mm, oom: protect !costly allocations some more
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 /**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390 {
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416
417 /**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429 {
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454 }
455
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
461
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464 }
465
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
473
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
486
487 return ret;
488 }
489
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
496
497 return 1;
498 }
499 /*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
508
509 return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 return 0;
515 }
516 #endif
517
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
520 {
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
527 page_mapcount_reset(page); /* remove PageBuddy */
528 return;
529 }
530
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
541 pr_alert(
542 "BUG: Bad page state: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
552 current->comm, page_to_pfn(page));
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
558 dump_page_owner(page);
559
560 print_modules();
561 dump_stack();
562 out:
563 /* Leave bad fields for debug, except PageBuddy could make trouble */
564 page_mapcount_reset(page); /* remove PageBuddy */
565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
566 }
567
568 /*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572 *
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575 *
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
578 *
579 * The first tail page's ->compound_order holds the order of allocation.
580 * This usage means that zero-order pages may not be compound.
581 */
582
583 void free_compound_page(struct page *page)
584 {
585 __free_pages_ok(page, compound_order(page));
586 }
587
588 void prep_compound_page(struct page *page, unsigned int order)
589 {
590 int i;
591 int nr_pages = 1 << order;
592
593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
598 set_page_count(p, 0);
599 p->mapping = TAIL_MAPPING;
600 set_compound_head(p, page);
601 }
602 atomic_set(compound_mapcount_ptr(page), -1);
603 }
604
605 #ifdef CONFIG_DEBUG_PAGEALLOC
606 unsigned int _debug_guardpage_minorder;
607 bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
609 EXPORT_SYMBOL(_debug_pagealloc_enabled);
610 bool _debug_guardpage_enabled __read_mostly;
611
612 static int __init early_debug_pagealloc(char *buf)
613 {
614 if (!buf)
615 return -EINVAL;
616
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
619
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
622
623 return 0;
624 }
625 early_param("debug_pagealloc", early_debug_pagealloc);
626
627 static bool need_debug_guardpage(void)
628 {
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
633 return true;
634 }
635
636 static void init_debug_guardpage(void)
637 {
638 if (!debug_pagealloc_enabled())
639 return;
640
641 _debug_guardpage_enabled = true;
642 }
643
644 struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
647 };
648
649 static int __init debug_guardpage_minorder_setup(char *buf)
650 {
651 unsigned long res;
652
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
654 pr_err("Bad debug_guardpage_minorder value\n");
655 return 0;
656 }
657 _debug_guardpage_minorder = res;
658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
659 return 0;
660 }
661 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
662
663 static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
665 {
666 struct page_ext *page_ext;
667
668 if (!debug_guardpage_enabled())
669 return;
670
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
678 }
679
680 static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
682 {
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
694 }
695 #else
696 struct page_ext_operations debug_guardpage_ops = { NULL, };
697 static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699 static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
701 #endif
702
703 static inline void set_page_order(struct page *page, unsigned int order)
704 {
705 set_page_private(page, order);
706 __SetPageBuddy(page);
707 }
708
709 static inline void rmv_page_order(struct page *page)
710 {
711 __ClearPageBuddy(page);
712 set_page_private(page, 0);
713 }
714
715 /*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
718 * (a) the buddy is not in a hole &&
719 * (b) the buddy is in the buddy system &&
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
722 *
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
727 *
728 * For recording page's order, we use page_private(page).
729 */
730 static inline int page_is_buddy(struct page *page, struct page *buddy,
731 unsigned int order)
732 {
733 if (!pfn_valid_within(page_to_pfn(buddy)))
734 return 0;
735
736 if (page_is_guard(buddy) && page_order(buddy) == order) {
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
742 return 1;
743 }
744
745 if (PageBuddy(buddy) && page_order(buddy) == order) {
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
756 return 1;
757 }
758 return 0;
759 }
760
761 /*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
777 * So when we are allocating or freeing one, we can derive the state of the
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
780 * If a block is freed, and its buddy is also free, then this
781 * triggers coalescing into a block of larger size.
782 *
783 * -- nyc
784 */
785
786 static inline void __free_one_page(struct page *page,
787 unsigned long pfn,
788 struct zone *zone, unsigned int order,
789 int migratetype)
790 {
791 unsigned long page_idx;
792 unsigned long combined_idx;
793 unsigned long uninitialized_var(buddy_idx);
794 struct page *buddy;
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
805
806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
807
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
810
811 continue_merging:
812 while (order < max_order - 1) {
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
815 if (!page_is_buddy(page, buddy, order))
816 goto done_merging;
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
822 clear_page_guard(zone, buddy, order, migratetype);
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
828 combined_idx = buddy_idx & page_idx;
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858 done_merging:
859 set_page_order(page, order);
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
870 struct page *higher_page, *higher_buddy;
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
874 higher_buddy = higher_page + (buddy_idx - combined_idx);
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883 out:
884 zone->free_area[order].nr_free++;
885 }
886
887 /*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892 static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894 {
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900 #ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902 #endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907 }
908
909 static void free_pages_check_bad(struct page *page)
910 {
911 const char *bad_reason;
912 unsigned long bad_flags;
913
914 bad_reason = NULL;
915 bad_flags = 0;
916
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
921 if (unlikely(page_ref_count(page) != 0))
922 bad_reason = "nonzero _refcount";
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
927 #ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930 #endif
931 bad_page(page, bad_reason, bad_flags);
932 }
933
934 static inline int free_pages_check(struct page *page)
935 {
936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
937 return 0;
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
941 return 1;
942 }
943
944 static int free_tail_pages_check(struct page *head_page, struct page *page)
945 {
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988 out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992 }
993
994 static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
996 {
997 int bad = 0;
998
999 VM_BUG_ON_PAGE(PageTail(page), page);
1000
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
1003 kasan_free_pages(page, order);
1004
1005 /*
1006 * Check tail pages before head page information is cleared to
1007 * avoid checking PageCompound for order-0 pages.
1008 */
1009 if (unlikely(order)) {
1010 bool compound = PageCompound(page);
1011 int i;
1012
1013 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1014
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
1025 if (PageAnonHead(page))
1026 page->mapping = NULL;
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
1031
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
1035
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
1038 PAGE_SIZE << order);
1039 debug_check_no_obj_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 }
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
1045
1046 return true;
1047 }
1048
1049 #ifdef CONFIG_DEBUG_VM
1050 static inline bool free_pcp_prepare(struct page *page)
1051 {
1052 return free_pages_prepare(page, 0, true);
1053 }
1054
1055 static inline bool bulkfree_pcp_prepare(struct page *page)
1056 {
1057 return false;
1058 }
1059 #else
1060 static bool free_pcp_prepare(struct page *page)
1061 {
1062 return free_pages_prepare(page, 0, false);
1063 }
1064
1065 static bool bulkfree_pcp_prepare(struct page *page)
1066 {
1067 return free_pages_check(page);
1068 }
1069 #endif /* CONFIG_DEBUG_VM */
1070
1071 /*
1072 * Frees a number of pages from the PCP lists
1073 * Assumes all pages on list are in same zone, and of same order.
1074 * count is the number of pages to free.
1075 *
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1078 *
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1081 */
1082 static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1084 {
1085 int migratetype = 0;
1086 int batch_free = 0;
1087 unsigned long nr_scanned;
1088 bool isolated_pageblocks;
1089
1090 spin_lock(&zone->lock);
1091 isolated_pageblocks = has_isolate_pageblock(zone);
1092 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1093 if (nr_scanned)
1094 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1095
1096 while (count) {
1097 struct page *page;
1098 struct list_head *list;
1099
1100 /*
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
1106 */
1107 do {
1108 batch_free++;
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
1113
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
1116 batch_free = count;
1117
1118 do {
1119 int mt; /* migratetype of the to-be-freed page */
1120
1121 page = list_last_entry(list, struct page, lru);
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
1124
1125 mt = get_pcppage_migratetype(page);
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
1129 if (unlikely(isolated_pageblocks))
1130 mt = get_pageblock_migratetype(page);
1131
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1134
1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1136 trace_mm_page_pcpu_drain(page, 0, mt);
1137 } while (--count && --batch_free && !list_empty(list));
1138 }
1139 spin_unlock(&zone->lock);
1140 }
1141
1142 static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
1144 unsigned int order,
1145 int migratetype)
1146 {
1147 unsigned long nr_scanned;
1148 spin_lock(&zone->lock);
1149 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1150 if (nr_scanned)
1151 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1152
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
1156 }
1157 __free_one_page(page, pfn, zone, order, migratetype);
1158 spin_unlock(&zone->lock);
1159 }
1160
1161 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1163 {
1164 set_page_links(page, zone, nid, pfn);
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1168
1169 INIT_LIST_HEAD(&page->lru);
1170 #ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174 #endif
1175 }
1176
1177 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1179 {
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181 }
1182
1183 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184 static void init_reserved_page(unsigned long pfn)
1185 {
1186 pg_data_t *pgdat;
1187 int nid, zid;
1188
1189 if (!early_page_uninitialised(pfn))
1190 return;
1191
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1194
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1197
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1200 }
1201 __init_single_pfn(pfn, zid, nid);
1202 }
1203 #else
1204 static inline void init_reserved_page(unsigned long pfn)
1205 {
1206 }
1207 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208
1209 /*
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1214 */
1215 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1216 {
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1219
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1223
1224 init_reserved_page(start_pfn);
1225
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1228
1229 SetPageReserved(page);
1230 }
1231 }
1232 }
1233
1234 static void __free_pages_ok(struct page *page, unsigned int order)
1235 {
1236 unsigned long flags;
1237 int migratetype;
1238 unsigned long pfn = page_to_pfn(page);
1239
1240 if (!free_pages_prepare(page, order, true))
1241 return;
1242
1243 migratetype = get_pfnblock_migratetype(page, pfn);
1244 local_irq_save(flags);
1245 __count_vm_events(PGFREE, 1 << order);
1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
1247 local_irq_restore(flags);
1248 }
1249
1250 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1251 {
1252 unsigned int nr_pages = 1 << order;
1253 struct page *p = page;
1254 unsigned int loop;
1255
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
1261 }
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264
1265 page_zone(page)->managed_pages += nr_pages;
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
1268 }
1269
1270 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1272
1273 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1274
1275 int __meminit early_pfn_to_nid(unsigned long pfn)
1276 {
1277 static DEFINE_SPINLOCK(early_pfn_lock);
1278 int nid;
1279
1280 spin_lock(&early_pfn_lock);
1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1282 if (nid < 0)
1283 nid = 0;
1284 spin_unlock(&early_pfn_lock);
1285
1286 return nid;
1287 }
1288 #endif
1289
1290 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1293 {
1294 int nid;
1295
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1300 }
1301
1302 /* Only safe to use early in boot when initialisation is single-threaded */
1303 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304 {
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1306 }
1307
1308 #else
1309
1310 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311 {
1312 return true;
1313 }
1314 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316 {
1317 return true;
1318 }
1319 #endif
1320
1321
1322 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1323 unsigned int order)
1324 {
1325 if (early_page_uninitialised(pfn))
1326 return;
1327 return __free_pages_boot_core(page, order);
1328 }
1329
1330 /*
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1336 *
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 *
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1346 */
1347 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349 {
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_page(start_pfn);
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371 }
1372
1373 void set_zone_contiguous(struct zone *zone)
1374 {
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1377
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1382
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1384
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1388 }
1389
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1392 }
1393
1394 void clear_zone_contiguous(struct zone *zone)
1395 {
1396 zone->contiguous = false;
1397 }
1398
1399 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1400 static void __init deferred_free_range(struct page *page,
1401 unsigned long pfn, int nr_pages)
1402 {
1403 int i;
1404
1405 if (!page)
1406 return;
1407
1408 /* Free a large naturally-aligned chunk if possible */
1409 if (nr_pages == MAX_ORDER_NR_PAGES &&
1410 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1412 __free_pages_boot_core(page, MAX_ORDER-1);
1413 return;
1414 }
1415
1416 for (i = 0; i < nr_pages; i++, page++)
1417 __free_pages_boot_core(page, 0);
1418 }
1419
1420 /* Completion tracking for deferred_init_memmap() threads */
1421 static atomic_t pgdat_init_n_undone __initdata;
1422 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1423
1424 static inline void __init pgdat_init_report_one_done(void)
1425 {
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1428 }
1429
1430 /* Initialise remaining memory on a node */
1431 static int __init deferred_init_memmap(void *data)
1432 {
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1443
1444 if (first_init_pfn == ULONG_MAX) {
1445 pgdat_init_report_one_done();
1446 return 0;
1447 }
1448
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
1452
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1457
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1463 }
1464
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
1467 struct page *page = NULL;
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
1471
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1478
1479 for (; pfn < end_pfn; pfn++) {
1480 if (!pfn_valid_within(pfn))
1481 goto free_range;
1482
1483 /*
1484 * Ensure pfn_valid is checked every
1485 * MAX_ORDER_NR_PAGES for memory holes
1486 */
1487 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
1490 goto free_range;
1491 }
1492 }
1493
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1501 page++;
1502 } else {
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1511 }
1512
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
1515 goto free_range;
1516 }
1517
1518 __init_single_page(page, pfn, zid, nid);
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1523 }
1524 nr_to_free++;
1525
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528 free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
1535 }
1536
1537 first_init_pfn = max(end_pfn, first_init_pfn);
1538 }
1539
1540 /* Sanity check that the next zone really is unpopulated */
1541 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1542
1543 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1544 jiffies_to_msecs(jiffies - start));
1545
1546 pgdat_init_report_one_done();
1547 return 0;
1548 }
1549 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1550
1551 void __init page_alloc_init_late(void)
1552 {
1553 struct zone *zone;
1554
1555 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1556 int nid;
1557
1558 /* There will be num_node_state(N_MEMORY) threads */
1559 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1560 for_each_node_state(nid, N_MEMORY) {
1561 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1562 }
1563
1564 /* Block until all are initialised */
1565 wait_for_completion(&pgdat_init_all_done_comp);
1566
1567 /* Reinit limits that are based on free pages after the kernel is up */
1568 files_maxfiles_init();
1569 #endif
1570
1571 for_each_populated_zone(zone)
1572 set_zone_contiguous(zone);
1573 }
1574
1575 #ifdef CONFIG_CMA
1576 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1577 void __init init_cma_reserved_pageblock(struct page *page)
1578 {
1579 unsigned i = pageblock_nr_pages;
1580 struct page *p = page;
1581
1582 do {
1583 __ClearPageReserved(p);
1584 set_page_count(p, 0);
1585 } while (++p, --i);
1586
1587 set_pageblock_migratetype(page, MIGRATE_CMA);
1588
1589 if (pageblock_order >= MAX_ORDER) {
1590 i = pageblock_nr_pages;
1591 p = page;
1592 do {
1593 set_page_refcounted(p);
1594 __free_pages(p, MAX_ORDER - 1);
1595 p += MAX_ORDER_NR_PAGES;
1596 } while (i -= MAX_ORDER_NR_PAGES);
1597 } else {
1598 set_page_refcounted(page);
1599 __free_pages(page, pageblock_order);
1600 }
1601
1602 adjust_managed_page_count(page, pageblock_nr_pages);
1603 }
1604 #endif
1605
1606 /*
1607 * The order of subdivision here is critical for the IO subsystem.
1608 * Please do not alter this order without good reasons and regression
1609 * testing. Specifically, as large blocks of memory are subdivided,
1610 * the order in which smaller blocks are delivered depends on the order
1611 * they're subdivided in this function. This is the primary factor
1612 * influencing the order in which pages are delivered to the IO
1613 * subsystem according to empirical testing, and this is also justified
1614 * by considering the behavior of a buddy system containing a single
1615 * large block of memory acted on by a series of small allocations.
1616 * This behavior is a critical factor in sglist merging's success.
1617 *
1618 * -- nyc
1619 */
1620 static inline void expand(struct zone *zone, struct page *page,
1621 int low, int high, struct free_area *area,
1622 int migratetype)
1623 {
1624 unsigned long size = 1 << high;
1625
1626 while (high > low) {
1627 area--;
1628 high--;
1629 size >>= 1;
1630 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1631
1632 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1633 debug_guardpage_enabled() &&
1634 high < debug_guardpage_minorder()) {
1635 /*
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1640 */
1641 set_page_guard(zone, &page[size], high, migratetype);
1642 continue;
1643 }
1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1647 }
1648 }
1649
1650 static void check_new_page_bad(struct page *page)
1651 {
1652 const char *bad_reason = NULL;
1653 unsigned long bad_flags = 0;
1654
1655 if (unlikely(atomic_read(&page->_mapcount) != -1))
1656 bad_reason = "nonzero mapcount";
1657 if (unlikely(page->mapping != NULL))
1658 bad_reason = "non-NULL mapping";
1659 if (unlikely(page_ref_count(page) != 0))
1660 bad_reason = "nonzero _count";
1661 if (unlikely(page->flags & __PG_HWPOISON)) {
1662 bad_reason = "HWPoisoned (hardware-corrupted)";
1663 bad_flags = __PG_HWPOISON;
1664 }
1665 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1666 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1667 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1668 }
1669 #ifdef CONFIG_MEMCG
1670 if (unlikely(page->mem_cgroup))
1671 bad_reason = "page still charged to cgroup";
1672 #endif
1673 bad_page(page, bad_reason, bad_flags);
1674 }
1675
1676 /*
1677 * This page is about to be returned from the page allocator
1678 */
1679 static inline int check_new_page(struct page *page)
1680 {
1681 if (likely(page_expected_state(page,
1682 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1683 return 0;
1684
1685 check_new_page_bad(page);
1686 return 1;
1687 }
1688
1689 static inline bool free_pages_prezeroed(bool poisoned)
1690 {
1691 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1692 page_poisoning_enabled() && poisoned;
1693 }
1694
1695 #ifdef CONFIG_DEBUG_VM
1696 static bool check_pcp_refill(struct page *page)
1697 {
1698 return false;
1699 }
1700
1701 static bool check_new_pcp(struct page *page)
1702 {
1703 return check_new_page(page);
1704 }
1705 #else
1706 static bool check_pcp_refill(struct page *page)
1707 {
1708 return check_new_page(page);
1709 }
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 return false;
1713 }
1714 #endif /* CONFIG_DEBUG_VM */
1715
1716 static bool check_new_pages(struct page *page, unsigned int order)
1717 {
1718 int i;
1719 for (i = 0; i < (1 << order); i++) {
1720 struct page *p = page + i;
1721
1722 if (unlikely(check_new_page(p)))
1723 return true;
1724 }
1725
1726 return false;
1727 }
1728
1729 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1730 unsigned int alloc_flags)
1731 {
1732 int i;
1733 bool poisoned = true;
1734
1735 for (i = 0; i < (1 << order); i++) {
1736 struct page *p = page + i;
1737 if (poisoned)
1738 poisoned &= page_is_poisoned(p);
1739 }
1740
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748
1749 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1750 for (i = 0; i < (1 << order); i++)
1751 clear_highpage(page + i);
1752
1753 if (order && (gfp_flags & __GFP_COMP))
1754 prep_compound_page(page, order);
1755
1756 set_page_owner(page, order, gfp_flags);
1757
1758 /*
1759 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1760 * allocate the page. The expectation is that the caller is taking
1761 * steps that will free more memory. The caller should avoid the page
1762 * being used for !PFMEMALLOC purposes.
1763 */
1764 if (alloc_flags & ALLOC_NO_WATERMARKS)
1765 set_page_pfmemalloc(page);
1766 else
1767 clear_page_pfmemalloc(page);
1768 }
1769
1770 /*
1771 * Go through the free lists for the given migratetype and remove
1772 * the smallest available page from the freelists
1773 */
1774 static inline
1775 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1776 int migratetype)
1777 {
1778 unsigned int current_order;
1779 struct free_area *area;
1780 struct page *page;
1781
1782 /* Find a page of the appropriate size in the preferred list */
1783 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1784 area = &(zone->free_area[current_order]);
1785 page = list_first_entry_or_null(&area->free_list[migratetype],
1786 struct page, lru);
1787 if (!page)
1788 continue;
1789 list_del(&page->lru);
1790 rmv_page_order(page);
1791 area->nr_free--;
1792 expand(zone, page, order, current_order, area, migratetype);
1793 set_pcppage_migratetype(page, migratetype);
1794 return page;
1795 }
1796
1797 return NULL;
1798 }
1799
1800
1801 /*
1802 * This array describes the order lists are fallen back to when
1803 * the free lists for the desirable migrate type are depleted
1804 */
1805 static int fallbacks[MIGRATE_TYPES][4] = {
1806 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1807 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1808 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1809 #ifdef CONFIG_CMA
1810 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1811 #endif
1812 #ifdef CONFIG_MEMORY_ISOLATION
1813 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1814 #endif
1815 };
1816
1817 #ifdef CONFIG_CMA
1818 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1819 unsigned int order)
1820 {
1821 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1822 }
1823 #else
1824 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1825 unsigned int order) { return NULL; }
1826 #endif
1827
1828 /*
1829 * Move the free pages in a range to the free lists of the requested type.
1830 * Note that start_page and end_pages are not aligned on a pageblock
1831 * boundary. If alignment is required, use move_freepages_block()
1832 */
1833 int move_freepages(struct zone *zone,
1834 struct page *start_page, struct page *end_page,
1835 int migratetype)
1836 {
1837 struct page *page;
1838 unsigned int order;
1839 int pages_moved = 0;
1840
1841 #ifndef CONFIG_HOLES_IN_ZONE
1842 /*
1843 * page_zone is not safe to call in this context when
1844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1845 * anyway as we check zone boundaries in move_freepages_block().
1846 * Remove at a later date when no bug reports exist related to
1847 * grouping pages by mobility
1848 */
1849 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1850 #endif
1851
1852 for (page = start_page; page <= end_page;) {
1853 /* Make sure we are not inadvertently changing nodes */
1854 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1855
1856 if (!pfn_valid_within(page_to_pfn(page))) {
1857 page++;
1858 continue;
1859 }
1860
1861 if (!PageBuddy(page)) {
1862 page++;
1863 continue;
1864 }
1865
1866 order = page_order(page);
1867 list_move(&page->lru,
1868 &zone->free_area[order].free_list[migratetype]);
1869 page += 1 << order;
1870 pages_moved += 1 << order;
1871 }
1872
1873 return pages_moved;
1874 }
1875
1876 int move_freepages_block(struct zone *zone, struct page *page,
1877 int migratetype)
1878 {
1879 unsigned long start_pfn, end_pfn;
1880 struct page *start_page, *end_page;
1881
1882 start_pfn = page_to_pfn(page);
1883 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1884 start_page = pfn_to_page(start_pfn);
1885 end_page = start_page + pageblock_nr_pages - 1;
1886 end_pfn = start_pfn + pageblock_nr_pages - 1;
1887
1888 /* Do not cross zone boundaries */
1889 if (!zone_spans_pfn(zone, start_pfn))
1890 start_page = page;
1891 if (!zone_spans_pfn(zone, end_pfn))
1892 return 0;
1893
1894 return move_freepages(zone, start_page, end_page, migratetype);
1895 }
1896
1897 static void change_pageblock_range(struct page *pageblock_page,
1898 int start_order, int migratetype)
1899 {
1900 int nr_pageblocks = 1 << (start_order - pageblock_order);
1901
1902 while (nr_pageblocks--) {
1903 set_pageblock_migratetype(pageblock_page, migratetype);
1904 pageblock_page += pageblock_nr_pages;
1905 }
1906 }
1907
1908 /*
1909 * When we are falling back to another migratetype during allocation, try to
1910 * steal extra free pages from the same pageblocks to satisfy further
1911 * allocations, instead of polluting multiple pageblocks.
1912 *
1913 * If we are stealing a relatively large buddy page, it is likely there will
1914 * be more free pages in the pageblock, so try to steal them all. For
1915 * reclaimable and unmovable allocations, we steal regardless of page size,
1916 * as fragmentation caused by those allocations polluting movable pageblocks
1917 * is worse than movable allocations stealing from unmovable and reclaimable
1918 * pageblocks.
1919 */
1920 static bool can_steal_fallback(unsigned int order, int start_mt)
1921 {
1922 /*
1923 * Leaving this order check is intended, although there is
1924 * relaxed order check in next check. The reason is that
1925 * we can actually steal whole pageblock if this condition met,
1926 * but, below check doesn't guarantee it and that is just heuristic
1927 * so could be changed anytime.
