - combined_idx);
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866 out:
867 zone->free_area[order].nr_free++;
868 }
869
870 /*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875 static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877 {
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883 #ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885 #endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890 }
891
892 static void free_pages_check_bad(struct page *page)
893 {
894 const char *bad_reason;
895 unsigned long bad_flags;
896
897 bad_reason = NULL;
898 bad_flags = 0;
899
900 if (unlikely(atomic_read(&page->_mapcount) != -1))
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
904 if (unlikely(page_ref_count(page) != 0))
905 bad_reason = "nonzero _refcount";
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
910 #ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913 #endif
914 bad_page(page, bad_reason, bad_flags);
915 }
916
917 static inline int free_pages_check(struct page *page)
918 {
919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 return 0;
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
924 return 1;
925 }
926
927 static int free_tail_pages_check(struct page *head_page, struct page *page)
928 {
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971 out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975 }
976
977 static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
979 {
980 int bad = 0;
981
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
996
997 if (compound)
998 ClearPageDoubleMap(page);
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
1009 if (PageMappingFlags(page))
1010 page->mapping = NULL;
1011 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1012 memcg_kmem_uncharge(page, order);
1013 __ClearPageKmemcg(page);
1014 }
1015 if (check_free)
1016 bad += free_pages_check(page);
1017 if (bad)
1018 return false;
1019
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
1023
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
1026 PAGE_SIZE << order);
1027 debug_check_no_obj_freed(page_address(page),
1028 PAGE_SIZE << order);
1029 }
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
1033 kasan_free_pages(page, order);
1034
1035 return true;
1036 }
1037
1038 #ifdef CONFIG_DEBUG_VM
1039 static inline bool free_pcp_prepare(struct page *page)
1040 {
1041 return free_pages_prepare(page, 0, true);
1042 }
1043
1044 static inline bool bulkfree_pcp_prepare(struct page *page)
1045 {
1046 return false;
1047 }
1048 #else
1049 static bool free_pcp_prepare(struct page *page)
1050 {
1051 return free_pages_prepare(page, 0, false);
1052 }
1053
1054 static bool bulkfree_pcp_prepare(struct page *page)
1055 {
1056 return free_pages_check(page);
1057 }
1058 #endif /* CONFIG_DEBUG_VM */
1059
1060 /*
1061 * Frees a number of pages from the PCP lists
1062 * Assumes all pages on list are in same zone, and of same order.
1063 * count is the number of pages to free.
1064 *
1065 * If the zone was previously in an "all pages pinned" state then look to
1066 * see if this freeing clears that state.
1067 *
1068 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1069 * pinned" detection logic.
1070 */
1071 static void free_pcppages_bulk(struct zone *zone, int count,
1072 struct per_cpu_pages *pcp)
1073 {
1074 int migratetype = 0;
1075 int batch_free = 0;
1076 unsigned long nr_scanned;
1077 bool isolated_pageblocks;
1078
1079 spin_lock(&zone->lock);
1080 isolated_pageblocks = has_isolate_pageblock(zone);
1081 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1082 if (nr_scanned)
1083 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1084
1085 while (count) {
1086 struct page *page;
1087 struct list_head *list;
1088
1089 /*
1090 * Remove pages from lists in a round-robin fashion. A
1091 * batch_free count is maintained that is incremented when an
1092 * empty list is encountered. This is so more pages are freed
1093 * off fuller lists instead of spinning excessively around empty
1094 * lists
1095 */
1096 do {
1097 batch_free++;
1098 if (++migratetype == MIGRATE_PCPTYPES)
1099 migratetype = 0;
1100 list = &pcp->lists[migratetype];
1101 } while (list_empty(list));
1102
1103 /* This is the only non-empty list. Free them all. */
1104 if (batch_free == MIGRATE_PCPTYPES)
1105 batch_free = count;
1106
1107 do {
1108 int mt; /* migratetype of the to-be-freed page */
1109
1110 page = list_last_entry(list, struct page, lru);
1111 /* must delete as __free_one_page list manipulates */
1112 list_del(&page->lru);
1113
1114 mt = get_pcppage_migratetype(page);
1115 /* MIGRATE_ISOLATE page should not go to pcplists */
1116 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1117 /* Pageblock could have been isolated meanwhile */
1118 if (unlikely(isolated_pageblocks))
1119 mt = get_pageblock_migratetype(page);
1120
1121 if (bulkfree_pcp_prepare(page))
1122 continue;
1123
1124 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1125 trace_mm_page_pcpu_drain(page, 0, mt);
1126 } while (--count && --batch_free && !list_empty(list));
1127 }
1128 spin_unlock(&zone->lock);
1129 }
1130
1131 static void free_one_page(struct zone *zone,
1132 struct page *page, unsigned long pfn,
1133 unsigned int order,
1134 int migratetype)
1135 {
1136 unsigned long nr_scanned;
1137 spin_lock(&zone->lock);
1138 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1139 if (nr_scanned)
1140 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1141
1142 if (unlikely(has_isolate_pageblock(zone) ||
1143 is_migrate_isolate(migratetype))) {
1144 migratetype = get_pfnblock_migratetype(page, pfn);
1145 }
1146 __free_one_page(page, pfn, zone, order, migratetype);
1147 spin_unlock(&zone->lock);
1148 }
1149
1150 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1151 unsigned long zone, int nid)
1152 {
1153 set_page_links(page, zone, nid, pfn);
1154 init_page_count(page);
1155 page_mapcount_reset(page);
1156 page_cpupid_reset_last(page);
1157
1158 INIT_LIST_HEAD(&page->lru);
1159 #ifdef WANT_PAGE_VIRTUAL
1160 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1161 if (!is_highmem_idx(zone))
1162 set_page_address(page, __va(pfn << PAGE_SHIFT));
1163 #endif
1164 }
1165
1166 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1167 int nid)
1168 {
1169 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1170 }
1171
1172 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1173 static void init_reserved_page(unsigned long pfn)
1174 {
1175 pg_data_t *pgdat;
1176 int nid, zid;
1177
1178 if (!early_page_uninitialised(pfn))
1179 return;
1180
1181 nid = early_pfn_to_nid(pfn);
1182 pgdat = NODE_DATA(nid);
1183
1184 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1185 struct zone *zone = &pgdat->node_zones[zid];
1186
1187 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1188 break;
1189 }
1190 __init_single_pfn(pfn, zid, nid);
1191 }
1192 #else
1193 static inline void init_reserved_page(unsigned long pfn)
1194 {
1195 }
1196 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1197
1198 /*
1199 * Initialised pages do not have PageReserved set. This function is
1200 * called for each range allocated by the bootmem allocator and
1201 * marks the pages PageReserved. The remaining valid pages are later
1202 * sent to the buddy page allocator.
1203 */
1204 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1205 {
1206 unsigned long start_pfn = PFN_DOWN(start);
1207 unsigned long end_pfn = PFN_UP(end);
1208
1209 for (; start_pfn < end_pfn; start_pfn++) {
1210 if (pfn_valid(start_pfn)) {
1211 struct page *page = pfn_to_page(start_pfn);
1212
1213 init_reserved_page(start_pfn);
1214
1215 /* Avoid false-positive PageTail() */
1216 INIT_LIST_HEAD(&page->lru);
1217
1218 SetPageReserved(page);
1219 }
1220 }
1221 }
1222
1223 static void __free_pages_ok(struct page *page, unsigned int order)
1224 {
1225 unsigned long flags;
1226 int migratetype;
1227 unsigned long pfn = page_to_pfn(page);
1228
1229 if (!free_pages_prepare(page, order, true))
1230 return;
1231
1232 migratetype = get_pfnblock_migratetype(page, pfn);
1233 local_irq_save(flags);
1234 __count_vm_events(PGFREE, 1 << order);
1235 free_one_page(page_zone(page), page, pfn, order, migratetype);
1236 local_irq_restore(flags);
1237 }
1238
1239 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1240 {
1241 unsigned int nr_pages = 1 << order;
1242 struct page *p = page;
1243 unsigned int loop;
1244
1245 prefetchw(p);
1246 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1247 prefetchw(p + 1);
1248 __ClearPageReserved(p);
1249 set_page_count(p, 0);
1250 }
1251 __ClearPageReserved(p);
1252 set_page_count(p, 0);
1253
1254 page_zone(page)->managed_pages += nr_pages;
1255 set_page_refcounted(page);
1256 __free_pages(page, order);
1257 }
1258
1259 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1260 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1261
1262 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1263
1264 int __meminit early_pfn_to_nid(unsigned long pfn)
1265 {
1266 static DEFINE_SPINLOCK(early_pfn_lock);
1267 int nid;
1268
1269 spin_lock(&early_pfn_lock);
1270 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1271 if (nid < 0)
1272 nid = first_online_node;
1273 spin_unlock(&early_pfn_lock);
1274
1275 return nid;
1276 }
1277 #endif
1278
1279 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1280 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1281 struct mminit_pfnnid_cache *state)
1282 {
1283 int nid;
1284
1285 nid = __early_pfn_to_nid(pfn, state);
1286 if (nid >= 0 && nid != node)
1287 return false;
1288 return true;
1289 }
1290
1291 /* Only safe to use early in boot when initialisation is single-threaded */
1292 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1293 {
1294 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1295 }
1296
1297 #else
1298
1299 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1300 {
1301 return true;
1302 }
1303 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1304 struct mminit_pfnnid_cache *state)
1305 {
1306 return true;
1307 }
1308 #endif
1309
1310
1311 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1312 unsigned int order)
1313 {
1314 if (early_page_uninitialised(pfn))
1315 return;
1316 return __free_pages_boot_core(page, order);
1317 }
1318
1319 /*
1320 * Check that the whole (or subset of) a pageblock given by the interval of
1321 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1322 * with the migration of free compaction scanner. The scanners then need to
1323 * use only pfn_valid_within() check for arches that allow holes within
1324 * pageblocks.
1325 *
1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 *
1328 * It's possible on some configurations to have a setup like node0 node1 node0
1329 * i.e. it's possible that all pages within a zones range of pages do not
1330 * belong to a single zone. We assume that a border between node0 and node1
1331 * can occur within a single pageblock, but not a node0 node1 node0
1332 * interleaving within a single pageblock. It is therefore sufficient to check
1333 * the first and last page of a pageblock and avoid checking each individual
1334 * page in a pageblock.
1335 */
1336 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1337 unsigned long end_pfn, struct zone *zone)
1338 {
1339 struct page *start_page;
1340 struct page *end_page;
1341
1342 /* end_pfn is one past the range we are checking */
1343 end_pfn--;
1344
1345 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1346 return NULL;
1347
1348 start_page = pfn_to_page(start_pfn);
1349
1350 if (page_zone(start_page) != zone)
1351 return NULL;
1352
1353 end_page = pfn_to_page(end_pfn);
1354
1355 /* This gives a shorter code than deriving page_zone(end_page) */
1356 if (page_zone_id(start_page) != page_zone_id(end_page))
1357 return NULL;
1358
1359 return start_page;
1360 }
1361
1362 void set_zone_contiguous(struct zone *zone)
1363 {
1364 unsigned long block_start_pfn = zone->zone_start_pfn;
1365 unsigned long block_end_pfn;
1366
1367 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1368 for (; block_start_pfn < zone_end_pfn(zone);
1369 block_start_pfn = block_end_pfn,
1370 block_end_pfn += pageblock_nr_pages) {
1371
1372 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1373
1374 if (!__pageblock_pfn_to_page(block_start_pfn,
1375 block_end_pfn, zone))
1376 return;
1377 }
1378
1379 /* We confirm that there is no hole */
1380 zone->contiguous = true;
1381 }
1382
1383 void clear_zone_contiguous(struct zone *zone)
1384 {
1385 zone->contiguous = false;
1386 }
1387
1388 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1389 static void __init deferred_free_range(struct page *page,
1390 unsigned long pfn, int nr_pages)
1391 {
1392 int i;
1393
1394 if (!page)
1395 return;
1396
1397 /* Free a large naturally-aligned chunk if possible */
1398 if (nr_pages == MAX_ORDER_NR_PAGES &&
1399 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1400 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1401 __free_pages_boot_core(page, MAX_ORDER-1);
1402 return;
1403 }
1404
1405 for (i = 0; i < nr_pages; i++, page++)
1406 __free_pages_boot_core(page, 0);
1407 }
1408
1409 /* Completion tracking for deferred_init_memmap() threads */
1410 static atomic_t pgdat_init_n_undone __initdata;
1411 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1412
1413 static inline void __init pgdat_init_report_one_done(void)
1414 {
1415 if (atomic_dec_and_test(&pgdat_init_n_undone))
1416 complete(&pgdat_init_all_done_comp);
1417 }
1418
1419 /* Initialise remaining memory on a node */
1420 static int __init deferred_init_memmap(void *data)
1421 {
1422 pg_data_t *pgdat = data;
1423 int nid = pgdat->node_id;
1424 struct mminit_pfnnid_cache nid_init_state = { };
1425 unsigned long start = jiffies;
1426 unsigned long nr_pages = 0;
1427 unsigned long walk_start, walk_end;
1428 int i, zid;
1429 struct zone *zone;
1430 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1431 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1432
1433 if (first_init_pfn == ULONG_MAX) {
1434 pgdat_init_report_one_done();
1435 return 0;
1436 }
1437
1438 /* Bind memory initialisation thread to a local node if possible */
1439 if (!cpumask_empty(cpumask))
1440 set_cpus_allowed_ptr(current, cpumask);
1441
1442 /* Sanity check boundaries */
1443 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1444 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1445 pgdat->first_deferred_pfn = ULONG_MAX;
1446
1447 /* Only the highest zone is deferred so find it */
1448 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1449 zone = pgdat->node_zones + zid;
1450 if (first_init_pfn < zone_end_pfn(zone))
1451 break;
1452 }
1453
1454 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1455 unsigned long pfn, end_pfn;
1456 struct page *page = NULL;
1457 struct page *free_base_page = NULL;
1458 unsigned long free_base_pfn = 0;
1459 int nr_to_free = 0;
1460
1461 end_pfn = min(walk_end, zone_end_pfn(zone));
1462 pfn = first_init_pfn;
1463 if (pfn < walk_start)
1464 pfn = walk_start;
1465 if (pfn < zone->zone_start_pfn)
1466 pfn = zone->zone_start_pfn;
1467
1468 for (; pfn < end_pfn; pfn++) {
1469 if (!pfn_valid_within(pfn))
1470 goto free_range;
1471
1472 /*
1473 * Ensure pfn_valid is checked every
1474 * MAX_ORDER_NR_PAGES for memory holes
1475 */
1476 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1477 if (!pfn_valid(pfn)) {
1478 page = NULL;
1479 goto free_range;
1480 }
1481 }
1482
1483 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1484 page = NULL;
1485 goto free_range;
1486 }
1487
1488 /* Minimise pfn page lookups and scheduler checks */
1489 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1490 page++;
1491 } else {
1492 nr_pages += nr_to_free;
1493 deferred_free_range(free_base_page,
1494 free_base_pfn, nr_to_free);
1495 free_base_page = NULL;
1496 free_base_pfn = nr_to_free = 0;
1497
1498 page = pfn_to_page(pfn);
1499 cond_resched();
1500 }
1501
1502 if (page->flags) {
1503 VM_BUG_ON(page_zone(page) != zone);
1504 goto free_range;
1505 }
1506
1507 __init_single_page(page, pfn, zid, nid);
1508 if (!free_base_page) {
1509 free_base_page = page;
1510 free_base_pfn = pfn;
1511 nr_to_free = 0;
1512 }
1513 nr_to_free++;
1514
1515 /* Where possible, batch up pages for a single free */
1516 continue;
1517 free_range:
1518 /* Free the current block of pages to allocator */
1519 nr_pages += nr_to_free;
1520 deferred_free_range(free_base_page, free_base_pfn,
1521 nr_to_free);
1522 free_base_page = NULL;
1523 free_base_pfn = nr_to_free = 0;
1524 }
1525
1526 first_init_pfn = max(end_pfn, first_init_pfn);
1527 }
1528
1529 /* Sanity check that the next zone really is unpopulated */
1530 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1531
1532 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1533 jiffies_to_msecs(jiffies - start));
1534
1535 pgdat_init_report_one_done();
1536 return 0;
1537 }
1538 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1539
1540 void __init page_alloc_init_late(void)
1541 {
1542 struct zone *zone;
1543
1544 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1545 int nid;
1546
1547 /* There will be num_node_state(N_MEMORY) threads */
1548 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1549 for_each_node_state(nid, N_MEMORY) {
1550 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1551 }
1552
1553 /* Block until all are initialised */
1554 wait_for_completion(&pgdat_init_all_done_comp);
1555
1556 /* Reinit limits that are based on free pages after the kernel is up */
1557 files_maxfiles_init();
1558 #endif
1559
1560 for_each_populated_zone(zone)
1561 set_zone_contiguous(zone);
1562 }
1563
1564 #ifdef CONFIG_CMA
1565 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1566 void __init init_cma_reserved_pageblock(struct page *page)
1567 {
1568 unsigned i = pageblock_nr_pages;
1569 struct page *p = page;
1570
1571 do {
1572 __ClearPageReserved(p);
1573 set_page_count(p, 0);
1574 } while (++p, --i);
1575
1576 set_pageblock_migratetype(page, MIGRATE_CMA);
1577
1578 if (pageblock_order >= MAX_ORDER) {
1579 i = pageblock_nr_pages;
1580 p = page;
1581 do {
1582 set_page_refcounted(p);
1583 __free_pages(p, MAX_ORDER - 1);
1584 p += MAX_ORDER_NR_PAGES;
1585 } while (i -= MAX_ORDER_NR_PAGES);
1586 } else {
1587 set_page_refcounted(page);
1588 __free_pages(page, pageblock_order);
1589 }
1590
1591 adjust_managed_page_count(page, pageblock_nr_pages);
1592 }
1593 #endif
1594
1595 /*
1596 * The order of subdivision here is critical for the IO subsystem.
1597 * Please do not alter this order without good reasons and regression
1598 * testing. Specifically, as large blocks of memory are subdivided,
1599 * the order in which smaller blocks are delivered depends on the order
1600 * they're subdivided in this function. This is the primary factor
1601 * influencing the order in which pages are delivered to the IO
1602 * subsystem according to empirical testing, and this is also justified
1603 * by considering the behavior of a buddy system containing a single
1604 * large block of memory acted on by a series of small allocations.
1605 * This behavior is a critical factor in sglist merging's success.
1606 *
1607 * -- nyc
1608 */
1609 static inline void expand(struct zone *zone, struct page *page,
1610 int low, int high, struct free_area *area,
1611 int migratetype)
1612 {
1613 unsigned long size = 1 << high;
1614
1615 while (high > low) {
1616 area--;
1617 high--;
1618 size >>= 1;
1619 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1620
1621 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1622 debug_guardpage_enabled() &&
1623 high < debug_guardpage_minorder()) {
1624 /*
1625 * Mark as guard pages (or page), that will allow to
1626 * merge back to allocator when buddy will be freed.
1627 * Corresponding page table entries will not be touched,
1628 * pages will stay not present in virtual address space
1629 */
1630 set_page_guard(zone, &page[size], high, migratetype);
1631 continue;
1632 }
1633 list_add(&page[size].lru, &area->free_list[migratetype]);
1634 area->nr_free++;
1635 set_page_order(&page[size], high);
1636 }
1637 }
1638
1639 static void check_new_page_bad(struct page *page)
1640 {
1641 const char *bad_reason = NULL;
1642 unsigned long bad_flags = 0;
1643
1644 if (unlikely(atomic_read(&page->_mapcount) != -1))
1645 bad_reason = "nonzero mapcount";
1646 if (unlikely(page->mapping != NULL))
1647 bad_reason = "non-NULL mapping";
1648 if (unlikely(page_ref_count(page) != 0))
1649 bad_reason = "nonzero _count";
1650 if (unlikely(page->flags & __PG_HWPOISON)) {
1651 bad_reason = "HWPoisoned (hardware-corrupted)";
1652 bad_flags = __PG_HWPOISON;
1653 /* Don't complain about hwpoisoned pages */
1654 page_mapcount_reset(page); /* remove PageBuddy */
1655 return;
1656 }
1657 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1658 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1659 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1660 }
1661 #ifdef CONFIG_MEMCG
1662 if (unlikely(page->mem_cgroup))
1663 bad_reason = "page still charged to cgroup";
1664 #endif
1665 bad_page(page, bad_reason, bad_flags);
1666 }
1667
1668 /*
1669 * This page is about to be returned from the page allocator
1670 */
1671 static inline int check_new_page(struct page *page)
1672 {
1673 if (likely(page_expected_state(page,
1674 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1675 return 0;
1676
1677 check_new_page_bad(page);
1678 return 1;
1679 }
1680
1681 static inline bool free_pages_prezeroed(bool poisoned)
1682 {
1683 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1684 page_poisoning_enabled() && poisoned;
1685 }
1686
1687 #ifdef CONFIG_DEBUG_VM
1688 static bool check_pcp_refill(struct page *page)
1689 {
1690 return false;
1691 }
1692
1693 static bool check_new_pcp(struct page *page)
1694 {
1695 return check_new_page(page);
1696 }
1697 #else
1698 static bool check_pcp_refill(struct page *page)
1699 {
1700 return check_new_page(page);
1701 }
1702 static bool check_new_pcp(struct page *page)
1703 {
1704 return false;
1705 }
1706 #endif /* CONFIG_DEBUG_VM */
1707
1708 static bool check_new_pages(struct page *page, unsigned int order)
1709 {
1710 int i;
1711 for (i = 0; i < (1 << order); i++) {
1712 struct page *p = page + i;
1713
1714 if (unlikely(check_new_page(p)))
1715 return true;
1716 }
1717
1718 return false;
1719 }
1720
1721 inline void post_alloc_hook(struct page *page, unsigned int order,
1722 gfp_t gfp_flags)
1723 {
1724 set_page_private(page, 0);
1725 set_page_refcounted(page);
1726
1727 arch_alloc_page(page, order);
1728 kernel_map_pages(page, 1 << order, 1);
1729 kernel_poison_pages(page, 1 << order, 1);
1730 kasan_alloc_pages(page, order);
1731 set_page_owner(page, order, gfp_flags);
1732 }
1733
1734 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1735 unsigned int alloc_flags)
1736 {
1737 int i;
1738 bool poisoned = true;
1739
1740 for (i = 0; i < (1 << order); i++) {
1741 struct page *p = page + i;
1742 if (poisoned)
1743 poisoned &= page_is_poisoned(p);
1744 }
1745
1746 post_alloc_hook(page, order, gfp_flags);
1747
1748 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1749 for (i = 0; i < (1 << order); i++)
1750 clear_highpage(page + i);
1751
1752 if (order && (gfp_flags & __GFP_COMP))
1753 prep_compound_page(page, order);
1754
1755 /*
1756 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1757 * allocate the page. The expectation is that the caller is taking
1758 * steps that will free more memory. The caller should avoid the page
1759 * being used for !PFMEMALLOC purposes.
1760 */
1761 if (alloc_flags & ALLOC_NO_WATERMARKS)
1762 set_page_pfmemalloc(page);
1763 else
1764 clear_page_pfmemalloc(page);
1765 }
1766
1767 /*
1768 * Go through the free lists for the given migratetype and remove
1769 * the smallest available page from the freelists
1770 */
1771 static inline
1772 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1773 int migratetype)
1774 {
1775 unsigned int current_order;
1776 struct free_area *area;
1777 struct page *page;
1778
1779 /* Find a page of the appropriate size in the preferred list */
1780 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1781 area = &(zone->free_area[current_order]);
1782 page = list_first_entry_or_null(&area->free_list[migratetype],
1783 struct page, lru);
1784 if (!page)
1785 continue;
1786 list_del(&page->lru);
1787 rmv_page_order(page);
1788 area->nr_free--;
1789 expand(zone, page, order, current_order, area, migratetype);
1790 set_pcppage_migratetype(page, migratetype);
1791 return page;
1792 }
1793
1794 return NULL;
1795 }
1796
1797
1798 /*
1799 * This array describes the order lists are fallen back to when
1800 * the free lists for the desirable migrate type are depleted
1801 */
1802 static int fallbacks[MIGRATE_TYPES][4] = {
1803 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1804 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1806 #ifdef CONFIG_CMA
1807 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1808 #endif
1809 #ifdef CONFIG_MEMORY_ISOLATION
1810 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1811 #endif
1812 };
1813
1814 #ifdef CONFIG_CMA
1815 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1816 unsigned int order)
1817 {
1818 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1819 }
1820 #else
1821 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1822 unsigned int order) { return NULL; }
1823 #endif
1824
1825 /*
1826 * Move the free pages in a range to the free lists of the requested type.
