mm: set zone->present_pages to number of existing pages in the zone
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 [N_CPU] = { { [0] = 1UL } },
98 #endif /* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110 unsigned long dirty_balance_reserve __read_mostly;
111
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114
115 #ifdef CONFIG_PM_SLEEP
116 /*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
124
125 static gfp_t saved_gfp_mask;
126
127 void pm_restore_gfp_mask(void)
128 {
129 WARN_ON(!mutex_is_locked(&pm_mutex));
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
134 }
135
136 void pm_restrict_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
142 }
143
144 bool pm_suspended_storage(void)
145 {
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155
156 static void __free_pages_ok(struct page *page, unsigned int order);
157
158 /*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
168 */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 32,
178 #endif
179 32,
180 };
181
182 EXPORT_SYMBOL(totalram_pages);
183
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 "DMA32",
190 #endif
191 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 "HighMem",
194 #endif
195 "Movable",
196 };
197
198 int min_free_kbytes = 1024;
199
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 /* Movable memory ranges, will also be used by memblock subsystem. */
206 struct movablemem_map movablemem_map = {
207 .acpi = false,
208 .nr_map = 0,
209 };
210
211 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
212 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
213 static unsigned long __initdata required_kernelcore;
214 static unsigned long __initdata required_movablecore;
215 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
216 static unsigned long __meminitdata zone_movable_limit[MAX_NUMNODES];
217
218 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
219 int movable_zone;
220 EXPORT_SYMBOL(movable_zone);
221 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
222
223 #if MAX_NUMNODES > 1
224 int nr_node_ids __read_mostly = MAX_NUMNODES;
225 int nr_online_nodes __read_mostly = 1;
226 EXPORT_SYMBOL(nr_node_ids);
227 EXPORT_SYMBOL(nr_online_nodes);
228 #endif
229
230 int page_group_by_mobility_disabled __read_mostly;
231
232 void set_pageblock_migratetype(struct page *page, int migratetype)
233 {
234
235 if (unlikely(page_group_by_mobility_disabled))
236 migratetype = MIGRATE_UNMOVABLE;
237
238 set_pageblock_flags_group(page, (unsigned long)migratetype,
239 PB_migrate, PB_migrate_end);
240 }
241
242 bool oom_killer_disabled __read_mostly;
243
244 #ifdef CONFIG_DEBUG_VM
245 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
246 {
247 int ret = 0;
248 unsigned seq;
249 unsigned long pfn = page_to_pfn(page);
250
251 do {
252 seq = zone_span_seqbegin(zone);
253 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
254 ret = 1;
255 else if (pfn < zone->zone_start_pfn)
256 ret = 1;
257 } while (zone_span_seqretry(zone, seq));
258
259 return ret;
260 }
261
262 static int page_is_consistent(struct zone *zone, struct page *page)
263 {
264 if (!pfn_valid_within(page_to_pfn(page)))
265 return 0;
266 if (zone != page_zone(page))
267 return 0;
268
269 return 1;
270 }
271 /*
272 * Temporary debugging check for pages not lying within a given zone.
273 */
274 static int bad_range(struct zone *zone, struct page *page)
275 {
276 if (page_outside_zone_boundaries(zone, page))
277 return 1;
278 if (!page_is_consistent(zone, page))
279 return 1;
280
281 return 0;
282 }
283 #else
284 static inline int bad_range(struct zone *zone, struct page *page)
285 {
286 return 0;
287 }
288 #endif
289
290 static void bad_page(struct page *page)
291 {
292 static unsigned long resume;
293 static unsigned long nr_shown;
294 static unsigned long nr_unshown;
295
296 /* Don't complain about poisoned pages */
297 if (PageHWPoison(page)) {
298 reset_page_mapcount(page); /* remove PageBuddy */
299 return;
300 }
301
302 /*
303 * Allow a burst of 60 reports, then keep quiet for that minute;
304 * or allow a steady drip of one report per second.
305 */
306 if (nr_shown == 60) {
307 if (time_before(jiffies, resume)) {
308 nr_unshown++;
309 goto out;
310 }
311 if (nr_unshown) {
312 printk(KERN_ALERT
313 "BUG: Bad page state: %lu messages suppressed\n",
314 nr_unshown);
315 nr_unshown = 0;
316 }
317 nr_shown = 0;
318 }
319 if (nr_shown++ == 0)
320 resume = jiffies + 60 * HZ;
321
322 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
323 current->comm, page_to_pfn(page));
324 dump_page(page);
325
326 print_modules();
327 dump_stack();
328 out:
329 /* Leave bad fields for debug, except PageBuddy could make trouble */
330 reset_page_mapcount(page); /* remove PageBuddy */
331 add_taint(TAINT_BAD_PAGE);
332 }
333
334 /*
335 * Higher-order pages are called "compound pages". They are structured thusly:
336 *
337 * The first PAGE_SIZE page is called the "head page".
338 *
339 * The remaining PAGE_SIZE pages are called "tail pages".
340 *
341 * All pages have PG_compound set. All tail pages have their ->first_page
342 * pointing at the head page.
343 *
344 * The first tail page's ->lru.next holds the address of the compound page's
345 * put_page() function. Its ->lru.prev holds the order of allocation.
346 * This usage means that zero-order pages may not be compound.
347 */
348
349 static void free_compound_page(struct page *page)
350 {
351 __free_pages_ok(page, compound_order(page));
352 }
353
354 void prep_compound_page(struct page *page, unsigned long order)
355 {
356 int i;
357 int nr_pages = 1 << order;
358
359 set_compound_page_dtor(page, free_compound_page);
360 set_compound_order(page, order);
361 __SetPageHead(page);
362 for (i = 1; i < nr_pages; i++) {
363 struct page *p = page + i;
364 __SetPageTail(p);
365 set_page_count(p, 0);
366 p->first_page = page;
367 }
368 }
369
370 /* update __split_huge_page_refcount if you change this function */
371 static int destroy_compound_page(struct page *page, unsigned long order)
372 {
373 int i;
374 int nr_pages = 1 << order;
375 int bad = 0;
376
377 if (unlikely(compound_order(page) != order)) {
378 bad_page(page);
379 bad++;
380 }
381
382 __ClearPageHead(page);
383
384 for (i = 1; i < nr_pages; i++) {
385 struct page *p = page + i;
386
387 if (unlikely(!PageTail(p) || (p->first_page != page))) {
388 bad_page(page);
389 bad++;
390 }
391 __ClearPageTail(p);
392 }
393
394 return bad;
395 }
396
397 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
398 {
399 int i;
400
401 /*
402 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
403 * and __GFP_HIGHMEM from hard or soft interrupt context.
404 */
405 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
406 for (i = 0; i < (1 << order); i++)
407 clear_highpage(page + i);
408 }
409
410 #ifdef CONFIG_DEBUG_PAGEALLOC
411 unsigned int _debug_guardpage_minorder;
412
413 static int __init debug_guardpage_minorder_setup(char *buf)
414 {
415 unsigned long res;
416
417 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
418 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
419 return 0;
420 }
421 _debug_guardpage_minorder = res;
422 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
423 return 0;
424 }
425 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
426
427 static inline void set_page_guard_flag(struct page *page)
428 {
429 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431
432 static inline void clear_page_guard_flag(struct page *page)
433 {
434 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
435 }
436 #else
437 static inline void set_page_guard_flag(struct page *page) { }
438 static inline void clear_page_guard_flag(struct page *page) { }
439 #endif
440
441 static inline void set_page_order(struct page *page, int order)
442 {
443 set_page_private(page, order);
444 __SetPageBuddy(page);
445 }
446
447 static inline void rmv_page_order(struct page *page)
448 {
449 __ClearPageBuddy(page);
450 set_page_private(page, 0);
451 }
452
453 /*
454 * Locate the struct page for both the matching buddy in our
455 * pair (buddy1) and the combined O(n+1) page they form (page).
456 *
457 * 1) Any buddy B1 will have an order O twin B2 which satisfies
458 * the following equation:
459 * B2 = B1 ^ (1 << O)
460 * For example, if the starting buddy (buddy2) is #8 its order
461 * 1 buddy is #10:
462 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
463 *
464 * 2) Any buddy B will have an order O+1 parent P which
465 * satisfies the following equation:
466 * P = B & ~(1 << O)
467 *
468 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
469 */
470 static inline unsigned long
471 __find_buddy_index(unsigned long page_idx, unsigned int order)
472 {
473 return page_idx ^ (1 << order);
474 }
475
476 /*
477 * This function checks whether a page is free && is the buddy
478 * we can do coalesce a page and its buddy if
479 * (a) the buddy is not in a hole &&
480 * (b) the buddy is in the buddy system &&
481 * (c) a page and its buddy have the same order &&
482 * (d) a page and its buddy are in the same zone.
483 *
484 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
485 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
486 *
487 * For recording page's order, we use page_private(page).
488 */
489 static inline int page_is_buddy(struct page *page, struct page *buddy,
490 int order)
491 {
492 if (!pfn_valid_within(page_to_pfn(buddy)))
493 return 0;
494
495 if (page_zone_id(page) != page_zone_id(buddy))
496 return 0;
497
498 if (page_is_guard(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502
503 if (PageBuddy(buddy) && page_order(buddy) == order) {
504 VM_BUG_ON(page_count(buddy) != 0);
505 return 1;
506 }
507 return 0;
508 }
509
510 /*
511 * Freeing function for a buddy system allocator.
512 *
513 * The concept of a buddy system is to maintain direct-mapped table
514 * (containing bit values) for memory blocks of various "orders".
515 * The bottom level table contains the map for the smallest allocatable
516 * units of memory (here, pages), and each level above it describes
517 * pairs of units from the levels below, hence, "buddies".
518 * At a high level, all that happens here is marking the table entry
519 * at the bottom level available, and propagating the changes upward
520 * as necessary, plus some accounting needed to play nicely with other
521 * parts of the VM system.
522 * At each level, we keep a list of pages, which are heads of continuous
523 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
524 * order is recorded in page_private(page) field.
525 * So when we are allocating or freeing one, we can derive the state of the
526 * other. That is, if we allocate a small block, and both were
527 * free, the remainder of the region must be split into blocks.
528 * If a block is freed, and its buddy is also free, then this
529 * triggers coalescing into a block of larger size.
530 *
531 * -- nyc
532 */
533
534 static inline void __free_one_page(struct page *page,
535 struct zone *zone, unsigned int order,
536 int migratetype)
537 {
538 unsigned long page_idx;
539 unsigned long combined_idx;
540 unsigned long uninitialized_var(buddy_idx);
541 struct page *buddy;
542
543 if (unlikely(PageCompound(page)))
544 if (unlikely(destroy_compound_page(page, order)))
545 return;
546
547 VM_BUG_ON(migratetype == -1);
548
549 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
550
551 VM_BUG_ON(page_idx & ((1 << order) - 1));
552 VM_BUG_ON(bad_range(zone, page));
553
554 while (order < MAX_ORDER-1) {
555 buddy_idx = __find_buddy_index(page_idx, order);
556 buddy = page + (buddy_idx - page_idx);
557 if (!page_is_buddy(page, buddy, order))
558 break;
559 /*
560 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
561 * merge with it and move up one order.
562 */
563 if (page_is_guard(buddy)) {
564 clear_page_guard_flag(buddy);
565 set_page_private(page, 0);
566 __mod_zone_freepage_state(zone, 1 << order,
567 migratetype);
568 } else {
569 list_del(&buddy->lru);
570 zone->free_area[order].nr_free--;
571 rmv_page_order(buddy);
572 }
573 combined_idx = buddy_idx & page_idx;
574 page = page + (combined_idx - page_idx);
575 page_idx = combined_idx;
576 order++;
577 }
578 set_page_order(page, order);
579
580 /*
581 * If this is not the largest possible page, check if the buddy
582 * of the next-highest order is free. If it is, it's possible
583 * that pages are being freed that will coalesce soon. In case,
584 * that is happening, add the free page to the tail of the list
585 * so it's less likely to be used soon and more likely to be merged
586 * as a higher order page
587 */
588 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
589 struct page *higher_page, *higher_buddy;
590 combined_idx = buddy_idx & page_idx;
591 higher_page = page + (combined_idx - page_idx);
592 buddy_idx = __find_buddy_index(combined_idx, order + 1);
593 higher_buddy = higher_page + (buddy_idx - combined_idx);
594 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
595 list_add_tail(&page->lru,
596 &zone->free_area[order].free_list[migratetype]);
597 goto out;
598 }
599 }
600
601 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
602 out:
603 zone->free_area[order].nr_free++;
604 }
605
606 static inline int free_pages_check(struct page *page)
607 {
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
610 (atomic_read(&page->_count) != 0) |
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
613 bad_page(page);
614 return 1;
615 }
616 reset_page_last_nid(page);
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
620 }
621
622 /*
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
635 {
636 int migratetype = 0;
637 int batch_free = 0;
638 int to_free = count;
639
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 while (to_free) {
645 struct page *page;
646 struct list_head *list;
647
648 /*
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
654 */
655 do {
656 batch_free++;
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
661
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
666 do {
667 int mt; /* migratetype of the to-be-freed page */
668
669 page = list_entry(list->prev, struct page, lru);
670 /* must delete as __free_one_page list manipulates */
671 list_del(&page->lru);
672 mt = get_freepage_migratetype(page);
673 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
674 __free_one_page(page, zone, 0, mt);
675 trace_mm_page_pcpu_drain(page, 0, mt);
676 if (likely(get_pageblock_migratetype(page) != MIGRATE_ISOLATE)) {
677 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
678 if (is_migrate_cma(mt))
679 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
680 }
681 } while (--to_free && --batch_free && !list_empty(list));
682 }
683 spin_unlock(&zone->lock);
684 }
685
686 static void free_one_page(struct zone *zone, struct page *page, int order,
687 int migratetype)
688 {
689 spin_lock(&zone->lock);
690 zone->all_unreclaimable = 0;
691 zone->pages_scanned = 0;
692
693 __free_one_page(page, zone, order, migratetype);
694 if (unlikely(migratetype != MIGRATE_ISOLATE))
695 __mod_zone_freepage_state(zone, 1 << order, migratetype);
696 spin_unlock(&zone->lock);
697 }
698
699 static bool free_pages_prepare(struct page *page, unsigned int order)
700 {
701 int i;
702 int bad = 0;
703
704 trace_mm_page_free(page, order);
705 kmemcheck_free_shadow(page, order);
706
707 if (PageAnon(page))
708 page->mapping = NULL;
709 for (i = 0; i < (1 << order); i++)
710 bad += free_pages_check(page + i);
711 if (bad)
712 return false;
713
714 if (!PageHighMem(page)) {
715 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
716 debug_check_no_obj_freed(page_address(page),
717 PAGE_SIZE << order);
718 }
719 arch_free_page(page, order);
720 kernel_map_pages(page, 1 << order, 0);
721
722 return true;
723 }
724
725 static void __free_pages_ok(struct page *page, unsigned int order)
726 {
727 unsigned long flags;
728 int migratetype;
729
730 if (!free_pages_prepare(page, order))
731 return;
732
733 local_irq_save(flags);
734 __count_vm_events(PGFREE, 1 << order);
735 migratetype = get_pageblock_migratetype(page);
736 set_freepage_migratetype(page, migratetype);
737 free_one_page(page_zone(page), page, order, migratetype);
738 local_irq_restore(flags);
739 }
740
741 /*
742 * Read access to zone->managed_pages is safe because it's unsigned long,
743 * but we still need to serialize writers. Currently all callers of
744 * __free_pages_bootmem() except put_page_bootmem() should only be used
745 * at boot time. So for shorter boot time, we shift the burden to
746 * put_page_bootmem() to serialize writers.
747 */
748 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
749 {
750 unsigned int nr_pages = 1 << order;
751 unsigned int loop;
752
753 prefetchw(page);
754 for (loop = 0; loop < nr_pages; loop++) {
755 struct page *p = &page[loop];
756
757 if (loop + 1 < nr_pages)
758 prefetchw(p + 1);
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
761 }
762
763 page_zone(page)->managed_pages += 1 << order;
764 set_page_refcounted(page);
765 __free_pages(page, order);
766 }
767
768 #ifdef CONFIG_CMA
769 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770 void __init init_cma_reserved_pageblock(struct page *page)
771 {
772 unsigned i = pageblock_nr_pages;
773 struct page *p = page;
774
775 do {
776 __ClearPageReserved(p);
777 set_page_count(p, 0);
778 } while (++p, --i);
779
780 set_page_refcounted(page);
781 set_pageblock_migratetype(page, MIGRATE_CMA);
782 __free_pages(page, pageblock_order);
783 totalram_pages += pageblock_nr_pages;
784 #ifdef CONFIG_HIGHMEM
785 if (PageHighMem(page))
786 totalhigh_pages += pageblock_nr_pages;
787 #endif
788 }
789 #endif
790
791 /*
792 * The order of subdivision here is critical for the IO subsystem.
793 * Please do not alter this order without good reasons and regression
794 * testing. Specifically, as large blocks of memory are subdivided,
795 * the order in which smaller blocks are delivered depends on the order
796 * they're subdivided in this function. This is the primary factor
797 * influencing the order in which pages are delivered to the IO
798 * subsystem according to empirical testing, and this is also justified
799 * by considering the behavior of a buddy system containing a single
800 * large block of memory acted on by a series of small allocations.
801 * This behavior is a critical factor in sglist merging's success.
802 *
803 * -- nyc
804 */
805 static inline void expand(struct zone *zone, struct page *page,
806 int low, int high, struct free_area *area,
807 int migratetype)
808 {
809 unsigned long size = 1 << high;
810
811 while (high > low) {
812 area--;
813 high--;
814 size >>= 1;
815 VM_BUG_ON(bad_range(zone, &page[size]));
816
817 #ifdef CONFIG_DEBUG_PAGEALLOC
818 if (high < debug_guardpage_minorder()) {
819 /*
820 * Mark as guard pages (or page), that will allow to
821 * merge back to allocator when buddy will be freed.
822 * Corresponding page table entries will not be touched,
823 * pages will stay not present in virtual address space
824 */
825 INIT_LIST_HEAD(&page[size].lru);
826 set_page_guard_flag(&page[size]);
827 set_page_private(&page[size], high);
828 /* Guard pages are not available for any usage */
829 __mod_zone_freepage_state(zone, -(1 << high),
830 migratetype);
831 continue;
832 }
833 #endif
834 list_add(&page[size].lru, &area->free_list[migratetype]);
835 area->nr_free++;
836 set_page_order(&page[size], high);
837 }
838 }
839
840 /*
841 * This page is about to be returned from the page allocator
842 */
843 static inline int check_new_page(struct page *page)
844 {
845 if (unlikely(page_mapcount(page) |
846 (page->mapping != NULL) |
847 (atomic_read(&page->_count) != 0) |
848 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
849 (mem_cgroup_bad_page_check(page)))) {
850 bad_page(page);
851 return 1;
852 }
853 return 0;
854 }
855
856 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
857 {
858 int i;
859
860 for (i = 0; i < (1 << order); i++) {
861 struct page *p = page + i;
862 if (unlikely(check_new_page(p)))
863 return 1;
864 }
865
866 set_page_private(page, 0);
867 set_page_refcounted(page);
868
869 arch_alloc_page(page, order);
870 kernel_map_pages(page, 1 << order, 1);
871
872 if (gfp_flags & __GFP_ZERO)
873 prep_zero_page(page, order, gfp_flags);
874
875 if (order && (gfp_flags & __GFP_COMP))
876 prep_compound_page(page, order);
877
878 return 0;
879 }
880
881 /*
882 * Go through the free lists for the given migratetype and remove
883 * the smallest available page from the freelists
884 */
885 static inline
886 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
887 int migratetype)
888 {
889 unsigned int current_order;
890 struct free_area * area;
891 struct page *page;
892
893 /* Find a page of the appropriate size in the preferred list */
894 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
895 area = &(zone->free_area[current_order]);
896 if (list_empty(&area->free_list[migratetype]))
897 continue;
898
899 page = list_entry(area->free_list[migratetype].next,
900 struct page, lru);
901 list_del(&page->lru);
902 rmv_page_order(page);
903 area->nr_free--;
904 expand(zone, page, order, current_order, area, migratetype);
905 return page;
906 }
907
908 return NULL;
909 }
910
911
912 /*
913 * This array describes the order lists are fallen back to when
914 * the free lists for the desirable migrate type are depleted
915 */
916 static int fallbacks[MIGRATE_TYPES][4] = {
917 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 #ifdef CONFIG_CMA
920 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
922 #else
923 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
924 #endif
925 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
926 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
927 };
928
929 /*
930 * Move the free pages in a range to the free lists of the requested type.
931 * Note that start_page and end_pages are not aligned on a pageblock
932 * boundary. If alignment is required, use move_freepages_block()
933 */
934 int move_freepages(struct zone *zone,
935 struct page *start_page, struct page *end_page,
936 int migratetype)
937 {
938 struct page *page;
939 unsigned long order;
940 int pages_moved = 0;
941
942 #ifndef CONFIG_HOLES_IN_ZONE
943 /*
944 * page_zone is not safe to call in this context when
945 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
946 * anyway as we check zone boundaries in move_freepages_block().
947 * Remove at a later date when no bug reports exist related to
948 * grouping pages by mobility
949 */
950 BUG_ON(page_zone(start_page) != page_zone(end_page));
951 #endif
952
953 for (page = start_page; page <= end_page;) {
954 /* Make sure we are not inadvertently changing nodes */
955 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
956
957 if (!pfn_valid_within(page_to_pfn(page))) {
958 page++;
959 continue;
960 }
961
962 if (!PageBuddy(page)) {
963 page++;
964 continue;
965 }
966
967 order = page_order(page);
968 list_move(&page->lru,
969 &zone->free_area[order].free_list[migratetype]);
970 set_freepage_migratetype(page, migratetype);
971 page += 1 << order;
972 pages_moved += 1 << order;
973 }
974
975 return pages_moved;
976 }
977
978 int move_freepages_block(struct zone *zone, struct page *page,
979 int migratetype)
980 {
981 unsigned long start_pfn, end_pfn;
982 struct page *start_page, *end_page;
983
984 start_pfn = page_to_pfn(page);
985 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
986 start_page = pfn_to_page(start_pfn);
987 end_page = start_page + pageblock_nr_pages - 1;
988 end_pfn = start_pfn + pageblock_nr_pages - 1;
989
990 /* Do not cross zone boundaries */
991 if (start_pfn < zone->zone_start_pfn)
992 start_page = page;
993 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
994 return 0;
995
996 return move_freepages(zone, start_page, end_page, migratetype);
997 }
998
999 static void change_pageblock_range(struct page *pageblock_page,
1000 int start_order, int migratetype)
1001 {
1002 int nr_pageblocks = 1 << (start_order - pageblock_order);
1003
1004 while (nr_pageblocks--) {
1005 set_pageblock_migratetype(pageblock_page, migratetype);
1006 pageblock_page += pageblock_nr_pages;
1007 }
1008 }
1009
1010 /* Remove an element from the buddy allocator from the fallback list */
1011 static inline struct page *
1012 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1013 {
1014 struct free_area * area;
1015 int current_order;
1016 struct page *page;
1017 int migratetype, i;
1018
1019 /* Find the largest possible block of pages in the other list */
1020 for (current_order = MAX_ORDER-1; current_order >= order;
1021 --current_order) {
1022 for (i = 0;; i++) {
1023 migratetype = fallbacks[start_migratetype][i];
1024
1025 /* MIGRATE_RESERVE handled later if necessary */
1026 if (migratetype == MIGRATE_RESERVE)
1027 break;
1028
1029 area = &(zone->free_area[current_order]);
1030 if (list_empty(&area->free_list[migratetype]))
1031 continue;
1032
1033 page = list_entry(area->free_list[migratetype].next,
1034 struct page, lru);
1035 area->nr_free--;
1036
1037 /*
1038 * If breaking a large block of pages, move all free
1039 * pages to the preferred allocation list. If falling
1040 * back for a reclaimable kernel allocation, be more
1041 * aggressive about taking ownership of free pages
1042 *
1043 * On the other hand, never change migration
1044 * type of MIGRATE_CMA pageblocks nor move CMA
1045 * pages on different free lists. We don't
1046 * want unmovable pages to be allocated from
1047 * MIGRATE_CMA areas.
