mm, page_alloc: shorten the page allocator fast path
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355
356 void set_pageblock_migratetype(struct page *page, int migratetype)
357 {
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
360 migratetype = MIGRATE_UNMOVABLE;
361
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364 }
365
366 #ifdef CONFIG_DEBUG_VM
367 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
368 {
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
372 unsigned long sp, start_pfn;
373
374 do {
375 seq = zone_span_seqbegin(zone);
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
378 if (!zone_spans_pfn(zone, pfn))
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
382 if (ret)
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
386
387 return ret;
388 }
389
390 static int page_is_consistent(struct zone *zone, struct page *page)
391 {
392 if (!pfn_valid_within(page_to_pfn(page)))
393 return 0;
394 if (zone != page_zone(page))
395 return 0;
396
397 return 1;
398 }
399 /*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402 static int bad_range(struct zone *zone, struct page *page)
403 {
404 if (page_outside_zone_boundaries(zone, page))
405 return 1;
406 if (!page_is_consistent(zone, page))
407 return 1;
408
409 return 0;
410 }
411 #else
412 static inline int bad_range(struct zone *zone, struct page *page)
413 {
414 return 0;
415 }
416 #endif
417
418 static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
420 {
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
427 page_mapcount_reset(page); /* remove PageBuddy */
428 return;
429 }
430
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
441 pr_alert(
442 "BUG: Bad page state: %lu messages suppressed\n",
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
452 current->comm, page_to_pfn(page));
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
458 dump_page_owner(page);
459
460 print_modules();
461 dump_stack();
462 out:
463 /* Leave bad fields for debug, except PageBuddy could make trouble */
464 page_mapcount_reset(page); /* remove PageBuddy */
465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
466 }
467
468 /*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
472 *
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
475 *
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
478 *
479 * The first tail page's ->compound_order holds the order of allocation.
480 * This usage means that zero-order pages may not be compound.
481 */
482
483 void free_compound_page(struct page *page)
484 {
485 __free_pages_ok(page, compound_order(page));
486 }
487
488 void prep_compound_page(struct page *page, unsigned int order)
489 {
490 int i;
491 int nr_pages = 1 << order;
492
493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
498 set_page_count(p, 0);
499 p->mapping = TAIL_MAPPING;
500 set_compound_head(p, page);
501 }
502 atomic_set(compound_mapcount_ptr(page), -1);
503 }
504
505 #ifdef CONFIG_DEBUG_PAGEALLOC
506 unsigned int _debug_guardpage_minorder;
507 bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
509 EXPORT_SYMBOL(_debug_pagealloc_enabled);
510 bool _debug_guardpage_enabled __read_mostly;
511
512 static int __init early_debug_pagealloc(char *buf)
513 {
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
523 return 0;
524 }
525 early_param("debug_pagealloc", early_debug_pagealloc);
526
527 static bool need_debug_guardpage(void)
528 {
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
533 return true;
534 }
535
536 static void init_debug_guardpage(void)
537 {
538 if (!debug_pagealloc_enabled())
539 return;
540
541 _debug_guardpage_enabled = true;
542 }
543
544 struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547 };
548
549 static int __init debug_guardpage_minorder_setup(char *buf)
550 {
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
554 pr_err("Bad debug_guardpage_minorder value\n");
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
559 return 0;
560 }
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
563 static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
565 {
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
578 }
579
580 static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
582 {
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
594 }
595 #else
596 struct page_ext_operations debug_guardpage_ops = { NULL, };
597 static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599 static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
601 #endif
602
603 static inline void set_page_order(struct page *page, unsigned int order)
604 {
605 set_page_private(page, order);
606 __SetPageBuddy(page);
607 }
608
609 static inline void rmv_page_order(struct page *page)
610 {
611 __ClearPageBuddy(page);
612 set_page_private(page, 0);
613 }
614
615 /*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
618 * (a) the buddy is not in a hole &&
619 * (b) the buddy is in the buddy system &&
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
622 *
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
627 *
628 * For recording page's order, we use page_private(page).
629 */
630 static inline int page_is_buddy(struct page *page, struct page *buddy,
631 unsigned int order)
632 {
633 if (!pfn_valid_within(page_to_pfn(buddy)))
634 return 0;
635
636 if (page_is_guard(buddy) && page_order(buddy) == order) {
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
642 return 1;
643 }
644
645 if (PageBuddy(buddy) && page_order(buddy) == order) {
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
656 return 1;
657 }
658 return 0;
659 }
660
661 /*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
677 * So when we are allocating or freeing one, we can derive the state of the
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
680 * If a block is freed, and its buddy is also free, then this
681 * triggers coalescing into a block of larger size.
682 *
683 * -- nyc
684 */
685
686 static inline void __free_one_page(struct page *page,
687 unsigned long pfn,
688 struct zone *zone, unsigned int order,
689 int migratetype)
690 {
691 unsigned long page_idx;
692 unsigned long combined_idx;
693 unsigned long uninitialized_var(buddy_idx);
694 struct page *buddy;
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
698
699 VM_BUG_ON(!zone_is_initialized(zone));
700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
701
702 VM_BUG_ON(migratetype == -1);
703 if (likely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705
706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
707
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
710
711 continue_merging:
712 while (order < max_order - 1) {
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
715 if (!page_is_buddy(page, buddy, order))
716 goto done_merging;
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
722 clear_page_guard(zone, buddy, order, migratetype);
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
728 combined_idx = buddy_idx & page_idx;
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758 done_merging:
759 set_page_order(page, order);
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
770 struct page *higher_page, *higher_buddy;
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
774 higher_buddy = higher_page + (buddy_idx - combined_idx);
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783 out:
784 zone->free_area[order].nr_free++;
785 }
786
787 static inline int free_pages_check(struct page *page)
788 {
789 const char *bad_reason = NULL;
790 unsigned long bad_flags = 0;
791
792 if (unlikely(atomic_read(&page->_mapcount) != -1))
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
796 if (unlikely(page_ref_count(page) != 0))
797 bad_reason = "nonzero _refcount";
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
802 #ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805 #endif
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
808 return 1;
809 }
810 page_cpupid_reset_last(page);
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
814 }
815
816 /*
817 * Frees a number of pages from the PCP lists
818 * Assumes all pages on list are in same zone, and of same order.
819 * count is the number of pages to free.
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
827 static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
829 {
830 int migratetype = 0;
831 int batch_free = 0;
832 int to_free = count;
833 unsigned long nr_scanned;
834 bool isolated_pageblocks;
835
836 spin_lock(&zone->lock);
837 isolated_pageblocks = has_isolate_pageblock(zone);
838 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
839 if (nr_scanned)
840 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
841
842 while (to_free) {
843 struct page *page;
844 struct list_head *list;
845
846 /*
847 * Remove pages from lists in a round-robin fashion. A
848 * batch_free count is maintained that is incremented when an
849 * empty list is encountered. This is so more pages are freed
850 * off fuller lists instead of spinning excessively around empty
851 * lists
852 */
853 do {
854 batch_free++;
855 if (++migratetype == MIGRATE_PCPTYPES)
856 migratetype = 0;
857 list = &pcp->lists[migratetype];
858 } while (list_empty(list));
859
860 /* This is the only non-empty list. Free them all. */
861 if (batch_free == MIGRATE_PCPTYPES)
862 batch_free = to_free;
863
864 do {
865 int mt; /* migratetype of the to-be-freed page */
866
867 page = list_last_entry(list, struct page, lru);
868 /* must delete as __free_one_page list manipulates */
869 list_del(&page->lru);
870
871 mt = get_pcppage_migratetype(page);
872 /* MIGRATE_ISOLATE page should not go to pcplists */
873 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
874 /* Pageblock could have been isolated meanwhile */
875 if (unlikely(isolated_pageblocks))
876 mt = get_pageblock_migratetype(page);
877
878 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
879 trace_mm_page_pcpu_drain(page, 0, mt);
880 } while (--to_free && --batch_free && !list_empty(list));
881 }
882 spin_unlock(&zone->lock);
883 }
884
885 static void free_one_page(struct zone *zone,
886 struct page *page, unsigned long pfn,
887 unsigned int order,
888 int migratetype)
889 {
890 unsigned long nr_scanned;
891 spin_lock(&zone->lock);
892 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
893 if (nr_scanned)
894 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
895
896 if (unlikely(has_isolate_pageblock(zone) ||
897 is_migrate_isolate(migratetype))) {
898 migratetype = get_pfnblock_migratetype(page, pfn);
899 }
900 __free_one_page(page, pfn, zone, order, migratetype);
901 spin_unlock(&zone->lock);
902 }
903
904 static int free_tail_pages_check(struct page *head_page, struct page *page)
905 {
906 int ret = 1;
907
908 /*
909 * We rely page->lru.next never has bit 0 set, unless the page
910 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
911 */
912 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
913
914 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
915 ret = 0;
916 goto out;
917 }
918 switch (page - head_page) {
919 case 1:
920 /* the first tail page: ->mapping is compound_mapcount() */
921 if (unlikely(compound_mapcount(page))) {
922 bad_page(page, "nonzero compound_mapcount", 0);
923 goto out;
924 }
925 break;
926 case 2:
927 /*
928 * the second tail page: ->mapping is
929 * page_deferred_list().next -- ignore value.
930 */
931 break;
932 default:
933 if (page->mapping != TAIL_MAPPING) {
934 bad_page(page, "corrupted mapping in tail page", 0);
935 goto out;
936 }
937 break;
938 }
939 if (unlikely(!PageTail(page))) {
940 bad_page(page, "PageTail not set", 0);
941 goto out;
942 }
943 if (unlikely(compound_head(page) != head_page)) {
944 bad_page(page, "compound_head not consistent", 0);
945 goto out;
946 }
947 ret = 0;
948 out:
949 page->mapping = NULL;
950 clear_compound_head(page);
951 return ret;
952 }
953
954 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
955 unsigned long zone, int nid)
956 {
957 set_page_links(page, zone, nid, pfn);
958 init_page_count(page);
959 page_mapcount_reset(page);
960 page_cpupid_reset_last(page);
961
962 INIT_LIST_HEAD(&page->lru);
963 #ifdef WANT_PAGE_VIRTUAL
964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
965 if (!is_highmem_idx(zone))
966 set_page_address(page, __va(pfn << PAGE_SHIFT));
967 #endif
968 }
969
970 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
971 int nid)
972 {
973 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
974 }
975
976 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
977 static void init_reserved_page(unsigned long pfn)
978 {
979 pg_data_t *pgdat;
980 int nid, zid;
981
982 if (!early_page_uninitialised(pfn))
983 return;
984
985 nid = early_pfn_to_nid(pfn);
986 pgdat = NODE_DATA(nid);
987
988 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
989 struct zone *zone = &pgdat->node_zones[zid];
990
991 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
992 break;
993 }
994 __init_single_pfn(pfn, zid, nid);
995 }
996 #else
997 static inline void init_reserved_page(unsigned long pfn)
998 {
999 }
1000 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1001
1002 /*
1003 * Initialised pages do not have PageReserved set. This function is
1004 * called for each range allocated by the bootmem allocator and
1005 * marks the pages PageReserved. The remaining valid pages are later
1006 * sent to the buddy page allocator.
1007 */
1008 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1009 {
1010 unsigned long start_pfn = PFN_DOWN(start);
1011 unsigned long end_pfn = PFN_UP(end);
1012
1013 for (; start_pfn < end_pfn; start_pfn++) {
1014 if (pfn_valid(start_pfn)) {
1015 struct page *page = pfn_to_page(start_pfn);
1016
1017 init_reserved_page(start_pfn);
1018
1019 /* Avoid false-positive PageTail() */
1020 INIT_LIST_HEAD(&page->lru);
1021
1022 SetPageReserved(page);
1023 }
1024 }
1025 }
1026
1027 static bool free_pages_prepare(struct page *page, unsigned int order)
1028 {
1029 int bad = 0;
1030
1031 VM_BUG_ON_PAGE(PageTail(page), page);
1032
1033 trace_mm_page_free(page, order);
1034 kmemcheck_free_shadow(page, order);
1035 kasan_free_pages(page, order);
1036
1037 /*
1038 * Check tail pages before head page information is cleared to
1039 * avoid checking PageCompound for order-0 pages.
1040 */
1041 if (unlikely(order)) {
1042 bool compound = PageCompound(page);
1043 int i;
1044
1045 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1046
1047 for (i = 1; i < (1 << order); i++) {
1048 if (compound)
1049 bad += free_tail_pages_check(page, page + i);
1050 bad += free_pages_check(page + i);
1051 }
1052 }
1053 if (PageAnonHead(page))
1054 page->mapping = NULL;
1055 bad += free_pages_check(page);
1056 if (bad)
1057 return false;
1058
1059 reset_page_owner(page, order);
1060
1061 if (!PageHighMem(page)) {
1062 debug_check_no_locks_freed(page_address(page),
1063 PAGE_SIZE << order);
1064 debug_check_no_obj_freed(page_address(page),
1065 PAGE_SIZE << order);
1066 }
1067 arch_free_page(page, order);
1068 kernel_poison_pages(page, 1 << order, 0);
1069 kernel_map_pages(page, 1 << order, 0);
1070
1071 return true;
1072 }
1073
1074 static void __free_pages_ok(struct page *page, unsigned int order)
1075 {
1076 unsigned long flags;
1077 int migratetype;
1078 unsigned long pfn = page_to_pfn(page);
1079
1080 if (!free_pages_prepare(page, order))
1081 return;
1082
1083 migratetype = get_pfnblock_migratetype(page, pfn);
1084 local_irq_save(flags);
1085 __count_vm_events(PGFREE, 1 << order);
1086 free_one_page(page_zone(page), page, pfn, order, migratetype);
1087 local_irq_restore(flags);
1088 }
1089
1090 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1091 {
1092 unsigned int nr_pages = 1 << order;
1093 struct page *p = page;
1094 unsigned int loop;
1095
1096 prefetchw(p);
1097 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1098 prefetchw(p + 1);
1099 __ClearPageReserved(p);
1100 set_page_count(p, 0);
1101 }
1102 __ClearPageReserved(p);
1103 set_page_count(p, 0);
1104
1105 page_zone(page)->managed_pages += nr_pages;
1106 set_page_refcounted(page);
1107 __free_pages(page, order);
1108 }
1109
1110 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1111 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1112
1113 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1114
1115 int __meminit early_pfn_to_nid(unsigned long pfn)
1116 {
1117 static DEFINE_SPINLOCK(early_pfn_lock);
1118 int nid;
1119
1120 spin_lock(&early_pfn_lock);
1121 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1122 if (nid < 0)
1123 nid = 0;
1124 spin_unlock(&early_pfn_lock);
1125
1126 return nid;
1127 }
1128 #endif
1129
1130 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1131 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1132 struct mminit_pfnnid_cache *state)
1133 {
1134 int nid;
1135
1136 nid = __early_pfn_to_nid(pfn, state);
1137 if (nid >= 0 && nid != node)
1138 return false;
1139 return true;
1140 }
1141
1142 /* Only safe to use early in boot when initialisation is single-threaded */
1143 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1144 {
1145 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1146 }
1147
1148 #else
1149
1150 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1151 {
1152 return true;
1153 }
1154 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1155 struct mminit_pfnnid_cache *state)
1156 {
1157 return true;
1158 }
1159 #endif
1160
1161
1162 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1163 unsigned int order)
1164 {
1165 if (early_page_uninitialised(pfn))
1166 return;
1167 return __free_pages_boot_core(page, order);
1168 }
1169
1170 /*
1171 * Check that the whole (or subset of) a pageblock given by the interval of
1172 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1173 * with the migration of free compaction scanner. The scanners then need to
1174 * use only pfn_valid_within() check for arches that allow holes within
1175 * pageblocks.
