page-allocator: remove dead function free_cold_page()
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
55
56 /*
57 * Array of node states.
58 */
59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62 #ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 #ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66 #endif
67 [N_CPU] = { { [0] = 1UL } },
68 #endif /* NUMA */
69 };
70 EXPORT_SYMBOL(node_states);
71
72 unsigned long totalram_pages __read_mostly;
73 unsigned long totalreserve_pages __read_mostly;
74 unsigned long highest_memmap_pfn __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
77
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
81
82 static void __free_pages_ok(struct page *page, unsigned int order);
83
84 /*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
94 */
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
103 32,
104 #endif
105 32,
106 };
107
108 EXPORT_SYMBOL(totalram_pages);
109
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
122 };
123
124 int min_free_kbytes = 1024;
125
126 unsigned long __meminitdata nr_kernel_pages;
127 unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
129
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
170
171 int page_group_by_mobility_disabled __read_mostly;
172
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
174 {
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181 }
182
183 bool oom_killer_disabled __read_mostly;
184
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
187 {
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
191
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
201 }
202
203 static int page_is_consistent(struct zone *zone, struct page *page)
204 {
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
209
210 return 1;
211 }
212 /*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215 static int bad_range(struct zone *zone, struct page *page)
216 {
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
221
222 return 0;
223 }
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
226 {
227 return 0;
228 }
229 #endif
230
231 static void bad_page(struct page *page)
232 {
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
258 current->comm, page_to_pfn(page));
259 printk(KERN_ALERT
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
263
264 dump_stack();
265 out:
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
268 add_taint(TAINT_BAD_PAGE);
269 }
270
271 /*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
284 */
285
286 static void free_compound_page(struct page *page)
287 {
288 __free_pages_ok(page, compound_order(page));
289 }
290
291 void prep_compound_page(struct page *page, unsigned long order)
292 {
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305 }
306
307 static int destroy_compound_page(struct page *page, unsigned long order)
308 {
309 int i;
310 int nr_pages = 1 << order;
311 int bad = 0;
312
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
315 bad_page(page);
316 bad++;
317 }
318
319 __ClearPageHead(page);
320
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
323
324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 bad_page(page);
326 bad++;
327 }
328 __ClearPageTail(p);
329 }
330
331 return bad;
332 }
333
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335 {
336 int i;
337
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345 }
346
347 static inline void set_page_order(struct page *page, int order)
348 {
349 set_page_private(page, order);
350 __SetPageBuddy(page);
351 }
352
353 static inline void rmv_page_order(struct page *page)
354 {
355 __ClearPageBuddy(page);
356 set_page_private(page, 0);
357 }
358
359 /*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
375 */
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378 {
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382 }
383
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
386 {
387 return (page_idx & ~(1 << order));
388 }
389
390 /*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
400 *
401 * For recording page's order, we use page_private(page).
402 */
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
405 {
406 if (!pfn_valid_within(page_to_pfn(buddy)))
407 return 0;
408
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 VM_BUG_ON(page_count(buddy) != 0);
414 return 1;
415 }
416 return 0;
417 }
418
419 /*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
443 static inline void __free_one_page(struct page *page,
444 struct zone *zone, unsigned int order,
445 int migratetype)
446 {
447 unsigned long page_idx;
448
449 if (unlikely(PageCompound(page)))
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
452
453 VM_BUG_ON(migratetype == -1);
454
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
457 VM_BUG_ON(page_idx & ((1 << order) - 1));
458 VM_BUG_ON(bad_range(zone, page));
459
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
462 struct page *buddy;
463
464 buddy = __page_find_buddy(page, page_idx, order);
465 if (!page_is_buddy(page, buddy, order))
466 break;
467
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy->lru);
470 zone->free_area[order].nr_free--;
471 rmv_page_order(buddy);
472 combined_idx = __find_combined_index(page_idx, order);
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
480 zone->free_area[order].nr_free++;
481 }
482
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484 /*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489 static inline void free_page_mlock(struct page *page)
490 {
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493 }
494 #else
495 static void free_page_mlock(struct page *page) { }
496 #endif
497
498 static inline int free_pages_check(struct page *page)
499 {
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
502 (atomic_read(&page->_count) != 0) |
503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504 bad_page(page);
505 return 1;
506 }
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
510 }
511
512 /*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
523 static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
525 {
526 spin_lock(&zone->lock);
527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528 zone->pages_scanned = 0;
529
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531 while (count--) {
532 struct page *page;
533
534 VM_BUG_ON(list_empty(list));
535 page = list_entry(list->prev, struct page, lru);
536 /* have to delete it as __free_one_page list manipulates */
537 list_del(&page->lru);
538 __free_one_page(page, zone, order, page_private(page));
539 }
540 spin_unlock(&zone->lock);
541 }
542
543 static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
545 {
546 spin_lock(&zone->lock);
547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548 zone->pages_scanned = 0;
549
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551 __free_one_page(page, zone, order, migratetype);
552 spin_unlock(&zone->lock);
553 }
554
555 static void __free_pages_ok(struct page *page, unsigned int order)
556 {
557 unsigned long flags;
558 int i;
559 int bad = 0;
560 int wasMlocked = __TestClearPageMlocked(page);
561
562 kmemcheck_free_shadow(page, order);
563
564 for (i = 0 ; i < (1 << order) ; ++i)
565 bad += free_pages_check(page + i);
566 if (bad)
567 return;
568
569 if (!PageHighMem(page)) {
570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
573 }
574 arch_free_page(page, order);
575 kernel_map_pages(page, 1 << order, 0);
576
577 local_irq_save(flags);
578 if (unlikely(wasMlocked))
579 free_page_mlock(page);
580 __count_vm_events(PGFREE, 1 << order);
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
583 local_irq_restore(flags);
584 }
585
586 /*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
590 {
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
594 set_page_refcounted(page);
595 __free_page(page);
596 } else {
597 int loop;
598
599 prefetchw(page);
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
602
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
607 }
608
609 set_page_refcounted(page);
610 __free_pages(page, order);
611 }
612 }
613
614
615 /*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
629 static inline void expand(struct zone *zone, struct page *page,
630 int low, int high, struct free_area *area,
631 int migratetype)
632 {
633 unsigned long size = 1 << high;
634
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
639 VM_BUG_ON(bad_range(zone, &page[size]));
640 list_add(&page[size].lru, &area->free_list[migratetype]);
641 area->nr_free++;
642 set_page_order(&page[size], high);
643 }
644 }
645
646 /*
647 * This page is about to be returned from the page allocator
648 */
649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
650 {
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
653 (atomic_read(&page->_count) != 0) |
654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655 bad_page(page);
656 return 1;
657 }
658
659 set_page_private(page, 0);
660 set_page_refcounted(page);
661
662 arch_alloc_page(page, order);
663 kernel_map_pages(page, 1 << order, 1);
664
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
667
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
670
671 return 0;
672 }
673
674 /*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
678 static inline
679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680 int migratetype)
681 {
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
685
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
691
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
699 }
700
701 return NULL;
702 }
703
704
705 /*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
714 };
715
716 /*
717 * Move the free pages in a range to the free lists of the requested type.
718 * Note that start_page and end_pages are not aligned on a pageblock
719 * boundary. If alignment is required, use move_freepages_block()
720 */
721 static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
724 {
725 struct page *page;
726 unsigned long order;
727 int pages_moved = 0;
728
729 #ifndef CONFIG_HOLES_IN_ZONE
730 /*
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
735 * grouping pages by mobility
736 */
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738 #endif
739
740 for (page = start_page; page <= end_page;) {
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
747 }
748
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
752 }
753
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
759 pages_moved += 1 << order;
760 }
761
762 return pages_moved;
763 }
764
765 static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
767 {
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
770
771 start_pfn = page_to_pfn(page);
772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773 start_page = pfn_to_page(start_pfn);
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
776
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
782
783 return move_freepages(zone, start_page, end_page, migratetype);
784 }
785
786 static void change_pageblock_range(struct page *pageblock_page,
787 int start_order, int migratetype)
788 {
789 int nr_pageblocks = 1 << (start_order - pageblock_order);
790
791 while (nr_pageblocks--) {
792 set_pageblock_migratetype(pageblock_page, migratetype);
793 pageblock_page += pageblock_nr_pages;
794 }
795 }
796
797 /* Remove an element from the buddy allocator from the fallback list */
798 static inline struct page *
799 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
800 {
801 struct free_area * area;
802 int current_order;
803 struct page *page;
804 int migratetype, i;
805
806 /* Find the largest possible block of pages in the other list */
807 for (current_order = MAX_ORDER-1; current_order >= order;
808 --current_order) {
809 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
810 migratetype = fallbacks[start_migratetype][i];
811
812 /* MIGRATE_RESERVE handled later if necessary */
813 if (migratetype == MIGRATE_RESERVE)
814 continue;
815
816 area = &(zone->free_area[current_order]);
817 if (list_empty(&area->free_list[migratetype]))
818 continue;
819
820 page = list_entry(area->free_list[migratetype].next,
821 struct page, lru);
822 area->nr_free--;
823
824 /*
825 * If breaking a large block of pages, move all free
826 * pages to the preferred allocation list. If falling
827 * back for a reclaimable kernel allocation, be more
828 * agressive about taking ownership of free pages
829 */
830 if (unlikely(current_order >= (pageblock_order >> 1)) ||
831 start_migratetype == MIGRATE_RECLAIMABLE ||
832 page_group_by_mobility_disabled) {
833 unsigned long pages;
834 pages = move_freepages_block(zone, page,
835 start_migratetype);
836
837 /* Claim the whole block if over half of it is free */
838 if (pages >= (1 << (pageblock_order-1)) ||
839 page_group_by_mobility_disabled)
840 set_pageblock_migratetype(page,
841 start_migratetype);
842
843 migratetype = start_migratetype;
844 }
845
846 /* Remove the page from the freelists */
847 list_del(&page->lru);
848 rmv_page_order(page);
849
850 /* Take ownership for orders >= pageblock_order */
851 if (current_order >= pageblock_order)
852 change_pageblock_range(page, current_order,
853 start_migratetype);
854
855 expand(zone, page, order, current_order, area, migratetype);
856 return page;
857 }
858 }
859
860 return NULL;
861 }
862
863 /*
864 * Do the hard work of removing an element from the buddy allocator.
865 * Call me with the zone->lock already held.
866 */
867 static struct page *__rmqueue(struct zone *zone, unsigned int order,
868 int migratetype)
869 {
870 struct page *page;
871
872 retry_reserve:
873 page = __rmqueue_smallest(zone, order, migratetype);
874
875 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
876 page = __rmqueue_fallback(zone, order, migratetype);
877
878 /*
879 * Use MIGRATE_RESERVE rather than fail an allocation. goto
880 * is used because __rmqueue_smallest is an inline function
881 * and we want just one call site
882 */
883 if (!page) {
884 migratetype = MIGRATE_RESERVE;
885 goto retry_reserve;
886 }
887 }
888
889 return page;
890 }
891
892 /*
893 * Obtain a specified number of elements from the buddy allocator, all under
894 * a single hold of the lock, for efficiency. Add them to the supplied list.
895 * Returns the number of new pages which were placed at *list.
896 */
897 static int rmqueue_bulk(struct zone *zone, unsigned int order,
898 unsigned long count, struct list_head *list,
899 int migratetype, int cold)
900 {
901 int i;
902
903 spin_lock(&zone->lock);
904 for (i = 0; i < count; ++i) {
905 struct page *page = __rmqueue(zone, order, migratetype);
906 if (unlikely(page == NULL))
907 break;
908
909 /*
910 * Split buddy pages returned by expand() are received here
911 * in physical page order. The page is added to the callers and
912 * list and the list head then moves forward. From the callers
913 * perspective, the linked list is ordered by page number in
914 * some conditions. This is useful for IO devices that can
915 * merge IO requests if the physical pages are ordered
916 * properly.
917 */
918 if (likely(cold == 0))
919 list_add(&page->lru, list);
920 else
921 list_add_tail(&page->lru, list);
922 set_page_private(page, migratetype);
923 list = &page->lru;
924 }
925 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
926 spin_unlock(&zone->lock);
927 return i;
928 }
929
930 #ifdef CONFIG_NUMA
931 /*
932 * Called from the vmstat counter updater to drain pagesets of this
933 * currently executing processor on remote nodes after they have
934 * expired.
935 *
936 * Note that this function must be called with the thread pinned to
937 * a single processor.
938 */
939 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
940 {
941 unsigned long flags;
942 int to_drain;
943
944 local_irq_save(flags);
945 if (pcp->count >= pcp->batch)
946 to_drain = pcp->batch;
947 else
948 to_drain = pcp->count;
949 free_pages_bulk(zone, to_drain, &pcp->list, 0);
950 pcp->count -= to_drain;
951 local_irq_restore(flags);
952 }
953 #endif
954
955 /*
956 * Drain pages of the indicated processor.
957 *
958 * The processor must either be the current processor and the
959 * thread pinned to the current processor or a processor that
960 * is not online.
961 */
962 static void drain_pages(unsigned int cpu)
963 {
964 unsigned long flags;
965 struct zone *zone;
966
967 for_each_populated_zone(zone) {
968 struct per_cpu_pageset *pset;
969 struct per_cpu_pages *pcp;
970
971 pset = zone_pcp(zone, cpu);
972
973 pcp = &pset->pcp;
974 local_irq_save(flags);
975 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
976 pcp->count = 0;
977 local_irq_restore(flags);
978 }
979 }
980
981 /*
982 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
983 */
984 void drain_local_pages(void *arg)
985 {
986 drain_pages(smp_processor_id());
987 }
988
989 /*
990 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
991 */
992 void drain_all_pages(void)
993 {
994 on_each_cpu(drain_local_pages, NULL, 1);
995 }
996
997 #ifdef CONFIG_HIBERNATION
998
999 void mark_free_pages(struct zone *zone)
1000 {
1001 unsigned long pfn, max_zone_pfn;
1002 unsigned long flags;
1003 int order, t;
1004 struct list_head *curr;
1005
1006 if (!zone->spanned_pages)
1007 return;
1008
1009 spin_lock_irqsave(&zone->lock, flags);
1010
1011 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1012 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1013 if (pfn_valid(pfn)) {
1014 struct page *page = pfn_to_page(pfn);
1015
1016 if (!swsusp_page_is_forbidden(page))
1017 swsusp_unset_page_free(page);
1018 }
1019
1020 for_each_migratetype_order(order, t) {
1021 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1022 unsigned long i;
1023
1024 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1025 for (i = 0; i < (1UL << order); i++)
1026 swsusp_set_page_free(pfn_to_page(pfn + i));
1027 }
1028 }
1029 spin_unlock_irqrestore(&zone->lock, flags);
1030 }
1031 #endif /* CONFIG_PM */
1032
1033 /*
1034 * Free a 0-order page
1035 */
1036 static void free_hot_cold_page(struct page *page, int cold)
1037 {
1038 struct zone *zone = page_zone(page);
1039 struct per_cpu_pages *pcp;
1040 unsigned long flags;
1041 int wasMlocked = __TestClearPageMlocked(page);
1042
1043 kmemcheck_free_shadow(page, 0);
1044
1045 if (PageAnon(page))
1046 page->mapping = NULL;
1047 if (free_pages_check(page))
1048 return;
1049
1050 if (!PageHighMem(page)) {
1051 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1052 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1053 }
1054 arch_free_page(page, 0);
1055 kernel_map_pages(page, 1, 0);
1056
1057 pcp = &zone_pcp(zone, get_cpu())->pcp;
1058 set_page_private(page, get_pageblock_migratetype(page));
1059 local_irq_save(flags);
1060 if (unlikely(wasMlocked))
1061 free_page_mlock(page);
1062 __count_vm_event(PGFREE);
1063
1064 if (cold)
1065 list_add_tail(&page->lru, &pcp->list);
1066 else
1067 list_add(&page->lru, &pcp->list);
1068 pcp->count++;
1069 if (pcp->count >= pcp->high) {
1070 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1071 pcp->count -= pcp->batch;
1072 }
1073 local_irq_restore(flags);
1074 put_cpu();
1075 }
1076
1077 void free_hot_page(struct page *page)
1078 {
1079 free_hot_cold_page(page, 0);
1080 }
1081
1082 /*
1083 * split_page takes a non-compound higher-order page, and splits it into
1084 * n (1<<order) sub-pages: page[0..n]
1085 * Each sub-page must be freed individually.
1086 *
1087 * Note: this is probably too low level an operation for use in drivers.
1088 * Please consult with lkml before using this in your driver.
1089 */
1090 void split_page(struct page *page, unsigned int order)
1091 {
1092 int i;
1093
1094 VM_BUG_ON(PageCompound(page));
1095 VM_BUG_ON(!page_count(page));
1096
1097 #ifdef CONFIG_KMEMCHECK
1098 /*
1099 * Split shadow pages too, because free(page[0]) would
1100 * otherwise free the whole shadow.
1101 */
1102 if (kmemcheck_page_is_tracked(page))
1103 split_page(virt_to_page(page[0].shadow), order);
1104 #endif
1105
1106 for (i = 1; i < (1 << order); i++)
1107 set_page_refcounted(page + i);
1108 }
1109
1110 /*
1111 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1112 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1113 * or two.