1827 * Note that start_page and end_pages are not aligned on a pageblock
1828 * boundary. If alignment is required, use move_freepages_block()
1829 */
1830 int move_freepages(struct zone *zone,
1831 struct page *start_page, struct page *end_page,
1832 int migratetype)
1833 {
1834 struct page *page;
1835 unsigned int order;
1836 int pages_moved = 0;
1837
1838 #ifndef CONFIG_HOLES_IN_ZONE
1839 /*
1840 * page_zone is not safe to call in this context when
1841 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1842 * anyway as we check zone boundaries in move_freepages_block().
1843 * Remove at a later date when no bug reports exist related to
1844 * grouping pages by mobility
1845 */
1846 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1847 #endif
1848
1849 for (page = start_page; page <= end_page;) {
1850 /* Make sure we are not inadvertently changing nodes */
1851 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1852
1853 if (!pfn_valid_within(page_to_pfn(page))) {
1854 page++;
1855 continue;
1856 }
1857
1858 if (!PageBuddy(page)) {
1859 page++;
1860 continue;
1861 }
1862
1863 order = page_order(page);
1864 list_move(&page->lru,
1865 &zone->free_area[order].free_list[migratetype]);
1866 page += 1 << order;
1867 pages_moved += 1 << order;
1868 }
1869
1870 return pages_moved;
1871 }
1872
1873 int move_freepages_block(struct zone *zone, struct page *page,
1874 int migratetype)
1875 {
1876 unsigned long start_pfn, end_pfn;
1877 struct page *start_page, *end_page;
1878
1879 start_pfn = page_to_pfn(page);
1880 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1881 start_page = pfn_to_page(start_pfn);
1882 end_page = start_page + pageblock_nr_pages - 1;
1883 end_pfn = start_pfn + pageblock_nr_pages - 1;
1884
1885 /* Do not cross zone boundaries */
1886 if (!zone_spans_pfn(zone, start_pfn))
1887 start_page = page;
1888 if (!zone_spans_pfn(zone, end_pfn))
1889 return 0;
1890
1891 return move_freepages(zone, start_page, end_page, migratetype);
1892 }
1893
1894 static void change_pageblock_range(struct page *pageblock_page,
1895 int start_order, int migratetype)
1896 {
1897 int nr_pageblocks = 1 << (start_order - pageblock_order);
1898
1899 while (nr_pageblocks--) {
1900 set_pageblock_migratetype(pageblock_page, migratetype);
1901 pageblock_page += pageblock_nr_pages;
1902 }
1903 }
1904
1905 /*
1906 * When we are falling back to another migratetype during allocation, try to
1907 * steal extra free pages from the same pageblocks to satisfy further
1908 * allocations, instead of polluting multiple pageblocks.
1909 *
1910 * If we are stealing a relatively large buddy page, it is likely there will
1911 * be more free pages in the pageblock, so try to steal them all. For
1912 * reclaimable and unmovable allocations, we steal regardless of page size,
1913 * as fragmentation caused by those allocations polluting movable pageblocks
1914 * is worse than movable allocations stealing from unmovable and reclaimable
1915 * pageblocks.
1916 */
1917 static bool can_steal_fallback(unsigned int order, int start_mt)
1918 {
1919 /*
1920 * Leaving this order check is intended, although there is
1921 * relaxed order check in next check. The reason is that
1922 * we can actually steal whole pageblock if this condition met,
1923 * but, below check doesn't guarantee it and that is just heuristic
1924 * so could be changed anytime.
1925 */
1926 if (order >= pageblock_order)
1927 return true;
1928
1929 if (order >= pageblock_order / 2 ||
1930 start_mt == MIGRATE_RECLAIMABLE ||
1931 start_mt == MIGRATE_UNMOVABLE ||
1932 page_group_by_mobility_disabled)
1933 return true;
1934
1935 return false;
1936 }
1937
1938 /*
1939 * This function implements actual steal behaviour. If order is large enough,
1940 * we can steal whole pageblock. If not, we first move freepages in this
1941 * pageblock and check whether half of pages are moved or not. If half of
1942 * pages are moved, we can change migratetype of pageblock and permanently
1943 * use it's pages as requested migratetype in the future.
1944 */
1945 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1946 int start_type)
1947 {
1948 unsigned int current_order = page_order(page);
1949 int pages;
1950
1951 /* Take ownership for orders >= pageblock_order */
1952 if (current_order >= pageblock_order) {
1953 change_pageblock_range(page, current_order, start_type);
1954 return;
1955 }
1956
1957 pages = move_freepages_block(zone, page, start_type);
1958
1959 /* Claim the whole block if over half of it is free */
1960 if (pages >= (1 << (pageblock_order-1)) ||
1961 page_group_by_mobility_disabled)
1962 set_pageblock_migratetype(page, start_type);
1963 }
1964
1965 /*
1966 * Check whether there is a suitable fallback freepage with requested order.
1967 * If only_stealable is true, this function returns fallback_mt only if
1968 * we can steal other freepages all together. This would help to reduce
1969 * fragmentation due to mixed migratetype pages in one pageblock.
1970 */
1971 int find_suitable_fallback(struct free_area *area, unsigned int order,
1972 int migratetype, bool only_stealable, bool *can_steal)
1973 {
1974 int i;
1975 int fallback_mt;
1976
1977 if (area->nr_free == 0)
1978 return -1;
1979
1980 *can_steal = false;
1981 for (i = 0;; i++) {
1982 fallback_mt = fallbacks[migratetype][i];
1983 if (fallback_mt == MIGRATE_TYPES)
1984 break;
1985
1986 if (list_empty(&area->free_list[fallback_mt]))
1987 continue;
1988
1989 if (can_steal_fallback(order, migratetype))
1990 *can_steal = true;
1991
1992 if (!only_stealable)
1993 return fallback_mt;
1994
1995 if (*can_steal)
1996 return fallback_mt;
1997 }
1998
1999 return -1;
2000 }
2001
2002 /*
2003 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2004 * there are no empty page blocks that contain a page with a suitable order
2005 */
2006 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2007 unsigned int alloc_order)
2008 {
2009 int mt;
2010 unsigned long max_managed, flags;
2011
2012 /*
2013 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2014 * Check is race-prone but harmless.
2015 */
2016 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2017 if (zone->nr_reserved_highatomic >= max_managed)
2018 return;
2019
2020 spin_lock_irqsave(&zone->lock, flags);
2021
2022 /* Recheck the nr_reserved_highatomic limit under the lock */
2023 if (zone->nr_reserved_highatomic >= max_managed)
2024 goto out_unlock;
2025
2026 /* Yoink! */
2027 mt = get_pageblock_migratetype(page);
2028 if (mt != MIGRATE_HIGHATOMIC &&
2029 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2030 zone->nr_reserved_highatomic += pageblock_nr_pages;
2031 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2032 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2033 }
2034
2035 out_unlock:
2036 spin_unlock_irqrestore(&zone->lock, flags);
2037 }
2038
2039 /*
2040 * Used when an allocation is about to fail under memory pressure. This
2041 * potentially hurts the reliability of high-order allocations when under
2042 * intense memory pressure but failed atomic allocations should be easier
2043 * to recover from than an OOM.
2044 */
2045 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2046 {
2047 struct zonelist *zonelist = ac->zonelist;
2048 unsigned long flags;
2049 struct zoneref *z;
2050 struct zone *zone;
2051 struct page *page;
2052 int order;
2053
2054 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2055 ac->nodemask) {
2056 /* Preserve at least one pageblock */
2057 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2058 continue;
2059
2060 spin_lock_irqsave(&zone->lock, flags);
2061 for (order = 0; order < MAX_ORDER; order++) {
2062 struct free_area *area = &(zone->free_area[order]);
2063
2064 page = list_first_entry_or_null(
2065 &area->free_list[MIGRATE_HIGHATOMIC],
2066 struct page, lru);
2067 if (!page)
2068 continue;
2069
2070 /*
2071 * It should never happen but changes to locking could
2072 * inadvertently allow a per-cpu drain to add pages
2073 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2074 * and watch for underflows.
2075 */
2076 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2077 zone->nr_reserved_highatomic);
2078
2079 /*
2080 * Convert to ac->migratetype and avoid the normal
2081 * pageblock stealing heuristics. Minimally, the caller
2082 * is doing the work and needs the pages. More
2083 * importantly, if the block was always converted to
2084 * MIGRATE_UNMOVABLE or another type then the number
2085 * of pageblocks that cannot be completely freed
2086 * may increase.
2087 */
2088 set_pageblock_migratetype(page, ac->migratetype);
2089 move_freepages_block(zone, page, ac->migratetype);
2090 spin_unlock_irqrestore(&zone->lock, flags);
2091 return;
2092 }
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 }
2095 }
2096
2097 /* Remove an element from the buddy allocator from the fallback list */
2098 static inline struct page *
2099 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2100 {
2101 struct free_area *area;
2102 unsigned int current_order;
2103 struct page *page;
2104 int fallback_mt;
2105 bool can_steal;
2106
2107 /* Find the largest possible block of pages in the other list */
2108 for (current_order = MAX_ORDER-1;
2109 current_order >= order && current_order <= MAX_ORDER-1;
2110 --current_order) {
2111 area = &(zone->free_area[current_order]);
2112 fallback_mt = find_suitable_fallback(area, current_order,
2113 start_migratetype, false, &can_steal);
2114 if (fallback_mt == -1)
2115 continue;
2116
2117 page = list_first_entry(&area->free_list[fallback_mt],
2118 struct page, lru);
2119 if (can_steal)
2120 steal_suitable_fallback(zone, page, start_migratetype);
2121
2122 /* Remove the page from the freelists */
2123 area->nr_free--;
2124 list_del(&page->lru);
2125 rmv_page_order(page);
2126
2127 expand(zone, page, order, current_order, area,
2128 start_migratetype);
2129 /*
2130 * The pcppage_migratetype may differ from pageblock's
2131 * migratetype depending on the decisions in
2132 * find_suitable_fallback(). This is OK as long as it does not
2133 * differ for MIGRATE_CMA pageblocks. Those can be used as
2134 * fallback only via special __rmqueue_cma_fallback() function
2135 */
2136 set_pcppage_migratetype(page, start_migratetype);
2137
2138 trace_mm_page_alloc_extfrag(page, order, current_order,
2139 start_migratetype, fallback_mt);
2140
2141 return page;
2142 }
2143
2144 return NULL;
2145 }
2146
2147 /*
2148 * Do the hard work of removing an element from the buddy allocator.
2149 * Call me with the zone->lock already held.
2150 */
2151 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2152 int migratetype)
2153 {
2154 struct page *page;
2155
2156 page = __rmqueue_smallest(zone, order, migratetype);
2157 if (unlikely(!page)) {
2158 if (migratetype == MIGRATE_MOVABLE)
2159 page = __rmqueue_cma_fallback(zone, order);
2160
2161 if (!page)
2162 page = __rmqueue_fallback(zone, order, migratetype);
2163 }
2164
2165 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2166 return page;
2167 }
2168
2169 /*
2170 * Obtain a specified number of elements from the buddy allocator, all under
2171 * a single hold of the lock, for efficiency. Add them to the supplied list.
2172 * Returns the number of new pages which were placed at *list.
2173 */
2174 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2175 unsigned long count, struct list_head *list,
2176 int migratetype, bool cold)
2177 {
2178 int i;
2179
2180 spin_lock(&zone->lock);
2181 for (i = 0; i < count; ++i) {
2182 struct page *page = __rmqueue(zone, order, migratetype);
2183 if (unlikely(page == NULL))
2184 break;
2185
2186 if (unlikely(check_pcp_refill(page)))
2187 continue;
2188
2189 /*
2190 * Split buddy pages returned by expand() are received here
2191 * in physical page order. The page is added to the callers and
2192 * list and the list head then moves forward. From the callers
2193 * perspective, the linked list is ordered by page number in
2194 * some conditions. This is useful for IO devices that can
2195 * merge IO requests if the physical pages are ordered
2196 * properly.
2197 */
2198 if (likely(!cold))
2199 list_add(&page->lru, list);
2200 else
2201 list_add_tail(&page->lru, list);
2202 list = &page->lru;
2203 if (is_migrate_cma(get_pcppage_migratetype(page)))
2204 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2205 -(1 << order));
2206 }
2207 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2208 spin_unlock(&zone->lock);
2209 return i;
2210 }
2211
2212 #ifdef CONFIG_NUMA
2213 /*
2214 * Called from the vmstat counter updater to drain pagesets of this
2215 * currently executing processor on remote nodes after they have
2216 * expired.
2217 *
2218 * Note that this function must be called with the thread pinned to
2219 * a single processor.
2220 */
2221 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2222 {
2223 unsigned long flags;
2224 int to_drain, batch;
2225
2226 local_irq_save(flags);
2227 batch = READ_ONCE(pcp->batch);
2228 to_drain = min(pcp->count, batch);
2229 if (to_drain > 0) {
2230 free_pcppages_bulk(zone, to_drain, pcp);
2231 pcp->count -= to_drain;
2232 }
2233 local_irq_restore(flags);
2234 }
2235 #endif
2236
2237 /*
2238 * Drain pcplists of the indicated processor and zone.
2239 *
2240 * The processor must either be the current processor and the
2241 * thread pinned to the current processor or a processor that
2242 * is not online.
2243 */
2244 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2245 {
2246 unsigned long flags;
2247 struct per_cpu_pageset *pset;
2248 struct per_cpu_pages *pcp;
2249
2250 local_irq_save(flags);
2251 pset = per_cpu_ptr(zone->pageset, cpu);
2252
2253 pcp = &pset->pcp;
2254 if (pcp->count) {
2255 free_pcppages_bulk(zone, pcp->count, pcp);
2256 pcp->count = 0;
2257 }
2258 local_irq_restore(flags);
2259 }
2260
2261 /*
2262 * Drain pcplists of all zones on the indicated processor.
2263 *
2264 * The processor must either be the current processor and the
2265 * thread pinned to the current processor or a processor that
2266 * is not online.
2267 */
2268 static void drain_pages(unsigned int cpu)
2269 {
2270 struct zone *zone;
2271
2272 for_each_populated_zone(zone) {
2273 drain_pages_zone(cpu, zone);
2274 }
2275 }
2276
2277 /*
2278 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2279 *
2280 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2281 * the single zone's pages.
2282 */
2283 void drain_local_pages(struct zone *zone)
2284 {
2285 int cpu = smp_processor_id();
2286
2287 if (zone)
2288 drain_pages_zone(cpu, zone);
2289 else
2290 drain_pages(cpu);
2291 }
2292
2293 /*
2294 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2295 *
2296 * When zone parameter is non-NULL, spill just the single zone's pages.
2297 *
2298 * Note that this code is protected against sending an IPI to an offline
2299 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2300 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2301 * nothing keeps CPUs from showing up after we populated the cpumask and
2302 * before the call to on_each_cpu_mask().
2303 */
2304 void drain_all_pages(struct zone *zone)
2305 {
2306 int cpu;
2307
2308 /*
2309 * Allocate in the BSS so we wont require allocation in
2310 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2311 */
2312 static cpumask_t cpus_with_pcps;
2313
2314 /*
2315 * We don't care about racing with CPU hotplug event
2316 * as offline notification will cause the notified
2317 * cpu to drain that CPU pcps and on_each_cpu_mask
2318 * disables preemption as part of its processing
2319 */
2320 for_each_online_cpu(cpu) {
2321 struct per_cpu_pageset *pcp;
2322 struct zone *z;
2323 bool has_pcps = false;
2324
2325 if (zone) {
2326 pcp = per_cpu_ptr(zone->pageset, cpu);
2327 if (pcp->pcp.count)
2328 has_pcps = true;
2329 } else {
2330 for_each_populated_zone(z) {
2331 pcp = per_cpu_ptr(z->pageset, cpu);
2332 if (pcp->pcp.count) {
2333 has_pcps = true;
2334 break;
2335 }
2336 }
2337 }
2338
2339 if (has_pcps)
2340 cpumask_set_cpu(cpu, &cpus_with_pcps);
2341 else
2342 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2343 }
2344 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2345 zone, 1);
2346 }
2347
2348 #ifdef CONFIG_HIBERNATION
2349
2350 void mark_free_pages(struct zone *zone)
2351 {
2352 unsigned long pfn, max_zone_pfn;
2353 unsigned long flags;
2354 unsigned int order, t;
2355 struct page *page;
2356
2357 if (zone_is_empty(zone))
2358 return;
2359
2360 spin_lock_irqsave(&zone->lock, flags);
2361
2362 max_zone_pfn = zone_end_pfn(zone);
2363 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2364 if (pfn_valid(pfn)) {
2365 page = pfn_to_page(pfn);
2366
2367 if (page_zone(page) != zone)
2368 continue;
2369
2370 if (!swsusp_page_is_forbidden(page))
2371 swsusp_unset_page_free(page);
2372 }
2373
2374 for_each_migratetype_order(order, t) {
2375 list_for_each_entry(page,
2376 &zone->free_area[order].free_list[t], lru) {
2377 unsigned long i;
2378
2379 pfn = page_to_pfn(page);
2380 for (i = 0; i < (1UL << order); i++)
2381 swsusp_set_page_free(pfn_to_page(pfn + i));
2382 }
2383 }
2384 spin_unlock_irqrestore(&zone->lock, flags);
2385 }
2386 #endif /* CONFIG_PM */
2387
2388 /*
2389 * Free a 0-order page
2390 * cold == true ? free a cold page : free a hot page
2391 */
2392 void free_hot_cold_page(struct page *page, bool cold)
2393 {
2394 struct zone *zone = page_zone(page);
2395 struct per_cpu_pages *pcp;
2396 unsigned long flags;
2397 unsigned long pfn = page_to_pfn(page);
2398 int migratetype;
2399
2400 if (!free_pcp_prepare(page))
2401 return;
2402
2403 migratetype = get_pfnblock_migratetype(page, pfn);
2404 set_pcppage_migratetype(page, migratetype);
2405 local_irq_save(flags);
2406 __count_vm_event(PGFREE);
2407
2408 /*
2409 * We only track unmovable, reclaimable and movable on pcp lists.
2410 * Free ISOLATE pages back to the allocator because they are being
2411 * offlined but treat RESERVE as movable pages so we can get those
2412 * areas back if necessary. Otherwise, we may have to free
2413 * excessively into the page allocator
2414 */
2415 if (migratetype >= MIGRATE_PCPTYPES) {
2416 if (unlikely(is_migrate_isolate(migratetype))) {
2417 free_one_page(zone, page, pfn, 0, migratetype);
2418 goto out;
2419 }
2420 migratetype = MIGRATE_MOVABLE;
2421 }
2422
2423 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2424 if (!cold)
2425 list_add(&page->lru, &pcp->lists[migratetype]);
2426 else
2427 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2428 pcp->count++;
2429 if (pcp->count >= pcp->high) {
2430 unsigned long batch = READ_ONCE(pcp->batch);
2431 free_pcppages_bulk(zone, batch, pcp);
2432 pcp->count -= batch;
2433 }
2434
2435 out:
2436 local_irq_restore(flags);
2437 }
2438
2439 /*
2440 * Free a list of 0-order pages
2441 */
2442 void free_hot_cold_page_list(struct list_head *list, bool cold)
2443 {
2444 struct page *page, *next;
2445
2446 list_for_each_entry_safe(page, next, list, lru) {
2447 trace_mm_page_free_batched(page, cold);
2448 free_hot_cold_page(page, cold);
2449 }
2450 }
2451
2452 /*
2453 * split_page takes a non-compound higher-order page, and splits it into
2454 * n (1<<order) sub-pages: page[0..n]
2455 * Each sub-page must be freed individually.
2456 *
2457 * Note: this is probably too low level an operation for use in drivers.
2458 * Please consult with lkml before using this in your driver.
2459 */
2460 void split_page(struct page *page, unsigned int order)
2461 {
2462 int i;
2463
2464 VM_BUG_ON_PAGE(PageCompound(page), page);
2465 VM_BUG_ON_PAGE(!page_count(page), page);
2466
2467 #ifdef CONFIG_KMEMCHECK
2468 /*
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2471 */
2472 if (kmemcheck_page_is_tracked(page))
2473 split_page(virt_to_page(page[0].shadow), order);
2474 #endif
2475
2476 for (i = 1; i < (1 << order); i++)
2477 set_page_refcounted(page + i);
2478 split_page_owner(page, order);
2479 }
2480 EXPORT_SYMBOL_GPL(split_page);
2481
2482 int __isolate_free_page(struct page *page, unsigned int order)
2483 {
2484 unsigned long watermark;
2485 struct zone *zone;
2486 int mt;
2487
2488 BUG_ON(!PageBuddy(page));
2489
2490 zone = page_zone(page);
2491 mt = get_pageblock_migratetype(page);
2492
2493 if (!is_migrate_isolate(mt)) {
2494 /* Obey watermarks as if the page was being allocated */
2495 watermark = low_wmark_pages(zone) + (1 << order);
2496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2497 return 0;
2498
2499 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2500 }
2501
2502 /* Remove page from free list */
2503 list_del(&page->lru);
2504 zone->free_area[order].nr_free--;
2505 rmv_page_order(page);
2506
2507 /*
2508 * Set the pageblock if the isolated page is at least half of a
2509 * pageblock
2510 */
2511 if (order >= pageblock_order - 1) {
2512 struct page *endpage = page + (1 << order) - 1;
2513 for (; page < endpage; page += pageblock_nr_pages) {
2514 int mt = get_pageblock_migratetype(page);
2515 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2516 set_pageblock_migratetype(page,
2517 MIGRATE_MOVABLE);
2518 }
2519 }
2520
2521
2522 return 1UL << order;
2523 }
2524
2525 /*
2526 * Update NUMA hit/miss statistics
2527 *
2528 * Must be called with interrupts disabled.
2529 *
2530 * When __GFP_OTHER_NODE is set assume the node of the preferred
2531 * zone is the local node. This is useful for daemons who allocate
2532 * memory on behalf of other processes.
2533 */
2534 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2535 gfp_t flags)
2536 {
2537 #ifdef CONFIG_NUMA
2538 int local_nid = numa_node_id();
2539 enum zone_stat_item local_stat = NUMA_LOCAL;
2540
2541 if (unlikely(flags & __GFP_OTHER_NODE)) {
2542 local_stat = NUMA_OTHER;
2543 local_nid = preferred_zone->node;
2544 }
2545
2546 if (z->node == local_nid) {
2547 __inc_zone_state(z, NUMA_HIT);
2548 __inc_zone_state(z, local_stat);
2549 } else {
2550 __inc_zone_state(z, NUMA_MISS);
2551 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2552 }
2553 #endif
2554 }
2555
2556 /*
2557 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2558 */
2559 static inline
2560 struct page *buffered_rmqueue(struct zone *preferred_zone,
2561 struct zone *zone, unsigned int order,
2562 gfp_t gfp_flags, unsigned int alloc_flags,
2563 int migratetype)
2564 {
2565 unsigned long flags;
2566 struct page *page;
2567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2568
2569 if (likely(order == 0)) {
2570 struct per_cpu_pages *pcp;
2571 struct list_head *list;
2572
2573 local_irq_save(flags);
2574 do {
2575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2576 list = &pcp->lists[migratetype];
2577 if (list_empty(list)) {
2578 pcp->count += rmqueue_bulk(zone, 0,
2579 pcp->batch, list,
2580 migratetype, cold);
2581 if (unlikely(list_empty(list)))
2582 goto failed;
2583 }
2584
2585 if (cold)
2586 page = list_last_entry(list, struct page, lru);
2587 else
2588 page = list_first_entry(list, struct page, lru);
2589
2590 list_del(&page->lru);
2591 pcp->count--;
2592
2593 } while (check_new_pcp(page));
2594 } else {
2595 /*
2596 * We most definitely don't want callers attempting to
2597 * allocate greater than order-1 page units with __GFP_NOFAIL.