1176 *
1177 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1178 *
1179 * It's possible on some configurations to have a setup like node0 node1 node0
1180 * i.e. it's possible that all pages within a zones range of pages do not
1181 * belong to a single zone. We assume that a border between node0 and node1
1182 * can occur within a single pageblock, but not a node0 node1 node0
1183 * interleaving within a single pageblock. It is therefore sufficient to check
1184 * the first and last page of a pageblock and avoid checking each individual
1185 * page in a pageblock.
1186 */
1187 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1188 unsigned long end_pfn, struct zone *zone)
1189 {
1190 struct page *start_page;
1191 struct page *end_page;
1192
1193 /* end_pfn is one past the range we are checking */
1194 end_pfn--;
1195
1196 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1197 return NULL;
1198
1199 start_page = pfn_to_page(start_pfn);
1200
1201 if (page_zone(start_page) != zone)
1202 return NULL;
1203
1204 end_page = pfn_to_page(end_pfn);
1205
1206 /* This gives a shorter code than deriving page_zone(end_page) */
1207 if (page_zone_id(start_page) != page_zone_id(end_page))
1208 return NULL;
1209
1210 return start_page;
1211 }
1212
1213 void set_zone_contiguous(struct zone *zone)
1214 {
1215 unsigned long block_start_pfn = zone->zone_start_pfn;
1216 unsigned long block_end_pfn;
1217
1218 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1219 for (; block_start_pfn < zone_end_pfn(zone);
1220 block_start_pfn = block_end_pfn,
1221 block_end_pfn += pageblock_nr_pages) {
1222
1223 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1224
1225 if (!__pageblock_pfn_to_page(block_start_pfn,
1226 block_end_pfn, zone))
1227 return;
1228 }
1229
1230 /* We confirm that there is no hole */
1231 zone->contiguous = true;
1232 }
1233
1234 void clear_zone_contiguous(struct zone *zone)
1235 {
1236 zone->contiguous = false;
1237 }
1238
1239 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1240 static void __init deferred_free_range(struct page *page,
1241 unsigned long pfn, int nr_pages)
1242 {
1243 int i;
1244
1245 if (!page)
1246 return;
1247
1248 /* Free a large naturally-aligned chunk if possible */
1249 if (nr_pages == MAX_ORDER_NR_PAGES &&
1250 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1251 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1252 __free_pages_boot_core(page, MAX_ORDER-1);
1253 return;
1254 }
1255
1256 for (i = 0; i < nr_pages; i++, page++)
1257 __free_pages_boot_core(page, 0);
1258 }
1259
1260 /* Completion tracking for deferred_init_memmap() threads */
1261 static atomic_t pgdat_init_n_undone __initdata;
1262 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1263
1264 static inline void __init pgdat_init_report_one_done(void)
1265 {
1266 if (atomic_dec_and_test(&pgdat_init_n_undone))
1267 complete(&pgdat_init_all_done_comp);
1268 }
1269
1270 /* Initialise remaining memory on a node */
1271 static int __init deferred_init_memmap(void *data)
1272 {
1273 pg_data_t *pgdat = data;
1274 int nid = pgdat->node_id;
1275 struct mminit_pfnnid_cache nid_init_state = { };
1276 unsigned long start = jiffies;
1277 unsigned long nr_pages = 0;
1278 unsigned long walk_start, walk_end;
1279 int i, zid;
1280 struct zone *zone;
1281 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1283
1284 if (first_init_pfn == ULONG_MAX) {
1285 pgdat_init_report_one_done();
1286 return 0;
1287 }
1288
1289 /* Bind memory initialisation thread to a local node if possible */
1290 if (!cpumask_empty(cpumask))
1291 set_cpus_allowed_ptr(current, cpumask);
1292
1293 /* Sanity check boundaries */
1294 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1295 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1296 pgdat->first_deferred_pfn = ULONG_MAX;
1297
1298 /* Only the highest zone is deferred so find it */
1299 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1300 zone = pgdat->node_zones + zid;
1301 if (first_init_pfn < zone_end_pfn(zone))
1302 break;
1303 }
1304
1305 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1306 unsigned long pfn, end_pfn;
1307 struct page *page = NULL;
1308 struct page *free_base_page = NULL;
1309 unsigned long free_base_pfn = 0;
1310 int nr_to_free = 0;
1311
1312 end_pfn = min(walk_end, zone_end_pfn(zone));
1313 pfn = first_init_pfn;
1314 if (pfn < walk_start)
1315 pfn = walk_start;
1316 if (pfn < zone->zone_start_pfn)
1317 pfn = zone->zone_start_pfn;
1318
1319 for (; pfn < end_pfn; pfn++) {
1320 if (!pfn_valid_within(pfn))
1321 goto free_range;
1322
1323 /*
1324 * Ensure pfn_valid is checked every
1325 * MAX_ORDER_NR_PAGES for memory holes
1326 */
1327 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1328 if (!pfn_valid(pfn)) {
1329 page = NULL;
1330 goto free_range;
1331 }
1332 }
1333
1334 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1335 page = NULL;
1336 goto free_range;
1337 }
1338
1339 /* Minimise pfn page lookups and scheduler checks */
1340 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1341 page++;
1342 } else {
1343 nr_pages += nr_to_free;
1344 deferred_free_range(free_base_page,
1345 free_base_pfn, nr_to_free);
1346 free_base_page = NULL;
1347 free_base_pfn = nr_to_free = 0;
1348
1349 page = pfn_to_page(pfn);
1350 cond_resched();
1351 }
1352
1353 if (page->flags) {
1354 VM_BUG_ON(page_zone(page) != zone);
1355 goto free_range;
1356 }
1357
1358 __init_single_page(page, pfn, zid, nid);
1359 if (!free_base_page) {
1360 free_base_page = page;
1361 free_base_pfn = pfn;
1362 nr_to_free = 0;
1363 }
1364 nr_to_free++;
1365
1366 /* Where possible, batch up pages for a single free */
1367 continue;
1368 free_range:
1369 /* Free the current block of pages to allocator */
1370 nr_pages += nr_to_free;
1371 deferred_free_range(free_base_page, free_base_pfn,
1372 nr_to_free);
1373 free_base_page = NULL;
1374 free_base_pfn = nr_to_free = 0;
1375 }
1376
1377 first_init_pfn = max(end_pfn, first_init_pfn);
1378 }
1379
1380 /* Sanity check that the next zone really is unpopulated */
1381 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1382
1383 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1384 jiffies_to_msecs(jiffies - start));
1385
1386 pgdat_init_report_one_done();
1387 return 0;
1388 }
1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390
1391 void __init page_alloc_init_late(void)
1392 {
1393 struct zone *zone;
1394
1395 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1396 int nid;
1397
1398 /* There will be num_node_state(N_MEMORY) threads */
1399 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1400 for_each_node_state(nid, N_MEMORY) {
1401 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1402 }
1403
1404 /* Block until all are initialised */
1405 wait_for_completion(&pgdat_init_all_done_comp);
1406
1407 /* Reinit limits that are based on free pages after the kernel is up */
1408 files_maxfiles_init();
1409 #endif
1410
1411 for_each_populated_zone(zone)
1412 set_zone_contiguous(zone);
1413 }
1414
1415 #ifdef CONFIG_CMA
1416 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1417 void __init init_cma_reserved_pageblock(struct page *page)
1418 {
1419 unsigned i = pageblock_nr_pages;
1420 struct page *p = page;
1421
1422 do {
1423 __ClearPageReserved(p);
1424 set_page_count(p, 0);
1425 } while (++p, --i);
1426
1427 set_pageblock_migratetype(page, MIGRATE_CMA);
1428
1429 if (pageblock_order >= MAX_ORDER) {
1430 i = pageblock_nr_pages;
1431 p = page;
1432 do {
1433 set_page_refcounted(p);
1434 __free_pages(p, MAX_ORDER - 1);
1435 p += MAX_ORDER_NR_PAGES;
1436 } while (i -= MAX_ORDER_NR_PAGES);
1437 } else {
1438 set_page_refcounted(page);
1439 __free_pages(page, pageblock_order);
1440 }
1441
1442 adjust_managed_page_count(page, pageblock_nr_pages);
1443 }
1444 #endif
1445
1446 /*
1447 * The order of subdivision here is critical for the IO subsystem.
1448 * Please do not alter this order without good reasons and regression
1449 * testing. Specifically, as large blocks of memory are subdivided,
1450 * the order in which smaller blocks are delivered depends on the order
1451 * they're subdivided in this function. This is the primary factor
1452 * influencing the order in which pages are delivered to the IO
1453 * subsystem according to empirical testing, and this is also justified
1454 * by considering the behavior of a buddy system containing a single
1455 * large block of memory acted on by a series of small allocations.
1456 * This behavior is a critical factor in sglist merging's success.
1457 *
1458 * -- nyc
1459 */
1460 static inline void expand(struct zone *zone, struct page *page,
1461 int low, int high, struct free_area *area,
1462 int migratetype)
1463 {
1464 unsigned long size = 1 << high;
1465
1466 while (high > low) {
1467 area--;
1468 high--;
1469 size >>= 1;
1470 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1471
1472 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1473 debug_guardpage_enabled() &&
1474 high < debug_guardpage_minorder()) {
1475 /*
1476 * Mark as guard pages (or page), that will allow to
1477 * merge back to allocator when buddy will be freed.
1478 * Corresponding page table entries will not be touched,
1479 * pages will stay not present in virtual address space
1480 */
1481 set_page_guard(zone, &page[size], high, migratetype);
1482 continue;
1483 }
1484 list_add(&page[size].lru, &area->free_list[migratetype]);
1485 area->nr_free++;
1486 set_page_order(&page[size], high);
1487 }
1488 }
1489
1490 /*
1491 * This page is about to be returned from the page allocator
1492 */
1493 static inline int check_new_page(struct page *page)
1494 {
1495 const char *bad_reason = NULL;
1496 unsigned long bad_flags = 0;
1497
1498 if (unlikely(atomic_read(&page->_mapcount) != -1))
1499 bad_reason = "nonzero mapcount";
1500 if (unlikely(page->mapping != NULL))
1501 bad_reason = "non-NULL mapping";
1502 if (unlikely(page_ref_count(page) != 0))
1503 bad_reason = "nonzero _count";
1504 if (unlikely(page->flags & __PG_HWPOISON)) {
1505 bad_reason = "HWPoisoned (hardware-corrupted)";
1506 bad_flags = __PG_HWPOISON;
1507 }
1508 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1509 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1510 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1511 }
1512 #ifdef CONFIG_MEMCG
1513 if (unlikely(page->mem_cgroup))
1514 bad_reason = "page still charged to cgroup";
1515 #endif
1516 if (unlikely(bad_reason)) {
1517 bad_page(page, bad_reason, bad_flags);
1518 return 1;
1519 }
1520 return 0;
1521 }
1522
1523 static inline bool free_pages_prezeroed(bool poisoned)
1524 {
1525 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1526 page_poisoning_enabled() && poisoned;
1527 }
1528
1529 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1530 unsigned int alloc_flags)
1531 {
1532 int i;
1533 bool poisoned = true;
1534
1535 for (i = 0; i < (1 << order); i++) {
1536 struct page *p = page + i;
1537 if (unlikely(check_new_page(p)))
1538 return 1;
1539 if (poisoned)
1540 poisoned &= page_is_poisoned(p);
1541 }
1542
1543 set_page_private(page, 0);
1544 set_page_refcounted(page);
1545
1546 arch_alloc_page(page, order);
1547 kernel_map_pages(page, 1 << order, 1);
1548 kernel_poison_pages(page, 1 << order, 1);
1549 kasan_alloc_pages(page, order);
1550
1551 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1552 for (i = 0; i < (1 << order); i++)
1553 clear_highpage(page + i);
1554
1555 if (order && (gfp_flags & __GFP_COMP))
1556 prep_compound_page(page, order);
1557
1558 set_page_owner(page, order, gfp_flags);
1559
1560 /*
1561 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1562 * allocate the page. The expectation is that the caller is taking
1563 * steps that will free more memory. The caller should avoid the page
1564 * being used for !PFMEMALLOC purposes.
1565 */
1566 if (alloc_flags & ALLOC_NO_WATERMARKS)
1567 set_page_pfmemalloc(page);
1568 else
1569 clear_page_pfmemalloc(page);
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * Go through the free lists for the given migratetype and remove
1576 * the smallest available page from the freelists
1577 */
1578 static inline
1579 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1580 int migratetype)
1581 {
1582 unsigned int current_order;
1583 struct free_area *area;
1584 struct page *page;
1585
1586 /* Find a page of the appropriate size in the preferred list */
1587 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1588 area = &(zone->free_area[current_order]);
1589 page = list_first_entry_or_null(&area->free_list[migratetype],
1590 struct page, lru);
1591 if (!page)
1592 continue;
1593 list_del(&page->lru);
1594 rmv_page_order(page);
1595 area->nr_free--;
1596 expand(zone, page, order, current_order, area, migratetype);
1597 set_pcppage_migratetype(page, migratetype);
1598 return page;
1599 }
1600
1601 return NULL;
1602 }
1603
1604
1605 /*
1606 * This array describes the order lists are fallen back to when
1607 * the free lists for the desirable migrate type are depleted
1608 */
1609 static int fallbacks[MIGRATE_TYPES][4] = {
1610 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1611 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1612 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1613 #ifdef CONFIG_CMA
1614 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1615 #endif
1616 #ifdef CONFIG_MEMORY_ISOLATION
1617 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1618 #endif
1619 };
1620
1621 #ifdef CONFIG_CMA
1622 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1623 unsigned int order)
1624 {
1625 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1626 }
1627 #else
1628 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1629 unsigned int order) { return NULL; }
1630 #endif
1631
1632 /*
1633 * Move the free pages in a range to the free lists of the requested type.
1634 * Note that start_page and end_pages are not aligned on a pageblock
1635 * boundary. If alignment is required, use move_freepages_block()
1636 */
1637 int move_freepages(struct zone *zone,
1638 struct page *start_page, struct page *end_page,
1639 int migratetype)
1640 {
1641 struct page *page;
1642 unsigned int order;
1643 int pages_moved = 0;
1644
1645 #ifndef CONFIG_HOLES_IN_ZONE
1646 /*
1647 * page_zone is not safe to call in this context when
1648 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1649 * anyway as we check zone boundaries in move_freepages_block().