1114 */
1115 static inline
1116 struct page *buffered_rmqueue(struct zone *preferred_zone,
1117 struct zone *zone, int order, gfp_t gfp_flags,
1118 int migratetype)
1119 {
1120 unsigned long flags;
1121 struct page *page;
1122 int cold = !!(gfp_flags & __GFP_COLD);
1123 int cpu;
1124
1125 again:
1126 cpu = get_cpu();
1127 if (likely(order == 0)) {
1128 struct per_cpu_pages *pcp;
1129
1130 pcp = &zone_pcp(zone, cpu)->pcp;
1131 local_irq_save(flags);
1132 if (!pcp->count) {
1133 pcp->count = rmqueue_bulk(zone, 0,
1134 pcp->batch, &pcp->list,
1135 migratetype, cold);
1136 if (unlikely(!pcp->count))
1137 goto failed;
1138 }
1139
1140 /* Find a page of the appropriate migrate type */
1141 if (cold) {
1142 list_for_each_entry_reverse(page, &pcp->list, lru)
1143 if (page_private(page) == migratetype)
1144 break;
1145 } else {
1146 list_for_each_entry(page, &pcp->list, lru)
1147 if (page_private(page) == migratetype)
1148 break;
1149 }
1150
1151 /* Allocate more to the pcp list if necessary */
1152 if (unlikely(&page->lru == &pcp->list)) {
1153 int get_one_page = 0;
1154
1155 pcp->count += rmqueue_bulk(zone, 0,
1156 pcp->batch, &pcp->list,
1157 migratetype, cold);
1158 list_for_each_entry(page, &pcp->list, lru) {
1159 if (get_pageblock_migratetype(page) !=
1160 MIGRATE_ISOLATE) {
1161 get_one_page = 1;
1162 break;
1163 }
1164 }
1165 if (!get_one_page)
1166 goto failed;
1167 }
1168
1169 list_del(&page->lru);
1170 pcp->count--;
1171 } else {
1172 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1173 /*
1174 * __GFP_NOFAIL is not to be used in new code.
1175 *
1176 * All __GFP_NOFAIL callers should be fixed so that they
1177 * properly detect and handle allocation failures.
1178 *
1179 * We most definitely don't want callers attempting to
1180 * allocate greater than order-1 page units with
1181 * __GFP_NOFAIL.
1182 */
1183 WARN_ON_ONCE(order > 1);
1184 }
1185 spin_lock_irqsave(&zone->lock, flags);
1186 page = __rmqueue(zone, order, migratetype);
1187 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1188 spin_unlock(&zone->lock);
1189 if (!page)
1190 goto failed;
1191 }
1192
1193 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1194 zone_statistics(preferred_zone, zone);
1195 local_irq_restore(flags);
1196 put_cpu();
1197
1198 VM_BUG_ON(bad_range(zone, page));
1199 if (prep_new_page(page, order, gfp_flags))
1200 goto again;
1201 return page;
1202
1203 failed:
1204 local_irq_restore(flags);
1205 put_cpu();
1206 return NULL;
1207 }
1208
1209 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1210 #define ALLOC_WMARK_MIN WMARK_MIN
1211 #define ALLOC_WMARK_LOW WMARK_LOW
1212 #define ALLOC_WMARK_HIGH WMARK_HIGH
1213 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1214
1215 /* Mask to get the watermark bits */
1216 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1217
1218 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1219 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1220 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1221
1222 #ifdef CONFIG_FAIL_PAGE_ALLOC
1223
1224 static struct fail_page_alloc_attr {
1225 struct fault_attr attr;
1226
1227 u32 ignore_gfp_highmem;
1228 u32 ignore_gfp_wait;
1229 u32 min_order;
1230
1231 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1232
1233 struct dentry *ignore_gfp_highmem_file;
1234 struct dentry *ignore_gfp_wait_file;
1235 struct dentry *min_order_file;
1236
1237 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1238
1239 } fail_page_alloc = {
1240 .attr = FAULT_ATTR_INITIALIZER,
1241 .ignore_gfp_wait = 1,
1242 .ignore_gfp_highmem = 1,
1243 .min_order = 1,
1244 };
1245
1246 static int __init setup_fail_page_alloc(char *str)
1247 {
1248 return setup_fault_attr(&fail_page_alloc.attr, str);
1249 }
1250 __setup("fail_page_alloc=", setup_fail_page_alloc);
1251
1252 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1253 {
1254 if (order < fail_page_alloc.min_order)
1255 return 0;
1256 if (gfp_mask & __GFP_NOFAIL)
1257 return 0;
1258 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1259 return 0;
1260 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1261 return 0;
1262
1263 return should_fail(&fail_page_alloc.attr, 1 << order);
1264 }
1265
1266 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1267
1268 static int __init fail_page_alloc_debugfs(void)
1269 {
1270 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1271 struct dentry *dir;
1272 int err;
1273
1274 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1275 "fail_page_alloc");
1276 if (err)
1277 return err;
1278 dir = fail_page_alloc.attr.dentries.dir;
1279
1280 fail_page_alloc.ignore_gfp_wait_file =
1281 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1282 &fail_page_alloc.ignore_gfp_wait);
1283
1284 fail_page_alloc.ignore_gfp_highmem_file =
1285 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1286 &fail_page_alloc.ignore_gfp_highmem);
1287 fail_page_alloc.min_order_file =
1288 debugfs_create_u32("min-order", mode, dir,
1289 &fail_page_alloc.min_order);
1290
1291 if (!fail_page_alloc.ignore_gfp_wait_file ||
1292 !fail_page_alloc.ignore_gfp_highmem_file ||
1293 !fail_page_alloc.min_order_file) {
1294 err = -ENOMEM;
1295 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1296 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1297 debugfs_remove(fail_page_alloc.min_order_file);
1298 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1299 }
1300
1301 return err;
1302 }
1303
1304 late_initcall(fail_page_alloc_debugfs);
1305
1306 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1307
1308 #else /* CONFIG_FAIL_PAGE_ALLOC */
1309
1310 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1311 {
1312 return 0;
1313 }
1314
1315 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1316
1317 /*
1318 * Return 1 if free pages are above 'mark'. This takes into account the order
1319 * of the allocation.
1320 */
1321 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1322 int classzone_idx, int alloc_flags)
1323 {
1324 /* free_pages my go negative - that's OK */
1325 long min = mark;
1326 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1327 int o;
1328
1329 if (alloc_flags & ALLOC_HIGH)
1330 min -= min / 2;
1331 if (alloc_flags & ALLOC_HARDER)
1332 min -= min / 4;
1333
1334 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1335 return 0;
1336 for (o = 0; o < order; o++) {
1337 /* At the next order, this order's pages become unavailable */
1338 free_pages -= z->free_area[o].nr_free << o;
1339
1340 /* Require fewer higher order pages to be free */
1341 min >>= 1;
1342
1343 if (free_pages <= min)
1344 return 0;
1345 }
1346 return 1;
1347 }
1348
1349 #ifdef CONFIG_NUMA
1350 /*
1351 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1352 * skip over zones that are not allowed by the cpuset, or that have
1353 * been recently (in last second) found to be nearly full. See further
1354 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1355 * that have to skip over a lot of full or unallowed zones.
1356 *
1357 * If the zonelist cache is present in the passed in zonelist, then
1358 * returns a pointer to the allowed node mask (either the current
1359 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1360 *
1361 * If the zonelist cache is not available for this zonelist, does
1362 * nothing and returns NULL.
1363 *
1364 * If the fullzones BITMAP in the zonelist cache is stale (more than
1365 * a second since last zap'd) then we zap it out (clear its bits.)
1366 *
1367 * We hold off even calling zlc_setup, until after we've checked the
1368 * first zone in the zonelist, on the theory that most allocations will
1369 * be satisfied from that first zone, so best to examine that zone as
1370 * quickly as we can.
1371 */
1372 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1373 {
1374 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1375 nodemask_t *allowednodes; /* zonelist_cache approximation */
1376
1377 zlc = zonelist->zlcache_ptr;
1378 if (!zlc)
1379 return NULL;
1380
1381 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1382 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1383 zlc->last_full_zap = jiffies;
1384 }
1385
1386 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1387 &cpuset_current_mems_allowed :
1388 &node_states[N_HIGH_MEMORY];
1389 return allowednodes;
1390 }
1391
1392 /*
1393 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1394 * if it is worth looking at further for free memory:
1395 * 1) Check that the zone isn't thought to be full (doesn't have its
1396 * bit set in the zonelist_cache fullzones BITMAP).
1397 * 2) Check that the zones node (obtained from the zonelist_cache
1398 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1399 * Return true (non-zero) if zone is worth looking at further, or
1400 * else return false (zero) if it is not.
1401 *
1402 * This check -ignores- the distinction between various watermarks,
1403 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1404 * found to be full for any variation of these watermarks, it will
1405 * be considered full for up to one second by all requests, unless
1406 * we are so low on memory on all allowed nodes that we are forced
1407 * into the second scan of the zonelist.
1408 *
1409 * In the second scan we ignore this zonelist cache and exactly
1410 * apply the watermarks to all zones, even it is slower to do so.
1411 * We are low on memory in the second scan, and should leave no stone
1412 * unturned looking for a free page.
1413 */
1414 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1415 nodemask_t *allowednodes)
1416 {
1417 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1418 int i; /* index of *z in zonelist zones */
1419 int n; /* node that zone *z is on */
1420
1421 zlc = zonelist->zlcache_ptr;
1422 if (!zlc)
1423 return 1;
1424
1425 i = z - zonelist->_zonerefs;
1426 n = zlc->z_to_n[i];
1427
1428 /* This zone is worth trying if it is allowed but not full */
1429 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1430 }
1431
1432 /*
1433 * Given 'z' scanning a zonelist, set the corresponding bit in
1434 * zlc->fullzones, so that subsequent attempts to allocate a page
1435 * from that zone don't waste time re-examining it.
1436 */
1437 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1438 {
1439 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1440 int i; /* index of *z in zonelist zones */
1441
1442 zlc = zonelist->zlcache_ptr;
1443 if (!zlc)
1444 return;
1445
1446 i = z - zonelist->_zonerefs;
1447
1448 set_bit(i, zlc->fullzones);
1449 }
1450
1451 #else /* CONFIG_NUMA */
1452
1453 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1454 {
1455 return NULL;
1456 }
1457
1458 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1459 nodemask_t *allowednodes)
1460 {
1461 return 1;
1462 }
1463
1464 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1465 {
1466 }
1467 #endif /* CONFIG_NUMA */
1468
1469 /*
1470 * get_page_from_freelist goes through the zonelist trying to allocate
1471 * a page.
1472 */
1473 static struct page *
1474 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1475 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1476 struct zone *preferred_zone, int migratetype)
1477 {
1478 struct zoneref *z;
1479 struct page *page = NULL;
1480 int classzone_idx;
1481 struct zone *zone;
1482 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1483 int zlc_active = 0; /* set if using zonelist_cache */
1484 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1485
1486 classzone_idx = zone_idx(preferred_zone);
1487 zonelist_scan:
1488 /*
1489 * Scan zonelist, looking for a zone with enough free.
1490 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1491 */
1492 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1493 high_zoneidx, nodemask) {
1494 if (NUMA_BUILD && zlc_active &&
1495 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1496 continue;
1497 if ((alloc_flags & ALLOC_CPUSET) &&
1498 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1499 goto try_next_zone;
1500
1501 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1502 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1503 unsigned long mark;
1504 int ret;
1505
1506 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1507 if (zone_watermark_ok(zone, order, mark,
1508 classzone_idx, alloc_flags))
1509 goto try_this_zone;
1510
1511 if (zone_reclaim_mode == 0)
1512 goto this_zone_full;
1513
1514 ret = zone_reclaim(zone, gfp_mask, order);
1515 switch (ret) {
1516 case ZONE_RECLAIM_NOSCAN:
1517 /* did not scan */
1518 goto try_next_zone;
1519 case ZONE_RECLAIM_FULL:
1520 /* scanned but unreclaimable */
1521 goto this_zone_full;
1522 default:
1523 /* did we reclaim enough */
1524 if (!zone_watermark_ok(zone, order, mark,
1525 classzone_idx, alloc_flags))
1526 goto this_zone_full;
1527 }
1528 }
1529
1530 try_this_zone:
1531 page = buffered_rmqueue(preferred_zone, zone, order,
1532 gfp_mask, migratetype);
1533 if (page)
1534 break;
1535 this_zone_full:
1536 if (NUMA_BUILD)
1537 zlc_mark_zone_full(zonelist, z);
1538 try_next_zone:
1539 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1540 /*
1541 * we do zlc_setup after the first zone is tried but only
1542 * if there are multiple nodes make it worthwhile
1543 */
1544 allowednodes = zlc_setup(zonelist, alloc_flags);
1545 zlc_active = 1;
1546 did_zlc_setup = 1;
1547 }
1548 }
1549
1550 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1551 /* Disable zlc cache for second zonelist scan */
1552 zlc_active = 0;
1553 goto zonelist_scan;
1554 }
1555 return page;
1556 }
1557
1558 static inline int
1559 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1560 unsigned long pages_reclaimed)
1561 {
1562 /* Do not loop if specifically requested */
1563 if (gfp_mask & __GFP_NORETRY)
1564 return 0;
1565
1566 /*
1567 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1568 * means __GFP_NOFAIL, but that may not be true in other
1569 * implementations.
1570 */
1571 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1572 return 1;
1573
1574 /*
1575 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1576 * specified, then we retry until we no longer reclaim any pages
1577 * (above), or we've reclaimed an order of pages at least as
1578 * large as the allocation's order. In both cases, if the
1579 * allocation still fails, we stop retrying.
1580 */
1581 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1582 return 1;
1583
1584 /*
1585 * Don't let big-order allocations loop unless the caller
1586 * explicitly requests that.
1587 */
1588 if (gfp_mask & __GFP_NOFAIL)
1589 return 1;
1590
1591 return 0;
1592 }
1593
1594 static inline struct page *
1595 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1596 struct zonelist *zonelist, enum zone_type high_zoneidx,
1597 nodemask_t *nodemask, struct zone *preferred_zone,
1598 int migratetype)
1599 {
1600 struct page *page;
1601
1602 /* Acquire the OOM killer lock for the zones in zonelist */
1603 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1604 schedule_timeout_uninterruptible(1);
1605 return NULL;
1606 }
1607
1608 /*
1609 * Go through the zonelist yet one more time, keep very high watermark
1610 * here, this is only to catch a parallel oom killing, we must fail if
1611 * we're still under heavy pressure.
1612 */
1613 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1614 order, zonelist, high_zoneidx,
1615 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1616 preferred_zone, migratetype);
1617 if (page)
1618 goto out;
1619
1620 /* The OOM killer will not help higher order allocs */
1621 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1622 goto out;
1623
1624 /* Exhausted what can be done so it's blamo time */
1625 out_of_memory(zonelist, gfp_mask, order);
1626
1627 out:
1628 clear_zonelist_oom(zonelist, gfp_mask);
1629 return page;
1630 }
1631
1632 /* The really slow allocator path where we enter direct reclaim */
1633 static inline struct page *
1634 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1635 struct zonelist *zonelist, enum zone_type high_zoneidx,
1636 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1637 int migratetype, unsigned long *did_some_progress)
1638 {
1639 struct page *page = NULL;
1640 struct reclaim_state reclaim_state;
1641 struct task_struct *p = current;
1642
1643 cond_resched();
1644
1645 /* We now go into synchronous reclaim */
1646 cpuset_memory_pressure_bump();
1647 p->flags |= PF_MEMALLOC;
1648 lockdep_set_current_reclaim_state(gfp_mask);
1649 reclaim_state.reclaimed_slab = 0;
1650 p->reclaim_state = &reclaim_state;
1651
1652 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1653
1654 p->reclaim_state = NULL;
1655 lockdep_clear_current_reclaim_state();
1656 p->flags &= ~PF_MEMALLOC;
1657
1658 cond_resched();
1659
1660 if (order != 0)
1661 drain_all_pages();
1662
1663 if (likely(*did_some_progress))
1664 page = get_page_from_freelist(gfp_mask, nodemask, order,
1665 zonelist, high_zoneidx,
1666 alloc_flags, preferred_zone,
1667 migratetype);
1668 return page;
1669 }
1670
1671 /*
1672 * This is called in the allocator slow-path if the allocation request is of
1673 * sufficient urgency to ignore watermarks and take other desperate measures
1674 */
1675 static inline struct page *
1676 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1677 struct zonelist *zonelist, enum zone_type high_zoneidx,
1678 nodemask_t *nodemask, struct zone *preferred_zone,
1679 int migratetype)
1680 {
1681 struct page *page;
1682
1683 do {
1684 page = get_page_from_freelist(gfp_mask, nodemask, order,
1685 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1686 preferred_zone, migratetype);
1687
1688 if (!page && gfp_mask & __GFP_NOFAIL)
1689 congestion_wait(BLK_RW_ASYNC, HZ/50);
1690 } while (!page && (gfp_mask & __GFP_NOFAIL));
1691
1692 return page;
1693 }
1694
1695 static inline
1696 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1697 enum zone_type high_zoneidx)
1698 {
1699 struct zoneref *z;
1700 struct zone *zone;
1701
1702 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1703 wakeup_kswapd(zone, order);
1704 }
1705
1706 static inline int
1707 gfp_to_alloc_flags(gfp_t gfp_mask)
1708 {
1709 struct task_struct *p = current;
1710 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1711 const gfp_t wait = gfp_mask & __GFP_WAIT;
1712
1713 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1714 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1715
1716 /*
1717 * The caller may dip into page reserves a bit more if the caller
1718 * cannot run direct reclaim, or if the caller has realtime scheduling
1719 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1720 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1721 */
1722 alloc_flags |= (gfp_mask & __GFP_HIGH);
1723
1724 if (!wait) {
1725 alloc_flags |= ALLOC_HARDER;
1726 /*
1727 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1728 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1729 */
1730 alloc_flags &= ~ALLOC_CPUSET;
1731 } else if (unlikely(rt_task(p)))
1732 alloc_flags |= ALLOC_HARDER;
1733
1734 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1735 if (!in_interrupt() &&
1736 ((p->flags & PF_MEMALLOC) ||
1737 unlikely(test_thread_flag(TIF_MEMDIE))))
1738 alloc_flags |= ALLOC_NO_WATERMARKS;
1739 }
1740
1741 return alloc_flags;
1742 }
1743
1744 static inline struct page *
1745 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1746 struct zonelist *zonelist, enum zone_type high_zoneidx,
1747 nodemask_t *nodemask, struct zone *preferred_zone,
1748 int migratetype)
1749 {
1750 const gfp_t wait = gfp_mask & __GFP_WAIT;
1751 struct page *page = NULL;
1752 int alloc_flags;
1753 unsigned long pages_reclaimed = 0;
1754 unsigned long did_some_progress;
1755 struct task_struct *p = current;
1756
1757 /*
1758 * In the slowpath, we sanity check order to avoid ever trying to
1759 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1760 * be using allocators in order of preference for an area that is
1761 * too large.