2598 */
2599 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2600 spin_lock_irqsave(&zone->lock, flags);
2601
2602 do {
2603 page = NULL;
2604 if (alloc_flags & ALLOC_HARDER) {
2605 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2606 if (page)
2607 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2608 }
2609 if (!page)
2610 page = __rmqueue(zone, order, migratetype);
2611 } while (page && check_new_pages(page, order));
2612 spin_unlock(&zone->lock);
2613 if (!page)
2614 goto failed;
2615 __mod_zone_freepage_state(zone, -(1 << order),
2616 get_pcppage_migratetype(page));
2617 }
2618
2619 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2620 zone_statistics(preferred_zone, zone, gfp_flags);
2621 local_irq_restore(flags);
2622
2623 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2624 return page;
2625
2626 failed:
2627 local_irq_restore(flags);
2628 return NULL;
2629 }
2630
2631 #ifdef CONFIG_FAIL_PAGE_ALLOC
2632
2633 static struct {
2634 struct fault_attr attr;
2635
2636 bool ignore_gfp_highmem;
2637 bool ignore_gfp_reclaim;
2638 u32 min_order;
2639 } fail_page_alloc = {
2640 .attr = FAULT_ATTR_INITIALIZER,
2641 .ignore_gfp_reclaim = true,
2642 .ignore_gfp_highmem = true,
2643 .min_order = 1,
2644 };
2645
2646 static int __init setup_fail_page_alloc(char *str)
2647 {
2648 return setup_fault_attr(&fail_page_alloc.attr, str);
2649 }
2650 __setup("fail_page_alloc=", setup_fail_page_alloc);
2651
2652 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2653 {
2654 if (order < fail_page_alloc.min_order)
2655 return false;
2656 if (gfp_mask & __GFP_NOFAIL)
2657 return false;
2658 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2659 return false;
2660 if (fail_page_alloc.ignore_gfp_reclaim &&
2661 (gfp_mask & __GFP_DIRECT_RECLAIM))
2662 return false;
2663
2664 return should_fail(&fail_page_alloc.attr, 1 << order);
2665 }
2666
2667 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2668
2669 static int __init fail_page_alloc_debugfs(void)
2670 {
2671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2672 struct dentry *dir;
2673
2674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2675 &fail_page_alloc.attr);
2676 if (IS_ERR(dir))
2677 return PTR_ERR(dir);
2678
2679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2680 &fail_page_alloc.ignore_gfp_reclaim))
2681 goto fail;
2682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2683 &fail_page_alloc.ignore_gfp_highmem))
2684 goto fail;
2685 if (!debugfs_create_u32("min-order", mode, dir,
2686 &fail_page_alloc.min_order))
2687 goto fail;
2688
2689 return 0;
2690 fail:
2691 debugfs_remove_recursive(dir);
2692
2693 return -ENOMEM;
2694 }
2695
2696 late_initcall(fail_page_alloc_debugfs);
2697
2698 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2699
2700 #else /* CONFIG_FAIL_PAGE_ALLOC */
2701
2702 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2703 {
2704 return false;
2705 }
2706
2707 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2708
2709 /*
2710 * Return true if free base pages are above 'mark'. For high-order checks it
2711 * will return true of the order-0 watermark is reached and there is at least
2712 * one free page of a suitable size. Checking now avoids taking the zone lock
2713 * to check in the allocation paths if no pages are free.
2714 */
2715 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2716 int classzone_idx, unsigned int alloc_flags,
2717 long free_pages)
2718 {
2719 long min = mark;
2720 int o;
2721 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2722
2723 /* free_pages may go negative - that's OK */
2724 free_pages -= (1 << order) - 1;
2725
2726 if (alloc_flags & ALLOC_HIGH)
2727 min -= min / 2;
2728
2729 /*
2730 * If the caller does not have rights to ALLOC_HARDER then subtract
2731 * the high-atomic reserves. This will over-estimate the size of the
2732 * atomic reserve but it avoids a search.
2733 */
2734 if (likely(!alloc_harder))
2735 free_pages -= z->nr_reserved_highatomic;
2736 else
2737 min -= min / 4;
2738
2739 #ifdef CONFIG_CMA
2740 /* If allocation can't use CMA areas don't use free CMA pages */
2741 if (!(alloc_flags & ALLOC_CMA))
2742 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2743 #endif
2744
2745 /*
2746 * Check watermarks for an order-0 allocation request. If these
2747 * are not met, then a high-order request also cannot go ahead
2748 * even if a suitable page happened to be free.
2749 */
2750 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2751 return false;
2752
2753 /* If this is an order-0 request then the watermark is fine */
2754 if (!order)
2755 return true;
2756
2757 /* For a high-order request, check at least one suitable page is free */
2758 for (o = order; o < MAX_ORDER; o++) {
2759 struct free_area *area = &z->free_area[o];
2760 int mt;
2761
2762 if (!area->nr_free)
2763 continue;
2764
2765 if (alloc_harder)
2766 return true;
2767
2768 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2769 if (!list_empty(&area->free_list[mt]))
2770 return true;
2771 }
2772
2773 #ifdef CONFIG_CMA
2774 if ((alloc_flags & ALLOC_CMA) &&
2775 !list_empty(&area->free_list[MIGRATE_CMA])) {
2776 return true;
2777 }
2778 #endif
2779 }
2780 return false;
2781 }
2782
2783 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2784 int classzone_idx, unsigned int alloc_flags)
2785 {
2786 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2787 zone_page_state(z, NR_FREE_PAGES));
2788 }
2789
2790 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2791 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2792 {
2793 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2794 long cma_pages = 0;
2795
2796 #ifdef CONFIG_CMA
2797 /* If allocation can't use CMA areas don't use free CMA pages */
2798 if (!(alloc_flags & ALLOC_CMA))
2799 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2800 #endif
2801
2802 /*
2803 * Fast check for order-0 only. If this fails then the reserves
2804 * need to be calculated. There is a corner case where the check
2805 * passes but only the high-order atomic reserve are free. If
2806 * the caller is !atomic then it'll uselessly search the free
2807 * list. That corner case is then slower but it is harmless.
2808 */
2809 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2810 return true;
2811
2812 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2813 free_pages);
2814 }
2815
2816 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2817 unsigned long mark, int classzone_idx)
2818 {
2819 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2820
2821 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2822 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2823
2824 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2825 free_pages);
2826 }
2827
2828 #ifdef CONFIG_NUMA
2829 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2830 {
2831 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2832 RECLAIM_DISTANCE;
2833 }
2834 #else /* CONFIG_NUMA */
2835 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2836 {
2837 return true;
2838 }
2839 #endif /* CONFIG_NUMA */
2840
2841 /*
2842 * get_page_from_freelist goes through the zonelist trying to allocate
2843 * a page.
2844 */
2845 static struct page *
2846 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2847 const struct alloc_context *ac)
2848 {
2849 struct zoneref *z = ac->preferred_zoneref;
2850 struct zone *zone;
2851 struct pglist_data *last_pgdat_dirty_limit = NULL;
2852
2853 /*
2854 * Scan zonelist, looking for a zone with enough free.
2855 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2856 */
2857 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2858 ac->nodemask) {
2859 struct page *page;
2860 unsigned long mark;
2861
2862 if (cpusets_enabled() &&
2863 (alloc_flags & ALLOC_CPUSET) &&
2864 !__cpuset_zone_allowed(zone, gfp_mask))
2865 continue;
2866 /*
2867 * When allocating a page cache page for writing, we
2868 * want to get it from a node that is within its dirty
2869 * limit, such that no single node holds more than its
2870 * proportional share of globally allowed dirty pages.
2871 * The dirty limits take into account the node's
2872 * lowmem reserves and high watermark so that kswapd
2873 * should be able to balance it without having to
2874 * write pages from its LRU list.
2875 *
2876 * XXX: For now, allow allocations to potentially
2877 * exceed the per-node dirty limit in the slowpath
2878 * (spread_dirty_pages unset) before going into reclaim,
2879 * which is important when on a NUMA setup the allowed
2880 * nodes are together not big enough to reach the
2881 * global limit. The proper fix for these situations
2882 * will require awareness of nodes in the
2883 * dirty-throttling and the flusher threads.
2884 */
2885 if (ac->spread_dirty_pages) {
2886 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2887 continue;
2888
2889 if (!node_dirty_ok(zone->zone_pgdat)) {
2890 last_pgdat_dirty_limit = zone->zone_pgdat;
2891 continue;
2892 }
2893 }
2894
2895 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2896 if (!zone_watermark_fast(zone, order, mark,
2897 ac_classzone_idx(ac), alloc_flags)) {
2898 int ret;
2899
2900 /* Checked here to keep the fast path fast */
2901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2902 if (alloc_flags & ALLOC_NO_WATERMARKS)
2903 goto try_this_zone;
2904
2905 if (node_reclaim_mode == 0 ||
2906 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2907 continue;
2908
2909 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2910 switch (ret) {
2911 case NODE_RECLAIM_NOSCAN:
2912 /* did not scan */
2913 continue;
2914 case NODE_RECLAIM_FULL:
2915 /* scanned but unreclaimable */
2916 continue;
2917 default:
2918 /* did we reclaim enough */
2919 if (zone_watermark_ok(zone, order, mark,
2920 ac_classzone_idx(ac), alloc_flags))
2921 goto try_this_zone;
2922
2923 continue;
2924 }
2925 }
2926
2927 try_this_zone:
2928 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2929 gfp_mask, alloc_flags, ac->migratetype);
2930 if (page) {
2931 prep_new_page(page, order, gfp_mask, alloc_flags);
2932
2933 /*
2934 * If this is a high-order atomic allocation then check
2935 * if the pageblock should be reserved for the future
2936 */
2937 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2938 reserve_highatomic_pageblock(page, zone, order);
2939
2940 return page;
2941 }
2942 }
2943
2944 return NULL;
2945 }
2946
2947 /*
2948 * Large machines with many possible nodes should not always dump per-node
2949 * meminfo in irq context.
2950 */
2951 static inline bool should_suppress_show_mem(void)
2952 {
2953 bool ret = false;
2954
2955 #if NODES_SHIFT > 8
2956 ret = in_interrupt();
2957 #endif
2958 return ret;
2959 }
2960
2961 static DEFINE_RATELIMIT_STATE(nopage_rs,
2962 DEFAULT_RATELIMIT_INTERVAL,
2963 DEFAULT_RATELIMIT_BURST);
2964
2965 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2966 {
2967 unsigned int filter = SHOW_MEM_FILTER_NODES;
2968
2969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2970 debug_guardpage_minorder() > 0)
2971 return;
2972
2973 /*
2974 * This documents exceptions given to allocations in certain
2975 * contexts that are allowed to allocate outside current's set
2976 * of allowed nodes.
2977 */
2978 if (!(gfp_mask & __GFP_NOMEMALLOC))
2979 if (test_thread_flag(TIF_MEMDIE) ||
2980 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2981 filter &= ~SHOW_MEM_FILTER_NODES;
2982 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2983 filter &= ~SHOW_MEM_FILTER_NODES;
2984
2985 if (fmt) {
2986 struct va_format vaf;
2987 va_list args;
2988
2989 va_start(args, fmt);
2990
2991 vaf.fmt = fmt;
2992 vaf.va = &args;
2993
2994 pr_warn("%pV", &vaf);
2995
2996 va_end(args);
2997 }
2998
2999 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3000 current->comm, order, gfp_mask, &gfp_mask);
3001 dump_stack();
3002 if (!should_suppress_show_mem())
3003 show_mem(filter);
3004 }
3005
3006 static inline struct page *
3007 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3008 const struct alloc_context *ac, unsigned long *did_some_progress)
3009 {
3010 struct oom_control oc = {
3011 .zonelist = ac->zonelist,
3012 .nodemask = ac->nodemask,
3013 .memcg = NULL,
3014 .gfp_mask = gfp_mask,
3015 .order = order,
3016 };
3017 struct page *page;
3018
3019 *did_some_progress = 0;
3020
3021 /*
3022 * Acquire the oom lock. If that fails, somebody else is
3023 * making progress for us.
3024 */
3025 if (!mutex_trylock(&oom_lock)) {
3026 *did_some_progress = 1;
3027 schedule_timeout_uninterruptible(1);
3028 return NULL;
3029 }
3030
3031 /*
3032 * Go through the zonelist yet one more time, keep very high watermark
3033 * here, this is only to catch a parallel oom killing, we must fail if
3034 * we're still under heavy pressure.
3035 */
3036 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3037 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3038 if (page)
3039 goto out;
3040
3041 if (!(gfp_mask & __GFP_NOFAIL)) {
3042 /* Coredumps can quickly deplete all memory reserves */
3043 if (current->flags & PF_DUMPCORE)
3044 goto out;
3045 /* The OOM killer will not help higher order allocs */
3046 if (order > PAGE_ALLOC_COSTLY_ORDER)
3047 goto out;
3048 /* The OOM killer does not needlessly kill tasks for lowmem */
3049 if (ac->high_zoneidx < ZONE_NORMAL)
3050 goto out;
3051 if (pm_suspended_storage())
3052 goto out;
3053 /*
3054 * XXX: GFP_NOFS allocations should rather fail than rely on
3055 * other request to make a forward progress.
3056 * We are in an unfortunate situation where out_of_memory cannot
3057 * do much for this context but let's try it to at least get
3058 * access to memory reserved if the current task is killed (see
3059 * out_of_memory). Once filesystems are ready to handle allocation
3060 * failures more gracefully we should just bail out here.
3061 */
3062
3063 /* The OOM killer may not free memory on a specific node */
3064 if (gfp_mask & __GFP_THISNODE)
3065 goto out;
3066 }
3067 /* Exhausted what can be done so it's blamo time */
3068 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3069 *did_some_progress = 1;
3070
3071 if (gfp_mask & __GFP_NOFAIL) {
3072 page = get_page_from_freelist(gfp_mask, order,
3073 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3074 /*
3075 * fallback to ignore cpuset restriction if our nodes
3076 * are depleted
3077 */
3078 if (!page)
3079 page = get_page_from_freelist(gfp_mask, order,
3080 ALLOC_NO_WATERMARKS, ac);
3081 }
3082 }
3083 out:
3084 mutex_unlock(&oom_lock);
3085 return page;
3086 }
3087
3088 /*
3089 * Maximum number of compaction retries wit a progress before OOM
3090 * killer is consider as the only way to move forward.
3091 */
3092 #define MAX_COMPACT_RETRIES 16
3093
3094 #ifdef CONFIG_COMPACTION
3095 /* Try memory compaction for high-order allocations before reclaim */
3096 static struct page *
3097 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3098 unsigned int alloc_flags, const struct alloc_context *ac,
3099 enum migrate_mode mode, enum compact_result *compact_result)
3100 {
3101 struct page *page;
3102 int contended_compaction;
3103
3104 if (!order)
3105 return NULL;
3106
3107 current->flags |= PF_MEMALLOC;
3108 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3109 mode, &contended_compaction);
3110 current->flags &= ~PF_MEMALLOC;
3111
3112 if (*compact_result <= COMPACT_INACTIVE)
3113 return NULL;
3114
3115 /*
3116 * At least in one zone compaction wasn't deferred or skipped, so let's
3117 * count a compaction stall
3118 */
3119 count_vm_event(COMPACTSTALL);
3120
3121 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3122
3123 if (page) {
3124 struct zone *zone = page_zone(page);
3125
3126 zone->compact_blockskip_flush = false;
3127 compaction_defer_reset(zone, order, true);
3128 count_vm_event(COMPACTSUCCESS);
3129 return page;
3130 }
3131
3132 /*
3133 * It's bad if compaction run occurs and fails. The most likely reason
3134 * is that pages exist, but not enough to satisfy watermarks.
3135 */
3136 count_vm_event(COMPACTFAIL);
3137
3138 /*
3139 * In all zones where compaction was attempted (and not
3140 * deferred or skipped), lock contention has been detected.
3141 * For THP allocation we do not want to disrupt the others
3142 * so we fallback to base pages instead.
3143 */
3144 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3145 *compact_result = COMPACT_CONTENDED;
3146
3147 /*
3148 * If compaction was aborted due to need_resched(), we do not
3149 * want to further increase allocation latency, unless it is
3150 * khugepaged trying to collapse.
3151 */
3152 if (contended_compaction == COMPACT_CONTENDED_SCHED
3153 && !(current->flags & PF_KTHREAD))
3154 *compact_result = COMPACT_CONTENDED;
3155
3156 cond_resched();
3157
3158 return NULL;
3159 }
3160
3161 static inline bool
3162 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3163 enum compact_result compact_result, enum migrate_mode *migrate_mode,
3164 int compaction_retries)
3165 {
3166 int max_retries = MAX_COMPACT_RETRIES;
3167
3168 if (!order)
3169 return false;
3170
3171 /*
3172 * compaction considers all the zone as desperately out of memory
3173 * so it doesn't really make much sense to retry except when the
3174 * failure could be caused by weak migration mode.
3175 */
3176 if (compaction_failed(compact_result)) {
3177 if (*migrate_mode == MIGRATE_ASYNC) {
3178 *migrate_mode = MIGRATE_SYNC_LIGHT;
3179 return true;
3180 }
3181 return false;
3182 }
3183
3184 /*
3185 * make sure the compaction wasn't deferred or didn't bail out early
3186 * due to locks contention before we declare that we should give up.
3187 * But do not retry if the given zonelist is not suitable for
3188 * compaction.
3189 */
3190 if (compaction_withdrawn(compact_result))
3191 return compaction_zonelist_suitable(ac, order, alloc_flags);
3192
3193 /*
3194 * !costly requests are much more important than __GFP_REPEAT
3195 * costly ones because they are de facto nofail and invoke OOM
3196 * killer to move on while costly can fail and users are ready
3197 * to cope with that. 1/4 retries is rather arbitrary but we
3198 * would need much more detailed feedback from compaction to
3199 * make a better decision.
3200 */
3201 if (order > PAGE_ALLOC_COSTLY_ORDER)
3202 max_retries /= 4;
3203 if (compaction_retries <= max_retries)
3204 return true;
3205
3206 return false;
3207 }
3208 #else
3209 static inline struct page *
3210 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3211 unsigned int alloc_flags, const struct alloc_context *ac,
3212 enum migrate_mode mode, enum compact_result *compact_result)
3213 {
3214 *compact_result = COMPACT_SKIPPED;
3215 return NULL;
3216 }
3217
3218 static inline bool
3219 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3220 enum compact_result compact_result,
3221 enum migrate_mode *migrate_mode,
3222 int compaction_retries)
3223 {
3224 struct zone *zone;
3225 struct zoneref *z;
3226
3227 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3228 return false;
3229
3230 /*
3231 * There are setups with compaction disabled which would prefer to loop
3232 * inside the allocator rather than hit the oom killer prematurely.
3233 * Let's give them a good hope and keep retrying while the order-0
3234 * watermarks are OK.
3235 */
3236 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3237 ac->nodemask) {
3238 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3239 ac_classzone_idx(ac), alloc_flags))
3240 return true;
3241 }
3242 return false;
3243 }
3244 #endif /* CONFIG_COMPACTION */
3245
3246 /* Perform direct synchronous page reclaim */
3247 static int
3248 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3249 const struct alloc_context *ac)
3250 {
3251 struct reclaim_state reclaim_state;
3252 int progress;
3253
3254 cond_resched();
3255
3256 /* We now go into synchronous reclaim */
3257 cpuset_memory_pressure_bump();
3258 current->flags |= PF_MEMALLOC;
3259 lockdep_set_current_reclaim_state(gfp_mask);
3260 reclaim_state.reclaimed_slab = 0;
3261 current->reclaim_state = &reclaim_state;
3262
3263 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3264 ac->nodemask);
3265
3266 current->reclaim_state = NULL;
3267 lockdep_clear_current_reclaim_state();
3268 current->flags &= ~PF_MEMALLOC;
3269
3270 cond_resched();
3271
3272 return progress;
3273 }
3274
3275 /* The really slow allocator path where we enter direct reclaim */
3276 static inline struct page *
3277 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3278 unsigned int alloc_flags, const struct alloc_context *ac,
3279 unsigned long *did_some_progress)
3280 {
3281 struct page *page = NULL;
3282 bool drained = false;
3283
3284 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3285 if (unlikely(!(*did_some_progress)))
3286 return NULL;
3287
3288 retry:
3289 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3290
3291 /*
3292 * If an allocation failed after direct reclaim, it could be because
3293 * pages are pinned on the per-cpu lists or in high alloc reserves.
3294 * Shrink them them and try again
3295 */
3296 if (!page && !drained) {
3297 unreserve_highatomic_pageblock(ac);
3298 drain_all_pages(NULL);
3299 drained = true;
3300 goto retry;
3301 }
3302
3303 return page;
3304 }
3305
3306 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3307 {
3308 struct zoneref *z;
3309 struct zone *zone;
3310 pg_data_t *last_pgdat = NULL;
3311
3312 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3313 ac->high_zoneidx, ac->nodemask) {
3314 if (last_pgdat != zone->zone_pgdat)
3315 wakeup_kswapd(zone, order, ac->high_zoneidx);
3316 last_pgdat = zone->zone_pgdat;
3317 }
3318 }
3319
3320 static inline unsigned int
3321 gfp_to_alloc_flags(gfp_t gfp_mask)
3322 {
3323 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3324
3325 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3326 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3327
3328 /*
3329 * The caller may dip into page reserves a bit more if the caller
3330 * cannot run direct reclaim, or if the caller has realtime scheduling
3331 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3332 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3333 */
3334 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3335
3336 if (gfp_mask & __GFP_ATOMIC) {
3337 /*
3338 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3339 * if it can't schedule.
3340 */
3341 if (!(gfp_mask & __GFP_NOMEMALLOC))
3342 alloc_flags |= ALLOC_HARDER;
3343 /*
3344 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3345 * comment for __cpuset_node_allowed().
3346 */
3347 alloc_flags &= ~ALLOC_CPUSET;
3348 } else if (unlikely(rt_task(current)) && !in_interrupt())
3349 alloc_flags |= ALLOC_HARDER;
3350
3351 #ifdef CONFIG_CMA
3352 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3353 alloc_flags |= ALLOC_CMA;
3354 #endif
3355 return alloc_flags;
3356 }
3357
3358 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3359 {
3360 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3361 return false;
3362
3363 if (gfp_mask & __GFP_MEMALLOC)
3364 return true;
3365 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3366 return true;
3367 if (!in_interrupt() &&
3368 ((current->flags & PF_MEMALLOC) ||
3369 unlikely(test_thread_flag(TIF_MEMDIE))))
3370 return true;
3371
3372 return false;
3373 }
3374
3375 /*
3376 * Maximum number of reclaim retries without any progress before OOM killer
3377 * is consider as the only way to move forward.
3378 */
3379 #define MAX_RECLAIM_RETRIES 16
3380
3381 /*
3382 * Checks whether it makes sense to retry the reclaim to make a forward progress
3383 * for the given allocation request.
3384 * The reclaim feedback represented by did_some_progress (any progress during
3385 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3386 * any progress in a row) is considered as well as the reclaimable pages on the
3387 * applicable zone list (with a backoff mechanism which is a function of
3388 * no_progress_loops).
3389 *
3390 * Returns true if a retry is viable or false to enter the oom path.
3391 */
3392 static inline bool
3393 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3394 struct alloc_context *ac, int alloc_flags,
3395 bool did_some_progress, int no_progress_loops)
3396 {
3397 struct zone *zone;
3398 struct zoneref *z;
3399
3400 /*
3401 * Make sure we converge to OOM if we cannot make any progress
3402 * several times in the row.
3403 */
3404 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3405 return false;
3406
3407 /*
3408 * Keep reclaiming pages while there is a chance this will lead
3409 * somewhere. If none of the target zones can satisfy our allocation
3410 * request even if all reclaimable pages are considered then we are
3411 * screwed and have to go OOM.
3412 */
3413 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3414 ac->nodemask) {
3415 unsigned long available;
3416 unsigned long reclaimable;
3417
3418 available = reclaimable = zone_reclaimable_pages(zone);
3419 available -= DIV_ROUND_UP(no_progress_loops * available,
3420 MAX_RECLAIM_RETRIES);
3421 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3422
3423 /*
3424 * Would the allocation succeed if we reclaimed the whole
3425 * available?
3426 */
3427 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3428 ac_classzone_idx(ac), alloc_flags, available)) {
3429 /*
3430 * If we didn't make any progress and have a lot of
3431 * dirty + writeback pages then we should wait for
3432 * an IO to complete to slow down the reclaim and
3433 * prevent from pre mature OOM
3434 */
3435 if (!did_some_progress) {
3436 unsigned long write_pending;
3437
3438 write_pending = zone_page_state_snapshot(zone,
3439 NR_ZONE_WRITE_PENDING);
3440
3441 if (2 * write_pending > reclaimable) {
3442 congestion_wait(BLK_RW_ASYNC, HZ/10);
3443 return true;
3444 }
3445 }
3446
3447 /*
3448 * Memory allocation/reclaim might be called from a WQ
3449 * context and the current implementation of the WQ
3450 * concurrency control doesn't recognize that
3451 * a particular WQ is congested if the worker thread is
3452 * looping without ever sleeping. Therefore we have to
3453 * do a short sleep here rather than calling
3454 * cond_resched().
3455 */
3456 if (current->flags & PF_WQ_WORKER)
3457 schedule_timeout_uninterruptible(1);
3458 else
3459 cond_resched();
3460
3461 return true;
3462 }
3463 }
3464
3465 return false;
3466 }
3467
3468 static inline struct page *
3469 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3470 struct alloc_context *ac)
3471 {
3472 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3473 struct page *page = NULL;
3474 unsigned int alloc_flags;
3475 unsigned long did_some_progress;
3476 enum migrate_mode migration_mode = MIGRATE_SYNC_LIGHT;
3477 enum compact_result compact_result;
3478 int compaction_retries = 0;
3479 int no_progress_loops = 0;
3480
3481 /*
3482 * In the slowpath, we sanity check order to avoid ever trying to
3483 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3484 * be using allocators in order of preference for an area that is
3485 * too large.