1650 * Remove at a later date when no bug reports exist related to
1651 * grouping pages by mobility
1652 */
1653 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1654 #endif
1655
1656 for (page = start_page; page <= end_page;) {
1657 /* Make sure we are not inadvertently changing nodes */
1658 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1659
1660 if (!pfn_valid_within(page_to_pfn(page))) {
1661 page++;
1662 continue;
1663 }
1664
1665 if (!PageBuddy(page)) {
1666 page++;
1667 continue;
1668 }
1669
1670 order = page_order(page);
1671 list_move(&page->lru,
1672 &zone->free_area[order].free_list[migratetype]);
1673 page += 1 << order;
1674 pages_moved += 1 << order;
1675 }
1676
1677 return pages_moved;
1678 }
1679
1680 int move_freepages_block(struct zone *zone, struct page *page,
1681 int migratetype)
1682 {
1683 unsigned long start_pfn, end_pfn;
1684 struct page *start_page, *end_page;
1685
1686 start_pfn = page_to_pfn(page);
1687 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1688 start_page = pfn_to_page(start_pfn);
1689 end_page = start_page + pageblock_nr_pages - 1;
1690 end_pfn = start_pfn + pageblock_nr_pages - 1;
1691
1692 /* Do not cross zone boundaries */
1693 if (!zone_spans_pfn(zone, start_pfn))
1694 start_page = page;
1695 if (!zone_spans_pfn(zone, end_pfn))
1696 return 0;
1697
1698 return move_freepages(zone, start_page, end_page, migratetype);
1699 }
1700
1701 static void change_pageblock_range(struct page *pageblock_page,
1702 int start_order, int migratetype)
1703 {
1704 int nr_pageblocks = 1 << (start_order - pageblock_order);
1705
1706 while (nr_pageblocks--) {
1707 set_pageblock_migratetype(pageblock_page, migratetype);
1708 pageblock_page += pageblock_nr_pages;
1709 }
1710 }
1711
1712 /*
1713 * When we are falling back to another migratetype during allocation, try to
1714 * steal extra free pages from the same pageblocks to satisfy further
1715 * allocations, instead of polluting multiple pageblocks.
1716 *
1717 * If we are stealing a relatively large buddy page, it is likely there will
1718 * be more free pages in the pageblock, so try to steal them all. For
1719 * reclaimable and unmovable allocations, we steal regardless of page size,
1720 * as fragmentation caused by those allocations polluting movable pageblocks
1721 * is worse than movable allocations stealing from unmovable and reclaimable
1722 * pageblocks.
1723 */
1724 static bool can_steal_fallback(unsigned int order, int start_mt)
1725 {
1726 /*
1727 * Leaving this order check is intended, although there is
1728 * relaxed order check in next check. The reason is that
1729 * we can actually steal whole pageblock if this condition met,
1730 * but, below check doesn't guarantee it and that is just heuristic
1731 * so could be changed anytime.
1732 */
1733 if (order >= pageblock_order)
1734 return true;
1735
1736 if (order >= pageblock_order / 2 ||
1737 start_mt == MIGRATE_RECLAIMABLE ||
1738 start_mt == MIGRATE_UNMOVABLE ||
1739 page_group_by_mobility_disabled)
1740 return true;
1741
1742 return false;
1743 }
1744
1745 /*
1746 * This function implements actual steal behaviour. If order is large enough,
1747 * we can steal whole pageblock. If not, we first move freepages in this
1748 * pageblock and check whether half of pages are moved or not. If half of
1749 * pages are moved, we can change migratetype of pageblock and permanently
1750 * use it's pages as requested migratetype in the future.
1751 */
1752 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1753 int start_type)
1754 {
1755 unsigned int current_order = page_order(page);
1756 int pages;
1757
1758 /* Take ownership for orders >= pageblock_order */
1759 if (current_order >= pageblock_order) {
1760 change_pageblock_range(page, current_order, start_type);
1761 return;
1762 }
1763
1764 pages = move_freepages_block(zone, page, start_type);
1765
1766 /* Claim the whole block if over half of it is free */
1767 if (pages >= (1 << (pageblock_order-1)) ||
1768 page_group_by_mobility_disabled)
1769 set_pageblock_migratetype(page, start_type);
1770 }
1771
1772 /*
1773 * Check whether there is a suitable fallback freepage with requested order.
1774 * If only_stealable is true, this function returns fallback_mt only if
1775 * we can steal other freepages all together. This would help to reduce
1776 * fragmentation due to mixed migratetype pages in one pageblock.
1777 */
1778 int find_suitable_fallback(struct free_area *area, unsigned int order,
1779 int migratetype, bool only_stealable, bool *can_steal)
1780 {
1781 int i;
1782 int fallback_mt;
1783
1784 if (area->nr_free == 0)
1785 return -1;
1786
1787 *can_steal = false;
1788 for (i = 0;; i++) {
1789 fallback_mt = fallbacks[migratetype][i];
1790 if (fallback_mt == MIGRATE_TYPES)
1791 break;
1792
1793 if (list_empty(&area->free_list[fallback_mt]))
1794 continue;
1795
1796 if (can_steal_fallback(order, migratetype))
1797 *can_steal = true;
1798
1799 if (!only_stealable)
1800 return fallback_mt;
1801
1802 if (*can_steal)
1803 return fallback_mt;
1804 }
1805
1806 return -1;
1807 }
1808
1809 /*
1810 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1811 * there are no empty page blocks that contain a page with a suitable order
1812 */
1813 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1814 unsigned int alloc_order)
1815 {
1816 int mt;
1817 unsigned long max_managed, flags;
1818
1819 /*
1820 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1821 * Check is race-prone but harmless.
1822 */
1823 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1824 if (zone->nr_reserved_highatomic >= max_managed)
1825 return;
1826
1827 spin_lock_irqsave(&zone->lock, flags);
1828
1829 /* Recheck the nr_reserved_highatomic limit under the lock */
1830 if (zone->nr_reserved_highatomic >= max_managed)
1831 goto out_unlock;
1832
1833 /* Yoink! */
1834 mt = get_pageblock_migratetype(page);
1835 if (mt != MIGRATE_HIGHATOMIC &&
1836 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1837 zone->nr_reserved_highatomic += pageblock_nr_pages;
1838 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1839 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1840 }
1841
1842 out_unlock:
1843 spin_unlock_irqrestore(&zone->lock, flags);
1844 }
1845
1846 /*
1847 * Used when an allocation is about to fail under memory pressure. This
1848 * potentially hurts the reliability of high-order allocations when under
1849 * intense memory pressure but failed atomic allocations should be easier
1850 * to recover from than an OOM.
1851 */
1852 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1853 {
1854 struct zonelist *zonelist = ac->zonelist;
1855 unsigned long flags;
1856 struct zoneref *z;
1857 struct zone *zone;
1858 struct page *page;
1859 int order;
1860
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1862 ac->nodemask) {
1863 /* Preserve at least one pageblock */
1864 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1865 continue;
1866
1867 spin_lock_irqsave(&zone->lock, flags);
1868 for (order = 0; order < MAX_ORDER; order++) {
1869 struct free_area *area = &(zone->free_area[order]);
1870
1871 page = list_first_entry_or_null(
1872 &area->free_list[MIGRATE_HIGHATOMIC],
1873 struct page, lru);
1874 if (!page)
1875 continue;
1876
1877 /*
1878 * It should never happen but changes to locking could
1879 * inadvertently allow a per-cpu drain to add pages
1880 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1881 * and watch for underflows.
1882 */
1883 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1884 zone->nr_reserved_highatomic);
1885
1886 /*
1887 * Convert to ac->migratetype and avoid the normal
1888 * pageblock stealing heuristics. Minimally, the caller
1889 * is doing the work and needs the pages. More
1890 * importantly, if the block was always converted to
1891 * MIGRATE_UNMOVABLE or another type then the number
1892 * of pageblocks that cannot be completely freed
1893 * may increase.
1894 */
1895 set_pageblock_migratetype(page, ac->migratetype);
1896 move_freepages_block(zone, page, ac->migratetype);
1897 spin_unlock_irqrestore(&zone->lock, flags);
1898 return;
1899 }
1900 spin_unlock_irqrestore(&zone->lock, flags);
1901 }
1902 }
1903
1904 /* Remove an element from the buddy allocator from the fallback list */
1905 static inline struct page *
1906 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1907 {
1908 struct free_area *area;
1909 unsigned int current_order;
1910 struct page *page;
1911 int fallback_mt;
1912 bool can_steal;
1913
1914 /* Find the largest possible block of pages in the other list */
1915 for (current_order = MAX_ORDER-1;
1916 current_order >= order && current_order <= MAX_ORDER-1;
1917 --current_order) {
1918 area = &(zone->free_area[current_order]);
1919 fallback_mt = find_suitable_fallback(area, current_order,
1920 start_migratetype, false, &can_steal);
1921 if (fallback_mt == -1)
1922 continue;
1923
1924 page = list_first_entry(&area->free_list[fallback_mt],
1925 struct page, lru);
1926 if (can_steal)
1927 steal_suitable_fallback(zone, page, start_migratetype);
1928
1929 /* Remove the page from the freelists */
1930 area->nr_free--;
1931 list_del(&page->lru);
1932 rmv_page_order(page);
1933
1934 expand(zone, page, order, current_order, area,
1935 start_migratetype);
1936 /*
1937 * The pcppage_migratetype may differ from pageblock's
1938 * migratetype depending on the decisions in
1939 * find_suitable_fallback(). This is OK as long as it does not
1940 * differ for MIGRATE_CMA pageblocks. Those can be used as
1941 * fallback only via special __rmqueue_cma_fallback() function
1942 */
1943 set_pcppage_migratetype(page, start_migratetype);
1944
1945 trace_mm_page_alloc_extfrag(page, order, current_order,
1946 start_migratetype, fallback_mt);
1947
1948 return page;
1949 }
1950
1951 return NULL;
1952 }
1953
1954 /*
1955 * Do the hard work of removing an element from the buddy allocator.
1956 * Call me with the zone->lock already held.
1957 */
1958 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1959 int migratetype)
1960 {
1961 struct page *page;
1962
1963 page = __rmqueue_smallest(zone, order, migratetype);
1964 if (unlikely(!page)) {
1965 if (migratetype == MIGRATE_MOVABLE)
1966 page = __rmqueue_cma_fallback(zone, order);
1967
1968 if (!page)
1969 page = __rmqueue_fallback(zone, order, migratetype);
1970 }
1971
1972 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1973 return page;
1974 }
1975
1976 /*
1977 * Obtain a specified number of elements from the buddy allocator, all under
1978 * a single hold of the lock, for efficiency. Add them to the supplied list.
1979 * Returns the number of new pages which were placed at *list.
1980 */
1981 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1982 unsigned long count, struct list_head *list,
1983 int migratetype, bool cold)
1984 {
1985 int i;
1986
1987 spin_lock(&zone->lock);
1988 for (i = 0; i < count; ++i) {
1989 struct page *page = __rmqueue(zone, order, migratetype);
1990 if (unlikely(page == NULL))
1991 break;
1992
1993 /*
1994 * Split buddy pages returned by expand() are received here
1995 * in physical page order. The page is added to the callers and
1996 * list and the list head then moves forward. From the callers
1997 * perspective, the linked list is ordered by page number in
1998 * some conditions. This is useful for IO devices that can
1999 * merge IO requests if the physical pages are ordered
2000 * properly.
2001 */
2002 if (likely(!cold))
2003 list_add(&page->lru, list);
2004 else
2005 list_add_tail(&page->lru, list);
2006 list = &page->lru;
2007 if (is_migrate_cma(get_pcppage_migratetype(page)))
2008 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2009 -(1 << order));
2010 }
2011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2012 spin_unlock(&zone->lock);
2013 return i;
2014 }
2015
2016 #ifdef CONFIG_NUMA
2017 /*
2018 * Called from the vmstat counter updater to drain pagesets of this
2019 * currently executing processor on remote nodes after they have
2020 * expired.
2021 *
2022 * Note that this function must be called with the thread pinned to
2023 * a single processor.
2024 */
2025 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2026 {
2027 unsigned long flags;
2028 int to_drain, batch;
2029
2030 local_irq_save(flags);
2031 batch = READ_ONCE(pcp->batch);
2032 to_drain = min(pcp->count, batch);
2033 if (to_drain > 0) {
2034 free_pcppages_bulk(zone, to_drain, pcp);
2035 pcp->count -= to_drain;
2036 }
2037 local_irq_restore(flags);
2038 }
2039 #endif
2040
2041 /*
2042 * Drain pcplists of the indicated processor and zone.
2043 *
2044 * The processor must either be the current processor and the
2045 * thread pinned to the current processor or a processor that
2046 * is not online.
2047 */
2048 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2049 {
2050 unsigned long flags;
2051 struct per_cpu_pageset *pset;
2052 struct per_cpu_pages *pcp;
2053
2054 local_irq_save(flags);
2055 pset = per_cpu_ptr(zone->pageset, cpu);
2056
2057 pcp = &pset->pcp;
2058 if (pcp->count) {
2059 free_pcppages_bulk(zone, pcp->count, pcp);
2060 pcp->count = 0;
2061 }
2062 local_irq_restore(flags);
2063 }
2064
2065 /*
2066 * Drain pcplists of all zones on the indicated processor.
2067 *
2068 * The processor must either be the current processor and the
2069 * thread pinned to the current processor or a processor that
2070 * is not online.
2071 */
2072 static void drain_pages(unsigned int cpu)
2073 {
2074 struct zone *zone;
2075
2076 for_each_populated_zone(zone) {
2077 drain_pages_zone(cpu, zone);
2078 }
2079 }
2080
2081 /*
2082 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2083 *
2084 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2085 * the single zone's pages.
2086 */
2087 void drain_local_pages(struct zone *zone)
2088 {
2089 int cpu = smp_processor_id();
2090
2091 if (zone)
2092 drain_pages_zone(cpu, zone);
2093 else
2094 drain_pages(cpu);
2095 }
2096
2097 /*
2098 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2099 *
2100 * When zone parameter is non-NULL, spill just the single zone's pages.
2101 *
2102 * Note that this code is protected against sending an IPI to an offline
2103 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2104 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2105 * nothing keeps CPUs from showing up after we populated the cpumask and
2106 * before the call to on_each_cpu_mask().