1048 */
1049 if (!is_migrate_cma(migratetype) &&
1050 (unlikely(current_order >= pageblock_order / 2) ||
1051 start_migratetype == MIGRATE_RECLAIMABLE ||
1052 page_group_by_mobility_disabled)) {
1053 int pages;
1054 pages = move_freepages_block(zone, page,
1055 start_migratetype);
1056
1057 /* Claim the whole block if over half of it is free */
1058 if (pages >= (1 << (pageblock_order-1)) ||
1059 page_group_by_mobility_disabled)
1060 set_pageblock_migratetype(page,
1061 start_migratetype);
1062
1063 migratetype = start_migratetype;
1064 }
1065
1066 /* Remove the page from the freelists */
1067 list_del(&page->lru);
1068 rmv_page_order(page);
1069
1070 /* Take ownership for orders >= pageblock_order */
1071 if (current_order >= pageblock_order &&
1072 !is_migrate_cma(migratetype))
1073 change_pageblock_range(page, current_order,
1074 start_migratetype);
1075
1076 expand(zone, page, order, current_order, area,
1077 is_migrate_cma(migratetype)
1078 ? migratetype : start_migratetype);
1079
1080 trace_mm_page_alloc_extfrag(page, order, current_order,
1081 start_migratetype, migratetype);
1082
1083 return page;
1084 }
1085 }
1086
1087 return NULL;
1088 }
1089
1090 /*
1091 * Do the hard work of removing an element from the buddy allocator.
1092 * Call me with the zone->lock already held.
1093 */
1094 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1095 int migratetype)
1096 {
1097 struct page *page;
1098
1099 retry_reserve:
1100 page = __rmqueue_smallest(zone, order, migratetype);
1101
1102 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1103 page = __rmqueue_fallback(zone, order, migratetype);
1104
1105 /*
1106 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1107 * is used because __rmqueue_smallest is an inline function
1108 * and we want just one call site
1109 */
1110 if (!page) {
1111 migratetype = MIGRATE_RESERVE;
1112 goto retry_reserve;
1113 }
1114 }
1115
1116 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1117 return page;
1118 }
1119
1120 /*
1121 * Obtain a specified number of elements from the buddy allocator, all under
1122 * a single hold of the lock, for efficiency. Add them to the supplied list.
1123 * Returns the number of new pages which were placed at *list.
1124 */
1125 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1126 unsigned long count, struct list_head *list,
1127 int migratetype, int cold)
1128 {
1129 int mt = migratetype, i;
1130
1131 spin_lock(&zone->lock);
1132 for (i = 0; i < count; ++i) {
1133 struct page *page = __rmqueue(zone, order, migratetype);
1134 if (unlikely(page == NULL))
1135 break;
1136
1137 /*
1138 * Split buddy pages returned by expand() are received here
1139 * in physical page order. The page is added to the callers and
1140 * list and the list head then moves forward. From the callers
1141 * perspective, the linked list is ordered by page number in
1142 * some conditions. This is useful for IO devices that can
1143 * merge IO requests if the physical pages are ordered
1144 * properly.
1145 */
1146 if (likely(cold == 0))
1147 list_add(&page->lru, list);
1148 else
1149 list_add_tail(&page->lru, list);
1150 if (IS_ENABLED(CONFIG_CMA)) {
1151 mt = get_pageblock_migratetype(page);
1152 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1153 mt = migratetype;
1154 }
1155 set_freepage_migratetype(page, mt);
1156 list = &page->lru;
1157 if (is_migrate_cma(mt))
1158 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1159 -(1 << order));
1160 }
1161 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1162 spin_unlock(&zone->lock);
1163 return i;
1164 }
1165
1166 #ifdef CONFIG_NUMA
1167 /*
1168 * Called from the vmstat counter updater to drain pagesets of this
1169 * currently executing processor on remote nodes after they have
1170 * expired.
1171 *
1172 * Note that this function must be called with the thread pinned to
1173 * a single processor.
1174 */
1175 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1176 {
1177 unsigned long flags;
1178 int to_drain;
1179
1180 local_irq_save(flags);
1181 if (pcp->count >= pcp->batch)
1182 to_drain = pcp->batch;
1183 else
1184 to_drain = pcp->count;
1185 if (to_drain > 0) {
1186 free_pcppages_bulk(zone, to_drain, pcp);
1187 pcp->count -= to_drain;
1188 }
1189 local_irq_restore(flags);
1190 }
1191 #endif
1192
1193 /*
1194 * Drain pages of the indicated processor.
1195 *
1196 * The processor must either be the current processor and the
1197 * thread pinned to the current processor or a processor that
1198 * is not online.
1199 */
1200 static void drain_pages(unsigned int cpu)
1201 {
1202 unsigned long flags;
1203 struct zone *zone;
1204
1205 for_each_populated_zone(zone) {
1206 struct per_cpu_pageset *pset;
1207 struct per_cpu_pages *pcp;
1208
1209 local_irq_save(flags);
1210 pset = per_cpu_ptr(zone->pageset, cpu);
1211
1212 pcp = &pset->pcp;
1213 if (pcp->count) {
1214 free_pcppages_bulk(zone, pcp->count, pcp);
1215 pcp->count = 0;
1216 }
1217 local_irq_restore(flags);
1218 }
1219 }
1220
1221 /*
1222 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1223 */
1224 void drain_local_pages(void *arg)
1225 {
1226 drain_pages(smp_processor_id());
1227 }
1228
1229 /*
1230 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1231 *
1232 * Note that this code is protected against sending an IPI to an offline
1233 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1234 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1235 * nothing keeps CPUs from showing up after we populated the cpumask and
1236 * before the call to on_each_cpu_mask().
1237 */
1238 void drain_all_pages(void)
1239 {
1240 int cpu;
1241 struct per_cpu_pageset *pcp;
1242 struct zone *zone;
1243
1244 /*
1245 * Allocate in the BSS so we wont require allocation in
1246 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1247 */
1248 static cpumask_t cpus_with_pcps;
1249
1250 /*
1251 * We don't care about racing with CPU hotplug event
1252 * as offline notification will cause the notified
1253 * cpu to drain that CPU pcps and on_each_cpu_mask
1254 * disables preemption as part of its processing
1255 */
1256 for_each_online_cpu(cpu) {
1257 bool has_pcps = false;
1258 for_each_populated_zone(zone) {
1259 pcp = per_cpu_ptr(zone->pageset, cpu);
1260 if (pcp->pcp.count) {
1261 has_pcps = true;
1262 break;
1263 }
1264 }
1265 if (has_pcps)
1266 cpumask_set_cpu(cpu, &cpus_with_pcps);
1267 else
1268 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1269 }
1270 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1271 }
1272
1273 #ifdef CONFIG_HIBERNATION
1274
1275 void mark_free_pages(struct zone *zone)
1276 {
1277 unsigned long pfn, max_zone_pfn;
1278 unsigned long flags;
1279 int order, t;
1280 struct list_head *curr;
1281
1282 if (!zone->spanned_pages)
1283 return;
1284
1285 spin_lock_irqsave(&zone->lock, flags);
1286
1287 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1288 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1289 if (pfn_valid(pfn)) {
1290 struct page *page = pfn_to_page(pfn);
1291
1292 if (!swsusp_page_is_forbidden(page))
1293 swsusp_unset_page_free(page);
1294 }
1295
1296 for_each_migratetype_order(order, t) {
1297 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1298 unsigned long i;
1299
1300 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1301 for (i = 0; i < (1UL << order); i++)
1302 swsusp_set_page_free(pfn_to_page(pfn + i));
1303 }
1304 }
1305 spin_unlock_irqrestore(&zone->lock, flags);
1306 }
1307 #endif /* CONFIG_PM */
1308
1309 /*
1310 * Free a 0-order page
1311 * cold == 1 ? free a cold page : free a hot page
1312 */
1313 void free_hot_cold_page(struct page *page, int cold)
1314 {
1315 struct zone *zone = page_zone(page);
1316 struct per_cpu_pages *pcp;
1317 unsigned long flags;
1318 int migratetype;
1319
1320 if (!free_pages_prepare(page, 0))
1321 return;
1322
1323 migratetype = get_pageblock_migratetype(page);
1324 set_freepage_migratetype(page, migratetype);
1325 local_irq_save(flags);
1326 __count_vm_event(PGFREE);
1327
1328 /*
1329 * We only track unmovable, reclaimable and movable on pcp lists.
1330 * Free ISOLATE pages back to the allocator because they are being
1331 * offlined but treat RESERVE as movable pages so we can get those
1332 * areas back if necessary. Otherwise, we may have to free
1333 * excessively into the page allocator
1334 */
1335 if (migratetype >= MIGRATE_PCPTYPES) {
1336 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1337 free_one_page(zone, page, 0, migratetype);
1338 goto out;
1339 }
1340 migratetype = MIGRATE_MOVABLE;
1341 }
1342
1343 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1344 if (cold)
1345 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1346 else
1347 list_add(&page->lru, &pcp->lists[migratetype]);
1348 pcp->count++;
1349 if (pcp->count >= pcp->high) {
1350 free_pcppages_bulk(zone, pcp->batch, pcp);
1351 pcp->count -= pcp->batch;
1352 }
1353
1354 out:
1355 local_irq_restore(flags);
1356 }
1357
1358 /*
1359 * Free a list of 0-order pages
1360 */
1361 void free_hot_cold_page_list(struct list_head *list, int cold)
1362 {
1363 struct page *page, *next;
1364
1365 list_for_each_entry_safe(page, next, list, lru) {
1366 trace_mm_page_free_batched(page, cold);
1367 free_hot_cold_page(page, cold);
1368 }
1369 }
1370
1371 /*
1372 * split_page takes a non-compound higher-order page, and splits it into
1373 * n (1<<order) sub-pages: page[0..n]
1374 * Each sub-page must be freed individually.
1375 *
1376 * Note: this is probably too low level an operation for use in drivers.
1377 * Please consult with lkml before using this in your driver.
1378 */
1379 void split_page(struct page *page, unsigned int order)
1380 {
1381 int i;
1382
1383 VM_BUG_ON(PageCompound(page));
1384 VM_BUG_ON(!page_count(page));
1385
1386 #ifdef CONFIG_KMEMCHECK
1387 /*
1388 * Split shadow pages too, because free(page[0]) would
1389 * otherwise free the whole shadow.
1390 */
1391 if (kmemcheck_page_is_tracked(page))
1392 split_page(virt_to_page(page[0].shadow), order);
1393 #endif
1394
1395 for (i = 1; i < (1 << order); i++)
1396 set_page_refcounted(page + i);
1397 }
1398
1399 static int __isolate_free_page(struct page *page, unsigned int order)
1400 {
1401 unsigned long watermark;
1402 struct zone *zone;
1403 int mt;
1404
1405 BUG_ON(!PageBuddy(page));
1406
1407 zone = page_zone(page);
1408 mt = get_pageblock_migratetype(page);
1409
1410 if (mt != MIGRATE_ISOLATE) {
1411 /* Obey watermarks as if the page was being allocated */
1412 watermark = low_wmark_pages(zone) + (1 << order);
1413 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1414 return 0;
1415
1416 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1417 }
1418
1419 /* Remove page from free list */
1420 list_del(&page->lru);
1421 zone->free_area[order].nr_free--;
1422 rmv_page_order(page);
1423
1424 /* Set the pageblock if the isolated page is at least a pageblock */
1425 if (order >= pageblock_order - 1) {
1426 struct page *endpage = page + (1 << order) - 1;
1427 for (; page < endpage; page += pageblock_nr_pages) {
1428 int mt = get_pageblock_migratetype(page);
1429 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1430 set_pageblock_migratetype(page,
1431 MIGRATE_MOVABLE);
1432 }
1433 }
1434
1435 return 1UL << order;
1436 }
1437
1438 /*
1439 * Similar to split_page except the page is already free. As this is only
1440 * being used for migration, the migratetype of the block also changes.
1441 * As this is called with interrupts disabled, the caller is responsible
1442 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1443 * are enabled.
1444 *
1445 * Note: this is probably too low level an operation for use in drivers.
1446 * Please consult with lkml before using this in your driver.
1447 */
1448 int split_free_page(struct page *page)
1449 {
1450 unsigned int order;
1451 int nr_pages;
1452
1453 order = page_order(page);
1454
1455 nr_pages = __isolate_free_page(page, order);
1456 if (!nr_pages)
1457 return 0;
1458
1459 /* Split into individual pages */
1460 set_page_refcounted(page);
1461 split_page(page, order);
1462 return nr_pages;
1463 }
1464
1465 /*
1466 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1467 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1468 * or two.
1469 */
1470 static inline
1471 struct page *buffered_rmqueue(struct zone *preferred_zone,
1472 struct zone *zone, int order, gfp_t gfp_flags,
1473 int migratetype)
1474 {
1475 unsigned long flags;
1476 struct page *page;
1477 int cold = !!(gfp_flags & __GFP_COLD);
1478
1479 again:
1480 if (likely(order == 0)) {
1481 struct per_cpu_pages *pcp;
1482 struct list_head *list;
1483
1484 local_irq_save(flags);
1485 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1486 list = &pcp->lists[migratetype];
1487 if (list_empty(list)) {
1488 pcp->count += rmqueue_bulk(zone, 0,
1489 pcp->batch, list,
1490 migratetype, cold);
1491 if (unlikely(list_empty(list)))
1492 goto failed;
1493 }
1494
1495 if (cold)
1496 page = list_entry(list->prev, struct page, lru);
1497 else
1498 page = list_entry(list->next, struct page, lru);
1499
1500 list_del(&page->lru);
1501 pcp->count--;
1502 } else {
1503 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1504 /*
1505 * __GFP_NOFAIL is not to be used in new code.
1506 *
1507 * All __GFP_NOFAIL callers should be fixed so that they
1508 * properly detect and handle allocation failures.
1509 *
1510 * We most definitely don't want callers attempting to
1511 * allocate greater than order-1 page units with
1512 * __GFP_NOFAIL.
1513 */
1514 WARN_ON_ONCE(order > 1);
1515 }
1516 spin_lock_irqsave(&zone->lock, flags);
1517 page = __rmqueue(zone, order, migratetype);
1518 spin_unlock(&zone->lock);
1519 if (!page)
1520 goto failed;
1521 __mod_zone_freepage_state(zone, -(1 << order),
1522 get_pageblock_migratetype(page));
1523 }
1524
1525 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1526 zone_statistics(preferred_zone, zone, gfp_flags);
1527 local_irq_restore(flags);
1528
1529 VM_BUG_ON(bad_range(zone, page));
1530 if (prep_new_page(page, order, gfp_flags))
1531 goto again;
1532 return page;
1533
1534 failed:
1535 local_irq_restore(flags);
1536 return NULL;
1537 }
1538
1539 #ifdef CONFIG_FAIL_PAGE_ALLOC
1540
1541 static struct {
1542 struct fault_attr attr;
1543
1544 u32 ignore_gfp_highmem;
1545 u32 ignore_gfp_wait;
1546 u32 min_order;
1547 } fail_page_alloc = {
1548 .attr = FAULT_ATTR_INITIALIZER,
1549 .ignore_gfp_wait = 1,
1550 .ignore_gfp_highmem = 1,
1551 .min_order = 1,
1552 };
1553
1554 static int __init setup_fail_page_alloc(char *str)
1555 {
1556 return setup_fault_attr(&fail_page_alloc.attr, str);
1557 }
1558 __setup("fail_page_alloc=", setup_fail_page_alloc);
1559
1560 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1561 {
1562 if (order < fail_page_alloc.min_order)
1563 return false;
1564 if (gfp_mask & __GFP_NOFAIL)
1565 return false;
1566 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1567 return false;
1568 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1569 return false;
1570
1571 return should_fail(&fail_page_alloc.attr, 1 << order);
1572 }
1573
1574 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1575
1576 static int __init fail_page_alloc_debugfs(void)
1577 {
1578 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1579 struct dentry *dir;
1580
1581 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1582 &fail_page_alloc.attr);
1583 if (IS_ERR(dir))
1584 return PTR_ERR(dir);
1585
1586 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1587 &fail_page_alloc.ignore_gfp_wait))
1588 goto fail;
1589 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1590 &fail_page_alloc.ignore_gfp_highmem))
1591 goto fail;
1592 if (!debugfs_create_u32("min-order", mode, dir,
1593 &fail_page_alloc.min_order))
1594 goto fail;
1595
1596 return 0;
1597 fail:
1598 debugfs_remove_recursive(dir);
1599
1600 return -ENOMEM;
1601 }
1602
1603 late_initcall(fail_page_alloc_debugfs);
1604
1605 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1606
1607 #else /* CONFIG_FAIL_PAGE_ALLOC */
1608
1609 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1610 {
1611 return false;
1612 }
1613
1614 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1615
1616 /*
1617 * Return true if free pages are above 'mark'. This takes into account the order
1618 * of the allocation.
1619 */
1620 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1621 int classzone_idx, int alloc_flags, long free_pages)
1622 {
1623 /* free_pages my go negative - that's OK */
1624 long min = mark;
1625 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1626 int o;
1627
1628 free_pages -= (1 << order) - 1;
1629 if (alloc_flags & ALLOC_HIGH)
1630 min -= min / 2;
1631 if (alloc_flags & ALLOC_HARDER)
1632 min -= min / 4;
1633 #ifdef CONFIG_CMA
1634 /* If allocation can't use CMA areas don't use free CMA pages */
1635 if (!(alloc_flags & ALLOC_CMA))
1636 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1637 #endif
1638 if (free_pages <= min + lowmem_reserve)
1639 return false;
1640 for (o = 0; o < order; o++) {
1641 /* At the next order, this order's pages become unavailable */
1642 free_pages -= z->free_area[o].nr_free << o;
1643
1644 /* Require fewer higher order pages to be free */
1645 min >>= 1;
1646
1647 if (free_pages <= min)
1648 return false;
1649 }
1650 return true;
1651 }
1652
1653 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1654 int classzone_idx, int alloc_flags)
1655 {
1656 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1657 zone_page_state(z, NR_FREE_PAGES));
1658 }
1659
1660 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1661 int classzone_idx, int alloc_flags)
1662 {
1663 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1664
1665 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1666 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1667
1668 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1669 free_pages);
1670 }
1671
1672 #ifdef CONFIG_NUMA
1673 /*
1674 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1675 * skip over zones that are not allowed by the cpuset, or that have
1676 * been recently (in last second) found to be nearly full. See further
1677 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1678 * that have to skip over a lot of full or unallowed zones.
1679 *
1680 * If the zonelist cache is present in the passed in zonelist, then
1681 * returns a pointer to the allowed node mask (either the current
1682 * tasks mems_allowed, or node_states[N_MEMORY].)
1683 *
1684 * If the zonelist cache is not available for this zonelist, does
1685 * nothing and returns NULL.
1686 *
1687 * If the fullzones BITMAP in the zonelist cache is stale (more than
1688 * a second since last zap'd) then we zap it out (clear its bits.)
1689 *
1690 * We hold off even calling zlc_setup, until after we've checked the
1691 * first zone in the zonelist, on the theory that most allocations will
1692 * be satisfied from that first zone, so best to examine that zone as
1693 * quickly as we can.
1694 */
1695 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1696 {
1697 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1698 nodemask_t *allowednodes; /* zonelist_cache approximation */
1699
1700 zlc = zonelist->zlcache_ptr;
1701 if (!zlc)
1702 return NULL;
1703
1704 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1705 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1706 zlc->last_full_zap = jiffies;
1707 }
1708
1709 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1710 &cpuset_current_mems_allowed :
1711 &node_states[N_MEMORY];
1712 return allowednodes;
1713 }
1714
1715 /*
1716 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1717 * if it is worth looking at further for free memory:
1718 * 1) Check that the zone isn't thought to be full (doesn't have its
1719 * bit set in the zonelist_cache fullzones BITMAP).
1720 * 2) Check that the zones node (obtained from the zonelist_cache
1721 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1722 * Return true (non-zero) if zone is worth looking at further, or
1723 * else return false (zero) if it is not.
1724 *
1725 * This check -ignores- the distinction between various watermarks,
1726 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1727 * found to be full for any variation of these watermarks, it will
1728 * be considered full for up to one second by all requests, unless
1729 * we are so low on memory on all allowed nodes that we are forced
1730 * into the second scan of the zonelist.
1731 *
1732 * In the second scan we ignore this zonelist cache and exactly
1733 * apply the watermarks to all zones, even it is slower to do so.
1734 * We are low on memory in the second scan, and should leave no stone
1735 * unturned looking for a free page.
1736 */
1737 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1738 nodemask_t *allowednodes)
1739 {
1740 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1741 int i; /* index of *z in zonelist zones */
1742 int n; /* node that zone *z is on */
1743
1744 zlc = zonelist->zlcache_ptr;
1745 if (!zlc)
1746 return 1;
1747
1748 i = z - zonelist->_zonerefs;
1749 n = zlc->z_to_n[i];
1750
1751 /* This zone is worth trying if it is allowed but not full */
1752 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1753 }
1754
1755 /*
1756 * Given 'z' scanning a zonelist, set the corresponding bit in
1757 * zlc->fullzones, so that subsequent attempts to allocate a page
1758 * from that zone don't waste time re-examining it.
1759 */
1760 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1761 {
1762 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1763 int i; /* index of *z in zonelist zones */
1764
1765 zlc = zonelist->zlcache_ptr;
1766 if (!zlc)
1767 return;
1768
1769 i = z - zonelist->_zonerefs;
1770
1771 set_bit(i, zlc->fullzones);
1772 }
1773
1774 /*
1775 * clear all zones full, called after direct reclaim makes progress so that
1776 * a zone that was recently full is not skipped over for up to a second
1777 */
1778 static void zlc_clear_zones_full(struct zonelist *zonelist)
1779 {
1780 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1781
1782 zlc = zonelist->zlcache_ptr;
1783 if (!zlc)
1784 return;
1785
1786 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1787 }
1788
1789 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1790 {
1791 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1792 }
1793
1794 static void __paginginit init_zone_allows_reclaim(int nid)
1795 {
1796 int i;
1797
1798 for_each_online_node(i)
1799 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1800 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1801 else
1802 zone_reclaim_mode = 1;
1803 }
1804
1805 #else /* CONFIG_NUMA */
1806
1807 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1808 {
1809 return NULL;
1810 }
1811
1812 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1813 nodemask_t *allowednodes)
1814 {
1815 return 1;
1816 }
1817
1818 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1819 {
1820 }
1821
1822 static void zlc_clear_zones_full(struct zonelist *zonelist)
1823 {
1824 }
1825
1826 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1827 {
1828 return true;
1829 }
1830
1831 static inline void init_zone_allows_reclaim(int nid)
1832 {
1833 }
1834 #endif /* CONFIG_NUMA */
1835
1836 /*
1837 * get_page_from_freelist goes through the zonelist trying to allocate
1838 * a page.
1839 */
1840 static struct page *
1841 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1842 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1843 struct zone *preferred_zone, int migratetype)
1844 {
1845 struct zoneref *z;
1846 struct page *page = NULL;
1847 int classzone_idx;
1848 struct zone *zone;
1849 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1850 int zlc_active = 0; /* set if using zonelist_cache */
1851 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1852
1853 classzone_idx = zone_idx(preferred_zone);
1854 zonelist_scan:
1855 /*
1856 * Scan zonelist, looking for a zone with enough free.
1857 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1858 */
1859 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1860 high_zoneidx, nodemask) {
1861 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1862 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1863 continue;
1864 if ((alloc_flags & ALLOC_CPUSET) &&
1865 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1866 continue;
1867 /*
1868 * When allocating a page cache page for writing, we
1869 * want to get it from a zone that is within its dirty
1870 * limit, such that no single zone holds more than its
1871 * proportional share of globally allowed dirty pages.