3486 */
3487 if (order >= MAX_ORDER) {
3488 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3489 return NULL;
3490 }
3491
3492 /*
3493 * We also sanity check to catch abuse of atomic reserves being used by
3494 * callers that are not in atomic context.
3495 */
3496 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3497 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3498 gfp_mask &= ~__GFP_ATOMIC;
3499
3500 /*
3501 * The fast path uses conservative alloc_flags to succeed only until
3502 * kswapd needs to be woken up, and to avoid the cost of setting up
3503 * alloc_flags precisely. So we do that now.
3504 */
3505 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3506
3507 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3508 wake_all_kswapds(order, ac);
3509
3510 /*
3511 * The adjusted alloc_flags might result in immediate success, so try
3512 * that first
3513 */
3514 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3515 if (page)
3516 goto got_pg;
3517
3518 /*
3519 * For costly allocations, try direct compaction first, as it's likely
3520 * that we have enough base pages and don't need to reclaim. Don't try
3521 * that for allocations that are allowed to ignore watermarks, as the
3522 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3523 */
3524 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3525 !gfp_pfmemalloc_allowed(gfp_mask)) {
3526 page = __alloc_pages_direct_compact(gfp_mask, order,
3527 alloc_flags, ac,
3528 MIGRATE_ASYNC,
3529 &compact_result);
3530 if (page)
3531 goto got_pg;
3532
3533 /*
3534 * Checks for costly allocations with __GFP_NORETRY, which
3535 * includes THP page fault allocations
3536 */
3537 if (gfp_mask & __GFP_NORETRY) {
3538 /*
3539 * If compaction is deferred for high-order allocations,
3540 * it is because sync compaction recently failed. If
3541 * this is the case and the caller requested a THP
3542 * allocation, we do not want to heavily disrupt the
3543 * system, so we fail the allocation instead of entering
3544 * direct reclaim.
3545 */
3546 if (compact_result == COMPACT_DEFERRED)
3547 goto nopage;
3548
3549 /*
3550 * Compaction is contended so rather back off than cause
3551 * excessive stalls.
3552 */
3553 if (compact_result == COMPACT_CONTENDED)
3554 goto nopage;
3555
3556 /*
3557 * Looks like reclaim/compaction is worth trying, but
3558 * sync compaction could be very expensive, so keep
3559 * using async compaction.
3560 */
3561 migration_mode = MIGRATE_ASYNC;
3562 }
3563 }
3564
3565 retry:
3566 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3567 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3568 wake_all_kswapds(order, ac);
3569
3570 if (gfp_pfmemalloc_allowed(gfp_mask))
3571 alloc_flags = ALLOC_NO_WATERMARKS;
3572
3573 /*
3574 * Reset the zonelist iterators if memory policies can be ignored.
3575 * These allocations are high priority and system rather than user
3576 * orientated.
3577 */
3578 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3579 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3580 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3581 ac->high_zoneidx, ac->nodemask);
3582 }
3583
3584 /* Attempt with potentially adjusted zonelist and alloc_flags */
3585 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3586 if (page)
3587 goto got_pg;
3588
3589 /* Caller is not willing to reclaim, we can't balance anything */
3590 if (!can_direct_reclaim) {
3591 /*
3592 * All existing users of the __GFP_NOFAIL are blockable, so warn
3593 * of any new users that actually allow this type of allocation
3594 * to fail.
3595 */
3596 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3597 goto nopage;
3598 }
3599
3600 /* Avoid recursion of direct reclaim */
3601 if (current->flags & PF_MEMALLOC) {
3602 /*
3603 * __GFP_NOFAIL request from this context is rather bizarre
3604 * because we cannot reclaim anything and only can loop waiting
3605 * for somebody to do a work for us.
3606 */
3607 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3608 cond_resched();
3609 goto retry;
3610 }
3611 goto nopage;
3612 }
3613
3614 /* Avoid allocations with no watermarks from looping endlessly */
3615 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3616 goto nopage;
3617
3618
3619 /* Try direct reclaim and then allocating */
3620 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3621 &did_some_progress);
3622 if (page)
3623 goto got_pg;
3624
3625 /* Try direct compaction and then allocating */
3626 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3627 migration_mode,
3628 &compact_result);
3629 if (page)
3630 goto got_pg;
3631
3632 if (order && compaction_made_progress(compact_result))
3633 compaction_retries++;
3634
3635 /* Do not loop if specifically requested */
3636 if (gfp_mask & __GFP_NORETRY)
3637 goto nopage;
3638
3639 /*
3640 * Do not retry costly high order allocations unless they are
3641 * __GFP_REPEAT
3642 */
3643 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3644 goto nopage;
3645
3646 /*
3647 * Costly allocations might have made a progress but this doesn't mean
3648 * their order will become available due to high fragmentation so
3649 * always increment the no progress counter for them
3650 */
3651 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3652 no_progress_loops = 0;
3653 else
3654 no_progress_loops++;
3655
3656 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3657 did_some_progress > 0, no_progress_loops))
3658 goto retry;
3659
3660 /*
3661 * It doesn't make any sense to retry for the compaction if the order-0
3662 * reclaim is not able to make any progress because the current
3663 * implementation of the compaction depends on the sufficient amount
3664 * of free memory (see __compaction_suitable)
3665 */
3666 if (did_some_progress > 0 &&
3667 should_compact_retry(ac, order, alloc_flags,
3668 compact_result, &migration_mode,
3669 compaction_retries))
3670 goto retry;
3671
3672 /* Reclaim has failed us, start killing things */
3673 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3674 if (page)
3675 goto got_pg;
3676
3677 /* Retry as long as the OOM killer is making progress */
3678 if (did_some_progress) {
3679 no_progress_loops = 0;
3680 goto retry;
3681 }
3682
3683 nopage:
3684 warn_alloc_failed(gfp_mask, order, NULL);
3685 got_pg:
3686 return page;
3687 }
3688
3689 /*
3690 * This is the 'heart' of the zoned buddy allocator.
3691 */
3692 struct page *
3693 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3694 struct zonelist *zonelist, nodemask_t *nodemask)
3695 {
3696 struct page *page;
3697 unsigned int cpuset_mems_cookie;
3698 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3699 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3700 struct alloc_context ac = {
3701 .high_zoneidx = gfp_zone(gfp_mask),
3702 .zonelist = zonelist,
3703 .nodemask = nodemask,
3704 .migratetype = gfpflags_to_migratetype(gfp_mask),
3705 };
3706
3707 if (cpusets_enabled()) {
3708 alloc_mask |= __GFP_HARDWALL;
3709 alloc_flags |= ALLOC_CPUSET;
3710 if (!ac.nodemask)
3711 ac.nodemask = &cpuset_current_mems_allowed;
3712 }
3713
3714 gfp_mask &= gfp_allowed_mask;
3715
3716 lockdep_trace_alloc(gfp_mask);
3717
3718 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3719
3720 if (should_fail_alloc_page(gfp_mask, order))
3721 return NULL;
3722
3723 /*
3724 * Check the zones suitable for the gfp_mask contain at least one
3725 * valid zone. It's possible to have an empty zonelist as a result
3726 * of __GFP_THISNODE and a memoryless node
3727 */
3728 if (unlikely(!zonelist->_zonerefs->zone))
3729 return NULL;
3730
3731 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3732 alloc_flags |= ALLOC_CMA;
3733
3734 retry_cpuset:
3735 cpuset_mems_cookie = read_mems_allowed_begin();
3736
3737 /* Dirty zone balancing only done in the fast path */
3738 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3739
3740 /*
3741 * The preferred zone is used for statistics but crucially it is
3742 * also used as the starting point for the zonelist iterator. It
3743 * may get reset for allocations that ignore memory policies.
3744 */
3745 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3746 ac.high_zoneidx, ac.nodemask);
3747 if (!ac.preferred_zoneref) {
3748 page = NULL;
3749 goto no_zone;
3750 }
3751
3752 /* First allocation attempt */
3753 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3754 if (likely(page))
3755 goto out;
3756
3757 /*
3758 * Runtime PM, block IO and its error handling path can deadlock
3759 * because I/O on the device might not complete.
3760 */
3761 alloc_mask = memalloc_noio_flags(gfp_mask);
3762 ac.spread_dirty_pages = false;
3763
3764 /*
3765 * Restore the original nodemask if it was potentially replaced with
3766 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3767 */
3768 if (cpusets_enabled())
3769 ac.nodemask = nodemask;
3770 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3771
3772 no_zone:
3773 /*
3774 * When updating a task's mems_allowed, it is possible to race with
3775 * parallel threads in such a way that an allocation can fail while
3776 * the mask is being updated. If a page allocation is about to fail,
3777 * check if the cpuset changed during allocation and if so, retry.
3778 */
3779 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3780 alloc_mask = gfp_mask;
3781 goto retry_cpuset;
3782 }
3783
3784 out:
3785 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3786 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3787 __free_pages(page, order);
3788 page = NULL;
3789 } else
3790 __SetPageKmemcg(page);
3791 }
3792
3793 if (kmemcheck_enabled && page)
3794 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3795
3796 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3797
3798 return page;
3799 }
3800 EXPORT_SYMBOL(__alloc_pages_nodemask);
3801
3802 /*
3803 * Common helper functions.
3804 */
3805 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3806 {
3807 struct page *page;
3808
3809 /*
3810 * __get_free_pages() returns a 32-bit address, which cannot represent
3811 * a highmem page
3812 */
3813 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3814
3815 page = alloc_pages(gfp_mask, order);
3816 if (!page)
3817 return 0;
3818 return (unsigned long) page_address(page);
3819 }
3820 EXPORT_SYMBOL(__get_free_pages);
3821
3822 unsigned long get_zeroed_page(gfp_t gfp_mask)
3823 {
3824 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3825 }
3826 EXPORT_SYMBOL(get_zeroed_page);
3827
3828 void __free_pages(struct page *page, unsigned int order)
3829 {
3830 if (put_page_testzero(page)) {
3831 if (order == 0)
3832 free_hot_cold_page(page, false);
3833 else
3834 __free_pages_ok(page, order);
3835 }
3836 }
3837
3838 EXPORT_SYMBOL(__free_pages);
3839
3840 void free_pages(unsigned long addr, unsigned int order)
3841 {
3842 if (addr != 0) {
3843 VM_BUG_ON(!virt_addr_valid((void *)addr));
3844 __free_pages(virt_to_page((void *)addr), order);
3845 }
3846 }
3847
3848 EXPORT_SYMBOL(free_pages);
3849
3850 /*
3851 * Page Fragment:
3852 * An arbitrary-length arbitrary-offset area of memory which resides
3853 * within a 0 or higher order page. Multiple fragments within that page
3854 * are individually refcounted, in the page's reference counter.
3855 *
3856 * The page_frag functions below provide a simple allocation framework for
3857 * page fragments. This is used by the network stack and network device
3858 * drivers to provide a backing region of memory for use as either an
3859 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3860 */
3861 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3862 gfp_t gfp_mask)
3863 {
3864 struct page *page = NULL;
3865 gfp_t gfp = gfp_mask;
3866
3867 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3868 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3869 __GFP_NOMEMALLOC;
3870 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3871 PAGE_FRAG_CACHE_MAX_ORDER);
3872 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3873 #endif
3874 if (unlikely(!page))
3875 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3876
3877 nc->va = page ? page_address(page) : NULL;
3878
3879 return page;
3880 }
3881
3882 void *__alloc_page_frag(struct page_frag_cache *nc,
3883 unsigned int fragsz, gfp_t gfp_mask)
3884 {
3885 unsigned int size = PAGE_SIZE;
3886 struct page *page;
3887 int offset;
3888
3889 if (unlikely(!nc->va)) {
3890 refill:
3891 page = __page_frag_refill(nc, gfp_mask);
3892 if (!page)
3893 return NULL;
3894
3895 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3896 /* if size can vary use size else just use PAGE_SIZE */
3897 size = nc->size;
3898 #endif
3899 /* Even if we own the page, we do not use atomic_set().
3900 * This would break get_page_unless_zero() users.
3901 */
3902 page_ref_add(page, size - 1);
3903
3904 /* reset page count bias and offset to start of new frag */
3905 nc->pfmemalloc = page_is_pfmemalloc(page);
3906 nc->pagecnt_bias = size;
3907 nc->offset = size;
3908 }
3909
3910 offset = nc->offset - fragsz;
3911 if (unlikely(offset < 0)) {
3912 page = virt_to_page(nc->va);
3913
3914 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3915 goto refill;
3916
3917 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3918 /* if size can vary use size else just use PAGE_SIZE */
3919 size = nc->size;
3920 #endif
3921 /* OK, page count is 0, we can safely set it */
3922 set_page_count(page, size);
3923
3924 /* reset page count bias and offset to start of new frag */
3925 nc->pagecnt_bias = size;
3926 offset = size - fragsz;
3927 }
3928
3929 nc->pagecnt_bias--;
3930 nc->offset = offset;
3931
3932 return nc->va + offset;
3933 }
3934 EXPORT_SYMBOL(__alloc_page_frag);
3935
3936 /*
3937 * Frees a page fragment allocated out of either a compound or order 0 page.
3938 */
3939 void __free_page_frag(void *addr)
3940 {
3941 struct page *page = virt_to_head_page(addr);
3942
3943 if (unlikely(put_page_testzero(page)))
3944 __free_pages_ok(page, compound_order(page));
3945 }
3946 EXPORT_SYMBOL(__free_page_frag);
3947
3948 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3949 size_t size)
3950 {
3951 if (addr) {
3952 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3953 unsigned long used = addr + PAGE_ALIGN(size);
3954
3955 split_page(virt_to_page((void *)addr), order);
3956 while (used < alloc_end) {
3957 free_page(used);
3958 used += PAGE_SIZE;
3959 }
3960 }
3961 return (void *)addr;
3962 }
3963
3964 /**
3965 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3966 * @size: the number of bytes to allocate
3967 * @gfp_mask: GFP flags for the allocation
3968 *
3969 * This function is similar to alloc_pages(), except that it allocates the
3970 * minimum number of pages to satisfy the request. alloc_pages() can only
3971 * allocate memory in power-of-two pages.
3972 *
3973 * This function is also limited by MAX_ORDER.
3974 *
3975 * Memory allocated by this function must be released by free_pages_exact().
3976 */
3977 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3978 {
3979 unsigned int order = get_order(size);
3980 unsigned long addr;
3981
3982 addr = __get_free_pages(gfp_mask, order);
3983 return make_alloc_exact(addr, order, size);
3984 }
3985 EXPORT_SYMBOL(alloc_pages_exact);
3986
3987 /**
3988 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3989 * pages on a node.
3990 * @nid: the preferred node ID where memory should be allocated
3991 * @size: the number of bytes to allocate
3992 * @gfp_mask: GFP flags for the allocation
3993 *
3994 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3995 * back.
3996 */
3997 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3998 {
3999 unsigned int order = get_order(size);
4000 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4001 if (!p)
4002 return NULL;
4003 return make_alloc_exact((unsigned long)page_address(p), order, size);
4004 }
4005
4006 /**
4007 * free_pages_exact - release memory allocated via alloc_pages_exact()
4008 * @virt: the value returned by alloc_pages_exact.
4009 * @size: size of allocation, same value as passed to alloc_pages_exact().
4010 *
4011 * Release the memory allocated by a previous call to alloc_pages_exact.
4012 */
4013 void free_pages_exact(void *virt, size_t size)
4014 {
4015 unsigned long addr = (unsigned long)virt;
4016 unsigned long end = addr + PAGE_ALIGN(size);
4017
4018 while (addr < end) {
4019 free_page(addr);
4020 addr += PAGE_SIZE;
4021 }
4022 }
4023 EXPORT_SYMBOL(free_pages_exact);
4024
4025 /**
4026 * nr_free_zone_pages - count number of pages beyond high watermark
4027 * @offset: The zone index of the highest zone
4028 *
4029 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4030 * high watermark within all zones at or below a given zone index. For each
4031 * zone, the number of pages is calculated as:
4032 * managed_pages - high_pages
4033 */
4034 static unsigned long nr_free_zone_pages(int offset)
4035 {
4036 struct zoneref *z;
4037 struct zone *zone;
4038
4039 /* Just pick one node, since fallback list is circular */
4040 unsigned long sum = 0;
4041
4042 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4043
4044 for_each_zone_zonelist(zone, z, zonelist, offset) {
4045 unsigned long size = zone->managed_pages;
4046 unsigned long high = high_wmark_pages(zone);
4047 if (size > high)
4048 sum += size - high;
4049 }
4050
4051 return sum;
4052 }
4053
4054 /**
4055 * nr_free_buffer_pages - count number of pages beyond high watermark
4056 *
4057 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4058 * watermark within ZONE_DMA and ZONE_NORMAL.
4059 */
4060 unsigned long nr_free_buffer_pages(void)
4061 {
4062 return nr_free_zone_pages(gfp_zone(GFP_USER));
4063 }
4064 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4065
4066 /**
4067 * nr_free_pagecache_pages - count number of pages beyond high watermark
4068 *
4069 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4070 * high watermark within all zones.
4071 */
4072 unsigned long nr_free_pagecache_pages(void)
4073 {
4074 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4075 }
4076
4077 static inline void show_node(struct zone *zone)
4078 {
4079 if (IS_ENABLED(CONFIG_NUMA))
4080 printk("Node %d ", zone_to_nid(zone));
4081 }
4082
4083 long si_mem_available(void)
4084 {
4085 long available;
4086 unsigned long pagecache;
4087 unsigned long wmark_low = 0;
4088 unsigned long pages[NR_LRU_LISTS];
4089 struct zone *zone;
4090 int lru;
4091
4092 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4093 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4094
4095 for_each_zone(zone)
4096 wmark_low += zone->watermark[WMARK_LOW];
4097
4098 /*
4099 * Estimate the amount of memory available for userspace allocations,
4100 * without causing swapping.
4101 */
4102 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4103
4104 /*
4105 * Not all the page cache can be freed, otherwise the system will
4106 * start swapping. Assume at least half of the page cache, or the
4107 * low watermark worth of cache, needs to stay.
4108 */
4109 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4110 pagecache -= min(pagecache / 2, wmark_low);
4111 available += pagecache;
4112
4113 /*
4114 * Part of the reclaimable slab consists of items that are in use,
4115 * and cannot be freed. Cap this estimate at the low watermark.
4116 */
4117 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4118 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4119
4120 if (available < 0)
4121 available = 0;
4122 return available;
4123 }
4124 EXPORT_SYMBOL_GPL(si_mem_available);
4125
4126 void si_meminfo(struct sysinfo *val)
4127 {
4128 val->totalram = totalram_pages;
4129 val->sharedram = global_node_page_state(NR_SHMEM);
4130 val->freeram = global_page_state(NR_FREE_PAGES);
4131 val->bufferram = nr_blockdev_pages();
4132 val->totalhigh = totalhigh_pages;
4133 val->freehigh = nr_free_highpages();
4134 val->mem_unit = PAGE_SIZE;
4135 }
4136
4137 EXPORT_SYMBOL(si_meminfo);
4138
4139 #ifdef CONFIG_NUMA
4140 void si_meminfo_node(struct sysinfo *val, int nid)
4141 {
4142 int zone_type; /* needs to be signed */
4143 unsigned long managed_pages = 0;
4144 unsigned long managed_highpages = 0;
4145 unsigned long free_highpages = 0;
4146 pg_data_t *pgdat = NODE_DATA(nid);
4147
4148 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4149 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4150 val->totalram = managed_pages;
4151 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4152 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4153 #ifdef CONFIG_HIGHMEM
4154 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4155 struct zone *zone = &pgdat->node_zones[zone_type];
4156
4157 if (is_highmem(zone)) {
4158 managed_highpages += zone->managed_pages;
4159 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4160 }
4161 }
4162 val->totalhigh = managed_highpages;
4163 val->freehigh = free_highpages;
4164 #else
4165 val->totalhigh = managed_highpages;
4166 val->freehigh = free_highpages;
4167 #endif
4168 val->mem_unit = PAGE_SIZE;
4169 }
4170 #endif
4171
4172 /*
4173 * Determine whether the node should be displayed or not, depending on whether
4174 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4175 */
4176 bool skip_free_areas_node(unsigned int flags, int nid)
4177 {
4178 bool ret = false;
4179 unsigned int cpuset_mems_cookie;
4180
4181 if (!(flags & SHOW_MEM_FILTER_NODES))
4182 goto out;
4183
4184 do {
4185 cpuset_mems_cookie = read_mems_allowed_begin();
4186 ret = !node_isset(nid, cpuset_current_mems_allowed);
4187 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4188 out:
4189 return ret;
4190 }
4191
4192 #define K(x) ((x) << (PAGE_SHIFT-10))
4193
4194 static void show_migration_types(unsigned char type)
4195 {
4196 static const char types[MIGRATE_TYPES] = {
4197 [MIGRATE_UNMOVABLE] = 'U',
4198 [MIGRATE_MOVABLE] = 'M',
4199 [MIGRATE_RECLAIMABLE] = 'E',
4200 [MIGRATE_HIGHATOMIC] = 'H',
4201 #ifdef CONFIG_CMA
4202 [MIGRATE_CMA] = 'C',
4203 #endif
4204 #ifdef CONFIG_MEMORY_ISOLATION
4205 [MIGRATE_ISOLATE] = 'I',
4206 #endif
4207 };
4208 char tmp[MIGRATE_TYPES + 1];
4209 char *p = tmp;
4210 int i;
4211
4212 for (i = 0; i < MIGRATE_TYPES; i++) {
4213 if (type & (1 << i))
4214 *p++ = types[i];
4215 }
4216
4217 *p = '\0';
4218 printk("(%s) ", tmp);
4219 }
4220
4221 /*
4222 * Show free area list (used inside shift_scroll-lock stuff)
4223 * We also calculate the percentage fragmentation. We do this by counting the
4224 * memory on each free list with the exception of the first item on the list.
4225 *
4226 * Bits in @filter:
4227 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4228 * cpuset.