1762 */
1763 if (order >= MAX_ORDER) {
1764 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1765 return NULL;
1766 }
1767
1768 /*
1769 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1770 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1771 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1772 * using a larger set of nodes after it has established that the
1773 * allowed per node queues are empty and that nodes are
1774 * over allocated.
1775 */
1776 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1777 goto nopage;
1778
1779 wake_all_kswapd(order, zonelist, high_zoneidx);
1780
1781 restart:
1782 /*
1783 * OK, we're below the kswapd watermark and have kicked background
1784 * reclaim. Now things get more complex, so set up alloc_flags according
1785 * to how we want to proceed.
1786 */
1787 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1788
1789 /* This is the last chance, in general, before the goto nopage. */
1790 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1791 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1792 preferred_zone, migratetype);
1793 if (page)
1794 goto got_pg;
1795
1796 rebalance:
1797 /* Allocate without watermarks if the context allows */
1798 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1799 page = __alloc_pages_high_priority(gfp_mask, order,
1800 zonelist, high_zoneidx, nodemask,
1801 preferred_zone, migratetype);
1802 if (page)
1803 goto got_pg;
1804 }
1805
1806 /* Atomic allocations - we can't balance anything */
1807 if (!wait)
1808 goto nopage;
1809
1810 /* Avoid recursion of direct reclaim */
1811 if (p->flags & PF_MEMALLOC)
1812 goto nopage;
1813
1814 /* Avoid allocations with no watermarks from looping endlessly */
1815 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1816 goto nopage;
1817
1818 /* Try direct reclaim and then allocating */
1819 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1820 zonelist, high_zoneidx,
1821 nodemask,
1822 alloc_flags, preferred_zone,
1823 migratetype, &did_some_progress);
1824 if (page)
1825 goto got_pg;
1826
1827 /*
1828 * If we failed to make any progress reclaiming, then we are
1829 * running out of options and have to consider going OOM
1830 */
1831 if (!did_some_progress) {
1832 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1833 if (oom_killer_disabled)
1834 goto nopage;
1835 page = __alloc_pages_may_oom(gfp_mask, order,
1836 zonelist, high_zoneidx,
1837 nodemask, preferred_zone,
1838 migratetype);
1839 if (page)
1840 goto got_pg;
1841
1842 /*
1843 * The OOM killer does not trigger for high-order
1844 * ~__GFP_NOFAIL allocations so if no progress is being
1845 * made, there are no other options and retrying is
1846 * unlikely to help.
1847 */
1848 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1849 !(gfp_mask & __GFP_NOFAIL))
1850 goto nopage;
1851
1852 goto restart;
1853 }
1854 }
1855
1856 /* Check if we should retry the allocation */
1857 pages_reclaimed += did_some_progress;
1858 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1859 /* Wait for some write requests to complete then retry */
1860 congestion_wait(BLK_RW_ASYNC, HZ/50);
1861 goto rebalance;
1862 }
1863
1864 nopage:
1865 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1866 printk(KERN_WARNING "%s: page allocation failure."
1867 " order:%d, mode:0x%x\n",
1868 p->comm, order, gfp_mask);
1869 dump_stack();
1870 show_mem();
1871 }
1872 return page;
1873 got_pg:
1874 if (kmemcheck_enabled)
1875 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1876 return page;
1877
1878 }
1879
1880 /*
1881 * This is the 'heart' of the zoned buddy allocator.
1882 */
1883 struct page *
1884 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1885 struct zonelist *zonelist, nodemask_t *nodemask)
1886 {
1887 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1888 struct zone *preferred_zone;
1889 struct page *page;
1890 int migratetype = allocflags_to_migratetype(gfp_mask);
1891
1892 gfp_mask &= gfp_allowed_mask;
1893
1894 lockdep_trace_alloc(gfp_mask);
1895
1896 might_sleep_if(gfp_mask & __GFP_WAIT);
1897
1898 if (should_fail_alloc_page(gfp_mask, order))
1899 return NULL;
1900
1901 /*
1902 * Check the zones suitable for the gfp_mask contain at least one
1903 * valid zone. It's possible to have an empty zonelist as a result
1904 * of GFP_THISNODE and a memoryless node
1905 */
1906 if (unlikely(!zonelist->_zonerefs->zone))
1907 return NULL;
1908
1909 /* The preferred zone is used for statistics later */
1910 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1911 if (!preferred_zone)
1912 return NULL;
1913
1914 /* First allocation attempt */
1915 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1916 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1917 preferred_zone, migratetype);
1918 if (unlikely(!page))
1919 page = __alloc_pages_slowpath(gfp_mask, order,
1920 zonelist, high_zoneidx, nodemask,
1921 preferred_zone, migratetype);
1922
1923 return page;
1924 }
1925 EXPORT_SYMBOL(__alloc_pages_nodemask);
1926
1927 /*
1928 * Common helper functions.
1929 */
1930 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1931 {
1932 struct page *page;
1933
1934 /*
1935 * __get_free_pages() returns a 32-bit address, which cannot represent
1936 * a highmem page
1937 */
1938 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1939
1940 page = alloc_pages(gfp_mask, order);
1941 if (!page)
1942 return 0;
1943 return (unsigned long) page_address(page);
1944 }
1945 EXPORT_SYMBOL(__get_free_pages);
1946
1947 unsigned long get_zeroed_page(gfp_t gfp_mask)
1948 {
1949 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1950 }
1951 EXPORT_SYMBOL(get_zeroed_page);
1952
1953 void __pagevec_free(struct pagevec *pvec)
1954 {
1955 int i = pagevec_count(pvec);
1956
1957 while (--i >= 0)
1958 free_hot_cold_page(pvec->pages[i], pvec->cold);
1959 }
1960
1961 void __free_pages(struct page *page, unsigned int order)
1962 {
1963 if (put_page_testzero(page)) {
1964 if (order == 0)
1965 free_hot_page(page);
1966 else
1967 __free_pages_ok(page, order);
1968 }
1969 }
1970
1971 EXPORT_SYMBOL(__free_pages);
1972
1973 void free_pages(unsigned long addr, unsigned int order)
1974 {
1975 if (addr != 0) {
1976 VM_BUG_ON(!virt_addr_valid((void *)addr));
1977 __free_pages(virt_to_page((void *)addr), order);
1978 }
1979 }
1980
1981 EXPORT_SYMBOL(free_pages);
1982
1983 /**
1984 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1985 * @size: the number of bytes to allocate
1986 * @gfp_mask: GFP flags for the allocation
1987 *
1988 * This function is similar to alloc_pages(), except that it allocates the
1989 * minimum number of pages to satisfy the request. alloc_pages() can only
1990 * allocate memory in power-of-two pages.
1991 *
1992 * This function is also limited by MAX_ORDER.
1993 *
1994 * Memory allocated by this function must be released by free_pages_exact().
1995 */
1996 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1997 {
1998 unsigned int order = get_order(size);
1999 unsigned long addr;
2000
2001 addr = __get_free_pages(gfp_mask, order);
2002 if (addr) {
2003 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2004 unsigned long used = addr + PAGE_ALIGN(size);
2005
2006 split_page(virt_to_page((void *)addr), order);
2007 while (used < alloc_end) {
2008 free_page(used);
2009 used += PAGE_SIZE;
2010 }
2011 }
2012
2013 return (void *)addr;
2014 }
2015 EXPORT_SYMBOL(alloc_pages_exact);
2016
2017 /**
2018 * free_pages_exact - release memory allocated via alloc_pages_exact()
2019 * @virt: the value returned by alloc_pages_exact.
2020 * @size: size of allocation, same value as passed to alloc_pages_exact().
2021 *
2022 * Release the memory allocated by a previous call to alloc_pages_exact.
2023 */
2024 void free_pages_exact(void *virt, size_t size)
2025 {
2026 unsigned long addr = (unsigned long)virt;
2027 unsigned long end = addr + PAGE_ALIGN(size);
2028
2029 while (addr < end) {
2030 free_page(addr);
2031 addr += PAGE_SIZE;
2032 }
2033 }
2034 EXPORT_SYMBOL(free_pages_exact);
2035
2036 static unsigned int nr_free_zone_pages(int offset)
2037 {
2038 struct zoneref *z;
2039 struct zone *zone;
2040
2041 /* Just pick one node, since fallback list is circular */
2042 unsigned int sum = 0;
2043
2044 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2045
2046 for_each_zone_zonelist(zone, z, zonelist, offset) {
2047 unsigned long size = zone->present_pages;
2048 unsigned long high = high_wmark_pages(zone);
2049 if (size > high)
2050 sum += size - high;
2051 }
2052
2053 return sum;
2054 }
2055
2056 /*
2057 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2058 */
2059 unsigned int nr_free_buffer_pages(void)
2060 {
2061 return nr_free_zone_pages(gfp_zone(GFP_USER));
2062 }
2063 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2064
2065 /*
2066 * Amount of free RAM allocatable within all zones
2067 */
2068 unsigned int nr_free_pagecache_pages(void)
2069 {
2070 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2071 }
2072
2073 static inline void show_node(struct zone *zone)
2074 {
2075 if (NUMA_BUILD)
2076 printk("Node %d ", zone_to_nid(zone));
2077 }
2078
2079 void si_meminfo(struct sysinfo *val)
2080 {
2081 val->totalram = totalram_pages;
2082 val->sharedram = 0;
2083 val->freeram = global_page_state(NR_FREE_PAGES);
2084 val->bufferram = nr_blockdev_pages();
2085 val->totalhigh = totalhigh_pages;
2086 val->freehigh = nr_free_highpages();
2087 val->mem_unit = PAGE_SIZE;
2088 }
2089
2090 EXPORT_SYMBOL(si_meminfo);
2091
2092 #ifdef CONFIG_NUMA
2093 void si_meminfo_node(struct sysinfo *val, int nid)
2094 {
2095 pg_data_t *pgdat = NODE_DATA(nid);
2096
2097 val->totalram = pgdat->node_present_pages;
2098 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2099 #ifdef CONFIG_HIGHMEM
2100 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2101 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2102 NR_FREE_PAGES);
2103 #else
2104 val->totalhigh = 0;
2105 val->freehigh = 0;
2106 #endif
2107 val->mem_unit = PAGE_SIZE;
2108 }
2109 #endif
2110
2111 #define K(x) ((x) << (PAGE_SHIFT-10))
2112
2113 /*
2114 * Show free area list (used inside shift_scroll-lock stuff)
2115 * We also calculate the percentage fragmentation. We do this by counting the
2116 * memory on each free list with the exception of the first item on the list.
2117 */
2118 void show_free_areas(void)
2119 {
2120 int cpu;
2121 struct zone *zone;
2122
2123 for_each_populated_zone(zone) {
2124 show_node(zone);
2125 printk("%s per-cpu:\n", zone->name);
2126
2127 for_each_online_cpu(cpu) {
2128 struct per_cpu_pageset *pageset;
2129
2130 pageset = zone_pcp(zone, cpu);
2131
2132 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2133 cpu, pageset->pcp.high,
2134 pageset->pcp.batch, pageset->pcp.count);
2135 }
2136 }
2137
2138 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2139 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2140 " unevictable:%lu"
2141 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2142 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2143 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2144 global_page_state(NR_ACTIVE_ANON),
2145 global_page_state(NR_INACTIVE_ANON),
2146 global_page_state(NR_ISOLATED_ANON),
2147 global_page_state(NR_ACTIVE_FILE),
2148 global_page_state(NR_INACTIVE_FILE),
2149 global_page_state(NR_ISOLATED_FILE),
2150 global_page_state(NR_UNEVICTABLE),
2151 global_page_state(NR_FILE_DIRTY),
2152 global_page_state(NR_WRITEBACK),
2153 global_page_state(NR_UNSTABLE_NFS),
2154 nr_blockdev_pages(),
2155 global_page_state(NR_FREE_PAGES),
2156 global_page_state(NR_SLAB_RECLAIMABLE),
2157 global_page_state(NR_SLAB_UNRECLAIMABLE),
2158 global_page_state(NR_FILE_MAPPED),
2159 global_page_state(NR_SHMEM),
2160 global_page_state(NR_PAGETABLE),
2161 global_page_state(NR_BOUNCE));
2162
2163 for_each_populated_zone(zone) {
2164 int i;
2165
2166 show_node(zone);
2167 printk("%s"
2168 " free:%lukB"
2169 " min:%lukB"
2170 " low:%lukB"
2171 " high:%lukB"
2172 " active_anon:%lukB"
2173 " inactive_anon:%lukB"
2174 " active_file:%lukB"
2175 " inactive_file:%lukB"
2176 " unevictable:%lukB"
2177 " isolated(anon):%lukB"
2178 " isolated(file):%lukB"
2179 " present:%lukB"
2180 " mlocked:%lukB"
2181 " dirty:%lukB"
2182 " writeback:%lukB"
2183 " mapped:%lukB"
2184 " shmem:%lukB"
2185 " slab_reclaimable:%lukB"
2186 " slab_unreclaimable:%lukB"
2187 " kernel_stack:%lukB"
2188 " pagetables:%lukB"
2189 " unstable:%lukB"
2190 " bounce:%lukB"
2191 " writeback_tmp:%lukB"
2192 " pages_scanned:%lu"
2193 " all_unreclaimable? %s"
2194 "\n",
2195 zone->name,
2196 K(zone_page_state(zone, NR_FREE_PAGES)),
2197 K(min_wmark_pages(zone)),
2198 K(low_wmark_pages(zone)),
2199 K(high_wmark_pages(zone)),
2200 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2201 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2202 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2203 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2204 K(zone_page_state(zone, NR_UNEVICTABLE)),
2205 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2206 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2207 K(zone->present_pages),
2208 K(zone_page_state(zone, NR_MLOCK)),
2209 K(zone_page_state(zone, NR_FILE_DIRTY)),
2210 K(zone_page_state(zone, NR_WRITEBACK)),
2211 K(zone_page_state(zone, NR_FILE_MAPPED)),
2212 K(zone_page_state(zone, NR_SHMEM)),
2213 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2214 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2215 zone_page_state(zone, NR_KERNEL_STACK) *
2216 THREAD_SIZE / 1024,
2217 K(zone_page_state(zone, NR_PAGETABLE)),
2218 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2219 K(zone_page_state(zone, NR_BOUNCE)),
2220 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2221 zone->pages_scanned,
2222 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2223 );
2224 printk("lowmem_reserve[]:");
2225 for (i = 0; i < MAX_NR_ZONES; i++)
2226 printk(" %lu", zone->lowmem_reserve[i]);
2227 printk("\n");
2228 }
2229
2230 for_each_populated_zone(zone) {
2231 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2232
2233 show_node(zone);
2234 printk("%s: ", zone->name);
2235
2236 spin_lock_irqsave(&zone->lock, flags);
2237 for (order = 0; order < MAX_ORDER; order++) {
2238 nr[order] = zone->free_area[order].nr_free;
2239 total += nr[order] << order;
2240 }
2241 spin_unlock_irqrestore(&zone->lock, flags);
2242 for (order = 0; order < MAX_ORDER; order++)
2243 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2244 printk("= %lukB\n", K(total));
2245 }
2246
2247 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2248
2249 show_swap_cache_info();
2250 }
2251
2252 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2253 {
2254 zoneref->zone = zone;
2255 zoneref->zone_idx = zone_idx(zone);
2256 }
2257
2258 /*
2259 * Builds allocation fallback zone lists.
2260 *
2261 * Add all populated zones of a node to the zonelist.