1928 */
1929 if (order >= pageblock_order)
1930 return true;
1931
1932 if (order >= pageblock_order / 2 ||
1933 start_mt == MIGRATE_RECLAIMABLE ||
1934 start_mt == MIGRATE_UNMOVABLE ||
1935 page_group_by_mobility_disabled)
1936 return true;
1937
1938 return false;
1939 }
1940
1941 /*
1942 * This function implements actual steal behaviour. If order is large enough,
1943 * we can steal whole pageblock. If not, we first move freepages in this
1944 * pageblock and check whether half of pages are moved or not. If half of
1945 * pages are moved, we can change migratetype of pageblock and permanently
1946 * use it's pages as requested migratetype in the future.
1947 */
1948 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1949 int start_type)
1950 {
1951 unsigned int current_order = page_order(page);
1952 int pages;
1953
1954 /* Take ownership for orders >= pageblock_order */
1955 if (current_order >= pageblock_order) {
1956 change_pageblock_range(page, current_order, start_type);
1957 return;
1958 }
1959
1960 pages = move_freepages_block(zone, page, start_type);
1961
1962 /* Claim the whole block if over half of it is free */
1963 if (pages >= (1 << (pageblock_order-1)) ||
1964 page_group_by_mobility_disabled)
1965 set_pageblock_migratetype(page, start_type);
1966 }
1967
1968 /*
1969 * Check whether there is a suitable fallback freepage with requested order.
1970 * If only_stealable is true, this function returns fallback_mt only if
1971 * we can steal other freepages all together. This would help to reduce
1972 * fragmentation due to mixed migratetype pages in one pageblock.
1973 */
1974 int find_suitable_fallback(struct free_area *area, unsigned int order,
1975 int migratetype, bool only_stealable, bool *can_steal)
1976 {
1977 int i;
1978 int fallback_mt;
1979
1980 if (area->nr_free == 0)
1981 return -1;
1982
1983 *can_steal = false;
1984 for (i = 0;; i++) {
1985 fallback_mt = fallbacks[migratetype][i];
1986 if (fallback_mt == MIGRATE_TYPES)
1987 break;
1988
1989 if (list_empty(&area->free_list[fallback_mt]))
1990 continue;
1991
1992 if (can_steal_fallback(order, migratetype))
1993 *can_steal = true;
1994
1995 if (!only_stealable)
1996 return fallback_mt;
1997
1998 if (*can_steal)
1999 return fallback_mt;
2000 }
2001
2002 return -1;
2003 }
2004
2005 /*
2006 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2007 * there are no empty page blocks that contain a page with a suitable order
2008 */
2009 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2010 unsigned int alloc_order)
2011 {
2012 int mt;
2013 unsigned long max_managed, flags;
2014
2015 /*
2016 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2017 * Check is race-prone but harmless.
2018 */
2019 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2020 if (zone->nr_reserved_highatomic >= max_managed)
2021 return;
2022
2023 spin_lock_irqsave(&zone->lock, flags);
2024
2025 /* Recheck the nr_reserved_highatomic limit under the lock */
2026 if (zone->nr_reserved_highatomic >= max_managed)
2027 goto out_unlock;
2028
2029 /* Yoink! */
2030 mt = get_pageblock_migratetype(page);
2031 if (mt != MIGRATE_HIGHATOMIC &&
2032 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2033 zone->nr_reserved_highatomic += pageblock_nr_pages;
2034 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2035 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2036 }
2037
2038 out_unlock:
2039 spin_unlock_irqrestore(&zone->lock, flags);
2040 }
2041
2042 /*
2043 * Used when an allocation is about to fail under memory pressure. This
2044 * potentially hurts the reliability of high-order allocations when under
2045 * intense memory pressure but failed atomic allocations should be easier
2046 * to recover from than an OOM.
2047 */
2048 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2049 {
2050 struct zonelist *zonelist = ac->zonelist;
2051 unsigned long flags;
2052 struct zoneref *z;
2053 struct zone *zone;
2054 struct page *page;
2055 int order;
2056
2057 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2058 ac->nodemask) {
2059 /* Preserve at least one pageblock */
2060 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2061 continue;
2062
2063 spin_lock_irqsave(&zone->lock, flags);
2064 for (order = 0; order < MAX_ORDER; order++) {
2065 struct free_area *area = &(zone->free_area[order]);
2066
2067 page = list_first_entry_or_null(
2068 &area->free_list[MIGRATE_HIGHATOMIC],
2069 struct page, lru);
2070 if (!page)
2071 continue;
2072
2073 /*
2074 * It should never happen but changes to locking could
2075 * inadvertently allow a per-cpu drain to add pages
2076 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2077 * and watch for underflows.
2078 */
2079 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2080 zone->nr_reserved_highatomic);
2081
2082 /*
2083 * Convert to ac->migratetype and avoid the normal
2084 * pageblock stealing heuristics. Minimally, the caller
2085 * is doing the work and needs the pages. More
2086 * importantly, if the block was always converted to
2087 * MIGRATE_UNMOVABLE or another type then the number
2088 * of pageblocks that cannot be completely freed
2089 * may increase.
2090 */
2091 set_pageblock_migratetype(page, ac->migratetype);
2092 move_freepages_block(zone, page, ac->migratetype);
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 return;
2095 }
2096 spin_unlock_irqrestore(&zone->lock, flags);
2097 }
2098 }
2099
2100 /* Remove an element from the buddy allocator from the fallback list */
2101 static inline struct page *
2102 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2103 {
2104 struct free_area *area;
2105 unsigned int current_order;
2106 struct page *page;
2107 int fallback_mt;
2108 bool can_steal;
2109
2110 /* Find the largest possible block of pages in the other list */
2111 for (current_order = MAX_ORDER-1;
2112 current_order >= order && current_order <= MAX_ORDER-1;
2113 --current_order) {
2114 area = &(zone->free_area[current_order]);
2115 fallback_mt = find_suitable_fallback(area, current_order,
2116 start_migratetype, false, &can_steal);
2117 if (fallback_mt == -1)
2118 continue;
2119
2120 page = list_first_entry(&area->free_list[fallback_mt],
2121 struct page, lru);
2122 if (can_steal)
2123 steal_suitable_fallback(zone, page, start_migratetype);
2124
2125 /* Remove the page from the freelists */
2126 area->nr_free--;
2127 list_del(&page->lru);
2128 rmv_page_order(page);
2129
2130 expand(zone, page, order, current_order, area,
2131 start_migratetype);
2132 /*
2133 * The pcppage_migratetype may differ from pageblock's
2134 * migratetype depending on the decisions in
2135 * find_suitable_fallback(). This is OK as long as it does not
2136 * differ for MIGRATE_CMA pageblocks. Those can be used as
2137 * fallback only via special __rmqueue_cma_fallback() function
2138 */
2139 set_pcppage_migratetype(page, start_migratetype);
2140
2141 trace_mm_page_alloc_extfrag(page, order, current_order,
2142 start_migratetype, fallback_mt);
2143
2144 return page;
2145 }
2146
2147 return NULL;
2148 }
2149
2150 /*
2151 * Do the hard work of removing an element from the buddy allocator.
2152 * Call me with the zone->lock already held.
2153 */
2154 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2155 int migratetype)
2156 {
2157 struct page *page;
2158
2159 page = __rmqueue_smallest(zone, order, migratetype);
2160 if (unlikely(!page)) {
2161 if (migratetype == MIGRATE_MOVABLE)
2162 page = __rmqueue_cma_fallback(zone, order);
2163
2164 if (!page)
2165 page = __rmqueue_fallback(zone, order, migratetype);
2166 }
2167
2168 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2169 return page;
2170 }
2171
2172 /*
2173 * Obtain a specified number of elements from the buddy allocator, all under
2174 * a single hold of the lock, for efficiency. Add them to the supplied list.
2175 * Returns the number of new pages which were placed at *list.
2176 */
2177 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2178 unsigned long count, struct list_head *list,
2179 int migratetype, bool cold)
2180 {
2181 int i;
2182
2183 spin_lock(&zone->lock);
2184 for (i = 0; i < count; ++i) {
2185 struct page *page = __rmqueue(zone, order, migratetype);
2186 if (unlikely(page == NULL))
2187 break;
2188
2189 if (unlikely(check_pcp_refill(page)))
2190 continue;
2191
2192 /*
2193 * Split buddy pages returned by expand() are received here
2194 * in physical page order. The page is added to the callers and
2195 * list and the list head then moves forward. From the callers
2196 * perspective, the linked list is ordered by page number in
2197 * some conditions. This is useful for IO devices that can
2198 * merge IO requests if the physical pages are ordered
2199 * properly.
2200 */
2201 if (likely(!cold))
2202 list_add(&page->lru, list);
2203 else
2204 list_add_tail(&page->lru, list);
2205 list = &page->lru;
2206 if (is_migrate_cma(get_pcppage_migratetype(page)))
2207 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2208 -(1 << order));
2209 }
2210 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2211 spin_unlock(&zone->lock);
2212 return i;
2213 }
2214
2215 #ifdef CONFIG_NUMA
2216 /*
2217 * Called from the vmstat counter updater to drain pagesets of this
2218 * currently executing processor on remote nodes after they have
2219 * expired.
2220 *
2221 * Note that this function must be called with the thread pinned to
2222 * a single processor.
2223 */
2224 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2225 {
2226 unsigned long flags;
2227 int to_drain, batch;
2228
2229 local_irq_save(flags);
2230 batch = READ_ONCE(pcp->batch);
2231 to_drain = min(pcp->count, batch);
2232 if (to_drain > 0) {
2233 free_pcppages_bulk(zone, to_drain, pcp);
2234 pcp->count -= to_drain;
2235 }
2236 local_irq_restore(flags);
2237 }
2238 #endif
2239
2240 /*
2241 * Drain pcplists of the indicated processor and zone.
2242 *
2243 * The processor must either be the current processor and the
2244 * thread pinned to the current processor or a processor that
2245 * is not online.
2246 */
2247 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2248 {
2249 unsigned long flags;
2250 struct per_cpu_pageset *pset;
2251 struct per_cpu_pages *pcp;
2252
2253 local_irq_save(flags);
2254 pset = per_cpu_ptr(zone->pageset, cpu);
2255
2256 pcp = &pset->pcp;
2257 if (pcp->count) {
2258 free_pcppages_bulk(zone, pcp->count, pcp);
2259 pcp->count = 0;
2260 }
2261 local_irq_restore(flags);
2262 }
2263
2264 /*
2265 * Drain pcplists of all zones on the indicated processor.
2266 *
2267 * The processor must either be the current processor and the
2268 * thread pinned to the current processor or a processor that
2269 * is not online.
2270 */
2271 static void drain_pages(unsigned int cpu)
2272 {
2273 struct zone *zone;
2274
2275 for_each_populated_zone(zone) {
2276 drain_pages_zone(cpu, zone);
2277 }
2278 }
2279
2280 /*
2281 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2282 *
2283 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2284 * the single zone's pages.
2285 */
2286 void drain_local_pages(struct zone *zone)
2287 {
2288 int cpu = smp_processor_id();
2289
2290 if (zone)
2291 drain_pages_zone(cpu, zone);
2292 else
2293 drain_pages(cpu);
2294 }
2295
2296 /*
2297 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2298 *
2299 * When zone parameter is non-NULL, spill just the single zone's pages.
2300 *
2301 * Note that this code is protected against sending an IPI to an offline
2302 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2303 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2304 * nothing keeps CPUs from showing up after we populated the cpumask and
2305 * before the call to on_each_cpu_mask().
2306 */
2307 void drain_all_pages(struct zone *zone)
2308 {
2309 int cpu;
2310
2311 /*
2312 * Allocate in the BSS so we wont require allocation in
2313 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2314 */
2315 static cpumask_t cpus_with_pcps;
2316
2317 /*
2318 * We don't care about racing with CPU hotplug event
2319 * as offline notification will cause the notified
2320 * cpu to drain that CPU pcps and on_each_cpu_mask
2321 * disables preemption as part of its processing
2322 */
2323 for_each_online_cpu(cpu) {
2324 struct per_cpu_pageset *pcp;
2325 struct zone *z;
2326 bool has_pcps = false;
2327
2328 if (zone) {
2329 pcp = per_cpu_ptr(zone->pageset, cpu);
2330 if (pcp->pcp.count)
2331 has_pcps = true;
2332 } else {
2333 for_each_populated_zone(z) {
2334 pcp = per_cpu_ptr(z->pageset, cpu);
2335 if (pcp->pcp.count) {
2336 has_pcps = true;
2337 break;
2338 }
2339 }
2340 }
2341
2342 if (has_pcps)
2343 cpumask_set_cpu(cpu, &cpus_with_pcps);
2344 else
2345 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2346 }
2347 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2348 zone, 1);
2349 }
2350
2351 #ifdef CONFIG_HIBERNATION
2352
2353 void mark_free_pages(struct zone *zone)
2354 {
2355 unsigned long pfn, max_zone_pfn;
2356 unsigned long flags;
2357 unsigned int order, t;
2358 struct page *page;
2359
2360 if (zone_is_empty(zone))
2361 return;
2362
2363 spin_lock_irqsave(&zone->lock, flags);
2364
2365 max_zone_pfn = zone_end_pfn(zone);
2366 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2367 if (pfn_valid(pfn)) {
2368 page = pfn_to_page(pfn);
2369
2370 if (page_zone(page) != zone)
2371 continue;
2372
2373 if (!swsusp_page_is_forbidden(page))
2374 swsusp_unset_page_free(page);
2375 }
2376
2377 for_each_migratetype_order(order, t) {
2378 list_for_each_entry(page,
2379 &zone->free_area[order].free_list[t], lru) {
2380 unsigned long i;
2381
2382 pfn = page_to_pfn(page);
2383 for (i = 0; i < (1UL << order); i++)
2384 swsusp_set_page_free(pfn_to_page(pfn + i));
2385 }
2386 }
2387 spin_unlock_irqrestore(&zone->lock, flags);
2388 }
2389 #endif /* CONFIG_PM */
2390
2391 /*
2392 * Free a 0-order page
2393 * cold == true ? free a cold page : free a hot page
2394 */
2395 void free_hot_cold_page(struct page *page, bool cold)
2396 {
2397 struct zone *zone = page_zone(page);
2398 struct per_cpu_pages *pcp;
2399 unsigned long flags;
2400 unsigned long pfn = page_to_pfn(page);
2401 int migratetype;
2402
2403 if (!free_pcp_prepare(page))
2404 return;
2405
2406 migratetype = get_pfnblock_migratetype(page, pfn);
2407 set_pcppage_migratetype(page, migratetype);
2408 local_irq_save(flags);
2409 __count_vm_event(PGFREE);
2410
2411 /*
2412 * We only track unmovable, reclaimable and movable on pcp lists.
2413 * Free ISOLATE pages back to the allocator because they are being
2414 * offlined but treat RESERVE as movable pages so we can get those
2415 * areas back if necessary. Otherwise, we may have to free
2416 * excessively into the page allocator
2417 */
2418 if (migratetype >= MIGRATE_PCPTYPES) {
2419 if (unlikely(is_migrate_isolate(migratetype))) {
2420 free_one_page(zone, page, pfn, 0, migratetype);
2421 goto out;
2422 }
2423 migratetype = MIGRATE_MOVABLE;
2424 }
2425
2426 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2427 if (!cold)
2428 list_add(&page->lru, &pcp->lists[migratetype]);
2429 else
2430 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2431 pcp->count++;
2432 if (pcp->count >= pcp->high) {
2433 unsigned long batch = READ_ONCE(pcp->batch);
2434 free_pcppages_bulk(zone, batch, pcp);
2435 pcp->count -= batch;
2436 }
2437
2438 out:
2439 local_irq_restore(flags);
2440 }
2441
2442 /*
2443 * Free a list of 0-order pages
2444 */
2445 void free_hot_cold_page_list(struct list_head *list, bool cold)
2446 {
2447 struct page *page, *next;
2448
2449 list_for_each_entry_safe(page, next, list, lru) {
2450 trace_mm_page_free_batched(page, cold);
2451 free_hot_cold_page(page, cold);
2452 }
2453 }
2454
2455 /*
2456 * split_page takes a non-compound higher-order page, and splits it into
2457 * n (1<<order) sub-pages: page[0..n]
2458 * Each sub-page must be freed individually.
2459 *
2460 * Note: this is probably too low level an operation for use in drivers.
2461 * Please consult with lkml before using this in your driver.
2462 */
2463 void split_page(struct page *page, unsigned int order)
2464 {
2465 int i;
2466 gfp_t gfp_mask;
2467
2468 VM_BUG_ON_PAGE(PageCompound(page), page);
2469 VM_BUG_ON_PAGE(!page_count(page), page);
2470
2471 #ifdef CONFIG_KMEMCHECK
2472 /*
2473 * Split shadow pages too, because free(page[0]) would
2474 * otherwise free the whole shadow.
2475 */
2476 if (kmemcheck_page_is_tracked(page))
2477 split_page(virt_to_page(page[0].shadow), order);
2478 #endif
2479
2480 gfp_mask = get_page_owner_gfp(page);
2481 set_page_owner(page, 0, gfp_mask);
2482 for (i = 1; i < (1 << order); i++) {
2483 set_page_refcounted(page + i);
2484 set_page_owner(page + i, 0, gfp_mask);
2485 }
2486 }
2487 EXPORT_SYMBOL_GPL(split_page);
2488
2489 int __isolate_free_page(struct page *page, unsigned int order)
2490 {
2491 unsigned long watermark;
2492 struct zone *zone;
2493 int mt;
2494
2495 BUG_ON(!PageBuddy(page));
2496
2497 zone = page_zone(page);
2498 mt = get_pageblock_migratetype(page);
2499
2500 if (!is_migrate_isolate(mt)) {
2501 /* Obey watermarks as if the page was being allocated */
2502 watermark = low_wmark_pages(zone) + (1 << order);
2503 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2504 return 0;
2505
2506 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2507 }
2508
2509 /* Remove page from free list */
2510 list_del(&page->lru);
2511 zone->free_area[order].nr_free--;
2512 rmv_page_order(page);
2513
2514 set_page_owner(page, order, __GFP_MOVABLE);
2515
2516 /* Set the pageblock if the isolated page is at least a pageblock */
2517 if (order >= pageblock_order - 1) {
2518 struct page *endpage = page + (1 << order) - 1;
2519 for (; page < endpage; page += pageblock_nr_pages) {
2520 int mt = get_pageblock_migratetype(page);
2521 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2522 set_pageblock_migratetype(page,
2523 MIGRATE_MOVABLE);
2524 }
2525 }
2526
2527
2528 return 1UL << order;
2529 }
2530
2531 /*
2532 * Similar to split_page except the page is already free. As this is only
2533 * being used for migration, the migratetype of the block also changes.
2534 * As this is called with interrupts disabled, the caller is responsible
2535 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2536 * are enabled.
2537 *
2538 * Note: this is probably too low level an operation for use in drivers.
2539 * Please consult with lkml before using this in your driver.
2540 */
2541 int split_free_page(struct page *page)
2542 {
2543 unsigned int order;
2544 int nr_pages;
2545
2546 order = page_order(page);
2547
2548 nr_pages = __isolate_free_page(page, order);
2549 if (!nr_pages)
2550 return 0;
2551
2552 /* Split into individual pages */
2553 set_page_refcounted(page);
2554 split_page(page, order);
2555 return nr_pages;
2556 }
2557
2558 /*
2559 * Update NUMA hit/miss statistics
2560 *
2561 * Must be called with interrupts disabled.
2562 *
2563 * When __GFP_OTHER_NODE is set assume the node of the preferred
2564 * zone is the local node. This is useful for daemons who allocate
2565 * memory on behalf of other processes.
2566 */
2567 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2568 gfp_t flags)
2569 {
2570 #ifdef CONFIG_NUMA
2571 int local_nid = numa_node_id();
2572 enum zone_stat_item local_stat = NUMA_LOCAL;
2573
2574 if (unlikely(flags & __GFP_OTHER_NODE)) {
2575 local_stat = NUMA_OTHER;
2576 local_nid = preferred_zone->node;
2577 }
2578
2579 if (z->node == local_nid) {
2580 __inc_zone_state(z, NUMA_HIT);
2581 __inc_zone_state(z, local_stat);
2582 } else {
2583 __inc_zone_state(z, NUMA_MISS);
2584 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2585 }
2586 #endif
2587 }
2588
2589 /*
2590 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2591 */
2592 static inline
2593 struct page *buffered_rmqueue(struct zone *preferred_zone,
2594 struct zone *zone, unsigned int order,
2595 gfp_t gfp_flags, unsigned int alloc_flags,
2596 int migratetype)
2597 {
2598 unsigned long flags;
2599 struct page *page;
2600 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2601
2602 if (likely(order == 0)) {
2603 struct per_cpu_pages *pcp;
2604 struct list_head *list;
2605
2606 local_irq_save(flags);
2607 do {
2608 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2609 list = &pcp->lists[migratetype];
2610 if (list_empty(list)) {
2611 pcp->count += rmqueue_bulk(zone, 0,
2612 pcp->batch, list,
2613 migratetype, cold);
2614 if (unlikely(list_empty(list)))
2615 goto failed;
2616 }
2617
2618 if (cold)
2619 page = list_last_entry(list, struct page, lru);
2620 else
2621 page = list_first_entry(list, struct page, lru);
2622 } while (page && check_new_pcp(page));
2623
2624 __dec_zone_state(zone, NR_ALLOC_BATCH);
2625 list_del(&page->lru);
2626 pcp->count--;
2627 } else {
2628 /*
2629 * We most definitely don't want callers attempting to
2630 * allocate greater than order-1 page units with __GFP_NOFAIL.
2631 */
2632 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2633 spin_lock_irqsave(&zone->lock, flags);
2634
2635 do {
2636 page = NULL;
2637 if (alloc_flags & ALLOC_HARDER) {
2638 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2639 if (page)
2640 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2641 }
2642 if (!page)
2643 page = __rmqueue(zone, order, migratetype);
2644 } while (page && check_new_pages(page, order));
2645 spin_unlock(&zone->lock);
2646 if (!page)
2647 goto failed;
2648 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2649 __mod_zone_freepage_state(zone, -(1 << order),
2650 get_pcppage_migratetype(page));
2651 }
2652
2653 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2654 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2655 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2656
2657 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2658 zone_statistics(preferred_zone, zone, gfp_flags);
2659 local_irq_restore(flags);
2660
2661 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2662 return page;
2663
2664 failed:
2665 local_irq_restore(flags);
2666 return NULL;
2667 }
2668
2669 #ifdef CONFIG_FAIL_PAGE_ALLOC
2670
2671 static struct {
2672 struct fault_attr attr;
2673
2674 bool ignore_gfp_highmem;
2675 bool ignore_gfp_reclaim;
2676 u32 min_order;
2677 } fail_page_alloc = {
2678 .attr = FAULT_ATTR_INITIALIZER,
2679 .ignore_gfp_reclaim = true,
2680 .ignore_gfp_highmem = true,
2681 .min_order = 1,
2682 };
2683
2684 static int __init setup_fail_page_alloc(char *str)
2685 {
2686 return setup_fault_attr(&fail_page_alloc.attr, str);
2687 }
2688 __setup("fail_page_alloc=", setup_fail_page_alloc);
2689
2690 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2691 {
2692 if (order < fail_page_alloc.min_order)
2693 return false;
2694 if (gfp_mask & __GFP_NOFAIL)
2695 return false;
2696 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2697 return false;
2698 if (fail_page_alloc.ignore_gfp_reclaim &&
2699 (gfp_mask & __GFP_DIRECT_RECLAIM))
2700 return false;
2701
2702 return should_fail(&fail_page_alloc.attr, 1 << order);
2703 }
2704
2705 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2706
2707 static int __init fail_page_alloc_debugfs(void)
2708 {
2709 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2710 struct dentry *dir;
2711
2712 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2713 &fail_page_alloc.attr);
2714 if (IS_ERR(dir))
2715 return PTR_ERR(dir);
2716
2717 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2718 &fail_page_alloc.ignore_gfp_reclaim))
2719 goto fail;
2720 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2721 &fail_page_alloc.ignore_gfp_highmem))
2722 goto fail;
2723 if (!debugfs_create_u32("min-order", mode, dir,
2724 &fail_page_alloc.min_order))
2725 goto fail;
2726
2727 return 0;
2728 fail:
2729 debugfs_remove_recursive(dir);
2730
2731 return -ENOMEM;
2732 }
2733
2734 late_initcall(fail_page_alloc_debugfs);
2735
2736 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2737
2738 #else /* CONFIG_FAIL_PAGE_ALLOC */
2739
2740 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2741 {
2742 return false;
2743 }
2744
2745 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2746
2747 /*
2748 * Return true if free base pages are above 'mark'. For high-order checks it
2749 * will return true of the order-0 watermark is reached and there is at least
2750 * one free page of a suitable size. Checking now avoids taking the zone lock
2751 * to check in the allocation paths if no pages are free.