4229 */
4230 void show_free_areas(unsigned int filter)
4231 {
4232 unsigned long free_pcp = 0;
4233 int cpu;
4234 struct zone *zone;
4235 pg_data_t *pgdat;
4236
4237 for_each_populated_zone(zone) {
4238 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4239 continue;
4240
4241 for_each_online_cpu(cpu)
4242 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4243 }
4244
4245 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4246 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4247 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4248 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4249 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4250 " free:%lu free_pcp:%lu free_cma:%lu\n",
4251 global_node_page_state(NR_ACTIVE_ANON),
4252 global_node_page_state(NR_INACTIVE_ANON),
4253 global_node_page_state(NR_ISOLATED_ANON),
4254 global_node_page_state(NR_ACTIVE_FILE),
4255 global_node_page_state(NR_INACTIVE_FILE),
4256 global_node_page_state(NR_ISOLATED_FILE),
4257 global_node_page_state(NR_UNEVICTABLE),
4258 global_node_page_state(NR_FILE_DIRTY),
4259 global_node_page_state(NR_WRITEBACK),
4260 global_node_page_state(NR_UNSTABLE_NFS),
4261 global_page_state(NR_SLAB_RECLAIMABLE),
4262 global_page_state(NR_SLAB_UNRECLAIMABLE),
4263 global_node_page_state(NR_FILE_MAPPED),
4264 global_node_page_state(NR_SHMEM),
4265 global_page_state(NR_PAGETABLE),
4266 global_page_state(NR_BOUNCE),
4267 global_page_state(NR_FREE_PAGES),
4268 free_pcp,
4269 global_page_state(NR_FREE_CMA_PAGES));
4270
4271 for_each_online_pgdat(pgdat) {
4272 printk("Node %d"
4273 " active_anon:%lukB"
4274 " inactive_anon:%lukB"
4275 " active_file:%lukB"
4276 " inactive_file:%lukB"
4277 " unevictable:%lukB"
4278 " isolated(anon):%lukB"
4279 " isolated(file):%lukB"
4280 " mapped:%lukB"
4281 " dirty:%lukB"
4282 " writeback:%lukB"
4283 " shmem:%lukB"
4284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4285 " shmem_thp: %lukB"
4286 " shmem_pmdmapped: %lukB"
4287 " anon_thp: %lukB"
4288 #endif
4289 " writeback_tmp:%lukB"
4290 " unstable:%lukB"
4291 " pages_scanned:%lu"
4292 " all_unreclaimable? %s"
4293 "\n",
4294 pgdat->node_id,
4295 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4296 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4297 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4298 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4299 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4300 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4301 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4302 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4303 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4304 K(node_page_state(pgdat, NR_WRITEBACK)),
4305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4306 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4307 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4308 * HPAGE_PMD_NR),
4309 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4310 #endif
4311 K(node_page_state(pgdat, NR_SHMEM)),
4312 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4313 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4314 node_page_state(pgdat, NR_PAGES_SCANNED),
4315 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4316 }
4317
4318 for_each_populated_zone(zone) {
4319 int i;
4320
4321 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4322 continue;
4323
4324 free_pcp = 0;
4325 for_each_online_cpu(cpu)
4326 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4327
4328 show_node(zone);
4329 printk("%s"
4330 " free:%lukB"
4331 " min:%lukB"
4332 " low:%lukB"
4333 " high:%lukB"
4334 " active_anon:%lukB"
4335 " inactive_anon:%lukB"
4336 " active_file:%lukB"
4337 " inactive_file:%lukB"
4338 " unevictable:%lukB"
4339 " writepending:%lukB"
4340 " present:%lukB"
4341 " managed:%lukB"
4342 " mlocked:%lukB"
4343 " slab_reclaimable:%lukB"
4344 " slab_unreclaimable:%lukB"
4345 " kernel_stack:%lukB"
4346 " pagetables:%lukB"
4347 " bounce:%lukB"
4348 " free_pcp:%lukB"
4349 " local_pcp:%ukB"
4350 " free_cma:%lukB"
4351 "\n",
4352 zone->name,
4353 K(zone_page_state(zone, NR_FREE_PAGES)),
4354 K(min_wmark_pages(zone)),
4355 K(low_wmark_pages(zone)),
4356 K(high_wmark_pages(zone)),
4357 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4358 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4359 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4360 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4361 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4362 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4363 K(zone->present_pages),
4364 K(zone->managed_pages),
4365 K(zone_page_state(zone, NR_MLOCK)),
4366 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4367 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4368 zone_page_state(zone, NR_KERNEL_STACK_KB),
4369 K(zone_page_state(zone, NR_PAGETABLE)),
4370 K(zone_page_state(zone, NR_BOUNCE)),
4371 K(free_pcp),
4372 K(this_cpu_read(zone->pageset->pcp.count)),
4373 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4374 printk("lowmem_reserve[]:");
4375 for (i = 0; i < MAX_NR_ZONES; i++)
4376 printk(" %ld", zone->lowmem_reserve[i]);
4377 printk("\n");
4378 }
4379
4380 for_each_populated_zone(zone) {
4381 unsigned int order;
4382 unsigned long nr[MAX_ORDER], flags, total = 0;
4383 unsigned char types[MAX_ORDER];
4384
4385 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4386 continue;
4387 show_node(zone);
4388 printk("%s: ", zone->name);
4389
4390 spin_lock_irqsave(&zone->lock, flags);
4391 for (order = 0; order < MAX_ORDER; order++) {
4392 struct free_area *area = &zone->free_area[order];
4393 int type;
4394
4395 nr[order] = area->nr_free;
4396 total += nr[order] << order;
4397
4398 types[order] = 0;
4399 for (type = 0; type < MIGRATE_TYPES; type++) {
4400 if (!list_empty(&area->free_list[type]))
4401 types[order] |= 1 << type;
4402 }
4403 }
4404 spin_unlock_irqrestore(&zone->lock, flags);
4405 for (order = 0; order < MAX_ORDER; order++) {
4406 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4407 if (nr[order])
4408 show_migration_types(types[order]);
4409 }
4410 printk("= %lukB\n", K(total));
4411 }
4412
4413 hugetlb_show_meminfo();
4414
4415 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4416
4417 show_swap_cache_info();
4418 }
4419
4420 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4421 {
4422 zoneref->zone = zone;
4423 zoneref->zone_idx = zone_idx(zone);
4424 }
4425
4426 /*
4427 * Builds allocation fallback zone lists.
4428 *
4429 * Add all populated zones of a node to the zonelist.
4430 */
4431 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4432 int nr_zones)
4433 {
4434 struct zone *zone;
4435 enum zone_type zone_type = MAX_NR_ZONES;
4436
4437 do {
4438 zone_type--;
4439 zone = pgdat->node_zones + zone_type;
4440 if (populated_zone(zone)) {
4441 zoneref_set_zone(zone,
4442 &zonelist->_zonerefs[nr_zones++]);
4443 check_highest_zone(zone_type);
4444 }
4445 } while (zone_type);
4446
4447 return nr_zones;
4448 }
4449
4450
4451 /*
4452 * zonelist_order:
4453 * 0 = automatic detection of better ordering.
4454 * 1 = order by ([node] distance, -zonetype)
4455 * 2 = order by (-zonetype, [node] distance)
4456 *
4457 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4458 * the same zonelist. So only NUMA can configure this param.
4459 */
4460 #define ZONELIST_ORDER_DEFAULT 0
4461 #define ZONELIST_ORDER_NODE 1
4462 #define ZONELIST_ORDER_ZONE 2
4463
4464 /* zonelist order in the kernel.
4465 * set_zonelist_order() will set this to NODE or ZONE.
4466 */
4467 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4468 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4469
4470
4471 #ifdef CONFIG_NUMA
4472 /* The value user specified ....changed by config */
4473 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4474 /* string for sysctl */
4475 #define NUMA_ZONELIST_ORDER_LEN 16
4476 char numa_zonelist_order[16] = "default";
4477
4478 /*
4479 * interface for configure zonelist ordering.
4480 * command line option "numa_zonelist_order"
4481 * = "[dD]efault - default, automatic configuration.
4482 * = "[nN]ode - order by node locality, then by zone within node
4483 * = "[zZ]one - order by zone, then by locality within zone
4484 */
4485
4486 static int __parse_numa_zonelist_order(char *s)
4487 {
4488 if (*s == 'd' || *s == 'D') {
4489 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4490 } else if (*s == 'n' || *s == 'N') {
4491 user_zonelist_order = ZONELIST_ORDER_NODE;
4492 } else if (*s == 'z' || *s == 'Z') {
4493 user_zonelist_order = ZONELIST_ORDER_ZONE;
4494 } else {
4495 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4496 return -EINVAL;
4497 }
4498 return 0;
4499 }
4500
4501 static __init int setup_numa_zonelist_order(char *s)
4502 {
4503 int ret;
4504
4505 if (!s)
4506 return 0;
4507
4508 ret = __parse_numa_zonelist_order(s);
4509 if (ret == 0)
4510 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4511
4512 return ret;
4513 }
4514 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4515
4516 /*
4517 * sysctl handler for numa_zonelist_order
4518 */
4519 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4520 void __user *buffer, size_t *length,
4521 loff_t *ppos)
4522 {
4523 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4524 int ret;
4525 static DEFINE_MUTEX(zl_order_mutex);
4526
4527 mutex_lock(&zl_order_mutex);
4528 if (write) {
4529 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4530 ret = -EINVAL;
4531 goto out;
4532 }
4533 strcpy(saved_string, (char *)table->data);
4534 }
4535 ret = proc_dostring(table, write, buffer, length, ppos);
4536 if (ret)
4537 goto out;
4538 if (write) {
4539 int oldval = user_zonelist_order;
4540
4541 ret = __parse_numa_zonelist_order((char *)table->data);
4542 if (ret) {
4543 /*
4544 * bogus value. restore saved string
4545 */
4546 strncpy((char *)table->data, saved_string,
4547 NUMA_ZONELIST_ORDER_LEN);
4548 user_zonelist_order = oldval;
4549 } else if (oldval != user_zonelist_order) {
4550 mutex_lock(&zonelists_mutex);
4551 build_all_zonelists(NULL, NULL);
4552 mutex_unlock(&zonelists_mutex);
4553 }
4554 }
4555 out:
4556 mutex_unlock(&zl_order_mutex);
4557 return ret;
4558 }
4559
4560
4561 #define MAX_NODE_LOAD (nr_online_nodes)
4562 static int node_load[MAX_NUMNODES];
4563
4564 /**
4565 * find_next_best_node - find the next node that should appear in a given node's fallback list
4566 * @node: node whose fallback list we're appending
4567 * @used_node_mask: nodemask_t of already used nodes
4568 *
4569 * We use a number of factors to determine which is the next node that should
4570 * appear on a given node's fallback list. The node should not have appeared
4571 * already in @node's fallback list, and it should be the next closest node
4572 * according to the distance array (which contains arbitrary distance values
4573 * from each node to each node in the system), and should also prefer nodes
4574 * with no CPUs, since presumably they'll have very little allocation pressure
4575 * on them otherwise.
4576 * It returns -1 if no node is found.
4577 */
4578 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4579 {
4580 int n, val;
4581 int min_val = INT_MAX;
4582 int best_node = NUMA_NO_NODE;
4583 const struct cpumask *tmp = cpumask_of_node(0);
4584
4585 /* Use the local node if we haven't already */
4586 if (!node_isset(node, *used_node_mask)) {
4587 node_set(node, *used_node_mask);
4588 return node;
4589 }
4590
4591 for_each_node_state(n, N_MEMORY) {
4592
4593 /* Don't want a node to appear more than once */
4594 if (node_isset(n, *used_node_mask))
4595 continue;
4596
4597 /* Use the distance array to find the distance */
4598 val = node_distance(node, n);
4599
4600 /* Penalize nodes under us ("prefer the next node") */
4601 val += (n < node);
4602
4603 /* Give preference to headless and unused nodes */
4604 tmp = cpumask_of_node(n);
4605 if (!cpumask_empty(tmp))
4606 val += PENALTY_FOR_NODE_WITH_CPUS;
4607
4608 /* Slight preference for less loaded node */
4609 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4610 val += node_load[n];
4611
4612 if (val < min_val) {
4613 min_val = val;
4614 best_node = n;
4615 }
4616 }
4617
4618 if (best_node >= 0)
4619 node_set(best_node, *used_node_mask);
4620
4621 return best_node;
4622 }
4623
4624
4625 /*
4626 * Build zonelists ordered by node and zones within node.
4627 * This results in maximum locality--normal zone overflows into local
4628 * DMA zone, if any--but risks exhausting DMA zone.
4629 */
4630 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4631 {
4632 int j;
4633 struct zonelist *zonelist;
4634
4635 zonelist = &pgdat->node_zonelists[0];
4636 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4637 ;
4638 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4639 zonelist->_zonerefs[j].zone = NULL;
4640 zonelist->_zonerefs[j].zone_idx = 0;
4641 }
4642
4643 /*
4644 * Build gfp_thisnode zonelists
4645 */
4646 static void build_thisnode_zonelists(pg_data_t *pgdat)
4647 {
4648 int j;
4649 struct zonelist *zonelist;
4650
4651 zonelist = &pgdat->node_zonelists[1];
4652 j = build_zonelists_node(pgdat, zonelist, 0);
4653 zonelist->_zonerefs[j].zone = NULL;
4654 zonelist->_zonerefs[j].zone_idx = 0;
4655 }
4656
4657 /*
4658 * Build zonelists ordered by zone and nodes within zones.
4659 * This results in conserving DMA zone[s] until all Normal memory is
4660 * exhausted, but results in overflowing to remote node while memory
4661 * may still exist in local DMA zone.
4662 */
4663 static int node_order[MAX_NUMNODES];
4664
4665 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4666 {
4667 int pos, j, node;
4668 int zone_type; /* needs to be signed */
4669 struct zone *z;
4670 struct zonelist *zonelist;
4671
4672 zonelist = &pgdat->node_zonelists[0];
4673 pos = 0;
4674 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4675 for (j = 0; j < nr_nodes; j++) {
4676 node = node_order[j];
4677 z = &NODE_DATA(node)->node_zones[zone_type];
4678 if (populated_zone(z)) {
4679 zoneref_set_zone(z,
4680 &zonelist->_zonerefs[pos++]);
4681 check_highest_zone(zone_type);
4682 }
4683 }
4684 }
4685 zonelist->_zonerefs[pos].zone = NULL;
4686 zonelist->_zonerefs[pos].zone_idx = 0;
4687 }
4688
4689 #if defined(CONFIG_64BIT)
4690 /*
4691 * Devices that require DMA32/DMA are relatively rare and do not justify a
4692 * penalty to every machine in case the specialised case applies. Default
4693 * to Node-ordering on 64-bit NUMA machines
4694 */
4695 static int default_zonelist_order(void)
4696 {
4697 return ZONELIST_ORDER_NODE;
4698 }
4699 #else
4700 /*
4701 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4702 * by the kernel. If processes running on node 0 deplete the low memory zone
4703 * then reclaim will occur more frequency increasing stalls and potentially
4704 * be easier to OOM if a large percentage of the zone is under writeback or
4705 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4706 * Hence, default to zone ordering on 32-bit.
4707 */
4708 static int default_zonelist_order(void)
4709 {
4710 return ZONELIST_ORDER_ZONE;
4711 }
4712 #endif /* CONFIG_64BIT */
4713
4714 static void set_zonelist_order(void)
4715 {
4716 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4717 current_zonelist_order = default_zonelist_order();
4718 else
4719 current_zonelist_order = user_zonelist_order;
4720 }
4721
4722 static void build_zonelists(pg_data_t *pgdat)
4723 {
4724 int i, node, load;
4725 nodemask_t used_mask;
4726 int local_node, prev_node;
4727 struct zonelist *zonelist;
4728 unsigned int order = current_zonelist_order;
4729
4730 /* initialize zonelists */
4731 for (i = 0; i < MAX_ZONELISTS; i++) {
4732 zonelist = pgdat->node_zonelists + i;
4733 zonelist->_zonerefs[0].zone = NULL;
4734 zonelist->_zonerefs[0].zone_idx = 0;
4735 }
4736
4737 /* NUMA-aware ordering of nodes */
4738 local_node = pgdat->node_id;
4739 load = nr_online_nodes;
4740 prev_node = local_node;
4741 nodes_clear(used_mask);
4742
4743 memset(node_order, 0, sizeof(node_order));
4744 i = 0;
4745
4746 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4747 /*
4748 * We don't want to pressure a particular node.
4749 * So adding penalty to the first node in same
4750 * distance group to make it round-robin.
4751 */
4752 if (node_distance(local_node, node) !=
4753 node_distance(local_node, prev_node))
4754 node_load[node] = load;
4755
4756 prev_node = node;
4757 load--;
4758 if (order == ZONELIST_ORDER_NODE)
4759 build_zonelists_in_node_order(pgdat, node);
4760 else
4761 node_order[i++] = node; /* remember order */
4762 }
4763
4764 if (order == ZONELIST_ORDER_ZONE) {
4765 /* calculate node order -- i.e., DMA last! */
4766 build_zonelists_in_zone_order(pgdat, i);
4767 }
4768
4769 build_thisnode_zonelists(pgdat);
4770 }
4771
4772 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4773 /*
4774 * Return node id of node used for "local" allocations.
4775 * I.e., first node id of first zone in arg node's generic zonelist.
4776 * Used for initializing percpu 'numa_mem', which is used primarily
4777 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4778 */
4779 int local_memory_node(int node)
4780 {
4781 struct zoneref *z;
4782
4783 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4784 gfp_zone(GFP_KERNEL),
4785 NULL);
4786 return z->zone->node;
4787 }
4788 #endif
4789
4790 #else /* CONFIG_NUMA */
4791
4792 static void set_zonelist_order(void)
4793 {
4794 current_zonelist_order = ZONELIST_ORDER_ZONE;
4795 }
4796
4797 static void build_zonelists(pg_data_t *pgdat)
4798 {
4799 int node, local_node;
4800 enum zone_type j;
4801 struct zonelist *zonelist;
4802
4803 local_node = pgdat->node_id;
4804
4805 zonelist = &pgdat->node_zonelists[0];
4806 j = build_zonelists_node(pgdat, zonelist, 0);
4807
4808 /*
4809 * Now we build the zonelist so that it contains the zones
4810 * of all the other nodes.
4811 * We don't want to pressure a particular node, so when
4812 * building the zones for node N, we make sure that the
4813 * zones coming right after the local ones are those from
4814 * node N+1 (modulo N)
4815 */
4816 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4817 if (!node_online(node))
4818 continue;
4819 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4820 }
4821 for (node = 0; node < local_node; node++) {
4822 if (!node_online(node))
4823 continue;
4824 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4825 }
4826
4827 zonelist->_zonerefs[j].zone = NULL;
4828 zonelist->_zonerefs[j].zone_idx = 0;
4829 }
4830
4831 #endif /* CONFIG_NUMA */
4832
4833 /*
4834 * Boot pageset table. One per cpu which is going to be used for all
4835 * zones and all nodes. The parameters will be set in such a way
4836 * that an item put on a list will immediately be handed over to
4837 * the buddy list. This is safe since pageset manipulation is done
4838 * with interrupts disabled.
4839 *
4840 * The boot_pagesets must be kept even after bootup is complete for
4841 * unused processors and/or zones. They do play a role for bootstrapping
4842 * hotplugged processors.
4843 *
4844 * zoneinfo_show() and maybe other functions do
4845 * not check if the processor is online before following the pageset pointer.
4846 * Other parts of the kernel may not check if the zone is available.
4847 */
4848 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4849 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4850 static void setup_zone_pageset(struct zone *zone);
4851
4852 /*
4853 * Global mutex to protect against size modification of zonelists
4854 * as well as to serialize pageset setup for the new populated zone.
4855 */
4856 DEFINE_MUTEX(zonelists_mutex);
4857
4858 /* return values int ....just for stop_machine() */
4859 static int __build_all_zonelists(void *data)
4860 {
4861 int nid;
4862 int cpu;
4863 pg_data_t *self = data;
4864
4865 #ifdef CONFIG_NUMA
4866 memset(node_load, 0, sizeof(node_load));
4867 #endif
4868
4869 if (self && !node_online(self->node_id)) {
4870 build_zonelists(self);
4871 }
4872
4873 for_each_online_node(nid) {
4874 pg_data_t *pgdat = NODE_DATA(nid);
4875
4876 build_zonelists(pgdat);
4877 }
4878
4879 /*
4880 * Initialize the boot_pagesets that are going to be used
4881 * for bootstrapping processors. The real pagesets for
4882 * each zone will be allocated later when the per cpu
4883 * allocator is available.
4884 *
4885 * boot_pagesets are used also for bootstrapping offline
4886 * cpus if the system is already booted because the pagesets
4887 * are needed to initialize allocators on a specific cpu too.
4888 * F.e. the percpu allocator needs the page allocator which
4889 * needs the percpu allocator in order to allocate its pagesets
4890 * (a chicken-egg dilemma).
4891 */
4892 for_each_possible_cpu(cpu) {
4893 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4894
4895 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4896 /*
4897 * We now know the "local memory node" for each node--
4898 * i.e., the node of the first zone in the generic zonelist.
4899 * Set up numa_mem percpu variable for on-line cpus. During
4900 * boot, only the boot cpu should be on-line; we'll init the
4901 * secondary cpus' numa_mem as they come on-line. During
4902 * node/memory hotplug, we'll fixup all on-line cpus.
4903 */
4904 if (cpu_online(cpu))
4905 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4906 #endif
4907 }
4908
4909 return 0;
4910 }
4911
4912 static noinline void __init
4913 build_all_zonelists_init(void)
4914 {
4915 __build_all_zonelists(NULL);
4916 mminit_verify_zonelist();
4917 cpuset_init_current_mems_allowed();
4918 }
4919
4920 /*
4921 * Called with zonelists_mutex held always
4922 * unless system_state == SYSTEM_BOOTING.
4923 *
4924 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4925 * [we're only called with non-NULL zone through __meminit paths] and
4926 * (2) call of __init annotated helper build_all_zonelists_init
4927 * [protected by SYSTEM_BOOTING].
4928 */
4929 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4930 {
4931 set_zonelist_order();
4932
4933 if (system_state == SYSTEM_BOOTING) {
4934 build_all_zonelists_init();
4935 } else {
4936 #ifdef CONFIG_MEMORY_HOTPLUG
4937 if (zone)
4938 setup_zone_pageset(zone);
4939 #endif
4940 /* we have to stop all cpus to guarantee there is no user
4941 of zonelist */
4942 stop_machine(__build_all_zonelists, pgdat, NULL);
4943 /* cpuset refresh routine should be here */
4944 }
4945 vm_total_pages = nr_free_pagecache_pages();
4946 /*
4947 * Disable grouping by mobility if the number of pages in the
4948 * system is too low to allow the mechanism to work. It would be
4949 * more accurate, but expensive to check per-zone. This check is
4950 * made on memory-hotadd so a system can start with mobility
4951 * disabled and enable it later
4952 */
4953 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4954 page_group_by_mobility_disabled = 1;
4955 else
4956 page_group_by_mobility_disabled = 0;
4957
4958 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4959 nr_online_nodes,
4960 zonelist_order_name[current_zonelist_order],
4961 page_group_by_mobility_disabled ? "off" : "on",
4962 vm_total_pages);
4963 #ifdef CONFIG_NUMA
4964 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4965 #endif
4966 }
4967
4968 /*
4969 * Helper functions to size the waitqueue hash table.
4970 * Essentially these want to choose hash table sizes sufficiently
4971 * large so that collisions trying to wait on pages are rare.
4972 * But in fact, the number of active page waitqueues on typical
4973 * systems is ridiculously low, less than 200. So this is even
4974 * conservative, even though it seems large.
4975 *
4976 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4977 * waitqueues, i.e. the size of the waitq table given the number of pages.
4978 */
4979 #define PAGES_PER_WAITQUEUE 256
4980
4981 #ifndef CONFIG_MEMORY_HOTPLUG
4982 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4983 {
4984 unsigned long size = 1;
4985
4986 pages /= PAGES_PER_WAITQUEUE;
4987
4988 while (size < pages)
4989 size <<= 1;
4990
4991 /*
4992 * Once we have dozens or even hundreds of threads sleeping
4993 * on IO we've got bigger problems than wait queue collision.
4994 * Limit the size of the wait table to a reasonable size.
4995 */
4996 size = min(size, 4096UL);
4997
4998 return max(size, 4UL);
4999 }
5000 #else
5001 /*
5002 * A zone's size might be changed by hot-add, so it is not possible to determine
5003 * a suitable size for its wait_table. So we use the maximum size now.
5004 *
5005 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5006 *
5007 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5008 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5009 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5010 *
5011 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5012 * or more by the traditional way. (See above). It equals:
5013 *
5014 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5015 * ia64(16K page size) : = ( 8G + 4M)byte.
5016 * powerpc (64K page size) : = (32G +16M)byte.
5017 */
5018 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5019 {
5020 return 4096UL;
5021 }
5022 #endif
5023
5024 /*
5025 * This is an integer logarithm so that shifts can be used later
5026 * to extract the more random high bits from the multiplicative
5027 * hash function before the remainder is taken.
5028 */
5029 static inline unsigned long wait_table_bits(unsigned long size)
5030 {
5031 return ffz(~size);
5032 }
5033
5034 /*
5035 * Initially all pages are reserved - free ones are freed
5036 * up by free_all_bootmem() once the early boot process is
5037 * done. Non-atomic initialization, single-pass.
5038 */
5039 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5040 unsigned long start_pfn, enum memmap_context context)
5041 {
5042 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5043 unsigned long end_pfn = start_pfn + size;
5044 pg_data_t *pgdat = NODE_DATA(nid);
5045 unsigned long pfn;
5046 unsigned long nr_initialised = 0;
5047 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5048 struct memblock_region *r = NULL, *tmp;
5049 #endif
5050
5051 if (highest_memmap_pfn < end_pfn - 1)
5052 highest_memmap_pfn = end_pfn - 1;
5053
5054 /*
5055 * Honor reservation requested by the driver for this ZONE_DEVICE
5056 * memory
5057 */
5058 if (altmap && start_pfn == altmap->base_pfn)
5059 start_pfn += altmap->reserve;
5060
5061 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5062 /*
5063 * There can be holes in boot-time mem_map[]s handed to this
5064 * function. They do not exist on hotplugged memory.
5065 */
5066 if (context != MEMMAP_EARLY)
5067 goto not_early;
5068
5069 if (!early_pfn_valid(pfn))
5070 continue;
5071 if (!early_pfn_in_nid(pfn, nid))
5072 continue;
5073 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5074 break;
5075
5076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5077 /*
5078 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5079 * from zone_movable_pfn[nid] to end of each node should be
5080 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5081 */
5082 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5083 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5084 continue;
5085
5086 /*
5087 * Check given memblock attribute by firmware which can affect
5088 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5089 * mirrored, it's an overlapped memmap init. skip it.
5090 */
5091 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5092 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5093 for_each_memblock(memory, tmp)
5094 if (pfn < memblock_region_memory_end_pfn(tmp))
5095 break;
5096 r = tmp;
5097 }
5098 if (pfn >= memblock_region_memory_base_pfn(r) &&
5099 memblock_is_mirror(r)) {
5100 /* already initialized as NORMAL */
5101 pfn = memblock_region_memory_end_pfn(r);
5102 continue;
5103 }
5104 }
5105 #endif
5106
5107 not_early:
5108 /*
5109 * Mark the block movable so that blocks are reserved for
5110 * movable at startup. This will force kernel allocations
5111 * to reserve their blocks rather than leaking throughout
5112 * the address space during boot when many long-lived
5113 * kernel allocations are made.