2107 */
2108 void drain_all_pages(struct zone *zone)
2109 {
2110 int cpu;
2111
2112 /*
2113 * Allocate in the BSS so we wont require allocation in
2114 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2115 */
2116 static cpumask_t cpus_with_pcps;
2117
2118 /*
2119 * We don't care about racing with CPU hotplug event
2120 * as offline notification will cause the notified
2121 * cpu to drain that CPU pcps and on_each_cpu_mask
2122 * disables preemption as part of its processing
2123 */
2124 for_each_online_cpu(cpu) {
2125 struct per_cpu_pageset *pcp;
2126 struct zone *z;
2127 bool has_pcps = false;
2128
2129 if (zone) {
2130 pcp = per_cpu_ptr(zone->pageset, cpu);
2131 if (pcp->pcp.count)
2132 has_pcps = true;
2133 } else {
2134 for_each_populated_zone(z) {
2135 pcp = per_cpu_ptr(z->pageset, cpu);
2136 if (pcp->pcp.count) {
2137 has_pcps = true;
2138 break;
2139 }
2140 }
2141 }
2142
2143 if (has_pcps)
2144 cpumask_set_cpu(cpu, &cpus_with_pcps);
2145 else
2146 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2147 }
2148 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2149 zone, 1);
2150 }
2151
2152 #ifdef CONFIG_HIBERNATION
2153
2154 void mark_free_pages(struct zone *zone)
2155 {
2156 unsigned long pfn, max_zone_pfn;
2157 unsigned long flags;
2158 unsigned int order, t;
2159 struct page *page;
2160
2161 if (zone_is_empty(zone))
2162 return;
2163
2164 spin_lock_irqsave(&zone->lock, flags);
2165
2166 max_zone_pfn = zone_end_pfn(zone);
2167 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2168 if (pfn_valid(pfn)) {
2169 page = pfn_to_page(pfn);
2170
2171 if (page_zone(page) != zone)
2172 continue;
2173
2174 if (!swsusp_page_is_forbidden(page))
2175 swsusp_unset_page_free(page);
2176 }
2177
2178 for_each_migratetype_order(order, t) {
2179 list_for_each_entry(page,
2180 &zone->free_area[order].free_list[t], lru) {
2181 unsigned long i;
2182
2183 pfn = page_to_pfn(page);
2184 for (i = 0; i < (1UL << order); i++)
2185 swsusp_set_page_free(pfn_to_page(pfn + i));
2186 }
2187 }
2188 spin_unlock_irqrestore(&zone->lock, flags);
2189 }
2190 #endif /* CONFIG_PM */
2191
2192 /*
2193 * Free a 0-order page
2194 * cold == true ? free a cold page : free a hot page
2195 */
2196 void free_hot_cold_page(struct page *page, bool cold)
2197 {
2198 struct zone *zone = page_zone(page);
2199 struct per_cpu_pages *pcp;
2200 unsigned long flags;
2201 unsigned long pfn = page_to_pfn(page);
2202 int migratetype;
2203
2204 if (!free_pages_prepare(page, 0))
2205 return;
2206
2207 migratetype = get_pfnblock_migratetype(page, pfn);
2208 set_pcppage_migratetype(page, migratetype);
2209 local_irq_save(flags);
2210 __count_vm_event(PGFREE);
2211
2212 /*
2213 * We only track unmovable, reclaimable and movable on pcp lists.
2214 * Free ISOLATE pages back to the allocator because they are being
2215 * offlined but treat RESERVE as movable pages so we can get those
2216 * areas back if necessary. Otherwise, we may have to free
2217 * excessively into the page allocator
2218 */
2219 if (migratetype >= MIGRATE_PCPTYPES) {
2220 if (unlikely(is_migrate_isolate(migratetype))) {
2221 free_one_page(zone, page, pfn, 0, migratetype);
2222 goto out;
2223 }
2224 migratetype = MIGRATE_MOVABLE;
2225 }
2226
2227 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2228 if (!cold)
2229 list_add(&page->lru, &pcp->lists[migratetype]);
2230 else
2231 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2232 pcp->count++;
2233 if (pcp->count >= pcp->high) {
2234 unsigned long batch = READ_ONCE(pcp->batch);
2235 free_pcppages_bulk(zone, batch, pcp);
2236 pcp->count -= batch;
2237 }
2238
2239 out:
2240 local_irq_restore(flags);
2241 }
2242
2243 /*
2244 * Free a list of 0-order pages
2245 */
2246 void free_hot_cold_page_list(struct list_head *list, bool cold)
2247 {
2248 struct page *page, *next;
2249
2250 list_for_each_entry_safe(page, next, list, lru) {
2251 trace_mm_page_free_batched(page, cold);
2252 free_hot_cold_page(page, cold);
2253 }
2254 }
2255
2256 /*
2257 * split_page takes a non-compound higher-order page, and splits it into
2258 * n (1<<order) sub-pages: page[0..n]
2259 * Each sub-page must be freed individually.
2260 *
2261 * Note: this is probably too low level an operation for use in drivers.
2262 * Please consult with lkml before using this in your driver.
2263 */
2264 void split_page(struct page *page, unsigned int order)
2265 {
2266 int i;
2267 gfp_t gfp_mask;
2268
2269 VM_BUG_ON_PAGE(PageCompound(page), page);
2270 VM_BUG_ON_PAGE(!page_count(page), page);
2271
2272 #ifdef CONFIG_KMEMCHECK
2273 /*
2274 * Split shadow pages too, because free(page[0]) would
2275 * otherwise free the whole shadow.
2276 */
2277 if (kmemcheck_page_is_tracked(page))
2278 split_page(virt_to_page(page[0].shadow), order);
2279 #endif
2280
2281 gfp_mask = get_page_owner_gfp(page);
2282 set_page_owner(page, 0, gfp_mask);
2283 for (i = 1; i < (1 << order); i++) {
2284 set_page_refcounted(page + i);
2285 set_page_owner(page + i, 0, gfp_mask);
2286 }
2287 }
2288 EXPORT_SYMBOL_GPL(split_page);
2289
2290 int __isolate_free_page(struct page *page, unsigned int order)
2291 {
2292 unsigned long watermark;
2293 struct zone *zone;
2294 int mt;
2295
2296 BUG_ON(!PageBuddy(page));
2297
2298 zone = page_zone(page);
2299 mt = get_pageblock_migratetype(page);
2300
2301 if (!is_migrate_isolate(mt)) {
2302 /* Obey watermarks as if the page was being allocated */
2303 watermark = low_wmark_pages(zone) + (1 << order);
2304 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2305 return 0;
2306
2307 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2308 }
2309
2310 /* Remove page from free list */
2311 list_del(&page->lru);
2312 zone->free_area[order].nr_free--;
2313 rmv_page_order(page);
2314
2315 set_page_owner(page, order, __GFP_MOVABLE);
2316
2317 /* Set the pageblock if the isolated page is at least a pageblock */
2318 if (order >= pageblock_order - 1) {
2319 struct page *endpage = page + (1 << order) - 1;
2320 for (; page < endpage; page += pageblock_nr_pages) {
2321 int mt = get_pageblock_migratetype(page);
2322 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2323 set_pageblock_migratetype(page,
2324 MIGRATE_MOVABLE);
2325 }
2326 }
2327
2328
2329 return 1UL << order;
2330 }
2331
2332 /*
2333 * Similar to split_page except the page is already free. As this is only
2334 * being used for migration, the migratetype of the block also changes.
2335 * As this is called with interrupts disabled, the caller is responsible
2336 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2337 * are enabled.
2338 *
2339 * Note: this is probably too low level an operation for use in drivers.
2340 * Please consult with lkml before using this in your driver.
2341 */
2342 int split_free_page(struct page *page)
2343 {
2344 unsigned int order;
2345 int nr_pages;
2346
2347 order = page_order(page);
2348
2349 nr_pages = __isolate_free_page(page, order);
2350 if (!nr_pages)
2351 return 0;
2352
2353 /* Split into individual pages */
2354 set_page_refcounted(page);
2355 split_page(page, order);
2356 return nr_pages;
2357 }
2358
2359 /*
2360 * Update NUMA hit/miss statistics
2361 *
2362 * Must be called with interrupts disabled.
2363 *
2364 * When __GFP_OTHER_NODE is set assume the node of the preferred
2365 * zone is the local node. This is useful for daemons who allocate
2366 * memory on behalf of other processes.
2367 */
2368 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2369 gfp_t flags)
2370 {
2371 #ifdef CONFIG_NUMA
2372 int local_nid = numa_node_id();
2373 enum zone_stat_item local_stat = NUMA_LOCAL;
2374
2375 if (unlikely(flags & __GFP_OTHER_NODE)) {
2376 local_stat = NUMA_OTHER;
2377 local_nid = preferred_zone->node;
2378 }
2379
2380 if (z->node == local_nid) {
2381 __inc_zone_state(z, NUMA_HIT);
2382 __inc_zone_state(z, local_stat);
2383 } else {
2384 __inc_zone_state(z, NUMA_MISS);
2385 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2386 }
2387 #endif
2388 }
2389
2390 /*
2391 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2392 */
2393 static inline
2394 struct page *buffered_rmqueue(struct zone *preferred_zone,
2395 struct zone *zone, unsigned int order,
2396 gfp_t gfp_flags, unsigned int alloc_flags,
2397 int migratetype)
2398 {
2399 unsigned long flags;
2400 struct page *page;
2401 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2402
2403 if (likely(order == 0)) {
2404 struct per_cpu_pages *pcp;
2405 struct list_head *list;
2406
2407 local_irq_save(flags);
2408 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2409 list = &pcp->lists[migratetype];
2410 if (list_empty(list)) {
2411 pcp->count += rmqueue_bulk(zone, 0,
2412 pcp->batch, list,
2413 migratetype, cold);
2414 if (unlikely(list_empty(list)))
2415 goto failed;
2416 }
2417
2418 if (cold)
2419 page = list_last_entry(list, struct page, lru);
2420 else
2421 page = list_first_entry(list, struct page, lru);
2422
2423 __dec_zone_state(zone, NR_ALLOC_BATCH);
2424 list_del(&page->lru);
2425 pcp->count--;
2426 } else {
2427 /*
2428 * We most definitely don't want callers attempting to
2429 * allocate greater than order-1 page units with __GFP_NOFAIL.
2430 */
2431 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2432 spin_lock_irqsave(&zone->lock, flags);
2433
2434 page = NULL;
2435 if (alloc_flags & ALLOC_HARDER) {
2436 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2437 if (page)
2438 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2439 }
2440 if (!page)
2441 page = __rmqueue(zone, order, migratetype);
2442 spin_unlock(&zone->lock);
2443 if (!page)
2444 goto failed;
2445 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2446 __mod_zone_freepage_state(zone, -(1 << order),
2447 get_pcppage_migratetype(page));
2448 }
2449
2450 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2451 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2452 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2453
2454 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2455 zone_statistics(preferred_zone, zone, gfp_flags);
2456 local_irq_restore(flags);
2457
2458 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2459 return page;
2460
2461 failed:
2462 local_irq_restore(flags);
2463 return NULL;
2464 }
2465
2466 #ifdef CONFIG_FAIL_PAGE_ALLOC
2467
2468 static struct {
2469 struct fault_attr attr;
2470
2471 bool ignore_gfp_highmem;
2472 bool ignore_gfp_reclaim;
2473 u32 min_order;
2474 } fail_page_alloc = {
2475 .attr = FAULT_ATTR_INITIALIZER,
2476 .ignore_gfp_reclaim = true,
2477 .ignore_gfp_highmem = true,
2478 .min_order = 1,
2479 };
2480
2481 static int __init setup_fail_page_alloc(char *str)
2482 {
2483 return setup_fault_attr(&fail_page_alloc.attr, str);
2484 }
2485 __setup("fail_page_alloc=", setup_fail_page_alloc);
2486
2487 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2488 {
2489 if (order < fail_page_alloc.min_order)
2490 return false;
2491 if (gfp_mask & __GFP_NOFAIL)
2492 return false;
2493 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2494 return false;
2495 if (fail_page_alloc.ignore_gfp_reclaim &&
2496 (gfp_mask & __GFP_DIRECT_RECLAIM))
2497 return false;
2498
2499 return should_fail(&fail_page_alloc.attr, 1 << order);
2500 }
2501
2502 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2503
2504 static int __init fail_page_alloc_debugfs(void)
2505 {
2506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2507 struct dentry *dir;
2508
2509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2510 &fail_page_alloc.attr);
2511 if (IS_ERR(dir))
2512 return PTR_ERR(dir);
2513
2514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2515 &fail_page_alloc.ignore_gfp_reclaim))
2516 goto fail;
2517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2518 &fail_page_alloc.ignore_gfp_highmem))
2519 goto fail;
2520 if (!debugfs_create_u32("min-order", mode, dir,
2521 &fail_page_alloc.min_order))
2522 goto fail;
2523
2524 return 0;
2525 fail:
2526 debugfs_remove_recursive(dir);
2527
2528 return -ENOMEM;
2529 }
2530
2531 late_initcall(fail_page_alloc_debugfs);
2532
2533 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2534
2535 #else /* CONFIG_FAIL_PAGE_ALLOC */
2536
2537 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2538 {
2539 return false;
2540 }
2541
2542 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2543
2544 /*
2545 * Return true if free base pages are above 'mark'. For high-order checks it
2546 * will return true of the order-0 watermark is reached and there is at least
2547 * one free page of a suitable size. Checking now avoids taking the zone lock
2548 * to check in the allocation paths if no pages are free.
2549 */
2550 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2551 unsigned long mark, int classzone_idx,
2552 unsigned int alloc_flags,
2553 long free_pages)
2554 {
2555 long min = mark;
2556 int o;
2557 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2558
2559 /* free_pages may go negative - that's OK */
2560 free_pages -= (1 << order) - 1;
2561
2562 if (alloc_flags & ALLOC_HIGH)
2563 min -= min / 2;
2564
2565 /*
2566 * If the caller does not have rights to ALLOC_HARDER then subtract
2567 * the high-atomic reserves. This will over-estimate the size of the
2568 * atomic reserve but it avoids a search.
2569 */
2570 if (likely(!alloc_harder))
2571 free_pages -= z->nr_reserved_highatomic;
2572 else
2573 min -= min / 4;
2574
2575 #ifdef CONFIG_CMA
2576 /* If allocation can't use CMA areas don't use free CMA pages */
2577 if (!(alloc_flags & ALLOC_CMA))
2578 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2579 #endif
2580
2581 /*
2582 * Check watermarks for an order-0 allocation request. If these
2583 * are not met, then a high-order request also cannot go ahead
2584 * even if a suitable page happened to be free.
2585 */
2586 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2587 return false;
2588
2589 /* If this is an order-0 request then the watermark is fine */
2590 if (!order)
2591 return true;
2592
2593 /* For a high-order request, check at least one suitable page is free */
2594 for (o = order; o < MAX_ORDER; o++) {
2595 struct free_area *area = &z->free_area[o];
2596 int mt;
2597
2598 if (!area->nr_free)
2599 continue;
2600
2601 if (alloc_harder)
2602 return true;
2603
2604 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2605 if (!list_empty(&area->free_list[mt]))
2606 return true;
2607 }
2608
2609 #ifdef CONFIG_CMA
2610 if ((alloc_flags & ALLOC_CMA) &&
2611 !list_empty(&area->free_list[MIGRATE_CMA])) {
2612 return true;
2613 }
2614 #endif
2615 }
2616 return false;
2617 }
2618
2619 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2620 int classzone_idx, unsigned int alloc_flags)
2621 {
2622 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2623 zone_page_state(z, NR_FREE_PAGES));
2624 }
2625
2626 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2627 unsigned long mark, int classzone_idx)
2628 {
2629 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2630
2631 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2632 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2633
2634 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2635 free_pages);
2636 }
2637
2638 #ifdef CONFIG_NUMA
2639 static bool zone_local(struct zone *local_zone, struct zone *zone)
2640 {
2641 return local_zone->node == zone->node;
2642 }
2643
2644 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2645 {
2646 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2647 RECLAIM_DISTANCE;
2648 }
2649 #else /* CONFIG_NUMA */
2650 static bool zone_local(struct zone *local_zone, struct zone *zone)
2651 {
2652 return true;
2653 }
2654
2655 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2656 {
2657 return true;
2658 }
2659 #endif /* CONFIG_NUMA */
2660
2661 static void reset_alloc_batches(struct zone *preferred_zone)
2662 {
2663 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2664
2665 do {
2666 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2667 high_wmark_pages(zone) - low_wmark_pages(zone) -
2668 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2669 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2670 } while (zone++ != preferred_zone);
2671 }
2672
2673 /*
2674 * get_page_from_freelist goes through the zonelist trying to allocate
2675 * a page.