2752 */
2753 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2754 unsigned long mark, int classzone_idx,
2755 unsigned int alloc_flags,
2756 long free_pages)
2757 {
2758 long min = mark;
2759 int o;
2760 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2761
2762 /* free_pages may go negative - that's OK */
2763 free_pages -= (1 << order) - 1;
2764
2765 if (alloc_flags & ALLOC_HIGH)
2766 min -= min / 2;
2767
2768 /*
2769 * If the caller does not have rights to ALLOC_HARDER then subtract
2770 * the high-atomic reserves. This will over-estimate the size of the
2771 * atomic reserve but it avoids a search.
2772 */
2773 if (likely(!alloc_harder))
2774 free_pages -= z->nr_reserved_highatomic;
2775 else
2776 min -= min / 4;
2777
2778 #ifdef CONFIG_CMA
2779 /* If allocation can't use CMA areas don't use free CMA pages */
2780 if (!(alloc_flags & ALLOC_CMA))
2781 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2782 #endif
2783
2784 /*
2785 * Check watermarks for an order-0 allocation request. If these
2786 * are not met, then a high-order request also cannot go ahead
2787 * even if a suitable page happened to be free.
2788 */
2789 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2790 return false;
2791
2792 /* If this is an order-0 request then the watermark is fine */
2793 if (!order)
2794 return true;
2795
2796 /* For a high-order request, check at least one suitable page is free */
2797 for (o = order; o < MAX_ORDER; o++) {
2798 struct free_area *area = &z->free_area[o];
2799 int mt;
2800
2801 if (!area->nr_free)
2802 continue;
2803
2804 if (alloc_harder)
2805 return true;
2806
2807 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2808 if (!list_empty(&area->free_list[mt]))
2809 return true;
2810 }
2811
2812 #ifdef CONFIG_CMA
2813 if ((alloc_flags & ALLOC_CMA) &&
2814 !list_empty(&area->free_list[MIGRATE_CMA])) {
2815 return true;
2816 }
2817 #endif
2818 }
2819 return false;
2820 }
2821
2822 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2823 int classzone_idx, unsigned int alloc_flags)
2824 {
2825 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2826 zone_page_state(z, NR_FREE_PAGES));
2827 }
2828
2829 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2830 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2831 {
2832 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2833 long cma_pages = 0;
2834
2835 #ifdef CONFIG_CMA
2836 /* If allocation can't use CMA areas don't use free CMA pages */
2837 if (!(alloc_flags & ALLOC_CMA))
2838 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2839 #endif
2840
2841 /*
2842 * Fast check for order-0 only. If this fails then the reserves
2843 * need to be calculated. There is a corner case where the check
2844 * passes but only the high-order atomic reserve are free. If
2845 * the caller is !atomic then it'll uselessly search the free
2846 * list. That corner case is then slower but it is harmless.
2847 */
2848 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2849 return true;
2850
2851 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2852 free_pages);
2853 }
2854
2855 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2856 unsigned long mark, int classzone_idx)
2857 {
2858 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2859
2860 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2861 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2862
2863 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2864 free_pages);
2865 }
2866
2867 #ifdef CONFIG_NUMA
2868 static bool zone_local(struct zone *local_zone, struct zone *zone)
2869 {
2870 return local_zone->node == zone->node;
2871 }
2872
2873 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2874 {
2875 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2876 RECLAIM_DISTANCE;
2877 }
2878 #else /* CONFIG_NUMA */
2879 static bool zone_local(struct zone *local_zone, struct zone *zone)
2880 {
2881 return true;
2882 }
2883
2884 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885 {
2886 return true;
2887 }
2888 #endif /* CONFIG_NUMA */
2889
2890 static void reset_alloc_batches(struct zone *preferred_zone)
2891 {
2892 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2893
2894 do {
2895 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2896 high_wmark_pages(zone) - low_wmark_pages(zone) -
2897 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2898 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2899 } while (zone++ != preferred_zone);
2900 }
2901
2902 /*
2903 * get_page_from_freelist goes through the zonelist trying to allocate
2904 * a page.
2905 */
2906 static struct page *
2907 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2908 const struct alloc_context *ac)
2909 {
2910 struct zoneref *z = ac->preferred_zoneref;
2911 struct zone *zone;
2912 bool fair_skipped = false;
2913 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2914
2915 zonelist_scan:
2916 /*
2917 * Scan zonelist, looking for a zone with enough free.
2918 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2919 */
2920 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2921 ac->nodemask) {
2922 struct page *page;
2923 unsigned long mark;
2924
2925 if (cpusets_enabled() &&
2926 (alloc_flags & ALLOC_CPUSET) &&
2927 !__cpuset_zone_allowed(zone, gfp_mask))
2928 continue;
2929 /*
2930 * Distribute pages in proportion to the individual
2931 * zone size to ensure fair page aging. The zone a
2932 * page was allocated in should have no effect on the
2933 * time the page has in memory before being reclaimed.
2934 */
2935 if (apply_fair) {
2936 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2937 fair_skipped = true;
2938 continue;
2939 }
2940 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2941 if (fair_skipped)
2942 goto reset_fair;
2943 apply_fair = false;
2944 }
2945 }
2946 /*
2947 * When allocating a page cache page for writing, we
2948 * want to get it from a zone that is within its dirty
2949 * limit, such that no single zone holds more than its
2950 * proportional share of globally allowed dirty pages.
2951 * The dirty limits take into account the zone's
2952 * lowmem reserves and high watermark so that kswapd
2953 * should be able to balance it without having to
2954 * write pages from its LRU list.
2955 *
2956 * This may look like it could increase pressure on
2957 * lower zones by failing allocations in higher zones
2958 * before they are full. But the pages that do spill
2959 * over are limited as the lower zones are protected
2960 * by this very same mechanism. It should not become
2961 * a practical burden to them.
2962 *
2963 * XXX: For now, allow allocations to potentially
2964 * exceed the per-zone dirty limit in the slowpath
2965 * (spread_dirty_pages unset) before going into reclaim,
2966 * which is important when on a NUMA setup the allowed
2967 * zones are together not big enough to reach the
2968 * global limit. The proper fix for these situations
2969 * will require awareness of zones in the
2970 * dirty-throttling and the flusher threads.
2971 */
2972 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2973 continue;
2974
2975 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2976 if (!zone_watermark_fast(zone, order, mark,
2977 ac_classzone_idx(ac), alloc_flags)) {
2978 int ret;
2979
2980 /* Checked here to keep the fast path fast */
2981 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2982 if (alloc_flags & ALLOC_NO_WATERMARKS)
2983 goto try_this_zone;
2984
2985 if (zone_reclaim_mode == 0 ||
2986 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2987 continue;
2988
2989 ret = zone_reclaim(zone, gfp_mask, order);
2990 switch (ret) {
2991 case ZONE_RECLAIM_NOSCAN:
2992 /* did not scan */
2993 continue;
2994 case ZONE_RECLAIM_FULL:
2995 /* scanned but unreclaimable */
2996 continue;
2997 default:
2998 /* did we reclaim enough */
2999 if (zone_watermark_ok(zone, order, mark,
3000 ac_classzone_idx(ac), alloc_flags))
3001 goto try_this_zone;
3002
3003 continue;
3004 }
3005 }
3006
3007 try_this_zone:
3008 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
3009 gfp_mask, alloc_flags, ac->migratetype);
3010 if (page) {
3011 prep_new_page(page, order, gfp_mask, alloc_flags);
3012
3013 /*
3014 * If this is a high-order atomic allocation then check
3015 * if the pageblock should be reserved for the future
3016 */
3017 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3018 reserve_highatomic_pageblock(page, zone, order);
3019
3020 return page;
3021 }
3022 }
3023
3024 /*
3025 * The first pass makes sure allocations are spread fairly within the
3026 * local node. However, the local node might have free pages left
3027 * after the fairness batches are exhausted, and remote zones haven't
3028 * even been considered yet. Try once more without fairness, and
3029 * include remote zones now, before entering the slowpath and waking
3030 * kswapd: prefer spilling to a remote zone over swapping locally.
3031 */
3032 if (fair_skipped) {
3033 reset_fair:
3034 apply_fair = false;
3035 fair_skipped = false;
3036 reset_alloc_batches(ac->preferred_zoneref->zone);
3037 goto zonelist_scan;
3038 }
3039
3040 return NULL;
3041 }
3042
3043 /*
3044 * Large machines with many possible nodes should not always dump per-node
3045 * meminfo in irq context.
3046 */
3047 static inline bool should_suppress_show_mem(void)
3048 {
3049 bool ret = false;
3050
3051 #if NODES_SHIFT > 8
3052 ret = in_interrupt();
3053 #endif
3054 return ret;
3055 }
3056
3057 static DEFINE_RATELIMIT_STATE(nopage_rs,
3058 DEFAULT_RATELIMIT_INTERVAL,
3059 DEFAULT_RATELIMIT_BURST);
3060
3061 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3062 {
3063 unsigned int filter = SHOW_MEM_FILTER_NODES;
3064
3065 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3066 debug_guardpage_minorder() > 0)
3067 return;
3068
3069 /*
3070 * This documents exceptions given to allocations in certain
3071 * contexts that are allowed to allocate outside current's set
3072 * of allowed nodes.
3073 */
3074 if (!(gfp_mask & __GFP_NOMEMALLOC))
3075 if (test_thread_flag(TIF_MEMDIE) ||
3076 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3077 filter &= ~SHOW_MEM_FILTER_NODES;
3078 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3079 filter &= ~SHOW_MEM_FILTER_NODES;
3080
3081 if (fmt) {
3082 struct va_format vaf;
3083 va_list args;
3084
3085 va_start(args, fmt);
3086
3087 vaf.fmt = fmt;
3088 vaf.va = &args;
3089
3090 pr_warn("%pV", &vaf);
3091
3092 va_end(args);
3093 }
3094
3095 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3096 current->comm, order, gfp_mask, &gfp_mask);
3097 dump_stack();
3098 if (!should_suppress_show_mem())
3099 show_mem(filter);
3100 }
3101
3102 static inline struct page *
3103 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3104 const struct alloc_context *ac, unsigned long *did_some_progress)
3105 {
3106 struct oom_control oc = {
3107 .zonelist = ac->zonelist,
3108 .nodemask = ac->nodemask,
3109 .gfp_mask = gfp_mask,
3110 .order = order,
3111 };
3112 struct page *page;
3113
3114 *did_some_progress = 0;
3115
3116 /*
3117 * Acquire the oom lock. If that fails, somebody else is
3118 * making progress for us.
3119 */
3120 if (!mutex_trylock(&oom_lock)) {
3121 *did_some_progress = 1;
3122 schedule_timeout_uninterruptible(1);
3123 return NULL;
3124 }
3125
3126 /*
3127 * Go through the zonelist yet one more time, keep very high watermark
3128 * here, this is only to catch a parallel oom killing, we must fail if
3129 * we're still under heavy pressure.
3130 */
3131 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3132 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3133 if (page)
3134 goto out;
3135
3136 if (!(gfp_mask & __GFP_NOFAIL)) {
3137 /* Coredumps can quickly deplete all memory reserves */
3138 if (current->flags & PF_DUMPCORE)
3139 goto out;
3140 /* The OOM killer will not help higher order allocs */
3141 if (order > PAGE_ALLOC_COSTLY_ORDER)
3142 goto out;
3143 /* The OOM killer does not needlessly kill tasks for lowmem */
3144 if (ac->high_zoneidx < ZONE_NORMAL)
3145 goto out;
3146 if (pm_suspended_storage())
3147 goto out;
3148 /*
3149 * XXX: GFP_NOFS allocations should rather fail than rely on
3150 * other request to make a forward progress.
3151 * We are in an unfortunate situation where out_of_memory cannot
3152 * do much for this context but let's try it to at least get
3153 * access to memory reserved if the current task is killed (see
3154 * out_of_memory). Once filesystems are ready to handle allocation
3155 * failures more gracefully we should just bail out here.
3156 */
3157
3158 /* The OOM killer may not free memory on a specific node */
3159 if (gfp_mask & __GFP_THISNODE)
3160 goto out;
3161 }
3162 /* Exhausted what can be done so it's blamo time */
3163 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3164 *did_some_progress = 1;
3165
3166 if (gfp_mask & __GFP_NOFAIL) {
3167 page = get_page_from_freelist(gfp_mask, order,
3168 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3169 /*
3170 * fallback to ignore cpuset restriction if our nodes
3171 * are depleted
3172 */
3173 if (!page)
3174 page = get_page_from_freelist(gfp_mask, order,
3175 ALLOC_NO_WATERMARKS, ac);
3176 }
3177 }
3178 out:
3179 mutex_unlock(&oom_lock);
3180 return page;
3181 }
3182
3183
3184 /*
3185 * Maximum number of compaction retries wit a progress before OOM
3186 * killer is consider as the only way to move forward.
3187 */
3188 #define MAX_COMPACT_RETRIES 16
3189
3190 #ifdef CONFIG_COMPACTION
3191 /* Try memory compaction for high-order allocations before reclaim */
3192 static struct page *
3193 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3194 unsigned int alloc_flags, const struct alloc_context *ac,
3195 enum migrate_mode mode, enum compact_result *compact_result)
3196 {
3197 struct page *page;
3198 int contended_compaction;
3199
3200 if (!order)
3201 return NULL;
3202
3203 current->flags |= PF_MEMALLOC;
3204 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3205 mode, &contended_compaction);
3206 current->flags &= ~PF_MEMALLOC;
3207
3208 if (*compact_result <= COMPACT_INACTIVE)
3209 return NULL;
3210
3211 /*
3212 * At least in one zone compaction wasn't deferred or skipped, so let's
3213 * count a compaction stall
3214 */
3215 count_vm_event(COMPACTSTALL);
3216
3217 page = get_page_from_freelist(gfp_mask, order,
3218 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3219
3220 if (page) {
3221 struct zone *zone = page_zone(page);
3222
3223 zone->compact_blockskip_flush = false;
3224 compaction_defer_reset(zone, order, true);
3225 count_vm_event(COMPACTSUCCESS);
3226 return page;
3227 }
3228
3229 /*
3230 * It's bad if compaction run occurs and fails. The most likely reason
3231 * is that pages exist, but not enough to satisfy watermarks.
3232 */
3233 count_vm_event(COMPACTFAIL);
3234
3235 /*
3236 * In all zones where compaction was attempted (and not
3237 * deferred or skipped), lock contention has been detected.
3238 * For THP allocation we do not want to disrupt the others
3239 * so we fallback to base pages instead.
3240 */
3241 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3242 *compact_result = COMPACT_CONTENDED;
3243
3244 /*
3245 * If compaction was aborted due to need_resched(), we do not
3246 * want to further increase allocation latency, unless it is
3247 * khugepaged trying to collapse.
3248 */
3249 if (contended_compaction == COMPACT_CONTENDED_SCHED
3250 && !(current->flags & PF_KTHREAD))
3251 *compact_result = COMPACT_CONTENDED;
3252
3253 cond_resched();
3254
3255 return NULL;
3256 }
3257
3258 static inline bool
3259 should_compact_retry(unsigned int order, enum compact_result compact_result,
3260 enum migrate_mode *migrate_mode,
3261 int compaction_retries)
3262 {
3263 if (!order)
3264 return false;
3265
3266 /*
3267 * compaction considers all the zone as desperately out of memory
3268 * so it doesn't really make much sense to retry except when the
3269 * failure could be caused by weak migration mode.
3270 */
3271 if (compaction_failed(compact_result)) {
3272 if (*migrate_mode == MIGRATE_ASYNC) {
3273 *migrate_mode = MIGRATE_SYNC_LIGHT;
3274 return true;
3275 }
3276 return false;
3277 }
3278
3279 /*
3280 * !costly allocations are really important and we have to make sure
3281 * the compaction wasn't deferred or didn't bail out early due to locks
3282 * contention before we go OOM. Still cap the reclaim retry loops with
3283 * progress to prevent from looping forever and potential trashing.
3284 */
3285 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
3286 if (compaction_withdrawn(compact_result))
3287 return true;
3288 if (compaction_retries <= MAX_COMPACT_RETRIES)
3289 return true;
3290 }
3291
3292 return false;
3293 }
3294 #else
3295 static inline struct page *
3296 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3297 unsigned int alloc_flags, const struct alloc_context *ac,
3298 enum migrate_mode mode, enum compact_result *compact_result)
3299 {
3300 *compact_result = COMPACT_SKIPPED;
3301 return NULL;
3302 }
3303
3304 static inline bool
3305 should_compact_retry(unsigned int order, enum compact_result compact_result,
3306 enum migrate_mode *migrate_mode,
3307 int compaction_retries)
3308 {
3309 return false;
3310 }
3311 #endif /* CONFIG_COMPACTION */
3312
3313 /* Perform direct synchronous page reclaim */
3314 static int
3315 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3316 const struct alloc_context *ac)
3317 {
3318 struct reclaim_state reclaim_state;
3319 int progress;
3320
3321 cond_resched();
3322
3323 /* We now go into synchronous reclaim */
3324 cpuset_memory_pressure_bump();
3325 current->flags |= PF_MEMALLOC;
3326 lockdep_set_current_reclaim_state(gfp_mask);
3327 reclaim_state.reclaimed_slab = 0;
3328 current->reclaim_state = &reclaim_state;
3329
3330 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3331 ac->nodemask);
3332
3333 current->reclaim_state = NULL;
3334 lockdep_clear_current_reclaim_state();
3335 current->flags &= ~PF_MEMALLOC;
3336
3337 cond_resched();
3338
3339 return progress;
3340 }
3341
3342 /* The really slow allocator path where we enter direct reclaim */
3343 static inline struct page *
3344 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3345 unsigned int alloc_flags, const struct alloc_context *ac,
3346 unsigned long *did_some_progress)
3347 {
3348 struct page *page = NULL;
3349 bool drained = false;
3350
3351 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3352 if (unlikely(!(*did_some_progress)))
3353 return NULL;
3354
3355 retry:
3356 page = get_page_from_freelist(gfp_mask, order,
3357 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3358
3359 /*
3360 * If an allocation failed after direct reclaim, it could be because
3361 * pages are pinned on the per-cpu lists or in high alloc reserves.
3362 * Shrink them them and try again
3363 */
3364 if (!page && !drained) {
3365 unreserve_highatomic_pageblock(ac);
3366 drain_all_pages(NULL);
3367 drained = true;
3368 goto retry;
3369 }
3370
3371 return page;
3372 }
3373
3374 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3375 {
3376 struct zoneref *z;
3377 struct zone *zone;
3378
3379 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3380 ac->high_zoneidx, ac->nodemask)
3381 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3382 }
3383
3384 static inline unsigned int
3385 gfp_to_alloc_flags(gfp_t gfp_mask)
3386 {
3387 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3388
3389 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3390 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3391
3392 /*
3393 * The caller may dip into page reserves a bit more if the caller
3394 * cannot run direct reclaim, or if the caller has realtime scheduling
3395 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3396 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3397 */
3398 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3399
3400 if (gfp_mask & __GFP_ATOMIC) {
3401 /*
3402 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3403 * if it can't schedule.
3404 */
3405 if (!(gfp_mask & __GFP_NOMEMALLOC))
3406 alloc_flags |= ALLOC_HARDER;
3407 /*
3408 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3409 * comment for __cpuset_node_allowed().
3410 */
3411 alloc_flags &= ~ALLOC_CPUSET;
3412 } else if (unlikely(rt_task(current)) && !in_interrupt())
3413 alloc_flags |= ALLOC_HARDER;
3414
3415 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3416 if (gfp_mask & __GFP_MEMALLOC)
3417 alloc_flags |= ALLOC_NO_WATERMARKS;
3418 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3419 alloc_flags |= ALLOC_NO_WATERMARKS;
3420 else if (!in_interrupt() &&
3421 ((current->flags & PF_MEMALLOC) ||
3422 unlikely(test_thread_flag(TIF_MEMDIE))))
3423 alloc_flags |= ALLOC_NO_WATERMARKS;
3424 }
3425 #ifdef CONFIG_CMA
3426 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3427 alloc_flags |= ALLOC_CMA;
3428 #endif
3429 return alloc_flags;
3430 }
3431
3432 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3433 {
3434 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3435 }
3436
3437 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3438 {
3439 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3440 }
3441
3442 /*
3443 * Maximum number of reclaim retries without any progress before OOM killer
3444 * is consider as the only way to move forward.
3445 */
3446 #define MAX_RECLAIM_RETRIES 16
3447
3448 /*
3449 * Checks whether it makes sense to retry the reclaim to make a forward progress
3450 * for the given allocation request.
3451 * The reclaim feedback represented by did_some_progress (any progress during
3452 * the last reclaim round), pages_reclaimed (cumulative number of reclaimed
3453 * pages) and no_progress_loops (number of reclaim rounds without any progress
3454 * in a row) is considered as well as the reclaimable pages on the applicable
3455 * zone list (with a backoff mechanism which is a function of no_progress_loops).
3456 *
3457 * Returns true if a retry is viable or false to enter the oom path.
3458 */
3459 static inline bool
3460 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3461 struct alloc_context *ac, int alloc_flags,
3462 bool did_some_progress, unsigned long pages_reclaimed,
3463 int no_progress_loops)
3464 {
3465 struct zone *zone;
3466 struct zoneref *z;
3467
3468 /*
3469 * Make sure we converge to OOM if we cannot make any progress
3470 * several times in the row.
3471 */
3472 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3473 return false;
3474
3475 if (order > PAGE_ALLOC_COSTLY_ORDER) {
3476 if (pages_reclaimed >= (1<<order))
3477 return false;
3478
3479 if (did_some_progress)
3480 return true;
3481 }
3482
3483 /*
3484 * Keep reclaiming pages while there is a chance this will lead somewhere.
3485 * If none of the target zones can satisfy our allocation request even
3486 * if all reclaimable pages are considered then we are screwed and have
3487 * to go OOM.
3488 */
3489 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3490 ac->nodemask) {
3491 unsigned long available;
3492 unsigned long reclaimable;
3493
3494 available = reclaimable = zone_reclaimable_pages(zone);
3495 available -= DIV_ROUND_UP(no_progress_loops * available,
3496 MAX_RECLAIM_RETRIES);
3497 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3498
3499 /*
3500 * Would the allocation succeed if we reclaimed the whole
3501 * available?
3502 */
3503 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3504 ac_classzone_idx(ac), alloc_flags, available)) {
3505 /*
3506 * If we didn't make any progress and have a lot of
3507 * dirty + writeback pages then we should wait for
3508 * an IO to complete to slow down the reclaim and
3509 * prevent from pre mature OOM
3510 */
3511 if (!did_some_progress) {
3512 unsigned long writeback;
3513 unsigned long dirty;
3514
3515 writeback = zone_page_state_snapshot(zone,
3516 NR_WRITEBACK);
3517 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3518
3519 if (2*(writeback + dirty) > reclaimable) {
3520 congestion_wait(BLK_RW_ASYNC, HZ/10);
3521 return true;
3522 }
3523 }
3524
3525 /*
3526 * Memory allocation/reclaim might be called from a WQ
3527 * context and the current implementation of the WQ
3528 * concurrency control doesn't recognize that
3529 * a particular WQ is congested if the worker thread is
3530 * looping without ever sleeping. Therefore we have to
3531 * do a short sleep here rather than calling
3532 * cond_resched().
3533 */
3534 if (current->flags & PF_WQ_WORKER)
3535 schedule_timeout_uninterruptible(1);
3536 else
3537 cond_resched();
3538
3539 return true;
3540 }
3541 }
3542
3543 return false;
3544 }
3545
3546 static inline struct page *
3547 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3548 struct alloc_context *ac)
3549 {
3550 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3551 struct page *page = NULL;
3552 unsigned int alloc_flags;
3553 unsigned long pages_reclaimed = 0;
3554 unsigned long did_some_progress;
3555 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3556 enum compact_result compact_result;
3557 int compaction_retries = 0;
3558 int no_progress_loops = 0;
3559
3560 /*
3561 * In the slowpath, we sanity check order to avoid ever trying to
3562 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3563 * be using allocators in order of preference for an area that is
3564 * too large.
3565 */
3566 if (order >= MAX_ORDER) {
3567 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3568 return NULL;
3569 }
3570
3571 /*
3572 * We also sanity check to catch abuse of atomic reserves being used by
3573 * callers that are not in atomic context.
3574 */
3575 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3576 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3577 gfp_mask &= ~__GFP_ATOMIC;
3578
3579 retry:
3580 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3581 wake_all_kswapds(order, ac);
3582
3583 /*
3584 * OK, we're below the kswapd watermark and have kicked background
3585 * reclaim. Now things get more complex, so set up alloc_flags according
3586 * to how we want to proceed.