5114 *
5115 * bitmap is created for zone's valid pfn range. but memmap
5116 * can be created for invalid pages (for alignment)
5117 * check here not to call set_pageblock_migratetype() against
5118 * pfn out of zone.
5119 */
5120 if (!(pfn & (pageblock_nr_pages - 1))) {
5121 struct page *page = pfn_to_page(pfn);
5122
5123 __init_single_page(page, pfn, zone, nid);
5124 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5125 } else {
5126 __init_single_pfn(pfn, zone, nid);
5127 }
5128 }
5129 }
5130
5131 static void __meminit zone_init_free_lists(struct zone *zone)
5132 {
5133 unsigned int order, t;
5134 for_each_migratetype_order(order, t) {
5135 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5136 zone->free_area[order].nr_free = 0;
5137 }
5138 }
5139
5140 #ifndef __HAVE_ARCH_MEMMAP_INIT
5141 #define memmap_init(size, nid, zone, start_pfn) \
5142 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5143 #endif
5144
5145 static int zone_batchsize(struct zone *zone)
5146 {
5147 #ifdef CONFIG_MMU
5148 int batch;
5149
5150 /*
5151 * The per-cpu-pages pools are set to around 1000th of the
5152 * size of the zone. But no more than 1/2 of a meg.
5153 *
5154 * OK, so we don't know how big the cache is. So guess.
5155 */
5156 batch = zone->managed_pages / 1024;
5157 if (batch * PAGE_SIZE > 512 * 1024)
5158 batch = (512 * 1024) / PAGE_SIZE;
5159 batch /= 4; /* We effectively *= 4 below */
5160 if (batch < 1)
5161 batch = 1;
5162
5163 /*
5164 * Clamp the batch to a 2^n - 1 value. Having a power
5165 * of 2 value was found to be more likely to have
5166 * suboptimal cache aliasing properties in some cases.
5167 *
5168 * For example if 2 tasks are alternately allocating
5169 * batches of pages, one task can end up with a lot
5170 * of pages of one half of the possible page colors
5171 * and the other with pages of the other colors.
5172 */
5173 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5174
5175 return batch;
5176
5177 #else
5178 /* The deferral and batching of frees should be suppressed under NOMMU
5179 * conditions.
5180 *
5181 * The problem is that NOMMU needs to be able to allocate large chunks
5182 * of contiguous memory as there's no hardware page translation to
5183 * assemble apparent contiguous memory from discontiguous pages.
5184 *
5185 * Queueing large contiguous runs of pages for batching, however,
5186 * causes the pages to actually be freed in smaller chunks. As there
5187 * can be a significant delay between the individual batches being
5188 * recycled, this leads to the once large chunks of space being
5189 * fragmented and becoming unavailable for high-order allocations.
5190 */
5191 return 0;
5192 #endif
5193 }
5194
5195 /*
5196 * pcp->high and pcp->batch values are related and dependent on one another:
5197 * ->batch must never be higher then ->high.
5198 * The following function updates them in a safe manner without read side
5199 * locking.
5200 *
5201 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5202 * those fields changing asynchronously (acording the the above rule).
5203 *
5204 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5205 * outside of boot time (or some other assurance that no concurrent updaters
5206 * exist).
5207 */
5208 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5209 unsigned long batch)
5210 {
5211 /* start with a fail safe value for batch */
5212 pcp->batch = 1;
5213 smp_wmb();
5214
5215 /* Update high, then batch, in order */
5216 pcp->high = high;
5217 smp_wmb();
5218
5219 pcp->batch = batch;
5220 }
5221
5222 /* a companion to pageset_set_high() */
5223 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5224 {
5225 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5226 }
5227
5228 static void pageset_init(struct per_cpu_pageset *p)
5229 {
5230 struct per_cpu_pages *pcp;
5231 int migratetype;
5232
5233 memset(p, 0, sizeof(*p));
5234
5235 pcp = &p->pcp;
5236 pcp->count = 0;
5237 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5238 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5239 }
5240
5241 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5242 {
5243 pageset_init(p);
5244 pageset_set_batch(p, batch);
5245 }
5246
5247 /*
5248 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5249 * to the value high for the pageset p.
5250 */
5251 static void pageset_set_high(struct per_cpu_pageset *p,
5252 unsigned long high)
5253 {
5254 unsigned long batch = max(1UL, high / 4);
5255 if ((high / 4) > (PAGE_SHIFT * 8))
5256 batch = PAGE_SHIFT * 8;
5257
5258 pageset_update(&p->pcp, high, batch);
5259 }
5260
5261 static void pageset_set_high_and_batch(struct zone *zone,
5262 struct per_cpu_pageset *pcp)
5263 {
5264 if (percpu_pagelist_fraction)
5265 pageset_set_high(pcp,
5266 (zone->managed_pages /
5267 percpu_pagelist_fraction));
5268 else
5269 pageset_set_batch(pcp, zone_batchsize(zone));
5270 }
5271
5272 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5273 {
5274 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5275
5276 pageset_init(pcp);
5277 pageset_set_high_and_batch(zone, pcp);
5278 }
5279
5280 static void __meminit setup_zone_pageset(struct zone *zone)
5281 {
5282 int cpu;
5283 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5284 for_each_possible_cpu(cpu)
5285 zone_pageset_init(zone, cpu);
5286
5287 if (!zone->zone_pgdat->per_cpu_nodestats) {
5288 zone->zone_pgdat->per_cpu_nodestats =
5289 alloc_percpu(struct per_cpu_nodestat);
5290 }
5291 }
5292
5293 /*
5294 * Allocate per cpu pagesets and initialize them.
5295 * Before this call only boot pagesets were available.
5296 */
5297 void __init setup_per_cpu_pageset(void)
5298 {
5299 struct zone *zone;
5300
5301 for_each_populated_zone(zone)
5302 setup_zone_pageset(zone);
5303 }
5304
5305 static noinline __init_refok
5306 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5307 {
5308 int i;
5309 size_t alloc_size;
5310
5311 /*
5312 * The per-page waitqueue mechanism uses hashed waitqueues
5313 * per zone.
5314 */
5315 zone->wait_table_hash_nr_entries =
5316 wait_table_hash_nr_entries(zone_size_pages);
5317 zone->wait_table_bits =
5318 wait_table_bits(zone->wait_table_hash_nr_entries);
5319 alloc_size = zone->wait_table_hash_nr_entries
5320 * sizeof(wait_queue_head_t);
5321
5322 if (!slab_is_available()) {
5323 zone->wait_table = (wait_queue_head_t *)
5324 memblock_virt_alloc_node_nopanic(
5325 alloc_size, zone->zone_pgdat->node_id);
5326 } else {
5327 /*
5328 * This case means that a zone whose size was 0 gets new memory
5329 * via memory hot-add.
5330 * But it may be the case that a new node was hot-added. In
5331 * this case vmalloc() will not be able to use this new node's
5332 * memory - this wait_table must be initialized to use this new
5333 * node itself as well.
5334 * To use this new node's memory, further consideration will be
5335 * necessary.
5336 */
5337 zone->wait_table = vmalloc(alloc_size);
5338 }
5339 if (!zone->wait_table)
5340 return -ENOMEM;
5341
5342 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5343 init_waitqueue_head(zone->wait_table + i);
5344
5345 return 0;
5346 }
5347
5348 static __meminit void zone_pcp_init(struct zone *zone)
5349 {
5350 /*
5351 * per cpu subsystem is not up at this point. The following code
5352 * relies on the ability of the linker to provide the
5353 * offset of a (static) per cpu variable into the per cpu area.
5354 */
5355 zone->pageset = &boot_pageset;
5356
5357 if (populated_zone(zone))
5358 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5359 zone->name, zone->present_pages,
5360 zone_batchsize(zone));
5361 }
5362
5363 int __meminit init_currently_empty_zone(struct zone *zone,
5364 unsigned long zone_start_pfn,
5365 unsigned long size)
5366 {
5367 struct pglist_data *pgdat = zone->zone_pgdat;
5368 int ret;
5369 ret = zone_wait_table_init(zone, size);
5370 if (ret)
5371 return ret;
5372 pgdat->nr_zones = zone_idx(zone) + 1;
5373
5374 zone->zone_start_pfn = zone_start_pfn;
5375
5376 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5377 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5378 pgdat->node_id,
5379 (unsigned long)zone_idx(zone),
5380 zone_start_pfn, (zone_start_pfn + size));
5381
5382 zone_init_free_lists(zone);
5383
5384 return 0;
5385 }
5386
5387 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5388 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5389
5390 /*
5391 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5392 */
5393 int __meminit __early_pfn_to_nid(unsigned long pfn,
5394 struct mminit_pfnnid_cache *state)
5395 {
5396 unsigned long start_pfn, end_pfn;
5397 int nid;
5398
5399 if (state->last_start <= pfn && pfn < state->last_end)
5400 return state->last_nid;
5401
5402 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5403 if (nid != -1) {
5404 state->last_start = start_pfn;
5405 state->last_end = end_pfn;
5406 state->last_nid = nid;
5407 }
5408
5409 return nid;
5410 }
5411 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5412
5413 /**
5414 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5415 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5416 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5417 *
5418 * If an architecture guarantees that all ranges registered contain no holes
5419 * and may be freed, this this function may be used instead of calling
5420 * memblock_free_early_nid() manually.
5421 */
5422 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5423 {
5424 unsigned long start_pfn, end_pfn;
5425 int i, this_nid;
5426
5427 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5428 start_pfn = min(start_pfn, max_low_pfn);
5429 end_pfn = min(end_pfn, max_low_pfn);
5430
5431 if (start_pfn < end_pfn)
5432 memblock_free_early_nid(PFN_PHYS(start_pfn),
5433 (end_pfn - start_pfn) << PAGE_SHIFT,
5434 this_nid);
5435 }
5436 }
5437
5438 /**
5439 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5440 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5441 *
5442 * If an architecture guarantees that all ranges registered contain no holes and may
5443 * be freed, this function may be used instead of calling memory_present() manually.
5444 */
5445 void __init sparse_memory_present_with_active_regions(int nid)
5446 {
5447 unsigned long start_pfn, end_pfn;
5448 int i, this_nid;
5449
5450 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5451 memory_present(this_nid, start_pfn, end_pfn);
5452 }
5453
5454 /**
5455 * get_pfn_range_for_nid - Return the start and end page frames for a node
5456 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5457 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5458 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5459 *
5460 * It returns the start and end page frame of a node based on information
5461 * provided by memblock_set_node(). If called for a node
5462 * with no available memory, a warning is printed and the start and end
5463 * PFNs will be 0.
5464 */
5465 void __meminit get_pfn_range_for_nid(unsigned int nid,
5466 unsigned long *start_pfn, unsigned long *end_pfn)
5467 {
5468 unsigned long this_start_pfn, this_end_pfn;
5469 int i;
5470
5471 *start_pfn = -1UL;
5472 *end_pfn = 0;
5473
5474 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5475 *start_pfn = min(*start_pfn, this_start_pfn);
5476 *end_pfn = max(*end_pfn, this_end_pfn);
5477 }
5478
5479 if (*start_pfn == -1UL)
5480 *start_pfn = 0;
5481 }
5482
5483 /*
5484 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5485 * assumption is made that zones within a node are ordered in monotonic
5486 * increasing memory addresses so that the "highest" populated zone is used
5487 */
5488 static void __init find_usable_zone_for_movable(void)
5489 {
5490 int zone_index;
5491 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5492 if (zone_index == ZONE_MOVABLE)
5493 continue;
5494
5495 if (arch_zone_highest_possible_pfn[zone_index] >
5496 arch_zone_lowest_possible_pfn[zone_index])
5497 break;
5498 }
5499
5500 VM_BUG_ON(zone_index == -1);
5501 movable_zone = zone_index;
5502 }
5503
5504 /*
5505 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5506 * because it is sized independent of architecture. Unlike the other zones,
5507 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5508 * in each node depending on the size of each node and how evenly kernelcore
5509 * is distributed. This helper function adjusts the zone ranges
5510 * provided by the architecture for a given node by using the end of the
5511 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5512 * zones within a node are in order of monotonic increases memory addresses
5513 */
5514 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5515 unsigned long zone_type,
5516 unsigned long node_start_pfn,
5517 unsigned long node_end_pfn,
5518 unsigned long *zone_start_pfn,
5519 unsigned long *zone_end_pfn)
5520 {
5521 /* Only adjust if ZONE_MOVABLE is on this node */
5522 if (zone_movable_pfn[nid]) {
5523 /* Size ZONE_MOVABLE */
5524 if (zone_type == ZONE_MOVABLE) {
5525 *zone_start_pfn = zone_movable_pfn[nid];
5526 *zone_end_pfn = min(node_end_pfn,
5527 arch_zone_highest_possible_pfn[movable_zone]);
5528
5529 /* Check if this whole range is within ZONE_MOVABLE */
5530 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5531 *zone_start_pfn = *zone_end_pfn;
5532 }
5533 }
5534
5535 /*
5536 * Return the number of pages a zone spans in a node, including holes
5537 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5538 */
5539 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5540 unsigned long zone_type,
5541 unsigned long node_start_pfn,
5542 unsigned long node_end_pfn,
5543 unsigned long *zone_start_pfn,
5544 unsigned long *zone_end_pfn,
5545 unsigned long *ignored)
5546 {
5547 /* When hotadd a new node from cpu_up(), the node should be empty */
5548 if (!node_start_pfn && !node_end_pfn)
5549 return 0;
5550
5551 /* Get the start and end of the zone */
5552 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5553 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5554 adjust_zone_range_for_zone_movable(nid, zone_type,
5555 node_start_pfn, node_end_pfn,
5556 zone_start_pfn, zone_end_pfn);
5557
5558 /* Check that this node has pages within the zone's required range */
5559 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5560 return 0;
5561
5562 /* Move the zone boundaries inside the node if necessary */
5563 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5564 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5565
5566 /* Return the spanned pages */
5567 return *zone_end_pfn - *zone_start_pfn;
5568 }
5569
5570 /*
5571 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5572 * then all holes in the requested range will be accounted for.
5573 */
5574 unsigned long __meminit __absent_pages_in_range(int nid,
5575 unsigned long range_start_pfn,
5576 unsigned long range_end_pfn)
5577 {
5578 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5579 unsigned long start_pfn, end_pfn;
5580 int i;
5581
5582 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5583 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5584 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5585 nr_absent -= end_pfn - start_pfn;
5586 }
5587 return nr_absent;
5588 }
5589
5590 /**
5591 * absent_pages_in_range - Return number of page frames in holes within a range
5592 * @start_pfn: The start PFN to start searching for holes
5593 * @end_pfn: The end PFN to stop searching for holes
5594 *
5595 * It returns the number of pages frames in memory holes within a range.
5596 */
5597 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5598 unsigned long end_pfn)
5599 {
5600 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5601 }
5602
5603 /* Return the number of page frames in holes in a zone on a node */
5604 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5605 unsigned long zone_type,
5606 unsigned long node_start_pfn,
5607 unsigned long node_end_pfn,
5608 unsigned long *ignored)
5609 {
5610 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5611 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5612 unsigned long zone_start_pfn, zone_end_pfn;
5613 unsigned long nr_absent;
5614
5615 /* When hotadd a new node from cpu_up(), the node should be empty */
5616 if (!node_start_pfn && !node_end_pfn)
5617 return 0;
5618
5619 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5620 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5621
5622 adjust_zone_range_for_zone_movable(nid, zone_type,
5623 node_start_pfn, node_end_pfn,
5624 &zone_start_pfn, &zone_end_pfn);
5625 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5626
5627 /*
5628 * ZONE_MOVABLE handling.
5629 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5630 * and vice versa.
5631 */
5632 if (zone_movable_pfn[nid]) {
5633 if (mirrored_kernelcore) {
5634 unsigned long start_pfn, end_pfn;
5635 struct memblock_region *r;
5636
5637 for_each_memblock(memory, r) {
5638 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5639 zone_start_pfn, zone_end_pfn);
5640 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5641 zone_start_pfn, zone_end_pfn);
5642
5643 if (zone_type == ZONE_MOVABLE &&
5644 memblock_is_mirror(r))
5645 nr_absent += end_pfn - start_pfn;
5646
5647 if (zone_type == ZONE_NORMAL &&
5648 !memblock_is_mirror(r))
5649 nr_absent += end_pfn - start_pfn;
5650 }
5651 } else {
5652 if (zone_type == ZONE_NORMAL)
5653 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5654 }
5655 }
5656
5657 return nr_absent;
5658 }
5659
5660 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5661 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5662 unsigned long zone_type,
5663 unsigned long node_start_pfn,
5664 unsigned long node_end_pfn,
5665 unsigned long *zone_start_pfn,
5666 unsigned long *zone_end_pfn,
5667 unsigned long *zones_size)
5668 {
5669 unsigned int zone;
5670
5671 *zone_start_pfn = node_start_pfn;
5672 for (zone = 0; zone < zone_type; zone++)
5673 *zone_start_pfn += zones_size[zone];
5674
5675 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5676
5677 return zones_size[zone_type];
5678 }
5679
5680 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5681 unsigned long zone_type,
5682 unsigned long node_start_pfn,
5683 unsigned long node_end_pfn,
5684 unsigned long *zholes_size)
5685 {
5686 if (!zholes_size)
5687 return 0;
5688
5689 return zholes_size[zone_type];
5690 }
5691
5692 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5693
5694 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5695 unsigned long node_start_pfn,
5696 unsigned long node_end_pfn,
5697 unsigned long *zones_size,
5698 unsigned long *zholes_size)
5699 {
5700 unsigned long realtotalpages = 0, totalpages = 0;
5701 enum zone_type i;
5702
5703 for (i = 0; i < MAX_NR_ZONES; i++) {
5704 struct zone *zone = pgdat->node_zones + i;
5705 unsigned long zone_start_pfn, zone_end_pfn;
5706 unsigned long size, real_size;
5707
5708 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5709 node_start_pfn,
5710 node_end_pfn,
5711 &zone_start_pfn,
5712 &zone_end_pfn,
5713 zones_size);
5714 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5715 node_start_pfn, node_end_pfn,
5716 zholes_size);
5717 if (size)
5718 zone->zone_start_pfn = zone_start_pfn;
5719 else
5720 zone->zone_start_pfn = 0;
5721 zone->spanned_pages = size;
5722 zone->present_pages = real_size;
5723
5724 totalpages += size;
5725 realtotalpages += real_size;
5726 }
5727
5728 pgdat->node_spanned_pages = totalpages;
5729 pgdat->node_present_pages = realtotalpages;
5730 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5731 realtotalpages);
5732 }
5733
5734 #ifndef CONFIG_SPARSEMEM
5735 /*
5736 * Calculate the size of the zone->blockflags rounded to an unsigned long
5737 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5738 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5739 * round what is now in bits to nearest long in bits, then return it in
5740 * bytes.
5741 */
5742 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5743 {
5744 unsigned long usemapsize;
5745
5746 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5747 usemapsize = roundup(zonesize, pageblock_nr_pages);
5748 usemapsize = usemapsize >> pageblock_order;
5749 usemapsize *= NR_PAGEBLOCK_BITS;
5750 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5751
5752 return usemapsize / 8;
5753 }
5754
5755 static void __init setup_usemap(struct pglist_data *pgdat,
5756 struct zone *zone,
5757 unsigned long zone_start_pfn,
5758 unsigned long zonesize)
5759 {
5760 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5761 zone->pageblock_flags = NULL;
5762 if (usemapsize)
5763 zone->pageblock_flags =
5764 memblock_virt_alloc_node_nopanic(usemapsize,
5765 pgdat->node_id);
5766 }
5767 #else
5768 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5769 unsigned long zone_start_pfn, unsigned long zonesize) {}
5770 #endif /* CONFIG_SPARSEMEM */
5771
5772 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5773
5774 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5775 void __paginginit set_pageblock_order(void)
5776 {
5777 unsigned int order;
5778
5779 /* Check that pageblock_nr_pages has not already been setup */
5780 if (pageblock_order)
5781 return;
5782
5783 if (HPAGE_SHIFT > PAGE_SHIFT)
5784 order = HUGETLB_PAGE_ORDER;
5785 else
5786 order = MAX_ORDER - 1;
5787
5788 /*
5789 * Assume the largest contiguous order of interest is a huge page.
5790 * This value may be variable depending on boot parameters on IA64 and
5791 * powerpc.
5792 */
5793 pageblock_order = order;
5794 }
5795 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5796
5797 /*
5798 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5799 * is unused as pageblock_order is set at compile-time. See
5800 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5801 * the kernel config
5802 */
5803 void __paginginit set_pageblock_order(void)
5804 {
5805 }
5806
5807 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5808
5809 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5810 unsigned long present_pages)
5811 {
5812 unsigned long pages = spanned_pages;
5813
5814 /*
5815 * Provide a more accurate estimation if there are holes within
5816 * the zone and SPARSEMEM is in use. If there are holes within the
5817 * zone, each populated memory region may cost us one or two extra
5818 * memmap pages due to alignment because memmap pages for each
5819 * populated regions may not naturally algined on page boundary.
5820 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5821 */
5822 if (spanned_pages > present_pages + (present_pages >> 4) &&
5823 IS_ENABLED(CONFIG_SPARSEMEM))
5824 pages = present_pages;
5825
5826 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5827 }
5828
5829 /*
5830 * Set up the zone data structures:
5831 * - mark all pages reserved
5832 * - mark all memory queues empty
5833 * - clear the memory bitmaps
5834 *
5835 * NOTE: pgdat should get zeroed by caller.
5836 */
5837 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5838 {
5839 enum zone_type j;
5840 int nid = pgdat->node_id;
5841 int ret;
5842
5843 pgdat_resize_init(pgdat);
5844 #ifdef CONFIG_NUMA_BALANCING
5845 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5846 pgdat->numabalancing_migrate_nr_pages = 0;
5847 pgdat->numabalancing_migrate_next_window = jiffies;
5848 #endif
5849 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5850 spin_lock_init(&pgdat->split_queue_lock);
5851 INIT_LIST_HEAD(&pgdat->split_queue);
5852 pgdat->split_queue_len = 0;
5853 #endif
5854 init_waitqueue_head(&pgdat->kswapd_wait);
5855 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5856 #ifdef CONFIG_COMPACTION
5857 init_waitqueue_head(&pgdat->kcompactd_wait);
5858 #endif
5859 pgdat_page_ext_init(pgdat);
5860 spin_lock_init(&pgdat->lru_lock);
5861 lruvec_init(node_lruvec(pgdat));
5862
5863 for (j = 0; j < MAX_NR_ZONES; j++) {
5864 struct zone *zone = pgdat->node_zones + j;
5865 unsigned long size, realsize, freesize, memmap_pages;
5866 unsigned long zone_start_pfn = zone->zone_start_pfn;
5867
5868 size = zone->spanned_pages;
5869 realsize = freesize = zone->present_pages;
5870
5871 /*
5872 * Adjust freesize so that it accounts for how much memory
5873 * is used by this zone for memmap. This affects the watermark
5874 * and per-cpu initialisations
5875 */
5876 memmap_pages = calc_memmap_size(size, realsize);
5877 if (!is_highmem_idx(j)) {
5878 if (freesize >= memmap_pages) {
5879 freesize -= memmap_pages;
5880 if (memmap_pages)
5881 printk(KERN_DEBUG
5882 " %s zone: %lu pages used for memmap\n",
5883 zone_names[j], memmap_pages);
5884 } else
5885 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5886 zone_names[j], memmap_pages, freesize);
5887 }
5888
5889 /* Account for reserved pages */
5890 if (j == 0 && freesize > dma_reserve) {
5891 freesize -= dma_reserve;
5892 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5893 zone_names[0], dma_reserve);
5894 }
5895
5896 if (!is_highmem_idx(j))
5897 nr_kernel_pages += freesize;
5898 /* Charge for highmem memmap if there are enough kernel pages */
5899 else if (nr_kernel_pages > memmap_pages * 2)
5900 nr_kernel_pages -= memmap_pages;
5901 nr_all_pages += freesize;
5902
5903 /*
5904 * Set an approximate value for lowmem here, it will be adjusted
5905 * when the bootmem allocator frees pages into the buddy system.
5906 * And all highmem pages will be managed by the buddy system.
5907 */
5908 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5909 #ifdef CONFIG_NUMA
5910 zone->node = nid;
5911 pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio)
5912 / 100;
5913 pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100;
5914 #endif
5915 zone->name = zone_names[j];
5916 zone->zone_pgdat = pgdat;
5917 spin_lock_init(&zone->lock);
5918 zone_seqlock_init(zone);
5919 zone_pcp_init(zone);
5920
5921 if (!size)
5922 continue;
5923
5924 set_pageblock_order();
5925 setup_usemap(pgdat, zone, zone_start_pfn, size);
5926 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5927 BUG_ON(ret);
5928 memmap_init(size, nid, j, zone_start_pfn);
5929 }
5930 }
5931
5932 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5933 {
5934 unsigned long __maybe_unused start = 0;
5935 unsigned long __maybe_unused offset = 0;
5936
5937 /* Skip empty nodes */
5938 if (!pgdat->node_spanned_pages)
5939 return;
5940
5941 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5942 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5943 offset = pgdat->node_start_pfn - start;
5944 /* ia64 gets its own node_mem_map, before this, without bootmem */
5945 if (!pgdat->node_mem_map) {
5946 unsigned long size, end;
5947 struct page *map;
5948
5949 /*
5950 * The zone's endpoints aren't required to be MAX_ORDER
5951 * aligned but the node_mem_map endpoints must be in order
5952 * for the buddy allocator to function correctly.