1872 * The dirty limits take into account the zone's
1873 * lowmem reserves and high watermark so that kswapd
1874 * should be able to balance it without having to
1875 * write pages from its LRU list.
1876 *
1877 * This may look like it could increase pressure on
1878 * lower zones by failing allocations in higher zones
1879 * before they are full. But the pages that do spill
1880 * over are limited as the lower zones are protected
1881 * by this very same mechanism. It should not become
1882 * a practical burden to them.
1883 *
1884 * XXX: For now, allow allocations to potentially
1885 * exceed the per-zone dirty limit in the slowpath
1886 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1887 * which is important when on a NUMA setup the allowed
1888 * zones are together not big enough to reach the
1889 * global limit. The proper fix for these situations
1890 * will require awareness of zones in the
1891 * dirty-throttling and the flusher threads.
1892 */
1893 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1894 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1895 goto this_zone_full;
1896
1897 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1898 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1899 unsigned long mark;
1900 int ret;
1901
1902 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1903 if (zone_watermark_ok(zone, order, mark,
1904 classzone_idx, alloc_flags))
1905 goto try_this_zone;
1906
1907 if (IS_ENABLED(CONFIG_NUMA) &&
1908 !did_zlc_setup && nr_online_nodes > 1) {
1909 /*
1910 * we do zlc_setup if there are multiple nodes
1911 * and before considering the first zone allowed
1912 * by the cpuset.
1913 */
1914 allowednodes = zlc_setup(zonelist, alloc_flags);
1915 zlc_active = 1;
1916 did_zlc_setup = 1;
1917 }
1918
1919 if (zone_reclaim_mode == 0 ||
1920 !zone_allows_reclaim(preferred_zone, zone))
1921 goto this_zone_full;
1922
1923 /*
1924 * As we may have just activated ZLC, check if the first
1925 * eligible zone has failed zone_reclaim recently.
1926 */
1927 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1928 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1929 continue;
1930
1931 ret = zone_reclaim(zone, gfp_mask, order);
1932 switch (ret) {
1933 case ZONE_RECLAIM_NOSCAN:
1934 /* did not scan */
1935 continue;
1936 case ZONE_RECLAIM_FULL:
1937 /* scanned but unreclaimable */
1938 continue;
1939 default:
1940 /* did we reclaim enough */
1941 if (!zone_watermark_ok(zone, order, mark,
1942 classzone_idx, alloc_flags))
1943 goto this_zone_full;
1944 }
1945 }
1946
1947 try_this_zone:
1948 page = buffered_rmqueue(preferred_zone, zone, order,
1949 gfp_mask, migratetype);
1950 if (page)
1951 break;
1952 this_zone_full:
1953 if (IS_ENABLED(CONFIG_NUMA))
1954 zlc_mark_zone_full(zonelist, z);
1955 }
1956
1957 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1958 /* Disable zlc cache for second zonelist scan */
1959 zlc_active = 0;
1960 goto zonelist_scan;
1961 }
1962
1963 if (page)
1964 /*
1965 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1966 * necessary to allocate the page. The expectation is
1967 * that the caller is taking steps that will free more
1968 * memory. The caller should avoid the page being used
1969 * for !PFMEMALLOC purposes.
1970 */
1971 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1972
1973 return page;
1974 }
1975
1976 /*
1977 * Large machines with many possible nodes should not always dump per-node
1978 * meminfo in irq context.
1979 */
1980 static inline bool should_suppress_show_mem(void)
1981 {
1982 bool ret = false;
1983
1984 #if NODES_SHIFT > 8
1985 ret = in_interrupt();
1986 #endif
1987 return ret;
1988 }
1989
1990 static DEFINE_RATELIMIT_STATE(nopage_rs,
1991 DEFAULT_RATELIMIT_INTERVAL,
1992 DEFAULT_RATELIMIT_BURST);
1993
1994 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1995 {
1996 unsigned int filter = SHOW_MEM_FILTER_NODES;
1997
1998 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1999 debug_guardpage_minorder() > 0)
2000 return;
2001
2002 /*
2003 * This documents exceptions given to allocations in certain
2004 * contexts that are allowed to allocate outside current's set
2005 * of allowed nodes.
2006 */
2007 if (!(gfp_mask & __GFP_NOMEMALLOC))
2008 if (test_thread_flag(TIF_MEMDIE) ||
2009 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2010 filter &= ~SHOW_MEM_FILTER_NODES;
2011 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2012 filter &= ~SHOW_MEM_FILTER_NODES;
2013
2014 if (fmt) {
2015 struct va_format vaf;
2016 va_list args;
2017
2018 va_start(args, fmt);
2019
2020 vaf.fmt = fmt;
2021 vaf.va = &args;
2022
2023 pr_warn("%pV", &vaf);
2024
2025 va_end(args);
2026 }
2027
2028 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2029 current->comm, order, gfp_mask);
2030
2031 dump_stack();
2032 if (!should_suppress_show_mem())
2033 show_mem(filter);
2034 }
2035
2036 static inline int
2037 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2038 unsigned long did_some_progress,
2039 unsigned long pages_reclaimed)
2040 {
2041 /* Do not loop if specifically requested */
2042 if (gfp_mask & __GFP_NORETRY)
2043 return 0;
2044
2045 /* Always retry if specifically requested */
2046 if (gfp_mask & __GFP_NOFAIL)
2047 return 1;
2048
2049 /*
2050 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2051 * making forward progress without invoking OOM. Suspend also disables
2052 * storage devices so kswapd will not help. Bail if we are suspending.
2053 */
2054 if (!did_some_progress && pm_suspended_storage())
2055 return 0;
2056
2057 /*
2058 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2059 * means __GFP_NOFAIL, but that may not be true in other
2060 * implementations.
2061 */
2062 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2063 return 1;
2064
2065 /*
2066 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2067 * specified, then we retry until we no longer reclaim any pages
2068 * (above), or we've reclaimed an order of pages at least as
2069 * large as the allocation's order. In both cases, if the
2070 * allocation still fails, we stop retrying.
2071 */
2072 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2073 return 1;
2074
2075 return 0;
2076 }
2077
2078 static inline struct page *
2079 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2080 struct zonelist *zonelist, enum zone_type high_zoneidx,
2081 nodemask_t *nodemask, struct zone *preferred_zone,
2082 int migratetype)
2083 {
2084 struct page *page;
2085
2086 /* Acquire the OOM killer lock for the zones in zonelist */
2087 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2088 schedule_timeout_uninterruptible(1);
2089 return NULL;
2090 }
2091
2092 /*
2093 * Go through the zonelist yet one more time, keep very high watermark
2094 * here, this is only to catch a parallel oom killing, we must fail if
2095 * we're still under heavy pressure.
2096 */
2097 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2098 order, zonelist, high_zoneidx,
2099 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2100 preferred_zone, migratetype);
2101 if (page)
2102 goto out;
2103
2104 if (!(gfp_mask & __GFP_NOFAIL)) {
2105 /* The OOM killer will not help higher order allocs */
2106 if (order > PAGE_ALLOC_COSTLY_ORDER)
2107 goto out;
2108 /* The OOM killer does not needlessly kill tasks for lowmem */
2109 if (high_zoneidx < ZONE_NORMAL)
2110 goto out;
2111 /*
2112 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2113 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2114 * The caller should handle page allocation failure by itself if
2115 * it specifies __GFP_THISNODE.
2116 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2117 */
2118 if (gfp_mask & __GFP_THISNODE)
2119 goto out;
2120 }
2121 /* Exhausted what can be done so it's blamo time */
2122 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2123
2124 out:
2125 clear_zonelist_oom(zonelist, gfp_mask);
2126 return page;
2127 }
2128
2129 #ifdef CONFIG_COMPACTION
2130 /* Try memory compaction for high-order allocations before reclaim */
2131 static struct page *
2132 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2133 struct zonelist *zonelist, enum zone_type high_zoneidx,
2134 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2135 int migratetype, bool sync_migration,
2136 bool *contended_compaction, bool *deferred_compaction,
2137 unsigned long *did_some_progress)
2138 {
2139 if (!order)
2140 return NULL;
2141
2142 if (compaction_deferred(preferred_zone, order)) {
2143 *deferred_compaction = true;
2144 return NULL;
2145 }
2146
2147 current->flags |= PF_MEMALLOC;
2148 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2149 nodemask, sync_migration,
2150 contended_compaction);
2151 current->flags &= ~PF_MEMALLOC;
2152
2153 if (*did_some_progress != COMPACT_SKIPPED) {
2154 struct page *page;
2155
2156 /* Page migration frees to the PCP lists but we want merging */
2157 drain_pages(get_cpu());
2158 put_cpu();
2159
2160 page = get_page_from_freelist(gfp_mask, nodemask,
2161 order, zonelist, high_zoneidx,
2162 alloc_flags & ~ALLOC_NO_WATERMARKS,
2163 preferred_zone, migratetype);
2164 if (page) {
2165 preferred_zone->compact_blockskip_flush = false;
2166 preferred_zone->compact_considered = 0;
2167 preferred_zone->compact_defer_shift = 0;
2168 if (order >= preferred_zone->compact_order_failed)
2169 preferred_zone->compact_order_failed = order + 1;
2170 count_vm_event(COMPACTSUCCESS);
2171 return page;
2172 }
2173
2174 /*
2175 * It's bad if compaction run occurs and fails.
2176 * The most likely reason is that pages exist,
2177 * but not enough to satisfy watermarks.
2178 */
2179 count_vm_event(COMPACTFAIL);
2180
2181 /*
2182 * As async compaction considers a subset of pageblocks, only
2183 * defer if the failure was a sync compaction failure.
2184 */
2185 if (sync_migration)
2186 defer_compaction(preferred_zone, order);
2187
2188 cond_resched();
2189 }
2190
2191 return NULL;
2192 }
2193 #else
2194 static inline struct page *
2195 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2196 struct zonelist *zonelist, enum zone_type high_zoneidx,
2197 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2198 int migratetype, bool sync_migration,
2199 bool *contended_compaction, bool *deferred_compaction,
2200 unsigned long *did_some_progress)
2201 {
2202 return NULL;
2203 }
2204 #endif /* CONFIG_COMPACTION */
2205
2206 /* Perform direct synchronous page reclaim */
2207 static int
2208 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2209 nodemask_t *nodemask)
2210 {
2211 struct reclaim_state reclaim_state;
2212 int progress;
2213
2214 cond_resched();
2215
2216 /* We now go into synchronous reclaim */
2217 cpuset_memory_pressure_bump();
2218 current->flags |= PF_MEMALLOC;
2219 lockdep_set_current_reclaim_state(gfp_mask);
2220 reclaim_state.reclaimed_slab = 0;
2221 current->reclaim_state = &reclaim_state;
2222
2223 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2224
2225 current->reclaim_state = NULL;
2226 lockdep_clear_current_reclaim_state();
2227 current->flags &= ~PF_MEMALLOC;
2228
2229 cond_resched();
2230
2231 return progress;
2232 }
2233
2234 /* The really slow allocator path where we enter direct reclaim */
2235 static inline struct page *
2236 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2237 struct zonelist *zonelist, enum zone_type high_zoneidx,
2238 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2239 int migratetype, unsigned long *did_some_progress)
2240 {
2241 struct page *page = NULL;
2242 bool drained = false;
2243
2244 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2245 nodemask);
2246 if (unlikely(!(*did_some_progress)))
2247 return NULL;
2248
2249 /* After successful reclaim, reconsider all zones for allocation */
2250 if (IS_ENABLED(CONFIG_NUMA))
2251 zlc_clear_zones_full(zonelist);
2252
2253 retry:
2254 page = get_page_from_freelist(gfp_mask, nodemask, order,
2255 zonelist, high_zoneidx,
2256 alloc_flags & ~ALLOC_NO_WATERMARKS,
2257 preferred_zone, migratetype);
2258
2259 /*
2260 * If an allocation failed after direct reclaim, it could be because
2261 * pages are pinned on the per-cpu lists. Drain them and try again
2262 */
2263 if (!page && !drained) {
2264 drain_all_pages();
2265 drained = true;
2266 goto retry;
2267 }
2268
2269 return page;
2270 }
2271
2272 /*
2273 * This is called in the allocator slow-path if the allocation request is of
2274 * sufficient urgency to ignore watermarks and take other desperate measures
2275 */
2276 static inline struct page *
2277 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2278 struct zonelist *zonelist, enum zone_type high_zoneidx,
2279 nodemask_t *nodemask, struct zone *preferred_zone,
2280 int migratetype)
2281 {
2282 struct page *page;
2283
2284 do {
2285 page = get_page_from_freelist(gfp_mask, nodemask, order,
2286 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2287 preferred_zone, migratetype);
2288
2289 if (!page && gfp_mask & __GFP_NOFAIL)
2290 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2291 } while (!page && (gfp_mask & __GFP_NOFAIL));
2292
2293 return page;
2294 }
2295
2296 static inline
2297 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2298 enum zone_type high_zoneidx,
2299 enum zone_type classzone_idx)
2300 {
2301 struct zoneref *z;
2302 struct zone *zone;
2303
2304 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2305 wakeup_kswapd(zone, order, classzone_idx);
2306 }
2307
2308 static inline int
2309 gfp_to_alloc_flags(gfp_t gfp_mask)
2310 {
2311 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2312 const gfp_t wait = gfp_mask & __GFP_WAIT;
2313
2314 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2315 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2316
2317 /*
2318 * The caller may dip into page reserves a bit more if the caller
2319 * cannot run direct reclaim, or if the caller has realtime scheduling
2320 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2321 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2322 */
2323 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2324
2325 if (!wait) {
2326 /*
2327 * Not worth trying to allocate harder for
2328 * __GFP_NOMEMALLOC even if it can't schedule.
2329 */
2330 if (!(gfp_mask & __GFP_NOMEMALLOC))
2331 alloc_flags |= ALLOC_HARDER;
2332 /*
2333 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2334 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2335 */
2336 alloc_flags &= ~ALLOC_CPUSET;
2337 } else if (unlikely(rt_task(current)) && !in_interrupt())
2338 alloc_flags |= ALLOC_HARDER;
2339
2340 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2341 if (gfp_mask & __GFP_MEMALLOC)
2342 alloc_flags |= ALLOC_NO_WATERMARKS;
2343 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2344 alloc_flags |= ALLOC_NO_WATERMARKS;
2345 else if (!in_interrupt() &&
2346 ((current->flags & PF_MEMALLOC) ||
2347 unlikely(test_thread_flag(TIF_MEMDIE))))
2348 alloc_flags |= ALLOC_NO_WATERMARKS;
2349 }
2350 #ifdef CONFIG_CMA
2351 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2352 alloc_flags |= ALLOC_CMA;
2353 #endif
2354 return alloc_flags;
2355 }
2356
2357 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2358 {
2359 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2360 }
2361
2362 static inline struct page *
2363 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2364 struct zonelist *zonelist, enum zone_type high_zoneidx,
2365 nodemask_t *nodemask, struct zone *preferred_zone,
2366 int migratetype)
2367 {
2368 const gfp_t wait = gfp_mask & __GFP_WAIT;
2369 struct page *page = NULL;
2370 int alloc_flags;
2371 unsigned long pages_reclaimed = 0;
2372 unsigned long did_some_progress;
2373 bool sync_migration = false;
2374 bool deferred_compaction = false;
2375 bool contended_compaction = false;
2376
2377 /*
2378 * In the slowpath, we sanity check order to avoid ever trying to
2379 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2380 * be using allocators in order of preference for an area that is
2381 * too large.
2382 */
2383 if (order >= MAX_ORDER) {
2384 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2385 return NULL;
2386 }
2387
2388 /*
2389 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2390 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2391 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2392 * using a larger set of nodes after it has established that the
2393 * allowed per node queues are empty and that nodes are
2394 * over allocated.
2395 */
2396 if (IS_ENABLED(CONFIG_NUMA) &&
2397 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2398 goto nopage;
2399
2400 restart:
2401 if (!(gfp_mask & __GFP_NO_KSWAPD))
2402 wake_all_kswapd(order, zonelist, high_zoneidx,
2403 zone_idx(preferred_zone));
2404
2405 /*
2406 * OK, we're below the kswapd watermark and have kicked background
2407 * reclaim. Now things get more complex, so set up alloc_flags according
2408 * to how we want to proceed.
2409 */
2410 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2411
2412 /*
2413 * Find the true preferred zone if the allocation is unconstrained by
2414 * cpusets.
2415 */
2416 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2417 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2418 &preferred_zone);
2419
2420 rebalance:
2421 /* This is the last chance, in general, before the goto nopage. */
2422 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2423 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2424 preferred_zone, migratetype);
2425 if (page)
2426 goto got_pg;
2427
2428 /* Allocate without watermarks if the context allows */
2429 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2430 /*
2431 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2432 * the allocation is high priority and these type of
2433 * allocations are system rather than user orientated
2434 */
2435 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2436
2437 page = __alloc_pages_high_priority(gfp_mask, order,
2438 zonelist, high_zoneidx, nodemask,
2439 preferred_zone, migratetype);
2440 if (page) {
2441 goto got_pg;
2442 }
2443 }
2444
2445 /* Atomic allocations - we can't balance anything */
2446 if (!wait)
2447 goto nopage;
2448
2449 /* Avoid recursion of direct reclaim */
2450 if (current->flags & PF_MEMALLOC)
2451 goto nopage;
2452
2453 /* Avoid allocations with no watermarks from looping endlessly */
2454 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2455 goto nopage;
2456
2457 /*
2458 * Try direct compaction. The first pass is asynchronous. Subsequent
2459 * attempts after direct reclaim are synchronous
2460 */
2461 page = __alloc_pages_direct_compact(gfp_mask, order,
2462 zonelist, high_zoneidx,
2463 nodemask,
2464 alloc_flags, preferred_zone,
2465 migratetype, sync_migration,
2466 &contended_compaction,
2467 &deferred_compaction,
2468 &did_some_progress);
2469 if (page)
2470 goto got_pg;
2471 sync_migration = true;
2472
2473 /*
2474 * If compaction is deferred for high-order allocations, it is because
2475 * sync compaction recently failed. In this is the case and the caller
2476 * requested a movable allocation that does not heavily disrupt the
2477 * system then fail the allocation instead of entering direct reclaim.
2478 */
2479 if ((deferred_compaction || contended_compaction) &&
2480 (gfp_mask & __GFP_NO_KSWAPD))
2481 goto nopage;
2482
2483 /* Try direct reclaim and then allocating */
2484 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2485 zonelist, high_zoneidx,
2486 nodemask,
2487 alloc_flags, preferred_zone,
2488 migratetype, &did_some_progress);
2489 if (page)
2490 goto got_pg;
2491
2492 /*
2493 * If we failed to make any progress reclaiming, then we are
2494 * running out of options and have to consider going OOM
2495 */
2496 if (!did_some_progress) {
2497 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2498 if (oom_killer_disabled)
2499 goto nopage;
2500 /* Coredumps can quickly deplete all memory reserves */
2501 if ((current->flags & PF_DUMPCORE) &&
2502 !(gfp_mask & __GFP_NOFAIL))
2503 goto nopage;
2504 page = __alloc_pages_may_oom(gfp_mask, order,
2505 zonelist, high_zoneidx,
2506 nodemask, preferred_zone,
2507 migratetype);
2508 if (page)
2509 goto got_pg;
2510
2511 if (!(gfp_mask & __GFP_NOFAIL)) {
2512 /*
2513 * The oom killer is not called for high-order
2514 * allocations that may fail, so if no progress
2515 * is being made, there are no other options and
2516 * retrying is unlikely to help.
2517 */
2518 if (order > PAGE_ALLOC_COSTLY_ORDER)
2519 goto nopage;
2520 /*
2521 * The oom killer is not called for lowmem
2522 * allocations to prevent needlessly killing
2523 * innocent tasks.
2524 */
2525 if (high_zoneidx < ZONE_NORMAL)
2526 goto nopage;
2527 }
2528
2529 goto restart;
2530 }
2531 }
2532
2533 /* Check if we should retry the allocation */
2534 pages_reclaimed += did_some_progress;
2535 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2536 pages_reclaimed)) {
2537 /* Wait for some write requests to complete then retry */
2538 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2539 goto rebalance;
2540 } else {
2541 /*
2542 * High-order allocations do not necessarily loop after
2543 * direct reclaim and reclaim/compaction depends on compaction
2544 * being called after reclaim so call directly if necessary
2545 */
2546 page = __alloc_pages_direct_compact(gfp_mask, order,
2547 zonelist, high_zoneidx,
2548 nodemask,
2549 alloc_flags, preferred_zone,
2550 migratetype, sync_migration,
2551 &contended_compaction,
2552 &deferred_compaction,
2553 &did_some_progress);
2554 if (page)
2555 goto got_pg;
2556 }
2557
2558 nopage:
2559 warn_alloc_failed(gfp_mask, order, NULL);
2560 return page;
2561 got_pg:
2562 if (kmemcheck_enabled)
2563 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2564
2565 return page;
2566 }
2567
2568 /*
2569 * This is the 'heart' of the zoned buddy allocator.
2570 */
2571 struct page *
2572 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2573 struct zonelist *zonelist, nodemask_t *nodemask)
2574 {
2575 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2576 struct zone *preferred_zone;
2577 struct page *page = NULL;
2578 int migratetype = allocflags_to_migratetype(gfp_mask);
2579 unsigned int cpuset_mems_cookie;
2580 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2581 struct mem_cgroup *memcg = NULL;
2582
2583 gfp_mask &= gfp_allowed_mask;
2584
2585 lockdep_trace_alloc(gfp_mask);
2586
2587 might_sleep_if(gfp_mask & __GFP_WAIT);
2588
2589 if (should_fail_alloc_page(gfp_mask, order))
2590 return NULL;
2591
2592 /*
2593 * Check the zones suitable for the gfp_mask contain at least one
2594 * valid zone. It's possible to have an empty zonelist as a result
2595 * of GFP_THISNODE and a memoryless node
2596 */
2597 if (unlikely(!zonelist->_zonerefs->zone))
2598 return NULL;
2599
2600 /*
2601 * Will only have any effect when __GFP_KMEMCG is set. This is
2602 * verified in the (always inline) callee
2603 */
2604 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2605 return NULL;
2606
2607 retry_cpuset:
2608 cpuset_mems_cookie = get_mems_allowed();
2609
2610 /* The preferred zone is used for statistics later */
2611 first_zones_zonelist(zonelist, high_zoneidx,
2612 nodemask ? : &cpuset_current_mems_allowed,
2613 &preferred_zone);
2614 if (!preferred_zone)
2615 goto out;
2616
2617 #ifdef CONFIG_CMA
2618 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2619 alloc_flags |= ALLOC_CMA;
2620 #endif
2621 /* First allocation attempt */
2622 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2623 zonelist, high_zoneidx, alloc_flags,
2624 preferred_zone, migratetype);
2625 if (unlikely(!page))
2626 page = __alloc_pages_slowpath(gfp_mask, order,
2627 zonelist, high_zoneidx, nodemask,
2628 preferred_zone, migratetype);
2629
2630 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2631
2632 out:
2633 /*
2634 * When updating a task's mems_allowed, it is possible to race with
2635 * parallel threads in such a way that an allocation can fail while
2636 * the mask is being updated. If a page allocation is about to fail,
2637 * check if the cpuset changed during allocation and if so, retry.
2638 */
2639 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2640 goto retry_cpuset;
2641
2642 memcg_kmem_commit_charge(page, memcg, order);
2643
2644 return page;
2645 }
2646 EXPORT_SYMBOL(__alloc_pages_nodemask);
2647
2648 /*
2649 * Common helper functions.