2676 */
2677 static struct page *
2678 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2679 const struct alloc_context *ac)
2680 {
2681 struct zoneref *z;
2682 struct zone *zone;
2683 bool fair_skipped;
2684 bool zonelist_rescan;
2685
2686 zonelist_scan:
2687 zonelist_rescan = false;
2688
2689 /*
2690 * Scan zonelist, looking for a zone with enough free.
2691 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2692 */
2693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2694 ac->nodemask) {
2695 struct page *page;
2696 unsigned long mark;
2697
2698 if (cpusets_enabled() &&
2699 (alloc_flags & ALLOC_CPUSET) &&
2700 !cpuset_zone_allowed(zone, gfp_mask))
2701 continue;
2702 /*
2703 * Distribute pages in proportion to the individual
2704 * zone size to ensure fair page aging. The zone a
2705 * page was allocated in should have no effect on the
2706 * time the page has in memory before being reclaimed.
2707 */
2708 if (alloc_flags & ALLOC_FAIR) {
2709 if (!zone_local(ac->preferred_zone, zone))
2710 break;
2711 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2712 fair_skipped = true;
2713 continue;
2714 }
2715 }
2716 /*
2717 * When allocating a page cache page for writing, we
2718 * want to get it from a zone that is within its dirty
2719 * limit, such that no single zone holds more than its
2720 * proportional share of globally allowed dirty pages.
2721 * The dirty limits take into account the zone's
2722 * lowmem reserves and high watermark so that kswapd
2723 * should be able to balance it without having to
2724 * write pages from its LRU list.
2725 *
2726 * This may look like it could increase pressure on
2727 * lower zones by failing allocations in higher zones
2728 * before they are full. But the pages that do spill
2729 * over are limited as the lower zones are protected
2730 * by this very same mechanism. It should not become
2731 * a practical burden to them.
2732 *
2733 * XXX: For now, allow allocations to potentially
2734 * exceed the per-zone dirty limit in the slowpath
2735 * (spread_dirty_pages unset) before going into reclaim,
2736 * which is important when on a NUMA setup the allowed
2737 * zones are together not big enough to reach the
2738 * global limit. The proper fix for these situations
2739 * will require awareness of zones in the
2740 * dirty-throttling and the flusher threads.
2741 */
2742 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2743 continue;
2744
2745 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2746 if (!zone_watermark_ok(zone, order, mark,
2747 ac->classzone_idx, alloc_flags)) {
2748 int ret;
2749
2750 /* Checked here to keep the fast path fast */
2751 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2752 if (alloc_flags & ALLOC_NO_WATERMARKS)
2753 goto try_this_zone;
2754
2755 if (zone_reclaim_mode == 0 ||
2756 !zone_allows_reclaim(ac->preferred_zone, zone))
2757 continue;
2758
2759 ret = zone_reclaim(zone, gfp_mask, order);
2760 switch (ret) {
2761 case ZONE_RECLAIM_NOSCAN:
2762 /* did not scan */
2763 continue;
2764 case ZONE_RECLAIM_FULL:
2765 /* scanned but unreclaimable */
2766 continue;
2767 default:
2768 /* did we reclaim enough */
2769 if (zone_watermark_ok(zone, order, mark,
2770 ac->classzone_idx, alloc_flags))
2771 goto try_this_zone;
2772
2773 continue;
2774 }
2775 }
2776
2777 try_this_zone:
2778 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2779 gfp_mask, alloc_flags, ac->migratetype);
2780 if (page) {
2781 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2782 goto try_this_zone;
2783
2784 /*
2785 * If this is a high-order atomic allocation then check
2786 * if the pageblock should be reserved for the future
2787 */
2788 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2789 reserve_highatomic_pageblock(page, zone, order);
2790
2791 return page;
2792 }
2793 }
2794
2795 /*
2796 * The first pass makes sure allocations are spread fairly within the
2797 * local node. However, the local node might have free pages left
2798 * after the fairness batches are exhausted, and remote zones haven't
2799 * even been considered yet. Try once more without fairness, and
2800 * include remote zones now, before entering the slowpath and waking
2801 * kswapd: prefer spilling to a remote zone over swapping locally.
2802 */
2803 if (alloc_flags & ALLOC_FAIR) {
2804 alloc_flags &= ~ALLOC_FAIR;
2805 if (fair_skipped) {
2806 zonelist_rescan = true;
2807 reset_alloc_batches(ac->preferred_zone);
2808 }
2809 if (nr_online_nodes > 1)
2810 zonelist_rescan = true;
2811 }
2812
2813 if (zonelist_rescan)
2814 goto zonelist_scan;
2815
2816 return NULL;
2817 }
2818
2819 /*
2820 * Large machines with many possible nodes should not always dump per-node
2821 * meminfo in irq context.
2822 */
2823 static inline bool should_suppress_show_mem(void)
2824 {
2825 bool ret = false;
2826
2827 #if NODES_SHIFT > 8
2828 ret = in_interrupt();
2829 #endif
2830 return ret;
2831 }
2832
2833 static DEFINE_RATELIMIT_STATE(nopage_rs,
2834 DEFAULT_RATELIMIT_INTERVAL,
2835 DEFAULT_RATELIMIT_BURST);
2836
2837 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2838 {
2839 unsigned int filter = SHOW_MEM_FILTER_NODES;
2840
2841 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2842 debug_guardpage_minorder() > 0)
2843 return;
2844
2845 /*
2846 * This documents exceptions given to allocations in certain
2847 * contexts that are allowed to allocate outside current's set
2848 * of allowed nodes.
2849 */
2850 if (!(gfp_mask & __GFP_NOMEMALLOC))
2851 if (test_thread_flag(TIF_MEMDIE) ||
2852 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2853 filter &= ~SHOW_MEM_FILTER_NODES;
2854 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2855 filter &= ~SHOW_MEM_FILTER_NODES;
2856
2857 if (fmt) {
2858 struct va_format vaf;
2859 va_list args;
2860
2861 va_start(args, fmt);
2862
2863 vaf.fmt = fmt;
2864 vaf.va = &args;
2865
2866 pr_warn("%pV", &vaf);
2867
2868 va_end(args);
2869 }
2870
2871 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2872 current->comm, order, gfp_mask, &gfp_mask);
2873 dump_stack();
2874 if (!should_suppress_show_mem())
2875 show_mem(filter);
2876 }
2877
2878 static inline struct page *
2879 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2880 const struct alloc_context *ac, unsigned long *did_some_progress)
2881 {
2882 struct oom_control oc = {
2883 .zonelist = ac->zonelist,
2884 .nodemask = ac->nodemask,
2885 .gfp_mask = gfp_mask,
2886 .order = order,
2887 };
2888 struct page *page;
2889
2890 *did_some_progress = 0;
2891
2892 /*
2893 * Acquire the oom lock. If that fails, somebody else is
2894 * making progress for us.
2895 */
2896 if (!mutex_trylock(&oom_lock)) {
2897 *did_some_progress = 1;
2898 schedule_timeout_uninterruptible(1);
2899 return NULL;
2900 }
2901
2902 /*
2903 * Go through the zonelist yet one more time, keep very high watermark
2904 * here, this is only to catch a parallel oom killing, we must fail if
2905 * we're still under heavy pressure.
2906 */
2907 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2908 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2909 if (page)
2910 goto out;
2911
2912 if (!(gfp_mask & __GFP_NOFAIL)) {
2913 /* Coredumps can quickly deplete all memory reserves */
2914 if (current->flags & PF_DUMPCORE)
2915 goto out;
2916 /* The OOM killer will not help higher order allocs */
2917 if (order > PAGE_ALLOC_COSTLY_ORDER)
2918 goto out;
2919 /* The OOM killer does not needlessly kill tasks for lowmem */
2920 if (ac->high_zoneidx < ZONE_NORMAL)
2921 goto out;
2922 if (pm_suspended_storage())
2923 goto out;
2924 /*
2925 * XXX: GFP_NOFS allocations should rather fail than rely on
2926 * other request to make a forward progress.
2927 * We are in an unfortunate situation where out_of_memory cannot
2928 * do much for this context but let's try it to at least get
2929 * access to memory reserved if the current task is killed (see
2930 * out_of_memory). Once filesystems are ready to handle allocation
2931 * failures more gracefully we should just bail out here.
2932 */
2933
2934 /* The OOM killer may not free memory on a specific node */
2935 if (gfp_mask & __GFP_THISNODE)
2936 goto out;
2937 }
2938 /* Exhausted what can be done so it's blamo time */
2939 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2940 *did_some_progress = 1;
2941
2942 if (gfp_mask & __GFP_NOFAIL) {
2943 page = get_page_from_freelist(gfp_mask, order,
2944 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2945 /*
2946 * fallback to ignore cpuset restriction if our nodes
2947 * are depleted
2948 */
2949 if (!page)
2950 page = get_page_from_freelist(gfp_mask, order,
2951 ALLOC_NO_WATERMARKS, ac);
2952 }
2953 }
2954 out:
2955 mutex_unlock(&oom_lock);
2956 return page;
2957 }
2958
2959 #ifdef CONFIG_COMPACTION
2960 /* Try memory compaction for high-order allocations before reclaim */
2961 static struct page *
2962 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2963 unsigned int alloc_flags, const struct alloc_context *ac,
2964 enum migrate_mode mode, int *contended_compaction,
2965 bool *deferred_compaction)
2966 {
2967 unsigned long compact_result;
2968 struct page *page;
2969
2970 if (!order)
2971 return NULL;
2972
2973 current->flags |= PF_MEMALLOC;
2974 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2975 mode, contended_compaction);
2976 current->flags &= ~PF_MEMALLOC;
2977
2978 switch (compact_result) {
2979 case COMPACT_DEFERRED:
2980 *deferred_compaction = true;
2981 /* fall-through */
2982 case COMPACT_SKIPPED:
2983 return NULL;
2984 default:
2985 break;
2986 }
2987
2988 /*
2989 * At least in one zone compaction wasn't deferred or skipped, so let's
2990 * count a compaction stall
2991 */
2992 count_vm_event(COMPACTSTALL);
2993
2994 page = get_page_from_freelist(gfp_mask, order,
2995 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2996
2997 if (page) {
2998 struct zone *zone = page_zone(page);
2999
3000 zone->compact_blockskip_flush = false;
3001 compaction_defer_reset(zone, order, true);
3002 count_vm_event(COMPACTSUCCESS);
3003 return page;
3004 }
3005
3006 /*
3007 * It's bad if compaction run occurs and fails. The most likely reason
3008 * is that pages exist, but not enough to satisfy watermarks.
3009 */
3010 count_vm_event(COMPACTFAIL);
3011
3012 cond_resched();
3013
3014 return NULL;
3015 }
3016 #else
3017 static inline struct page *
3018 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3019 unsigned int alloc_flags, const struct alloc_context *ac,
3020 enum migrate_mode mode, int *contended_compaction,
3021 bool *deferred_compaction)
3022 {
3023 return NULL;
3024 }
3025 #endif /* CONFIG_COMPACTION */
3026
3027 /* Perform direct synchronous page reclaim */
3028 static int
3029 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3030 const struct alloc_context *ac)
3031 {
3032 struct reclaim_state reclaim_state;
3033 int progress;
3034
3035 cond_resched();
3036
3037 /* We now go into synchronous reclaim */
3038 cpuset_memory_pressure_bump();
3039 current->flags |= PF_MEMALLOC;
3040 lockdep_set_current_reclaim_state(gfp_mask);
3041 reclaim_state.reclaimed_slab = 0;
3042 current->reclaim_state = &reclaim_state;
3043
3044 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3045 ac->nodemask);
3046
3047 current->reclaim_state = NULL;
3048 lockdep_clear_current_reclaim_state();
3049 current->flags &= ~PF_MEMALLOC;
3050
3051 cond_resched();
3052
3053 return progress;
3054 }
3055
3056 /* The really slow allocator path where we enter direct reclaim */
3057 static inline struct page *
3058 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3059 unsigned int alloc_flags, const struct alloc_context *ac,
3060 unsigned long *did_some_progress)
3061 {
3062 struct page *page = NULL;
3063 bool drained = false;
3064
3065 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3066 if (unlikely(!(*did_some_progress)))
3067 return NULL;
3068
3069 retry:
3070 page = get_page_from_freelist(gfp_mask, order,
3071 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3072
3073 /*
3074 * If an allocation failed after direct reclaim, it could be because
3075 * pages are pinned on the per-cpu lists or in high alloc reserves.
3076 * Shrink them them and try again
3077 */
3078 if (!page && !drained) {
3079 unreserve_highatomic_pageblock(ac);
3080 drain_all_pages(NULL);
3081 drained = true;
3082 goto retry;
3083 }
3084
3085 return page;
3086 }
3087
3088 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3089 {
3090 struct zoneref *z;
3091 struct zone *zone;
3092
3093 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3094 ac->high_zoneidx, ac->nodemask)
3095 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3096 }
3097
3098 static inline unsigned int
3099 gfp_to_alloc_flags(gfp_t gfp_mask)
3100 {
3101 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3102
3103 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3104 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3105
3106 /*
3107 * The caller may dip into page reserves a bit more if the caller
3108 * cannot run direct reclaim, or if the caller has realtime scheduling
3109 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3110 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3111 */
3112 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3113
3114 if (gfp_mask & __GFP_ATOMIC) {
3115 /*
3116 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3117 * if it can't schedule.
3118 */
3119 if (!(gfp_mask & __GFP_NOMEMALLOC))
3120 alloc_flags |= ALLOC_HARDER;
3121 /*
3122 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3123 * comment for __cpuset_node_allowed().
3124 */
3125 alloc_flags &= ~ALLOC_CPUSET;
3126 } else if (unlikely(rt_task(current)) && !in_interrupt())
3127 alloc_flags |= ALLOC_HARDER;
3128
3129 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3130 if (gfp_mask & __GFP_MEMALLOC)
3131 alloc_flags |= ALLOC_NO_WATERMARKS;
3132 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3133 alloc_flags |= ALLOC_NO_WATERMARKS;
3134 else if (!in_interrupt() &&
3135 ((current->flags & PF_MEMALLOC) ||
3136 unlikely(test_thread_flag(TIF_MEMDIE))))
3137 alloc_flags |= ALLOC_NO_WATERMARKS;
3138 }
3139 #ifdef CONFIG_CMA
3140 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3141 alloc_flags |= ALLOC_CMA;
3142 #endif
3143 return alloc_flags;
3144 }
3145
3146 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3147 {
3148 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3149 }
3150
3151 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3152 {
3153 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3154 }
3155
3156 static inline struct page *
3157 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3158 struct alloc_context *ac)
3159 {
3160 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3161 struct page *page = NULL;
3162 unsigned int alloc_flags;
3163 unsigned long pages_reclaimed = 0;
3164 unsigned long did_some_progress;
3165 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3166 bool deferred_compaction = false;
3167 int contended_compaction = COMPACT_CONTENDED_NONE;
3168
3169 /*
3170 * In the slowpath, we sanity check order to avoid ever trying to
3171 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3172 * be using allocators in order of preference for an area that is
3173 * too large.