5953 */
5954 end = pgdat_end_pfn(pgdat);
5955 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5956 size = (end - start) * sizeof(struct page);
5957 map = alloc_remap(pgdat->node_id, size);
5958 if (!map)
5959 map = memblock_virt_alloc_node_nopanic(size,
5960 pgdat->node_id);
5961 pgdat->node_mem_map = map + offset;
5962 }
5963 #ifndef CONFIG_NEED_MULTIPLE_NODES
5964 /*
5965 * With no DISCONTIG, the global mem_map is just set as node 0's
5966 */
5967 if (pgdat == NODE_DATA(0)) {
5968 mem_map = NODE_DATA(0)->node_mem_map;
5969 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5970 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5971 mem_map -= offset;
5972 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5973 }
5974 #endif
5975 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5976 }
5977
5978 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5979 unsigned long node_start_pfn, unsigned long *zholes_size)
5980 {
5981 pg_data_t *pgdat = NODE_DATA(nid);
5982 unsigned long start_pfn = 0;
5983 unsigned long end_pfn = 0;
5984
5985 /* pg_data_t should be reset to zero when it's allocated */
5986 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5987
5988 reset_deferred_meminit(pgdat);
5989 pgdat->node_id = nid;
5990 pgdat->node_start_pfn = node_start_pfn;
5991 pgdat->per_cpu_nodestats = NULL;
5992 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5993 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5994 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5995 (u64)start_pfn << PAGE_SHIFT,
5996 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5997 #else
5998 start_pfn = node_start_pfn;
5999 #endif
6000 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6001 zones_size, zholes_size);
6002
6003 alloc_node_mem_map(pgdat);
6004 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6005 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6006 nid, (unsigned long)pgdat,
6007 (unsigned long)pgdat->node_mem_map);
6008 #endif
6009
6010 free_area_init_core(pgdat);
6011 }
6012
6013 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6014
6015 #if MAX_NUMNODES > 1
6016 /*
6017 * Figure out the number of possible node ids.
6018 */
6019 void __init setup_nr_node_ids(void)
6020 {
6021 unsigned int highest;
6022
6023 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6024 nr_node_ids = highest + 1;
6025 }
6026 #endif
6027
6028 /**
6029 * node_map_pfn_alignment - determine the maximum internode alignment
6030 *
6031 * This function should be called after node map is populated and sorted.
6032 * It calculates the maximum power of two alignment which can distinguish
6033 * all the nodes.
6034 *
6035 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6036 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6037 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6038 * shifted, 1GiB is enough and this function will indicate so.
6039 *
6040 * This is used to test whether pfn -> nid mapping of the chosen memory
6041 * model has fine enough granularity to avoid incorrect mapping for the
6042 * populated node map.
6043 *
6044 * Returns the determined alignment in pfn's. 0 if there is no alignment
6045 * requirement (single node).
6046 */
6047 unsigned long __init node_map_pfn_alignment(void)
6048 {
6049 unsigned long accl_mask = 0, last_end = 0;
6050 unsigned long start, end, mask;
6051 int last_nid = -1;
6052 int i, nid;
6053
6054 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6055 if (!start || last_nid < 0 || last_nid == nid) {
6056 last_nid = nid;
6057 last_end = end;
6058 continue;
6059 }
6060
6061 /*
6062 * Start with a mask granular enough to pin-point to the
6063 * start pfn and tick off bits one-by-one until it becomes
6064 * too coarse to separate the current node from the last.
6065 */
6066 mask = ~((1 << __ffs(start)) - 1);
6067 while (mask && last_end <= (start & (mask << 1)))
6068 mask <<= 1;
6069
6070 /* accumulate all internode masks */
6071 accl_mask |= mask;
6072 }
6073
6074 /* convert mask to number of pages */
6075 return ~accl_mask + 1;
6076 }
6077
6078 /* Find the lowest pfn for a node */
6079 static unsigned long __init find_min_pfn_for_node(int nid)
6080 {
6081 unsigned long min_pfn = ULONG_MAX;
6082 unsigned long start_pfn;
6083 int i;
6084
6085 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6086 min_pfn = min(min_pfn, start_pfn);
6087
6088 if (min_pfn == ULONG_MAX) {
6089 pr_warn("Could not find start_pfn for node %d\n", nid);
6090 return 0;
6091 }
6092
6093 return min_pfn;
6094 }
6095
6096 /**
6097 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6098 *
6099 * It returns the minimum PFN based on information provided via
6100 * memblock_set_node().
6101 */
6102 unsigned long __init find_min_pfn_with_active_regions(void)
6103 {
6104 return find_min_pfn_for_node(MAX_NUMNODES);
6105 }
6106
6107 /*
6108 * early_calculate_totalpages()
6109 * Sum pages in active regions for movable zone.
6110 * Populate N_MEMORY for calculating usable_nodes.
6111 */
6112 static unsigned long __init early_calculate_totalpages(void)
6113 {
6114 unsigned long totalpages = 0;
6115 unsigned long start_pfn, end_pfn;
6116 int i, nid;
6117
6118 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6119 unsigned long pages = end_pfn - start_pfn;
6120
6121 totalpages += pages;
6122 if (pages)
6123 node_set_state(nid, N_MEMORY);
6124 }
6125 return totalpages;
6126 }
6127
6128 /*
6129 * Find the PFN the Movable zone begins in each node. Kernel memory
6130 * is spread evenly between nodes as long as the nodes have enough
6131 * memory. When they don't, some nodes will have more kernelcore than
6132 * others
6133 */
6134 static void __init find_zone_movable_pfns_for_nodes(void)
6135 {
6136 int i, nid;
6137 unsigned long usable_startpfn;
6138 unsigned long kernelcore_node, kernelcore_remaining;
6139 /* save the state before borrow the nodemask */
6140 nodemask_t saved_node_state = node_states[N_MEMORY];
6141 unsigned long totalpages = early_calculate_totalpages();
6142 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6143 struct memblock_region *r;
6144
6145 /* Need to find movable_zone earlier when movable_node is specified. */
6146 find_usable_zone_for_movable();
6147
6148 /*
6149 * If movable_node is specified, ignore kernelcore and movablecore
6150 * options.
6151 */
6152 if (movable_node_is_enabled()) {
6153 for_each_memblock(memory, r) {
6154 if (!memblock_is_hotpluggable(r))
6155 continue;
6156
6157 nid = r->nid;
6158
6159 usable_startpfn = PFN_DOWN(r->base);
6160 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6161 min(usable_startpfn, zone_movable_pfn[nid]) :
6162 usable_startpfn;
6163 }
6164
6165 goto out2;
6166 }
6167
6168 /*
6169 * If kernelcore=mirror is specified, ignore movablecore option
6170 */
6171 if (mirrored_kernelcore) {
6172 bool mem_below_4gb_not_mirrored = false;
6173
6174 for_each_memblock(memory, r) {
6175 if (memblock_is_mirror(r))
6176 continue;
6177
6178 nid = r->nid;
6179
6180 usable_startpfn = memblock_region_memory_base_pfn(r);
6181
6182 if (usable_startpfn < 0x100000) {
6183 mem_below_4gb_not_mirrored = true;
6184 continue;
6185 }
6186
6187 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6188 min(usable_startpfn, zone_movable_pfn[nid]) :
6189 usable_startpfn;
6190 }
6191
6192 if (mem_below_4gb_not_mirrored)
6193 pr_warn("This configuration results in unmirrored kernel memory.");
6194
6195 goto out2;
6196 }
6197
6198 /*
6199 * If movablecore=nn[KMG] was specified, calculate what size of
6200 * kernelcore that corresponds so that memory usable for
6201 * any allocation type is evenly spread. If both kernelcore
6202 * and movablecore are specified, then the value of kernelcore
6203 * will be used for required_kernelcore if it's greater than
6204 * what movablecore would have allowed.
6205 */
6206 if (required_movablecore) {
6207 unsigned long corepages;
6208
6209 /*
6210 * Round-up so that ZONE_MOVABLE is at least as large as what
6211 * was requested by the user
6212 */
6213 required_movablecore =
6214 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6215 required_movablecore = min(totalpages, required_movablecore);
6216 corepages = totalpages - required_movablecore;
6217
6218 required_kernelcore = max(required_kernelcore, corepages);
6219 }
6220
6221 /*
6222 * If kernelcore was not specified or kernelcore size is larger
6223 * than totalpages, there is no ZONE_MOVABLE.
6224 */
6225 if (!required_kernelcore || required_kernelcore >= totalpages)
6226 goto out;
6227
6228 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6229 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6230
6231 restart:
6232 /* Spread kernelcore memory as evenly as possible throughout nodes */
6233 kernelcore_node = required_kernelcore / usable_nodes;
6234 for_each_node_state(nid, N_MEMORY) {
6235 unsigned long start_pfn, end_pfn;
6236
6237 /*
6238 * Recalculate kernelcore_node if the division per node
6239 * now exceeds what is necessary to satisfy the requested
6240 * amount of memory for the kernel
6241 */
6242 if (required_kernelcore < kernelcore_node)
6243 kernelcore_node = required_kernelcore / usable_nodes;
6244
6245 /*
6246 * As the map is walked, we track how much memory is usable
6247 * by the kernel using kernelcore_remaining. When it is
6248 * 0, the rest of the node is usable by ZONE_MOVABLE
6249 */
6250 kernelcore_remaining = kernelcore_node;
6251
6252 /* Go through each range of PFNs within this node */
6253 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6254 unsigned long size_pages;
6255
6256 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6257 if (start_pfn >= end_pfn)
6258 continue;
6259
6260 /* Account for what is only usable for kernelcore */
6261 if (start_pfn < usable_startpfn) {
6262 unsigned long kernel_pages;
6263 kernel_pages = min(end_pfn, usable_startpfn)
6264 - start_pfn;
6265
6266 kernelcore_remaining -= min(kernel_pages,
6267 kernelcore_remaining);
6268 required_kernelcore -= min(kernel_pages,
6269 required_kernelcore);
6270
6271 /* Continue if range is now fully accounted */
6272 if (end_pfn <= usable_startpfn) {
6273
6274 /*
6275 * Push zone_movable_pfn to the end so
6276 * that if we have to rebalance
6277 * kernelcore across nodes, we will
6278 * not double account here
6279 */
6280 zone_movable_pfn[nid] = end_pfn;
6281 continue;
6282 }
6283 start_pfn = usable_startpfn;
6284 }
6285
6286 /*
6287 * The usable PFN range for ZONE_MOVABLE is from
6288 * start_pfn->end_pfn. Calculate size_pages as the
6289 * number of pages used as kernelcore
6290 */
6291 size_pages = end_pfn - start_pfn;
6292 if (size_pages > kernelcore_remaining)
6293 size_pages = kernelcore_remaining;
6294 zone_movable_pfn[nid] = start_pfn + size_pages;
6295
6296 /*
6297 * Some kernelcore has been met, update counts and
6298 * break if the kernelcore for this node has been
6299 * satisfied
6300 */
6301 required_kernelcore -= min(required_kernelcore,
6302 size_pages);
6303 kernelcore_remaining -= size_pages;
6304 if (!kernelcore_remaining)
6305 break;
6306 }
6307 }
6308
6309 /*
6310 * If there is still required_kernelcore, we do another pass with one
6311 * less node in the count. This will push zone_movable_pfn[nid] further
6312 * along on the nodes that still have memory until kernelcore is
6313 * satisfied
6314 */
6315 usable_nodes--;
6316 if (usable_nodes && required_kernelcore > usable_nodes)
6317 goto restart;
6318
6319 out2:
6320 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6321 for (nid = 0; nid < MAX_NUMNODES; nid++)
6322 zone_movable_pfn[nid] =
6323 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6324
6325 out:
6326 /* restore the node_state */
6327 node_states[N_MEMORY] = saved_node_state;
6328 }
6329
6330 /* Any regular or high memory on that node ? */
6331 static void check_for_memory(pg_data_t *pgdat, int nid)
6332 {
6333 enum zone_type zone_type;
6334
6335 if (N_MEMORY == N_NORMAL_MEMORY)
6336 return;
6337
6338 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6339 struct zone *zone = &pgdat->node_zones[zone_type];
6340 if (populated_zone(zone)) {
6341 node_set_state(nid, N_HIGH_MEMORY);
6342 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6343 zone_type <= ZONE_NORMAL)
6344 node_set_state(nid, N_NORMAL_MEMORY);
6345 break;
6346 }
6347 }
6348 }
6349
6350 /**
6351 * free_area_init_nodes - Initialise all pg_data_t and zone data
6352 * @max_zone_pfn: an array of max PFNs for each zone
6353 *
6354 * This will call free_area_init_node() for each active node in the system.
6355 * Using the page ranges provided by memblock_set_node(), the size of each
6356 * zone in each node and their holes is calculated. If the maximum PFN
6357 * between two adjacent zones match, it is assumed that the zone is empty.
6358 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6359 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6360 * starts where the previous one ended. For example, ZONE_DMA32 starts
6361 * at arch_max_dma_pfn.
6362 */
6363 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6364 {
6365 unsigned long start_pfn, end_pfn;
6366 int i, nid;
6367
6368 /* Record where the zone boundaries are */
6369 memset(arch_zone_lowest_possible_pfn, 0,
6370 sizeof(arch_zone_lowest_possible_pfn));
6371 memset(arch_zone_highest_possible_pfn, 0,
6372 sizeof(arch_zone_highest_possible_pfn));
6373
6374 start_pfn = find_min_pfn_with_active_regions();
6375
6376 for (i = 0; i < MAX_NR_ZONES; i++) {
6377 if (i == ZONE_MOVABLE)
6378 continue;
6379
6380 end_pfn = max(max_zone_pfn[i], start_pfn);
6381 arch_zone_lowest_possible_pfn[i] = start_pfn;
6382 arch_zone_highest_possible_pfn[i] = end_pfn;
6383
6384 start_pfn = end_pfn;
6385 }
6386 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6387 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6388
6389 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6390 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6391 find_zone_movable_pfns_for_nodes();
6392
6393 /* Print out the zone ranges */
6394 pr_info("Zone ranges:\n");
6395 for (i = 0; i < MAX_NR_ZONES; i++) {
6396 if (i == ZONE_MOVABLE)
6397 continue;
6398 pr_info(" %-8s ", zone_names[i]);
6399 if (arch_zone_lowest_possible_pfn[i] ==
6400 arch_zone_highest_possible_pfn[i])
6401 pr_cont("empty\n");
6402 else
6403 pr_cont("[mem %#018Lx-%#018Lx]\n",
6404 (u64)arch_zone_lowest_possible_pfn[i]
6405 << PAGE_SHIFT,
6406 ((u64)arch_zone_highest_possible_pfn[i]
6407 << PAGE_SHIFT) - 1);
6408 }
6409
6410 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6411 pr_info("Movable zone start for each node\n");
6412 for (i = 0; i < MAX_NUMNODES; i++) {
6413 if (zone_movable_pfn[i])
6414 pr_info(" Node %d: %#018Lx\n", i,
6415 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6416 }
6417
6418 /* Print out the early node map */
6419 pr_info("Early memory node ranges\n");
6420 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6421 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6422 (u64)start_pfn << PAGE_SHIFT,
6423 ((u64)end_pfn << PAGE_SHIFT) - 1);
6424
6425 /* Initialise every node */
6426 mminit_verify_pageflags_layout();
6427 setup_nr_node_ids();
6428 for_each_online_node(nid) {
6429 pg_data_t *pgdat = NODE_DATA(nid);
6430 free_area_init_node(nid, NULL,
6431 find_min_pfn_for_node(nid), NULL);
6432
6433 /* Any memory on that node */
6434 if (pgdat->node_present_pages)
6435 node_set_state(nid, N_MEMORY);
6436 check_for_memory(pgdat, nid);
6437 }
6438 }
6439
6440 static int __init cmdline_parse_core(char *p, unsigned long *core)
6441 {
6442 unsigned long long coremem;
6443 if (!p)
6444 return -EINVAL;
6445
6446 coremem = memparse(p, &p);
6447 *core = coremem >> PAGE_SHIFT;
6448
6449 /* Paranoid check that UL is enough for the coremem value */
6450 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6451
6452 return 0;
6453 }
6454
6455 /*
6456 * kernelcore=size sets the amount of memory for use for allocations that
6457 * cannot be reclaimed or migrated.
6458 */
6459 static int __init cmdline_parse_kernelcore(char *p)
6460 {
6461 /* parse kernelcore=mirror */
6462 if (parse_option_str(p, "mirror")) {
6463 mirrored_kernelcore = true;
6464 return 0;
6465 }
6466
6467 return cmdline_parse_core(p, &required_kernelcore);
6468 }
6469
6470 /*
6471 * movablecore=size sets the amount of memory for use for allocations that
6472 * can be reclaimed or migrated.
6473 */
6474 static int __init cmdline_parse_movablecore(char *p)
6475 {
6476 return cmdline_parse_core(p, &required_movablecore);
6477 }
6478
6479 early_param("kernelcore", cmdline_parse_kernelcore);
6480 early_param("movablecore", cmdline_parse_movablecore);
6481
6482 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6483
6484 void adjust_managed_page_count(struct page *page, long count)
6485 {
6486 spin_lock(&managed_page_count_lock);
6487 page_zone(page)->managed_pages += count;
6488 totalram_pages += count;
6489 #ifdef CONFIG_HIGHMEM
6490 if (PageHighMem(page))
6491 totalhigh_pages += count;
6492 #endif
6493 spin_unlock(&managed_page_count_lock);
6494 }
6495 EXPORT_SYMBOL(adjust_managed_page_count);
6496
6497 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6498 {
6499 void *pos;
6500 unsigned long pages = 0;
6501
6502 start = (void *)PAGE_ALIGN((unsigned long)start);
6503 end = (void *)((unsigned long)end & PAGE_MASK);
6504 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6505 if ((unsigned int)poison <= 0xFF)
6506 memset(pos, poison, PAGE_SIZE);
6507 free_reserved_page(virt_to_page(pos));
6508 }
6509
6510 if (pages && s)
6511 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6512 s, pages << (PAGE_SHIFT - 10), start, end);
6513
6514 return pages;
6515 }
6516 EXPORT_SYMBOL(free_reserved_area);
6517
6518 #ifdef CONFIG_HIGHMEM
6519 void free_highmem_page(struct page *page)
6520 {
6521 __free_reserved_page(page);
6522 totalram_pages++;
6523 page_zone(page)->managed_pages++;
6524 totalhigh_pages++;
6525 }
6526 #endif
6527
6528
6529 void __init mem_init_print_info(const char *str)
6530 {
6531 unsigned long physpages, codesize, datasize, rosize, bss_size;
6532 unsigned long init_code_size, init_data_size;
6533
6534 physpages = get_num_physpages();
6535 codesize = _etext - _stext;
6536 datasize = _edata - _sdata;
6537 rosize = __end_rodata - __start_rodata;
6538 bss_size = __bss_stop - __bss_start;
6539 init_data_size = __init_end - __init_begin;
6540 init_code_size = _einittext - _sinittext;
6541
6542 /*
6543 * Detect special cases and adjust section sizes accordingly:
6544 * 1) .init.* may be embedded into .data sections
6545 * 2) .init.text.* may be out of [__init_begin, __init_end],
6546 * please refer to arch/tile/kernel/vmlinux.lds.S.
6547 * 3) .rodata.* may be embedded into .text or .data sections.
6548 */
6549 #define adj_init_size(start, end, size, pos, adj) \
6550 do { \
6551 if (start <= pos && pos < end && size > adj) \
6552 size -= adj; \
6553 } while (0)
6554
6555 adj_init_size(__init_begin, __init_end, init_data_size,
6556 _sinittext, init_code_size);
6557 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6558 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6559 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6560 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6561
6562 #undef adj_init_size
6563
6564 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6565 #ifdef CONFIG_HIGHMEM
6566 ", %luK highmem"
6567 #endif
6568 "%s%s)\n",
6569 nr_free_pages() << (PAGE_SHIFT - 10),
6570 physpages << (PAGE_SHIFT - 10),
6571 codesize >> 10, datasize >> 10, rosize >> 10,
6572 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6573 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6574 totalcma_pages << (PAGE_SHIFT - 10),
6575 #ifdef CONFIG_HIGHMEM
6576 totalhigh_pages << (PAGE_SHIFT - 10),
6577 #endif
6578 str ? ", " : "", str ? str : "");
6579 }
6580
6581 /**
6582 * set_dma_reserve - set the specified number of pages reserved in the first zone
6583 * @new_dma_reserve: The number of pages to mark reserved
6584 *
6585 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6586 * In the DMA zone, a significant percentage may be consumed by kernel image
6587 * and other unfreeable allocations which can skew the watermarks badly. This
6588 * function may optionally be used to account for unfreeable pages in the
6589 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6590 * smaller per-cpu batchsize.
6591 */
6592 void __init set_dma_reserve(unsigned long new_dma_reserve)
6593 {
6594 dma_reserve = new_dma_reserve;
6595 }
6596
6597 void __init free_area_init(unsigned long *zones_size)
6598 {
6599 free_area_init_node(0, zones_size,
6600 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6601 }
6602
6603 static int page_alloc_cpu_notify(struct notifier_block *self,
6604 unsigned long action, void *hcpu)
6605 {
6606 int cpu = (unsigned long)hcpu;
6607
6608 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6609 lru_add_drain_cpu(cpu);
6610 drain_pages(cpu);
6611
6612 /*
6613 * Spill the event counters of the dead processor
6614 * into the current processors event counters.
6615 * This artificially elevates the count of the current
6616 * processor.
6617 */
6618 vm_events_fold_cpu(cpu);
6619
6620 /*
6621 * Zero the differential counters of the dead processor
6622 * so that the vm statistics are consistent.
6623 *
6624 * This is only okay since the processor is dead and cannot
6625 * race with what we are doing.
6626 */
6627 cpu_vm_stats_fold(cpu);
6628 }
6629 return NOTIFY_OK;
6630 }
6631
6632 void __init page_alloc_init(void)
6633 {
6634 hotcpu_notifier(page_alloc_cpu_notify, 0);
6635 }
6636
6637 /*
6638 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6639 * or min_free_kbytes changes.
6640 */
6641 static void calculate_totalreserve_pages(void)
6642 {
6643 struct pglist_data *pgdat;
6644 unsigned long reserve_pages = 0;
6645 enum zone_type i, j;
6646
6647 for_each_online_pgdat(pgdat) {
6648
6649 pgdat->totalreserve_pages = 0;
6650
6651 for (i = 0; i < MAX_NR_ZONES; i++) {
6652 struct zone *zone = pgdat->node_zones + i;
6653 long max = 0;
6654
6655 /* Find valid and maximum lowmem_reserve in the zone */
6656 for (j = i; j < MAX_NR_ZONES; j++) {
6657 if (zone->lowmem_reserve[j] > max)
6658 max = zone->lowmem_reserve[j];
6659 }
6660
6661 /* we treat the high watermark as reserved pages. */
6662 max += high_wmark_pages(zone);
6663
6664 if (max > zone->managed_pages)
6665 max = zone->managed_pages;
6666
6667 pgdat->totalreserve_pages += max;
6668
6669 reserve_pages += max;
6670 }
6671 }
6672 totalreserve_pages = reserve_pages;
6673 }
6674
6675 /*
6676 * setup_per_zone_lowmem_reserve - called whenever
6677 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6678 * has a correct pages reserved value, so an adequate number of
6679 * pages are left in the zone after a successful __alloc_pages().