3587 */
3588 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3589
3590 /* This is the last chance, in general, before the goto nopage. */
3591 page = get_page_from_freelist(gfp_mask, order,
3592 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3593 if (page)
3594 goto got_pg;
3595
3596 /* Allocate without watermarks if the context allows */
3597 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3598 /*
3599 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3600 * the allocation is high priority and these type of
3601 * allocations are system rather than user orientated
3602 */
3603 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3604 page = get_page_from_freelist(gfp_mask, order,
3605 ALLOC_NO_WATERMARKS, ac);
3606 if (page)
3607 goto got_pg;
3608 }
3609
3610 /* Caller is not willing to reclaim, we can't balance anything */
3611 if (!can_direct_reclaim) {
3612 /*
3613 * All existing users of the __GFP_NOFAIL are blockable, so warn
3614 * of any new users that actually allow this type of allocation
3615 * to fail.
3616 */
3617 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3618 goto nopage;
3619 }
3620
3621 /* Avoid recursion of direct reclaim */
3622 if (current->flags & PF_MEMALLOC) {
3623 /*
3624 * __GFP_NOFAIL request from this context is rather bizarre
3625 * because we cannot reclaim anything and only can loop waiting
3626 * for somebody to do a work for us.
3627 */
3628 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3629 cond_resched();
3630 goto retry;
3631 }
3632 goto nopage;
3633 }
3634
3635 /* Avoid allocations with no watermarks from looping endlessly */
3636 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3637 goto nopage;
3638
3639 /*
3640 * Try direct compaction. The first pass is asynchronous. Subsequent
3641 * attempts after direct reclaim are synchronous
3642 */
3643 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3644 migration_mode,
3645 &compact_result);
3646 if (page)
3647 goto got_pg;
3648
3649 /* Checks for THP-specific high-order allocations */
3650 if (is_thp_gfp_mask(gfp_mask)) {
3651 /*
3652 * If compaction is deferred for high-order allocations, it is
3653 * because sync compaction recently failed. If this is the case
3654 * and the caller requested a THP allocation, we do not want
3655 * to heavily disrupt the system, so we fail the allocation
3656 * instead of entering direct reclaim.
3657 */
3658 if (compact_result == COMPACT_DEFERRED)
3659 goto nopage;
3660
3661 /*
3662 * Compaction is contended so rather back off than cause
3663 * excessive stalls.
3664 */
3665 if(compact_result == COMPACT_CONTENDED)
3666 goto nopage;
3667 }
3668
3669 if (order && compaction_made_progress(compact_result))
3670 compaction_retries++;
3671
3672 /* Try direct reclaim and then allocating */
3673 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3674 &did_some_progress);
3675 if (page)
3676 goto got_pg;
3677
3678 /* Do not loop if specifically requested */
3679 if (gfp_mask & __GFP_NORETRY)
3680 goto noretry;
3681
3682 /*
3683 * Do not retry costly high order allocations unless they are
3684 * __GFP_REPEAT
3685 */
3686 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3687 goto noretry;
3688
3689 if (did_some_progress) {
3690 no_progress_loops = 0;
3691 pages_reclaimed += did_some_progress;
3692 } else {
3693 no_progress_loops++;
3694 }
3695
3696 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3697 did_some_progress > 0, pages_reclaimed,
3698 no_progress_loops))
3699 goto retry;
3700
3701 /*
3702 * It doesn't make any sense to retry for the compaction if the order-0
3703 * reclaim is not able to make any progress because the current
3704 * implementation of the compaction depends on the sufficient amount
3705 * of free memory (see __compaction_suitable)
3706 */
3707 if (did_some_progress > 0 &&
3708 should_compact_retry(order, compact_result,
3709 &migration_mode, compaction_retries))
3710 goto retry;
3711
3712 /* Reclaim has failed us, start killing things */
3713 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3714 if (page)
3715 goto got_pg;
3716
3717 /* Retry as long as the OOM killer is making progress */
3718 if (did_some_progress) {
3719 no_progress_loops = 0;
3720 goto retry;
3721 }
3722
3723 noretry:
3724 /*
3725 * High-order allocations do not necessarily loop after direct reclaim
3726 * and reclaim/compaction depends on compaction being called after
3727 * reclaim so call directly if necessary.
3728 * It can become very expensive to allocate transparent hugepages at
3729 * fault, so use asynchronous memory compaction for THP unless it is
3730 * khugepaged trying to collapse. All other requests should tolerate
3731 * at least light sync migration.
3732 */
3733 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3734 migration_mode = MIGRATE_ASYNC;
3735 else
3736 migration_mode = MIGRATE_SYNC_LIGHT;
3737 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3738 ac, migration_mode,
3739 &compact_result);
3740 if (page)
3741 goto got_pg;
3742 nopage:
3743 warn_alloc_failed(gfp_mask, order, NULL);
3744 got_pg:
3745 return page;
3746 }
3747
3748 /*
3749 * This is the 'heart' of the zoned buddy allocator.
3750 */
3751 struct page *
3752 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3753 struct zonelist *zonelist, nodemask_t *nodemask)
3754 {
3755 struct page *page;
3756 unsigned int cpuset_mems_cookie;
3757 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3758 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3759 struct alloc_context ac = {
3760 .high_zoneidx = gfp_zone(gfp_mask),
3761 .zonelist = zonelist,
3762 .nodemask = nodemask,
3763 .migratetype = gfpflags_to_migratetype(gfp_mask),
3764 };
3765
3766 if (cpusets_enabled()) {
3767 alloc_mask |= __GFP_HARDWALL;
3768 alloc_flags |= ALLOC_CPUSET;
3769 if (!ac.nodemask)
3770 ac.nodemask = &cpuset_current_mems_allowed;
3771 }
3772
3773 gfp_mask &= gfp_allowed_mask;
3774
3775 lockdep_trace_alloc(gfp_mask);
3776
3777 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3778
3779 if (should_fail_alloc_page(gfp_mask, order))
3780 return NULL;
3781
3782 /*
3783 * Check the zones suitable for the gfp_mask contain at least one
3784 * valid zone. It's possible to have an empty zonelist as a result
3785 * of __GFP_THISNODE and a memoryless node
3786 */
3787 if (unlikely(!zonelist->_zonerefs->zone))
3788 return NULL;
3789
3790 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3791 alloc_flags |= ALLOC_CMA;
3792
3793 retry_cpuset:
3794 cpuset_mems_cookie = read_mems_allowed_begin();
3795
3796 /* Dirty zone balancing only done in the fast path */
3797 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3798
3799 /* The preferred zone is used for statistics later */
3800 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3801 ac.high_zoneidx, ac.nodemask);
3802 if (!ac.preferred_zoneref) {
3803 page = NULL;
3804 goto no_zone;
3805 }
3806
3807 /* First allocation attempt */
3808 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3809 if (likely(page))
3810 goto out;
3811
3812 /*
3813 * Runtime PM, block IO and its error handling path can deadlock
3814 * because I/O on the device might not complete.
3815 */
3816 alloc_mask = memalloc_noio_flags(gfp_mask);
3817 ac.spread_dirty_pages = false;
3818
3819 /*
3820 * Restore the original nodemask if it was potentially replaced with
3821 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3822 */
3823 if (cpusets_enabled())
3824 ac.nodemask = nodemask;
3825 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3826
3827 no_zone:
3828 /*
3829 * When updating a task's mems_allowed, it is possible to race with
3830 * parallel threads in such a way that an allocation can fail while
3831 * the mask is being updated. If a page allocation is about to fail,
3832 * check if the cpuset changed during allocation and if so, retry.
3833 */
3834 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3835 alloc_mask = gfp_mask;
3836 goto retry_cpuset;
3837 }
3838
3839 out:
3840 if (kmemcheck_enabled && page)
3841 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3842
3843 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3844
3845 return page;
3846 }
3847 EXPORT_SYMBOL(__alloc_pages_nodemask);
3848
3849 /*
3850 * Common helper functions.
3851 */
3852 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3853 {
3854 struct page *page;
3855
3856 /*
3857 * __get_free_pages() returns a 32-bit address, which cannot represent
3858 * a highmem page
3859 */
3860 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3861
3862 page = alloc_pages(gfp_mask, order);
3863 if (!page)
3864 return 0;
3865 return (unsigned long) page_address(page);
3866 }
3867 EXPORT_SYMBOL(__get_free_pages);
3868
3869 unsigned long get_zeroed_page(gfp_t gfp_mask)
3870 {
3871 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3872 }
3873 EXPORT_SYMBOL(get_zeroed_page);
3874
3875 void __free_pages(struct page *page, unsigned int order)
3876 {
3877 if (put_page_testzero(page)) {
3878 if (order == 0)
3879 free_hot_cold_page(page, false);
3880 else
3881 __free_pages_ok(page, order);
3882 }
3883 }
3884
3885 EXPORT_SYMBOL(__free_pages);
3886
3887 void free_pages(unsigned long addr, unsigned int order)
3888 {
3889 if (addr != 0) {
3890 VM_BUG_ON(!virt_addr_valid((void *)addr));
3891 __free_pages(virt_to_page((void *)addr), order);
3892 }
3893 }
3894
3895 EXPORT_SYMBOL(free_pages);
3896
3897 /*
3898 * Page Fragment:
3899 * An arbitrary-length arbitrary-offset area of memory which resides
3900 * within a 0 or higher order page. Multiple fragments within that page
3901 * are individually refcounted, in the page's reference counter.
3902 *
3903 * The page_frag functions below provide a simple allocation framework for
3904 * page fragments. This is used by the network stack and network device
3905 * drivers to provide a backing region of memory for use as either an
3906 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3907 */
3908 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3909 gfp_t gfp_mask)
3910 {
3911 struct page *page = NULL;
3912 gfp_t gfp = gfp_mask;
3913
3914 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3915 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3916 __GFP_NOMEMALLOC;
3917 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3918 PAGE_FRAG_CACHE_MAX_ORDER);
3919 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3920 #endif
3921 if (unlikely(!page))
3922 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3923
3924 nc->va = page ? page_address(page) : NULL;
3925
3926 return page;
3927 }
3928
3929 void *__alloc_page_frag(struct page_frag_cache *nc,
3930 unsigned int fragsz, gfp_t gfp_mask)
3931 {
3932 unsigned int size = PAGE_SIZE;
3933 struct page *page;
3934 int offset;
3935
3936 if (unlikely(!nc->va)) {
3937 refill:
3938 page = __page_frag_refill(nc, gfp_mask);
3939 if (!page)
3940 return NULL;
3941
3942 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3943 /* if size can vary use size else just use PAGE_SIZE */
3944 size = nc->size;
3945 #endif
3946 /* Even if we own the page, we do not use atomic_set().
3947 * This would break get_page_unless_zero() users.
3948 */
3949 page_ref_add(page, size - 1);
3950
3951 /* reset page count bias and offset to start of new frag */
3952 nc->pfmemalloc = page_is_pfmemalloc(page);
3953 nc->pagecnt_bias = size;
3954 nc->offset = size;
3955 }
3956
3957 offset = nc->offset - fragsz;
3958 if (unlikely(offset < 0)) {
3959 page = virt_to_page(nc->va);
3960
3961 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3962 goto refill;
3963
3964 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3965 /* if size can vary use size else just use PAGE_SIZE */
3966 size = nc->size;
3967 #endif
3968 /* OK, page count is 0, we can safely set it */
3969 set_page_count(page, size);
3970
3971 /* reset page count bias and offset to start of new frag */
3972 nc->pagecnt_bias = size;
3973 offset = size - fragsz;
3974 }
3975
3976 nc->pagecnt_bias--;
3977 nc->offset = offset;
3978
3979 return nc->va + offset;
3980 }
3981 EXPORT_SYMBOL(__alloc_page_frag);
3982
3983 /*
3984 * Frees a page fragment allocated out of either a compound or order 0 page.
3985 */
3986 void __free_page_frag(void *addr)
3987 {
3988 struct page *page = virt_to_head_page(addr);
3989
3990 if (unlikely(put_page_testzero(page)))
3991 __free_pages_ok(page, compound_order(page));
3992 }
3993 EXPORT_SYMBOL(__free_page_frag);
3994
3995 /*
3996 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3997 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3998 * equivalent to alloc_pages.
3999 *
4000 * It should be used when the caller would like to use kmalloc, but since the
4001 * allocation is large, it has to fall back to the page allocator.
4002 */
4003 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4004 {
4005 struct page *page;
4006
4007 page = alloc_pages(gfp_mask, order);
4008 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4009 __free_pages(page, order);
4010 page = NULL;
4011 }
4012 return page;
4013 }
4014
4015 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4016 {
4017 struct page *page;
4018
4019 page = alloc_pages_node(nid, gfp_mask, order);
4020 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4021 __free_pages(page, order);
4022 page = NULL;
4023 }
4024 return page;
4025 }
4026
4027 /*
4028 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4029 * alloc_kmem_pages.
4030 */
4031 void __free_kmem_pages(struct page *page, unsigned int order)
4032 {
4033 memcg_kmem_uncharge(page, order);
4034 __free_pages(page, order);
4035 }
4036
4037 void free_kmem_pages(unsigned long addr, unsigned int order)
4038 {
4039 if (addr != 0) {
4040 VM_BUG_ON(!virt_addr_valid((void *)addr));
4041 __free_kmem_pages(virt_to_page((void *)addr), order);
4042 }
4043 }
4044
4045 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4046 size_t size)
4047 {
4048 if (addr) {
4049 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4050 unsigned long used = addr + PAGE_ALIGN(size);
4051
4052 split_page(virt_to_page((void *)addr), order);
4053 while (used < alloc_end) {
4054 free_page(used);
4055 used += PAGE_SIZE;
4056 }
4057 }
4058 return (void *)addr;
4059 }
4060
4061 /**
4062 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4063 * @size: the number of bytes to allocate
4064 * @gfp_mask: GFP flags for the allocation
4065 *
4066 * This function is similar to alloc_pages(), except that it allocates the
4067 * minimum number of pages to satisfy the request. alloc_pages() can only
4068 * allocate memory in power-of-two pages.
4069 *
4070 * This function is also limited by MAX_ORDER.
4071 *
4072 * Memory allocated by this function must be released by free_pages_exact().
4073 */
4074 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4075 {
4076 unsigned int order = get_order(size);
4077 unsigned long addr;
4078
4079 addr = __get_free_pages(gfp_mask, order);
4080 return make_alloc_exact(addr, order, size);
4081 }
4082 EXPORT_SYMBOL(alloc_pages_exact);
4083
4084 /**
4085 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4086 * pages on a node.
4087 * @nid: the preferred node ID where memory should be allocated
4088 * @size: the number of bytes to allocate
4089 * @gfp_mask: GFP flags for the allocation
4090 *
4091 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4092 * back.
4093 */
4094 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4095 {
4096 unsigned int order = get_order(size);
4097 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4098 if (!p)
4099 return NULL;
4100 return make_alloc_exact((unsigned long)page_address(p), order, size);
4101 }
4102
4103 /**
4104 * free_pages_exact - release memory allocated via alloc_pages_exact()
4105 * @virt: the value returned by alloc_pages_exact.
4106 * @size: size of allocation, same value as passed to alloc_pages_exact().
4107 *
4108 * Release the memory allocated by a previous call to alloc_pages_exact.
4109 */
4110 void free_pages_exact(void *virt, size_t size)
4111 {
4112 unsigned long addr = (unsigned long)virt;
4113 unsigned long end = addr + PAGE_ALIGN(size);
4114
4115 while (addr < end) {
4116 free_page(addr);
4117 addr += PAGE_SIZE;
4118 }
4119 }
4120 EXPORT_SYMBOL(free_pages_exact);
4121
4122 /**
4123 * nr_free_zone_pages - count number of pages beyond high watermark
4124 * @offset: The zone index of the highest zone
4125 *
4126 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4127 * high watermark within all zones at or below a given zone index. For each
4128 * zone, the number of pages is calculated as:
4129 * managed_pages - high_pages
4130 */
4131 static unsigned long nr_free_zone_pages(int offset)
4132 {
4133 struct zoneref *z;
4134 struct zone *zone;
4135
4136 /* Just pick one node, since fallback list is circular */
4137 unsigned long sum = 0;
4138
4139 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4140
4141 for_each_zone_zonelist(zone, z, zonelist, offset) {
4142 unsigned long size = zone->managed_pages;
4143 unsigned long high = high_wmark_pages(zone);
4144 if (size > high)
4145 sum += size - high;
4146 }
4147
4148 return sum;
4149 }
4150
4151 /**
4152 * nr_free_buffer_pages - count number of pages beyond high watermark
4153 *
4154 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4155 * watermark within ZONE_DMA and ZONE_NORMAL.
4156 */
4157 unsigned long nr_free_buffer_pages(void)
4158 {
4159 return nr_free_zone_pages(gfp_zone(GFP_USER));
4160 }
4161 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4162
4163 /**
4164 * nr_free_pagecache_pages - count number of pages beyond high watermark
4165 *
4166 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4167 * high watermark within all zones.
4168 */
4169 unsigned long nr_free_pagecache_pages(void)
4170 {
4171 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4172 }
4173
4174 static inline void show_node(struct zone *zone)
4175 {
4176 if (IS_ENABLED(CONFIG_NUMA))
4177 printk("Node %d ", zone_to_nid(zone));
4178 }
4179
4180 long si_mem_available(void)
4181 {
4182 long available;
4183 unsigned long pagecache;
4184 unsigned long wmark_low = 0;
4185 unsigned long pages[NR_LRU_LISTS];
4186 struct zone *zone;
4187 int lru;
4188
4189 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4190 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4191
4192 for_each_zone(zone)
4193 wmark_low += zone->watermark[WMARK_LOW];
4194
4195 /*
4196 * Estimate the amount of memory available for userspace allocations,
4197 * without causing swapping.
4198 */
4199 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4200
4201 /*
4202 * Not all the page cache can be freed, otherwise the system will
4203 * start swapping. Assume at least half of the page cache, or the
4204 * low watermark worth of cache, needs to stay.
4205 */
4206 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4207 pagecache -= min(pagecache / 2, wmark_low);
4208 available += pagecache;
4209
4210 /*
4211 * Part of the reclaimable slab consists of items that are in use,
4212 * and cannot be freed. Cap this estimate at the low watermark.
4213 */
4214 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4215 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4216
4217 if (available < 0)
4218 available = 0;
4219 return available;
4220 }
4221 EXPORT_SYMBOL_GPL(si_mem_available);
4222
4223 void si_meminfo(struct sysinfo *val)
4224 {
4225 val->totalram = totalram_pages;
4226 val->sharedram = global_page_state(NR_SHMEM);
4227 val->freeram = global_page_state(NR_FREE_PAGES);
4228 val->bufferram = nr_blockdev_pages();
4229 val->totalhigh = totalhigh_pages;
4230 val->freehigh = nr_free_highpages();
4231 val->mem_unit = PAGE_SIZE;
4232 }
4233
4234 EXPORT_SYMBOL(si_meminfo);
4235
4236 #ifdef CONFIG_NUMA
4237 void si_meminfo_node(struct sysinfo *val, int nid)
4238 {
4239 int zone_type; /* needs to be signed */
4240 unsigned long managed_pages = 0;
4241 unsigned long managed_highpages = 0;
4242 unsigned long free_highpages = 0;
4243 pg_data_t *pgdat = NODE_DATA(nid);
4244
4245 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4246 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4247 val->totalram = managed_pages;
4248 val->sharedram = node_page_state(nid, NR_SHMEM);
4249 val->freeram = node_page_state(nid, NR_FREE_PAGES);
4250 #ifdef CONFIG_HIGHMEM
4251 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4252 struct zone *zone = &pgdat->node_zones[zone_type];
4253
4254 if (is_highmem(zone)) {
4255 managed_highpages += zone->managed_pages;
4256 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4257 }
4258 }
4259 val->totalhigh = managed_highpages;
4260 val->freehigh = free_highpages;
4261 #else
4262 val->totalhigh = managed_highpages;
4263 val->freehigh = free_highpages;
4264 #endif
4265 val->mem_unit = PAGE_SIZE;
4266 }
4267 #endif
4268
4269 /*
4270 * Determine whether the node should be displayed or not, depending on whether
4271 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4272 */
4273 bool skip_free_areas_node(unsigned int flags, int nid)
4274 {
4275 bool ret = false;
4276 unsigned int cpuset_mems_cookie;
4277
4278 if (!(flags & SHOW_MEM_FILTER_NODES))
4279 goto out;
4280
4281 do {
4282 cpuset_mems_cookie = read_mems_allowed_begin();
4283 ret = !node_isset(nid, cpuset_current_mems_allowed);
4284 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4285 out:
4286 return ret;
4287 }
4288
4289 #define K(x) ((x) << (PAGE_SHIFT-10))
4290
4291 static void show_migration_types(unsigned char type)
4292 {
4293 static const char types[MIGRATE_TYPES] = {
4294 [MIGRATE_UNMOVABLE] = 'U',
4295 [MIGRATE_MOVABLE] = 'M',
4296 [MIGRATE_RECLAIMABLE] = 'E',
4297 [MIGRATE_HIGHATOMIC] = 'H',
4298 #ifdef CONFIG_CMA
4299 [MIGRATE_CMA] = 'C',
4300 #endif
4301 #ifdef CONFIG_MEMORY_ISOLATION
4302 [MIGRATE_ISOLATE] = 'I',
4303 #endif
4304 };
4305 char tmp[MIGRATE_TYPES + 1];
4306 char *p = tmp;
4307 int i;
4308
4309 for (i = 0; i < MIGRATE_TYPES; i++) {
4310 if (type & (1 << i))
4311 *p++ = types[i];
4312 }
4313
4314 *p = '\0';
4315 printk("(%s) ", tmp);
4316 }
4317
4318 /*
4319 * Show free area list (used inside shift_scroll-lock stuff)
4320 * We also calculate the percentage fragmentation. We do this by counting the
4321 * memory on each free list with the exception of the first item on the list.
4322 *
4323 * Bits in @filter:
4324 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4325 * cpuset.