2650 */
2651 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2652 {
2653 struct page *page;
2654
2655 /*
2656 * __get_free_pages() returns a 32-bit address, which cannot represent
2657 * a highmem page
2658 */
2659 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2660
2661 page = alloc_pages(gfp_mask, order);
2662 if (!page)
2663 return 0;
2664 return (unsigned long) page_address(page);
2665 }
2666 EXPORT_SYMBOL(__get_free_pages);
2667
2668 unsigned long get_zeroed_page(gfp_t gfp_mask)
2669 {
2670 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2671 }
2672 EXPORT_SYMBOL(get_zeroed_page);
2673
2674 void __free_pages(struct page *page, unsigned int order)
2675 {
2676 if (put_page_testzero(page)) {
2677 if (order == 0)
2678 free_hot_cold_page(page, 0);
2679 else
2680 __free_pages_ok(page, order);
2681 }
2682 }
2683
2684 EXPORT_SYMBOL(__free_pages);
2685
2686 void free_pages(unsigned long addr, unsigned int order)
2687 {
2688 if (addr != 0) {
2689 VM_BUG_ON(!virt_addr_valid((void *)addr));
2690 __free_pages(virt_to_page((void *)addr), order);
2691 }
2692 }
2693
2694 EXPORT_SYMBOL(free_pages);
2695
2696 /*
2697 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2698 * pages allocated with __GFP_KMEMCG.
2699 *
2700 * Those pages are accounted to a particular memcg, embedded in the
2701 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2702 * for that information only to find out that it is NULL for users who have no
2703 * interest in that whatsoever, we provide these functions.
2704 *
2705 * The caller knows better which flags it relies on.
2706 */
2707 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2708 {
2709 memcg_kmem_uncharge_pages(page, order);
2710 __free_pages(page, order);
2711 }
2712
2713 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2714 {
2715 if (addr != 0) {
2716 VM_BUG_ON(!virt_addr_valid((void *)addr));
2717 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2718 }
2719 }
2720
2721 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2722 {
2723 if (addr) {
2724 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2725 unsigned long used = addr + PAGE_ALIGN(size);
2726
2727 split_page(virt_to_page((void *)addr), order);
2728 while (used < alloc_end) {
2729 free_page(used);
2730 used += PAGE_SIZE;
2731 }
2732 }
2733 return (void *)addr;
2734 }
2735
2736 /**
2737 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2738 * @size: the number of bytes to allocate
2739 * @gfp_mask: GFP flags for the allocation
2740 *
2741 * This function is similar to alloc_pages(), except that it allocates the
2742 * minimum number of pages to satisfy the request. alloc_pages() can only
2743 * allocate memory in power-of-two pages.
2744 *
2745 * This function is also limited by MAX_ORDER.
2746 *
2747 * Memory allocated by this function must be released by free_pages_exact().
2748 */
2749 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2750 {
2751 unsigned int order = get_order(size);
2752 unsigned long addr;
2753
2754 addr = __get_free_pages(gfp_mask, order);
2755 return make_alloc_exact(addr, order, size);
2756 }
2757 EXPORT_SYMBOL(alloc_pages_exact);
2758
2759 /**
2760 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2761 * pages on a node.
2762 * @nid: the preferred node ID where memory should be allocated
2763 * @size: the number of bytes to allocate
2764 * @gfp_mask: GFP flags for the allocation
2765 *
2766 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2767 * back.
2768 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2769 * but is not exact.
2770 */
2771 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2772 {
2773 unsigned order = get_order(size);
2774 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2775 if (!p)
2776 return NULL;
2777 return make_alloc_exact((unsigned long)page_address(p), order, size);
2778 }
2779 EXPORT_SYMBOL(alloc_pages_exact_nid);
2780
2781 /**
2782 * free_pages_exact - release memory allocated via alloc_pages_exact()
2783 * @virt: the value returned by alloc_pages_exact.
2784 * @size: size of allocation, same value as passed to alloc_pages_exact().
2785 *
2786 * Release the memory allocated by a previous call to alloc_pages_exact.
2787 */
2788 void free_pages_exact(void *virt, size_t size)
2789 {
2790 unsigned long addr = (unsigned long)virt;
2791 unsigned long end = addr + PAGE_ALIGN(size);
2792
2793 while (addr < end) {
2794 free_page(addr);
2795 addr += PAGE_SIZE;
2796 }
2797 }
2798 EXPORT_SYMBOL(free_pages_exact);
2799
2800 static unsigned int nr_free_zone_pages(int offset)
2801 {
2802 struct zoneref *z;
2803 struct zone *zone;
2804
2805 /* Just pick one node, since fallback list is circular */
2806 unsigned int sum = 0;
2807
2808 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2809
2810 for_each_zone_zonelist(zone, z, zonelist, offset) {
2811 unsigned long size = zone->managed_pages;
2812 unsigned long high = high_wmark_pages(zone);
2813 if (size > high)
2814 sum += size - high;
2815 }
2816
2817 return sum;
2818 }
2819
2820 /*
2821 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2822 */
2823 unsigned int nr_free_buffer_pages(void)
2824 {
2825 return nr_free_zone_pages(gfp_zone(GFP_USER));
2826 }
2827 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2828
2829 /*
2830 * Amount of free RAM allocatable within all zones
2831 */
2832 unsigned int nr_free_pagecache_pages(void)
2833 {
2834 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2835 }
2836
2837 static inline void show_node(struct zone *zone)
2838 {
2839 if (IS_ENABLED(CONFIG_NUMA))
2840 printk("Node %d ", zone_to_nid(zone));
2841 }
2842
2843 void si_meminfo(struct sysinfo *val)
2844 {
2845 val->totalram = totalram_pages;
2846 val->sharedram = 0;
2847 val->freeram = global_page_state(NR_FREE_PAGES);
2848 val->bufferram = nr_blockdev_pages();
2849 val->totalhigh = totalhigh_pages;
2850 val->freehigh = nr_free_highpages();
2851 val->mem_unit = PAGE_SIZE;
2852 }
2853
2854 EXPORT_SYMBOL(si_meminfo);
2855
2856 #ifdef CONFIG_NUMA
2857 void si_meminfo_node(struct sysinfo *val, int nid)
2858 {
2859 pg_data_t *pgdat = NODE_DATA(nid);
2860
2861 val->totalram = pgdat->node_present_pages;
2862 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2863 #ifdef CONFIG_HIGHMEM
2864 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2865 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2866 NR_FREE_PAGES);
2867 #else
2868 val->totalhigh = 0;
2869 val->freehigh = 0;
2870 #endif
2871 val->mem_unit = PAGE_SIZE;
2872 }
2873 #endif
2874
2875 /*
2876 * Determine whether the node should be displayed or not, depending on whether
2877 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2878 */
2879 bool skip_free_areas_node(unsigned int flags, int nid)
2880 {
2881 bool ret = false;
2882 unsigned int cpuset_mems_cookie;
2883
2884 if (!(flags & SHOW_MEM_FILTER_NODES))
2885 goto out;
2886
2887 do {
2888 cpuset_mems_cookie = get_mems_allowed();
2889 ret = !node_isset(nid, cpuset_current_mems_allowed);
2890 } while (!put_mems_allowed(cpuset_mems_cookie));
2891 out:
2892 return ret;
2893 }
2894
2895 #define K(x) ((x) << (PAGE_SHIFT-10))
2896
2897 static void show_migration_types(unsigned char type)
2898 {
2899 static const char types[MIGRATE_TYPES] = {
2900 [MIGRATE_UNMOVABLE] = 'U',
2901 [MIGRATE_RECLAIMABLE] = 'E',
2902 [MIGRATE_MOVABLE] = 'M',
2903 [MIGRATE_RESERVE] = 'R',
2904 #ifdef CONFIG_CMA
2905 [MIGRATE_CMA] = 'C',
2906 #endif
2907 [MIGRATE_ISOLATE] = 'I',
2908 };
2909 char tmp[MIGRATE_TYPES + 1];
2910 char *p = tmp;
2911 int i;
2912
2913 for (i = 0; i < MIGRATE_TYPES; i++) {
2914 if (type & (1 << i))
2915 *p++ = types[i];
2916 }
2917
2918 *p = '\0';
2919 printk("(%s) ", tmp);
2920 }
2921
2922 /*
2923 * Show free area list (used inside shift_scroll-lock stuff)
2924 * We also calculate the percentage fragmentation. We do this by counting the
2925 * memory on each free list with the exception of the first item on the list.
2926 * Suppresses nodes that are not allowed by current's cpuset if
2927 * SHOW_MEM_FILTER_NODES is passed.
2928 */
2929 void show_free_areas(unsigned int filter)
2930 {
2931 int cpu;
2932 struct zone *zone;
2933
2934 for_each_populated_zone(zone) {
2935 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2936 continue;
2937 show_node(zone);
2938 printk("%s per-cpu:\n", zone->name);
2939
2940 for_each_online_cpu(cpu) {
2941 struct per_cpu_pageset *pageset;
2942
2943 pageset = per_cpu_ptr(zone->pageset, cpu);
2944
2945 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2946 cpu, pageset->pcp.high,
2947 pageset->pcp.batch, pageset->pcp.count);
2948 }
2949 }
2950
2951 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2952 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2953 " unevictable:%lu"
2954 " dirty:%lu writeback:%lu unstable:%lu\n"
2955 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2956 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2957 " free_cma:%lu\n",
2958 global_page_state(NR_ACTIVE_ANON),
2959 global_page_state(NR_INACTIVE_ANON),
2960 global_page_state(NR_ISOLATED_ANON),
2961 global_page_state(NR_ACTIVE_FILE),
2962 global_page_state(NR_INACTIVE_FILE),
2963 global_page_state(NR_ISOLATED_FILE),
2964 global_page_state(NR_UNEVICTABLE),
2965 global_page_state(NR_FILE_DIRTY),
2966 global_page_state(NR_WRITEBACK),
2967 global_page_state(NR_UNSTABLE_NFS),
2968 global_page_state(NR_FREE_PAGES),
2969 global_page_state(NR_SLAB_RECLAIMABLE),
2970 global_page_state(NR_SLAB_UNRECLAIMABLE),
2971 global_page_state(NR_FILE_MAPPED),
2972 global_page_state(NR_SHMEM),
2973 global_page_state(NR_PAGETABLE),
2974 global_page_state(NR_BOUNCE),
2975 global_page_state(NR_FREE_CMA_PAGES));
2976
2977 for_each_populated_zone(zone) {
2978 int i;
2979
2980 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2981 continue;
2982 show_node(zone);
2983 printk("%s"
2984 " free:%lukB"
2985 " min:%lukB"
2986 " low:%lukB"
2987 " high:%lukB"
2988 " active_anon:%lukB"
2989 " inactive_anon:%lukB"
2990 " active_file:%lukB"
2991 " inactive_file:%lukB"
2992 " unevictable:%lukB"
2993 " isolated(anon):%lukB"
2994 " isolated(file):%lukB"
2995 " present:%lukB"
2996 " managed:%lukB"
2997 " mlocked:%lukB"
2998 " dirty:%lukB"
2999 " writeback:%lukB"
3000 " mapped:%lukB"
3001 " shmem:%lukB"
3002 " slab_reclaimable:%lukB"
3003 " slab_unreclaimable:%lukB"
3004 " kernel_stack:%lukB"
3005 " pagetables:%lukB"
3006 " unstable:%lukB"
3007 " bounce:%lukB"
3008 " free_cma:%lukB"
3009 " writeback_tmp:%lukB"
3010 " pages_scanned:%lu"
3011 " all_unreclaimable? %s"
3012 "\n",
3013 zone->name,
3014 K(zone_page_state(zone, NR_FREE_PAGES)),
3015 K(min_wmark_pages(zone)),
3016 K(low_wmark_pages(zone)),
3017 K(high_wmark_pages(zone)),
3018 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3019 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3020 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3021 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3022 K(zone_page_state(zone, NR_UNEVICTABLE)),
3023 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3024 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3025 K(zone->present_pages),
3026 K(zone->managed_pages),
3027 K(zone_page_state(zone, NR_MLOCK)),
3028 K(zone_page_state(zone, NR_FILE_DIRTY)),
3029 K(zone_page_state(zone, NR_WRITEBACK)),
3030 K(zone_page_state(zone, NR_FILE_MAPPED)),
3031 K(zone_page_state(zone, NR_SHMEM)),
3032 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3033 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3034 zone_page_state(zone, NR_KERNEL_STACK) *
3035 THREAD_SIZE / 1024,
3036 K(zone_page_state(zone, NR_PAGETABLE)),
3037 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3038 K(zone_page_state(zone, NR_BOUNCE)),
3039 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3040 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3041 zone->pages_scanned,
3042 (zone->all_unreclaimable ? "yes" : "no")
3043 );
3044 printk("lowmem_reserve[]:");
3045 for (i = 0; i < MAX_NR_ZONES; i++)
3046 printk(" %lu", zone->lowmem_reserve[i]);
3047 printk("\n");
3048 }
3049
3050 for_each_populated_zone(zone) {
3051 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3052 unsigned char types[MAX_ORDER];
3053
3054 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3055 continue;
3056 show_node(zone);
3057 printk("%s: ", zone->name);
3058
3059 spin_lock_irqsave(&zone->lock, flags);
3060 for (order = 0; order < MAX_ORDER; order++) {
3061 struct free_area *area = &zone->free_area[order];
3062 int type;
3063
3064 nr[order] = area->nr_free;
3065 total += nr[order] << order;
3066
3067 types[order] = 0;
3068 for (type = 0; type < MIGRATE_TYPES; type++) {
3069 if (!list_empty(&area->free_list[type]))
3070 types[order] |= 1 << type;
3071 }
3072 }
3073 spin_unlock_irqrestore(&zone->lock, flags);
3074 for (order = 0; order < MAX_ORDER; order++) {
3075 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3076 if (nr[order])
3077 show_migration_types(types[order]);
3078 }
3079 printk("= %lukB\n", K(total));
3080 }
3081
3082 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3083
3084 show_swap_cache_info();
3085 }
3086
3087 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3088 {
3089 zoneref->zone = zone;
3090 zoneref->zone_idx = zone_idx(zone);
3091 }
3092
3093 /*
3094 * Builds allocation fallback zone lists.
3095 *
3096 * Add all populated zones of a node to the zonelist.
3097 */
3098 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3099 int nr_zones, enum zone_type zone_type)
3100 {
3101 struct zone *zone;
3102
3103 BUG_ON(zone_type >= MAX_NR_ZONES);
3104 zone_type++;
3105
3106 do {
3107 zone_type--;
3108 zone = pgdat->node_zones + zone_type;
3109 if (populated_zone(zone)) {
3110 zoneref_set_zone(zone,
3111 &zonelist->_zonerefs[nr_zones++]);
3112 check_highest_zone(zone_type);
3113 }
3114
3115 } while (zone_type);
3116 return nr_zones;
3117 }
3118
3119
3120 /*
3121 * zonelist_order:
3122 * 0 = automatic detection of better ordering.
3123 * 1 = order by ([node] distance, -zonetype)
3124 * 2 = order by (-zonetype, [node] distance)
3125 *
3126 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3127 * the same zonelist. So only NUMA can configure this param.
3128 */
3129 #define ZONELIST_ORDER_DEFAULT 0
3130 #define ZONELIST_ORDER_NODE 1
3131 #define ZONELIST_ORDER_ZONE 2
3132
3133 /* zonelist order in the kernel.
3134 * set_zonelist_order() will set this to NODE or ZONE.
3135 */
3136 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3137 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3138
3139
3140 #ifdef CONFIG_NUMA
3141 /* The value user specified ....changed by config */
3142 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3143 /* string for sysctl */
3144 #define NUMA_ZONELIST_ORDER_LEN 16
3145 char numa_zonelist_order[16] = "default";
3146
3147 /*
3148 * interface for configure zonelist ordering.
3149 * command line option "numa_zonelist_order"
3150 * = "[dD]efault - default, automatic configuration.
3151 * = "[nN]ode - order by node locality, then by zone within node
3152 * = "[zZ]one - order by zone, then by locality within zone
3153 */
3154
3155 static int __parse_numa_zonelist_order(char *s)
3156 {
3157 if (*s == 'd' || *s == 'D') {
3158 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3159 } else if (*s == 'n' || *s == 'N') {
3160 user_zonelist_order = ZONELIST_ORDER_NODE;
3161 } else if (*s == 'z' || *s == 'Z') {
3162 user_zonelist_order = ZONELIST_ORDER_ZONE;
3163 } else {
3164 printk(KERN_WARNING
3165 "Ignoring invalid numa_zonelist_order value: "
3166 "%s\n", s);
3167 return -EINVAL;
3168 }
3169 return 0;
3170 }
3171
3172 static __init int setup_numa_zonelist_order(char *s)
3173 {
3174 int ret;
3175
3176 if (!s)
3177 return 0;
3178
3179 ret = __parse_numa_zonelist_order(s);
3180 if (ret == 0)
3181 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3182
3183 return ret;
3184 }
3185 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3186
3187 /*
3188 * sysctl handler for numa_zonelist_order
3189 */
3190 int numa_zonelist_order_handler(ctl_table *table, int write,
3191 void __user *buffer, size_t *length,
3192 loff_t *ppos)
3193 {
3194 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3195 int ret;
3196 static DEFINE_MUTEX(zl_order_mutex);
3197
3198 mutex_lock(&zl_order_mutex);
3199 if (write)
3200 strcpy(saved_string, (char*)table->data);
3201 ret = proc_dostring(table, write, buffer, length, ppos);
3202 if (ret)
3203 goto out;
3204 if (write) {
3205 int oldval = user_zonelist_order;
3206 if (__parse_numa_zonelist_order((char*)table->data)) {
3207 /*
3208 * bogus value. restore saved string
3209 */
3210 strncpy((char*)table->data, saved_string,
3211 NUMA_ZONELIST_ORDER_LEN);
3212 user_zonelist_order = oldval;
3213 } else if (oldval != user_zonelist_order) {
3214 mutex_lock(&zonelists_mutex);
3215 build_all_zonelists(NULL, NULL);
3216 mutex_unlock(&zonelists_mutex);
3217 }
3218 }
3219 out:
3220 mutex_unlock(&zl_order_mutex);
3221 return ret;
3222 }
3223
3224
3225 #define MAX_NODE_LOAD (nr_online_nodes)
3226 static int node_load[MAX_NUMNODES];
3227
3228 /**
3229 * find_next_best_node - find the next node that should appear in a given node's fallback list
3230 * @node: node whose fallback list we're appending
3231 * @used_node_mask: nodemask_t of already used nodes
3232 *
3233 * We use a number of factors to determine which is the next node that should
3234 * appear on a given node's fallback list. The node should not have appeared
3235 * already in @node's fallback list, and it should be the next closest node
3236 * according to the distance array (which contains arbitrary distance values
3237 * from each node to each node in the system), and should also prefer nodes
3238 * with no CPUs, since presumably they'll have very little allocation pressure
3239 * on them otherwise.
3240 * It returns -1 if no node is found.
3241 */
3242 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3243 {
3244 int n, val;
3245 int min_val = INT_MAX;
3246 int best_node = -1;
3247 const struct cpumask *tmp = cpumask_of_node(0);
3248
3249 /* Use the local node if we haven't already */
3250 if (!node_isset(node, *used_node_mask)) {
3251 node_set(node, *used_node_mask);
3252 return node;
3253 }
3254
3255 for_each_node_state(n, N_MEMORY) {
3256
3257 /* Don't want a node to appear more than once */
3258 if (node_isset(n, *used_node_mask))
3259 continue;
3260
3261 /* Use the distance array to find the distance */
3262 val = node_distance(node, n);
3263
3264 /* Penalize nodes under us ("prefer the next node") */
3265 val += (n < node);
3266
3267 /* Give preference to headless and unused nodes */
3268 tmp = cpumask_of_node(n);
3269 if (!cpumask_empty(tmp))
3270 val += PENALTY_FOR_NODE_WITH_CPUS;
3271
3272 /* Slight preference for less loaded node */
3273 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3274 val += node_load[n];
3275
3276 if (val < min_val) {
3277 min_val = val;
3278 best_node = n;
3279 }
3280 }
3281
3282 if (best_node >= 0)
3283 node_set(best_node, *used_node_mask);
3284
3285 return best_node;
3286 }
3287
3288
3289 /*
3290 * Build zonelists ordered by node and zones within node.
3291 * This results in maximum locality--normal zone overflows into local
3292 * DMA zone, if any--but risks exhausting DMA zone.
3293 */
3294 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3295 {
3296 int j;
3297 struct zonelist *zonelist;
3298
3299 zonelist = &pgdat->node_zonelists[0];
3300 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3301 ;
3302 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3303 MAX_NR_ZONES - 1);
3304 zonelist->_zonerefs[j].zone = NULL;
3305 zonelist->_zonerefs[j].zone_idx = 0;
3306 }
3307
3308 /*
3309 * Build gfp_thisnode zonelists
3310 */
3311 static void build_thisnode_zonelists(pg_data_t *pgdat)
3312 {
3313 int j;
3314 struct zonelist *zonelist;
3315
3316 zonelist = &pgdat->node_zonelists[1];
3317 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3318 zonelist->_zonerefs[j].zone = NULL;
3319 zonelist->_zonerefs[j].zone_idx = 0;
3320 }
3321
3322 /*
3323 * Build zonelists ordered by zone and nodes within zones.
3324 * This results in conserving DMA zone[s] until all Normal memory is
3325 * exhausted, but results in overflowing to remote node while memory
3326 * may still exist in local DMA zone.
3327 */
3328 static int node_order[MAX_NUMNODES];
3329
3330 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3331 {
3332 int pos, j, node;
3333 int zone_type; /* needs to be signed */
3334 struct zone *z;
3335 struct zonelist *zonelist;
3336
3337 zonelist = &pgdat->node_zonelists[0];
3338 pos = 0;
3339 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3340 for (j = 0; j < nr_nodes; j++) {
3341 node = node_order[j];
3342 z = &NODE_DATA(node)->node_zones[zone_type];
3343 if (populated_zone(z)) {
3344 zoneref_set_zone(z,
3345 &zonelist->_zonerefs[pos++]);
3346 check_highest_zone(zone_type);
3347 }
3348 }
3349 }
3350 zonelist->_zonerefs[pos].zone = NULL;
3351 zonelist->_zonerefs[pos].zone_idx = 0;
3352 }
3353
3354 static int default_zonelist_order(void)
3355 {
3356 int nid, zone_type;
3357 unsigned long low_kmem_size,total_size;
3358 struct zone *z;
3359 int average_size;
3360 /*
3361 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3362 * If they are really small and used heavily, the system can fall
3363 * into OOM very easily.
3364 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3365 */
3366 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3367 low_kmem_size = 0;
3368 total_size = 0;
3369 for_each_online_node(nid) {
3370 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3371 z = &NODE_DATA(nid)->node_zones[zone_type];
3372 if (populated_zone(z)) {
3373 if (zone_type < ZONE_NORMAL)
3374 low_kmem_size += z->present_pages;
3375 total_size += z->present_pages;
3376 } else if (zone_type == ZONE_NORMAL) {
3377 /*
3378 * If any node has only lowmem, then node order
3379 * is preferred to allow kernel allocations
3380 * locally; otherwise, they can easily infringe
3381 * on other nodes when there is an abundance of
3382 * lowmem available to allocate from.
3383 */
3384 return ZONELIST_ORDER_NODE;
3385 }
3386 }
3387 }
3388 if (!low_kmem_size || /* there are no DMA area. */
3389 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3390 return ZONELIST_ORDER_NODE;
3391 /*
3392 * look into each node's config.
3393 * If there is a node whose DMA/DMA32 memory is very big area on
3394 * local memory, NODE_ORDER may be suitable.