6680 */
6681 static void setup_per_zone_lowmem_reserve(void)
6682 {
6683 struct pglist_data *pgdat;
6684 enum zone_type j, idx;
6685
6686 for_each_online_pgdat(pgdat) {
6687 for (j = 0; j < MAX_NR_ZONES; j++) {
6688 struct zone *zone = pgdat->node_zones + j;
6689 unsigned long managed_pages = zone->managed_pages;
6690
6691 zone->lowmem_reserve[j] = 0;
6692
6693 idx = j;
6694 while (idx) {
6695 struct zone *lower_zone;
6696
6697 idx--;
6698
6699 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6700 sysctl_lowmem_reserve_ratio[idx] = 1;
6701
6702 lower_zone = pgdat->node_zones + idx;
6703 lower_zone->lowmem_reserve[j] = managed_pages /
6704 sysctl_lowmem_reserve_ratio[idx];
6705 managed_pages += lower_zone->managed_pages;
6706 }
6707 }
6708 }
6709
6710 /* update totalreserve_pages */
6711 calculate_totalreserve_pages();
6712 }
6713
6714 static void __setup_per_zone_wmarks(void)
6715 {
6716 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6717 unsigned long lowmem_pages = 0;
6718 struct zone *zone;
6719 unsigned long flags;
6720
6721 /* Calculate total number of !ZONE_HIGHMEM pages */
6722 for_each_zone(zone) {
6723 if (!is_highmem(zone))
6724 lowmem_pages += zone->managed_pages;
6725 }
6726
6727 for_each_zone(zone) {
6728 u64 tmp;
6729
6730 spin_lock_irqsave(&zone->lock, flags);
6731 tmp = (u64)pages_min * zone->managed_pages;
6732 do_div(tmp, lowmem_pages);
6733 if (is_highmem(zone)) {
6734 /*
6735 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6736 * need highmem pages, so cap pages_min to a small
6737 * value here.
6738 *
6739 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6740 * deltas control asynch page reclaim, and so should
6741 * not be capped for highmem.
6742 */
6743 unsigned long min_pages;
6744
6745 min_pages = zone->managed_pages / 1024;
6746 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6747 zone->watermark[WMARK_MIN] = min_pages;
6748 } else {
6749 /*
6750 * If it's a lowmem zone, reserve a number of pages
6751 * proportionate to the zone's size.
6752 */
6753 zone->watermark[WMARK_MIN] = tmp;
6754 }
6755
6756 /*
6757 * Set the kswapd watermarks distance according to the
6758 * scale factor in proportion to available memory, but
6759 * ensure a minimum size on small systems.
6760 */
6761 tmp = max_t(u64, tmp >> 2,
6762 mult_frac(zone->managed_pages,
6763 watermark_scale_factor, 10000));
6764
6765 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6766 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6767
6768 spin_unlock_irqrestore(&zone->lock, flags);
6769 }
6770
6771 /* update totalreserve_pages */
6772 calculate_totalreserve_pages();
6773 }
6774
6775 /**
6776 * setup_per_zone_wmarks - called when min_free_kbytes changes
6777 * or when memory is hot-{added|removed}
6778 *
6779 * Ensures that the watermark[min,low,high] values for each zone are set
6780 * correctly with respect to min_free_kbytes.
6781 */
6782 void setup_per_zone_wmarks(void)
6783 {
6784 mutex_lock(&zonelists_mutex);
6785 __setup_per_zone_wmarks();
6786 mutex_unlock(&zonelists_mutex);
6787 }
6788
6789 /*
6790 * Initialise min_free_kbytes.
6791 *
6792 * For small machines we want it small (128k min). For large machines
6793 * we want it large (64MB max). But it is not linear, because network
6794 * bandwidth does not increase linearly with machine size. We use
6795 *
6796 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6797 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6798 *
6799 * which yields
6800 *
6801 * 16MB: 512k
6802 * 32MB: 724k
6803 * 64MB: 1024k
6804 * 128MB: 1448k
6805 * 256MB: 2048k
6806 * 512MB: 2896k
6807 * 1024MB: 4096k
6808 * 2048MB: 5792k
6809 * 4096MB: 8192k
6810 * 8192MB: 11584k
6811 * 16384MB: 16384k
6812 */
6813 int __meminit init_per_zone_wmark_min(void)
6814 {
6815 unsigned long lowmem_kbytes;
6816 int new_min_free_kbytes;
6817
6818 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6819 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6820
6821 if (new_min_free_kbytes > user_min_free_kbytes) {
6822 min_free_kbytes = new_min_free_kbytes;
6823 if (min_free_kbytes < 128)
6824 min_free_kbytes = 128;
6825 if (min_free_kbytes > 65536)
6826 min_free_kbytes = 65536;
6827 } else {
6828 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6829 new_min_free_kbytes, user_min_free_kbytes);
6830 }
6831 setup_per_zone_wmarks();
6832 refresh_zone_stat_thresholds();
6833 setup_per_zone_lowmem_reserve();
6834 return 0;
6835 }
6836 core_initcall(init_per_zone_wmark_min)
6837
6838 /*
6839 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6840 * that we can call two helper functions whenever min_free_kbytes
6841 * changes.
6842 */
6843 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6844 void __user *buffer, size_t *length, loff_t *ppos)
6845 {
6846 int rc;
6847
6848 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6849 if (rc)
6850 return rc;
6851
6852 if (write) {
6853 user_min_free_kbytes = min_free_kbytes;
6854 setup_per_zone_wmarks();
6855 }
6856 return 0;
6857 }
6858
6859 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6860 void __user *buffer, size_t *length, loff_t *ppos)
6861 {
6862 int rc;
6863
6864 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6865 if (rc)
6866 return rc;
6867
6868 if (write)
6869 setup_per_zone_wmarks();
6870
6871 return 0;
6872 }
6873
6874 #ifdef CONFIG_NUMA
6875 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6876 void __user *buffer, size_t *length, loff_t *ppos)
6877 {
6878 struct pglist_data *pgdat;
6879 struct zone *zone;
6880 int rc;
6881
6882 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6883 if (rc)
6884 return rc;
6885
6886 for_each_online_pgdat(pgdat)
6887 pgdat->min_slab_pages = 0;
6888
6889 for_each_zone(zone)
6890 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6891 sysctl_min_unmapped_ratio) / 100;
6892 return 0;
6893 }
6894
6895 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6896 void __user *buffer, size_t *length, loff_t *ppos)
6897 {
6898 struct pglist_data *pgdat;
6899 struct zone *zone;
6900 int rc;
6901
6902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6903 if (rc)
6904 return rc;
6905
6906 for_each_online_pgdat(pgdat)
6907 pgdat->min_slab_pages = 0;
6908
6909 for_each_zone(zone)
6910 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6911 sysctl_min_slab_ratio) / 100;
6912 return 0;
6913 }
6914 #endif
6915
6916 /*
6917 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6918 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6919 * whenever sysctl_lowmem_reserve_ratio changes.
6920 *
6921 * The reserve ratio obviously has absolutely no relation with the
6922 * minimum watermarks. The lowmem reserve ratio can only make sense
6923 * if in function of the boot time zone sizes.
6924 */
6925 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6926 void __user *buffer, size_t *length, loff_t *ppos)
6927 {
6928 proc_dointvec_minmax(table, write, buffer, length, ppos);
6929 setup_per_zone_lowmem_reserve();
6930 return 0;
6931 }
6932
6933 /*
6934 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6935 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6936 * pagelist can have before it gets flushed back to buddy allocator.
6937 */
6938 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6939 void __user *buffer, size_t *length, loff_t *ppos)
6940 {
6941 struct zone *zone;
6942 int old_percpu_pagelist_fraction;
6943 int ret;
6944
6945 mutex_lock(&pcp_batch_high_lock);
6946 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6947
6948 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6949 if (!write || ret < 0)
6950 goto out;
6951
6952 /* Sanity checking to avoid pcp imbalance */
6953 if (percpu_pagelist_fraction &&
6954 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6955 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6956 ret = -EINVAL;
6957 goto out;
6958 }
6959
6960 /* No change? */
6961 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6962 goto out;
6963
6964 for_each_populated_zone(zone) {
6965 unsigned int cpu;
6966
6967 for_each_possible_cpu(cpu)
6968 pageset_set_high_and_batch(zone,
6969 per_cpu_ptr(zone->pageset, cpu));
6970 }
6971 out:
6972 mutex_unlock(&pcp_batch_high_lock);
6973 return ret;
6974 }
6975
6976 #ifdef CONFIG_NUMA
6977 int hashdist = HASHDIST_DEFAULT;
6978
6979 static int __init set_hashdist(char *str)
6980 {
6981 if (!str)
6982 return 0;
6983 hashdist = simple_strtoul(str, &str, 0);
6984 return 1;
6985 }
6986 __setup("hashdist=", set_hashdist);
6987 #endif
6988
6989 /*
6990 * allocate a large system hash table from bootmem
6991 * - it is assumed that the hash table must contain an exact power-of-2
6992 * quantity of entries
6993 * - limit is the number of hash buckets, not the total allocation size
6994 */
6995 void *__init alloc_large_system_hash(const char *tablename,
6996 unsigned long bucketsize,
6997 unsigned long numentries,
6998 int scale,
6999 int flags,
7000 unsigned int *_hash_shift,
7001 unsigned int *_hash_mask,
7002 unsigned long low_limit,
7003 unsigned long high_limit)
7004 {
7005 unsigned long long max = high_limit;
7006 unsigned long log2qty, size;
7007 void *table = NULL;
7008
7009 /* allow the kernel cmdline to have a say */
7010 if (!numentries) {
7011 /* round applicable memory size up to nearest megabyte */
7012 numentries = nr_kernel_pages;
7013
7014 /* It isn't necessary when PAGE_SIZE >= 1MB */
7015 if (PAGE_SHIFT < 20)
7016 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7017
7018 /* limit to 1 bucket per 2^scale bytes of low memory */
7019 if (scale > PAGE_SHIFT)
7020 numentries >>= (scale - PAGE_SHIFT);
7021 else
7022 numentries <<= (PAGE_SHIFT - scale);
7023
7024 /* Make sure we've got at least a 0-order allocation.. */
7025 if (unlikely(flags & HASH_SMALL)) {
7026 /* Makes no sense without HASH_EARLY */
7027 WARN_ON(!(flags & HASH_EARLY));
7028 if (!(numentries >> *_hash_shift)) {
7029 numentries = 1UL << *_hash_shift;
7030 BUG_ON(!numentries);
7031 }
7032 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7033 numentries = PAGE_SIZE / bucketsize;
7034 }
7035 numentries = roundup_pow_of_two(numentries);
7036
7037 /* limit allocation size to 1/16 total memory by default */
7038 if (max == 0) {
7039 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7040 do_div(max, bucketsize);
7041 }
7042 max = min(max, 0x80000000ULL);
7043
7044 if (numentries < low_limit)
7045 numentries = low_limit;
7046 if (numentries > max)
7047 numentries = max;
7048
7049 log2qty = ilog2(numentries);
7050
7051 do {
7052 size = bucketsize << log2qty;
7053 if (flags & HASH_EARLY)
7054 table = memblock_virt_alloc_nopanic(size, 0);
7055 else if (hashdist)
7056 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7057 else {
7058 /*
7059 * If bucketsize is not a power-of-two, we may free
7060 * some pages at the end of hash table which
7061 * alloc_pages_exact() automatically does
7062 */
7063 if (get_order(size) < MAX_ORDER) {
7064 table = alloc_pages_exact(size, GFP_ATOMIC);
7065 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7066 }
7067 }
7068 } while (!table && size > PAGE_SIZE && --log2qty);
7069
7070 if (!table)
7071 panic("Failed to allocate %s hash table\n", tablename);
7072
7073 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7074 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7075
7076 if (_hash_shift)
7077 *_hash_shift = log2qty;
7078 if (_hash_mask)
7079 *_hash_mask = (1 << log2qty) - 1;
7080
7081 return table;
7082 }
7083
7084 /*
7085 * This function checks whether pageblock includes unmovable pages or not.
7086 * If @count is not zero, it is okay to include less @count unmovable pages
7087 *
7088 * PageLRU check without isolation or lru_lock could race so that
7089 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7090 * expect this function should be exact.
7091 */
7092 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7093 bool skip_hwpoisoned_pages)
7094 {
7095 unsigned long pfn, iter, found;
7096 int mt;
7097
7098 /*
7099 * For avoiding noise data, lru_add_drain_all() should be called
7100 * If ZONE_MOVABLE, the zone never contains unmovable pages
7101 */
7102 if (zone_idx(zone) == ZONE_MOVABLE)
7103 return false;
7104 mt = get_pageblock_migratetype(page);
7105 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7106 return false;
7107
7108 pfn = page_to_pfn(page);
7109 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7110 unsigned long check = pfn + iter;
7111
7112 if (!pfn_valid_within(check))
7113 continue;
7114
7115 page = pfn_to_page(check);
7116
7117 /*
7118 * Hugepages are not in LRU lists, but they're movable.
7119 * We need not scan over tail pages bacause we don't
7120 * handle each tail page individually in migration.
7121 */
7122 if (PageHuge(page)) {
7123 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7124 continue;
7125 }
7126
7127 /*
7128 * We can't use page_count without pin a page
7129 * because another CPU can free compound page.
7130 * This check already skips compound tails of THP
7131 * because their page->_refcount is zero at all time.
7132 */
7133 if (!page_ref_count(page)) {
7134 if (PageBuddy(page))
7135 iter += (1 << page_order(page)) - 1;
7136 continue;
7137 }
7138
7139 /*
7140 * The HWPoisoned page may be not in buddy system, and
7141 * page_count() is not 0.
7142 */
7143 if (skip_hwpoisoned_pages && PageHWPoison(page))
7144 continue;
7145
7146 if (!PageLRU(page))
7147 found++;
7148 /*
7149 * If there are RECLAIMABLE pages, we need to check
7150 * it. But now, memory offline itself doesn't call
7151 * shrink_node_slabs() and it still to be fixed.
7152 */
7153 /*
7154 * If the page is not RAM, page_count()should be 0.
7155 * we don't need more check. This is an _used_ not-movable page.
7156 *
7157 * The problematic thing here is PG_reserved pages. PG_reserved
7158 * is set to both of a memory hole page and a _used_ kernel
7159 * page at boot.
7160 */
7161 if (found > count)
7162 return true;
7163 }
7164 return false;
7165 }
7166
7167 bool is_pageblock_removable_nolock(struct page *page)
7168 {
7169 struct zone *zone;
7170 unsigned long pfn;
7171
7172 /*
7173 * We have to be careful here because we are iterating over memory
7174 * sections which are not zone aware so we might end up outside of
7175 * the zone but still within the section.
7176 * We have to take care about the node as well. If the node is offline
7177 * its NODE_DATA will be NULL - see page_zone.
7178 */
7179 if (!node_online(page_to_nid(page)))
7180 return false;
7181
7182 zone = page_zone(page);
7183 pfn = page_to_pfn(page);
7184 if (!zone_spans_pfn(zone, pfn))
7185 return false;
7186
7187 return !has_unmovable_pages(zone, page, 0, true);
7188 }
7189
7190 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7191
7192 static unsigned long pfn_max_align_down(unsigned long pfn)
7193 {
7194 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7195 pageblock_nr_pages) - 1);
7196 }
7197
7198 static unsigned long pfn_max_align_up(unsigned long pfn)
7199 {
7200 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7201 pageblock_nr_pages));
7202 }
7203
7204 /* [start, end) must belong to a single zone. */
7205 static int __alloc_contig_migrate_range(struct compact_control *cc,
7206 unsigned long start, unsigned long end)
7207 {
7208 /* This function is based on compact_zone() from compaction.c. */
7209 unsigned long nr_reclaimed;
7210 unsigned long pfn = start;
7211 unsigned int tries = 0;
7212 int ret = 0;
7213
7214 migrate_prep();
7215
7216 while (pfn < end || !list_empty(&cc->migratepages)) {
7217 if (fatal_signal_pending(current)) {
7218 ret = -EINTR;
7219 break;
7220 }
7221
7222 if (list_empty(&cc->migratepages)) {
7223 cc->nr_migratepages = 0;
7224 pfn = isolate_migratepages_range(cc, pfn, end);
7225 if (!pfn) {
7226 ret = -EINTR;
7227 break;
7228 }
7229 tries = 0;
7230 } else if (++tries == 5) {
7231 ret = ret < 0 ? ret : -EBUSY;
7232 break;
7233 }
7234
7235 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7236 &cc->migratepages);
7237 cc->nr_migratepages -= nr_reclaimed;
7238
7239 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7240 NULL, 0, cc->mode, MR_CMA);
7241 }
7242 if (ret < 0) {
7243 putback_movable_pages(&cc->migratepages);
7244 return ret;
7245 }
7246 return 0;
7247 }
7248
7249 /**
7250 * alloc_contig_range() -- tries to allocate given range of pages
7251 * @start: start PFN to allocate
7252 * @end: one-past-the-last PFN to allocate
7253 * @migratetype: migratetype of the underlaying pageblocks (either
7254 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7255 * in range must have the same migratetype and it must
7256 * be either of the two.
7257 *
7258 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7259 * aligned, however it's the caller's responsibility to guarantee that
7260 * we are the only thread that changes migrate type of pageblocks the
7261 * pages fall in.
7262 *
7263 * The PFN range must belong to a single zone.
7264 *
7265 * Returns zero on success or negative error code. On success all
7266 * pages which PFN is in [start, end) are allocated for the caller and
7267 * need to be freed with free_contig_range().
7268 */
7269 int alloc_contig_range(unsigned long start, unsigned long end,
7270 unsigned migratetype)
7271 {
7272 unsigned long outer_start, outer_end;
7273 unsigned int order;
7274 int ret = 0;
7275
7276 struct compact_control cc = {
7277 .nr_migratepages = 0,
7278 .order = -1,
7279 .zone = page_zone(pfn_to_page(start)),
7280 .mode = MIGRATE_SYNC,
7281 .ignore_skip_hint = true,
7282 };
7283 INIT_LIST_HEAD(&cc.migratepages);
7284
7285 /*
7286 * What we do here is we mark all pageblocks in range as
7287 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7288 * have different sizes, and due to the way page allocator
7289 * work, we align the range to biggest of the two pages so
7290 * that page allocator won't try to merge buddies from
7291 * different pageblocks and change MIGRATE_ISOLATE to some
7292 * other migration type.
7293 *
7294 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7295 * migrate the pages from an unaligned range (ie. pages that
7296 * we are interested in). This will put all the pages in
7297 * range back to page allocator as MIGRATE_ISOLATE.
7298 *
7299 * When this is done, we take the pages in range from page
7300 * allocator removing them from the buddy system. This way
7301 * page allocator will never consider using them.
7302 *
7303 * This lets us mark the pageblocks back as
7304 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7305 * aligned range but not in the unaligned, original range are
7306 * put back to page allocator so that buddy can use them.
7307 */
7308
7309 ret = start_isolate_page_range(pfn_max_align_down(start),
7310 pfn_max_align_up(end), migratetype,
7311 false);
7312 if (ret)
7313 return ret;
7314
7315 /*
7316 * In case of -EBUSY, we'd like to know which page causes problem.
7317 * So, just fall through. We will check it in test_pages_isolated().
7318 */
7319 ret = __alloc_contig_migrate_range(&cc, start, end);
7320 if (ret && ret != -EBUSY)
7321 goto done;
7322
7323 /*
7324 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7325 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7326 * more, all pages in [start, end) are free in page allocator.
7327 * What we are going to do is to allocate all pages from
7328 * [start, end) (that is remove them from page allocator).
7329 *
7330 * The only problem is that pages at the beginning and at the
7331 * end of interesting range may be not aligned with pages that
7332 * page allocator holds, ie. they can be part of higher order
7333 * pages. Because of this, we reserve the bigger range and
7334 * once this is done free the pages we are not interested in.
7335 *
7336 * We don't have to hold zone->lock here because the pages are
7337 * isolated thus they won't get removed from buddy.
7338 */
7339
7340 lru_add_drain_all();
7341 drain_all_pages(cc.zone);
7342
7343 order = 0;
7344 outer_start = start;
7345 while (!PageBuddy(pfn_to_page(outer_start))) {
7346 if (++order >= MAX_ORDER) {
7347 outer_start = start;
7348 break;
7349 }
7350 outer_start &= ~0UL << order;
7351 }
7352
7353 if (outer_start != start) {
7354 order = page_order(pfn_to_page(outer_start));
7355
7356 /*
7357 * outer_start page could be small order buddy page and
7358 * it doesn't include start page. Adjust outer_start
7359 * in this case to report failed page properly
7360 * on tracepoint in test_pages_isolated()
7361 */
7362 if (outer_start + (1UL << order) <= start)
7363 outer_start = start;
7364 }
7365
7366 /* Make sure the range is really isolated. */
7367 if (test_pages_isolated(outer_start, end, false)) {
7368 pr_info("%s: [%lx, %lx) PFNs busy\n",
7369 __func__, outer_start, end);
7370 ret = -EBUSY;
7371 goto done;
7372 }
7373
7374 /* Grab isolated pages from freelists. */
7375 outer_end = isolate_freepages_range(&cc, outer_start, end);
7376 if (!outer_end) {
7377 ret = -EBUSY;
7378 goto done;
7379 }
7380
7381 /* Free head and tail (if any) */
7382 if (start != outer_start)
7383 free_contig_range(outer_start, start - outer_start);
7384 if (end != outer_end)
7385 free_contig_range(end, outer_end - end);
7386
7387 done:
7388 undo_isolate_page_range(pfn_max_align_down(start),
7389 pfn_max_align_up(end), migratetype);
7390 return ret;
7391 }
7392
7393 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7394 {
7395 unsigned int count = 0;
7396
7397 for (; nr_pages--; pfn++) {
7398 struct page *page = pfn_to_page(pfn);
7399
7400 count += page_count(page) != 1;
7401 __free_page(page);
7402 }
7403 WARN(count != 0, "%d pages are still in use!\n", count);
7404 }
7405 #endif
7406
7407 #ifdef CONFIG_MEMORY_HOTPLUG
7408 /*
7409 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7410 * page high values need to be recalulated.
7411 */
7412 void __meminit zone_pcp_update(struct zone *zone)
7413 {
7414 unsigned cpu;
7415 mutex_lock(&pcp_batch_high_lock);
7416 for_each_possible_cpu(cpu)
7417 pageset_set_high_and_batch(zone,
7418 per_cpu_ptr(zone->pageset, cpu));
7419 mutex_unlock(&pcp_batch_high_lock);
7420 }
7421 #endif
7422
7423 void zone_pcp_reset(struct zone *zone)
7424 {
7425 unsigned long flags;
7426 int cpu;
7427 struct per_cpu_pageset *pset;
7428
7429 /* avoid races with drain_pages() */
7430 local_irq_save(flags);
7431 if (zone->pageset != &boot_pageset) {
7432 for_each_online_cpu(cpu) {
7433 pset = per_cpu_ptr(zone->pageset, cpu);
7434 drain_zonestat(zone, pset);
7435 }
7436 free_percpu(zone->pageset);
7437 zone->pageset = &boot_pageset;
7438 }
7439 local_irq_restore(flags);
7440 }
7441
7442 #ifdef CONFIG_MEMORY_HOTREMOVE
7443 /*
7444 * All pages in the range must be in a single zone and isolated
7445 * before calling this.
7446 */
7447 void
7448 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7449 {
7450 struct page *page;
7451 struct zone *zone;
7452 unsigned int order, i;
7453 unsigned long pfn;
7454 unsigned long flags;
7455 /* find the first valid pfn */
7456 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7457 if (pfn_valid(pfn))
7458 break;
7459 if (pfn == end_pfn)
7460 return;
7461 zone = page_zone(pfn_to_page(pfn));
7462 spin_lock_irqsave(&zone->lock, flags);
7463 pfn = start_pfn;
7464 while (pfn < end_pfn) {
7465 if (!pfn_valid(pfn)) {
7466 pfn++;
7467 continue;
7468 }
7469 page = pfn_to_page(pfn);
7470 /*
7471 * The HWPoisoned page may be not in buddy system, and
7472 * page_count() is not 0.
7473 */
7474 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7475 pfn++;
7476 SetPageReserved(page);
7477 continue;
7478 }
7479
7480 BUG_ON(page_count(page));
7481 BUG_ON(!PageBuddy(page));
7482 order = page_order(page);
7483 #ifdef CONFIG_DEBUG_VM
7484 pr_info("remove from free list %lx %d %lx\n",
7485 pfn, 1 << order, end_pfn);
7486 #endif
7487 list_del(&page->lru);
7488 rmv_page_order(page);
7489 zone->free_area[order].nr_free--;
7490 for (i = 0; i < (1 << order); i++)
7491 SetPageReserved((page+i));
7492 pfn += (1 << order);
7493 }
7494 spin_unlock_irqrestore(&zone->lock, flags);
7495 }
7496 #endif
7497
7498 bool is_free_buddy_page(struct page *page)
7499 {
7500 struct zone *zone = page_zone(page);
7501 unsigned long pfn = page_to_pfn(page);
7502 unsigned long flags;
7503 unsigned int order;
7504
7505 spin_lock_irqsave(&zone->lock, flags);
7506 for (order = 0; order < MAX_ORDER; order++) {
7507 struct page *page_head = page - (pfn & ((1 << order) - 1));
7508
7509 if (PageBuddy(page_head) && page_order(page_head) >= order)
7510 break;
7511 }
7512 spin_unlock_irqrestore(&zone->lock, flags);
7513
7514 return order < MAX_ORDER;
7515 }
This page took 0.265763 seconds and 6 git commands to generate.