4326 */
4327 void show_free_areas(unsigned int filter)
4328 {
4329 unsigned long free_pcp = 0;
4330 int cpu;
4331 struct zone *zone;
4332
4333 for_each_populated_zone(zone) {
4334 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4335 continue;
4336
4337 for_each_online_cpu(cpu)
4338 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4339 }
4340
4341 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4342 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4343 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4344 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4345 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4346 " free:%lu free_pcp:%lu free_cma:%lu\n",
4347 global_page_state(NR_ACTIVE_ANON),
4348 global_page_state(NR_INACTIVE_ANON),
4349 global_page_state(NR_ISOLATED_ANON),
4350 global_page_state(NR_ACTIVE_FILE),
4351 global_page_state(NR_INACTIVE_FILE),
4352 global_page_state(NR_ISOLATED_FILE),
4353 global_page_state(NR_UNEVICTABLE),
4354 global_page_state(NR_FILE_DIRTY),
4355 global_page_state(NR_WRITEBACK),
4356 global_page_state(NR_UNSTABLE_NFS),
4357 global_page_state(NR_SLAB_RECLAIMABLE),
4358 global_page_state(NR_SLAB_UNRECLAIMABLE),
4359 global_page_state(NR_FILE_MAPPED),
4360 global_page_state(NR_SHMEM),
4361 global_page_state(NR_PAGETABLE),
4362 global_page_state(NR_BOUNCE),
4363 global_page_state(NR_FREE_PAGES),
4364 free_pcp,
4365 global_page_state(NR_FREE_CMA_PAGES));
4366
4367 for_each_populated_zone(zone) {
4368 int i;
4369
4370 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4371 continue;
4372
4373 free_pcp = 0;
4374 for_each_online_cpu(cpu)
4375 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4376
4377 show_node(zone);
4378 printk("%s"
4379 " free:%lukB"
4380 " min:%lukB"
4381 " low:%lukB"
4382 " high:%lukB"
4383 " active_anon:%lukB"
4384 " inactive_anon:%lukB"
4385 " active_file:%lukB"
4386 " inactive_file:%lukB"
4387 " unevictable:%lukB"
4388 " isolated(anon):%lukB"
4389 " isolated(file):%lukB"
4390 " present:%lukB"
4391 " managed:%lukB"
4392 " mlocked:%lukB"
4393 " dirty:%lukB"
4394 " writeback:%lukB"
4395 " mapped:%lukB"
4396 " shmem:%lukB"
4397 " slab_reclaimable:%lukB"
4398 " slab_unreclaimable:%lukB"
4399 " kernel_stack:%lukB"
4400 " pagetables:%lukB"
4401 " unstable:%lukB"
4402 " bounce:%lukB"
4403 " free_pcp:%lukB"
4404 " local_pcp:%ukB"
4405 " free_cma:%lukB"
4406 " writeback_tmp:%lukB"
4407 " pages_scanned:%lu"
4408 " all_unreclaimable? %s"
4409 "\n",
4410 zone->name,
4411 K(zone_page_state(zone, NR_FREE_PAGES)),
4412 K(min_wmark_pages(zone)),
4413 K(low_wmark_pages(zone)),
4414 K(high_wmark_pages(zone)),
4415 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4416 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4417 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4418 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4419 K(zone_page_state(zone, NR_UNEVICTABLE)),
4420 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4421 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4422 K(zone->present_pages),
4423 K(zone->managed_pages),
4424 K(zone_page_state(zone, NR_MLOCK)),
4425 K(zone_page_state(zone, NR_FILE_DIRTY)),
4426 K(zone_page_state(zone, NR_WRITEBACK)),
4427 K(zone_page_state(zone, NR_FILE_MAPPED)),
4428 K(zone_page_state(zone, NR_SHMEM)),
4429 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4430 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4431 zone_page_state(zone, NR_KERNEL_STACK) *
4432 THREAD_SIZE / 1024,
4433 K(zone_page_state(zone, NR_PAGETABLE)),
4434 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4435 K(zone_page_state(zone, NR_BOUNCE)),
4436 K(free_pcp),
4437 K(this_cpu_read(zone->pageset->pcp.count)),
4438 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4439 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4440 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4441 (!zone_reclaimable(zone) ? "yes" : "no")
4442 );
4443 printk("lowmem_reserve[]:");
4444 for (i = 0; i < MAX_NR_ZONES; i++)
4445 printk(" %ld", zone->lowmem_reserve[i]);
4446 printk("\n");
4447 }
4448
4449 for_each_populated_zone(zone) {
4450 unsigned int order;
4451 unsigned long nr[MAX_ORDER], flags, total = 0;
4452 unsigned char types[MAX_ORDER];
4453
4454 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4455 continue;
4456 show_node(zone);
4457 printk("%s: ", zone->name);
4458
4459 spin_lock_irqsave(&zone->lock, flags);
4460 for (order = 0; order < MAX_ORDER; order++) {
4461 struct free_area *area = &zone->free_area[order];
4462 int type;
4463
4464 nr[order] = area->nr_free;
4465 total += nr[order] << order;
4466
4467 types[order] = 0;
4468 for (type = 0; type < MIGRATE_TYPES; type++) {
4469 if (!list_empty(&area->free_list[type]))
4470 types[order] |= 1 << type;
4471 }
4472 }
4473 spin_unlock_irqrestore(&zone->lock, flags);
4474 for (order = 0; order < MAX_ORDER; order++) {
4475 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4476 if (nr[order])
4477 show_migration_types(types[order]);
4478 }
4479 printk("= %lukB\n", K(total));
4480 }
4481
4482 hugetlb_show_meminfo();
4483
4484 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4485
4486 show_swap_cache_info();
4487 }
4488
4489 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4490 {
4491 zoneref->zone = zone;
4492 zoneref->zone_idx = zone_idx(zone);
4493 }
4494
4495 /*
4496 * Builds allocation fallback zone lists.
4497 *
4498 * Add all populated zones of a node to the zonelist.
4499 */
4500 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4501 int nr_zones)
4502 {
4503 struct zone *zone;
4504 enum zone_type zone_type = MAX_NR_ZONES;
4505
4506 do {
4507 zone_type--;
4508 zone = pgdat->node_zones + zone_type;
4509 if (populated_zone(zone)) {
4510 zoneref_set_zone(zone,
4511 &zonelist->_zonerefs[nr_zones++]);
4512 check_highest_zone(zone_type);
4513 }
4514 } while (zone_type);
4515
4516 return nr_zones;
4517 }
4518
4519
4520 /*
4521 * zonelist_order:
4522 * 0 = automatic detection of better ordering.
4523 * 1 = order by ([node] distance, -zonetype)
4524 * 2 = order by (-zonetype, [node] distance)
4525 *
4526 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4527 * the same zonelist. So only NUMA can configure this param.
4528 */
4529 #define ZONELIST_ORDER_DEFAULT 0
4530 #define ZONELIST_ORDER_NODE 1
4531 #define ZONELIST_ORDER_ZONE 2
4532
4533 /* zonelist order in the kernel.
4534 * set_zonelist_order() will set this to NODE or ZONE.
4535 */
4536 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4537 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4538
4539
4540 #ifdef CONFIG_NUMA
4541 /* The value user specified ....changed by config */
4542 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4543 /* string for sysctl */
4544 #define NUMA_ZONELIST_ORDER_LEN 16
4545 char numa_zonelist_order[16] = "default";
4546
4547 /*
4548 * interface for configure zonelist ordering.
4549 * command line option "numa_zonelist_order"
4550 * = "[dD]efault - default, automatic configuration.
4551 * = "[nN]ode - order by node locality, then by zone within node
4552 * = "[zZ]one - order by zone, then by locality within zone
4553 */
4554
4555 static int __parse_numa_zonelist_order(char *s)
4556 {
4557 if (*s == 'd' || *s == 'D') {
4558 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4559 } else if (*s == 'n' || *s == 'N') {
4560 user_zonelist_order = ZONELIST_ORDER_NODE;
4561 } else if (*s == 'z' || *s == 'Z') {
4562 user_zonelist_order = ZONELIST_ORDER_ZONE;
4563 } else {
4564 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4565 return -EINVAL;
4566 }
4567 return 0;
4568 }
4569
4570 static __init int setup_numa_zonelist_order(char *s)
4571 {
4572 int ret;
4573
4574 if (!s)
4575 return 0;
4576
4577 ret = __parse_numa_zonelist_order(s);
4578 if (ret == 0)
4579 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4580
4581 return ret;
4582 }
4583 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4584
4585 /*
4586 * sysctl handler for numa_zonelist_order
4587 */
4588 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4589 void __user *buffer, size_t *length,
4590 loff_t *ppos)
4591 {
4592 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4593 int ret;
4594 static DEFINE_MUTEX(zl_order_mutex);
4595
4596 mutex_lock(&zl_order_mutex);
4597 if (write) {
4598 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4599 ret = -EINVAL;
4600 goto out;
4601 }
4602 strcpy(saved_string, (char *)table->data);
4603 }
4604 ret = proc_dostring(table, write, buffer, length, ppos);
4605 if (ret)
4606 goto out;
4607 if (write) {
4608 int oldval = user_zonelist_order;
4609
4610 ret = __parse_numa_zonelist_order((char *)table->data);
4611 if (ret) {
4612 /*
4613 * bogus value. restore saved string
4614 */
4615 strncpy((char *)table->data, saved_string,
4616 NUMA_ZONELIST_ORDER_LEN);
4617 user_zonelist_order = oldval;
4618 } else if (oldval != user_zonelist_order) {
4619 mutex_lock(&zonelists_mutex);
4620 build_all_zonelists(NULL, NULL);
4621 mutex_unlock(&zonelists_mutex);
4622 }
4623 }
4624 out:
4625 mutex_unlock(&zl_order_mutex);
4626 return ret;
4627 }
4628
4629
4630 #define MAX_NODE_LOAD (nr_online_nodes)
4631 static int node_load[MAX_NUMNODES];
4632
4633 /**
4634 * find_next_best_node - find the next node that should appear in a given node's fallback list
4635 * @node: node whose fallback list we're appending
4636 * @used_node_mask: nodemask_t of already used nodes
4637 *
4638 * We use a number of factors to determine which is the next node that should
4639 * appear on a given node's fallback list. The node should not have appeared
4640 * already in @node's fallback list, and it should be the next closest node
4641 * according to the distance array (which contains arbitrary distance values
4642 * from each node to each node in the system), and should also prefer nodes
4643 * with no CPUs, since presumably they'll have very little allocation pressure
4644 * on them otherwise.
4645 * It returns -1 if no node is found.
4646 */
4647 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4648 {
4649 int n, val;
4650 int min_val = INT_MAX;
4651 int best_node = NUMA_NO_NODE;
4652 const struct cpumask *tmp = cpumask_of_node(0);
4653
4654 /* Use the local node if we haven't already */
4655 if (!node_isset(node, *used_node_mask)) {
4656 node_set(node, *used_node_mask);
4657 return node;
4658 }
4659
4660 for_each_node_state(n, N_MEMORY) {
4661
4662 /* Don't want a node to appear more than once */
4663 if (node_isset(n, *used_node_mask))
4664 continue;
4665
4666 /* Use the distance array to find the distance */
4667 val = node_distance(node, n);
4668
4669 /* Penalize nodes under us ("prefer the next node") */
4670 val += (n < node);
4671
4672 /* Give preference to headless and unused nodes */
4673 tmp = cpumask_of_node(n);
4674 if (!cpumask_empty(tmp))
4675 val += PENALTY_FOR_NODE_WITH_CPUS;
4676
4677 /* Slight preference for less loaded node */
4678 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4679 val += node_load[n];
4680
4681 if (val < min_val) {
4682 min_val = val;
4683 best_node = n;
4684 }
4685 }
4686
4687 if (best_node >= 0)
4688 node_set(best_node, *used_node_mask);
4689
4690 return best_node;
4691 }
4692
4693
4694 /*
4695 * Build zonelists ordered by node and zones within node.
4696 * This results in maximum locality--normal zone overflows into local
4697 * DMA zone, if any--but risks exhausting DMA zone.
4698 */
4699 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4700 {
4701 int j;
4702 struct zonelist *zonelist;
4703
4704 zonelist = &pgdat->node_zonelists[0];
4705 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4706 ;
4707 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4708 zonelist->_zonerefs[j].zone = NULL;
4709 zonelist->_zonerefs[j].zone_idx = 0;
4710 }
4711
4712 /*
4713 * Build gfp_thisnode zonelists
4714 */
4715 static void build_thisnode_zonelists(pg_data_t *pgdat)
4716 {
4717 int j;
4718 struct zonelist *zonelist;
4719
4720 zonelist = &pgdat->node_zonelists[1];
4721 j = build_zonelists_node(pgdat, zonelist, 0);
4722 zonelist->_zonerefs[j].zone = NULL;
4723 zonelist->_zonerefs[j].zone_idx = 0;
4724 }
4725
4726 /*
4727 * Build zonelists ordered by zone and nodes within zones.
4728 * This results in conserving DMA zone[s] until all Normal memory is
4729 * exhausted, but results in overflowing to remote node while memory
4730 * may still exist in local DMA zone.
4731 */
4732 static int node_order[MAX_NUMNODES];
4733
4734 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4735 {
4736 int pos, j, node;
4737 int zone_type; /* needs to be signed */
4738 struct zone *z;
4739 struct zonelist *zonelist;
4740
4741 zonelist = &pgdat->node_zonelists[0];
4742 pos = 0;
4743 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4744 for (j = 0; j < nr_nodes; j++) {
4745 node = node_order[j];
4746 z = &NODE_DATA(node)->node_zones[zone_type];
4747 if (populated_zone(z)) {
4748 zoneref_set_zone(z,
4749 &zonelist->_zonerefs[pos++]);
4750 check_highest_zone(zone_type);
4751 }
4752 }
4753 }
4754 zonelist->_zonerefs[pos].zone = NULL;
4755 zonelist->_zonerefs[pos].zone_idx = 0;
4756 }
4757
4758 #if defined(CONFIG_64BIT)
4759 /*
4760 * Devices that require DMA32/DMA are relatively rare and do not justify a
4761 * penalty to every machine in case the specialised case applies. Default
4762 * to Node-ordering on 64-bit NUMA machines
4763 */
4764 static int default_zonelist_order(void)
4765 {
4766 return ZONELIST_ORDER_NODE;
4767 }
4768 #else
4769 /*
4770 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4771 * by the kernel. If processes running on node 0 deplete the low memory zone
4772 * then reclaim will occur more frequency increasing stalls and potentially
4773 * be easier to OOM if a large percentage of the zone is under writeback or
4774 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4775 * Hence, default to zone ordering on 32-bit.
4776 */
4777 static int default_zonelist_order(void)
4778 {
4779 return ZONELIST_ORDER_ZONE;
4780 }
4781 #endif /* CONFIG_64BIT */
4782
4783 static void set_zonelist_order(void)
4784 {
4785 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4786 current_zonelist_order = default_zonelist_order();
4787 else
4788 current_zonelist_order = user_zonelist_order;
4789 }
4790
4791 static void build_zonelists(pg_data_t *pgdat)
4792 {
4793 int i, node, load;
4794 nodemask_t used_mask;
4795 int local_node, prev_node;
4796 struct zonelist *zonelist;
4797 unsigned int order = current_zonelist_order;
4798
4799 /* initialize zonelists */
4800 for (i = 0; i < MAX_ZONELISTS; i++) {
4801 zonelist = pgdat->node_zonelists + i;
4802 zonelist->_zonerefs[0].zone = NULL;
4803 zonelist->_zonerefs[0].zone_idx = 0;
4804 }
4805
4806 /* NUMA-aware ordering of nodes */
4807 local_node = pgdat->node_id;
4808 load = nr_online_nodes;
4809 prev_node = local_node;
4810 nodes_clear(used_mask);
4811
4812 memset(node_order, 0, sizeof(node_order));
4813 i = 0;
4814
4815 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4816 /*
4817 * We don't want to pressure a particular node.
4818 * So adding penalty to the first node in same
4819 * distance group to make it round-robin.
4820 */
4821 if (node_distance(local_node, node) !=
4822 node_distance(local_node, prev_node))
4823 node_load[node] = load;
4824
4825 prev_node = node;
4826 load--;
4827 if (order == ZONELIST_ORDER_NODE)
4828 build_zonelists_in_node_order(pgdat, node);
4829 else
4830 node_order[i++] = node; /* remember order */
4831 }
4832
4833 if (order == ZONELIST_ORDER_ZONE) {
4834 /* calculate node order -- i.e., DMA last! */
4835 build_zonelists_in_zone_order(pgdat, i);
4836 }
4837
4838 build_thisnode_zonelists(pgdat);
4839 }
4840
4841 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4842 /*
4843 * Return node id of node used for "local" allocations.
4844 * I.e., first node id of first zone in arg node's generic zonelist.
4845 * Used for initializing percpu 'numa_mem', which is used primarily
4846 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4847 */
4848 int local_memory_node(int node)
4849 {
4850 struct zoneref *z;
4851
4852 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4853 gfp_zone(GFP_KERNEL),
4854 NULL);
4855 return z->zone->node;
4856 }
4857 #endif
4858
4859 #else /* CONFIG_NUMA */
4860
4861 static void set_zonelist_order(void)
4862 {
4863 current_zonelist_order = ZONELIST_ORDER_ZONE;
4864 }
4865
4866 static void build_zonelists(pg_data_t *pgdat)
4867 {
4868 int node, local_node;
4869 enum zone_type j;
4870 struct zonelist *zonelist;
4871
4872 local_node = pgdat->node_id;
4873
4874 zonelist = &pgdat->node_zonelists[0];
4875 j = build_zonelists_node(pgdat, zonelist, 0);
4876
4877 /*
4878 * Now we build the zonelist so that it contains the zones
4879 * of all the other nodes.
4880 * We don't want to pressure a particular node, so when
4881 * building the zones for node N, we make sure that the
4882 * zones coming right after the local ones are those from
4883 * node N+1 (modulo N)
4884 */
4885 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4886 if (!node_online(node))
4887 continue;
4888 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4889 }
4890 for (node = 0; node < local_node; node++) {
4891 if (!node_online(node))
4892 continue;
4893 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4894 }
4895
4896 zonelist->_zonerefs[j].zone = NULL;
4897 zonelist->_zonerefs[j].zone_idx = 0;
4898 }
4899
4900 #endif /* CONFIG_NUMA */
4901
4902 /*
4903 * Boot pageset table. One per cpu which is going to be used for all
4904 * zones and all nodes. The parameters will be set in such a way
4905 * that an item put on a list will immediately be handed over to
4906 * the buddy list. This is safe since pageset manipulation is done
4907 * with interrupts disabled.
4908 *
4909 * The boot_pagesets must be kept even after bootup is complete for
4910 * unused processors and/or zones. They do play a role for bootstrapping
4911 * hotplugged processors.
4912 *
4913 * zoneinfo_show() and maybe other functions do
4914 * not check if the processor is online before following the pageset pointer.
4915 * Other parts of the kernel may not check if the zone is available.
4916 */
4917 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4918 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4919 static void setup_zone_pageset(struct zone *zone);
4920
4921 /*
4922 * Global mutex to protect against size modification of zonelists
4923 * as well as to serialize pageset setup for the new populated zone.
4924 */
4925 DEFINE_MUTEX(zonelists_mutex);
4926
4927 /* return values int ....just for stop_machine() */
4928 static int __build_all_zonelists(void *data)
4929 {
4930 int nid;
4931 int cpu;
4932 pg_data_t *self = data;
4933
4934 #ifdef CONFIG_NUMA
4935 memset(node_load, 0, sizeof(node_load));
4936 #endif
4937
4938 if (self && !node_online(self->node_id)) {
4939 build_zonelists(self);
4940 }
4941
4942 for_each_online_node(nid) {
4943 pg_data_t *pgdat = NODE_DATA(nid);
4944
4945 build_zonelists(pgdat);
4946 }
4947
4948 /*
4949 * Initialize the boot_pagesets that are going to be used
4950 * for bootstrapping processors. The real pagesets for
4951 * each zone will be allocated later when the per cpu
4952 * allocator is available.
4953 *
4954 * boot_pagesets are used also for bootstrapping offline
4955 * cpus if the system is already booted because the pagesets
4956 * are needed to initialize allocators on a specific cpu too.
4957 * F.e. the percpu allocator needs the page allocator which
4958 * needs the percpu allocator in order to allocate its pagesets
4959 * (a chicken-egg dilemma).
4960 */
4961 for_each_possible_cpu(cpu) {
4962 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4963
4964 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4965 /*
4966 * We now know the "local memory node" for each node--
4967 * i.e., the node of the first zone in the generic zonelist.
4968 * Set up numa_mem percpu variable for on-line cpus. During
4969 * boot, only the boot cpu should be on-line; we'll init the
4970 * secondary cpus' numa_mem as they come on-line. During
4971 * node/memory hotplug, we'll fixup all on-line cpus.
4972 */
4973 if (cpu_online(cpu))
4974 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4975 #endif
4976 }
4977
4978 return 0;
4979 }
4980
4981 static noinline void __init
4982 build_all_zonelists_init(void)
4983 {
4984 __build_all_zonelists(NULL);
4985 mminit_verify_zonelist();
4986 cpuset_init_current_mems_allowed();
4987 }
4988
4989 /*
4990 * Called with zonelists_mutex held always
4991 * unless system_state == SYSTEM_BOOTING.
4992 *
4993 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4994 * [we're only called with non-NULL zone through __meminit paths] and
4995 * (2) call of __init annotated helper build_all_zonelists_init
4996 * [protected by SYSTEM_BOOTING].
4997 */
4998 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4999 {
5000 set_zonelist_order();
5001
5002 if (system_state == SYSTEM_BOOTING) {
5003 build_all_zonelists_init();
5004 } else {
5005 #ifdef CONFIG_MEMORY_HOTPLUG
5006 if (zone)
5007 setup_zone_pageset(zone);
5008 #endif
5009 /* we have to stop all cpus to guarantee there is no user
5010 of zonelist */
5011 stop_machine(__build_all_zonelists, pgdat, NULL);
5012 /* cpuset refresh routine should be here */
5013 }
5014 vm_total_pages = nr_free_pagecache_pages();
5015 /*
5016 * Disable grouping by mobility if the number of pages in the
5017 * system is too low to allow the mechanism to work. It would be
5018 * more accurate, but expensive to check per-zone. This check is
5019 * made on memory-hotadd so a system can start with mobility
5020 * disabled and enable it later
5021 */
5022 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5023 page_group_by_mobility_disabled = 1;
5024 else
5025 page_group_by_mobility_disabled = 0;
5026
5027 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5028 nr_online_nodes,
5029 zonelist_order_name[current_zonelist_order],
5030 page_group_by_mobility_disabled ? "off" : "on",
5031 vm_total_pages);
5032 #ifdef CONFIG_NUMA
5033 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5034 #endif
5035 }
5036
5037 /*
5038 * Helper functions to size the waitqueue hash table.
5039 * Essentially these want to choose hash table sizes sufficiently
5040 * large so that collisions trying to wait on pages are rare.
5041 * But in fact, the number of active page waitqueues on typical
5042 * systems is ridiculously low, less than 200. So this is even
5043 * conservative, even though it seems large.
5044 *
5045 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5046 * waitqueues, i.e. the size of the waitq table given the number of pages.
5047 */
5048 #define PAGES_PER_WAITQUEUE 256
5049
5050 #ifndef CONFIG_MEMORY_HOTPLUG
5051 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5052 {
5053 unsigned long size = 1;
5054
5055 pages /= PAGES_PER_WAITQUEUE;
5056
5057 while (size < pages)
5058 size <<= 1;
5059
5060 /*
5061 * Once we have dozens or even hundreds of threads sleeping
5062 * on IO we've got bigger problems than wait queue collision.
5063 * Limit the size of the wait table to a reasonable size.
5064 */
5065 size = min(size, 4096UL);
5066
5067 return max(size, 4UL);
5068 }
5069 #else
5070 /*
5071 * A zone's size might be changed by hot-add, so it is not possible to determine
5072 * a suitable size for its wait_table. So we use the maximum size now.
5073 *
5074 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5075 *
5076 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5077 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5078 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5079 *
5080 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5081 * or more by the traditional way. (See above). It equals:
5082 *
5083 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5084 * ia64(16K page size) : = ( 8G + 4M)byte.
5085 * powerpc (64K page size) : = (32G +16M)byte.
5086 */
5087 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5088 {
5089 return 4096UL;
5090 }
5091 #endif
5092
5093 /*
5094 * This is an integer logarithm so that shifts can be used later
5095 * to extract the more random high bits from the multiplicative
5096 * hash function before the remainder is taken.
5097 */
5098 static inline unsigned long wait_table_bits(unsigned long size)
5099 {
5100 return ffz(~size);
5101 }
5102
5103 /*
5104 * Initially all pages are reserved - free ones are freed
5105 * up by free_all_bootmem() once the early boot process is
5106 * done. Non-atomic initialization, single-pass.
5107 */
5108 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5109 unsigned long start_pfn, enum memmap_context context)
5110 {
5111 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5112 unsigned long end_pfn = start_pfn + size;
5113 pg_data_t *pgdat = NODE_DATA(nid);
5114 unsigned long pfn;
5115 unsigned long nr_initialised = 0;
5116 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5117 struct memblock_region *r = NULL, *tmp;
5118 #endif
5119
5120 if (highest_memmap_pfn < end_pfn - 1)
5121 highest_memmap_pfn = end_pfn - 1;
5122
5123 /*
5124 * Honor reservation requested by the driver for this ZONE_DEVICE
5125 * memory
5126 */
5127 if (altmap && start_pfn == altmap->base_pfn)
5128 start_pfn += altmap->reserve;
5129
5130 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5131 /*
5132 * There can be holes in boot-time mem_map[]s handed to this
5133 * function. They do not exist on hotplugged memory.
5134 */
5135 if (context != MEMMAP_EARLY)
5136 goto not_early;
5137
5138 if (!early_pfn_valid(pfn))
5139 continue;
5140 if (!early_pfn_in_nid(pfn, nid))
5141 continue;
5142 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5143 break;
5144
5145 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5146 /*
5147 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5148 * from zone_movable_pfn[nid] to end of each node should be
5149 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5150 */
5151 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5152 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5153 continue;
5154
5155 /*
5156 * Check given memblock attribute by firmware which can affect
5157 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5158 * mirrored, it's an overlapped memmap init. skip it.
5159 */
5160 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5161 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5162 for_each_memblock(memory, tmp)
5163 if (pfn < memblock_region_memory_end_pfn(tmp))
5164 break;
5165 r = tmp;
5166 }
5167 if (pfn >= memblock_region_memory_base_pfn(r) &&
5168 memblock_is_mirror(r)) {
5169 /* already initialized as NORMAL */
5170 pfn = memblock_region_memory_end_pfn(r);
5171 continue;
5172 }
5173 }
5174 #endif
5175
5176 not_early:
5177 /*
5178 * Mark the block movable so that blocks are reserved for
5179 * movable at startup. This will force kernel allocations
5180 * to reserve their blocks rather than leaking throughout
5181 * the address space during boot when many long-lived
5182 * kernel allocations are made.
5183 *
5184 * bitmap is created for zone's valid pfn range. but memmap
5185 * can be created for invalid pages (for alignment)
5186 * check here not to call set_pageblock_migratetype() against
5187 * pfn out of zone.