3395 */
3396 average_size = total_size /
3397 (nodes_weight(node_states[N_MEMORY]) + 1);
3398 for_each_online_node(nid) {
3399 low_kmem_size = 0;
3400 total_size = 0;
3401 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3402 z = &NODE_DATA(nid)->node_zones[zone_type];
3403 if (populated_zone(z)) {
3404 if (zone_type < ZONE_NORMAL)
3405 low_kmem_size += z->present_pages;
3406 total_size += z->present_pages;
3407 }
3408 }
3409 if (low_kmem_size &&
3410 total_size > average_size && /* ignore small node */
3411 low_kmem_size > total_size * 70/100)
3412 return ZONELIST_ORDER_NODE;
3413 }
3414 return ZONELIST_ORDER_ZONE;
3415 }
3416
3417 static void set_zonelist_order(void)
3418 {
3419 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3420 current_zonelist_order = default_zonelist_order();
3421 else
3422 current_zonelist_order = user_zonelist_order;
3423 }
3424
3425 static void build_zonelists(pg_data_t *pgdat)
3426 {
3427 int j, node, load;
3428 enum zone_type i;
3429 nodemask_t used_mask;
3430 int local_node, prev_node;
3431 struct zonelist *zonelist;
3432 int order = current_zonelist_order;
3433
3434 /* initialize zonelists */
3435 for (i = 0; i < MAX_ZONELISTS; i++) {
3436 zonelist = pgdat->node_zonelists + i;
3437 zonelist->_zonerefs[0].zone = NULL;
3438 zonelist->_zonerefs[0].zone_idx = 0;
3439 }
3440
3441 /* NUMA-aware ordering of nodes */
3442 local_node = pgdat->node_id;
3443 load = nr_online_nodes;
3444 prev_node = local_node;
3445 nodes_clear(used_mask);
3446
3447 memset(node_order, 0, sizeof(node_order));
3448 j = 0;
3449
3450 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3451 /*
3452 * We don't want to pressure a particular node.
3453 * So adding penalty to the first node in same
3454 * distance group to make it round-robin.
3455 */
3456 if (node_distance(local_node, node) !=
3457 node_distance(local_node, prev_node))
3458 node_load[node] = load;
3459
3460 prev_node = node;
3461 load--;
3462 if (order == ZONELIST_ORDER_NODE)
3463 build_zonelists_in_node_order(pgdat, node);
3464 else
3465 node_order[j++] = node; /* remember order */
3466 }
3467
3468 if (order == ZONELIST_ORDER_ZONE) {
3469 /* calculate node order -- i.e., DMA last! */
3470 build_zonelists_in_zone_order(pgdat, j);
3471 }
3472
3473 build_thisnode_zonelists(pgdat);
3474 }
3475
3476 /* Construct the zonelist performance cache - see further mmzone.h */
3477 static void build_zonelist_cache(pg_data_t *pgdat)
3478 {
3479 struct zonelist *zonelist;
3480 struct zonelist_cache *zlc;
3481 struct zoneref *z;
3482
3483 zonelist = &pgdat->node_zonelists[0];
3484 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3485 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3486 for (z = zonelist->_zonerefs; z->zone; z++)
3487 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3488 }
3489
3490 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3491 /*
3492 * Return node id of node used for "local" allocations.
3493 * I.e., first node id of first zone in arg node's generic zonelist.
3494 * Used for initializing percpu 'numa_mem', which is used primarily
3495 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3496 */
3497 int local_memory_node(int node)
3498 {
3499 struct zone *zone;
3500
3501 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3502 gfp_zone(GFP_KERNEL),
3503 NULL,
3504 &zone);
3505 return zone->node;
3506 }
3507 #endif
3508
3509 #else /* CONFIG_NUMA */
3510
3511 static void set_zonelist_order(void)
3512 {
3513 current_zonelist_order = ZONELIST_ORDER_ZONE;
3514 }
3515
3516 static void build_zonelists(pg_data_t *pgdat)
3517 {
3518 int node, local_node;
3519 enum zone_type j;
3520 struct zonelist *zonelist;
3521
3522 local_node = pgdat->node_id;
3523
3524 zonelist = &pgdat->node_zonelists[0];
3525 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3526
3527 /*
3528 * Now we build the zonelist so that it contains the zones
3529 * of all the other nodes.
3530 * We don't want to pressure a particular node, so when
3531 * building the zones for node N, we make sure that the
3532 * zones coming right after the local ones are those from
3533 * node N+1 (modulo N)
3534 */
3535 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3536 if (!node_online(node))
3537 continue;
3538 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3539 MAX_NR_ZONES - 1);
3540 }
3541 for (node = 0; node < local_node; node++) {
3542 if (!node_online(node))
3543 continue;
3544 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3545 MAX_NR_ZONES - 1);
3546 }
3547
3548 zonelist->_zonerefs[j].zone = NULL;
3549 zonelist->_zonerefs[j].zone_idx = 0;
3550 }
3551
3552 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3553 static void build_zonelist_cache(pg_data_t *pgdat)
3554 {
3555 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3556 }
3557
3558 #endif /* CONFIG_NUMA */
3559
3560 /*
3561 * Boot pageset table. One per cpu which is going to be used for all
3562 * zones and all nodes. The parameters will be set in such a way
3563 * that an item put on a list will immediately be handed over to
3564 * the buddy list. This is safe since pageset manipulation is done
3565 * with interrupts disabled.
3566 *
3567 * The boot_pagesets must be kept even after bootup is complete for
3568 * unused processors and/or zones. They do play a role for bootstrapping
3569 * hotplugged processors.
3570 *
3571 * zoneinfo_show() and maybe other functions do
3572 * not check if the processor is online before following the pageset pointer.
3573 * Other parts of the kernel may not check if the zone is available.
3574 */
3575 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3576 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3577 static void setup_zone_pageset(struct zone *zone);
3578
3579 /*
3580 * Global mutex to protect against size modification of zonelists
3581 * as well as to serialize pageset setup for the new populated zone.
3582 */
3583 DEFINE_MUTEX(zonelists_mutex);
3584
3585 /* return values int ....just for stop_machine() */
3586 static int __build_all_zonelists(void *data)
3587 {
3588 int nid;
3589 int cpu;
3590 pg_data_t *self = data;
3591
3592 #ifdef CONFIG_NUMA
3593 memset(node_load, 0, sizeof(node_load));
3594 #endif
3595
3596 if (self && !node_online(self->node_id)) {
3597 build_zonelists(self);
3598 build_zonelist_cache(self);
3599 }
3600
3601 for_each_online_node(nid) {
3602 pg_data_t *pgdat = NODE_DATA(nid);
3603
3604 build_zonelists(pgdat);
3605 build_zonelist_cache(pgdat);
3606 }
3607
3608 /*
3609 * Initialize the boot_pagesets that are going to be used
3610 * for bootstrapping processors. The real pagesets for
3611 * each zone will be allocated later when the per cpu
3612 * allocator is available.
3613 *
3614 * boot_pagesets are used also for bootstrapping offline
3615 * cpus if the system is already booted because the pagesets
3616 * are needed to initialize allocators on a specific cpu too.
3617 * F.e. the percpu allocator needs the page allocator which
3618 * needs the percpu allocator in order to allocate its pagesets
3619 * (a chicken-egg dilemma).
3620 */
3621 for_each_possible_cpu(cpu) {
3622 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3623
3624 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3625 /*
3626 * We now know the "local memory node" for each node--
3627 * i.e., the node of the first zone in the generic zonelist.
3628 * Set up numa_mem percpu variable for on-line cpus. During
3629 * boot, only the boot cpu should be on-line; we'll init the
3630 * secondary cpus' numa_mem as they come on-line. During
3631 * node/memory hotplug, we'll fixup all on-line cpus.
3632 */
3633 if (cpu_online(cpu))
3634 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3635 #endif
3636 }
3637
3638 return 0;
3639 }
3640
3641 /*
3642 * Called with zonelists_mutex held always
3643 * unless system_state == SYSTEM_BOOTING.
3644 */
3645 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3646 {
3647 set_zonelist_order();
3648
3649 if (system_state == SYSTEM_BOOTING) {
3650 __build_all_zonelists(NULL);
3651 mminit_verify_zonelist();
3652 cpuset_init_current_mems_allowed();
3653 } else {
3654 /* we have to stop all cpus to guarantee there is no user
3655 of zonelist */
3656 #ifdef CONFIG_MEMORY_HOTPLUG
3657 if (zone)
3658 setup_zone_pageset(zone);
3659 #endif
3660 stop_machine(__build_all_zonelists, pgdat, NULL);
3661 /* cpuset refresh routine should be here */
3662 }
3663 vm_total_pages = nr_free_pagecache_pages();
3664 /*
3665 * Disable grouping by mobility if the number of pages in the
3666 * system is too low to allow the mechanism to work. It would be
3667 * more accurate, but expensive to check per-zone. This check is
3668 * made on memory-hotadd so a system can start with mobility
3669 * disabled and enable it later
3670 */
3671 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3672 page_group_by_mobility_disabled = 1;
3673 else
3674 page_group_by_mobility_disabled = 0;
3675
3676 printk("Built %i zonelists in %s order, mobility grouping %s. "
3677 "Total pages: %ld\n",
3678 nr_online_nodes,
3679 zonelist_order_name[current_zonelist_order],
3680 page_group_by_mobility_disabled ? "off" : "on",
3681 vm_total_pages);
3682 #ifdef CONFIG_NUMA
3683 printk("Policy zone: %s\n", zone_names[policy_zone]);
3684 #endif
3685 }
3686
3687 /*
3688 * Helper functions to size the waitqueue hash table.
3689 * Essentially these want to choose hash table sizes sufficiently
3690 * large so that collisions trying to wait on pages are rare.
3691 * But in fact, the number of active page waitqueues on typical
3692 * systems is ridiculously low, less than 200. So this is even
3693 * conservative, even though it seems large.
3694 *
3695 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3696 * waitqueues, i.e. the size of the waitq table given the number of pages.
3697 */
3698 #define PAGES_PER_WAITQUEUE 256
3699
3700 #ifndef CONFIG_MEMORY_HOTPLUG
3701 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3702 {
3703 unsigned long size = 1;
3704
3705 pages /= PAGES_PER_WAITQUEUE;
3706
3707 while (size < pages)
3708 size <<= 1;
3709
3710 /*
3711 * Once we have dozens or even hundreds of threads sleeping
3712 * on IO we've got bigger problems than wait queue collision.
3713 * Limit the size of the wait table to a reasonable size.
3714 */
3715 size = min(size, 4096UL);
3716
3717 return max(size, 4UL);
3718 }
3719 #else
3720 /*
3721 * A zone's size might be changed by hot-add, so it is not possible to determine
3722 * a suitable size for its wait_table. So we use the maximum size now.
3723 *
3724 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3725 *
3726 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3727 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3728 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3729 *
3730 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3731 * or more by the traditional way. (See above). It equals:
3732 *
3733 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3734 * ia64(16K page size) : = ( 8G + 4M)byte.
3735 * powerpc (64K page size) : = (32G +16M)byte.
3736 */
3737 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3738 {
3739 return 4096UL;
3740 }
3741 #endif
3742
3743 /*
3744 * This is an integer logarithm so that shifts can be used later
3745 * to extract the more random high bits from the multiplicative
3746 * hash function before the remainder is taken.
3747 */
3748 static inline unsigned long wait_table_bits(unsigned long size)
3749 {
3750 return ffz(~size);
3751 }
3752
3753 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3754
3755 /*
3756 * Check if a pageblock contains reserved pages
3757 */
3758 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3759 {
3760 unsigned long pfn;
3761
3762 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3763 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3764 return 1;
3765 }
3766 return 0;
3767 }
3768
3769 /*
3770 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3771 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3772 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3773 * higher will lead to a bigger reserve which will get freed as contiguous
3774 * blocks as reclaim kicks in
3775 */
3776 static void setup_zone_migrate_reserve(struct zone *zone)
3777 {
3778 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3779 struct page *page;
3780 unsigned long block_migratetype;
3781 int reserve;
3782
3783 /*
3784 * Get the start pfn, end pfn and the number of blocks to reserve
3785 * We have to be careful to be aligned to pageblock_nr_pages to
3786 * make sure that we always check pfn_valid for the first page in
3787 * the block.
3788 */
3789 start_pfn = zone->zone_start_pfn;
3790 end_pfn = start_pfn + zone->spanned_pages;
3791 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3792 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3793 pageblock_order;
3794
3795 /*
3796 * Reserve blocks are generally in place to help high-order atomic
3797 * allocations that are short-lived. A min_free_kbytes value that
3798 * would result in more than 2 reserve blocks for atomic allocations
3799 * is assumed to be in place to help anti-fragmentation for the
3800 * future allocation of hugepages at runtime.
3801 */
3802 reserve = min(2, reserve);
3803
3804 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3805 if (!pfn_valid(pfn))
3806 continue;
3807 page = pfn_to_page(pfn);
3808
3809 /* Watch out for overlapping nodes */
3810 if (page_to_nid(page) != zone_to_nid(zone))
3811 continue;
3812
3813 block_migratetype = get_pageblock_migratetype(page);
3814
3815 /* Only test what is necessary when the reserves are not met */
3816 if (reserve > 0) {
3817 /*
3818 * Blocks with reserved pages will never free, skip
3819 * them.
3820 */
3821 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3822 if (pageblock_is_reserved(pfn, block_end_pfn))
3823 continue;
3824
3825 /* If this block is reserved, account for it */
3826 if (block_migratetype == MIGRATE_RESERVE) {
3827 reserve--;
3828 continue;
3829 }
3830
3831 /* Suitable for reserving if this block is movable */
3832 if (block_migratetype == MIGRATE_MOVABLE) {
3833 set_pageblock_migratetype(page,
3834 MIGRATE_RESERVE);
3835 move_freepages_block(zone, page,
3836 MIGRATE_RESERVE);
3837 reserve--;
3838 continue;
3839 }
3840 }
3841
3842 /*
3843 * If the reserve is met and this is a previous reserved block,
3844 * take it back
3845 */
3846 if (block_migratetype == MIGRATE_RESERVE) {
3847 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3848 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3849 }
3850 }
3851 }
3852
3853 /*
3854 * Initially all pages are reserved - free ones are freed
3855 * up by free_all_bootmem() once the early boot process is
3856 * done. Non-atomic initialization, single-pass.
3857 */
3858 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3859 unsigned long start_pfn, enum memmap_context context)
3860 {
3861 struct page *page;
3862 unsigned long end_pfn = start_pfn + size;
3863 unsigned long pfn;
3864 struct zone *z;
3865
3866 if (highest_memmap_pfn < end_pfn - 1)
3867 highest_memmap_pfn = end_pfn - 1;
3868
3869 z = &NODE_DATA(nid)->node_zones[zone];
3870 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3871 /*
3872 * There can be holes in boot-time mem_map[]s
3873 * handed to this function. They do not
3874 * exist on hotplugged memory.
3875 */
3876 if (context == MEMMAP_EARLY) {
3877 if (!early_pfn_valid(pfn))
3878 continue;
3879 if (!early_pfn_in_nid(pfn, nid))
3880 continue;
3881 }
3882 page = pfn_to_page(pfn);
3883 set_page_links(page, zone, nid, pfn);
3884 mminit_verify_page_links(page, zone, nid, pfn);
3885 init_page_count(page);
3886 reset_page_mapcount(page);
3887 reset_page_last_nid(page);
3888 SetPageReserved(page);
3889 /*
3890 * Mark the block movable so that blocks are reserved for
3891 * movable at startup. This will force kernel allocations
3892 * to reserve their blocks rather than leaking throughout
3893 * the address space during boot when many long-lived
3894 * kernel allocations are made. Later some blocks near
3895 * the start are marked MIGRATE_RESERVE by
3896 * setup_zone_migrate_reserve()
3897 *
3898 * bitmap is created for zone's valid pfn range. but memmap
3899 * can be created for invalid pages (for alignment)
3900 * check here not to call set_pageblock_migratetype() against
3901 * pfn out of zone.
3902 */
3903 if ((z->zone_start_pfn <= pfn)
3904 && (pfn < z->zone_start_pfn + z->spanned_pages)
3905 && !(pfn & (pageblock_nr_pages - 1)))
3906 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3907
3908 INIT_LIST_HEAD(&page->lru);
3909 #ifdef WANT_PAGE_VIRTUAL
3910 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3911 if (!is_highmem_idx(zone))
3912 set_page_address(page, __va(pfn << PAGE_SHIFT));
3913 #endif
3914 }
3915 }
3916
3917 static void __meminit zone_init_free_lists(struct zone *zone)
3918 {
3919 int order, t;
3920 for_each_migratetype_order(order, t) {
3921 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3922 zone->free_area[order].nr_free = 0;
3923 }
3924 }
3925
3926 #ifndef __HAVE_ARCH_MEMMAP_INIT
3927 #define memmap_init(size, nid, zone, start_pfn) \
3928 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3929 #endif
3930
3931 static int __meminit zone_batchsize(struct zone *zone)
3932 {
3933 #ifdef CONFIG_MMU
3934 int batch;
3935
3936 /*
3937 * The per-cpu-pages pools are set to around 1000th of the
3938 * size of the zone. But no more than 1/2 of a meg.
3939 *
3940 * OK, so we don't know how big the cache is. So guess.
3941 */
3942 batch = zone->managed_pages / 1024;
3943 if (batch * PAGE_SIZE > 512 * 1024)
3944 batch = (512 * 1024) / PAGE_SIZE;
3945 batch /= 4; /* We effectively *= 4 below */
3946 if (batch < 1)
3947 batch = 1;
3948
3949 /*
3950 * Clamp the batch to a 2^n - 1 value. Having a power
3951 * of 2 value was found to be more likely to have
3952 * suboptimal cache aliasing properties in some cases.
3953 *
3954 * For example if 2 tasks are alternately allocating
3955 * batches of pages, one task can end up with a lot
3956 * of pages of one half of the possible page colors
3957 * and the other with pages of the other colors.
3958 */
3959 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3960
3961 return batch;
3962
3963 #else
3964 /* The deferral and batching of frees should be suppressed under NOMMU
3965 * conditions.
3966 *
3967 * The problem is that NOMMU needs to be able to allocate large chunks
3968 * of contiguous memory as there's no hardware page translation to
3969 * assemble apparent contiguous memory from discontiguous pages.
3970 *
3971 * Queueing large contiguous runs of pages for batching, however,
3972 * causes the pages to actually be freed in smaller chunks. As there
3973 * can be a significant delay between the individual batches being
3974 * recycled, this leads to the once large chunks of space being
3975 * fragmented and becoming unavailable for high-order allocations.
3976 */
3977 return 0;
3978 #endif
3979 }
3980
3981 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3982 {
3983 struct per_cpu_pages *pcp;
3984 int migratetype;
3985
3986 memset(p, 0, sizeof(*p));
3987
3988 pcp = &p->pcp;
3989 pcp->count = 0;
3990 pcp->high = 6 * batch;
3991 pcp->batch = max(1UL, 1 * batch);
3992 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3993 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3994 }
3995
3996 /*
3997 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3998 * to the value high for the pageset p.
3999 */
4000
4001 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4002 unsigned long high)
4003 {
4004 struct per_cpu_pages *pcp;
4005
4006 pcp = &p->pcp;
4007 pcp->high = high;
4008 pcp->batch = max(1UL, high/4);
4009 if ((high/4) > (PAGE_SHIFT * 8))
4010 pcp->batch = PAGE_SHIFT * 8;
4011 }
4012
4013 static void __meminit setup_zone_pageset(struct zone *zone)
4014 {
4015 int cpu;
4016
4017 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4018
4019 for_each_possible_cpu(cpu) {
4020 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4021
4022 setup_pageset(pcp, zone_batchsize(zone));
4023
4024 if (percpu_pagelist_fraction)
4025 setup_pagelist_highmark(pcp,
4026 (zone->managed_pages /
4027 percpu_pagelist_fraction));
4028 }
4029 }
4030
4031 /*
4032 * Allocate per cpu pagesets and initialize them.
4033 * Before this call only boot pagesets were available.
4034 */
4035 void __init setup_per_cpu_pageset(void)
4036 {
4037 struct zone *zone;
4038
4039 for_each_populated_zone(zone)
4040 setup_zone_pageset(zone);
4041 }
4042
4043 static noinline __init_refok
4044 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4045 {
4046 int i;
4047 struct pglist_data *pgdat = zone->zone_pgdat;
4048 size_t alloc_size;
4049
4050 /*
4051 * The per-page waitqueue mechanism uses hashed waitqueues
4052 * per zone.
4053 */
4054 zone->wait_table_hash_nr_entries =
4055 wait_table_hash_nr_entries(zone_size_pages);
4056 zone->wait_table_bits =
4057 wait_table_bits(zone->wait_table_hash_nr_entries);
4058 alloc_size = zone->wait_table_hash_nr_entries
4059 * sizeof(wait_queue_head_t);
4060
4061 if (!slab_is_available()) {
4062 zone->wait_table = (wait_queue_head_t *)
4063 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4064 } else {
4065 /*
4066 * This case means that a zone whose size was 0 gets new memory
4067 * via memory hot-add.
4068 * But it may be the case that a new node was hot-added. In
4069 * this case vmalloc() will not be able to use this new node's
4070 * memory - this wait_table must be initialized to use this new
4071 * node itself as well.
4072 * To use this new node's memory, further consideration will be
4073 * necessary.
4074 */
4075 zone->wait_table = vmalloc(alloc_size);
4076 }
4077 if (!zone->wait_table)
4078 return -ENOMEM;
4079
4080 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4081 init_waitqueue_head(zone->wait_table + i);
4082
4083 return 0;
4084 }
4085
4086 static __meminit void zone_pcp_init(struct zone *zone)
4087 {
4088 /*
4089 * per cpu subsystem is not up at this point. The following code
4090 * relies on the ability of the linker to provide the
4091 * offset of a (static) per cpu variable into the per cpu area.
4092 */
4093 zone->pageset = &boot_pageset;
4094
4095 if (zone->present_pages)
4096 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4097 zone->name, zone->present_pages,
4098 zone_batchsize(zone));
4099 }
4100
4101 int __meminit init_currently_empty_zone(struct zone *zone,
4102 unsigned long zone_start_pfn,
4103 unsigned long size,
4104 enum memmap_context context)
4105 {
4106 struct pglist_data *pgdat = zone->zone_pgdat;
4107 int ret;
4108 ret = zone_wait_table_init(zone, size);
4109 if (ret)
4110 return ret;
4111 pgdat->nr_zones = zone_idx(zone) + 1;
4112
4113 zone->zone_start_pfn = zone_start_pfn;
4114
4115 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4116 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4117 pgdat->node_id,
4118 (unsigned long)zone_idx(zone),
4119 zone_start_pfn, (zone_start_pfn + size));
4120
4121 zone_init_free_lists(zone);
4122
4123 return 0;
4124 }
4125
4126 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4127 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4128 /*
4129 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4130 * Architectures may implement their own version but if add_active_range()
4131 * was used and there are no special requirements, this is a convenient
4132 * alternative
4133 */
4134 int __meminit __early_pfn_to_nid(unsigned long pfn)
4135 {
4136 unsigned long start_pfn, end_pfn;
4137 int i, nid;
4138
4139 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4140 if (start_pfn <= pfn && pfn < end_pfn)
4141 return nid;
4142 /* This is a memory hole */
4143 return -1;
4144 }
4145 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4146
4147 int __meminit early_pfn_to_nid(unsigned long pfn)
4148 {
4149 int nid;
4150
4151 nid = __early_pfn_to_nid(pfn);
4152 if (nid >= 0)
4153 return nid;
4154 /* just returns 0 */
4155 return 0;
4156 }
4157
4158 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4159 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4160 {
4161 int nid;
4162
4163 nid = __early_pfn_to_nid(pfn);
4164 if (nid >= 0 && nid != node)
4165 return false;
4166 return true;
4167 }
4168 #endif
4169
4170 /**
4171 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4172 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4173 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4174 *
4175 * If an architecture guarantees that all ranges registered with
4176 * add_active_ranges() contain no holes and may be freed, this
4177 * this function may be used instead of calling free_bootmem() manually.