3174 */
3175 if (order >= MAX_ORDER) {
3176 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3177 return NULL;
3178 }
3179
3180 /*
3181 * We also sanity check to catch abuse of atomic reserves being used by
3182 * callers that are not in atomic context.
3183 */
3184 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3185 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3186 gfp_mask &= ~__GFP_ATOMIC;
3187
3188 retry:
3189 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3190 wake_all_kswapds(order, ac);
3191
3192 /*
3193 * OK, we're below the kswapd watermark and have kicked background
3194 * reclaim. Now things get more complex, so set up alloc_flags according
3195 * to how we want to proceed.
3196 */
3197 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3198
3199 /* This is the last chance, in general, before the goto nopage. */
3200 page = get_page_from_freelist(gfp_mask, order,
3201 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3202 if (page)
3203 goto got_pg;
3204
3205 /* Allocate without watermarks if the context allows */
3206 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3207 /*
3208 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3209 * the allocation is high priority and these type of
3210 * allocations are system rather than user orientated
3211 */
3212 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3213 page = get_page_from_freelist(gfp_mask, order,
3214 ALLOC_NO_WATERMARKS, ac);
3215 if (page)
3216 goto got_pg;
3217 }
3218
3219 /* Caller is not willing to reclaim, we can't balance anything */
3220 if (!can_direct_reclaim) {
3221 /*
3222 * All existing users of the __GFP_NOFAIL are blockable, so warn
3223 * of any new users that actually allow this type of allocation
3224 * to fail.
3225 */
3226 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3227 goto nopage;
3228 }
3229
3230 /* Avoid recursion of direct reclaim */
3231 if (current->flags & PF_MEMALLOC) {
3232 /*
3233 * __GFP_NOFAIL request from this context is rather bizarre
3234 * because we cannot reclaim anything and only can loop waiting
3235 * for somebody to do a work for us.
3236 */
3237 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3238 cond_resched();
3239 goto retry;
3240 }
3241 goto nopage;
3242 }
3243
3244 /* Avoid allocations with no watermarks from looping endlessly */
3245 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3246 goto nopage;
3247
3248 /*
3249 * Try direct compaction. The first pass is asynchronous. Subsequent
3250 * attempts after direct reclaim are synchronous
3251 */
3252 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3253 migration_mode,
3254 &contended_compaction,
3255 &deferred_compaction);
3256 if (page)
3257 goto got_pg;
3258
3259 /* Checks for THP-specific high-order allocations */
3260 if (is_thp_gfp_mask(gfp_mask)) {
3261 /*
3262 * If compaction is deferred for high-order allocations, it is
3263 * because sync compaction recently failed. If this is the case
3264 * and the caller requested a THP allocation, we do not want
3265 * to heavily disrupt the system, so we fail the allocation
3266 * instead of entering direct reclaim.
3267 */
3268 if (deferred_compaction)
3269 goto nopage;
3270
3271 /*
3272 * In all zones where compaction was attempted (and not
3273 * deferred or skipped), lock contention has been detected.
3274 * For THP allocation we do not want to disrupt the others
3275 * so we fallback to base pages instead.
3276 */
3277 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3278 goto nopage;
3279
3280 /*
3281 * If compaction was aborted due to need_resched(), we do not
3282 * want to further increase allocation latency, unless it is
3283 * khugepaged trying to collapse.
3284 */
3285 if (contended_compaction == COMPACT_CONTENDED_SCHED
3286 && !(current->flags & PF_KTHREAD))
3287 goto nopage;
3288 }
3289
3290 /*
3291 * It can become very expensive to allocate transparent hugepages at
3292 * fault, so use asynchronous memory compaction for THP unless it is
3293 * khugepaged trying to collapse.
3294 */
3295 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3296 migration_mode = MIGRATE_SYNC_LIGHT;
3297
3298 /* Try direct reclaim and then allocating */
3299 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3300 &did_some_progress);
3301 if (page)
3302 goto got_pg;
3303
3304 /* Do not loop if specifically requested */
3305 if (gfp_mask & __GFP_NORETRY)
3306 goto noretry;
3307
3308 /* Keep reclaiming pages as long as there is reasonable progress */
3309 pages_reclaimed += did_some_progress;
3310 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3311 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3312 /* Wait for some write requests to complete then retry */
3313 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3314 goto retry;
3315 }
3316
3317 /* Reclaim has failed us, start killing things */
3318 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3319 if (page)
3320 goto got_pg;
3321
3322 /* Retry as long as the OOM killer is making progress */
3323 if (did_some_progress)
3324 goto retry;
3325
3326 noretry:
3327 /*
3328 * High-order allocations do not necessarily loop after
3329 * direct reclaim and reclaim/compaction depends on compaction
3330 * being called after reclaim so call directly if necessary
3331 */
3332 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3333 ac, migration_mode,
3334 &contended_compaction,
3335 &deferred_compaction);
3336 if (page)
3337 goto got_pg;
3338 nopage:
3339 warn_alloc_failed(gfp_mask, order, NULL);
3340 got_pg:
3341 return page;
3342 }
3343
3344 /*
3345 * This is the 'heart' of the zoned buddy allocator.
3346 */
3347 struct page *
3348 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3349 struct zonelist *zonelist, nodemask_t *nodemask)
3350 {
3351 struct zoneref *preferred_zoneref;
3352 struct page *page;
3353 unsigned int cpuset_mems_cookie;
3354 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3355 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3356 struct alloc_context ac = {
3357 .high_zoneidx = gfp_zone(gfp_mask),
3358 .zonelist = zonelist,
3359 .nodemask = nodemask,
3360 .migratetype = gfpflags_to_migratetype(gfp_mask),
3361 };
3362
3363 if (cpusets_enabled()) {
3364 alloc_mask |= __GFP_HARDWALL;
3365 alloc_flags |= ALLOC_CPUSET;
3366 if (!ac.nodemask)
3367 ac.nodemask = &cpuset_current_mems_allowed;
3368 }
3369
3370 gfp_mask &= gfp_allowed_mask;
3371
3372 lockdep_trace_alloc(gfp_mask);
3373
3374 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3375
3376 if (should_fail_alloc_page(gfp_mask, order))
3377 return NULL;
3378
3379 /*
3380 * Check the zones suitable for the gfp_mask contain at least one
3381 * valid zone. It's possible to have an empty zonelist as a result
3382 * of __GFP_THISNODE and a memoryless node
3383 */
3384 if (unlikely(!zonelist->_zonerefs->zone))
3385 return NULL;
3386
3387 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3388 alloc_flags |= ALLOC_CMA;
3389
3390 retry_cpuset:
3391 cpuset_mems_cookie = read_mems_allowed_begin();
3392
3393 /* Dirty zone balancing only done in the fast path */
3394 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3395
3396 /* The preferred zone is used for statistics later */
3397 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3398 ac.nodemask, &ac.preferred_zone);
3399 if (!ac.preferred_zone) {
3400 page = NULL;
3401 goto no_zone;
3402 }
3403
3404 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3405
3406 /* First allocation attempt */
3407 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3408 if (likely(page))
3409 goto out;
3410
3411 /*
3412 * Runtime PM, block IO and its error handling path can deadlock
3413 * because I/O on the device might not complete.
3414 */
3415 alloc_mask = memalloc_noio_flags(gfp_mask);
3416 ac.spread_dirty_pages = false;
3417
3418 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3419
3420 no_zone:
3421 /*
3422 * When updating a task's mems_allowed, it is possible to race with
3423 * parallel threads in such a way that an allocation can fail while
3424 * the mask is being updated. If a page allocation is about to fail,
3425 * check if the cpuset changed during allocation and if so, retry.
3426 */
3427 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3428 alloc_mask = gfp_mask;
3429 goto retry_cpuset;
3430 }
3431
3432 out:
3433 if (kmemcheck_enabled && page)
3434 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3435
3436 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3437
3438 return page;
3439 }
3440 EXPORT_SYMBOL(__alloc_pages_nodemask);
3441
3442 /*
3443 * Common helper functions.
3444 */
3445 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3446 {
3447 struct page *page;
3448
3449 /*
3450 * __get_free_pages() returns a 32-bit address, which cannot represent
3451 * a highmem page
3452 */
3453 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3454
3455 page = alloc_pages(gfp_mask, order);
3456 if (!page)
3457 return 0;
3458 return (unsigned long) page_address(page);
3459 }
3460 EXPORT_SYMBOL(__get_free_pages);
3461
3462 unsigned long get_zeroed_page(gfp_t gfp_mask)
3463 {
3464 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3465 }
3466 EXPORT_SYMBOL(get_zeroed_page);
3467
3468 void __free_pages(struct page *page, unsigned int order)
3469 {
3470 if (put_page_testzero(page)) {
3471 if (order == 0)
3472 free_hot_cold_page(page, false);
3473 else
3474 __free_pages_ok(page, order);
3475 }
3476 }
3477
3478 EXPORT_SYMBOL(__free_pages);
3479
3480 void free_pages(unsigned long addr, unsigned int order)
3481 {
3482 if (addr != 0) {
3483 VM_BUG_ON(!virt_addr_valid((void *)addr));
3484 __free_pages(virt_to_page((void *)addr), order);
3485 }
3486 }
3487
3488 EXPORT_SYMBOL(free_pages);
3489
3490 /*
3491 * Page Fragment:
3492 * An arbitrary-length arbitrary-offset area of memory which resides
3493 * within a 0 or higher order page. Multiple fragments within that page
3494 * are individually refcounted, in the page's reference counter.
3495 *
3496 * The page_frag functions below provide a simple allocation framework for
3497 * page fragments. This is used by the network stack and network device
3498 * drivers to provide a backing region of memory for use as either an
3499 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3500 */
3501 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3502 gfp_t gfp_mask)
3503 {
3504 struct page *page = NULL;
3505 gfp_t gfp = gfp_mask;
3506
3507 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3508 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3509 __GFP_NOMEMALLOC;
3510 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3511 PAGE_FRAG_CACHE_MAX_ORDER);
3512 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3513 #endif
3514 if (unlikely(!page))
3515 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3516
3517 nc->va = page ? page_address(page) : NULL;
3518
3519 return page;
3520 }
3521
3522 void *__alloc_page_frag(struct page_frag_cache *nc,
3523 unsigned int fragsz, gfp_t gfp_mask)
3524 {
3525 unsigned int size = PAGE_SIZE;
3526 struct page *page;
3527 int offset;
3528
3529 if (unlikely(!nc->va)) {
3530 refill:
3531 page = __page_frag_refill(nc, gfp_mask);
3532 if (!page)
3533 return NULL;
3534
3535 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3536 /* if size can vary use size else just use PAGE_SIZE */
3537 size = nc->size;
3538 #endif
3539 /* Even if we own the page, we do not use atomic_set().
3540 * This would break get_page_unless_zero() users.
3541 */
3542 page_ref_add(page, size - 1);
3543
3544 /* reset page count bias and offset to start of new frag */
3545 nc->pfmemalloc = page_is_pfmemalloc(page);
3546 nc->pagecnt_bias = size;
3547 nc->offset = size;
3548 }
3549
3550 offset = nc->offset - fragsz;
3551 if (unlikely(offset < 0)) {
3552 page = virt_to_page(nc->va);
3553
3554 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3555 goto refill;
3556
3557 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3558 /* if size can vary use size else just use PAGE_SIZE */
3559 size = nc->size;
3560 #endif
3561 /* OK, page count is 0, we can safely set it */
3562 set_page_count(page, size);
3563
3564 /* reset page count bias and offset to start of new frag */
3565 nc->pagecnt_bias = size;
3566 offset = size - fragsz;
3567 }
3568
3569 nc->pagecnt_bias--;
3570 nc->offset = offset;
3571
3572 return nc->va + offset;
3573 }
3574 EXPORT_SYMBOL(__alloc_page_frag);
3575
3576 /*
3577 * Frees a page fragment allocated out of either a compound or order 0 page.
3578 */
3579 void __free_page_frag(void *addr)
3580 {
3581 struct page *page = virt_to_head_page(addr);
3582
3583 if (unlikely(put_page_testzero(page)))
3584 __free_pages_ok(page, compound_order(page));
3585 }
3586 EXPORT_SYMBOL(__free_page_frag);
3587
3588 /*
3589 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3590 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3591 * equivalent to alloc_pages.
3592 *
3593 * It should be used when the caller would like to use kmalloc, but since the
3594 * allocation is large, it has to fall back to the page allocator.
3595 */
3596 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3597 {
3598 struct page *page;
3599
3600 page = alloc_pages(gfp_mask, order);
3601 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3602 __free_pages(page, order);
3603 page = NULL;
3604 }
3605 return page;
3606 }
3607
3608 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3609 {
3610 struct page *page;
3611
3612 page = alloc_pages_node(nid, gfp_mask, order);
3613 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3614 __free_pages(page, order);
3615 page = NULL;
3616 }
3617 return page;
3618 }
3619
3620 /*
3621 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3622 * alloc_kmem_pages.
3623 */
3624 void __free_kmem_pages(struct page *page, unsigned int order)
3625 {
3626 memcg_kmem_uncharge(page, order);
3627 __free_pages(page, order);
3628 }
3629
3630 void free_kmem_pages(unsigned long addr, unsigned int order)
3631 {
3632 if (addr != 0) {
3633 VM_BUG_ON(!virt_addr_valid((void *)addr));
3634 __free_kmem_pages(virt_to_page((void *)addr), order);
3635 }
3636 }
3637
3638 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3639 size_t size)
3640 {
3641 if (addr) {
3642 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3643 unsigned long used = addr + PAGE_ALIGN(size);
3644
3645 split_page(virt_to_page((void *)addr), order);
3646 while (used < alloc_end) {
3647 free_page(used);
3648 used += PAGE_SIZE;
3649 }
3650 }
3651 return (void *)addr;
3652 }
3653
3654 /**
3655 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3656 * @size: the number of bytes to allocate
3657 * @gfp_mask: GFP flags for the allocation
3658 *
3659 * This function is similar to alloc_pages(), except that it allocates the
3660 * minimum number of pages to satisfy the request. alloc_pages() can only
3661 * allocate memory in power-of-two pages.
3662 *
3663 * This function is also limited by MAX_ORDER.
3664 *
3665 * Memory allocated by this function must be released by free_pages_exact().
3666 */
3667 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3668 {
3669 unsigned int order = get_order(size);
3670 unsigned long addr;
3671
3672 addr = __get_free_pages(gfp_mask, order);
3673 return make_alloc_exact(addr, order, size);
3674 }
3675 EXPORT_SYMBOL(alloc_pages_exact);
3676
3677 /**
3678 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3679 * pages on a node.
3680 * @nid: the preferred node ID where memory should be allocated
3681 * @size: the number of bytes to allocate
3682 * @gfp_mask: GFP flags for the allocation
3683 *
3684 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3685 * back.
3686 */
3687 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3688 {
3689 unsigned int order = get_order(size);
3690 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3691 if (!p)
3692 return NULL;
3693 return make_alloc_exact((unsigned long)page_address(p), order, size);
3694 }
3695
3696 /**
3697 * free_pages_exact - release memory allocated via alloc_pages_exact()
3698 * @virt: the value returned by alloc_pages_exact.
3699 * @size: size of allocation, same value as passed to alloc_pages_exact().