5188 */
5189 if (!(pfn & (pageblock_nr_pages - 1))) {
5190 struct page *page = pfn_to_page(pfn);
5191
5192 __init_single_page(page, pfn, zone, nid);
5193 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5194 } else {
5195 __init_single_pfn(pfn, zone, nid);
5196 }
5197 }
5198 }
5199
5200 static void __meminit zone_init_free_lists(struct zone *zone)
5201 {
5202 unsigned int order, t;
5203 for_each_migratetype_order(order, t) {
5204 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5205 zone->free_area[order].nr_free = 0;
5206 }
5207 }
5208
5209 #ifndef __HAVE_ARCH_MEMMAP_INIT
5210 #define memmap_init(size, nid, zone, start_pfn) \
5211 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5212 #endif
5213
5214 static int zone_batchsize(struct zone *zone)
5215 {
5216 #ifdef CONFIG_MMU
5217 int batch;
5218
5219 /*
5220 * The per-cpu-pages pools are set to around 1000th of the
5221 * size of the zone. But no more than 1/2 of a meg.
5222 *
5223 * OK, so we don't know how big the cache is. So guess.
5224 */
5225 batch = zone->managed_pages / 1024;
5226 if (batch * PAGE_SIZE > 512 * 1024)
5227 batch = (512 * 1024) / PAGE_SIZE;
5228 batch /= 4; /* We effectively *= 4 below */
5229 if (batch < 1)
5230 batch = 1;
5231
5232 /*
5233 * Clamp the batch to a 2^n - 1 value. Having a power
5234 * of 2 value was found to be more likely to have
5235 * suboptimal cache aliasing properties in some cases.
5236 *
5237 * For example if 2 tasks are alternately allocating
5238 * batches of pages, one task can end up with a lot
5239 * of pages of one half of the possible page colors
5240 * and the other with pages of the other colors.
5241 */
5242 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5243
5244 return batch;
5245
5246 #else
5247 /* The deferral and batching of frees should be suppressed under NOMMU
5248 * conditions.
5249 *
5250 * The problem is that NOMMU needs to be able to allocate large chunks
5251 * of contiguous memory as there's no hardware page translation to
5252 * assemble apparent contiguous memory from discontiguous pages.
5253 *
5254 * Queueing large contiguous runs of pages for batching, however,
5255 * causes the pages to actually be freed in smaller chunks. As there
5256 * can be a significant delay between the individual batches being
5257 * recycled, this leads to the once large chunks of space being
5258 * fragmented and becoming unavailable for high-order allocations.
5259 */
5260 return 0;
5261 #endif
5262 }
5263
5264 /*
5265 * pcp->high and pcp->batch values are related and dependent on one another:
5266 * ->batch must never be higher then ->high.
5267 * The following function updates them in a safe manner without read side
5268 * locking.
5269 *
5270 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5271 * those fields changing asynchronously (acording the the above rule).
5272 *
5273 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5274 * outside of boot time (or some other assurance that no concurrent updaters
5275 * exist).
5276 */
5277 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5278 unsigned long batch)
5279 {
5280 /* start with a fail safe value for batch */
5281 pcp->batch = 1;
5282 smp_wmb();
5283
5284 /* Update high, then batch, in order */
5285 pcp->high = high;
5286 smp_wmb();
5287
5288 pcp->batch = batch;
5289 }
5290
5291 /* a companion to pageset_set_high() */
5292 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5293 {
5294 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5295 }
5296
5297 static void pageset_init(struct per_cpu_pageset *p)
5298 {
5299 struct per_cpu_pages *pcp;
5300 int migratetype;
5301
5302 memset(p, 0, sizeof(*p));
5303
5304 pcp = &p->pcp;
5305 pcp->count = 0;
5306 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5307 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5308 }
5309
5310 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5311 {
5312 pageset_init(p);
5313 pageset_set_batch(p, batch);
5314 }
5315
5316 /*
5317 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5318 * to the value high for the pageset p.
5319 */
5320 static void pageset_set_high(struct per_cpu_pageset *p,
5321 unsigned long high)
5322 {
5323 unsigned long batch = max(1UL, high / 4);
5324 if ((high / 4) > (PAGE_SHIFT * 8))
5325 batch = PAGE_SHIFT * 8;
5326
5327 pageset_update(&p->pcp, high, batch);
5328 }
5329
5330 static void pageset_set_high_and_batch(struct zone *zone,
5331 struct per_cpu_pageset *pcp)
5332 {
5333 if (percpu_pagelist_fraction)
5334 pageset_set_high(pcp,
5335 (zone->managed_pages /
5336 percpu_pagelist_fraction));
5337 else
5338 pageset_set_batch(pcp, zone_batchsize(zone));
5339 }
5340
5341 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5342 {
5343 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5344
5345 pageset_init(pcp);
5346 pageset_set_high_and_batch(zone, pcp);
5347 }
5348
5349 static void __meminit setup_zone_pageset(struct zone *zone)
5350 {
5351 int cpu;
5352 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5353 for_each_possible_cpu(cpu)
5354 zone_pageset_init(zone, cpu);
5355 }
5356
5357 /*
5358 * Allocate per cpu pagesets and initialize them.
5359 * Before this call only boot pagesets were available.
5360 */
5361 void __init setup_per_cpu_pageset(void)
5362 {
5363 struct zone *zone;
5364
5365 for_each_populated_zone(zone)
5366 setup_zone_pageset(zone);
5367 }
5368
5369 static noinline __init_refok
5370 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5371 {
5372 int i;
5373 size_t alloc_size;
5374
5375 /*
5376 * The per-page waitqueue mechanism uses hashed waitqueues
5377 * per zone.
5378 */
5379 zone->wait_table_hash_nr_entries =
5380 wait_table_hash_nr_entries(zone_size_pages);
5381 zone->wait_table_bits =
5382 wait_table_bits(zone->wait_table_hash_nr_entries);
5383 alloc_size = zone->wait_table_hash_nr_entries
5384 * sizeof(wait_queue_head_t);
5385
5386 if (!slab_is_available()) {
5387 zone->wait_table = (wait_queue_head_t *)
5388 memblock_virt_alloc_node_nopanic(
5389 alloc_size, zone->zone_pgdat->node_id);
5390 } else {
5391 /*
5392 * This case means that a zone whose size was 0 gets new memory
5393 * via memory hot-add.
5394 * But it may be the case that a new node was hot-added. In
5395 * this case vmalloc() will not be able to use this new node's
5396 * memory - this wait_table must be initialized to use this new
5397 * node itself as well.
5398 * To use this new node's memory, further consideration will be
5399 * necessary.
5400 */
5401 zone->wait_table = vmalloc(alloc_size);
5402 }
5403 if (!zone->wait_table)
5404 return -ENOMEM;
5405
5406 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5407 init_waitqueue_head(zone->wait_table + i);
5408
5409 return 0;
5410 }
5411
5412 static __meminit void zone_pcp_init(struct zone *zone)
5413 {
5414 /*
5415 * per cpu subsystem is not up at this point. The following code
5416 * relies on the ability of the linker to provide the
5417 * offset of a (static) per cpu variable into the per cpu area.
5418 */
5419 zone->pageset = &boot_pageset;
5420
5421 if (populated_zone(zone))
5422 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5423 zone->name, zone->present_pages,
5424 zone_batchsize(zone));
5425 }
5426
5427 int __meminit init_currently_empty_zone(struct zone *zone,
5428 unsigned long zone_start_pfn,
5429 unsigned long size)
5430 {
5431 struct pglist_data *pgdat = zone->zone_pgdat;
5432 int ret;
5433 ret = zone_wait_table_init(zone, size);
5434 if (ret)
5435 return ret;
5436 pgdat->nr_zones = zone_idx(zone) + 1;
5437
5438 zone->zone_start_pfn = zone_start_pfn;
5439
5440 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5441 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5442 pgdat->node_id,
5443 (unsigned long)zone_idx(zone),
5444 zone_start_pfn, (zone_start_pfn + size));
5445
5446 zone_init_free_lists(zone);
5447
5448 return 0;
5449 }
5450
5451 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5452 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5453
5454 /*
5455 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5456 */
5457 int __meminit __early_pfn_to_nid(unsigned long pfn,
5458 struct mminit_pfnnid_cache *state)
5459 {
5460 unsigned long start_pfn, end_pfn;
5461 int nid;
5462
5463 if (state->last_start <= pfn && pfn < state->last_end)
5464 return state->last_nid;
5465
5466 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5467 if (nid != -1) {
5468 state->last_start = start_pfn;
5469 state->last_end = end_pfn;
5470 state->last_nid = nid;
5471 }
5472
5473 return nid;
5474 }
5475 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5476
5477 /**
5478 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5479 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5480 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5481 *
5482 * If an architecture guarantees that all ranges registered contain no holes
5483 * and may be freed, this this function may be used instead of calling
5484 * memblock_free_early_nid() manually.
5485 */
5486 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5487 {
5488 unsigned long start_pfn, end_pfn;
5489 int i, this_nid;
5490
5491 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5492 start_pfn = min(start_pfn, max_low_pfn);
5493 end_pfn = min(end_pfn, max_low_pfn);
5494
5495 if (start_pfn < end_pfn)
5496 memblock_free_early_nid(PFN_PHYS(start_pfn),
5497 (end_pfn - start_pfn) << PAGE_SHIFT,
5498 this_nid);
5499 }
5500 }
5501
5502 /**
5503 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5504 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5505 *
5506 * If an architecture guarantees that all ranges registered contain no holes and may
5507 * be freed, this function may be used instead of calling memory_present() manually.
5508 */
5509 void __init sparse_memory_present_with_active_regions(int nid)
5510 {
5511 unsigned long start_pfn, end_pfn;
5512 int i, this_nid;
5513
5514 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5515 memory_present(this_nid, start_pfn, end_pfn);
5516 }
5517
5518 /**
5519 * get_pfn_range_for_nid - Return the start and end page frames for a node
5520 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5521 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5522 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5523 *
5524 * It returns the start and end page frame of a node based on information
5525 * provided by memblock_set_node(). If called for a node
5526 * with no available memory, a warning is printed and the start and end
5527 * PFNs will be 0.
5528 */
5529 void __meminit get_pfn_range_for_nid(unsigned int nid,
5530 unsigned long *start_pfn, unsigned long *end_pfn)
5531 {
5532 unsigned long this_start_pfn, this_end_pfn;
5533 int i;
5534
5535 *start_pfn = -1UL;
5536 *end_pfn = 0;
5537
5538 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5539 *start_pfn = min(*start_pfn, this_start_pfn);
5540 *end_pfn = max(*end_pfn, this_end_pfn);
5541 }
5542
5543 if (*start_pfn == -1UL)
5544 *start_pfn = 0;
5545 }
5546
5547 /*
5548 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5549 * assumption is made that zones within a node are ordered in monotonic
5550 * increasing memory addresses so that the "highest" populated zone is used
5551 */
5552 static void __init find_usable_zone_for_movable(void)
5553 {
5554 int zone_index;
5555 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5556 if (zone_index == ZONE_MOVABLE)
5557 continue;
5558
5559 if (arch_zone_highest_possible_pfn[zone_index] >
5560 arch_zone_lowest_possible_pfn[zone_index])
5561 break;
5562 }
5563
5564 VM_BUG_ON(zone_index == -1);
5565 movable_zone = zone_index;
5566 }
5567
5568 /*
5569 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5570 * because it is sized independent of architecture. Unlike the other zones,
5571 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5572 * in each node depending on the size of each node and how evenly kernelcore
5573 * is distributed. This helper function adjusts the zone ranges
5574 * provided by the architecture for a given node by using the end of the
5575 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5576 * zones within a node are in order of monotonic increases memory addresses
5577 */
5578 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5579 unsigned long zone_type,
5580 unsigned long node_start_pfn,
5581 unsigned long node_end_pfn,
5582 unsigned long *zone_start_pfn,
5583 unsigned long *zone_end_pfn)
5584 {
5585 /* Only adjust if ZONE_MOVABLE is on this node */
5586 if (zone_movable_pfn[nid]) {
5587 /* Size ZONE_MOVABLE */
5588 if (zone_type == ZONE_MOVABLE) {
5589 *zone_start_pfn = zone_movable_pfn[nid];
5590 *zone_end_pfn = min(node_end_pfn,
5591 arch_zone_highest_possible_pfn[movable_zone]);
5592
5593 /* Check if this whole range is within ZONE_MOVABLE */
5594 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5595 *zone_start_pfn = *zone_end_pfn;
5596 }
5597 }
5598
5599 /*
5600 * Return the number of pages a zone spans in a node, including holes
5601 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5602 */
5603 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5604 unsigned long zone_type,
5605 unsigned long node_start_pfn,
5606 unsigned long node_end_pfn,
5607 unsigned long *zone_start_pfn,
5608 unsigned long *zone_end_pfn,
5609 unsigned long *ignored)
5610 {
5611 /* When hotadd a new node from cpu_up(), the node should be empty */
5612 if (!node_start_pfn && !node_end_pfn)
5613 return 0;
5614
5615 /* Get the start and end of the zone */
5616 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5617 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5618 adjust_zone_range_for_zone_movable(nid, zone_type,
5619 node_start_pfn, node_end_pfn,
5620 zone_start_pfn, zone_end_pfn);
5621
5622 /* Check that this node has pages within the zone's required range */
5623 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5624 return 0;
5625
5626 /* Move the zone boundaries inside the node if necessary */
5627 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5628 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5629
5630 /* Return the spanned pages */
5631 return *zone_end_pfn - *zone_start_pfn;
5632 }
5633
5634 /*
5635 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5636 * then all holes in the requested range will be accounted for.
5637 */
5638 unsigned long __meminit __absent_pages_in_range(int nid,
5639 unsigned long range_start_pfn,
5640 unsigned long range_end_pfn)
5641 {
5642 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5643 unsigned long start_pfn, end_pfn;
5644 int i;
5645
5646 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5647 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5648 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5649 nr_absent -= end_pfn - start_pfn;
5650 }
5651 return nr_absent;
5652 }
5653
5654 /**
5655 * absent_pages_in_range - Return number of page frames in holes within a range
5656 * @start_pfn: The start PFN to start searching for holes
5657 * @end_pfn: The end PFN to stop searching for holes
5658 *
5659 * It returns the number of pages frames in memory holes within a range.
5660 */
5661 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5662 unsigned long end_pfn)
5663 {
5664 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5665 }
5666
5667 /* Return the number of page frames in holes in a zone on a node */
5668 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5669 unsigned long zone_type,
5670 unsigned long node_start_pfn,
5671 unsigned long node_end_pfn,
5672 unsigned long *ignored)
5673 {
5674 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5675 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5676 unsigned long zone_start_pfn, zone_end_pfn;
5677 unsigned long nr_absent;
5678
5679 /* When hotadd a new node from cpu_up(), the node should be empty */
5680 if (!node_start_pfn && !node_end_pfn)
5681 return 0;
5682
5683 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5684 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5685
5686 adjust_zone_range_for_zone_movable(nid, zone_type,
5687 node_start_pfn, node_end_pfn,
5688 &zone_start_pfn, &zone_end_pfn);
5689 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5690
5691 /*
5692 * ZONE_MOVABLE handling.
5693 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5694 * and vice versa.
5695 */
5696 if (zone_movable_pfn[nid]) {
5697 if (mirrored_kernelcore) {
5698 unsigned long start_pfn, end_pfn;
5699 struct memblock_region *r;
5700
5701 for_each_memblock(memory, r) {
5702 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5703 zone_start_pfn, zone_end_pfn);
5704 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5705 zone_start_pfn, zone_end_pfn);
5706
5707 if (zone_type == ZONE_MOVABLE &&
5708 memblock_is_mirror(r))
5709 nr_absent += end_pfn - start_pfn;
5710
5711 if (zone_type == ZONE_NORMAL &&
5712 !memblock_is_mirror(r))
5713 nr_absent += end_pfn - start_pfn;
5714 }
5715 } else {
5716 if (zone_type == ZONE_NORMAL)
5717 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5718 }
5719 }
5720
5721 return nr_absent;
5722 }
5723
5724 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5725 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5726 unsigned long zone_type,
5727 unsigned long node_start_pfn,
5728 unsigned long node_end_pfn,
5729 unsigned long *zone_start_pfn,
5730 unsigned long *zone_end_pfn,
5731 unsigned long *zones_size)
5732 {
5733 unsigned int zone;
5734
5735 *zone_start_pfn = node_start_pfn;
5736 for (zone = 0; zone < zone_type; zone++)
5737 *zone_start_pfn += zones_size[zone];
5738
5739 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5740
5741 return zones_size[zone_type];
5742 }
5743
5744 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5745 unsigned long zone_type,
5746 unsigned long node_start_pfn,
5747 unsigned long node_end_pfn,
5748 unsigned long *zholes_size)
5749 {
5750 if (!zholes_size)
5751 return 0;
5752
5753 return zholes_size[zone_type];
5754 }
5755
5756 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5757
5758 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5759 unsigned long node_start_pfn,
5760 unsigned long node_end_pfn,
5761 unsigned long *zones_size,
5762 unsigned long *zholes_size)
5763 {
5764 unsigned long realtotalpages = 0, totalpages = 0;
5765 enum zone_type i;
5766
5767 for (i = 0; i < MAX_NR_ZONES; i++) {
5768 struct zone *zone = pgdat->node_zones + i;
5769 unsigned long zone_start_pfn, zone_end_pfn;
5770 unsigned long size, real_size;
5771
5772 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5773 node_start_pfn,
5774 node_end_pfn,
5775 &zone_start_pfn,
5776 &zone_end_pfn,
5777 zones_size);
5778 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5779 node_start_pfn, node_end_pfn,
5780 zholes_size);
5781 if (size)
5782 zone->zone_start_pfn = zone_start_pfn;
5783 else
5784 zone->zone_start_pfn = 0;
5785 zone->spanned_pages = size;
5786 zone->present_pages = real_size;
5787
5788 totalpages += size;
5789 realtotalpages += real_size;
5790 }
5791
5792 pgdat->node_spanned_pages = totalpages;
5793 pgdat->node_present_pages = realtotalpages;
5794 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5795 realtotalpages);
5796 }
5797
5798 #ifndef CONFIG_SPARSEMEM
5799 /*
5800 * Calculate the size of the zone->blockflags rounded to an unsigned long
5801 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5802 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5803 * round what is now in bits to nearest long in bits, then return it in
5804 * bytes.
5805 */
5806 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5807 {
5808 unsigned long usemapsize;
5809
5810 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5811 usemapsize = roundup(zonesize, pageblock_nr_pages);
5812 usemapsize = usemapsize >> pageblock_order;
5813 usemapsize *= NR_PAGEBLOCK_BITS;
5814 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5815
5816 return usemapsize / 8;
5817 }
5818
5819 static void __init setup_usemap(struct pglist_data *pgdat,
5820 struct zone *zone,
5821 unsigned long zone_start_pfn,
5822 unsigned long zonesize)
5823 {
5824 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5825 zone->pageblock_flags = NULL;
5826 if (usemapsize)
5827 zone->pageblock_flags =
5828 memblock_virt_alloc_node_nopanic(usemapsize,
5829 pgdat->node_id);
5830 }
5831 #else
5832 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5833 unsigned long zone_start_pfn, unsigned long zonesize) {}
5834 #endif /* CONFIG_SPARSEMEM */
5835
5836 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5837
5838 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5839 void __paginginit set_pageblock_order(void)
5840 {
5841 unsigned int order;
5842
5843 /* Check that pageblock_nr_pages has not already been setup */
5844 if (pageblock_order)
5845 return;
5846
5847 if (HPAGE_SHIFT > PAGE_SHIFT)
5848 order = HUGETLB_PAGE_ORDER;
5849 else
5850 order = MAX_ORDER - 1;
5851
5852 /*
5853 * Assume the largest contiguous order of interest is a huge page.
5854 * This value may be variable depending on boot parameters on IA64 and
5855 * powerpc.
5856 */
5857 pageblock_order = order;
5858 }
5859 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5860
5861 /*
5862 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5863 * is unused as pageblock_order is set at compile-time. See
5864 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5865 * the kernel config
5866 */
5867 void __paginginit set_pageblock_order(void)
5868 {
5869 }
5870
5871 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5872
5873 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5874 unsigned long present_pages)
5875 {
5876 unsigned long pages = spanned_pages;
5877
5878 /*
5879 * Provide a more accurate estimation if there are holes within
5880 * the zone and SPARSEMEM is in use. If there are holes within the
5881 * zone, each populated memory region may cost us one or two extra
5882 * memmap pages due to alignment because memmap pages for each
5883 * populated regions may not naturally algined on page boundary.
5884 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5885 */
5886 if (spanned_pages > present_pages + (present_pages >> 4) &&
5887 IS_ENABLED(CONFIG_SPARSEMEM))
5888 pages = present_pages;
5889
5890 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5891 }
5892
5893 /*
5894 * Set up the zone data structures:
5895 * - mark all pages reserved
5896 * - mark all memory queues empty
5897 * - clear the memory bitmaps
5898 *
5899 * NOTE: pgdat should get zeroed by caller.
5900 */
5901 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5902 {
5903 enum zone_type j;
5904 int nid = pgdat->node_id;
5905 int ret;
5906
5907 pgdat_resize_init(pgdat);
5908 #ifdef CONFIG_NUMA_BALANCING
5909 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5910 pgdat->numabalancing_migrate_nr_pages = 0;
5911 pgdat->numabalancing_migrate_next_window = jiffies;
5912 #endif
5913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5914 spin_lock_init(&pgdat->split_queue_lock);
5915 INIT_LIST_HEAD(&pgdat->split_queue);
5916 pgdat->split_queue_len = 0;
5917 #endif
5918 init_waitqueue_head(&pgdat->kswapd_wait);
5919 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5920 #ifdef CONFIG_COMPACTION
5921 init_waitqueue_head(&pgdat->kcompactd_wait);
5922 #endif
5923 pgdat_page_ext_init(pgdat);
5924
5925 for (j = 0; j < MAX_NR_ZONES; j++) {
5926 struct zone *zone = pgdat->node_zones + j;
5927 unsigned long size, realsize, freesize, memmap_pages;
5928 unsigned long zone_start_pfn = zone->zone_start_pfn;
5929
5930 size = zone->spanned_pages;
5931 realsize = freesize = zone->present_pages;
5932
5933 /*
5934 * Adjust freesize so that it accounts for how much memory
5935 * is used by this zone for memmap. This affects the watermark
5936 * and per-cpu initialisations
5937 */
5938 memmap_pages = calc_memmap_size(size, realsize);
5939 if (!is_highmem_idx(j)) {
5940 if (freesize >= memmap_pages) {
5941 freesize -= memmap_pages;
5942 if (memmap_pages)
5943 printk(KERN_DEBUG
5944 " %s zone: %lu pages used for memmap\n",
5945 zone_names[j], memmap_pages);
5946 } else
5947 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5948 zone_names[j], memmap_pages, freesize);
5949 }
5950
5951 /* Account for reserved pages */
5952 if (j == 0 && freesize > dma_reserve) {
5953 freesize -= dma_reserve;
5954 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5955 zone_names[0], dma_reserve);
5956 }
5957
5958 if (!is_highmem_idx(j))
5959 nr_kernel_pages += freesize;
5960 /* Charge for highmem memmap if there are enough kernel pages */
5961 else if (nr_kernel_pages > memmap_pages * 2)
5962 nr_kernel_pages -= memmap_pages;
5963 nr_all_pages += freesize;
5964
5965 /*
5966 * Set an approximate value for lowmem here, it will be adjusted
5967 * when the bootmem allocator frees pages into the buddy system.
5968 * And all highmem pages will be managed by the buddy system.
5969 */
5970 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5971 #ifdef CONFIG_NUMA
5972 zone->node = nid;
5973 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5974 / 100;
5975 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5976 #endif
5977 zone->name = zone_names[j];
5978 spin_lock_init(&zone->lock);
5979 spin_lock_init(&zone->lru_lock);
5980 zone_seqlock_init(zone);
5981 zone->zone_pgdat = pgdat;
5982 zone_pcp_init(zone);
5983
5984 /* For bootup, initialized properly in watermark setup */
5985 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5986
5987 lruvec_init(&zone->lruvec);
5988 if (!size)
5989 continue;
5990
5991 set_pageblock_order();
5992 setup_usemap(pgdat, zone, zone_start_pfn, size);
5993 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5994 BUG_ON(ret);
5995 memmap_init(size, nid, j, zone_start_pfn);
5996 }
5997 }
5998
5999 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
6000 {
6001 unsigned long __maybe_unused start = 0;
6002 unsigned long __maybe_unused offset = 0;
6003
6004 /* Skip empty nodes */
6005 if (!pgdat->node_spanned_pages)
6006 return;
6007
6008 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6009 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6010 offset = pgdat->node_start_pfn - start;
6011 /* ia64 gets its own node_mem_map, before this, without bootmem */
6012 if (!pgdat->node_mem_map) {
6013 unsigned long size, end;
6014 struct page *map;
6015
6016 /*
6017 * The zone's endpoints aren't required to be MAX_ORDER
6018 * aligned but the node_mem_map endpoints must be in order
6019 * for the buddy allocator to function correctly.