4178 */
4179 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4180 {
4181 unsigned long start_pfn, end_pfn;
4182 int i, this_nid;
4183
4184 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4185 start_pfn = min(start_pfn, max_low_pfn);
4186 end_pfn = min(end_pfn, max_low_pfn);
4187
4188 if (start_pfn < end_pfn)
4189 free_bootmem_node(NODE_DATA(this_nid),
4190 PFN_PHYS(start_pfn),
4191 (end_pfn - start_pfn) << PAGE_SHIFT);
4192 }
4193 }
4194
4195 /**
4196 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4197 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4198 *
4199 * If an architecture guarantees that all ranges registered with
4200 * add_active_ranges() contain no holes and may be freed, this
4201 * function may be used instead of calling memory_present() manually.
4202 */
4203 void __init sparse_memory_present_with_active_regions(int nid)
4204 {
4205 unsigned long start_pfn, end_pfn;
4206 int i, this_nid;
4207
4208 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4209 memory_present(this_nid, start_pfn, end_pfn);
4210 }
4211
4212 /**
4213 * get_pfn_range_for_nid - Return the start and end page frames for a node
4214 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4215 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4216 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4217 *
4218 * It returns the start and end page frame of a node based on information
4219 * provided by an arch calling add_active_range(). If called for a node
4220 * with no available memory, a warning is printed and the start and end
4221 * PFNs will be 0.
4222 */
4223 void __meminit get_pfn_range_for_nid(unsigned int nid,
4224 unsigned long *start_pfn, unsigned long *end_pfn)
4225 {
4226 unsigned long this_start_pfn, this_end_pfn;
4227 int i;
4228
4229 *start_pfn = -1UL;
4230 *end_pfn = 0;
4231
4232 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4233 *start_pfn = min(*start_pfn, this_start_pfn);
4234 *end_pfn = max(*end_pfn, this_end_pfn);
4235 }
4236
4237 if (*start_pfn == -1UL)
4238 *start_pfn = 0;
4239 }
4240
4241 /*
4242 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4243 * assumption is made that zones within a node are ordered in monotonic
4244 * increasing memory addresses so that the "highest" populated zone is used
4245 */
4246 static void __init find_usable_zone_for_movable(void)
4247 {
4248 int zone_index;
4249 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4250 if (zone_index == ZONE_MOVABLE)
4251 continue;
4252
4253 if (arch_zone_highest_possible_pfn[zone_index] >
4254 arch_zone_lowest_possible_pfn[zone_index])
4255 break;
4256 }
4257
4258 VM_BUG_ON(zone_index == -1);
4259 movable_zone = zone_index;
4260 }
4261
4262 /*
4263 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4264 * because it is sized independent of architecture. Unlike the other zones,
4265 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4266 * in each node depending on the size of each node and how evenly kernelcore
4267 * is distributed. This helper function adjusts the zone ranges
4268 * provided by the architecture for a given node by using the end of the
4269 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4270 * zones within a node are in order of monotonic increases memory addresses
4271 */
4272 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4273 unsigned long zone_type,
4274 unsigned long node_start_pfn,
4275 unsigned long node_end_pfn,
4276 unsigned long *zone_start_pfn,
4277 unsigned long *zone_end_pfn)
4278 {
4279 /* Only adjust if ZONE_MOVABLE is on this node */
4280 if (zone_movable_pfn[nid]) {
4281 /* Size ZONE_MOVABLE */
4282 if (zone_type == ZONE_MOVABLE) {
4283 *zone_start_pfn = zone_movable_pfn[nid];
4284 *zone_end_pfn = min(node_end_pfn,
4285 arch_zone_highest_possible_pfn[movable_zone]);
4286
4287 /* Adjust for ZONE_MOVABLE starting within this range */
4288 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4289 *zone_end_pfn > zone_movable_pfn[nid]) {
4290 *zone_end_pfn = zone_movable_pfn[nid];
4291
4292 /* Check if this whole range is within ZONE_MOVABLE */
4293 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4294 *zone_start_pfn = *zone_end_pfn;
4295 }
4296 }
4297
4298 /*
4299 * Return the number of pages a zone spans in a node, including holes
4300 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4301 */
4302 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4303 unsigned long zone_type,
4304 unsigned long *ignored)
4305 {
4306 unsigned long node_start_pfn, node_end_pfn;
4307 unsigned long zone_start_pfn, zone_end_pfn;
4308
4309 /* Get the start and end of the node and zone */
4310 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4311 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4312 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4313 adjust_zone_range_for_zone_movable(nid, zone_type,
4314 node_start_pfn, node_end_pfn,
4315 &zone_start_pfn, &zone_end_pfn);
4316
4317 /* Check that this node has pages within the zone's required range */
4318 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4319 return 0;
4320
4321 /* Move the zone boundaries inside the node if necessary */
4322 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4323 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4324
4325 /* Return the spanned pages */
4326 return zone_end_pfn - zone_start_pfn;
4327 }
4328
4329 /*
4330 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4331 * then all holes in the requested range will be accounted for.
4332 */
4333 unsigned long __meminit __absent_pages_in_range(int nid,
4334 unsigned long range_start_pfn,
4335 unsigned long range_end_pfn)
4336 {
4337 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4338 unsigned long start_pfn, end_pfn;
4339 int i;
4340
4341 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4342 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4343 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4344 nr_absent -= end_pfn - start_pfn;
4345 }
4346 return nr_absent;
4347 }
4348
4349 /**
4350 * absent_pages_in_range - Return number of page frames in holes within a range
4351 * @start_pfn: The start PFN to start searching for holes
4352 * @end_pfn: The end PFN to stop searching for holes
4353 *
4354 * It returns the number of pages frames in memory holes within a range.
4355 */
4356 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4357 unsigned long end_pfn)
4358 {
4359 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4360 }
4361
4362 /* Return the number of page frames in holes in a zone on a node */
4363 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4364 unsigned long zone_type,
4365 unsigned long *ignored)
4366 {
4367 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4368 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4369 unsigned long node_start_pfn, node_end_pfn;
4370 unsigned long zone_start_pfn, zone_end_pfn;
4371
4372 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4373 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4374 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4375
4376 adjust_zone_range_for_zone_movable(nid, zone_type,
4377 node_start_pfn, node_end_pfn,
4378 &zone_start_pfn, &zone_end_pfn);
4379 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4380 }
4381
4382 /**
4383 * sanitize_zone_movable_limit - Sanitize the zone_movable_limit array.
4384 *
4385 * zone_movable_limit is initialized as 0. This function will try to get
4386 * the first ZONE_MOVABLE pfn of each node from movablemem_map, and
4387 * assigne them to zone_movable_limit.
4388 * zone_movable_limit[nid] == 0 means no limit for the node.
4389 *
4390 * Note: Each range is represented as [start_pfn, end_pfn)
4391 */
4392 static void __meminit sanitize_zone_movable_limit(void)
4393 {
4394 int map_pos = 0, i, nid;
4395 unsigned long start_pfn, end_pfn;
4396
4397 if (!movablemem_map.nr_map)
4398 return;
4399
4400 /* Iterate all ranges from minimum to maximum */
4401 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4402 /*
4403 * If we have found lowest pfn of ZONE_MOVABLE of the node
4404 * specified by user, just go on to check next range.
4405 */
4406 if (zone_movable_limit[nid])
4407 continue;
4408
4409 #ifdef CONFIG_ZONE_DMA
4410 /* Skip DMA memory. */
4411 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA])
4412 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA];
4413 #endif
4414
4415 #ifdef CONFIG_ZONE_DMA32
4416 /* Skip DMA32 memory. */
4417 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA32])
4418 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA32];
4419 #endif
4420
4421 #ifdef CONFIG_HIGHMEM
4422 /* Skip lowmem if ZONE_MOVABLE is highmem. */
4423 if (zone_movable_is_highmem() &&
4424 start_pfn < arch_zone_lowest_possible_pfn[ZONE_HIGHMEM])
4425 start_pfn = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
4426 #endif
4427
4428 if (start_pfn >= end_pfn)
4429 continue;
4430
4431 while (map_pos < movablemem_map.nr_map) {
4432 if (end_pfn <= movablemem_map.map[map_pos].start_pfn)
4433 break;
4434
4435 if (start_pfn >= movablemem_map.map[map_pos].end_pfn) {
4436 map_pos++;
4437 continue;
4438 }
4439
4440 /*
4441 * The start_pfn of ZONE_MOVABLE is either the minimum
4442 * pfn specified by movablemem_map, or 0, which means
4443 * the node has no ZONE_MOVABLE.
4444 */
4445 zone_movable_limit[nid] = max(start_pfn,
4446 movablemem_map.map[map_pos].start_pfn);
4447
4448 break;
4449 }
4450 }
4451 }
4452
4453 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4454 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4455 unsigned long zone_type,
4456 unsigned long *zones_size)
4457 {
4458 return zones_size[zone_type];
4459 }
4460
4461 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4462 unsigned long zone_type,
4463 unsigned long *zholes_size)
4464 {
4465 if (!zholes_size)
4466 return 0;
4467
4468 return zholes_size[zone_type];
4469 }
4470 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4471
4472 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4473 unsigned long *zones_size, unsigned long *zholes_size)
4474 {
4475 unsigned long realtotalpages, totalpages = 0;
4476 enum zone_type i;
4477
4478 for (i = 0; i < MAX_NR_ZONES; i++)
4479 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4480 zones_size);
4481 pgdat->node_spanned_pages = totalpages;
4482
4483 realtotalpages = totalpages;
4484 for (i = 0; i < MAX_NR_ZONES; i++)
4485 realtotalpages -=
4486 zone_absent_pages_in_node(pgdat->node_id, i,
4487 zholes_size);
4488 pgdat->node_present_pages = realtotalpages;
4489 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4490 realtotalpages);
4491 }
4492
4493 #ifndef CONFIG_SPARSEMEM
4494 /*
4495 * Calculate the size of the zone->blockflags rounded to an unsigned long
4496 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4497 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4498 * round what is now in bits to nearest long in bits, then return it in
4499 * bytes.
4500 */
4501 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4502 {
4503 unsigned long usemapsize;
4504
4505 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4506 usemapsize = roundup(zonesize, pageblock_nr_pages);
4507 usemapsize = usemapsize >> pageblock_order;
4508 usemapsize *= NR_PAGEBLOCK_BITS;
4509 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4510
4511 return usemapsize / 8;
4512 }
4513
4514 static void __init setup_usemap(struct pglist_data *pgdat,
4515 struct zone *zone,
4516 unsigned long zone_start_pfn,
4517 unsigned long zonesize)
4518 {
4519 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4520 zone->pageblock_flags = NULL;
4521 if (usemapsize)
4522 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4523 usemapsize);
4524 }
4525 #else
4526 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4527 unsigned long zone_start_pfn, unsigned long zonesize) {}
4528 #endif /* CONFIG_SPARSEMEM */
4529
4530 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4531
4532 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4533 void __init set_pageblock_order(void)
4534 {
4535 unsigned int order;
4536
4537 /* Check that pageblock_nr_pages has not already been setup */
4538 if (pageblock_order)
4539 return;
4540
4541 if (HPAGE_SHIFT > PAGE_SHIFT)
4542 order = HUGETLB_PAGE_ORDER;
4543 else
4544 order = MAX_ORDER - 1;
4545
4546 /*
4547 * Assume the largest contiguous order of interest is a huge page.
4548 * This value may be variable depending on boot parameters on IA64 and
4549 * powerpc.
4550 */
4551 pageblock_order = order;
4552 }
4553 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4554
4555 /*
4556 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4557 * is unused as pageblock_order is set at compile-time. See
4558 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4559 * the kernel config
4560 */
4561 void __init set_pageblock_order(void)
4562 {
4563 }
4564
4565 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4566
4567 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4568 unsigned long present_pages)
4569 {
4570 unsigned long pages = spanned_pages;
4571
4572 /*
4573 * Provide a more accurate estimation if there are holes within
4574 * the zone and SPARSEMEM is in use. If there are holes within the
4575 * zone, each populated memory region may cost us one or two extra
4576 * memmap pages due to alignment because memmap pages for each
4577 * populated regions may not naturally algined on page boundary.
4578 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4579 */
4580 if (spanned_pages > present_pages + (present_pages >> 4) &&
4581 IS_ENABLED(CONFIG_SPARSEMEM))
4582 pages = present_pages;
4583
4584 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4585 }
4586
4587 /*
4588 * Set up the zone data structures:
4589 * - mark all pages reserved
4590 * - mark all memory queues empty
4591 * - clear the memory bitmaps
4592 *
4593 * NOTE: pgdat should get zeroed by caller.
4594 */
4595 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4596 unsigned long *zones_size, unsigned long *zholes_size)
4597 {
4598 enum zone_type j;
4599 int nid = pgdat->node_id;
4600 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4601 int ret;
4602
4603 pgdat_resize_init(pgdat);
4604 #ifdef CONFIG_NUMA_BALANCING
4605 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4606 pgdat->numabalancing_migrate_nr_pages = 0;
4607 pgdat->numabalancing_migrate_next_window = jiffies;
4608 #endif
4609 init_waitqueue_head(&pgdat->kswapd_wait);
4610 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4611 pgdat_page_cgroup_init(pgdat);
4612
4613 for (j = 0; j < MAX_NR_ZONES; j++) {
4614 struct zone *zone = pgdat->node_zones + j;
4615 unsigned long size, realsize, freesize, memmap_pages;
4616
4617 size = zone_spanned_pages_in_node(nid, j, zones_size);
4618 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4619 zholes_size);
4620
4621 /*
4622 * Adjust freesize so that it accounts for how much memory
4623 * is used by this zone for memmap. This affects the watermark
4624 * and per-cpu initialisations
4625 */
4626 memmap_pages = calc_memmap_size(size, realsize);
4627 if (freesize >= memmap_pages) {
4628 freesize -= memmap_pages;
4629 if (memmap_pages)
4630 printk(KERN_DEBUG
4631 " %s zone: %lu pages used for memmap\n",
4632 zone_names[j], memmap_pages);
4633 } else
4634 printk(KERN_WARNING
4635 " %s zone: %lu pages exceeds freesize %lu\n",
4636 zone_names[j], memmap_pages, freesize);
4637
4638 /* Account for reserved pages */
4639 if (j == 0 && freesize > dma_reserve) {
4640 freesize -= dma_reserve;
4641 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4642 zone_names[0], dma_reserve);
4643 }
4644
4645 if (!is_highmem_idx(j))
4646 nr_kernel_pages += freesize;
4647 /* Charge for highmem memmap if there are enough kernel pages */
4648 else if (nr_kernel_pages > memmap_pages * 2)
4649 nr_kernel_pages -= memmap_pages;
4650 nr_all_pages += freesize;
4651
4652 zone->spanned_pages = size;
4653 zone->present_pages = realsize;
4654 /*
4655 * Set an approximate value for lowmem here, it will be adjusted
4656 * when the bootmem allocator frees pages into the buddy system.
4657 * And all highmem pages will be managed by the buddy system.
4658 */
4659 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4660 #ifdef CONFIG_NUMA
4661 zone->node = nid;
4662 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4663 / 100;
4664 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4665 #endif
4666 zone->name = zone_names[j];
4667 spin_lock_init(&zone->lock);
4668 spin_lock_init(&zone->lru_lock);
4669 zone_seqlock_init(zone);
4670 zone->zone_pgdat = pgdat;
4671
4672 zone_pcp_init(zone);
4673 lruvec_init(&zone->lruvec);
4674 if (!size)
4675 continue;
4676
4677 set_pageblock_order();
4678 setup_usemap(pgdat, zone, zone_start_pfn, size);
4679 ret = init_currently_empty_zone(zone, zone_start_pfn,
4680 size, MEMMAP_EARLY);
4681 BUG_ON(ret);
4682 memmap_init(size, nid, j, zone_start_pfn);
4683 zone_start_pfn += size;
4684 }
4685 }
4686
4687 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4688 {
4689 /* Skip empty nodes */
4690 if (!pgdat->node_spanned_pages)
4691 return;
4692
4693 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4694 /* ia64 gets its own node_mem_map, before this, without bootmem */
4695 if (!pgdat->node_mem_map) {
4696 unsigned long size, start, end;
4697 struct page *map;
4698
4699 /*
4700 * The zone's endpoints aren't required to be MAX_ORDER
4701 * aligned but the node_mem_map endpoints must be in order
4702 * for the buddy allocator to function correctly.
4703 */
4704 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4705 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4706 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4707 size = (end - start) * sizeof(struct page);
4708 map = alloc_remap(pgdat->node_id, size);
4709 if (!map)
4710 map = alloc_bootmem_node_nopanic(pgdat, size);
4711 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4712 }
4713 #ifndef CONFIG_NEED_MULTIPLE_NODES
4714 /*
4715 * With no DISCONTIG, the global mem_map is just set as node 0's
4716 */
4717 if (pgdat == NODE_DATA(0)) {
4718 mem_map = NODE_DATA(0)->node_mem_map;
4719 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4720 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4721 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4722 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4723 }
4724 #endif
4725 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4726 }
4727
4728 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4729 unsigned long node_start_pfn, unsigned long *zholes_size)
4730 {
4731 pg_data_t *pgdat = NODE_DATA(nid);
4732
4733 /* pg_data_t should be reset to zero when it's allocated */
4734 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4735
4736 pgdat->node_id = nid;
4737 pgdat->node_start_pfn = node_start_pfn;
4738 init_zone_allows_reclaim(nid);
4739 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4740
4741 alloc_node_mem_map(pgdat);
4742 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4743 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4744 nid, (unsigned long)pgdat,
4745 (unsigned long)pgdat->node_mem_map);
4746 #endif
4747
4748 free_area_init_core(pgdat, zones_size, zholes_size);
4749 }
4750
4751 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4752
4753 #if MAX_NUMNODES > 1
4754 /*
4755 * Figure out the number of possible node ids.
4756 */
4757 static void __init setup_nr_node_ids(void)
4758 {
4759 unsigned int node;
4760 unsigned int highest = 0;
4761
4762 for_each_node_mask(node, node_possible_map)
4763 highest = node;
4764 nr_node_ids = highest + 1;
4765 }
4766 #else
4767 static inline void setup_nr_node_ids(void)
4768 {
4769 }
4770 #endif
4771
4772 /**
4773 * node_map_pfn_alignment - determine the maximum internode alignment
4774 *
4775 * This function should be called after node map is populated and sorted.
4776 * It calculates the maximum power of two alignment which can distinguish
4777 * all the nodes.
4778 *
4779 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4780 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4781 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4782 * shifted, 1GiB is enough and this function will indicate so.
4783 *
4784 * This is used to test whether pfn -> nid mapping of the chosen memory
4785 * model has fine enough granularity to avoid incorrect mapping for the
4786 * populated node map.
4787 *
4788 * Returns the determined alignment in pfn's. 0 if there is no alignment
4789 * requirement (single node).
4790 */
4791 unsigned long __init node_map_pfn_alignment(void)
4792 {
4793 unsigned long accl_mask = 0, last_end = 0;
4794 unsigned long start, end, mask;
4795 int last_nid = -1;
4796 int i, nid;
4797
4798 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4799 if (!start || last_nid < 0 || last_nid == nid) {
4800 last_nid = nid;
4801 last_end = end;
4802 continue;
4803 }
4804
4805 /*
4806 * Start with a mask granular enough to pin-point to the
4807 * start pfn and tick off bits one-by-one until it becomes
4808 * too coarse to separate the current node from the last.
4809 */
4810 mask = ~((1 << __ffs(start)) - 1);
4811 while (mask && last_end <= (start & (mask << 1)))
4812 mask <<= 1;
4813
4814 /* accumulate all internode masks */
4815 accl_mask |= mask;
4816 }
4817
4818 /* convert mask to number of pages */
4819 return ~accl_mask + 1;
4820 }
4821
4822 /* Find the lowest pfn for a node */
4823 static unsigned long __init find_min_pfn_for_node(int nid)
4824 {
4825 unsigned long min_pfn = ULONG_MAX;
4826 unsigned long start_pfn;
4827 int i;
4828
4829 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4830 min_pfn = min(min_pfn, start_pfn);
4831
4832 if (min_pfn == ULONG_MAX) {
4833 printk(KERN_WARNING
4834 "Could not find start_pfn for node %d\n", nid);
4835 return 0;
4836 }
4837
4838 return min_pfn;
4839 }
4840
4841 /**
4842 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4843 *
4844 * It returns the minimum PFN based on information provided via
4845 * add_active_range().
4846 */
4847 unsigned long __init find_min_pfn_with_active_regions(void)
4848 {
4849 return find_min_pfn_for_node(MAX_NUMNODES);
4850 }
4851
4852 /*
4853 * early_calculate_totalpages()
4854 * Sum pages in active regions for movable zone.
4855 * Populate N_MEMORY for calculating usable_nodes.
4856 */
4857 static unsigned long __init early_calculate_totalpages(void)
4858 {
4859 unsigned long totalpages = 0;
4860 unsigned long start_pfn, end_pfn;
4861 int i, nid;
4862
4863 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4864 unsigned long pages = end_pfn - start_pfn;
4865
4866 totalpages += pages;
4867 if (pages)
4868 node_set_state(nid, N_MEMORY);
4869 }
4870 return totalpages;
4871 }
4872
4873 /*
4874 * Find the PFN the Movable zone begins in each node. Kernel memory
4875 * is spread evenly between nodes as long as the nodes have enough
4876 * memory. When they don't, some nodes will have more kernelcore than
4877 * others
4878 */
4879 static void __init find_zone_movable_pfns_for_nodes(void)
4880 {
4881 int i, nid;
4882 unsigned long usable_startpfn;
4883 unsigned long kernelcore_node, kernelcore_remaining;
4884 /* save the state before borrow the nodemask */
4885 nodemask_t saved_node_state = node_states[N_MEMORY];
4886 unsigned long totalpages = early_calculate_totalpages();
4887 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4888
4889 /*
4890 * If movablecore was specified, calculate what size of
4891 * kernelcore that corresponds so that memory usable for
4892 * any allocation type is evenly spread. If both kernelcore
4893 * and movablecore are specified, then the value of kernelcore
4894 * will be used for required_kernelcore if it's greater than
4895 * what movablecore would have allowed.
4896 */
4897 if (required_movablecore) {
4898 unsigned long corepages;
4899
4900 /*
4901 * Round-up so that ZONE_MOVABLE is at least as large as what
4902 * was requested by the user
4903 */
4904 required_movablecore =
4905 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4906 corepages = totalpages - required_movablecore;
4907
4908 required_kernelcore = max(required_kernelcore, corepages);
4909 }
4910
4911 /*
4912 * If neither kernelcore/movablecore nor movablemem_map is specified,
4913 * there is no ZONE_MOVABLE. But if movablemem_map is specified, the
4914 * start pfn of ZONE_MOVABLE has been stored in zone_movable_limit[].
4915 */
4916 if (!required_kernelcore) {
4917 if (movablemem_map.nr_map)
4918 memcpy(zone_movable_pfn, zone_movable_limit,
4919 sizeof(zone_movable_pfn));
4920 goto out;
4921 }
4922
4923 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4924 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4925
4926 restart:
4927 /* Spread kernelcore memory as evenly as possible throughout nodes */
4928 kernelcore_node = required_kernelcore / usable_nodes;
4929 for_each_node_state(nid, N_MEMORY) {
4930 unsigned long start_pfn, end_pfn;
4931
4932 /*
4933 * Recalculate kernelcore_node if the division per node
4934 * now exceeds what is necessary to satisfy the requested
4935 * amount of memory for the kernel
4936 */
4937 if (required_kernelcore < kernelcore_node)
4938 kernelcore_node = required_kernelcore / usable_nodes;
4939
4940 /*
4941 * As the map is walked, we track how much memory is usable
4942 * by the kernel using kernelcore_remaining. When it is
4943 * 0, the rest of the node is usable by ZONE_MOVABLE
4944 */
4945 kernelcore_remaining = kernelcore_node;
4946
4947 /* Go through each range of PFNs within this node */
4948 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4949 unsigned long size_pages;
4950
4951 /*
4952 * Find more memory for kernelcore in
4953 * [zone_movable_pfn[nid], zone_movable_limit[nid]).