2262 */
2263 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2264 int nr_zones, enum zone_type zone_type)
2265 {
2266 struct zone *zone;
2267
2268 BUG_ON(zone_type >= MAX_NR_ZONES);
2269 zone_type++;
2270
2271 do {
2272 zone_type--;
2273 zone = pgdat->node_zones + zone_type;
2274 if (populated_zone(zone)) {
2275 zoneref_set_zone(zone,
2276 &zonelist->_zonerefs[nr_zones++]);
2277 check_highest_zone(zone_type);
2278 }
2279
2280 } while (zone_type);
2281 return nr_zones;
2282 }
2283
2284
2285 /*
2286 * zonelist_order:
2287 * 0 = automatic detection of better ordering.
2288 * 1 = order by ([node] distance, -zonetype)
2289 * 2 = order by (-zonetype, [node] distance)
2290 *
2291 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2292 * the same zonelist. So only NUMA can configure this param.
2293 */
2294 #define ZONELIST_ORDER_DEFAULT 0
2295 #define ZONELIST_ORDER_NODE 1
2296 #define ZONELIST_ORDER_ZONE 2
2297
2298 /* zonelist order in the kernel.
2299 * set_zonelist_order() will set this to NODE or ZONE.
2300 */
2301 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2302 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2303
2304
2305 #ifdef CONFIG_NUMA
2306 /* The value user specified ....changed by config */
2307 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2308 /* string for sysctl */
2309 #define NUMA_ZONELIST_ORDER_LEN 16
2310 char numa_zonelist_order[16] = "default";
2311
2312 /*
2313 * interface for configure zonelist ordering.
2314 * command line option "numa_zonelist_order"
2315 * = "[dD]efault - default, automatic configuration.
2316 * = "[nN]ode - order by node locality, then by zone within node
2317 * = "[zZ]one - order by zone, then by locality within zone
2318 */
2319
2320 static int __parse_numa_zonelist_order(char *s)
2321 {
2322 if (*s == 'd' || *s == 'D') {
2323 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2324 } else if (*s == 'n' || *s == 'N') {
2325 user_zonelist_order = ZONELIST_ORDER_NODE;
2326 } else if (*s == 'z' || *s == 'Z') {
2327 user_zonelist_order = ZONELIST_ORDER_ZONE;
2328 } else {
2329 printk(KERN_WARNING
2330 "Ignoring invalid numa_zonelist_order value: "
2331 "%s\n", s);
2332 return -EINVAL;
2333 }
2334 return 0;
2335 }
2336
2337 static __init int setup_numa_zonelist_order(char *s)
2338 {
2339 if (s)
2340 return __parse_numa_zonelist_order(s);
2341 return 0;
2342 }
2343 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2344
2345 /*
2346 * sysctl handler for numa_zonelist_order
2347 */
2348 int numa_zonelist_order_handler(ctl_table *table, int write,
2349 struct file *file, void __user *buffer, size_t *length,
2350 loff_t *ppos)
2351 {
2352 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2353 int ret;
2354
2355 if (write)
2356 strncpy(saved_string, (char*)table->data,
2357 NUMA_ZONELIST_ORDER_LEN);
2358 ret = proc_dostring(table, write, file, buffer, length, ppos);
2359 if (ret)
2360 return ret;
2361 if (write) {
2362 int oldval = user_zonelist_order;
2363 if (__parse_numa_zonelist_order((char*)table->data)) {
2364 /*
2365 * bogus value. restore saved string
2366 */
2367 strncpy((char*)table->data, saved_string,
2368 NUMA_ZONELIST_ORDER_LEN);
2369 user_zonelist_order = oldval;
2370 } else if (oldval != user_zonelist_order)
2371 build_all_zonelists();
2372 }
2373 return 0;
2374 }
2375
2376
2377 #define MAX_NODE_LOAD (nr_online_nodes)
2378 static int node_load[MAX_NUMNODES];
2379
2380 /**
2381 * find_next_best_node - find the next node that should appear in a given node's fallback list
2382 * @node: node whose fallback list we're appending
2383 * @used_node_mask: nodemask_t of already used nodes
2384 *
2385 * We use a number of factors to determine which is the next node that should
2386 * appear on a given node's fallback list. The node should not have appeared
2387 * already in @node's fallback list, and it should be the next closest node
2388 * according to the distance array (which contains arbitrary distance values
2389 * from each node to each node in the system), and should also prefer nodes
2390 * with no CPUs, since presumably they'll have very little allocation pressure
2391 * on them otherwise.
2392 * It returns -1 if no node is found.
2393 */
2394 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2395 {
2396 int n, val;
2397 int min_val = INT_MAX;
2398 int best_node = -1;
2399 const struct cpumask *tmp = cpumask_of_node(0);
2400
2401 /* Use the local node if we haven't already */
2402 if (!node_isset(node, *used_node_mask)) {
2403 node_set(node, *used_node_mask);
2404 return node;
2405 }
2406
2407 for_each_node_state(n, N_HIGH_MEMORY) {
2408
2409 /* Don't want a node to appear more than once */
2410 if (node_isset(n, *used_node_mask))
2411 continue;
2412
2413 /* Use the distance array to find the distance */
2414 val = node_distance(node, n);
2415
2416 /* Penalize nodes under us ("prefer the next node") */
2417 val += (n < node);
2418
2419 /* Give preference to headless and unused nodes */
2420 tmp = cpumask_of_node(n);
2421 if (!cpumask_empty(tmp))
2422 val += PENALTY_FOR_NODE_WITH_CPUS;
2423
2424 /* Slight preference for less loaded node */
2425 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2426 val += node_load[n];
2427
2428 if (val < min_val) {
2429 min_val = val;
2430 best_node = n;
2431 }
2432 }
2433
2434 if (best_node >= 0)
2435 node_set(best_node, *used_node_mask);
2436
2437 return best_node;
2438 }
2439
2440
2441 /*
2442 * Build zonelists ordered by node and zones within node.
2443 * This results in maximum locality--normal zone overflows into local
2444 * DMA zone, if any--but risks exhausting DMA zone.
2445 */
2446 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2447 {
2448 int j;
2449 struct zonelist *zonelist;
2450
2451 zonelist = &pgdat->node_zonelists[0];
2452 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2453 ;
2454 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2455 MAX_NR_ZONES - 1);
2456 zonelist->_zonerefs[j].zone = NULL;
2457 zonelist->_zonerefs[j].zone_idx = 0;
2458 }
2459
2460 /*
2461 * Build gfp_thisnode zonelists
2462 */
2463 static void build_thisnode_zonelists(pg_data_t *pgdat)
2464 {
2465 int j;
2466 struct zonelist *zonelist;
2467
2468 zonelist = &pgdat->node_zonelists[1];
2469 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2470 zonelist->_zonerefs[j].zone = NULL;
2471 zonelist->_zonerefs[j].zone_idx = 0;
2472 }
2473
2474 /*
2475 * Build zonelists ordered by zone and nodes within zones.
2476 * This results in conserving DMA zone[s] until all Normal memory is
2477 * exhausted, but results in overflowing to remote node while memory
2478 * may still exist in local DMA zone.
2479 */
2480 static int node_order[MAX_NUMNODES];
2481
2482 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2483 {
2484 int pos, j, node;
2485 int zone_type; /* needs to be signed */
2486 struct zone *z;
2487 struct zonelist *zonelist;
2488
2489 zonelist = &pgdat->node_zonelists[0];
2490 pos = 0;
2491 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2492 for (j = 0; j < nr_nodes; j++) {
2493 node = node_order[j];
2494 z = &NODE_DATA(node)->node_zones[zone_type];
2495 if (populated_zone(z)) {
2496 zoneref_set_zone(z,
2497 &zonelist->_zonerefs[pos++]);
2498 check_highest_zone(zone_type);
2499 }
2500 }
2501 }
2502 zonelist->_zonerefs[pos].zone = NULL;
2503 zonelist->_zonerefs[pos].zone_idx = 0;
2504 }
2505
2506 static int default_zonelist_order(void)
2507 {
2508 int nid, zone_type;
2509 unsigned long low_kmem_size,total_size;
2510 struct zone *z;
2511 int average_size;
2512 /*
2513 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2514 * If they are really small and used heavily, the system can fall
2515 * into OOM very easily.
2516 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2517 */
2518 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2519 low_kmem_size = 0;
2520 total_size = 0;
2521 for_each_online_node(nid) {
2522 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2523 z = &NODE_DATA(nid)->node_zones[zone_type];
2524 if (populated_zone(z)) {
2525 if (zone_type < ZONE_NORMAL)
2526 low_kmem_size += z->present_pages;
2527 total_size += z->present_pages;
2528 }
2529 }
2530 }
2531 if (!low_kmem_size || /* there are no DMA area. */
2532 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2533 return ZONELIST_ORDER_NODE;
2534 /*
2535 * look into each node's config.
2536 * If there is a node whose DMA/DMA32 memory is very big area on
2537 * local memory, NODE_ORDER may be suitable.
2538 */
2539 average_size = total_size /
2540 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2541 for_each_online_node(nid) {
2542 low_kmem_size = 0;
2543 total_size = 0;
2544 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2545 z = &NODE_DATA(nid)->node_zones[zone_type];
2546 if (populated_zone(z)) {
2547 if (zone_type < ZONE_NORMAL)
2548 low_kmem_size += z->present_pages;
2549 total_size += z->present_pages;
2550 }
2551 }
2552 if (low_kmem_size &&
2553 total_size > average_size && /* ignore small node */
2554 low_kmem_size > total_size * 70/100)
2555 return ZONELIST_ORDER_NODE;
2556 }
2557 return ZONELIST_ORDER_ZONE;
2558 }
2559
2560 static void set_zonelist_order(void)
2561 {
2562 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2563 current_zonelist_order = default_zonelist_order();
2564 else
2565 current_zonelist_order = user_zonelist_order;
2566 }
2567
2568 static void build_zonelists(pg_data_t *pgdat)
2569 {
2570 int j, node, load;
2571 enum zone_type i;
2572 nodemask_t used_mask;
2573 int local_node, prev_node;
2574 struct zonelist *zonelist;
2575 int order = current_zonelist_order;
2576
2577 /* initialize zonelists */
2578 for (i = 0; i < MAX_ZONELISTS; i++) {
2579 zonelist = pgdat->node_zonelists + i;
2580 zonelist->_zonerefs[0].zone = NULL;
2581 zonelist->_zonerefs[0].zone_idx = 0;
2582 }
2583
2584 /* NUMA-aware ordering of nodes */
2585 local_node = pgdat->node_id;
2586 load = nr_online_nodes;
2587 prev_node = local_node;
2588 nodes_clear(used_mask);
2589
2590 memset(node_order, 0, sizeof(node_order));
2591 j = 0;
2592
2593 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2594 int distance = node_distance(local_node, node);
2595
2596 /*
2597 * If another node is sufficiently far away then it is better
2598 * to reclaim pages in a zone before going off node.
2599 */
2600 if (distance > RECLAIM_DISTANCE)
2601 zone_reclaim_mode = 1;
2602
2603 /*
2604 * We don't want to pressure a particular node.
2605 * So adding penalty to the first node in same
2606 * distance group to make it round-robin.
2607 */
2608 if (distance != node_distance(local_node, prev_node))
2609 node_load[node] = load;
2610
2611 prev_node = node;
2612 load--;
2613 if (order == ZONELIST_ORDER_NODE)
2614 build_zonelists_in_node_order(pgdat, node);
2615 else
2616 node_order[j++] = node; /* remember order */
2617 }
2618
2619 if (order == ZONELIST_ORDER_ZONE) {
2620 /* calculate node order -- i.e., DMA last! */
2621 build_zonelists_in_zone_order(pgdat, j);
2622 }
2623
2624 build_thisnode_zonelists(pgdat);
2625 }
2626
2627 /* Construct the zonelist performance cache - see further mmzone.h */
2628 static void build_zonelist_cache(pg_data_t *pgdat)
2629 {
2630 struct zonelist *zonelist;
2631 struct zonelist_cache *zlc;
2632 struct zoneref *z;
2633
2634 zonelist = &pgdat->node_zonelists[0];
2635 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2636 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2637 for (z = zonelist->_zonerefs; z->zone; z++)
2638 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2639 }
2640
2641
2642 #else /* CONFIG_NUMA */
2643
2644 static void set_zonelist_order(void)
2645 {
2646 current_zonelist_order = ZONELIST_ORDER_ZONE;
2647 }
2648
2649 static void build_zonelists(pg_data_t *pgdat)
2650 {
2651 int node, local_node;
2652 enum zone_type j;
2653 struct zonelist *zonelist;
2654
2655 local_node = pgdat->node_id;
2656
2657 zonelist = &pgdat->node_zonelists[0];
2658 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2659
2660 /*
2661 * Now we build the zonelist so that it contains the zones
2662 * of all the other nodes.
2663 * We don't want to pressure a particular node, so when
2664 * building the zones for node N, we make sure that the
2665 * zones coming right after the local ones are those from
2666 * node N+1 (modulo N)
2667 */
2668 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2669 if (!node_online(node))
2670 continue;
2671 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2672 MAX_NR_ZONES - 1);
2673 }
2674 for (node = 0; node < local_node; node++) {
2675 if (!node_online(node))
2676 continue;
2677 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2678 MAX_NR_ZONES - 1);
2679 }
2680
2681 zonelist->_zonerefs[j].zone = NULL;
2682 zonelist->_zonerefs[j].zone_idx = 0;
2683 }
2684
2685 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2686 static void build_zonelist_cache(pg_data_t *pgdat)
2687 {
2688 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2689 }
2690
2691 #endif /* CONFIG_NUMA */
2692
2693 /* return values int ....just for stop_machine() */
2694 static int __build_all_zonelists(void *dummy)
2695 {
2696 int nid;
2697
2698 #ifdef CONFIG_NUMA
2699 memset(node_load, 0, sizeof(node_load));
2700 #endif
2701 for_each_online_node(nid) {
2702 pg_data_t *pgdat = NODE_DATA(nid);
2703
2704 build_zonelists(pgdat);
2705 build_zonelist_cache(pgdat);
2706 }
2707 return 0;
2708 }
2709
2710 void build_all_zonelists(void)
2711 {
2712 set_zonelist_order();
2713
2714 if (system_state == SYSTEM_BOOTING) {
2715 __build_all_zonelists(NULL);
2716 mminit_verify_zonelist();
2717 cpuset_init_current_mems_allowed();
2718 } else {
2719 /* we have to stop all cpus to guarantee there is no user
2720 of zonelist */
2721 stop_machine(__build_all_zonelists, NULL, NULL);
2722 /* cpuset refresh routine should be here */
2723 }
2724 vm_total_pages = nr_free_pagecache_pages();
2725 /*
2726 * Disable grouping by mobility if the number of pages in the
2727 * system is too low to allow the mechanism to work. It would be
2728 * more accurate, but expensive to check per-zone. This check is
2729 * made on memory-hotadd so a system can start with mobility
2730 * disabled and enable it later
2731 */
2732 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2733 page_group_by_mobility_disabled = 1;
2734 else
2735 page_group_by_mobility_disabled = 0;
2736
2737 printk("Built %i zonelists in %s order, mobility grouping %s. "
2738 "Total pages: %ld\n",
2739 nr_online_nodes,
2740 zonelist_order_name[current_zonelist_order],
2741 page_group_by_mobility_disabled ? "off" : "on",
2742 vm_total_pages);
2743 #ifdef CONFIG_NUMA
2744 printk("Policy zone: %s\n", zone_names[policy_zone]);
2745 #endif
2746 }
2747
2748 /*
2749 * Helper functions to size the waitqueue hash table.
2750 * Essentially these want to choose hash table sizes sufficiently
2751 * large so that collisions trying to wait on pages are rare.
2752 * But in fact, the number of active page waitqueues on typical
2753 * systems is ridiculously low, less than 200. So this is even
2754 * conservative, even though it seems large.
2755 *
2756 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2757 * waitqueues, i.e. the size of the waitq table given the number of pages.
2758 */
2759 #define PAGES_PER_WAITQUEUE 256
2760
2761 #ifndef CONFIG_MEMORY_HOTPLUG
2762 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2763 {
2764 unsigned long size = 1;
2765
2766 pages /= PAGES_PER_WAITQUEUE;
2767
2768 while (size < pages)
2769 size <<= 1;
2770
2771 /*
2772 * Once we have dozens or even hundreds of threads sleeping
2773 * on IO we've got bigger problems than wait queue collision.
2774 * Limit the size of the wait table to a reasonable size.
2775 */
2776 size = min(size, 4096UL);
2777
2778 return max(size, 4UL);
2779 }
2780 #else
2781 /*
2782 * A zone's size might be changed by hot-add, so it is not possible to determine
2783 * a suitable size for its wait_table. So we use the maximum size now.
2784 *
2785 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2786 *
2787 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2788 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2789 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2790 *
2791 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2792 * or more by the traditional way. (See above). It equals:
2793 *
2794 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2795 * ia64(16K page size) : = ( 8G + 4M)byte.
2796 * powerpc (64K page size) : = (32G +16M)byte.
2797 */
2798 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2799 {
2800 return 4096UL;
2801 }
2802 #endif
2803
2804 /*
2805 * This is an integer logarithm so that shifts can be used later
2806 * to extract the more random high bits from the multiplicative
2807 * hash function before the remainder is taken.