3700 *
3701 * Release the memory allocated by a previous call to alloc_pages_exact.
3702 */
3703 void free_pages_exact(void *virt, size_t size)
3704 {
3705 unsigned long addr = (unsigned long)virt;
3706 unsigned long end = addr + PAGE_ALIGN(size);
3707
3708 while (addr < end) {
3709 free_page(addr);
3710 addr += PAGE_SIZE;
3711 }
3712 }
3713 EXPORT_SYMBOL(free_pages_exact);
3714
3715 /**
3716 * nr_free_zone_pages - count number of pages beyond high watermark
3717 * @offset: The zone index of the highest zone
3718 *
3719 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3720 * high watermark within all zones at or below a given zone index. For each
3721 * zone, the number of pages is calculated as:
3722 * managed_pages - high_pages
3723 */
3724 static unsigned long nr_free_zone_pages(int offset)
3725 {
3726 struct zoneref *z;
3727 struct zone *zone;
3728
3729 /* Just pick one node, since fallback list is circular */
3730 unsigned long sum = 0;
3731
3732 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3733
3734 for_each_zone_zonelist(zone, z, zonelist, offset) {
3735 unsigned long size = zone->managed_pages;
3736 unsigned long high = high_wmark_pages(zone);
3737 if (size > high)
3738 sum += size - high;
3739 }
3740
3741 return sum;
3742 }
3743
3744 /**
3745 * nr_free_buffer_pages - count number of pages beyond high watermark
3746 *
3747 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3748 * watermark within ZONE_DMA and ZONE_NORMAL.
3749 */
3750 unsigned long nr_free_buffer_pages(void)
3751 {
3752 return nr_free_zone_pages(gfp_zone(GFP_USER));
3753 }
3754 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3755
3756 /**
3757 * nr_free_pagecache_pages - count number of pages beyond high watermark
3758 *
3759 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3760 * high watermark within all zones.
3761 */
3762 unsigned long nr_free_pagecache_pages(void)
3763 {
3764 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3765 }
3766
3767 static inline void show_node(struct zone *zone)
3768 {
3769 if (IS_ENABLED(CONFIG_NUMA))
3770 printk("Node %d ", zone_to_nid(zone));
3771 }
3772
3773 long si_mem_available(void)
3774 {
3775 long available;
3776 unsigned long pagecache;
3777 unsigned long wmark_low = 0;
3778 unsigned long pages[NR_LRU_LISTS];
3779 struct zone *zone;
3780 int lru;
3781
3782 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3783 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3784
3785 for_each_zone(zone)
3786 wmark_low += zone->watermark[WMARK_LOW];
3787
3788 /*
3789 * Estimate the amount of memory available for userspace allocations,
3790 * without causing swapping.
3791 */
3792 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3793
3794 /*
3795 * Not all the page cache can be freed, otherwise the system will
3796 * start swapping. Assume at least half of the page cache, or the
3797 * low watermark worth of cache, needs to stay.
3798 */
3799 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3800 pagecache -= min(pagecache / 2, wmark_low);
3801 available += pagecache;
3802
3803 /*
3804 * Part of the reclaimable slab consists of items that are in use,
3805 * and cannot be freed. Cap this estimate at the low watermark.
3806 */
3807 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3808 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3809
3810 if (available < 0)
3811 available = 0;
3812 return available;
3813 }
3814 EXPORT_SYMBOL_GPL(si_mem_available);
3815
3816 void si_meminfo(struct sysinfo *val)
3817 {
3818 val->totalram = totalram_pages;
3819 val->sharedram = global_page_state(NR_SHMEM);
3820 val->freeram = global_page_state(NR_FREE_PAGES);
3821 val->bufferram = nr_blockdev_pages();
3822 val->totalhigh = totalhigh_pages;
3823 val->freehigh = nr_free_highpages();
3824 val->mem_unit = PAGE_SIZE;
3825 }
3826
3827 EXPORT_SYMBOL(si_meminfo);
3828
3829 #ifdef CONFIG_NUMA
3830 void si_meminfo_node(struct sysinfo *val, int nid)
3831 {
3832 int zone_type; /* needs to be signed */
3833 unsigned long managed_pages = 0;
3834 unsigned long managed_highpages = 0;
3835 unsigned long free_highpages = 0;
3836 pg_data_t *pgdat = NODE_DATA(nid);
3837
3838 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3839 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3840 val->totalram = managed_pages;
3841 val->sharedram = node_page_state(nid, NR_SHMEM);
3842 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3843 #ifdef CONFIG_HIGHMEM
3844 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3845 struct zone *zone = &pgdat->node_zones[zone_type];
3846
3847 if (is_highmem(zone)) {
3848 managed_highpages += zone->managed_pages;
3849 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3850 }
3851 }
3852 val->totalhigh = managed_highpages;
3853 val->freehigh = free_highpages;
3854 #else
3855 val->totalhigh = managed_highpages;
3856 val->freehigh = free_highpages;
3857 #endif
3858 val->mem_unit = PAGE_SIZE;
3859 }
3860 #endif
3861
3862 /*
3863 * Determine whether the node should be displayed or not, depending on whether
3864 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3865 */
3866 bool skip_free_areas_node(unsigned int flags, int nid)
3867 {
3868 bool ret = false;
3869 unsigned int cpuset_mems_cookie;
3870
3871 if (!(flags & SHOW_MEM_FILTER_NODES))
3872 goto out;
3873
3874 do {
3875 cpuset_mems_cookie = read_mems_allowed_begin();
3876 ret = !node_isset(nid, cpuset_current_mems_allowed);
3877 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3878 out:
3879 return ret;
3880 }
3881
3882 #define K(x) ((x) << (PAGE_SHIFT-10))
3883
3884 static void show_migration_types(unsigned char type)
3885 {
3886 static const char types[MIGRATE_TYPES] = {
3887 [MIGRATE_UNMOVABLE] = 'U',
3888 [MIGRATE_MOVABLE] = 'M',
3889 [MIGRATE_RECLAIMABLE] = 'E',
3890 [MIGRATE_HIGHATOMIC] = 'H',
3891 #ifdef CONFIG_CMA
3892 [MIGRATE_CMA] = 'C',
3893 #endif
3894 #ifdef CONFIG_MEMORY_ISOLATION
3895 [MIGRATE_ISOLATE] = 'I',
3896 #endif
3897 };
3898 char tmp[MIGRATE_TYPES + 1];
3899 char *p = tmp;
3900 int i;
3901
3902 for (i = 0; i < MIGRATE_TYPES; i++) {
3903 if (type & (1 << i))
3904 *p++ = types[i];
3905 }
3906
3907 *p = '\0';
3908 printk("(%s) ", tmp);
3909 }
3910
3911 /*
3912 * Show free area list (used inside shift_scroll-lock stuff)
3913 * We also calculate the percentage fragmentation. We do this by counting the
3914 * memory on each free list with the exception of the first item on the list.
3915 *
3916 * Bits in @filter:
3917 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3918 * cpuset.
3919 */
3920 void show_free_areas(unsigned int filter)
3921 {
3922 unsigned long free_pcp = 0;
3923 int cpu;
3924 struct zone *zone;
3925
3926 for_each_populated_zone(zone) {
3927 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3928 continue;
3929
3930 for_each_online_cpu(cpu)
3931 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3932 }
3933
3934 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3935 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3936 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3937 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3938 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3939 " free:%lu free_pcp:%lu free_cma:%lu\n",
3940 global_page_state(NR_ACTIVE_ANON),
3941 global_page_state(NR_INACTIVE_ANON),
3942 global_page_state(NR_ISOLATED_ANON),
3943 global_page_state(NR_ACTIVE_FILE),
3944 global_page_state(NR_INACTIVE_FILE),
3945 global_page_state(NR_ISOLATED_FILE),
3946 global_page_state(NR_UNEVICTABLE),
3947 global_page_state(NR_FILE_DIRTY),
3948 global_page_state(NR_WRITEBACK),
3949 global_page_state(NR_UNSTABLE_NFS),
3950 global_page_state(NR_SLAB_RECLAIMABLE),
3951 global_page_state(NR_SLAB_UNRECLAIMABLE),
3952 global_page_state(NR_FILE_MAPPED),
3953 global_page_state(NR_SHMEM),
3954 global_page_state(NR_PAGETABLE),
3955 global_page_state(NR_BOUNCE),
3956 global_page_state(NR_FREE_PAGES),
3957 free_pcp,
3958 global_page_state(NR_FREE_CMA_PAGES));
3959
3960 for_each_populated_zone(zone) {
3961 int i;
3962
3963 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3964 continue;
3965
3966 free_pcp = 0;
3967 for_each_online_cpu(cpu)
3968 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3969
3970 show_node(zone);
3971 printk("%s"
3972 " free:%lukB"
3973 " min:%lukB"
3974 " low:%lukB"
3975 " high:%lukB"
3976 " active_anon:%lukB"
3977 " inactive_anon:%lukB"
3978 " active_file:%lukB"
3979 " inactive_file:%lukB"
3980 " unevictable:%lukB"
3981 " isolated(anon):%lukB"
3982 " isolated(file):%lukB"
3983 " present:%lukB"
3984 " managed:%lukB"
3985 " mlocked:%lukB"
3986 " dirty:%lukB"
3987 " writeback:%lukB"
3988 " mapped:%lukB"
3989 " shmem:%lukB"
3990 " slab_reclaimable:%lukB"
3991 " slab_unreclaimable:%lukB"
3992 " kernel_stack:%lukB"
3993 " pagetables:%lukB"
3994 " unstable:%lukB"
3995 " bounce:%lukB"
3996 " free_pcp:%lukB"
3997 " local_pcp:%ukB"
3998 " free_cma:%lukB"
3999 " writeback_tmp:%lukB"
4000 " pages_scanned:%lu"
4001 " all_unreclaimable? %s"
4002 "\n",
4003 zone->name,
4004 K(zone_page_state(zone, NR_FREE_PAGES)),
4005 K(min_wmark_pages(zone)),
4006 K(low_wmark_pages(zone)),
4007 K(high_wmark_pages(zone)),
4008 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4009 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4010 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4011 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4012 K(zone_page_state(zone, NR_UNEVICTABLE)),
4013 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4014 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4015 K(zone->present_pages),
4016 K(zone->managed_pages),
4017 K(zone_page_state(zone, NR_MLOCK)),
4018 K(zone_page_state(zone, NR_FILE_DIRTY)),
4019 K(zone_page_state(zone, NR_WRITEBACK)),
4020 K(zone_page_state(zone, NR_FILE_MAPPED)),
4021 K(zone_page_state(zone, NR_SHMEM)),
4022 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4023 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4024 zone_page_state(zone, NR_KERNEL_STACK) *
4025 THREAD_SIZE / 1024,
4026 K(zone_page_state(zone, NR_PAGETABLE)),
4027 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4028 K(zone_page_state(zone, NR_BOUNCE)),
4029 K(free_pcp),
4030 K(this_cpu_read(zone->pageset->pcp.count)),
4031 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4032 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4033 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4034 (!zone_reclaimable(zone) ? "yes" : "no")
4035 );
4036 printk("lowmem_reserve[]:");
4037 for (i = 0; i < MAX_NR_ZONES; i++)
4038 printk(" %ld", zone->lowmem_reserve[i]);
4039 printk("\n");
4040 }
4041
4042 for_each_populated_zone(zone) {
4043 unsigned int order;
4044 unsigned long nr[MAX_ORDER], flags, total = 0;
4045 unsigned char types[MAX_ORDER];
4046
4047 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4048 continue;
4049 show_node(zone);
4050 printk("%s: ", zone->name);
4051
4052 spin_lock_irqsave(&zone->lock, flags);
4053 for (order = 0; order < MAX_ORDER; order++) {
4054 struct free_area *area = &zone->free_area[order];
4055 int type;
4056
4057 nr[order] = area->nr_free;
4058 total += nr[order] << order;
4059
4060 types[order] = 0;
4061 for (type = 0; type < MIGRATE_TYPES; type++) {
4062 if (!list_empty(&area->free_list[type]))
4063 types[order] |= 1 << type;
4064 }
4065 }
4066 spin_unlock_irqrestore(&zone->lock, flags);
4067 for (order = 0; order < MAX_ORDER; order++) {
4068 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4069 if (nr[order])
4070 show_migration_types(types[order]);
4071 }
4072 printk("= %lukB\n", K(total));
4073 }
4074
4075 hugetlb_show_meminfo();
4076
4077 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4078
4079 show_swap_cache_info();
4080 }
4081
4082 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4083 {
4084 zoneref->zone = zone;
4085 zoneref->zone_idx = zone_idx(zone);
4086 }
4087
4088 /*
4089 * Builds allocation fallback zone lists.
4090 *
4091 * Add all populated zones of a node to the zonelist.
4092 */
4093 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4094 int nr_zones)
4095 {
4096 struct zone *zone;
4097 enum zone_type zone_type = MAX_NR_ZONES;
4098
4099 do {
4100 zone_type--;
4101 zone = pgdat->node_zones + zone_type;
4102 if (populated_zone(zone)) {
4103 zoneref_set_zone(zone,
4104 &zonelist->_zonerefs[nr_zones++]);
4105 check_highest_zone(zone_type);
4106 }
4107 } while (zone_type);
4108
4109 return nr_zones;
4110 }
4111
4112
4113 /*
4114 * zonelist_order:
4115 * 0 = automatic detection of better ordering.
4116 * 1 = order by ([node] distance, -zonetype)
4117 * 2 = order by (-zonetype, [node] distance)
4118 *
4119 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4120 * the same zonelist. So only NUMA can configure this param.
4121 */
4122 #define ZONELIST_ORDER_DEFAULT 0
4123 #define ZONELIST_ORDER_NODE 1
4124 #define ZONELIST_ORDER_ZONE 2
4125
4126 /* zonelist order in the kernel.
4127 * set_zonelist_order() will set this to NODE or ZONE.
4128 */
4129 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4130 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4131
4132
4133 #ifdef CONFIG_NUMA
4134 /* The value user specified ....changed by config */
4135 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4136 /* string for sysctl */
4137 #define NUMA_ZONELIST_ORDER_LEN 16
4138 char numa_zonelist_order[16] = "default";
4139
4140 /*
4141 * interface for configure zonelist ordering.
4142 * command line option "numa_zonelist_order"
4143 * = "[dD]efault - default, automatic configuration.