4954 */
4955 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4956 if (start_pfn >= end_pfn)
4957 continue;
4958
4959 if (zone_movable_limit[nid]) {
4960 end_pfn = min(end_pfn, zone_movable_limit[nid]);
4961 /* No range left for kernelcore in this node */
4962 if (start_pfn >= end_pfn) {
4963 zone_movable_pfn[nid] =
4964 zone_movable_limit[nid];
4965 break;
4966 }
4967 }
4968
4969 /* Account for what is only usable for kernelcore */
4970 if (start_pfn < usable_startpfn) {
4971 unsigned long kernel_pages;
4972 kernel_pages = min(end_pfn, usable_startpfn)
4973 - start_pfn;
4974
4975 kernelcore_remaining -= min(kernel_pages,
4976 kernelcore_remaining);
4977 required_kernelcore -= min(kernel_pages,
4978 required_kernelcore);
4979
4980 /* Continue if range is now fully accounted */
4981 if (end_pfn <= usable_startpfn) {
4982
4983 /*
4984 * Push zone_movable_pfn to the end so
4985 * that if we have to rebalance
4986 * kernelcore across nodes, we will
4987 * not double account here
4988 */
4989 zone_movable_pfn[nid] = end_pfn;
4990 continue;
4991 }
4992 start_pfn = usable_startpfn;
4993 }
4994
4995 /*
4996 * The usable PFN range for ZONE_MOVABLE is from
4997 * start_pfn->end_pfn. Calculate size_pages as the
4998 * number of pages used as kernelcore
4999 */
5000 size_pages = end_pfn - start_pfn;
5001 if (size_pages > kernelcore_remaining)
5002 size_pages = kernelcore_remaining;
5003 zone_movable_pfn[nid] = start_pfn + size_pages;
5004
5005 /*
5006 * Some kernelcore has been met, update counts and
5007 * break if the kernelcore for this node has been
5008 * satisified
5009 */
5010 required_kernelcore -= min(required_kernelcore,
5011 size_pages);
5012 kernelcore_remaining -= size_pages;
5013 if (!kernelcore_remaining)
5014 break;
5015 }
5016 }
5017
5018 /*
5019 * If there is still required_kernelcore, we do another pass with one
5020 * less node in the count. This will push zone_movable_pfn[nid] further
5021 * along on the nodes that still have memory until kernelcore is
5022 * satisified
5023 */
5024 usable_nodes--;
5025 if (usable_nodes && required_kernelcore > usable_nodes)
5026 goto restart;
5027
5028 out:
5029 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5030 for (nid = 0; nid < MAX_NUMNODES; nid++)
5031 zone_movable_pfn[nid] =
5032 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5033
5034 /* restore the node_state */
5035 node_states[N_MEMORY] = saved_node_state;
5036 }
5037
5038 /* Any regular or high memory on that node ? */
5039 static void check_for_memory(pg_data_t *pgdat, int nid)
5040 {
5041 enum zone_type zone_type;
5042
5043 if (N_MEMORY == N_NORMAL_MEMORY)
5044 return;
5045
5046 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5047 struct zone *zone = &pgdat->node_zones[zone_type];
5048 if (zone->present_pages) {
5049 node_set_state(nid, N_HIGH_MEMORY);
5050 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5051 zone_type <= ZONE_NORMAL)
5052 node_set_state(nid, N_NORMAL_MEMORY);
5053 break;
5054 }
5055 }
5056 }
5057
5058 /**
5059 * free_area_init_nodes - Initialise all pg_data_t and zone data
5060 * @max_zone_pfn: an array of max PFNs for each zone
5061 *
5062 * This will call free_area_init_node() for each active node in the system.
5063 * Using the page ranges provided by add_active_range(), the size of each
5064 * zone in each node and their holes is calculated. If the maximum PFN
5065 * between two adjacent zones match, it is assumed that the zone is empty.
5066 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5067 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5068 * starts where the previous one ended. For example, ZONE_DMA32 starts
5069 * at arch_max_dma_pfn.
5070 */
5071 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5072 {
5073 unsigned long start_pfn, end_pfn;
5074 int i, nid;
5075
5076 /* Record where the zone boundaries are */
5077 memset(arch_zone_lowest_possible_pfn, 0,
5078 sizeof(arch_zone_lowest_possible_pfn));
5079 memset(arch_zone_highest_possible_pfn, 0,
5080 sizeof(arch_zone_highest_possible_pfn));
5081 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5082 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5083 for (i = 1; i < MAX_NR_ZONES; i++) {
5084 if (i == ZONE_MOVABLE)
5085 continue;
5086 arch_zone_lowest_possible_pfn[i] =
5087 arch_zone_highest_possible_pfn[i-1];
5088 arch_zone_highest_possible_pfn[i] =
5089 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5090 }
5091 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5092 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5093
5094 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5095 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5096 find_usable_zone_for_movable();
5097 sanitize_zone_movable_limit();
5098 find_zone_movable_pfns_for_nodes();
5099
5100 /* Print out the zone ranges */
5101 printk("Zone ranges:\n");
5102 for (i = 0; i < MAX_NR_ZONES; i++) {
5103 if (i == ZONE_MOVABLE)
5104 continue;
5105 printk(KERN_CONT " %-8s ", zone_names[i]);
5106 if (arch_zone_lowest_possible_pfn[i] ==
5107 arch_zone_highest_possible_pfn[i])
5108 printk(KERN_CONT "empty\n");
5109 else
5110 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5111 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5112 (arch_zone_highest_possible_pfn[i]
5113 << PAGE_SHIFT) - 1);
5114 }
5115
5116 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5117 printk("Movable zone start for each node\n");
5118 for (i = 0; i < MAX_NUMNODES; i++) {
5119 if (zone_movable_pfn[i])
5120 printk(" Node %d: %#010lx\n", i,
5121 zone_movable_pfn[i] << PAGE_SHIFT);
5122 }
5123
5124 /* Print out the early node map */
5125 printk("Early memory node ranges\n");
5126 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5127 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5128 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5129
5130 /* Initialise every node */
5131 mminit_verify_pageflags_layout();
5132 setup_nr_node_ids();
5133 for_each_online_node(nid) {
5134 pg_data_t *pgdat = NODE_DATA(nid);
5135 free_area_init_node(nid, NULL,
5136 find_min_pfn_for_node(nid), NULL);
5137
5138 /* Any memory on that node */
5139 if (pgdat->node_present_pages)
5140 node_set_state(nid, N_MEMORY);
5141 check_for_memory(pgdat, nid);
5142 }
5143 }
5144
5145 static int __init cmdline_parse_core(char *p, unsigned long *core)
5146 {
5147 unsigned long long coremem;
5148 if (!p)
5149 return -EINVAL;
5150
5151 coremem = memparse(p, &p);
5152 *core = coremem >> PAGE_SHIFT;
5153
5154 /* Paranoid check that UL is enough for the coremem value */
5155 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5156
5157 return 0;
5158 }
5159
5160 /*
5161 * kernelcore=size sets the amount of memory for use for allocations that
5162 * cannot be reclaimed or migrated.
5163 */
5164 static int __init cmdline_parse_kernelcore(char *p)
5165 {
5166 return cmdline_parse_core(p, &required_kernelcore);
5167 }
5168
5169 /*
5170 * movablecore=size sets the amount of memory for use for allocations that
5171 * can be reclaimed or migrated.
5172 */
5173 static int __init cmdline_parse_movablecore(char *p)
5174 {
5175 return cmdline_parse_core(p, &required_movablecore);
5176 }
5177
5178 early_param("kernelcore", cmdline_parse_kernelcore);
5179 early_param("movablecore", cmdline_parse_movablecore);
5180
5181 /**
5182 * movablemem_map_overlap() - Check if a range overlaps movablemem_map.map[].
5183 * @start_pfn: start pfn of the range to be checked
5184 * @end_pfn: end pfn of the range to be checked (exclusive)
5185 *
5186 * This function checks if a given memory range [start_pfn, end_pfn) overlaps
5187 * the movablemem_map.map[] array.
5188 *
5189 * Return: index of the first overlapped element in movablemem_map.map[]
5190 * or -1 if they don't overlap each other.
5191 */
5192 int __init movablemem_map_overlap(unsigned long start_pfn,
5193 unsigned long end_pfn)
5194 {
5195 int overlap;
5196
5197 if (!movablemem_map.nr_map)
5198 return -1;
5199
5200 for (overlap = 0; overlap < movablemem_map.nr_map; overlap++)
5201 if (start_pfn < movablemem_map.map[overlap].end_pfn)
5202 break;
5203
5204 if (overlap == movablemem_map.nr_map ||
5205 end_pfn <= movablemem_map.map[overlap].start_pfn)
5206 return -1;
5207
5208 return overlap;
5209 }
5210
5211 /**
5212 * insert_movablemem_map - Insert a memory range in to movablemem_map.map.
5213 * @start_pfn: start pfn of the range
5214 * @end_pfn: end pfn of the range
5215 *
5216 * This function will also merge the overlapped ranges, and sort the array
5217 * by start_pfn in monotonic increasing order.
5218 */
5219 void __init insert_movablemem_map(unsigned long start_pfn,
5220 unsigned long end_pfn)
5221 {
5222 int pos, overlap;
5223
5224 /*
5225 * pos will be at the 1st overlapped range, or the position
5226 * where the element should be inserted.
5227 */
5228 for (pos = 0; pos < movablemem_map.nr_map; pos++)
5229 if (start_pfn <= movablemem_map.map[pos].end_pfn)
5230 break;
5231
5232 /* If there is no overlapped range, just insert the element. */
5233 if (pos == movablemem_map.nr_map ||
5234 end_pfn < movablemem_map.map[pos].start_pfn) {
5235 /*
5236 * If pos is not the end of array, we need to move all
5237 * the rest elements backward.
5238 */
5239 if (pos < movablemem_map.nr_map)
5240 memmove(&movablemem_map.map[pos+1],
5241 &movablemem_map.map[pos],
5242 sizeof(struct movablemem_entry) *
5243 (movablemem_map.nr_map - pos));
5244 movablemem_map.map[pos].start_pfn = start_pfn;
5245 movablemem_map.map[pos].end_pfn = end_pfn;
5246 movablemem_map.nr_map++;
5247 return;
5248 }
5249
5250 /* overlap will be at the last overlapped range */
5251 for (overlap = pos + 1; overlap < movablemem_map.nr_map; overlap++)
5252 if (end_pfn < movablemem_map.map[overlap].start_pfn)
5253 break;
5254
5255 /*
5256 * If there are more ranges overlapped, we need to merge them,
5257 * and move the rest elements forward.
5258 */
5259 overlap--;
5260 movablemem_map.map[pos].start_pfn = min(start_pfn,
5261 movablemem_map.map[pos].start_pfn);
5262 movablemem_map.map[pos].end_pfn = max(end_pfn,
5263 movablemem_map.map[overlap].end_pfn);
5264
5265 if (pos != overlap && overlap + 1 != movablemem_map.nr_map)
5266 memmove(&movablemem_map.map[pos+1],
5267 &movablemem_map.map[overlap+1],
5268 sizeof(struct movablemem_entry) *
5269 (movablemem_map.nr_map - overlap - 1));
5270
5271 movablemem_map.nr_map -= overlap - pos;
5272 }
5273
5274 /**
5275 * movablemem_map_add_region - Add a memory range into movablemem_map.
5276 * @start: physical start address of range
5277 * @end: physical end address of range
5278 *
5279 * This function transform the physical address into pfn, and then add the
5280 * range into movablemem_map by calling insert_movablemem_map().
5281 */
5282 static void __init movablemem_map_add_region(u64 start, u64 size)
5283 {
5284 unsigned long start_pfn, end_pfn;
5285
5286 /* In case size == 0 or start + size overflows */
5287 if (start + size <= start)
5288 return;
5289
5290 if (movablemem_map.nr_map >= ARRAY_SIZE(movablemem_map.map)) {
5291 pr_err("movablemem_map: too many entries;"
5292 " ignoring [mem %#010llx-%#010llx]\n",
5293 (unsigned long long) start,
5294 (unsigned long long) (start + size - 1));
5295 return;
5296 }
5297
5298 start_pfn = PFN_DOWN(start);
5299 end_pfn = PFN_UP(start + size);
5300 insert_movablemem_map(start_pfn, end_pfn);
5301 }
5302
5303 /*
5304 * cmdline_parse_movablemem_map - Parse boot option movablemem_map.
5305 * @p: The boot option of the following format:
5306 * movablemem_map=nn[KMG]@ss[KMG]
5307 *
5308 * This option sets the memory range [ss, ss+nn) to be used as movable memory.
5309 *
5310 * Return: 0 on success or -EINVAL on failure.
5311 */
5312 static int __init cmdline_parse_movablemem_map(char *p)
5313 {
5314 char *oldp;
5315 u64 start_at, mem_size;
5316
5317 if (!p)
5318 goto err;
5319
5320 if (!strcmp(p, "acpi"))
5321 movablemem_map.acpi = true;
5322
5323 /*
5324 * If user decide to use info from BIOS, all the other user specified
5325 * ranges will be ingored.
5326 */
5327 if (movablemem_map.acpi) {
5328 if (movablemem_map.nr_map) {
5329 memset(movablemem_map.map, 0,
5330 sizeof(struct movablemem_entry)
5331 * movablemem_map.nr_map);
5332 movablemem_map.nr_map = 0;
5333 }
5334 return 0;
5335 }
5336
5337 oldp = p;
5338 mem_size = memparse(p, &p);
5339 if (p == oldp)
5340 goto err;
5341
5342 if (*p == '@') {
5343 oldp = ++p;
5344 start_at = memparse(p, &p);
5345 if (p == oldp || *p != '\0')
5346 goto err;
5347
5348 movablemem_map_add_region(start_at, mem_size);
5349 return 0;
5350 }
5351 err:
5352 return -EINVAL;
5353 }
5354 early_param("movablemem_map", cmdline_parse_movablemem_map);
5355
5356 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5357
5358 /**
5359 * set_dma_reserve - set the specified number of pages reserved in the first zone
5360 * @new_dma_reserve: The number of pages to mark reserved
5361 *
5362 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5363 * In the DMA zone, a significant percentage may be consumed by kernel image
5364 * and other unfreeable allocations which can skew the watermarks badly. This
5365 * function may optionally be used to account for unfreeable pages in the
5366 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5367 * smaller per-cpu batchsize.
5368 */
5369 void __init set_dma_reserve(unsigned long new_dma_reserve)
5370 {
5371 dma_reserve = new_dma_reserve;
5372 }
5373
5374 void __init free_area_init(unsigned long *zones_size)
5375 {
5376 free_area_init_node(0, zones_size,
5377 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5378 }
5379
5380 static int page_alloc_cpu_notify(struct notifier_block *self,
5381 unsigned long action, void *hcpu)
5382 {
5383 int cpu = (unsigned long)hcpu;
5384
5385 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5386 lru_add_drain_cpu(cpu);
5387 drain_pages(cpu);
5388
5389 /*
5390 * Spill the event counters of the dead processor
5391 * into the current processors event counters.
5392 * This artificially elevates the count of the current
5393 * processor.
5394 */
5395 vm_events_fold_cpu(cpu);
5396
5397 /*
5398 * Zero the differential counters of the dead processor
5399 * so that the vm statistics are consistent.
5400 *
5401 * This is only okay since the processor is dead and cannot
5402 * race with what we are doing.
5403 */
5404 refresh_cpu_vm_stats(cpu);
5405 }
5406 return NOTIFY_OK;
5407 }
5408
5409 void __init page_alloc_init(void)
5410 {
5411 hotcpu_notifier(page_alloc_cpu_notify, 0);
5412 }
5413
5414 /*
5415 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5416 * or min_free_kbytes changes.
5417 */
5418 static void calculate_totalreserve_pages(void)
5419 {
5420 struct pglist_data *pgdat;
5421 unsigned long reserve_pages = 0;
5422 enum zone_type i, j;
5423
5424 for_each_online_pgdat(pgdat) {
5425 for (i = 0; i < MAX_NR_ZONES; i++) {
5426 struct zone *zone = pgdat->node_zones + i;
5427 unsigned long max = 0;
5428
5429 /* Find valid and maximum lowmem_reserve in the zone */
5430 for (j = i; j < MAX_NR_ZONES; j++) {
5431 if (zone->lowmem_reserve[j] > max)
5432 max = zone->lowmem_reserve[j];
5433 }
5434
5435 /* we treat the high watermark as reserved pages. */
5436 max += high_wmark_pages(zone);
5437
5438 if (max > zone->managed_pages)
5439 max = zone->managed_pages;
5440 reserve_pages += max;
5441 /*
5442 * Lowmem reserves are not available to
5443 * GFP_HIGHUSER page cache allocations and
5444 * kswapd tries to balance zones to their high
5445 * watermark. As a result, neither should be
5446 * regarded as dirtyable memory, to prevent a
5447 * situation where reclaim has to clean pages
5448 * in order to balance the zones.
5449 */
5450 zone->dirty_balance_reserve = max;
5451 }
5452 }
5453 dirty_balance_reserve = reserve_pages;
5454 totalreserve_pages = reserve_pages;
5455 }
5456
5457 /*
5458 * setup_per_zone_lowmem_reserve - called whenever
5459 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5460 * has a correct pages reserved value, so an adequate number of
5461 * pages are left in the zone after a successful __alloc_pages().
5462 */
5463 static void setup_per_zone_lowmem_reserve(void)
5464 {
5465 struct pglist_data *pgdat;
5466 enum zone_type j, idx;
5467
5468 for_each_online_pgdat(pgdat) {
5469 for (j = 0; j < MAX_NR_ZONES; j++) {
5470 struct zone *zone = pgdat->node_zones + j;
5471 unsigned long managed_pages = zone->managed_pages;
5472
5473 zone->lowmem_reserve[j] = 0;
5474
5475 idx = j;
5476 while (idx) {
5477 struct zone *lower_zone;
5478
5479 idx--;
5480
5481 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5482 sysctl_lowmem_reserve_ratio[idx] = 1;
5483
5484 lower_zone = pgdat->node_zones + idx;
5485 lower_zone->lowmem_reserve[j] = managed_pages /
5486 sysctl_lowmem_reserve_ratio[idx];
5487 managed_pages += lower_zone->managed_pages;
5488 }
5489 }
5490 }
5491
5492 /* update totalreserve_pages */
5493 calculate_totalreserve_pages();
5494 }
5495
5496 static void __setup_per_zone_wmarks(void)
5497 {
5498 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5499 unsigned long lowmem_pages = 0;
5500 struct zone *zone;
5501 unsigned long flags;
5502
5503 /* Calculate total number of !ZONE_HIGHMEM pages */
5504 for_each_zone(zone) {
5505 if (!is_highmem(zone))
5506 lowmem_pages += zone->managed_pages;
5507 }
5508
5509 for_each_zone(zone) {
5510 u64 tmp;
5511
5512 spin_lock_irqsave(&zone->lock, flags);
5513 tmp = (u64)pages_min * zone->managed_pages;
5514 do_div(tmp, lowmem_pages);
5515 if (is_highmem(zone)) {
5516 /*
5517 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5518 * need highmem pages, so cap pages_min to a small
5519 * value here.
5520 *
5521 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5522 * deltas controls asynch page reclaim, and so should
5523 * not be capped for highmem.
5524 */
5525 unsigned long min_pages;
5526
5527 min_pages = zone->managed_pages / 1024;
5528 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5529 zone->watermark[WMARK_MIN] = min_pages;
5530 } else {
5531 /*
5532 * If it's a lowmem zone, reserve a number of pages
5533 * proportionate to the zone's size.
5534 */
5535 zone->watermark[WMARK_MIN] = tmp;
5536 }
5537
5538 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5539 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5540
5541 setup_zone_migrate_reserve(zone);
5542 spin_unlock_irqrestore(&zone->lock, flags);
5543 }
5544
5545 /* update totalreserve_pages */
5546 calculate_totalreserve_pages();
5547 }
5548
5549 /**
5550 * setup_per_zone_wmarks - called when min_free_kbytes changes
5551 * or when memory is hot-{added|removed}
5552 *
5553 * Ensures that the watermark[min,low,high] values for each zone are set
5554 * correctly with respect to min_free_kbytes.
5555 */
5556 void setup_per_zone_wmarks(void)
5557 {
5558 mutex_lock(&zonelists_mutex);
5559 __setup_per_zone_wmarks();
5560 mutex_unlock(&zonelists_mutex);
5561 }
5562
5563 /*
5564 * The inactive anon list should be small enough that the VM never has to
5565 * do too much work, but large enough that each inactive page has a chance
5566 * to be referenced again before it is swapped out.
5567 *
5568 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5569 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5570 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5571 * the anonymous pages are kept on the inactive list.
5572 *
5573 * total target max
5574 * memory ratio inactive anon
5575 * -------------------------------------
5576 * 10MB 1 5MB
5577 * 100MB 1 50MB
5578 * 1GB 3 250MB
5579 * 10GB 10 0.9GB
5580 * 100GB 31 3GB
5581 * 1TB 101 10GB
5582 * 10TB 320 32GB
5583 */
5584 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5585 {
5586 unsigned int gb, ratio;
5587
5588 /* Zone size in gigabytes */
5589 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5590 if (gb)
5591 ratio = int_sqrt(10 * gb);
5592 else
5593 ratio = 1;
5594
5595 zone->inactive_ratio = ratio;
5596 }
5597
5598 static void __meminit setup_per_zone_inactive_ratio(void)
5599 {
5600 struct zone *zone;
5601
5602 for_each_zone(zone)
5603 calculate_zone_inactive_ratio(zone);
5604 }
5605
5606 /*
5607 * Initialise min_free_kbytes.
5608 *
5609 * For small machines we want it small (128k min). For large machines
5610 * we want it large (64MB max). But it is not linear, because network
5611 * bandwidth does not increase linearly with machine size. We use
5612 *
5613 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5614 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5615 *
5616 * which yields
5617 *
5618 * 16MB: 512k
5619 * 32MB: 724k
5620 * 64MB: 1024k
5621 * 128MB: 1448k
5622 * 256MB: 2048k
5623 * 512MB: 2896k
5624 * 1024MB: 4096k
5625 * 2048MB: 5792k
5626 * 4096MB: 8192k
5627 * 8192MB: 11584k
5628 * 16384MB: 16384k
5629 */
5630 int __meminit init_per_zone_wmark_min(void)
5631 {
5632 unsigned long lowmem_kbytes;
5633
5634 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5635
5636 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5637 if (min_free_kbytes < 128)
5638 min_free_kbytes = 128;
5639 if (min_free_kbytes > 65536)
5640 min_free_kbytes = 65536;
5641 setup_per_zone_wmarks();
5642 refresh_zone_stat_thresholds();
5643 setup_per_zone_lowmem_reserve();
5644 setup_per_zone_inactive_ratio();
5645 return 0;
5646 }
5647 module_init(init_per_zone_wmark_min)
5648
5649 /*
5650 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5651 * that we can call two helper functions whenever min_free_kbytes
5652 * changes.
5653 */
5654 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5655 void __user *buffer, size_t *length, loff_t *ppos)
5656 {
5657 proc_dointvec(table, write, buffer, length, ppos);
5658 if (write)
5659 setup_per_zone_wmarks();
5660 return 0;
5661 }
5662
5663 #ifdef CONFIG_NUMA
5664 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5665 void __user *buffer, size_t *length, loff_t *ppos)
5666 {
5667 struct zone *zone;
5668 int rc;
5669
5670 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5671 if (rc)
5672 return rc;
5673
5674 for_each_zone(zone)
5675 zone->min_unmapped_pages = (zone->managed_pages *
5676 sysctl_min_unmapped_ratio) / 100;
5677 return 0;
5678 }
5679
5680 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5681 void __user *buffer, size_t *length, loff_t *ppos)
5682 {
5683 struct zone *zone;
5684 int rc;
5685
5686 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5687 if (rc)
5688 return rc;
5689
5690 for_each_zone(zone)
5691 zone->min_slab_pages = (zone->managed_pages *
5692 sysctl_min_slab_ratio) / 100;
5693 return 0;
5694 }
5695 #endif
5696
5697 /*
5698 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5699 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5700 * whenever sysctl_lowmem_reserve_ratio changes.