2808 */
2809 static inline unsigned long wait_table_bits(unsigned long size)
2810 {
2811 return ffz(~size);
2812 }
2813
2814 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2815
2816 /*
2817 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2818 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2819 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2820 * higher will lead to a bigger reserve which will get freed as contiguous
2821 * blocks as reclaim kicks in
2822 */
2823 static void setup_zone_migrate_reserve(struct zone *zone)
2824 {
2825 unsigned long start_pfn, pfn, end_pfn;
2826 struct page *page;
2827 unsigned long reserve, block_migratetype;
2828
2829 /* Get the start pfn, end pfn and the number of blocks to reserve */
2830 start_pfn = zone->zone_start_pfn;
2831 end_pfn = start_pfn + zone->spanned_pages;
2832 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2833 pageblock_order;
2834
2835 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2836 if (!pfn_valid(pfn))
2837 continue;
2838 page = pfn_to_page(pfn);
2839
2840 /* Watch out for overlapping nodes */
2841 if (page_to_nid(page) != zone_to_nid(zone))
2842 continue;
2843
2844 /* Blocks with reserved pages will never free, skip them. */
2845 if (PageReserved(page))
2846 continue;
2847
2848 block_migratetype = get_pageblock_migratetype(page);
2849
2850 /* If this block is reserved, account for it */
2851 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2852 reserve--;
2853 continue;
2854 }
2855
2856 /* Suitable for reserving if this block is movable */
2857 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2858 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2859 move_freepages_block(zone, page, MIGRATE_RESERVE);
2860 reserve--;
2861 continue;
2862 }
2863
2864 /*
2865 * If the reserve is met and this is a previous reserved block,
2866 * take it back
2867 */
2868 if (block_migratetype == MIGRATE_RESERVE) {
2869 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2870 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2871 }
2872 }
2873 }
2874
2875 /*
2876 * Initially all pages are reserved - free ones are freed
2877 * up by free_all_bootmem() once the early boot process is
2878 * done. Non-atomic initialization, single-pass.
2879 */
2880 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2881 unsigned long start_pfn, enum memmap_context context)
2882 {
2883 struct page *page;
2884 unsigned long end_pfn = start_pfn + size;
2885 unsigned long pfn;
2886 struct zone *z;
2887
2888 if (highest_memmap_pfn < end_pfn - 1)
2889 highest_memmap_pfn = end_pfn - 1;
2890
2891 z = &NODE_DATA(nid)->node_zones[zone];
2892 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2893 /*
2894 * There can be holes in boot-time mem_map[]s
2895 * handed to this function. They do not
2896 * exist on hotplugged memory.
2897 */
2898 if (context == MEMMAP_EARLY) {
2899 if (!early_pfn_valid(pfn))
2900 continue;
2901 if (!early_pfn_in_nid(pfn, nid))
2902 continue;
2903 }
2904 page = pfn_to_page(pfn);
2905 set_page_links(page, zone, nid, pfn);
2906 mminit_verify_page_links(page, zone, nid, pfn);
2907 init_page_count(page);
2908 reset_page_mapcount(page);
2909 SetPageReserved(page);
2910 /*
2911 * Mark the block movable so that blocks are reserved for
2912 * movable at startup. This will force kernel allocations
2913 * to reserve their blocks rather than leaking throughout
2914 * the address space during boot when many long-lived
2915 * kernel allocations are made. Later some blocks near
2916 * the start are marked MIGRATE_RESERVE by
2917 * setup_zone_migrate_reserve()
2918 *
2919 * bitmap is created for zone's valid pfn range. but memmap
2920 * can be created for invalid pages (for alignment)
2921 * check here not to call set_pageblock_migratetype() against
2922 * pfn out of zone.
2923 */
2924 if ((z->zone_start_pfn <= pfn)
2925 && (pfn < z->zone_start_pfn + z->spanned_pages)
2926 && !(pfn & (pageblock_nr_pages - 1)))
2927 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2928
2929 INIT_LIST_HEAD(&page->lru);
2930 #ifdef WANT_PAGE_VIRTUAL
2931 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2932 if (!is_highmem_idx(zone))
2933 set_page_address(page, __va(pfn << PAGE_SHIFT));
2934 #endif
2935 }
2936 }
2937
2938 static void __meminit zone_init_free_lists(struct zone *zone)
2939 {
2940 int order, t;
2941 for_each_migratetype_order(order, t) {
2942 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2943 zone->free_area[order].nr_free = 0;
2944 }
2945 }
2946
2947 #ifndef __HAVE_ARCH_MEMMAP_INIT
2948 #define memmap_init(size, nid, zone, start_pfn) \
2949 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2950 #endif
2951
2952 static int zone_batchsize(struct zone *zone)
2953 {
2954 #ifdef CONFIG_MMU
2955 int batch;
2956
2957 /*
2958 * The per-cpu-pages pools are set to around 1000th of the
2959 * size of the zone. But no more than 1/2 of a meg.
2960 *
2961 * OK, so we don't know how big the cache is. So guess.
2962 */
2963 batch = zone->present_pages / 1024;
2964 if (batch * PAGE_SIZE > 512 * 1024)
2965 batch = (512 * 1024) / PAGE_SIZE;
2966 batch /= 4; /* We effectively *= 4 below */
2967 if (batch < 1)
2968 batch = 1;
2969
2970 /*
2971 * Clamp the batch to a 2^n - 1 value. Having a power
2972 * of 2 value was found to be more likely to have
2973 * suboptimal cache aliasing properties in some cases.
2974 *
2975 * For example if 2 tasks are alternately allocating
2976 * batches of pages, one task can end up with a lot
2977 * of pages of one half of the possible page colors
2978 * and the other with pages of the other colors.
2979 */
2980 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2981
2982 return batch;
2983
2984 #else
2985 /* The deferral and batching of frees should be suppressed under NOMMU
2986 * conditions.
2987 *
2988 * The problem is that NOMMU needs to be able to allocate large chunks
2989 * of contiguous memory as there's no hardware page translation to
2990 * assemble apparent contiguous memory from discontiguous pages.
2991 *
2992 * Queueing large contiguous runs of pages for batching, however,
2993 * causes the pages to actually be freed in smaller chunks. As there
2994 * can be a significant delay between the individual batches being
2995 * recycled, this leads to the once large chunks of space being
2996 * fragmented and becoming unavailable for high-order allocations.
2997 */
2998 return 0;
2999 #endif
3000 }
3001
3002 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3003 {
3004 struct per_cpu_pages *pcp;
3005
3006 memset(p, 0, sizeof(*p));
3007
3008 pcp = &p->pcp;
3009 pcp->count = 0;
3010 pcp->high = 6 * batch;
3011 pcp->batch = max(1UL, 1 * batch);
3012 INIT_LIST_HEAD(&pcp->list);
3013 }
3014
3015 /*
3016 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3017 * to the value high for the pageset p.
3018 */
3019
3020 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3021 unsigned long high)
3022 {
3023 struct per_cpu_pages *pcp;
3024
3025 pcp = &p->pcp;
3026 pcp->high = high;
3027 pcp->batch = max(1UL, high/4);
3028 if ((high/4) > (PAGE_SHIFT * 8))
3029 pcp->batch = PAGE_SHIFT * 8;
3030 }
3031
3032
3033 #ifdef CONFIG_NUMA
3034 /*
3035 * Boot pageset table. One per cpu which is going to be used for all
3036 * zones and all nodes. The parameters will be set in such a way
3037 * that an item put on a list will immediately be handed over to
3038 * the buddy list. This is safe since pageset manipulation is done
3039 * with interrupts disabled.
3040 *
3041 * Some NUMA counter updates may also be caught by the boot pagesets.
3042 *
3043 * The boot_pagesets must be kept even after bootup is complete for
3044 * unused processors and/or zones. They do play a role for bootstrapping
3045 * hotplugged processors.
3046 *
3047 * zoneinfo_show() and maybe other functions do
3048 * not check if the processor is online before following the pageset pointer.
3049 * Other parts of the kernel may not check if the zone is available.
3050 */
3051 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3052
3053 /*
3054 * Dynamically allocate memory for the
3055 * per cpu pageset array in struct zone.
3056 */
3057 static int __cpuinit process_zones(int cpu)
3058 {
3059 struct zone *zone, *dzone;
3060 int node = cpu_to_node(cpu);
3061
3062 node_set_state(node, N_CPU); /* this node has a cpu */
3063
3064 for_each_populated_zone(zone) {
3065 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3066 GFP_KERNEL, node);
3067 if (!zone_pcp(zone, cpu))
3068 goto bad;
3069
3070 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3071
3072 if (percpu_pagelist_fraction)
3073 setup_pagelist_highmark(zone_pcp(zone, cpu),
3074 (zone->present_pages / percpu_pagelist_fraction));
3075 }
3076
3077 return 0;
3078 bad:
3079 for_each_zone(dzone) {
3080 if (!populated_zone(dzone))
3081 continue;
3082 if (dzone == zone)
3083 break;
3084 kfree(zone_pcp(dzone, cpu));
3085 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3086 }
3087 return -ENOMEM;
3088 }
3089
3090 static inline void free_zone_pagesets(int cpu)
3091 {
3092 struct zone *zone;
3093
3094 for_each_zone(zone) {
3095 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3096
3097 /* Free per_cpu_pageset if it is slab allocated */
3098 if (pset != &boot_pageset[cpu])
3099 kfree(pset);
3100 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3101 }
3102 }
3103
3104 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3105 unsigned long action,
3106 void *hcpu)
3107 {
3108 int cpu = (long)hcpu;
3109 int ret = NOTIFY_OK;
3110
3111 switch (action) {
3112 case CPU_UP_PREPARE:
3113 case CPU_UP_PREPARE_FROZEN:
3114 if (process_zones(cpu))
3115 ret = NOTIFY_BAD;
3116 break;
3117 case CPU_UP_CANCELED:
3118 case CPU_UP_CANCELED_FROZEN:
3119 case CPU_DEAD:
3120 case CPU_DEAD_FROZEN:
3121 free_zone_pagesets(cpu);
3122 break;
3123 default:
3124 break;
3125 }
3126 return ret;
3127 }
3128
3129 static struct notifier_block __cpuinitdata pageset_notifier =
3130 { &pageset_cpuup_callback, NULL, 0 };
3131
3132 void __init setup_per_cpu_pageset(void)
3133 {
3134 int err;
3135
3136 /* Initialize per_cpu_pageset for cpu 0.
3137 * A cpuup callback will do this for every cpu
3138 * as it comes online
3139 */
3140 err = process_zones(smp_processor_id());
3141 BUG_ON(err);
3142 register_cpu_notifier(&pageset_notifier);
3143 }
3144
3145 #endif
3146
3147 static noinline __init_refok
3148 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3149 {
3150 int i;
3151 struct pglist_data *pgdat = zone->zone_pgdat;
3152 size_t alloc_size;
3153
3154 /*
3155 * The per-page waitqueue mechanism uses hashed waitqueues
3156 * per zone.
3157 */
3158 zone->wait_table_hash_nr_entries =
3159 wait_table_hash_nr_entries(zone_size_pages);
3160 zone->wait_table_bits =
3161 wait_table_bits(zone->wait_table_hash_nr_entries);
3162 alloc_size = zone->wait_table_hash_nr_entries
3163 * sizeof(wait_queue_head_t);
3164
3165 if (!slab_is_available()) {
3166 zone->wait_table = (wait_queue_head_t *)
3167 alloc_bootmem_node(pgdat, alloc_size);
3168 } else {
3169 /*
3170 * This case means that a zone whose size was 0 gets new memory
3171 * via memory hot-add.
3172 * But it may be the case that a new node was hot-added. In
3173 * this case vmalloc() will not be able to use this new node's
3174 * memory - this wait_table must be initialized to use this new
3175 * node itself as well.
3176 * To use this new node's memory, further consideration will be
3177 * necessary.
3178 */
3179 zone->wait_table = vmalloc(alloc_size);
3180 }
3181 if (!zone->wait_table)
3182 return -ENOMEM;
3183
3184 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3185 init_waitqueue_head(zone->wait_table + i);
3186
3187 return 0;
3188 }
3189
3190 static int __zone_pcp_update(void *data)
3191 {
3192 struct zone *zone = data;
3193 int cpu;
3194 unsigned long batch = zone_batchsize(zone), flags;
3195
3196 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3197 struct per_cpu_pageset *pset;
3198 struct per_cpu_pages *pcp;
3199
3200 pset = zone_pcp(zone, cpu);
3201 pcp = &pset->pcp;
3202
3203 local_irq_save(flags);
3204 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3205 setup_pageset(pset, batch);
3206 local_irq_restore(flags);
3207 }
3208 return 0;
3209 }
3210
3211 void zone_pcp_update(struct zone *zone)
3212 {
3213 stop_machine(__zone_pcp_update, zone, NULL);
3214 }
3215
3216 static __meminit void zone_pcp_init(struct zone *zone)
3217 {
3218 int cpu;
3219 unsigned long batch = zone_batchsize(zone);
3220
3221 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3222 #ifdef CONFIG_NUMA
3223 /* Early boot. Slab allocator not functional yet */
3224 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3225 setup_pageset(&boot_pageset[cpu],0);
3226 #else
3227 setup_pageset(zone_pcp(zone,cpu), batch);
3228 #endif
3229 }
3230 if (zone->present_pages)
3231 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3232 zone->name, zone->present_pages, batch);
3233 }
3234
3235 __meminit int init_currently_empty_zone(struct zone *zone,
3236 unsigned long zone_start_pfn,
3237 unsigned long size,
3238 enum memmap_context context)
3239 {
3240 struct pglist_data *pgdat = zone->zone_pgdat;
3241 int ret;
3242 ret = zone_wait_table_init(zone, size);
3243 if (ret)
3244 return ret;
3245 pgdat->nr_zones = zone_idx(zone) + 1;
3246
3247 zone->zone_start_pfn = zone_start_pfn;
3248
3249 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3250 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3251 pgdat->node_id,
3252 (unsigned long)zone_idx(zone),
3253 zone_start_pfn, (zone_start_pfn + size));
3254
3255 zone_init_free_lists(zone);
3256
3257 return 0;
3258 }
3259
3260 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3261 /*
3262 * Basic iterator support. Return the first range of PFNs for a node
3263 * Note: nid == MAX_NUMNODES returns first region regardless of node
3264 */
3265 static int __meminit first_active_region_index_in_nid(int nid)
3266 {
3267 int i;
3268
3269 for (i = 0; i < nr_nodemap_entries; i++)
3270 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3271 return i;
3272
3273 return -1;
3274 }
3275
3276 /*
3277 * Basic iterator support. Return the next active range of PFNs for a node
3278 * Note: nid == MAX_NUMNODES returns next region regardless of node
3279 */
3280 static int __meminit next_active_region_index_in_nid(int index, int nid)
3281 {
3282 for (index = index + 1; index < nr_nodemap_entries; index++)
3283 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3284 return index;
3285
3286 return -1;
3287 }
3288
3289 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3290 /*
3291 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3292 * Architectures may implement their own version but if add_active_range()
3293 * was used and there are no special requirements, this is a convenient
3294 * alternative
3295 */
3296 int __meminit __early_pfn_to_nid(unsigned long pfn)
3297 {
3298 int i;
3299
3300 for (i = 0; i < nr_nodemap_entries; i++) {
3301 unsigned long start_pfn = early_node_map[i].start_pfn;
3302 unsigned long end_pfn = early_node_map[i].end_pfn;
3303
3304 if (start_pfn <= pfn && pfn < end_pfn)
3305 return early_node_map[i].nid;
3306 }
3307 /* This is a memory hole */
3308 return -1;
3309 }
3310 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3311
3312 int __meminit early_pfn_to_nid(unsigned long pfn)
3313 {
3314 int nid;
3315
3316 nid = __early_pfn_to_nid(pfn);
3317 if (nid >= 0)
3318 return nid;
3319 /* just returns 0 */
3320 return 0;
3321 }
3322
3323 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3324 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3325 {
3326 int nid;
3327
3328 nid = __early_pfn_to_nid(pfn);
3329 if (nid >= 0 && nid != node)
3330 return false;
3331 return true;
3332 }
3333 #endif
3334
3335 /* Basic iterator support to walk early_node_map[] */
3336 #define for_each_active_range_index_in_nid(i, nid) \
3337 for (i = first_active_region_index_in_nid(nid); i != -1; \
3338 i = next_active_region_index_in_nid(i, nid))
3339
3340 /**
3341 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3342 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3343 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3344 *
3345 * If an architecture guarantees that all ranges registered with
3346 * add_active_ranges() contain no holes and may be freed, this
3347 * this function may be used instead of calling free_bootmem() manually.
3348 */
3349 void __init free_bootmem_with_active_regions(int nid,
3350 unsigned long max_low_pfn)
3351 {
3352 int i;
3353
3354 for_each_active_range_index_in_nid(i, nid) {
3355 unsigned long size_pages = 0;
3356 unsigned long end_pfn = early_node_map[i].end_pfn;
3357
3358 if (early_node_map[i].start_pfn >= max_low_pfn)
3359 continue;
3360
3361 if (end_pfn > max_low_pfn)
3362 end_pfn = max_low_pfn;
3363
3364 size_pages = end_pfn - early_node_map[i].start_pfn;
3365 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3366 PFN_PHYS(early_node_map[i].start_pfn),
3367 size_pages << PAGE_SHIFT);
3368 }
3369 }
3370
3371 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3372 {
3373 int i;
3374 int ret;
3375
3376 for_each_active_range_index_in_nid(i, nid) {
3377 ret = work_fn(early_node_map[i].start_pfn,
3378 early_node_map[i].end_pfn, data);
3379 if (ret)
3380 break;
3381 }
3382 }
3383 /**
3384 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3385 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3386 *
3387 * If an architecture guarantees that all ranges registered with
3388 * add_active_ranges() contain no holes and may be freed, this
3389 * function may be used instead of calling memory_present() manually.