6020 */
6021 end = pgdat_end_pfn(pgdat);
6022 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6023 size = (end - start) * sizeof(struct page);
6024 map = alloc_remap(pgdat->node_id, size);
6025 if (!map)
6026 map = memblock_virt_alloc_node_nopanic(size,
6027 pgdat->node_id);
6028 pgdat->node_mem_map = map + offset;
6029 }
6030 #ifndef CONFIG_NEED_MULTIPLE_NODES
6031 /*
6032 * With no DISCONTIG, the global mem_map is just set as node 0's
6033 */
6034 if (pgdat == NODE_DATA(0)) {
6035 mem_map = NODE_DATA(0)->node_mem_map;
6036 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6037 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6038 mem_map -= offset;
6039 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6040 }
6041 #endif
6042 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6043 }
6044
6045 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6046 unsigned long node_start_pfn, unsigned long *zholes_size)
6047 {
6048 pg_data_t *pgdat = NODE_DATA(nid);
6049 unsigned long start_pfn = 0;
6050 unsigned long end_pfn = 0;
6051
6052 /* pg_data_t should be reset to zero when it's allocated */
6053 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
6054
6055 reset_deferred_meminit(pgdat);
6056 pgdat->node_id = nid;
6057 pgdat->node_start_pfn = node_start_pfn;
6058 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6059 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6060 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6061 (u64)start_pfn << PAGE_SHIFT,
6062 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6063 #else
6064 start_pfn = node_start_pfn;
6065 #endif
6066 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6067 zones_size, zholes_size);
6068
6069 alloc_node_mem_map(pgdat);
6070 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6071 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6072 nid, (unsigned long)pgdat,
6073 (unsigned long)pgdat->node_mem_map);
6074 #endif
6075
6076 free_area_init_core(pgdat);
6077 }
6078
6079 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6080
6081 #if MAX_NUMNODES > 1
6082 /*
6083 * Figure out the number of possible node ids.
6084 */
6085 void __init setup_nr_node_ids(void)
6086 {
6087 unsigned int highest;
6088
6089 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6090 nr_node_ids = highest + 1;
6091 }
6092 #endif
6093
6094 /**
6095 * node_map_pfn_alignment - determine the maximum internode alignment
6096 *
6097 * This function should be called after node map is populated and sorted.
6098 * It calculates the maximum power of two alignment which can distinguish
6099 * all the nodes.
6100 *
6101 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6102 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6103 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6104 * shifted, 1GiB is enough and this function will indicate so.
6105 *
6106 * This is used to test whether pfn -> nid mapping of the chosen memory
6107 * model has fine enough granularity to avoid incorrect mapping for the
6108 * populated node map.
6109 *
6110 * Returns the determined alignment in pfn's. 0 if there is no alignment
6111 * requirement (single node).
6112 */
6113 unsigned long __init node_map_pfn_alignment(void)
6114 {
6115 unsigned long accl_mask = 0, last_end = 0;
6116 unsigned long start, end, mask;
6117 int last_nid = -1;
6118 int i, nid;
6119
6120 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6121 if (!start || last_nid < 0 || last_nid == nid) {
6122 last_nid = nid;
6123 last_end = end;
6124 continue;
6125 }
6126
6127 /*
6128 * Start with a mask granular enough to pin-point to the
6129 * start pfn and tick off bits one-by-one until it becomes
6130 * too coarse to separate the current node from the last.
6131 */
6132 mask = ~((1 << __ffs(start)) - 1);
6133 while (mask && last_end <= (start & (mask << 1)))
6134 mask <<= 1;
6135
6136 /* accumulate all internode masks */
6137 accl_mask |= mask;
6138 }
6139
6140 /* convert mask to number of pages */
6141 return ~accl_mask + 1;
6142 }
6143
6144 /* Find the lowest pfn for a node */
6145 static unsigned long __init find_min_pfn_for_node(int nid)
6146 {
6147 unsigned long min_pfn = ULONG_MAX;
6148 unsigned long start_pfn;
6149 int i;
6150
6151 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6152 min_pfn = min(min_pfn, start_pfn);
6153
6154 if (min_pfn == ULONG_MAX) {
6155 pr_warn("Could not find start_pfn for node %d\n", nid);
6156 return 0;
6157 }
6158
6159 return min_pfn;
6160 }
6161
6162 /**
6163 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6164 *
6165 * It returns the minimum PFN based on information provided via
6166 * memblock_set_node().
6167 */
6168 unsigned long __init find_min_pfn_with_active_regions(void)
6169 {
6170 return find_min_pfn_for_node(MAX_NUMNODES);
6171 }
6172
6173 /*
6174 * early_calculate_totalpages()
6175 * Sum pages in active regions for movable zone.
6176 * Populate N_MEMORY for calculating usable_nodes.
6177 */
6178 static unsigned long __init early_calculate_totalpages(void)
6179 {
6180 unsigned long totalpages = 0;
6181 unsigned long start_pfn, end_pfn;
6182 int i, nid;
6183
6184 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6185 unsigned long pages = end_pfn - start_pfn;
6186
6187 totalpages += pages;
6188 if (pages)
6189 node_set_state(nid, N_MEMORY);
6190 }
6191 return totalpages;
6192 }
6193
6194 /*
6195 * Find the PFN the Movable zone begins in each node. Kernel memory
6196 * is spread evenly between nodes as long as the nodes have enough
6197 * memory. When they don't, some nodes will have more kernelcore than
6198 * others
6199 */
6200 static void __init find_zone_movable_pfns_for_nodes(void)
6201 {
6202 int i, nid;
6203 unsigned long usable_startpfn;
6204 unsigned long kernelcore_node, kernelcore_remaining;
6205 /* save the state before borrow the nodemask */
6206 nodemask_t saved_node_state = node_states[N_MEMORY];
6207 unsigned long totalpages = early_calculate_totalpages();
6208 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6209 struct memblock_region *r;
6210
6211 /* Need to find movable_zone earlier when movable_node is specified. */
6212 find_usable_zone_for_movable();
6213
6214 /*
6215 * If movable_node is specified, ignore kernelcore and movablecore
6216 * options.
6217 */
6218 if (movable_node_is_enabled()) {
6219 for_each_memblock(memory, r) {
6220 if (!memblock_is_hotpluggable(r))
6221 continue;
6222
6223 nid = r->nid;
6224
6225 usable_startpfn = PFN_DOWN(r->base);
6226 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6227 min(usable_startpfn, zone_movable_pfn[nid]) :
6228 usable_startpfn;
6229 }
6230
6231 goto out2;
6232 }
6233
6234 /*
6235 * If kernelcore=mirror is specified, ignore movablecore option
6236 */
6237 if (mirrored_kernelcore) {
6238 bool mem_below_4gb_not_mirrored = false;
6239
6240 for_each_memblock(memory, r) {
6241 if (memblock_is_mirror(r))
6242 continue;
6243
6244 nid = r->nid;
6245
6246 usable_startpfn = memblock_region_memory_base_pfn(r);
6247
6248 if (usable_startpfn < 0x100000) {
6249 mem_below_4gb_not_mirrored = true;
6250 continue;
6251 }
6252
6253 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6254 min(usable_startpfn, zone_movable_pfn[nid]) :
6255 usable_startpfn;
6256 }
6257
6258 if (mem_below_4gb_not_mirrored)
6259 pr_warn("This configuration results in unmirrored kernel memory.");
6260
6261 goto out2;
6262 }
6263
6264 /*
6265 * If movablecore=nn[KMG] was specified, calculate what size of
6266 * kernelcore that corresponds so that memory usable for
6267 * any allocation type is evenly spread. If both kernelcore
6268 * and movablecore are specified, then the value of kernelcore
6269 * will be used for required_kernelcore if it's greater than
6270 * what movablecore would have allowed.
6271 */
6272 if (required_movablecore) {
6273 unsigned long corepages;
6274
6275 /*
6276 * Round-up so that ZONE_MOVABLE is at least as large as what
6277 * was requested by the user
6278 */
6279 required_movablecore =
6280 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6281 required_movablecore = min(totalpages, required_movablecore);
6282 corepages = totalpages - required_movablecore;
6283
6284 required_kernelcore = max(required_kernelcore, corepages);
6285 }
6286
6287 /*
6288 * If kernelcore was not specified or kernelcore size is larger
6289 * than totalpages, there is no ZONE_MOVABLE.
6290 */
6291 if (!required_kernelcore || required_kernelcore >= totalpages)
6292 goto out;
6293
6294 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6295 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6296
6297 restart:
6298 /* Spread kernelcore memory as evenly as possible throughout nodes */
6299 kernelcore_node = required_kernelcore / usable_nodes;
6300 for_each_node_state(nid, N_MEMORY) {
6301 unsigned long start_pfn, end_pfn;
6302
6303 /*
6304 * Recalculate kernelcore_node if the division per node
6305 * now exceeds what is necessary to satisfy the requested
6306 * amount of memory for the kernel
6307 */
6308 if (required_kernelcore < kernelcore_node)
6309 kernelcore_node = required_kernelcore / usable_nodes;
6310
6311 /*
6312 * As the map is walked, we track how much memory is usable
6313 * by the kernel using kernelcore_remaining. When it is
6314 * 0, the rest of the node is usable by ZONE_MOVABLE
6315 */
6316 kernelcore_remaining = kernelcore_node;
6317
6318 /* Go through each range of PFNs within this node */
6319 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6320 unsigned long size_pages;
6321
6322 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6323 if (start_pfn >= end_pfn)
6324 continue;
6325
6326 /* Account for what is only usable for kernelcore */
6327 if (start_pfn < usable_startpfn) {
6328 unsigned long kernel_pages;
6329 kernel_pages = min(end_pfn, usable_startpfn)
6330 - start_pfn;
6331
6332 kernelcore_remaining -= min(kernel_pages,
6333 kernelcore_remaining);
6334 required_kernelcore -= min(kernel_pages,
6335 required_kernelcore);
6336
6337 /* Continue if range is now fully accounted */
6338 if (end_pfn <= usable_startpfn) {
6339
6340 /*
6341 * Push zone_movable_pfn to the end so
6342 * that if we have to rebalance
6343 * kernelcore across nodes, we will
6344 * not double account here
6345 */
6346 zone_movable_pfn[nid] = end_pfn;
6347 continue;
6348 }
6349 start_pfn = usable_startpfn;
6350 }
6351
6352 /*
6353 * The usable PFN range for ZONE_MOVABLE is from
6354 * start_pfn->end_pfn. Calculate size_pages as the
6355 * number of pages used as kernelcore
6356 */
6357 size_pages = end_pfn - start_pfn;
6358 if (size_pages > kernelcore_remaining)
6359 size_pages = kernelcore_remaining;
6360 zone_movable_pfn[nid] = start_pfn + size_pages;
6361
6362 /*
6363 * Some kernelcore has been met, update counts and
6364 * break if the kernelcore for this node has been
6365 * satisfied
6366 */
6367 required_kernelcore -= min(required_kernelcore,
6368 size_pages);
6369 kernelcore_remaining -= size_pages;
6370 if (!kernelcore_remaining)
6371 break;
6372 }
6373 }
6374
6375 /*
6376 * If there is still required_kernelcore, we do another pass with one
6377 * less node in the count. This will push zone_movable_pfn[nid] further
6378 * along on the nodes that still have memory until kernelcore is
6379 * satisfied
6380 */
6381 usable_nodes--;
6382 if (usable_nodes && required_kernelcore > usable_nodes)
6383 goto restart;
6384
6385 out2:
6386 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6387 for (nid = 0; nid < MAX_NUMNODES; nid++)
6388 zone_movable_pfn[nid] =
6389 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6390
6391 out:
6392 /* restore the node_state */
6393 node_states[N_MEMORY] = saved_node_state;
6394 }
6395
6396 /* Any regular or high memory on that node ? */
6397 static void check_for_memory(pg_data_t *pgdat, int nid)
6398 {
6399 enum zone_type zone_type;
6400
6401 if (N_MEMORY == N_NORMAL_MEMORY)
6402 return;
6403
6404 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6405 struct zone *zone = &pgdat->node_zones[zone_type];
6406 if (populated_zone(zone)) {
6407 node_set_state(nid, N_HIGH_MEMORY);
6408 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6409 zone_type <= ZONE_NORMAL)
6410 node_set_state(nid, N_NORMAL_MEMORY);
6411 break;
6412 }
6413 }
6414 }
6415
6416 /**
6417 * free_area_init_nodes - Initialise all pg_data_t and zone data
6418 * @max_zone_pfn: an array of max PFNs for each zone
6419 *
6420 * This will call free_area_init_node() for each active node in the system.
6421 * Using the page ranges provided by memblock_set_node(), the size of each
6422 * zone in each node and their holes is calculated. If the maximum PFN
6423 * between two adjacent zones match, it is assumed that the zone is empty.
6424 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6425 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6426 * starts where the previous one ended. For example, ZONE_DMA32 starts
6427 * at arch_max_dma_pfn.
6428 */
6429 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6430 {
6431 unsigned long start_pfn, end_pfn;
6432 int i, nid;
6433
6434 /* Record where the zone boundaries are */
6435 memset(arch_zone_lowest_possible_pfn, 0,
6436 sizeof(arch_zone_lowest_possible_pfn));
6437 memset(arch_zone_highest_possible_pfn, 0,
6438 sizeof(arch_zone_highest_possible_pfn));
6439 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6440 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6441 for (i = 1; i < MAX_NR_ZONES; i++) {
6442 if (i == ZONE_MOVABLE)
6443 continue;
6444 arch_zone_lowest_possible_pfn[i] =
6445 arch_zone_highest_possible_pfn[i-1];
6446 arch_zone_highest_possible_pfn[i] =
6447 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6448 }
6449 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6450 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6451
6452 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6453 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6454 find_zone_movable_pfns_for_nodes();
6455
6456 /* Print out the zone ranges */
6457 pr_info("Zone ranges:\n");
6458 for (i = 0; i < MAX_NR_ZONES; i++) {
6459 if (i == ZONE_MOVABLE)
6460 continue;
6461 pr_info(" %-8s ", zone_names[i]);
6462 if (arch_zone_lowest_possible_pfn[i] ==
6463 arch_zone_highest_possible_pfn[i])
6464 pr_cont("empty\n");
6465 else
6466 pr_cont("[mem %#018Lx-%#018Lx]\n",
6467 (u64)arch_zone_lowest_possible_pfn[i]
6468 << PAGE_SHIFT,
6469 ((u64)arch_zone_highest_possible_pfn[i]
6470 << PAGE_SHIFT) - 1);
6471 }
6472
6473 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6474 pr_info("Movable zone start for each node\n");
6475 for (i = 0; i < MAX_NUMNODES; i++) {
6476 if (zone_movable_pfn[i])
6477 pr_info(" Node %d: %#018Lx\n", i,
6478 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6479 }
6480
6481 /* Print out the early node map */
6482 pr_info("Early memory node ranges\n");
6483 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6484 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6485 (u64)start_pfn << PAGE_SHIFT,
6486 ((u64)end_pfn << PAGE_SHIFT) - 1);
6487
6488 /* Initialise every node */
6489 mminit_verify_pageflags_layout();
6490 setup_nr_node_ids();
6491 for_each_online_node(nid) {
6492 pg_data_t *pgdat = NODE_DATA(nid);
6493 free_area_init_node(nid, NULL,
6494 find_min_pfn_for_node(nid), NULL);
6495
6496 /* Any memory on that node */
6497 if (pgdat->node_present_pages)
6498 node_set_state(nid, N_MEMORY);
6499 check_for_memory(pgdat, nid);
6500 }
6501 }
6502
6503 static int __init cmdline_parse_core(char *p, unsigned long *core)
6504 {
6505 unsigned long long coremem;
6506 if (!p)
6507 return -EINVAL;
6508
6509 coremem = memparse(p, &p);
6510 *core = coremem >> PAGE_SHIFT;
6511
6512 /* Paranoid check that UL is enough for the coremem value */
6513 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6514
6515 return 0;
6516 }
6517
6518 /*
6519 * kernelcore=size sets the amount of memory for use for allocations that
6520 * cannot be reclaimed or migrated.
6521 */
6522 static int __init cmdline_parse_kernelcore(char *p)
6523 {
6524 /* parse kernelcore=mirror */
6525 if (parse_option_str(p, "mirror")) {
6526 mirrored_kernelcore = true;
6527 return 0;
6528 }
6529
6530 return cmdline_parse_core(p, &required_kernelcore);
6531 }
6532
6533 /*
6534 * movablecore=size sets the amount of memory for use for allocations that
6535 * can be reclaimed or migrated.
6536 */
6537 static int __init cmdline_parse_movablecore(char *p)
6538 {
6539 return cmdline_parse_core(p, &required_movablecore);
6540 }
6541
6542 early_param("kernelcore", cmdline_parse_kernelcore);
6543 early_param("movablecore", cmdline_parse_movablecore);
6544
6545 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6546
6547 void adjust_managed_page_count(struct page *page, long count)
6548 {
6549 spin_lock(&managed_page_count_lock);
6550 page_zone(page)->managed_pages += count;
6551 totalram_pages += count;
6552 #ifdef CONFIG_HIGHMEM
6553 if (PageHighMem(page))
6554 totalhigh_pages += count;
6555 #endif
6556 spin_unlock(&managed_page_count_lock);
6557 }
6558 EXPORT_SYMBOL(adjust_managed_page_count);
6559
6560 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6561 {
6562 void *pos;
6563 unsigned long pages = 0;
6564
6565 start = (void *)PAGE_ALIGN((unsigned long)start);
6566 end = (void *)((unsigned long)end & PAGE_MASK);
6567 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6568 if ((unsigned int)poison <= 0xFF)
6569 memset(pos, poison, PAGE_SIZE);
6570 free_reserved_page(virt_to_page(pos));
6571 }
6572
6573 if (pages && s)
6574 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6575 s, pages << (PAGE_SHIFT - 10), start, end);
6576
6577 return pages;
6578 }
6579 EXPORT_SYMBOL(free_reserved_area);
6580
6581 #ifdef CONFIG_HIGHMEM
6582 void free_highmem_page(struct page *page)
6583 {
6584 __free_reserved_page(page);
6585 totalram_pages++;
6586 page_zone(page)->managed_pages++;
6587 totalhigh_pages++;
6588 }
6589 #endif
6590
6591
6592 void __init mem_init_print_info(const char *str)
6593 {
6594 unsigned long physpages, codesize, datasize, rosize, bss_size;
6595 unsigned long init_code_size, init_data_size;
6596
6597 physpages = get_num_physpages();
6598 codesize = _etext - _stext;
6599 datasize = _edata - _sdata;
6600 rosize = __end_rodata - __start_rodata;
6601 bss_size = __bss_stop - __bss_start;
6602 init_data_size = __init_end - __init_begin;
6603 init_code_size = _einittext - _sinittext;
6604
6605 /*
6606 * Detect special cases and adjust section sizes accordingly:
6607 * 1) .init.* may be embedded into .data sections
6608 * 2) .init.text.* may be out of [__init_begin, __init_end],
6609 * please refer to arch/tile/kernel/vmlinux.lds.S.
6610 * 3) .rodata.* may be embedded into .text or .data sections.
6611 */
6612 #define adj_init_size(start, end, size, pos, adj) \
6613 do { \
6614 if (start <= pos && pos < end && size > adj) \
6615 size -= adj; \
6616 } while (0)
6617
6618 adj_init_size(__init_begin, __init_end, init_data_size,
6619 _sinittext, init_code_size);
6620 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6621 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6622 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6623 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6624
6625 #undef adj_init_size
6626
6627 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6628 #ifdef CONFIG_HIGHMEM
6629 ", %luK highmem"
6630 #endif
6631 "%s%s)\n",
6632 nr_free_pages() << (PAGE_SHIFT - 10),
6633 physpages << (PAGE_SHIFT - 10),
6634 codesize >> 10, datasize >> 10, rosize >> 10,
6635 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6636 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6637 totalcma_pages << (PAGE_SHIFT - 10),
6638 #ifdef CONFIG_HIGHMEM
6639 totalhigh_pages << (PAGE_SHIFT - 10),
6640 #endif
6641 str ? ", " : "", str ? str : "");
6642 }
6643
6644 /**
6645 * set_dma_reserve - set the specified number of pages reserved in the first zone
6646 * @new_dma_reserve: The number of pages to mark reserved
6647 *
6648 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6649 * In the DMA zone, a significant percentage may be consumed by kernel image
6650 * and other unfreeable allocations which can skew the watermarks badly. This
6651 * function may optionally be used to account for unfreeable pages in the
6652 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6653 * smaller per-cpu batchsize.
6654 */
6655 void __init set_dma_reserve(unsigned long new_dma_reserve)
6656 {
6657 dma_reserve = new_dma_reserve;
6658 }
6659
6660 void __init free_area_init(unsigned long *zones_size)
6661 {
6662 free_area_init_node(0, zones_size,
6663 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6664 }
6665
6666 static int page_alloc_cpu_notify(struct notifier_block *self,
6667 unsigned long action, void *hcpu)
6668 {
6669 int cpu = (unsigned long)hcpu;
6670
6671 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6672 lru_add_drain_cpu(cpu);
6673 drain_pages(cpu);
6674
6675 /*
6676 * Spill the event counters of the dead processor
6677 * into the current processors event counters.
6678 * This artificially elevates the count of the current
6679 * processor.
6680 */
6681 vm_events_fold_cpu(cpu);
6682
6683 /*
6684 * Zero the differential counters of the dead processor
6685 * so that the vm statistics are consistent.
6686 *
6687 * This is only okay since the processor is dead and cannot
6688 * race with what we are doing.
6689 */
6690 cpu_vm_stats_fold(cpu);
6691 }
6692 return NOTIFY_OK;
6693 }
6694
6695 void __init page_alloc_init(void)
6696 {
6697 hotcpu_notifier(page_alloc_cpu_notify, 0);
6698 }
6699
6700 /*
6701 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6702 * or min_free_kbytes changes.
6703 */
6704 static void calculate_totalreserve_pages(void)
6705 {
6706 struct pglist_data *pgdat;
6707 unsigned long reserve_pages = 0;
6708 enum zone_type i, j;
6709
6710 for_each_online_pgdat(pgdat) {
6711 for (i = 0; i < MAX_NR_ZONES; i++) {
6712 struct zone *zone = pgdat->node_zones + i;
6713 long max = 0;
6714
6715 /* Find valid and maximum lowmem_reserve in the zone */
6716 for (j = i; j < MAX_NR_ZONES; j++) {
6717 if (zone->lowmem_reserve[j] > max)
6718 max = zone->lowmem_reserve[j];
6719 }
6720
6721 /* we treat the high watermark as reserved pages. */
6722 max += high_wmark_pages(zone);
6723
6724 if (max > zone->managed_pages)
6725 max = zone->managed_pages;
6726
6727 zone->totalreserve_pages = max;
6728
6729 reserve_pages += max;
6730 }
6731 }
6732 totalreserve_pages = reserve_pages;
6733 }
6734
6735 /*
6736 * setup_per_zone_lowmem_reserve - called whenever
6737 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6738 * has a correct pages reserved value, so an adequate number of
6739 * pages are left in the zone after a successful __alloc_pages().