5701 *
5702 * The reserve ratio obviously has absolutely no relation with the
5703 * minimum watermarks. The lowmem reserve ratio can only make sense
5704 * if in function of the boot time zone sizes.
5705 */
5706 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5707 void __user *buffer, size_t *length, loff_t *ppos)
5708 {
5709 proc_dointvec_minmax(table, write, buffer, length, ppos);
5710 setup_per_zone_lowmem_reserve();
5711 return 0;
5712 }
5713
5714 /*
5715 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5716 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5717 * can have before it gets flushed back to buddy allocator.
5718 */
5719
5720 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5721 void __user *buffer, size_t *length, loff_t *ppos)
5722 {
5723 struct zone *zone;
5724 unsigned int cpu;
5725 int ret;
5726
5727 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5728 if (!write || (ret < 0))
5729 return ret;
5730 for_each_populated_zone(zone) {
5731 for_each_possible_cpu(cpu) {
5732 unsigned long high;
5733 high = zone->managed_pages / percpu_pagelist_fraction;
5734 setup_pagelist_highmark(
5735 per_cpu_ptr(zone->pageset, cpu), high);
5736 }
5737 }
5738 return 0;
5739 }
5740
5741 int hashdist = HASHDIST_DEFAULT;
5742
5743 #ifdef CONFIG_NUMA
5744 static int __init set_hashdist(char *str)
5745 {
5746 if (!str)
5747 return 0;
5748 hashdist = simple_strtoul(str, &str, 0);
5749 return 1;
5750 }
5751 __setup("hashdist=", set_hashdist);
5752 #endif
5753
5754 /*
5755 * allocate a large system hash table from bootmem
5756 * - it is assumed that the hash table must contain an exact power-of-2
5757 * quantity of entries
5758 * - limit is the number of hash buckets, not the total allocation size
5759 */
5760 void *__init alloc_large_system_hash(const char *tablename,
5761 unsigned long bucketsize,
5762 unsigned long numentries,
5763 int scale,
5764 int flags,
5765 unsigned int *_hash_shift,
5766 unsigned int *_hash_mask,
5767 unsigned long low_limit,
5768 unsigned long high_limit)
5769 {
5770 unsigned long long max = high_limit;
5771 unsigned long log2qty, size;
5772 void *table = NULL;
5773
5774 /* allow the kernel cmdline to have a say */
5775 if (!numentries) {
5776 /* round applicable memory size up to nearest megabyte */
5777 numentries = nr_kernel_pages;
5778 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5779 numentries >>= 20 - PAGE_SHIFT;
5780 numentries <<= 20 - PAGE_SHIFT;
5781
5782 /* limit to 1 bucket per 2^scale bytes of low memory */
5783 if (scale > PAGE_SHIFT)
5784 numentries >>= (scale - PAGE_SHIFT);
5785 else
5786 numentries <<= (PAGE_SHIFT - scale);
5787
5788 /* Make sure we've got at least a 0-order allocation.. */
5789 if (unlikely(flags & HASH_SMALL)) {
5790 /* Makes no sense without HASH_EARLY */
5791 WARN_ON(!(flags & HASH_EARLY));
5792 if (!(numentries >> *_hash_shift)) {
5793 numentries = 1UL << *_hash_shift;
5794 BUG_ON(!numentries);
5795 }
5796 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5797 numentries = PAGE_SIZE / bucketsize;
5798 }
5799 numentries = roundup_pow_of_two(numentries);
5800
5801 /* limit allocation size to 1/16 total memory by default */
5802 if (max == 0) {
5803 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5804 do_div(max, bucketsize);
5805 }
5806 max = min(max, 0x80000000ULL);
5807
5808 if (numentries < low_limit)
5809 numentries = low_limit;
5810 if (numentries > max)
5811 numentries = max;
5812
5813 log2qty = ilog2(numentries);
5814
5815 do {
5816 size = bucketsize << log2qty;
5817 if (flags & HASH_EARLY)
5818 table = alloc_bootmem_nopanic(size);
5819 else if (hashdist)
5820 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5821 else {
5822 /*
5823 * If bucketsize is not a power-of-two, we may free
5824 * some pages at the end of hash table which
5825 * alloc_pages_exact() automatically does
5826 */
5827 if (get_order(size) < MAX_ORDER) {
5828 table = alloc_pages_exact(size, GFP_ATOMIC);
5829 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5830 }
5831 }
5832 } while (!table && size > PAGE_SIZE && --log2qty);
5833
5834 if (!table)
5835 panic("Failed to allocate %s hash table\n", tablename);
5836
5837 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5838 tablename,
5839 (1UL << log2qty),
5840 ilog2(size) - PAGE_SHIFT,
5841 size);
5842
5843 if (_hash_shift)
5844 *_hash_shift = log2qty;
5845 if (_hash_mask)
5846 *_hash_mask = (1 << log2qty) - 1;
5847
5848 return table;
5849 }
5850
5851 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5852 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5853 unsigned long pfn)
5854 {
5855 #ifdef CONFIG_SPARSEMEM
5856 return __pfn_to_section(pfn)->pageblock_flags;
5857 #else
5858 return zone->pageblock_flags;
5859 #endif /* CONFIG_SPARSEMEM */
5860 }
5861
5862 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5863 {
5864 #ifdef CONFIG_SPARSEMEM
5865 pfn &= (PAGES_PER_SECTION-1);
5866 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5867 #else
5868 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5869 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5870 #endif /* CONFIG_SPARSEMEM */
5871 }
5872
5873 /**
5874 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5875 * @page: The page within the block of interest
5876 * @start_bitidx: The first bit of interest to retrieve
5877 * @end_bitidx: The last bit of interest
5878 * returns pageblock_bits flags
5879 */
5880 unsigned long get_pageblock_flags_group(struct page *page,
5881 int start_bitidx, int end_bitidx)
5882 {
5883 struct zone *zone;
5884 unsigned long *bitmap;
5885 unsigned long pfn, bitidx;
5886 unsigned long flags = 0;
5887 unsigned long value = 1;
5888
5889 zone = page_zone(page);
5890 pfn = page_to_pfn(page);
5891 bitmap = get_pageblock_bitmap(zone, pfn);
5892 bitidx = pfn_to_bitidx(zone, pfn);
5893
5894 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5895 if (test_bit(bitidx + start_bitidx, bitmap))
5896 flags |= value;
5897
5898 return flags;
5899 }
5900
5901 /**
5902 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5903 * @page: The page within the block of interest
5904 * @start_bitidx: The first bit of interest
5905 * @end_bitidx: The last bit of interest
5906 * @flags: The flags to set
5907 */
5908 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5909 int start_bitidx, int end_bitidx)
5910 {
5911 struct zone *zone;
5912 unsigned long *bitmap;
5913 unsigned long pfn, bitidx;
5914 unsigned long value = 1;
5915
5916 zone = page_zone(page);
5917 pfn = page_to_pfn(page);
5918 bitmap = get_pageblock_bitmap(zone, pfn);
5919 bitidx = pfn_to_bitidx(zone, pfn);
5920 VM_BUG_ON(pfn < zone->zone_start_pfn);
5921 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5922
5923 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5924 if (flags & value)
5925 __set_bit(bitidx + start_bitidx, bitmap);
5926 else
5927 __clear_bit(bitidx + start_bitidx, bitmap);
5928 }
5929
5930 /*
5931 * This function checks whether pageblock includes unmovable pages or not.
5932 * If @count is not zero, it is okay to include less @count unmovable pages
5933 *
5934 * PageLRU check wihtout isolation or lru_lock could race so that
5935 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5936 * expect this function should be exact.
5937 */
5938 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5939 bool skip_hwpoisoned_pages)
5940 {
5941 unsigned long pfn, iter, found;
5942 int mt;
5943
5944 /*
5945 * For avoiding noise data, lru_add_drain_all() should be called
5946 * If ZONE_MOVABLE, the zone never contains unmovable pages
5947 */
5948 if (zone_idx(zone) == ZONE_MOVABLE)
5949 return false;
5950 mt = get_pageblock_migratetype(page);
5951 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5952 return false;
5953
5954 pfn = page_to_pfn(page);
5955 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5956 unsigned long check = pfn + iter;
5957
5958 if (!pfn_valid_within(check))
5959 continue;
5960
5961 page = pfn_to_page(check);
5962 /*
5963 * We can't use page_count without pin a page
5964 * because another CPU can free compound page.
5965 * This check already skips compound tails of THP
5966 * because their page->_count is zero at all time.
5967 */
5968 if (!atomic_read(&page->_count)) {
5969 if (PageBuddy(page))
5970 iter += (1 << page_order(page)) - 1;
5971 continue;
5972 }
5973
5974 /*
5975 * The HWPoisoned page may be not in buddy system, and
5976 * page_count() is not 0.
5977 */
5978 if (skip_hwpoisoned_pages && PageHWPoison(page))
5979 continue;
5980
5981 if (!PageLRU(page))
5982 found++;
5983 /*
5984 * If there are RECLAIMABLE pages, we need to check it.
5985 * But now, memory offline itself doesn't call shrink_slab()
5986 * and it still to be fixed.
5987 */
5988 /*
5989 * If the page is not RAM, page_count()should be 0.
5990 * we don't need more check. This is an _used_ not-movable page.
5991 *
5992 * The problematic thing here is PG_reserved pages. PG_reserved
5993 * is set to both of a memory hole page and a _used_ kernel
5994 * page at boot.
5995 */
5996 if (found > count)
5997 return true;
5998 }
5999 return false;
6000 }
6001
6002 bool is_pageblock_removable_nolock(struct page *page)
6003 {
6004 struct zone *zone;
6005 unsigned long pfn;
6006
6007 /*
6008 * We have to be careful here because we are iterating over memory
6009 * sections which are not zone aware so we might end up outside of
6010 * the zone but still within the section.
6011 * We have to take care about the node as well. If the node is offline
6012 * its NODE_DATA will be NULL - see page_zone.
6013 */
6014 if (!node_online(page_to_nid(page)))
6015 return false;
6016
6017 zone = page_zone(page);
6018 pfn = page_to_pfn(page);
6019 if (zone->zone_start_pfn > pfn ||
6020 zone->zone_start_pfn + zone->spanned_pages <= pfn)
6021 return false;
6022
6023 return !has_unmovable_pages(zone, page, 0, true);
6024 }
6025
6026 #ifdef CONFIG_CMA
6027
6028 static unsigned long pfn_max_align_down(unsigned long pfn)
6029 {
6030 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6031 pageblock_nr_pages) - 1);
6032 }
6033
6034 static unsigned long pfn_max_align_up(unsigned long pfn)
6035 {
6036 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6037 pageblock_nr_pages));
6038 }
6039
6040 /* [start, end) must belong to a single zone. */
6041 static int __alloc_contig_migrate_range(struct compact_control *cc,
6042 unsigned long start, unsigned long end)
6043 {
6044 /* This function is based on compact_zone() from compaction.c. */
6045 unsigned long nr_reclaimed;
6046 unsigned long pfn = start;
6047 unsigned int tries = 0;
6048 int ret = 0;
6049
6050 migrate_prep();
6051
6052 while (pfn < end || !list_empty(&cc->migratepages)) {
6053 if (fatal_signal_pending(current)) {
6054 ret = -EINTR;
6055 break;
6056 }
6057
6058 if (list_empty(&cc->migratepages)) {
6059 cc->nr_migratepages = 0;
6060 pfn = isolate_migratepages_range(cc->zone, cc,
6061 pfn, end, true);
6062 if (!pfn) {
6063 ret = -EINTR;
6064 break;
6065 }
6066 tries = 0;
6067 } else if (++tries == 5) {
6068 ret = ret < 0 ? ret : -EBUSY;
6069 break;
6070 }
6071
6072 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6073 &cc->migratepages);
6074 cc->nr_migratepages -= nr_reclaimed;
6075
6076 ret = migrate_pages(&cc->migratepages,
6077 alloc_migrate_target,
6078 0, false, MIGRATE_SYNC,
6079 MR_CMA);
6080 }
6081 if (ret < 0) {
6082 putback_movable_pages(&cc->migratepages);
6083 return ret;
6084 }
6085 return 0;
6086 }
6087
6088 /**
6089 * alloc_contig_range() -- tries to allocate given range of pages
6090 * @start: start PFN to allocate
6091 * @end: one-past-the-last PFN to allocate
6092 * @migratetype: migratetype of the underlaying pageblocks (either
6093 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6094 * in range must have the same migratetype and it must
6095 * be either of the two.
6096 *
6097 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6098 * aligned, however it's the caller's responsibility to guarantee that
6099 * we are the only thread that changes migrate type of pageblocks the
6100 * pages fall in.
6101 *
6102 * The PFN range must belong to a single zone.
6103 *
6104 * Returns zero on success or negative error code. On success all
6105 * pages which PFN is in [start, end) are allocated for the caller and
6106 * need to be freed with free_contig_range().
6107 */
6108 int alloc_contig_range(unsigned long start, unsigned long end,
6109 unsigned migratetype)
6110 {
6111 unsigned long outer_start, outer_end;
6112 int ret = 0, order;
6113
6114 struct compact_control cc = {
6115 .nr_migratepages = 0,
6116 .order = -1,
6117 .zone = page_zone(pfn_to_page(start)),
6118 .sync = true,
6119 .ignore_skip_hint = true,
6120 };
6121 INIT_LIST_HEAD(&cc.migratepages);
6122
6123 /*
6124 * What we do here is we mark all pageblocks in range as
6125 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6126 * have different sizes, and due to the way page allocator
6127 * work, we align the range to biggest of the two pages so
6128 * that page allocator won't try to merge buddies from
6129 * different pageblocks and change MIGRATE_ISOLATE to some
6130 * other migration type.
6131 *
6132 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6133 * migrate the pages from an unaligned range (ie. pages that
6134 * we are interested in). This will put all the pages in
6135 * range back to page allocator as MIGRATE_ISOLATE.
6136 *
6137 * When this is done, we take the pages in range from page
6138 * allocator removing them from the buddy system. This way
6139 * page allocator will never consider using them.
6140 *
6141 * This lets us mark the pageblocks back as
6142 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6143 * aligned range but not in the unaligned, original range are
6144 * put back to page allocator so that buddy can use them.
6145 */
6146
6147 ret = start_isolate_page_range(pfn_max_align_down(start),
6148 pfn_max_align_up(end), migratetype,
6149 false);
6150 if (ret)
6151 return ret;
6152
6153 ret = __alloc_contig_migrate_range(&cc, start, end);
6154 if (ret)
6155 goto done;
6156
6157 /*
6158 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6159 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6160 * more, all pages in [start, end) are free in page allocator.
6161 * What we are going to do is to allocate all pages from
6162 * [start, end) (that is remove them from page allocator).
6163 *
6164 * The only problem is that pages at the beginning and at the
6165 * end of interesting range may be not aligned with pages that
6166 * page allocator holds, ie. they can be part of higher order
6167 * pages. Because of this, we reserve the bigger range and
6168 * once this is done free the pages we are not interested in.
6169 *
6170 * We don't have to hold zone->lock here because the pages are
6171 * isolated thus they won't get removed from buddy.
6172 */
6173
6174 lru_add_drain_all();
6175 drain_all_pages();
6176
6177 order = 0;
6178 outer_start = start;
6179 while (!PageBuddy(pfn_to_page(outer_start))) {
6180 if (++order >= MAX_ORDER) {
6181 ret = -EBUSY;
6182 goto done;
6183 }
6184 outer_start &= ~0UL << order;
6185 }
6186
6187 /* Make sure the range is really isolated. */
6188 if (test_pages_isolated(outer_start, end, false)) {
6189 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6190 outer_start, end);
6191 ret = -EBUSY;
6192 goto done;
6193 }
6194
6195
6196 /* Grab isolated pages from freelists. */
6197 outer_end = isolate_freepages_range(&cc, outer_start, end);
6198 if (!outer_end) {
6199 ret = -EBUSY;
6200 goto done;
6201 }
6202
6203 /* Free head and tail (if any) */
6204 if (start != outer_start)
6205 free_contig_range(outer_start, start - outer_start);
6206 if (end != outer_end)
6207 free_contig_range(end, outer_end - end);
6208
6209 done:
6210 undo_isolate_page_range(pfn_max_align_down(start),
6211 pfn_max_align_up(end), migratetype);
6212 return ret;
6213 }
6214
6215 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6216 {
6217 unsigned int count = 0;
6218
6219 for (; nr_pages--; pfn++) {
6220 struct page *page = pfn_to_page(pfn);
6221
6222 count += page_count(page) != 1;
6223 __free_page(page);
6224 }
6225 WARN(count != 0, "%d pages are still in use!\n", count);
6226 }
6227 #endif
6228
6229 #ifdef CONFIG_MEMORY_HOTPLUG
6230 static int __meminit __zone_pcp_update(void *data)
6231 {
6232 struct zone *zone = data;
6233 int cpu;
6234 unsigned long batch = zone_batchsize(zone), flags;
6235
6236 for_each_possible_cpu(cpu) {
6237 struct per_cpu_pageset *pset;
6238 struct per_cpu_pages *pcp;
6239
6240 pset = per_cpu_ptr(zone->pageset, cpu);
6241 pcp = &pset->pcp;
6242
6243 local_irq_save(flags);
6244 if (pcp->count > 0)
6245 free_pcppages_bulk(zone, pcp->count, pcp);
6246 drain_zonestat(zone, pset);
6247 setup_pageset(pset, batch);
6248 local_irq_restore(flags);
6249 }
6250 return 0;
6251 }
6252
6253 void __meminit zone_pcp_update(struct zone *zone)
6254 {
6255 stop_machine(__zone_pcp_update, zone, NULL);
6256 }
6257 #endif
6258
6259 void zone_pcp_reset(struct zone *zone)
6260 {
6261 unsigned long flags;
6262 int cpu;
6263 struct per_cpu_pageset *pset;
6264
6265 /* avoid races with drain_pages() */
6266 local_irq_save(flags);
6267 if (zone->pageset != &boot_pageset) {
6268 for_each_online_cpu(cpu) {
6269 pset = per_cpu_ptr(zone->pageset, cpu);
6270 drain_zonestat(zone, pset);
6271 }
6272 free_percpu(zone->pageset);
6273 zone->pageset = &boot_pageset;
6274 }
6275 local_irq_restore(flags);
6276 }
6277
6278 #ifdef CONFIG_MEMORY_HOTREMOVE
6279 /*
6280 * All pages in the range must be isolated before calling this.
6281 */
6282 void
6283 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6284 {
6285 struct page *page;
6286 struct zone *zone;
6287 int order, i;
6288 unsigned long pfn;
6289 unsigned long flags;
6290 /* find the first valid pfn */
6291 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6292 if (pfn_valid(pfn))
6293 break;
6294 if (pfn == end_pfn)
6295 return;
6296 zone = page_zone(pfn_to_page(pfn));
6297 spin_lock_irqsave(&zone->lock, flags);
6298 pfn = start_pfn;
6299 while (pfn < end_pfn) {
6300 if (!pfn_valid(pfn)) {
6301 pfn++;
6302 continue;
6303 }
6304 page = pfn_to_page(pfn);
6305 /*
6306 * The HWPoisoned page may be not in buddy system, and
6307 * page_count() is not 0.
6308 */
6309 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6310 pfn++;
6311 SetPageReserved(page);
6312 continue;
6313 }
6314
6315 BUG_ON(page_count(page));
6316 BUG_ON(!PageBuddy(page));
6317 order = page_order(page);
6318 #ifdef CONFIG_DEBUG_VM
6319 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6320 pfn, 1 << order, end_pfn);
6321 #endif
6322 list_del(&page->lru);
6323 rmv_page_order(page);
6324 zone->free_area[order].nr_free--;
6325 for (i = 0; i < (1 << order); i++)
6326 SetPageReserved((page+i));
6327 pfn += (1 << order);
6328 }
6329 spin_unlock_irqrestore(&zone->lock, flags);
6330 }
6331 #endif
6332
6333 #ifdef CONFIG_MEMORY_FAILURE
6334 bool is_free_buddy_page(struct page *page)
6335 {
6336 struct zone *zone = page_zone(page);
6337 unsigned long pfn = page_to_pfn(page);
6338 unsigned long flags;
6339 int order;
6340
6341 spin_lock_irqsave(&zone->lock, flags);
6342 for (order = 0; order < MAX_ORDER; order++) {
6343 struct page *page_head = page - (pfn & ((1 << order) - 1));
6344
6345 if (PageBuddy(page_head) && page_order(page_head) >= order)
6346 break;
6347 }
6348 spin_unlock_irqrestore(&zone->lock, flags);
6349
6350 return order < MAX_ORDER;
6351 }
6352 #endif
6353
6354 static const struct trace_print_flags pageflag_names[] = {
6355 {1UL << PG_locked, "locked" },
6356 {1UL << PG_error, "error" },
6357 {1UL << PG_referenced, "referenced" },
6358 {1UL << PG_uptodate, "uptodate" },
6359 {1UL << PG_dirty, "dirty" },
6360 {1UL << PG_lru, "lru" },
6361 {1UL << PG_active, "active" },
6362 {1UL << PG_slab, "slab" },
6363 {1UL << PG_owner_priv_1, "owner_priv_1" },
6364 {1UL << PG_arch_1, "arch_1" },
6365 {1UL << PG_reserved, "reserved" },
6366 {1UL << PG_private, "private" },
6367 {1UL << PG_private_2, "private_2" },
6368 {1UL << PG_writeback, "writeback" },
6369 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6370 {1UL << PG_head, "head" },
6371 {1UL << PG_tail, "tail" },
6372 #else
6373 {1UL << PG_compound, "compound" },
6374 #endif
6375 {1UL << PG_swapcache, "swapcache" },
6376 {1UL << PG_mappedtodisk, "mappedtodisk" },
6377 {1UL << PG_reclaim, "reclaim" },
6378 {1UL << PG_swapbacked, "swapbacked" },
6379 {1UL << PG_unevictable, "unevictable" },
6380 #ifdef CONFIG_MMU
6381 {1UL << PG_mlocked, "mlocked" },
6382 #endif
6383 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6384 {1UL << PG_uncached, "uncached" },
6385 #endif
6386 #ifdef CONFIG_MEMORY_FAILURE
6387 {1UL << PG_hwpoison, "hwpoison" },
6388 #endif
6389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6390 {1UL << PG_compound_lock, "compound_lock" },
6391 #endif
6392 };
6393
6394 static void dump_page_flags(unsigned long flags)
6395 {
6396 const char *delim = "";
6397 unsigned long mask;
6398 int i;
6399
6400 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6401
6402 printk(KERN_ALERT "page flags: %#lx(", flags);
6403
6404 /* remove zone id */
6405 flags &= (1UL << NR_PAGEFLAGS) - 1;
6406
6407 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6408
6409 mask = pageflag_names[i].mask;
6410 if ((flags & mask) != mask)
6411 continue;
6412
6413 flags &= ~mask;
6414 printk("%s%s", delim, pageflag_names[i].name);
6415 delim = "|";
6416 }
6417
6418 /* check for left over flags */
6419 if (flags)
6420 printk("%s%#lx", delim, flags);
6421
6422 printk(")\n");
6423 }
6424
6425 void dump_page(struct page *page)
6426 {
6427 printk(KERN_ALERT
6428 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6429 page, atomic_read(&page->_count), page_mapcount(page),
6430 page->mapping, page->index);
6431 dump_page_flags(page->flags);
6432 mem_cgroup_print_bad_page(page);
6433 }
This page took 0.271362 seconds and 6 git commands to generate.