3390 */
3391 void __init sparse_memory_present_with_active_regions(int nid)
3392 {
3393 int i;
3394
3395 for_each_active_range_index_in_nid(i, nid)
3396 memory_present(early_node_map[i].nid,
3397 early_node_map[i].start_pfn,
3398 early_node_map[i].end_pfn);
3399 }
3400
3401 /**
3402 * get_pfn_range_for_nid - Return the start and end page frames for a node
3403 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3404 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3405 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3406 *
3407 * It returns the start and end page frame of a node based on information
3408 * provided by an arch calling add_active_range(). If called for a node
3409 * with no available memory, a warning is printed and the start and end
3410 * PFNs will be 0.
3411 */
3412 void __meminit get_pfn_range_for_nid(unsigned int nid,
3413 unsigned long *start_pfn, unsigned long *end_pfn)
3414 {
3415 int i;
3416 *start_pfn = -1UL;
3417 *end_pfn = 0;
3418
3419 for_each_active_range_index_in_nid(i, nid) {
3420 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3421 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3422 }
3423
3424 if (*start_pfn == -1UL)
3425 *start_pfn = 0;
3426 }
3427
3428 /*
3429 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3430 * assumption is made that zones within a node are ordered in monotonic
3431 * increasing memory addresses so that the "highest" populated zone is used
3432 */
3433 static void __init find_usable_zone_for_movable(void)
3434 {
3435 int zone_index;
3436 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3437 if (zone_index == ZONE_MOVABLE)
3438 continue;
3439
3440 if (arch_zone_highest_possible_pfn[zone_index] >
3441 arch_zone_lowest_possible_pfn[zone_index])
3442 break;
3443 }
3444
3445 VM_BUG_ON(zone_index == -1);
3446 movable_zone = zone_index;
3447 }
3448
3449 /*
3450 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3451 * because it is sized independant of architecture. Unlike the other zones,
3452 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3453 * in each node depending on the size of each node and how evenly kernelcore
3454 * is distributed. This helper function adjusts the zone ranges
3455 * provided by the architecture for a given node by using the end of the
3456 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3457 * zones within a node are in order of monotonic increases memory addresses
3458 */
3459 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3460 unsigned long zone_type,
3461 unsigned long node_start_pfn,
3462 unsigned long node_end_pfn,
3463 unsigned long *zone_start_pfn,
3464 unsigned long *zone_end_pfn)
3465 {
3466 /* Only adjust if ZONE_MOVABLE is on this node */
3467 if (zone_movable_pfn[nid]) {
3468 /* Size ZONE_MOVABLE */
3469 if (zone_type == ZONE_MOVABLE) {
3470 *zone_start_pfn = zone_movable_pfn[nid];
3471 *zone_end_pfn = min(node_end_pfn,
3472 arch_zone_highest_possible_pfn[movable_zone]);
3473
3474 /* Adjust for ZONE_MOVABLE starting within this range */
3475 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3476 *zone_end_pfn > zone_movable_pfn[nid]) {
3477 *zone_end_pfn = zone_movable_pfn[nid];
3478
3479 /* Check if this whole range is within ZONE_MOVABLE */
3480 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3481 *zone_start_pfn = *zone_end_pfn;
3482 }
3483 }
3484
3485 /*
3486 * Return the number of pages a zone spans in a node, including holes
3487 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3488 */
3489 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3490 unsigned long zone_type,
3491 unsigned long *ignored)
3492 {
3493 unsigned long node_start_pfn, node_end_pfn;
3494 unsigned long zone_start_pfn, zone_end_pfn;
3495
3496 /* Get the start and end of the node and zone */
3497 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3498 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3499 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3500 adjust_zone_range_for_zone_movable(nid, zone_type,
3501 node_start_pfn, node_end_pfn,
3502 &zone_start_pfn, &zone_end_pfn);
3503
3504 /* Check that this node has pages within the zone's required range */
3505 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3506 return 0;
3507
3508 /* Move the zone boundaries inside the node if necessary */
3509 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3510 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3511
3512 /* Return the spanned pages */
3513 return zone_end_pfn - zone_start_pfn;
3514 }
3515
3516 /*
3517 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3518 * then all holes in the requested range will be accounted for.
3519 */
3520 static unsigned long __meminit __absent_pages_in_range(int nid,
3521 unsigned long range_start_pfn,
3522 unsigned long range_end_pfn)
3523 {
3524 int i = 0;
3525 unsigned long prev_end_pfn = 0, hole_pages = 0;
3526 unsigned long start_pfn;
3527
3528 /* Find the end_pfn of the first active range of pfns in the node */
3529 i = first_active_region_index_in_nid(nid);
3530 if (i == -1)
3531 return 0;
3532
3533 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3534
3535 /* Account for ranges before physical memory on this node */
3536 if (early_node_map[i].start_pfn > range_start_pfn)
3537 hole_pages = prev_end_pfn - range_start_pfn;
3538
3539 /* Find all holes for the zone within the node */
3540 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3541
3542 /* No need to continue if prev_end_pfn is outside the zone */
3543 if (prev_end_pfn >= range_end_pfn)
3544 break;
3545
3546 /* Make sure the end of the zone is not within the hole */
3547 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3548 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3549
3550 /* Update the hole size cound and move on */
3551 if (start_pfn > range_start_pfn) {
3552 BUG_ON(prev_end_pfn > start_pfn);
3553 hole_pages += start_pfn - prev_end_pfn;
3554 }
3555 prev_end_pfn = early_node_map[i].end_pfn;
3556 }
3557
3558 /* Account for ranges past physical memory on this node */
3559 if (range_end_pfn > prev_end_pfn)
3560 hole_pages += range_end_pfn -
3561 max(range_start_pfn, prev_end_pfn);
3562
3563 return hole_pages;
3564 }
3565
3566 /**
3567 * absent_pages_in_range - Return number of page frames in holes within a range
3568 * @start_pfn: The start PFN to start searching for holes
3569 * @end_pfn: The end PFN to stop searching for holes
3570 *
3571 * It returns the number of pages frames in memory holes within a range.
3572 */
3573 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3574 unsigned long end_pfn)
3575 {
3576 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3577 }
3578
3579 /* Return the number of page frames in holes in a zone on a node */
3580 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3581 unsigned long zone_type,
3582 unsigned long *ignored)
3583 {
3584 unsigned long node_start_pfn, node_end_pfn;
3585 unsigned long zone_start_pfn, zone_end_pfn;
3586
3587 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3588 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3589 node_start_pfn);
3590 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3591 node_end_pfn);
3592
3593 adjust_zone_range_for_zone_movable(nid, zone_type,
3594 node_start_pfn, node_end_pfn,
3595 &zone_start_pfn, &zone_end_pfn);
3596 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3597 }
3598
3599 #else
3600 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3601 unsigned long zone_type,
3602 unsigned long *zones_size)
3603 {
3604 return zones_size[zone_type];
3605 }
3606
3607 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3608 unsigned long zone_type,
3609 unsigned long *zholes_size)
3610 {
3611 if (!zholes_size)
3612 return 0;
3613
3614 return zholes_size[zone_type];
3615 }
3616
3617 #endif
3618
3619 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3620 unsigned long *zones_size, unsigned long *zholes_size)
3621 {
3622 unsigned long realtotalpages, totalpages = 0;
3623 enum zone_type i;
3624
3625 for (i = 0; i < MAX_NR_ZONES; i++)
3626 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3627 zones_size);
3628 pgdat->node_spanned_pages = totalpages;
3629
3630 realtotalpages = totalpages;
3631 for (i = 0; i < MAX_NR_ZONES; i++)
3632 realtotalpages -=
3633 zone_absent_pages_in_node(pgdat->node_id, i,
3634 zholes_size);
3635 pgdat->node_present_pages = realtotalpages;
3636 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3637 realtotalpages);
3638 }
3639
3640 #ifndef CONFIG_SPARSEMEM
3641 /*
3642 * Calculate the size of the zone->blockflags rounded to an unsigned long
3643 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3644 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3645 * round what is now in bits to nearest long in bits, then return it in
3646 * bytes.
3647 */
3648 static unsigned long __init usemap_size(unsigned long zonesize)
3649 {
3650 unsigned long usemapsize;
3651
3652 usemapsize = roundup(zonesize, pageblock_nr_pages);
3653 usemapsize = usemapsize >> pageblock_order;
3654 usemapsize *= NR_PAGEBLOCK_BITS;
3655 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3656
3657 return usemapsize / 8;
3658 }
3659
3660 static void __init setup_usemap(struct pglist_data *pgdat,
3661 struct zone *zone, unsigned long zonesize)
3662 {
3663 unsigned long usemapsize = usemap_size(zonesize);
3664 zone->pageblock_flags = NULL;
3665 if (usemapsize)
3666 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3667 }
3668 #else
3669 static void inline setup_usemap(struct pglist_data *pgdat,
3670 struct zone *zone, unsigned long zonesize) {}
3671 #endif /* CONFIG_SPARSEMEM */
3672
3673 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3674
3675 /* Return a sensible default order for the pageblock size. */
3676 static inline int pageblock_default_order(void)
3677 {
3678 if (HPAGE_SHIFT > PAGE_SHIFT)
3679 return HUGETLB_PAGE_ORDER;
3680
3681 return MAX_ORDER-1;
3682 }
3683
3684 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3685 static inline void __init set_pageblock_order(unsigned int order)
3686 {
3687 /* Check that pageblock_nr_pages has not already been setup */
3688 if (pageblock_order)
3689 return;
3690
3691 /*
3692 * Assume the largest contiguous order of interest is a huge page.
3693 * This value may be variable depending on boot parameters on IA64
3694 */
3695 pageblock_order = order;
3696 }
3697 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3698
3699 /*
3700 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3701 * and pageblock_default_order() are unused as pageblock_order is set
3702 * at compile-time. See include/linux/pageblock-flags.h for the values of
3703 * pageblock_order based on the kernel config
3704 */
3705 static inline int pageblock_default_order(unsigned int order)
3706 {
3707 return MAX_ORDER-1;
3708 }
3709 #define set_pageblock_order(x) do {} while (0)
3710
3711 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3712
3713 /*
3714 * Set up the zone data structures:
3715 * - mark all pages reserved
3716 * - mark all memory queues empty
3717 * - clear the memory bitmaps
3718 */
3719 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3720 unsigned long *zones_size, unsigned long *zholes_size)
3721 {
3722 enum zone_type j;
3723 int nid = pgdat->node_id;
3724 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3725 int ret;
3726
3727 pgdat_resize_init(pgdat);
3728 pgdat->nr_zones = 0;
3729 init_waitqueue_head(&pgdat->kswapd_wait);
3730 pgdat->kswapd_max_order = 0;
3731 pgdat_page_cgroup_init(pgdat);
3732
3733 for (j = 0; j < MAX_NR_ZONES; j++) {
3734 struct zone *zone = pgdat->node_zones + j;
3735 unsigned long size, realsize, memmap_pages;
3736 enum lru_list l;
3737
3738 size = zone_spanned_pages_in_node(nid, j, zones_size);
3739 realsize = size - zone_absent_pages_in_node(nid, j,
3740 zholes_size);
3741
3742 /*
3743 * Adjust realsize so that it accounts for how much memory
3744 * is used by this zone for memmap. This affects the watermark
3745 * and per-cpu initialisations
3746 */
3747 memmap_pages =
3748 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3749 if (realsize >= memmap_pages) {
3750 realsize -= memmap_pages;
3751 if (memmap_pages)
3752 printk(KERN_DEBUG
3753 " %s zone: %lu pages used for memmap\n",
3754 zone_names[j], memmap_pages);
3755 } else
3756 printk(KERN_WARNING
3757 " %s zone: %lu pages exceeds realsize %lu\n",
3758 zone_names[j], memmap_pages, realsize);
3759
3760 /* Account for reserved pages */
3761 if (j == 0 && realsize > dma_reserve) {
3762 realsize -= dma_reserve;
3763 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3764 zone_names[0], dma_reserve);
3765 }
3766
3767 if (!is_highmem_idx(j))
3768 nr_kernel_pages += realsize;
3769 nr_all_pages += realsize;
3770
3771 zone->spanned_pages = size;
3772 zone->present_pages = realsize;
3773 #ifdef CONFIG_NUMA
3774 zone->node = nid;
3775 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3776 / 100;
3777 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3778 #endif
3779 zone->name = zone_names[j];
3780 spin_lock_init(&zone->lock);
3781 spin_lock_init(&zone->lru_lock);
3782 zone_seqlock_init(zone);
3783 zone->zone_pgdat = pgdat;
3784
3785 zone->prev_priority = DEF_PRIORITY;
3786
3787 zone_pcp_init(zone);
3788 for_each_lru(l) {
3789 INIT_LIST_HEAD(&zone->lru[l].list);
3790 zone->lru[l].nr_saved_scan = 0;
3791 }
3792 zone->reclaim_stat.recent_rotated[0] = 0;
3793 zone->reclaim_stat.recent_rotated[1] = 0;
3794 zone->reclaim_stat.recent_scanned[0] = 0;
3795 zone->reclaim_stat.recent_scanned[1] = 0;
3796 zap_zone_vm_stats(zone);
3797 zone->flags = 0;
3798 if (!size)
3799 continue;
3800
3801 set_pageblock_order(pageblock_default_order());
3802 setup_usemap(pgdat, zone, size);
3803 ret = init_currently_empty_zone(zone, zone_start_pfn,
3804 size, MEMMAP_EARLY);
3805 BUG_ON(ret);
3806 memmap_init(size, nid, j, zone_start_pfn);
3807 zone_start_pfn += size;
3808 }
3809 }
3810
3811 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3812 {
3813 /* Skip empty nodes */
3814 if (!pgdat->node_spanned_pages)
3815 return;
3816
3817 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3818 /* ia64 gets its own node_mem_map, before this, without bootmem */
3819 if (!pgdat->node_mem_map) {
3820 unsigned long size, start, end;
3821 struct page *map;
3822
3823 /*
3824 * The zone's endpoints aren't required to be MAX_ORDER
3825 * aligned but the node_mem_map endpoints must be in order
3826 * for the buddy allocator to function correctly.
3827 */
3828 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3829 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3830 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3831 size = (end - start) * sizeof(struct page);
3832 map = alloc_remap(pgdat->node_id, size);
3833 if (!map)
3834 map = alloc_bootmem_node(pgdat, size);
3835 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3836 }
3837 #ifndef CONFIG_NEED_MULTIPLE_NODES
3838 /*
3839 * With no DISCONTIG, the global mem_map is just set as node 0's
3840 */
3841 if (pgdat == NODE_DATA(0)) {
3842 mem_map = NODE_DATA(0)->node_mem_map;
3843 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3844 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3845 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3846 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3847 }
3848 #endif
3849 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3850 }
3851
3852 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3853 unsigned long node_start_pfn, unsigned long *zholes_size)
3854 {
3855 pg_data_t *pgdat = NODE_DATA(nid);
3856
3857 pgdat->node_id = nid;
3858 pgdat->node_start_pfn = node_start_pfn;
3859 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3860
3861 alloc_node_mem_map(pgdat);
3862 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3863 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3864 nid, (unsigned long)pgdat,
3865 (unsigned long)pgdat->node_mem_map);
3866 #endif
3867
3868 free_area_init_core(pgdat, zones_size, zholes_size);
3869 }
3870
3871 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3872
3873 #if MAX_NUMNODES > 1
3874 /*
3875 * Figure out the number of possible node ids.
3876 */
3877 static void __init setup_nr_node_ids(void)
3878 {
3879 unsigned int node;
3880 unsigned int highest = 0;
3881
3882 for_each_node_mask(node, node_possible_map)
3883 highest = node;
3884 nr_node_ids = highest + 1;
3885 }
3886 #else
3887 static inline void setup_nr_node_ids(void)
3888 {
3889 }
3890 #endif
3891
3892 /**
3893 * add_active_range - Register a range of PFNs backed by physical memory
3894 * @nid: The node ID the range resides on
3895 * @start_pfn: The start PFN of the available physical memory
3896 * @end_pfn: The end PFN of the available physical memory
3897 *
3898 * These ranges are stored in an early_node_map[] and later used by
3899 * free_area_init_nodes() to calculate zone sizes and holes. If the
3900 * range spans a memory hole, it is up to the architecture to ensure
3901 * the memory is not freed by the bootmem allocator. If possible
3902 * the range being registered will be merged with existing ranges.