6740 */
6741 static void setup_per_zone_lowmem_reserve(void)
6742 {
6743 struct pglist_data *pgdat;
6744 enum zone_type j, idx;
6745
6746 for_each_online_pgdat(pgdat) {
6747 for (j = 0; j < MAX_NR_ZONES; j++) {
6748 struct zone *zone = pgdat->node_zones + j;
6749 unsigned long managed_pages = zone->managed_pages;
6750
6751 zone->lowmem_reserve[j] = 0;
6752
6753 idx = j;
6754 while (idx) {
6755 struct zone *lower_zone;
6756
6757 idx--;
6758
6759 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6760 sysctl_lowmem_reserve_ratio[idx] = 1;
6761
6762 lower_zone = pgdat->node_zones + idx;
6763 lower_zone->lowmem_reserve[j] = managed_pages /
6764 sysctl_lowmem_reserve_ratio[idx];
6765 managed_pages += lower_zone->managed_pages;
6766 }
6767 }
6768 }
6769
6770 /* update totalreserve_pages */
6771 calculate_totalreserve_pages();
6772 }
6773
6774 static void __setup_per_zone_wmarks(void)
6775 {
6776 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6777 unsigned long lowmem_pages = 0;
6778 struct zone *zone;
6779 unsigned long flags;
6780
6781 /* Calculate total number of !ZONE_HIGHMEM pages */
6782 for_each_zone(zone) {
6783 if (!is_highmem(zone))
6784 lowmem_pages += zone->managed_pages;
6785 }
6786
6787 for_each_zone(zone) {
6788 u64 tmp;
6789
6790 spin_lock_irqsave(&zone->lock, flags);
6791 tmp = (u64)pages_min * zone->managed_pages;
6792 do_div(tmp, lowmem_pages);
6793 if (is_highmem(zone)) {
6794 /*
6795 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6796 * need highmem pages, so cap pages_min to a small
6797 * value here.
6798 *
6799 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6800 * deltas control asynch page reclaim, and so should
6801 * not be capped for highmem.
6802 */
6803 unsigned long min_pages;
6804
6805 min_pages = zone->managed_pages / 1024;
6806 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6807 zone->watermark[WMARK_MIN] = min_pages;
6808 } else {
6809 /*
6810 * If it's a lowmem zone, reserve a number of pages
6811 * proportionate to the zone's size.
6812 */
6813 zone->watermark[WMARK_MIN] = tmp;
6814 }
6815
6816 /*
6817 * Set the kswapd watermarks distance according to the
6818 * scale factor in proportion to available memory, but
6819 * ensure a minimum size on small systems.
6820 */
6821 tmp = max_t(u64, tmp >> 2,
6822 mult_frac(zone->managed_pages,
6823 watermark_scale_factor, 10000));
6824
6825 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6826 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6827
6828 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6829 high_wmark_pages(zone) - low_wmark_pages(zone) -
6830 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6831
6832 spin_unlock_irqrestore(&zone->lock, flags);
6833 }
6834
6835 /* update totalreserve_pages */
6836 calculate_totalreserve_pages();
6837 }
6838
6839 /**
6840 * setup_per_zone_wmarks - called when min_free_kbytes changes
6841 * or when memory is hot-{added|removed}
6842 *
6843 * Ensures that the watermark[min,low,high] values for each zone are set
6844 * correctly with respect to min_free_kbytes.
6845 */
6846 void setup_per_zone_wmarks(void)
6847 {
6848 mutex_lock(&zonelists_mutex);
6849 __setup_per_zone_wmarks();
6850 mutex_unlock(&zonelists_mutex);
6851 }
6852
6853 /*
6854 * Initialise min_free_kbytes.
6855 *
6856 * For small machines we want it small (128k min). For large machines
6857 * we want it large (64MB max). But it is not linear, because network
6858 * bandwidth does not increase linearly with machine size. We use
6859 *
6860 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6861 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6862 *
6863 * which yields
6864 *
6865 * 16MB: 512k
6866 * 32MB: 724k
6867 * 64MB: 1024k
6868 * 128MB: 1448k
6869 * 256MB: 2048k
6870 * 512MB: 2896k
6871 * 1024MB: 4096k
6872 * 2048MB: 5792k
6873 * 4096MB: 8192k
6874 * 8192MB: 11584k
6875 * 16384MB: 16384k
6876 */
6877 int __meminit init_per_zone_wmark_min(void)
6878 {
6879 unsigned long lowmem_kbytes;
6880 int new_min_free_kbytes;
6881
6882 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6883 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6884
6885 if (new_min_free_kbytes > user_min_free_kbytes) {
6886 min_free_kbytes = new_min_free_kbytes;
6887 if (min_free_kbytes < 128)
6888 min_free_kbytes = 128;
6889 if (min_free_kbytes > 65536)
6890 min_free_kbytes = 65536;
6891 } else {
6892 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6893 new_min_free_kbytes, user_min_free_kbytes);
6894 }
6895 setup_per_zone_wmarks();
6896 refresh_zone_stat_thresholds();
6897 setup_per_zone_lowmem_reserve();
6898 return 0;
6899 }
6900 core_initcall(init_per_zone_wmark_min)
6901
6902 /*
6903 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6904 * that we can call two helper functions whenever min_free_kbytes
6905 * changes.
6906 */
6907 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6908 void __user *buffer, size_t *length, loff_t *ppos)
6909 {
6910 int rc;
6911
6912 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6913 if (rc)
6914 return rc;
6915
6916 if (write) {
6917 user_min_free_kbytes = min_free_kbytes;
6918 setup_per_zone_wmarks();
6919 }
6920 return 0;
6921 }
6922
6923 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6924 void __user *buffer, size_t *length, loff_t *ppos)
6925 {
6926 int rc;
6927
6928 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6929 if (rc)
6930 return rc;
6931
6932 if (write)
6933 setup_per_zone_wmarks();
6934
6935 return 0;
6936 }
6937
6938 #ifdef CONFIG_NUMA
6939 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6940 void __user *buffer, size_t *length, loff_t *ppos)
6941 {
6942 struct zone *zone;
6943 int rc;
6944
6945 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6946 if (rc)
6947 return rc;
6948
6949 for_each_zone(zone)
6950 zone->min_unmapped_pages = (zone->managed_pages *
6951 sysctl_min_unmapped_ratio) / 100;
6952 return 0;
6953 }
6954
6955 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6956 void __user *buffer, size_t *length, loff_t *ppos)
6957 {
6958 struct zone *zone;
6959 int rc;
6960
6961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6962 if (rc)
6963 return rc;
6964
6965 for_each_zone(zone)
6966 zone->min_slab_pages = (zone->managed_pages *
6967 sysctl_min_slab_ratio) / 100;
6968 return 0;
6969 }
6970 #endif
6971
6972 /*
6973 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6974 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6975 * whenever sysctl_lowmem_reserve_ratio changes.
6976 *
6977 * The reserve ratio obviously has absolutely no relation with the
6978 * minimum watermarks. The lowmem reserve ratio can only make sense
6979 * if in function of the boot time zone sizes.
6980 */
6981 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6982 void __user *buffer, size_t *length, loff_t *ppos)
6983 {
6984 proc_dointvec_minmax(table, write, buffer, length, ppos);
6985 setup_per_zone_lowmem_reserve();
6986 return 0;
6987 }
6988
6989 /*
6990 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6991 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6992 * pagelist can have before it gets flushed back to buddy allocator.
6993 */
6994 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6995 void __user *buffer, size_t *length, loff_t *ppos)
6996 {
6997 struct zone *zone;
6998 int old_percpu_pagelist_fraction;
6999 int ret;
7000
7001 mutex_lock(&pcp_batch_high_lock);
7002 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7003
7004 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7005 if (!write || ret < 0)
7006 goto out;
7007
7008 /* Sanity checking to avoid pcp imbalance */
7009 if (percpu_pagelist_fraction &&
7010 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7011 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7012 ret = -EINVAL;
7013 goto out;
7014 }
7015
7016 /* No change? */
7017 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7018 goto out;
7019
7020 for_each_populated_zone(zone) {
7021 unsigned int cpu;
7022
7023 for_each_possible_cpu(cpu)
7024 pageset_set_high_and_batch(zone,
7025 per_cpu_ptr(zone->pageset, cpu));
7026 }
7027 out:
7028 mutex_unlock(&pcp_batch_high_lock);
7029 return ret;
7030 }
7031
7032 #ifdef CONFIG_NUMA
7033 int hashdist = HASHDIST_DEFAULT;
7034
7035 static int __init set_hashdist(char *str)
7036 {
7037 if (!str)
7038 return 0;
7039 hashdist = simple_strtoul(str, &str, 0);
7040 return 1;
7041 }
7042 __setup("hashdist=", set_hashdist);
7043 #endif
7044
7045 /*
7046 * allocate a large system hash table from bootmem
7047 * - it is assumed that the hash table must contain an exact power-of-2
7048 * quantity of entries
7049 * - limit is the number of hash buckets, not the total allocation size
7050 */
7051 void *__init alloc_large_system_hash(const char *tablename,
7052 unsigned long bucketsize,
7053 unsigned long numentries,
7054 int scale,
7055 int flags,
7056 unsigned int *_hash_shift,
7057 unsigned int *_hash_mask,
7058 unsigned long low_limit,
7059 unsigned long high_limit)
7060 {
7061 unsigned long long max = high_limit;
7062 unsigned long log2qty, size;
7063 void *table = NULL;
7064
7065 /* allow the kernel cmdline to have a say */
7066 if (!numentries) {
7067 /* round applicable memory size up to nearest megabyte */
7068 numentries = nr_kernel_pages;
7069
7070 /* It isn't necessary when PAGE_SIZE >= 1MB */
7071 if (PAGE_SHIFT < 20)
7072 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7073
7074 /* limit to 1 bucket per 2^scale bytes of low memory */
7075 if (scale > PAGE_SHIFT)
7076 numentries >>= (scale - PAGE_SHIFT);
7077 else
7078 numentries <<= (PAGE_SHIFT - scale);
7079
7080 /* Make sure we've got at least a 0-order allocation.. */
7081 if (unlikely(flags & HASH_SMALL)) {
7082 /* Makes no sense without HASH_EARLY */
7083 WARN_ON(!(flags & HASH_EARLY));
7084 if (!(numentries >> *_hash_shift)) {
7085 numentries = 1UL << *_hash_shift;
7086 BUG_ON(!numentries);
7087 }
7088 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7089 numentries = PAGE_SIZE / bucketsize;
7090 }
7091 numentries = roundup_pow_of_two(numentries);
7092
7093 /* limit allocation size to 1/16 total memory by default */
7094 if (max == 0) {
7095 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7096 do_div(max, bucketsize);
7097 }
7098 max = min(max, 0x80000000ULL);
7099
7100 if (numentries < low_limit)
7101 numentries = low_limit;
7102 if (numentries > max)
7103 numentries = max;
7104
7105 log2qty = ilog2(numentries);
7106
7107 do {
7108 size = bucketsize << log2qty;
7109 if (flags & HASH_EARLY)
7110 table = memblock_virt_alloc_nopanic(size, 0);
7111 else if (hashdist)
7112 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7113 else {
7114 /*
7115 * If bucketsize is not a power-of-two, we may free
7116 * some pages at the end of hash table which
7117 * alloc_pages_exact() automatically does
7118 */
7119 if (get_order(size) < MAX_ORDER) {
7120 table = alloc_pages_exact(size, GFP_ATOMIC);
7121 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7122 }
7123 }
7124 } while (!table && size > PAGE_SIZE && --log2qty);
7125
7126 if (!table)
7127 panic("Failed to allocate %s hash table\n", tablename);
7128
7129 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7130 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7131
7132 if (_hash_shift)
7133 *_hash_shift = log2qty;
7134 if (_hash_mask)
7135 *_hash_mask = (1 << log2qty) - 1;
7136
7137 return table;
7138 }
7139
7140 /*
7141 * This function checks whether pageblock includes unmovable pages or not.
7142 * If @count is not zero, it is okay to include less @count unmovable pages
7143 *
7144 * PageLRU check without isolation or lru_lock could race so that
7145 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7146 * expect this function should be exact.
7147 */
7148 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7149 bool skip_hwpoisoned_pages)
7150 {
7151 unsigned long pfn, iter, found;
7152 int mt;
7153
7154 /*
7155 * For avoiding noise data, lru_add_drain_all() should be called
7156 * If ZONE_MOVABLE, the zone never contains unmovable pages
7157 */
7158 if (zone_idx(zone) == ZONE_MOVABLE)
7159 return false;
7160 mt = get_pageblock_migratetype(page);
7161 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7162 return false;
7163
7164 pfn = page_to_pfn(page);
7165 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7166 unsigned long check = pfn + iter;
7167
7168 if (!pfn_valid_within(check))
7169 continue;
7170
7171 page = pfn_to_page(check);
7172
7173 /*
7174 * Hugepages are not in LRU lists, but they're movable.
7175 * We need not scan over tail pages bacause we don't
7176 * handle each tail page individually in migration.
7177 */
7178 if (PageHuge(page)) {
7179 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7180 continue;
7181 }
7182
7183 /*
7184 * We can't use page_count without pin a page
7185 * because another CPU can free compound page.
7186 * This check already skips compound tails of THP
7187 * because their page->_refcount is zero at all time.
7188 */
7189 if (!page_ref_count(page)) {
7190 if (PageBuddy(page))
7191 iter += (1 << page_order(page)) - 1;
7192 continue;
7193 }
7194
7195 /*
7196 * The HWPoisoned page may be not in buddy system, and
7197 * page_count() is not 0.
7198 */
7199 if (skip_hwpoisoned_pages && PageHWPoison(page))
7200 continue;
7201
7202 if (!PageLRU(page))
7203 found++;
7204 /*
7205 * If there are RECLAIMABLE pages, we need to check
7206 * it. But now, memory offline itself doesn't call
7207 * shrink_node_slabs() and it still to be fixed.
7208 */
7209 /*
7210 * If the page is not RAM, page_count()should be 0.
7211 * we don't need more check. This is an _used_ not-movable page.
7212 *
7213 * The problematic thing here is PG_reserved pages. PG_reserved
7214 * is set to both of a memory hole page and a _used_ kernel
7215 * page at boot.
7216 */
7217 if (found > count)
7218 return true;
7219 }
7220 return false;
7221 }
7222
7223 bool is_pageblock_removable_nolock(struct page *page)
7224 {
7225 struct zone *zone;
7226 unsigned long pfn;
7227
7228 /*
7229 * We have to be careful here because we are iterating over memory
7230 * sections which are not zone aware so we might end up outside of
7231 * the zone but still within the section.
7232 * We have to take care about the node as well. If the node is offline
7233 * its NODE_DATA will be NULL - see page_zone.
7234 */
7235 if (!node_online(page_to_nid(page)))
7236 return false;
7237
7238 zone = page_zone(page);
7239 pfn = page_to_pfn(page);
7240 if (!zone_spans_pfn(zone, pfn))
7241 return false;
7242
7243 return !has_unmovable_pages(zone, page, 0, true);
7244 }
7245
7246 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7247
7248 static unsigned long pfn_max_align_down(unsigned long pfn)
7249 {
7250 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7251 pageblock_nr_pages) - 1);
7252 }
7253
7254 static unsigned long pfn_max_align_up(unsigned long pfn)
7255 {
7256 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7257 pageblock_nr_pages));
7258 }
7259
7260 /* [start, end) must belong to a single zone. */
7261 static int __alloc_contig_migrate_range(struct compact_control *cc,
7262 unsigned long start, unsigned long end)
7263 {
7264 /* This function is based on compact_zone() from compaction.c. */
7265 unsigned long nr_reclaimed;
7266 unsigned long pfn = start;
7267 unsigned int tries = 0;
7268 int ret = 0;
7269
7270 migrate_prep();
7271
7272 while (pfn < end || !list_empty(&cc->migratepages)) {
7273 if (fatal_signal_pending(current)) {
7274 ret = -EINTR;
7275 break;
7276 }
7277
7278 if (list_empty(&cc->migratepages)) {
7279 cc->nr_migratepages = 0;
7280 pfn = isolate_migratepages_range(cc, pfn, end);
7281 if (!pfn) {
7282 ret = -EINTR;
7283 break;
7284 }
7285 tries = 0;
7286 } else if (++tries == 5) {
7287 ret = ret < 0 ? ret : -EBUSY;
7288 break;
7289 }
7290
7291 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7292 &cc->migratepages);
7293 cc->nr_migratepages -= nr_reclaimed;
7294
7295 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7296 NULL, 0, cc->mode, MR_CMA);
7297 }
7298 if (ret < 0) {
7299 putback_movable_pages(&cc->migratepages);
7300 return ret;
7301 }
7302 return 0;
7303 }
7304
7305 /**
7306 * alloc_contig_range() -- tries to allocate given range of pages
7307 * @start: start PFN to allocate
7308 * @end: one-past-the-last PFN to allocate
7309 * @migratetype: migratetype of the underlaying pageblocks (either
7310 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7311 * in range must have the same migratetype and it must
7312 * be either of the two.
7313 *
7314 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7315 * aligned, however it's the caller's responsibility to guarantee that
7316 * we are the only thread that changes migrate type of pageblocks the
7317 * pages fall in.
7318 *
7319 * The PFN range must belong to a single zone.
7320 *
7321 * Returns zero on success or negative error code. On success all
7322 * pages which PFN is in [start, end) are allocated for the caller and
7323 * need to be freed with free_contig_range().
7324 */
7325 int alloc_contig_range(unsigned long start, unsigned long end,
7326 unsigned migratetype)
7327 {
7328 unsigned long outer_start, outer_end;
7329 unsigned int order;
7330 int ret = 0;
7331
7332 struct compact_control cc = {
7333 .nr_migratepages = 0,
7334 .order = -1,
7335 .zone = page_zone(pfn_to_page(start)),
7336 .mode = MIGRATE_SYNC,
7337 .ignore_skip_hint = true,
7338 };
7339 INIT_LIST_HEAD(&cc.migratepages);
7340
7341 /*
7342 * What we do here is we mark all pageblocks in range as
7343 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7344 * have different sizes, and due to the way page allocator
7345 * work, we align the range to biggest of the two pages so
7346 * that page allocator won't try to merge buddies from
7347 * different pageblocks and change MIGRATE_ISOLATE to some
7348 * other migration type.
7349 *
7350 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7351 * migrate the pages from an unaligned range (ie. pages that
7352 * we are interested in). This will put all the pages in
7353 * range back to page allocator as MIGRATE_ISOLATE.
7354 *
7355 * When this is done, we take the pages in range from page
7356 * allocator removing them from the buddy system. This way
7357 * page allocator will never consider using them.
7358 *
7359 * This lets us mark the pageblocks back as
7360 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7361 * aligned range but not in the unaligned, original range are
7362 * put back to page allocator so that buddy can use them.
7363 */
7364
7365 ret = start_isolate_page_range(pfn_max_align_down(start),
7366 pfn_max_align_up(end), migratetype,
7367 false);
7368 if (ret)
7369 return ret;
7370
7371 /*
7372 * In case of -EBUSY, we'd like to know which page causes problem.
7373 * So, just fall through. We will check it in test_pages_isolated().
7374 */
7375 ret = __alloc_contig_migrate_range(&cc, start, end);
7376 if (ret && ret != -EBUSY)
7377 goto done;
7378
7379 /*
7380 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7381 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7382 * more, all pages in [start, end) are free in page allocator.
7383 * What we are going to do is to allocate all pages from
7384 * [start, end) (that is remove them from page allocator).
7385 *
7386 * The only problem is that pages at the beginning and at the
7387 * end of interesting range may be not aligned with pages that
7388 * page allocator holds, ie. they can be part of higher order
7389 * pages. Because of this, we reserve the bigger range and
7390 * once this is done free the pages we are not interested in.
7391 *
7392 * We don't have to hold zone->lock here because the pages are
7393 * isolated thus they won't get removed from buddy.
7394 */
7395
7396 lru_add_drain_all();
7397 drain_all_pages(cc.zone);
7398
7399 order = 0;
7400 outer_start = start;
7401 while (!PageBuddy(pfn_to_page(outer_start))) {
7402 if (++order >= MAX_ORDER) {
7403 outer_start = start;
7404 break;
7405 }
7406 outer_start &= ~0UL << order;
7407 }
7408
7409 if (outer_start != start) {
7410 order = page_order(pfn_to_page(outer_start));
7411
7412 /*
7413 * outer_start page could be small order buddy page and
7414 * it doesn't include start page. Adjust outer_start
7415 * in this case to report failed page properly
7416 * on tracepoint in test_pages_isolated()
7417 */
7418 if (outer_start + (1UL << order) <= start)
7419 outer_start = start;
7420 }
7421
7422 /* Make sure the range is really isolated. */
7423 if (test_pages_isolated(outer_start, end, false)) {
7424 pr_info("%s: [%lx, %lx) PFNs busy\n",
7425 __func__, outer_start, end);
7426 ret = -EBUSY;
7427 goto done;
7428 }
7429
7430 /* Grab isolated pages from freelists. */
7431 outer_end = isolate_freepages_range(&cc, outer_start, end);
7432 if (!outer_end) {
7433 ret = -EBUSY;
7434 goto done;
7435 }
7436
7437 /* Free head and tail (if any) */
7438 if (start != outer_start)
7439 free_contig_range(outer_start, start - outer_start);
7440 if (end != outer_end)
7441 free_contig_range(end, outer_end - end);
7442
7443 done:
7444 undo_isolate_page_range(pfn_max_align_down(start),
7445 pfn_max_align_up(end), migratetype);
7446 return ret;
7447 }
7448
7449 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7450 {
7451 unsigned int count = 0;
7452
7453 for (; nr_pages--; pfn++) {
7454 struct page *page = pfn_to_page(pfn);
7455
7456 count += page_count(page) != 1;
7457 __free_page(page);
7458 }
7459 WARN(count != 0, "%d pages are still in use!\n", count);
7460 }
7461 #endif
7462
7463 #ifdef CONFIG_MEMORY_HOTPLUG
7464 /*
7465 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7466 * page high values need to be recalulated.
7467 */
7468 void __meminit zone_pcp_update(struct zone *zone)
7469 {
7470 unsigned cpu;
7471 mutex_lock(&pcp_batch_high_lock);
7472 for_each_possible_cpu(cpu)
7473 pageset_set_high_and_batch(zone,
7474 per_cpu_ptr(zone->pageset, cpu));
7475 mutex_unlock(&pcp_batch_high_lock);
7476 }
7477 #endif
7478
7479 void zone_pcp_reset(struct zone *zone)
7480 {
7481 unsigned long flags;
7482 int cpu;
7483 struct per_cpu_pageset *pset;
7484
7485 /* avoid races with drain_pages() */
7486 local_irq_save(flags);
7487 if (zone->pageset != &boot_pageset) {
7488 for_each_online_cpu(cpu) {
7489 pset = per_cpu_ptr(zone->pageset, cpu);
7490 drain_zonestat(zone, pset);
7491 }
7492 free_percpu(zone->pageset);
7493 zone->pageset = &boot_pageset;
7494 }
7495 local_irq_restore(flags);
7496 }
7497
7498 #ifdef CONFIG_MEMORY_HOTREMOVE
7499 /*
7500 * All pages in the range must be in a single zone and isolated
7501 * before calling this.
7502 */
7503 void
7504 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7505 {
7506 struct page *page;
7507 struct zone *zone;
7508 unsigned int order, i;
7509 unsigned long pfn;
7510 unsigned long flags;
7511 /* find the first valid pfn */
7512 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7513 if (pfn_valid(pfn))
7514 break;
7515 if (pfn == end_pfn)
7516 return;
7517 zone = page_zone(pfn_to_page(pfn));
7518 spin_lock_irqsave(&zone->lock, flags);
7519 pfn = start_pfn;
7520 while (pfn < end_pfn) {
7521 if (!pfn_valid(pfn)) {
7522 pfn++;
7523 continue;
7524 }
7525 page = pfn_to_page(pfn);
7526 /*
7527 * The HWPoisoned page may be not in buddy system, and
7528 * page_count() is not 0.
7529 */
7530 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7531 pfn++;
7532 SetPageReserved(page);
7533 continue;
7534 }
7535
7536 BUG_ON(page_count(page));
7537 BUG_ON(!PageBuddy(page));
7538 order = page_order(page);
7539 #ifdef CONFIG_DEBUG_VM
7540 pr_info("remove from free list %lx %d %lx\n",
7541 pfn, 1 << order, end_pfn);
7542 #endif
7543 list_del(&page->lru);
7544 rmv_page_order(page);
7545 zone->free_area[order].nr_free--;
7546 for (i = 0; i < (1 << order); i++)
7547 SetPageReserved((page+i));
7548 pfn += (1 << order);
7549 }
7550 spin_unlock_irqrestore(&zone->lock, flags);
7551 }
7552 #endif
7553
7554 bool is_free_buddy_page(struct page *page)
7555 {
7556 struct zone *zone = page_zone(page);
7557 unsigned long pfn = page_to_pfn(page);
7558 unsigned long flags;
7559 unsigned int order;
7560
7561 spin_lock_irqsave(&zone->lock, flags);
7562 for (order = 0; order < MAX_ORDER; order++) {
7563 struct page *page_head = page - (pfn & ((1 << order) - 1));
7564
7565 if (PageBuddy(page_head) && page_order(page_head) >= order)
7566 break;
7567 }
7568 spin_unlock_irqrestore(&zone->lock, flags);
7569
7570 return order < MAX_ORDER;
7571 }
This page took 0.176849 seconds and 6 git commands to generate.