3903 */
3904 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3905 unsigned long end_pfn)
3906 {
3907 int i;
3908
3909 mminit_dprintk(MMINIT_TRACE, "memory_register",
3910 "Entering add_active_range(%d, %#lx, %#lx) "
3911 "%d entries of %d used\n",
3912 nid, start_pfn, end_pfn,
3913 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3914
3915 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3916
3917 /* Merge with existing active regions if possible */
3918 for (i = 0; i < nr_nodemap_entries; i++) {
3919 if (early_node_map[i].nid != nid)
3920 continue;
3921
3922 /* Skip if an existing region covers this new one */
3923 if (start_pfn >= early_node_map[i].start_pfn &&
3924 end_pfn <= early_node_map[i].end_pfn)
3925 return;
3926
3927 /* Merge forward if suitable */
3928 if (start_pfn <= early_node_map[i].end_pfn &&
3929 end_pfn > early_node_map[i].end_pfn) {
3930 early_node_map[i].end_pfn = end_pfn;
3931 return;
3932 }
3933
3934 /* Merge backward if suitable */
3935 if (start_pfn < early_node_map[i].end_pfn &&
3936 end_pfn >= early_node_map[i].start_pfn) {
3937 early_node_map[i].start_pfn = start_pfn;
3938 return;
3939 }
3940 }
3941
3942 /* Check that early_node_map is large enough */
3943 if (i >= MAX_ACTIVE_REGIONS) {
3944 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3945 MAX_ACTIVE_REGIONS);
3946 return;
3947 }
3948
3949 early_node_map[i].nid = nid;
3950 early_node_map[i].start_pfn = start_pfn;
3951 early_node_map[i].end_pfn = end_pfn;
3952 nr_nodemap_entries = i + 1;
3953 }
3954
3955 /**
3956 * remove_active_range - Shrink an existing registered range of PFNs
3957 * @nid: The node id the range is on that should be shrunk
3958 * @start_pfn: The new PFN of the range
3959 * @end_pfn: The new PFN of the range
3960 *
3961 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3962 * The map is kept near the end physical page range that has already been
3963 * registered. This function allows an arch to shrink an existing registered
3964 * range.
3965 */
3966 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3967 unsigned long end_pfn)
3968 {
3969 int i, j;
3970 int removed = 0;
3971
3972 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3973 nid, start_pfn, end_pfn);
3974
3975 /* Find the old active region end and shrink */
3976 for_each_active_range_index_in_nid(i, nid) {
3977 if (early_node_map[i].start_pfn >= start_pfn &&
3978 early_node_map[i].end_pfn <= end_pfn) {
3979 /* clear it */
3980 early_node_map[i].start_pfn = 0;
3981 early_node_map[i].end_pfn = 0;
3982 removed = 1;
3983 continue;
3984 }
3985 if (early_node_map[i].start_pfn < start_pfn &&
3986 early_node_map[i].end_pfn > start_pfn) {
3987 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3988 early_node_map[i].end_pfn = start_pfn;
3989 if (temp_end_pfn > end_pfn)
3990 add_active_range(nid, end_pfn, temp_end_pfn);
3991 continue;
3992 }
3993 if (early_node_map[i].start_pfn >= start_pfn &&
3994 early_node_map[i].end_pfn > end_pfn &&
3995 early_node_map[i].start_pfn < end_pfn) {
3996 early_node_map[i].start_pfn = end_pfn;
3997 continue;
3998 }
3999 }
4000
4001 if (!removed)
4002 return;
4003
4004 /* remove the blank ones */
4005 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4006 if (early_node_map[i].nid != nid)
4007 continue;
4008 if (early_node_map[i].end_pfn)
4009 continue;
4010 /* we found it, get rid of it */
4011 for (j = i; j < nr_nodemap_entries - 1; j++)
4012 memcpy(&early_node_map[j], &early_node_map[j+1],
4013 sizeof(early_node_map[j]));
4014 j = nr_nodemap_entries - 1;
4015 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4016 nr_nodemap_entries--;
4017 }
4018 }
4019
4020 /**
4021 * remove_all_active_ranges - Remove all currently registered regions
4022 *
4023 * During discovery, it may be found that a table like SRAT is invalid
4024 * and an alternative discovery method must be used. This function removes
4025 * all currently registered regions.
4026 */
4027 void __init remove_all_active_ranges(void)
4028 {
4029 memset(early_node_map, 0, sizeof(early_node_map));
4030 nr_nodemap_entries = 0;
4031 }
4032
4033 /* Compare two active node_active_regions */
4034 static int __init cmp_node_active_region(const void *a, const void *b)
4035 {
4036 struct node_active_region *arange = (struct node_active_region *)a;
4037 struct node_active_region *brange = (struct node_active_region *)b;
4038
4039 /* Done this way to avoid overflows */
4040 if (arange->start_pfn > brange->start_pfn)
4041 return 1;
4042 if (arange->start_pfn < brange->start_pfn)
4043 return -1;
4044
4045 return 0;
4046 }
4047
4048 /* sort the node_map by start_pfn */
4049 static void __init sort_node_map(void)
4050 {
4051 sort(early_node_map, (size_t)nr_nodemap_entries,
4052 sizeof(struct node_active_region),
4053 cmp_node_active_region, NULL);
4054 }
4055
4056 /* Find the lowest pfn for a node */
4057 static unsigned long __init find_min_pfn_for_node(int nid)
4058 {
4059 int i;
4060 unsigned long min_pfn = ULONG_MAX;
4061
4062 /* Assuming a sorted map, the first range found has the starting pfn */
4063 for_each_active_range_index_in_nid(i, nid)
4064 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4065
4066 if (min_pfn == ULONG_MAX) {
4067 printk(KERN_WARNING
4068 "Could not find start_pfn for node %d\n", nid);
4069 return 0;
4070 }
4071
4072 return min_pfn;
4073 }
4074
4075 /**
4076 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4077 *
4078 * It returns the minimum PFN based on information provided via
4079 * add_active_range().
4080 */
4081 unsigned long __init find_min_pfn_with_active_regions(void)
4082 {
4083 return find_min_pfn_for_node(MAX_NUMNODES);
4084 }
4085
4086 /*
4087 * early_calculate_totalpages()
4088 * Sum pages in active regions for movable zone.
4089 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4090 */
4091 static unsigned long __init early_calculate_totalpages(void)
4092 {
4093 int i;
4094 unsigned long totalpages = 0;
4095
4096 for (i = 0; i < nr_nodemap_entries; i++) {
4097 unsigned long pages = early_node_map[i].end_pfn -
4098 early_node_map[i].start_pfn;
4099 totalpages += pages;
4100 if (pages)
4101 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4102 }
4103 return totalpages;
4104 }
4105
4106 /*
4107 * Find the PFN the Movable zone begins in each node. Kernel memory
4108 * is spread evenly between nodes as long as the nodes have enough
4109 * memory. When they don't, some nodes will have more kernelcore than
4110 * others
4111 */
4112 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4113 {
4114 int i, nid;
4115 unsigned long usable_startpfn;
4116 unsigned long kernelcore_node, kernelcore_remaining;
4117 /* save the state before borrow the nodemask */
4118 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4119 unsigned long totalpages = early_calculate_totalpages();
4120 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4121
4122 /*
4123 * If movablecore was specified, calculate what size of
4124 * kernelcore that corresponds so that memory usable for
4125 * any allocation type is evenly spread. If both kernelcore
4126 * and movablecore are specified, then the value of kernelcore
4127 * will be used for required_kernelcore if it's greater than
4128 * what movablecore would have allowed.
4129 */
4130 if (required_movablecore) {
4131 unsigned long corepages;
4132
4133 /*
4134 * Round-up so that ZONE_MOVABLE is at least as large as what
4135 * was requested by the user
4136 */
4137 required_movablecore =
4138 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4139 corepages = totalpages - required_movablecore;
4140
4141 required_kernelcore = max(required_kernelcore, corepages);
4142 }
4143
4144 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4145 if (!required_kernelcore)
4146 goto out;
4147
4148 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4149 find_usable_zone_for_movable();
4150 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4151
4152 restart:
4153 /* Spread kernelcore memory as evenly as possible throughout nodes */
4154 kernelcore_node = required_kernelcore / usable_nodes;
4155 for_each_node_state(nid, N_HIGH_MEMORY) {
4156 /*
4157 * Recalculate kernelcore_node if the division per node
4158 * now exceeds what is necessary to satisfy the requested
4159 * amount of memory for the kernel
4160 */
4161 if (required_kernelcore < kernelcore_node)
4162 kernelcore_node = required_kernelcore / usable_nodes;
4163
4164 /*
4165 * As the map is walked, we track how much memory is usable
4166 * by the kernel using kernelcore_remaining. When it is
4167 * 0, the rest of the node is usable by ZONE_MOVABLE
4168 */
4169 kernelcore_remaining = kernelcore_node;
4170
4171 /* Go through each range of PFNs within this node */
4172 for_each_active_range_index_in_nid(i, nid) {
4173 unsigned long start_pfn, end_pfn;
4174 unsigned long size_pages;
4175
4176 start_pfn = max(early_node_map[i].start_pfn,
4177 zone_movable_pfn[nid]);
4178 end_pfn = early_node_map[i].end_pfn;
4179 if (start_pfn >= end_pfn)
4180 continue;
4181
4182 /* Account for what is only usable for kernelcore */
4183 if (start_pfn < usable_startpfn) {
4184 unsigned long kernel_pages;
4185 kernel_pages = min(end_pfn, usable_startpfn)
4186 - start_pfn;
4187
4188 kernelcore_remaining -= min(kernel_pages,
4189 kernelcore_remaining);
4190 required_kernelcore -= min(kernel_pages,
4191 required_kernelcore);
4192
4193 /* Continue if range is now fully accounted */
4194 if (end_pfn <= usable_startpfn) {
4195
4196 /*
4197 * Push zone_movable_pfn to the end so
4198 * that if we have to rebalance
4199 * kernelcore across nodes, we will
4200 * not double account here
4201 */
4202 zone_movable_pfn[nid] = end_pfn;
4203 continue;
4204 }
4205 start_pfn = usable_startpfn;
4206 }
4207
4208 /*
4209 * The usable PFN range for ZONE_MOVABLE is from
4210 * start_pfn->end_pfn. Calculate size_pages as the
4211 * number of pages used as kernelcore
4212 */
4213 size_pages = end_pfn - start_pfn;
4214 if (size_pages > kernelcore_remaining)
4215 size_pages = kernelcore_remaining;
4216 zone_movable_pfn[nid] = start_pfn + size_pages;
4217
4218 /*
4219 * Some kernelcore has been met, update counts and
4220 * break if the kernelcore for this node has been
4221 * satisified
4222 */
4223 required_kernelcore -= min(required_kernelcore,
4224 size_pages);
4225 kernelcore_remaining -= size_pages;
4226 if (!kernelcore_remaining)
4227 break;
4228 }
4229 }
4230
4231 /*
4232 * If there is still required_kernelcore, we do another pass with one
4233 * less node in the count. This will push zone_movable_pfn[nid] further
4234 * along on the nodes that still have memory until kernelcore is
4235 * satisified
4236 */
4237 usable_nodes--;
4238 if (usable_nodes && required_kernelcore > usable_nodes)
4239 goto restart;
4240
4241 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4242 for (nid = 0; nid < MAX_NUMNODES; nid++)
4243 zone_movable_pfn[nid] =
4244 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4245
4246 out:
4247 /* restore the node_state */
4248 node_states[N_HIGH_MEMORY] = saved_node_state;
4249 }
4250
4251 /* Any regular memory on that node ? */
4252 static void check_for_regular_memory(pg_data_t *pgdat)
4253 {
4254 #ifdef CONFIG_HIGHMEM
4255 enum zone_type zone_type;
4256
4257 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4258 struct zone *zone = &pgdat->node_zones[zone_type];
4259 if (zone->present_pages)
4260 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4261 }
4262 #endif
4263 }
4264
4265 /**
4266 * free_area_init_nodes - Initialise all pg_data_t and zone data
4267 * @max_zone_pfn: an array of max PFNs for each zone
4268 *
4269 * This will call free_area_init_node() for each active node in the system.
4270 * Using the page ranges provided by add_active_range(), the size of each
4271 * zone in each node and their holes is calculated. If the maximum PFN
4272 * between two adjacent zones match, it is assumed that the zone is empty.
4273 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4274 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4275 * starts where the previous one ended. For example, ZONE_DMA32 starts
4276 * at arch_max_dma_pfn.
4277 */
4278 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4279 {
4280 unsigned long nid;
4281 int i;
4282
4283 /* Sort early_node_map as initialisation assumes it is sorted */
4284 sort_node_map();
4285
4286 /* Record where the zone boundaries are */
4287 memset(arch_zone_lowest_possible_pfn, 0,
4288 sizeof(arch_zone_lowest_possible_pfn));
4289 memset(arch_zone_highest_possible_pfn, 0,
4290 sizeof(arch_zone_highest_possible_pfn));
4291 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4292 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4293 for (i = 1; i < MAX_NR_ZONES; i++) {
4294 if (i == ZONE_MOVABLE)
4295 continue;
4296 arch_zone_lowest_possible_pfn[i] =
4297 arch_zone_highest_possible_pfn[i-1];
4298 arch_zone_highest_possible_pfn[i] =
4299 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4300 }
4301 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4302 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4303
4304 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4305 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4306 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4307
4308 /* Print out the zone ranges */
4309 printk("Zone PFN ranges:\n");
4310 for (i = 0; i < MAX_NR_ZONES; i++) {
4311 if (i == ZONE_MOVABLE)
4312 continue;
4313 printk(" %-8s %0#10lx -> %0#10lx\n",
4314 zone_names[i],
4315 arch_zone_lowest_possible_pfn[i],
4316 arch_zone_highest_possible_pfn[i]);
4317 }
4318
4319 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4320 printk("Movable zone start PFN for each node\n");
4321 for (i = 0; i < MAX_NUMNODES; i++) {
4322 if (zone_movable_pfn[i])
4323 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4324 }
4325
4326 /* Print out the early_node_map[] */
4327 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4328 for (i = 0; i < nr_nodemap_entries; i++)
4329 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4330 early_node_map[i].start_pfn,
4331 early_node_map[i].end_pfn);
4332
4333 /* Initialise every node */
4334 mminit_verify_pageflags_layout();
4335 setup_nr_node_ids();
4336 for_each_online_node(nid) {
4337 pg_data_t *pgdat = NODE_DATA(nid);
4338 free_area_init_node(nid, NULL,
4339 find_min_pfn_for_node(nid), NULL);
4340
4341 /* Any memory on that node */
4342 if (pgdat->node_present_pages)
4343 node_set_state(nid, N_HIGH_MEMORY);
4344 check_for_regular_memory(pgdat);
4345 }
4346 }
4347
4348 static int __init cmdline_parse_core(char *p, unsigned long *core)
4349 {
4350 unsigned long long coremem;
4351 if (!p)
4352 return -EINVAL;
4353
4354 coremem = memparse(p, &p);
4355 *core = coremem >> PAGE_SHIFT;
4356
4357 /* Paranoid check that UL is enough for the coremem value */
4358 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4359
4360 return 0;
4361 }
4362
4363 /*
4364 * kernelcore=size sets the amount of memory for use for allocations that
4365 * cannot be reclaimed or migrated.
4366 */
4367 static int __init cmdline_parse_kernelcore(char *p)
4368 {
4369 return cmdline_parse_core(p, &required_kernelcore);
4370 }
4371
4372 /*
4373 * movablecore=size sets the amount of memory for use for allocations that
4374 * can be reclaimed or migrated.
4375 */
4376 static int __init cmdline_parse_movablecore(char *p)
4377 {
4378 return cmdline_parse_core(p, &required_movablecore);
4379 }
4380
4381 early_param("kernelcore", cmdline_parse_kernelcore);
4382 early_param("movablecore", cmdline_parse_movablecore);
4383
4384 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4385
4386 /**
4387 * set_dma_reserve - set the specified number of pages reserved in the first zone
4388 * @new_dma_reserve: The number of pages to mark reserved
4389 *
4390 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4391 * In the DMA zone, a significant percentage may be consumed by kernel image
4392 * and other unfreeable allocations which can skew the watermarks badly. This
4393 * function may optionally be used to account for unfreeable pages in the
4394 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4395 * smaller per-cpu batchsize.
4396 */
4397 void __init set_dma_reserve(unsigned long new_dma_reserve)
4398 {
4399 dma_reserve = new_dma_reserve;
4400 }
4401
4402 #ifndef CONFIG_NEED_MULTIPLE_NODES
4403 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4404 EXPORT_SYMBOL(contig_page_data);
4405 #endif
4406
4407 void __init free_area_init(unsigned long *zones_size)
4408 {
4409 free_area_init_node(0, zones_size,
4410 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4411 }
4412
4413 static int page_alloc_cpu_notify(struct notifier_block *self,
4414 unsigned long action, void *hcpu)
4415 {
4416 int cpu = (unsigned long)hcpu;
4417
4418 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4419 drain_pages(cpu);
4420
4421 /*
4422 * Spill the event counters of the dead processor
4423 * into the current processors event counters.
4424 * This artificially elevates the count of the current
4425 * processor.
4426 */
4427 vm_events_fold_cpu(cpu);
4428
4429 /*
4430 * Zero the differential counters of the dead processor
4431 * so that the vm statistics are consistent.
4432 *
4433 * This is only okay since the processor is dead and cannot
4434 * race with what we are doing.
4435 */
4436 refresh_cpu_vm_stats(cpu);
4437 }
4438 return NOTIFY_OK;
4439 }
4440
4441 void __init page_alloc_init(void)
4442 {
4443 hotcpu_notifier(page_alloc_cpu_notify, 0);
4444 }
4445
4446 /*
4447 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4448 * or min_free_kbytes changes.
4449 */
4450 static void calculate_totalreserve_pages(void)
4451 {
4452 struct pglist_data *pgdat;
4453 unsigned long reserve_pages = 0;
4454 enum zone_type i, j;
4455
4456 for_each_online_pgdat(pgdat) {
4457 for (i = 0; i < MAX_NR_ZONES; i++) {
4458 struct zone *zone = pgdat->node_zones + i;
4459 unsigned long max = 0;
4460
4461 /* Find valid and maximum lowmem_reserve in the zone */
4462 for (j = i; j < MAX_NR_ZONES; j++) {
4463 if (zone->lowmem_reserve[j] > max)
4464 max = zone->lowmem_reserve[j];
4465 }
4466
4467 /* we treat the high watermark as reserved pages. */
4468 max += high_wmark_pages(zone);
4469
4470 if (max > zone->present_pages)
4471 max = zone->present_pages;
4472 reserve_pages += max;
4473 }
4474 }
4475 totalreserve_pages = reserve_pages;
4476 }
4477
4478 /*
4479 * setup_per_zone_lowmem_reserve - called whenever
4480 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4481 * has a correct pages reserved value, so an adequate number of
4482 * pages are left in the zone after a successful __alloc_pages().
4483 */
4484 static void setup_per_zone_lowmem_reserve(void)
4485 {
4486 struct pglist_data *pgdat;
4487 enum zone_type j, idx;
4488
4489 for_each_online_pgdat(pgdat) {
4490 for (j = 0; j < MAX_NR_ZONES; j++) {
4491 struct zone *zone = pgdat->node_zones + j;
4492 unsigned long present_pages = zone->present_pages;
4493
4494 zone->lowmem_reserve[j] = 0;
4495
4496 idx = j;
4497 while (idx) {
4498 struct zone *lower_zone;
4499
4500 idx--;
4501
4502 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4503 sysctl_lowmem_reserve_ratio[idx] = 1;
4504
4505 lower_zone = pgdat->node_zones + idx;
4506 lower_zone->lowmem_reserve[j] = present_pages /
4507 sysctl_lowmem_reserve_ratio[idx];
4508 present_pages += lower_zone->present_pages;
4509 }
4510 }
4511 }
4512
4513 /* update totalreserve_pages */
4514 calculate_totalreserve_pages();
4515 }
4516
4517 /**
4518 * setup_per_zone_wmarks - called when min_free_kbytes changes
4519 * or when memory is hot-{added|removed}
4520 *
4521 * Ensures that the watermark[min,low,high] values for each zone are set
4522 * correctly with respect to min_free_kbytes.
4523 */
4524 void setup_per_zone_wmarks(void)
4525 {
4526 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4527 unsigned long lowmem_pages = 0;
4528 struct zone *zone;
4529 unsigned long flags;
4530
4531 /* Calculate total number of !ZONE_HIGHMEM pages */
4532 for_each_zone(zone) {
4533 if (!is_highmem(zone))
4534 lowmem_pages += zone->present_pages;
4535 }
4536
4537 for_each_zone(zone) {
4538 u64 tmp;
4539
4540 spin_lock_irqsave(&zone->lock, flags);
4541 tmp = (u64)pages_min * zone->present_pages;
4542 do_div(tmp, lowmem_pages);
4543 if (is_highmem(zone)) {
4544 /*
4545 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4546 * need highmem pages, so cap pages_min to a small
4547 * value here.
4548 *
4549 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4550 * deltas controls asynch page reclaim, and so should
4551 * not be capped for highmem.
4552 */
4553 int min_pages;
4554
4555 min_pages = zone->present_pages / 1024;
4556 if (min_pages < SWAP_CLUSTER_MAX)
4557 min_pages = SWAP_CLUSTER_MAX;
4558 if (min_pages > 128)
4559 min_pages = 128;
4560 zone->watermark[WMARK_MIN] = min_pages;
4561 } else {
4562 /*
4563 * If it's a lowmem zone, reserve a number of pages
4564 * proportionate to the zone's size.
4565 */
4566 zone->watermark[WMARK_MIN] = tmp;
4567 }
4568
4569 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4570 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4571 setup_zone_migrate_reserve(zone);
4572 spin_unlock_irqrestore(&zone->lock, flags);
4573 }
4574
4575 /* update totalreserve_pages */
4576 calculate_totalreserve_pages();
4577 }
4578
4579 /*
4580 * The inactive anon list should be small enough that the VM never has to
4581 * do too much work, but large enough that each inactive page has a chance
4582 * to be referenced again before it is swapped out.
4583 *
4584 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4585 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4586 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4587 * the anonymous pages are kept on the inactive list.
4588 *
4589 * total target max
4590 * memory ratio inactive anon
4591 * -------------------------------------
4592 * 10MB 1 5MB
4593 * 100MB 1 50MB
4594 * 1GB 3 250MB
4595 * 10GB 10 0.9GB
4596 * 100GB 31 3GB
4597 * 1TB 101 10GB
4598 * 10TB 320 32GB
4599 */
4600 void calculate_zone_inactive_ratio(struct zone *zone)
4601 {
4602 unsigned int gb, ratio;
4603
4604 /* Zone size in gigabytes */
4605 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4606 if (gb)
4607 ratio = int_sqrt(10 * gb);
4608 else
4609 ratio = 1;
4610
4611 zone->inactive_ratio = ratio;
4612 }
4613
4614 static void __init setup_per_zone_inactive_ratio(void)
4615 {
4616 struct zone *zone;
4617
4618 for_each_zone(zone)
4619 calculate_zone_inactive_ratio(zone);
4620 }
4621
4622 /*
4623 * Initialise min_free_kbytes.
4624 *
4625 * For small machines we want it small (128k min). For large machines
4626 * we want it large (64MB max). But it is not linear, because network
4627 * bandwidth does not increase linearly with machine size. We use
4628 *
4629 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4630 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4631 *
4632 * which yields
4633 *
4634 * 16MB: 512k
4635 * 32MB: 724k
4636 * 64MB: 1024k
4637 * 128MB: 1448k
4638 * 256MB: 2048k
4639 * 512MB: 2896k
4640 * 1024MB: 4096k
4641 * 2048MB: 5792k
4642 * 4096MB: 8192k
4643 * 8192MB: 11584k
4644 * 16384MB: 16384k
4645 */
4646 static int __init init_per_zone_wmark_min(void)
4647 {
4648 unsigned long lowmem_kbytes;
4649
4650 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4651
4652 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4653 if (min_free_kbytes < 128)
4654 min_free_kbytes = 128;
4655 if (min_free_kbytes > 65536)
4656 min_free_kbytes = 65536;
4657 setup_per_zone_wmarks();
4658 setup_per_zone_lowmem_reserve();
4659 setup_per_zone_inactive_ratio();
4660 return 0;
4661 }
4662 module_init(init_per_zone_wmark_min)
4663
4664 /*
4665 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4666 * that we can call two helper functions whenever min_free_kbytes
4667 * changes.
4668 */
4669 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4670 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4671 {
4672 proc_dointvec(table, write, file, buffer, length, ppos);
4673 if (write)
4674 setup_per_zone_wmarks();
4675 return 0;
4676 }
4677
4678 #ifdef CONFIG_NUMA
4679 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4680 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4681 {
4682 struct zone *zone;
4683 int rc;
4684
4685 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4686 if (rc)
4687 return rc;
4688
4689 for_each_zone(zone)
4690 zone->min_unmapped_pages = (zone->present_pages *
4691 sysctl_min_unmapped_ratio) / 100;
4692 return 0;
4693 }
4694
4695 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4696 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4697 {
4698 struct zone *zone;
4699 int rc;
4700
4701 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4702 if (rc)
4703 return rc;
4704
4705 for_each_zone(zone)
4706 zone->min_slab_pages = (zone->present_pages *
4707 sysctl_min_slab_ratio) / 100;
4708 return 0;
4709 }
4710 #endif
4711
4712 /*
4713 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4714 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4715 * whenever sysctl_lowmem_reserve_ratio changes.
4716 *
4717 * The reserve ratio obviously has absolutely no relation with the
4718 * minimum watermarks. The lowmem reserve ratio can only make sense
4719 * if in function of the boot time zone sizes.
4720 */
4721 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4722 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4723 {
4724 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4725 setup_per_zone_lowmem_reserve();
4726 return 0;
4727 }
4728
4729 /*
4730 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4731 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4732 * can have before it gets flushed back to buddy allocator.
4733 */
4734
4735 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4736 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4737 {
4738 struct zone *zone;
4739 unsigned int cpu;
4740 int ret;
4741
4742 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4743 if (!write || (ret == -EINVAL))
4744 return ret;
4745 for_each_populated_zone(zone) {
4746 for_each_online_cpu(cpu) {
4747 unsigned long high;
4748 high = zone->present_pages / percpu_pagelist_fraction;
4749 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4750 }
4751 }
4752 return 0;
4753 }
4754
4755 int hashdist = HASHDIST_DEFAULT;
4756
4757 #ifdef CONFIG_NUMA
4758 static int __init set_hashdist(char *str)
4759 {
4760 if (!str)
4761 return 0;
4762 hashdist = simple_strtoul(str, &str, 0);
4763 return 1;
4764 }
4765 __setup("hashdist=", set_hashdist);
4766 #endif
4767
4768 /*
4769 * allocate a large system hash table from bootmem
4770 * - it is assumed that the hash table must contain an exact power-of-2
4771 * quantity of entries
4772 * - limit is the number of hash buckets, not the total allocation size
4773 */
4774 void *__init alloc_large_system_hash(const char *tablename,
4775 unsigned long bucketsize,
4776 unsigned long numentries,
4777 int scale,
4778 int flags,
4779 unsigned int *_hash_shift,
4780 unsigned int *_hash_mask,
4781 unsigned long limit)
4782 {
4783 unsigned long long max = limit;
4784 unsigned long log2qty, size;
4785 void *table = NULL;
4786
4787 /* allow the kernel cmdline to have a say */
4788 if (!numentries) {
4789 /* round applicable memory size up to nearest megabyte */
4790 numentries = nr_kernel_pages;
4791 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4792 numentries >>= 20 - PAGE_SHIFT;
4793 numentries <<= 20 - PAGE_SHIFT;
4794
4795 /* limit to 1 bucket per 2^scale bytes of low memory */
4796 if (scale > PAGE_SHIFT)
4797 numentries >>= (scale - PAGE_SHIFT);
4798 else
4799 numentries <<= (PAGE_SHIFT - scale);
4800
4801 /* Make sure we've got at least a 0-order allocation.. */
4802 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4803 numentries = PAGE_SIZE / bucketsize;
4804 }
4805 numentries = roundup_pow_of_two(numentries);
4806
4807 /* limit allocation size to 1/16 total memory by default */
4808 if (max == 0) {
4809 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4810 do_div(max, bucketsize);
4811 }
4812
4813 if (numentries > max)
4814 numentries = max;
4815
4816 log2qty = ilog2(numentries);
4817
4818 do {
4819 size = bucketsize << log2qty;
4820 if (flags & HASH_EARLY)
4821 table = alloc_bootmem_nopanic(size);
4822 else if (hashdist)
4823 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4824 else {
4825 /*
4826 * If bucketsize is not a power-of-two, we may free
4827 * some pages at the end of hash table which
4828 * alloc_pages_exact() automatically does
4829 */
4830 if (get_order(size) < MAX_ORDER) {
4831 table = alloc_pages_exact(size, GFP_ATOMIC);
4832 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4833 }
4834 }
4835 } while (!table && size > PAGE_SIZE && --log2qty);
4836
4837 if (!table)
4838 panic("Failed to allocate %s hash table\n", tablename);
4839
4840 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4841 tablename,
4842 (1U << log2qty),
4843 ilog2(size) - PAGE_SHIFT,
4844 size);
4845
4846 if (_hash_shift)
4847 *_hash_shift = log2qty;
4848 if (_hash_mask)
4849 *_hash_mask = (1 << log2qty) - 1;
4850
4851 return table;
4852 }
4853
4854 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4855 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4856 unsigned long pfn)
4857 {
4858 #ifdef CONFIG_SPARSEMEM
4859 return __pfn_to_section(pfn)->pageblock_flags;
4860 #else
4861 return zone->pageblock_flags;
4862 #endif /* CONFIG_SPARSEMEM */
4863 }
4864
4865 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4866 {
4867 #ifdef CONFIG_SPARSEMEM
4868 pfn &= (PAGES_PER_SECTION-1);
4869 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4870 #else
4871 pfn = pfn - zone->zone_start_pfn;
4872 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4873 #endif /* CONFIG_SPARSEMEM */
4874 }
4875
4876 /**
4877 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4878 * @page: The page within the block of interest
4879 * @start_bitidx: The first bit of interest to retrieve
4880 * @end_bitidx: The last bit of interest
4881 * returns pageblock_bits flags
4882 */
4883 unsigned long get_pageblock_flags_group(struct page *page,
4884 int start_bitidx, int end_bitidx)
4885 {
4886 struct zone *zone;
4887 unsigned long *bitmap;
4888 unsigned long pfn, bitidx;
4889 unsigned long flags = 0;
4890 unsigned long value = 1;
4891
4892 zone = page_zone(page);
4893 pfn = page_to_pfn(page);
4894 bitmap = get_pageblock_bitmap(zone, pfn);
4895 bitidx = pfn_to_bitidx(zone, pfn);
4896
4897 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4898 if (test_bit(bitidx + start_bitidx, bitmap))
4899 flags |= value;
4900
4901 return flags;
4902 }
4903
4904 /**
4905 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4906 * @page: The page within the block of interest
4907 * @start_bitidx: The first bit of interest
4908 * @end_bitidx: The last bit of interest
4909 * @flags: The flags to set
4910 */
4911 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4912 int start_bitidx, int end_bitidx)
4913 {
4914 struct zone *zone;
4915 unsigned long *bitmap;
4916 unsigned long pfn, bitidx;
4917 unsigned long value = 1;
4918
4919 zone = page_zone(page);
4920 pfn = page_to_pfn(page);
4921 bitmap = get_pageblock_bitmap(zone, pfn);
4922 bitidx = pfn_to_bitidx(zone, pfn);
4923 VM_BUG_ON(pfn < zone->zone_start_pfn);
4924 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4925
4926 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4927 if (flags & value)
4928 __set_bit(bitidx + start_bitidx, bitmap);
4929 else
4930 __clear_bit(bitidx + start_bitidx, bitmap);
4931 }
4932
4933 /*
4934 * This is designed as sub function...plz see page_isolation.c also.
4935 * set/clear page block's type to be ISOLATE.
4936 * page allocater never alloc memory from ISOLATE block.
4937 */
4938
4939 int set_migratetype_isolate(struct page *page)
4940 {
4941 struct zone *zone;
4942 unsigned long flags;
4943 int ret = -EBUSY;
4944 int zone_idx;
4945
4946 zone = page_zone(page);
4947 zone_idx = zone_idx(zone);
4948 spin_lock_irqsave(&zone->lock, flags);
4949 /*
4950 * In future, more migrate types will be able to be isolation target.
4951 */
4952 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4953 zone_idx != ZONE_MOVABLE)
4954 goto out;
4955 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4956 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4957 ret = 0;
4958 out:
4959 spin_unlock_irqrestore(&zone->lock, flags);
4960 if (!ret)
4961 drain_all_pages();
4962 return ret;
4963 }
4964
4965 void unset_migratetype_isolate(struct page *page)
4966 {
4967 struct zone *zone;
4968 unsigned long flags;
4969 zone = page_zone(page);
4970 spin_lock_irqsave(&zone->lock, flags);
4971 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4972 goto out;
4973 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4974 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4975 out:
4976 spin_unlock_irqrestore(&zone->lock, flags);
4977 }
4978
4979 #ifdef CONFIG_MEMORY_HOTREMOVE
4980 /*
4981 * All pages in the range must be isolated before calling this.
4982 */
4983 void
4984 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4985 {
4986 struct page *page;
4987 struct zone *zone;
4988 int order, i;
4989 unsigned long pfn;
4990 unsigned long flags;
4991 /* find the first valid pfn */
4992 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4993 if (pfn_valid(pfn))
4994 break;
4995 if (pfn == end_pfn)
4996 return;
4997 zone = page_zone(pfn_to_page(pfn));
4998 spin_lock_irqsave(&zone->lock, flags);
4999 pfn = start_pfn;
5000 while (pfn < end_pfn) {
5001 if (!pfn_valid(pfn)) {
5002 pfn++;
5003 continue;
5004 }
5005 page = pfn_to_page(pfn);
5006 BUG_ON(page_count(page));
5007 BUG_ON(!PageBuddy(page));
5008 order = page_order(page);
5009 #ifdef CONFIG_DEBUG_VM
5010 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5011 pfn, 1 << order, end_pfn);
5012 #endif
5013 list_del(&page->lru);
5014 rmv_page_order(page);
5015 zone->free_area[order].nr_free--;
5016 __mod_zone_page_state(zone, NR_FREE_PAGES,
5017 - (1UL << order));
5018 for (i = 0; i < (1 << order); i++)
5019 SetPageReserved((page+i));
5020 pfn += (1 << order);
5021 }
5022 spin_unlock_irqrestore(&zone->lock, flags);
5023 }
5024 #endif
This page took 0.128563 seconds and 6 git commands to generate.