4144 * = "[nN]ode - order by node locality, then by zone within node
4145 * = "[zZ]one - order by zone, then by locality within zone
4146 */
4147
4148 static int __parse_numa_zonelist_order(char *s)
4149 {
4150 if (*s == 'd' || *s == 'D') {
4151 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4152 } else if (*s == 'n' || *s == 'N') {
4153 user_zonelist_order = ZONELIST_ORDER_NODE;
4154 } else if (*s == 'z' || *s == 'Z') {
4155 user_zonelist_order = ZONELIST_ORDER_ZONE;
4156 } else {
4157 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4158 return -EINVAL;
4159 }
4160 return 0;
4161 }
4162
4163 static __init int setup_numa_zonelist_order(char *s)
4164 {
4165 int ret;
4166
4167 if (!s)
4168 return 0;
4169
4170 ret = __parse_numa_zonelist_order(s);
4171 if (ret == 0)
4172 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4173
4174 return ret;
4175 }
4176 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4177
4178 /*
4179 * sysctl handler for numa_zonelist_order
4180 */
4181 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4182 void __user *buffer, size_t *length,
4183 loff_t *ppos)
4184 {
4185 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4186 int ret;
4187 static DEFINE_MUTEX(zl_order_mutex);
4188
4189 mutex_lock(&zl_order_mutex);
4190 if (write) {
4191 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4192 ret = -EINVAL;
4193 goto out;
4194 }
4195 strcpy(saved_string, (char *)table->data);
4196 }
4197 ret = proc_dostring(table, write, buffer, length, ppos);
4198 if (ret)
4199 goto out;
4200 if (write) {
4201 int oldval = user_zonelist_order;
4202
4203 ret = __parse_numa_zonelist_order((char *)table->data);
4204 if (ret) {
4205 /*
4206 * bogus value. restore saved string
4207 */
4208 strncpy((char *)table->data, saved_string,
4209 NUMA_ZONELIST_ORDER_LEN);
4210 user_zonelist_order = oldval;
4211 } else if (oldval != user_zonelist_order) {
4212 mutex_lock(&zonelists_mutex);
4213 build_all_zonelists(NULL, NULL);
4214 mutex_unlock(&zonelists_mutex);
4215 }
4216 }
4217 out:
4218 mutex_unlock(&zl_order_mutex);
4219 return ret;
4220 }
4221
4222
4223 #define MAX_NODE_LOAD (nr_online_nodes)
4224 static int node_load[MAX_NUMNODES];
4225
4226 /**
4227 * find_next_best_node - find the next node that should appear in a given node's fallback list
4228 * @node: node whose fallback list we're appending
4229 * @used_node_mask: nodemask_t of already used nodes
4230 *
4231 * We use a number of factors to determine which is the next node that should
4232 * appear on a given node's fallback list. The node should not have appeared
4233 * already in @node's fallback list, and it should be the next closest node
4234 * according to the distance array (which contains arbitrary distance values
4235 * from each node to each node in the system), and should also prefer nodes
4236 * with no CPUs, since presumably they'll have very little allocation pressure
4237 * on them otherwise.
4238 * It returns -1 if no node is found.
4239 */
4240 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4241 {
4242 int n, val;
4243 int min_val = INT_MAX;
4244 int best_node = NUMA_NO_NODE;
4245 const struct cpumask *tmp = cpumask_of_node(0);
4246
4247 /* Use the local node if we haven't already */
4248 if (!node_isset(node, *used_node_mask)) {
4249 node_set(node, *used_node_mask);
4250 return node;
4251 }
4252
4253 for_each_node_state(n, N_MEMORY) {
4254
4255 /* Don't want a node to appear more than once */
4256 if (node_isset(n, *used_node_mask))
4257 continue;
4258
4259 /* Use the distance array to find the distance */
4260 val = node_distance(node, n);
4261
4262 /* Penalize nodes under us ("prefer the next node") */
4263 val += (n < node);
4264
4265 /* Give preference to headless and unused nodes */
4266 tmp = cpumask_of_node(n);
4267 if (!cpumask_empty(tmp))
4268 val += PENALTY_FOR_NODE_WITH_CPUS;
4269
4270 /* Slight preference for less loaded node */
4271 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4272 val += node_load[n];
4273
4274 if (val < min_val) {
4275 min_val = val;
4276 best_node = n;
4277 }
4278 }
4279
4280 if (best_node >= 0)
4281 node_set(best_node, *used_node_mask);
4282
4283 return best_node;
4284 }
4285
4286
4287 /*
4288 * Build zonelists ordered by node and zones within node.
4289 * This results in maximum locality--normal zone overflows into local
4290 * DMA zone, if any--but risks exhausting DMA zone.
4291 */
4292 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4293 {
4294 int j;
4295 struct zonelist *zonelist;
4296
4297 zonelist = &pgdat->node_zonelists[0];
4298 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4299 ;
4300 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4301 zonelist->_zonerefs[j].zone = NULL;
4302 zonelist->_zonerefs[j].zone_idx = 0;
4303 }
4304
4305 /*
4306 * Build gfp_thisnode zonelists
4307 */
4308 static void build_thisnode_zonelists(pg_data_t *pgdat)
4309 {
4310 int j;
4311 struct zonelist *zonelist;
4312
4313 zonelist = &pgdat->node_zonelists[1];
4314 j = build_zonelists_node(pgdat, zonelist, 0);
4315 zonelist->_zonerefs[j].zone = NULL;
4316 zonelist->_zonerefs[j].zone_idx = 0;
4317 }
4318
4319 /*
4320 * Build zonelists ordered by zone and nodes within zones.
4321 * This results in conserving DMA zone[s] until all Normal memory is
4322 * exhausted, but results in overflowing to remote node while memory
4323 * may still exist in local DMA zone.
4324 */
4325 static int node_order[MAX_NUMNODES];
4326
4327 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4328 {
4329 int pos, j, node;
4330 int zone_type; /* needs to be signed */
4331 struct zone *z;
4332 struct zonelist *zonelist;
4333
4334 zonelist = &pgdat->node_zonelists[0];
4335 pos = 0;
4336 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4337 for (j = 0; j < nr_nodes; j++) {
4338 node = node_order[j];
4339 z = &NODE_DATA(node)->node_zones[zone_type];
4340 if (populated_zone(z)) {
4341 zoneref_set_zone(z,
4342 &zonelist->_zonerefs[pos++]);
4343 check_highest_zone(zone_type);
4344 }
4345 }
4346 }
4347 zonelist->_zonerefs[pos].zone = NULL;
4348 zonelist->_zonerefs[pos].zone_idx = 0;
4349 }
4350
4351 #if defined(CONFIG_64BIT)
4352 /*
4353 * Devices that require DMA32/DMA are relatively rare and do not justify a
4354 * penalty to every machine in case the specialised case applies. Default
4355 * to Node-ordering on 64-bit NUMA machines
4356 */
4357 static int default_zonelist_order(void)
4358 {
4359 return ZONELIST_ORDER_NODE;
4360 }
4361 #else
4362 /*
4363 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4364 * by the kernel. If processes running on node 0 deplete the low memory zone
4365 * then reclaim will occur more frequency increasing stalls and potentially
4366 * be easier to OOM if a large percentage of the zone is under writeback or
4367 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4368 * Hence, default to zone ordering on 32-bit.
4369 */
4370 static int default_zonelist_order(void)
4371 {
4372 return ZONELIST_ORDER_ZONE;
4373 }
4374 #endif /* CONFIG_64BIT */
4375
4376 static void set_zonelist_order(void)
4377 {
4378 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4379 current_zonelist_order = default_zonelist_order();
4380 else
4381 current_zonelist_order = user_zonelist_order;
4382 }
4383
4384 static void build_zonelists(pg_data_t *pgdat)
4385 {
4386 int i, node, load;
4387 nodemask_t used_mask;
4388 int local_node, prev_node;
4389 struct zonelist *zonelist;
4390 unsigned int order = current_zonelist_order;
4391
4392 /* initialize zonelists */
4393 for (i = 0; i < MAX_ZONELISTS; i++) {
4394 zonelist = pgdat->node_zonelists + i;
4395 zonelist->_zonerefs[0].zone = NULL;
4396 zonelist->_zonerefs[0].zone_idx = 0;
4397 }
4398
4399 /* NUMA-aware ordering of nodes */
4400 local_node = pgdat->node_id;
4401 load = nr_online_nodes;
4402 prev_node = local_node;
4403 nodes_clear(used_mask);
4404
4405 memset(node_order, 0, sizeof(node_order));
4406 i = 0;
4407
4408 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4409 /*
4410 * We don't want to pressure a particular node.
4411 * So adding penalty to the first node in same
4412 * distance group to make it round-robin.
4413 */
4414 if (node_distance(local_node, node) !=
4415 node_distance(local_node, prev_node))
4416 node_load[node] = load;
4417
4418 prev_node = node;
4419 load--;
4420 if (order == ZONELIST_ORDER_NODE)
4421 build_zonelists_in_node_order(pgdat, node);
4422 else
4423 node_order[i++] = node; /* remember order */
4424 }
4425
4426 if (order == ZONELIST_ORDER_ZONE) {
4427 /* calculate node order -- i.e., DMA last! */
4428 build_zonelists_in_zone_order(pgdat, i);
4429 }
4430
4431 build_thisnode_zonelists(pgdat);
4432 }
4433
4434 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4435 /*
4436 * Return node id of node used for "local" allocations.
4437 * I.e., first node id of first zone in arg node's generic zonelist.
4438 * Used for initializing percpu 'numa_mem', which is used primarily
4439 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4440 */
4441 int local_memory_node(int node)
4442 {
4443 struct zone *zone;
4444
4445 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4446 gfp_zone(GFP_KERNEL),
4447 NULL,
4448 &zone);
4449 return zone->node;
4450 }
4451 #endif
4452
4453 #else /* CONFIG_NUMA */
4454
4455 static void set_zonelist_order(void)
4456 {
4457 current_zonelist_order = ZONELIST_ORDER_ZONE;
4458 }
4459
4460 static void build_zonelists(pg_data_t *pgdat)
4461 {
4462 int node, local_node;
4463 enum zone_type j;
4464 struct zonelist *zonelist;
4465
4466 local_node = pgdat->node_id;
4467
4468 zonelist = &pgdat->node_zonelists[0];
4469 j = build_zonelists_node(pgdat, zonelist, 0);
4470
4471 /*
4472 * Now we build the zonelist so that it contains the zones
4473 * of all the other nodes.
4474 * We don't want to pressure a particular node, so when
4475 * building the zones for node N, we make sure that the
4476 * zones coming right after the local ones are those from
4477 * node N+1 (modulo N)
4478 */
4479 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4480 if (!node_online(node))
4481 continue;
4482 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4483 }
4484 for (node = 0; node < local_node; node++) {
4485 if (!node_online(node))
4486 continue;
4487 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4488 }
4489
4490 zonelist->_zonerefs[j].zone = NULL;
4491 zonelist->_zonerefs[j].zone_idx = 0;
4492 }
4493
4494 #endif /* CONFIG_NUMA */
4495
4496 /*
4497 * Boot pageset table. One per cpu which is going to be used for all
4498 * zones and all nodes. The parameters will be set in such a way
4499 * that an item put on a list will immediately be handed over to
4500 * the buddy list. This is safe since pageset manipulation is done
4501 * with interrupts disabled.
4502 *
4503 * The boot_pagesets must be kept even after bootup is complete for
4504 * unused processors and/or zones. They do play a role for bootstrapping
4505 * hotplugged processors.
4506 *
4507 * zoneinfo_show() and maybe other functions do
4508 * not check if the processor is online before following the pageset pointer.
4509 * Other parts of the kernel may not check if the zone is available.
4510 */
4511 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4512 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4513 static void setup_zone_pageset(struct zone *zone);
4514
4515 /*
4516 * Global mutex to protect against size modification of zonelists
4517 * as well as to serialize pageset setup for the new populated zone.
4518 */
4519 DEFINE_MUTEX(zonelists_mutex);
4520
4521 /* return values int ....just for stop_machine() */
4522 static int __build_all_zonelists(void *data)
4523 {
4524 int nid;
4525 int cpu;
4526 pg_data_t *self = data;
4527
4528 #ifdef CONFIG_NUMA
4529 memset(node_load, 0, sizeof(node_load));
4530 #endif
4531
4532 if (self && !node_online(self->node_id)) {
4533 build_zonelists(self);
4534 }
4535
4536 for_each_online_node(nid) {
4537 pg_data_t *pgdat = NODE_DATA(nid);
4538
4539 build_zonelists(pgdat);
4540 }
4541
4542 /*
4543 * Initialize the boot_pagesets that are going to be used
4544 * for bootstrapping processors. The real pagesets for
4545 * each zone will be allocated later when the per cpu
4546 * allocator is available.
4547 *
4548 * boot_pagesets are used also for bootstrapping offline
4549 * cpus if the system is already booted because the pagesets
4550 * are needed to initialize allocators on a specific cpu too.
4551 * F.e. the percpu allocator needs the page allocator which
4552 * needs the percpu allocator in order to allocate its pagesets
4553 * (a chicken-egg dilemma).
4554 */
4555 for_each_possible_cpu(cpu) {
4556 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4557
4558 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4559 /*
4560 * We now know the "local memory node" for each node--
4561 * i.e., the node of the first zone in the generic zonelist.
4562 * Set up numa_mem percpu variable for on-line cpus. During
4563 * boot, only the boot cpu should be on-line; we'll init the
4564 * secondary cpus' numa_mem as they come on-line. During
4565 * node/memory hotplug, we'll fixup all on-line cpus.
4566 */
4567 if (cpu_online(cpu))
4568 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4569 #endif
4570 }
4571
4572 return 0;
4573 }
4574
4575 static noinline void __init
4576 build_all_zonelists_init(void)
4577 {
4578 __build_all_zonelists(NULL);
4579 mminit_verify_zonelist();
4580 cpuset_init_current_mems_allowed();
4581 }
4582
4583 /*
4584 * Called with zonelists_mutex held always
4585 * unless system_state == SYSTEM_BOOTING.
4586 *
4587 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4588 * [we're only called with non-NULL zone through __meminit paths] and
4589 * (2) call of __init annotated helper build_all_zonelists_init
4590 * [protected by SYSTEM_BOOTING].
4591 */
4592 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4593 {
4594 set_zonelist_order();
4595
4596 if (system_state == SYSTEM_BOOTING) {
4597 build_all_zonelists_init();
4598 } else {
4599 #ifdef CONFIG_MEMORY_HOTPLUG
4600 if (zone)
4601 setup_zone_pageset(zone);
4602 #endif
4603 /* we have to stop all cpus to guarantee there is no user
4604 of zonelist */
4605 stop_machine(__build_all_zonelists, pgdat, NULL);
4606 /* cpuset refresh routine should be here */
4607 }
4608 vm_total_pages = nr_free_pagecache_pages();
4609 /*
4610 * Disable grouping by mobility if the number of pages in the
4611 * system is too low to allow the mechanism to work. It would be
4612 * more accurate, but expensive to check per-zone. This check is
4613 * made on memory-hotadd so a system can start with mobility
4614 * disabled and enable it later
4615 */
4616 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4617 page_group_by_mobility_disabled = 1;
4618 else
4619 page_group_by_mobility_disabled = 0;
4620
4621 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4622 nr_online_nodes,
4623 zonelist_order_name[current_zonelist_order],
4624 page_group_by_mobility_disabled ? "off" : "on",
4625 vm_total_pages);
4626 #ifdef CONFIG_NUMA
4627 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4628 #endif
4629 }
4630
4631 /*
4632 * Helper functions to size the waitqueue hash table.
4633 * Essentially these want to choose hash table sizes sufficiently
4634 * large so that collisions trying to wait on pages are rare.
4635 * But in fact, the number of active page waitqueues on typical
4636 * systems is ridiculously low, less than 200. So this is even
4637 * conservative, even though it seems large.
4638 *
4639 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4640 * waitqueues, i.e. the size of the waitq table given the number of pages.
4641 */
4642 #define PAGES_PER_WAITQUEUE 256
4643
4644 #ifndef CONFIG_MEMORY_HOTPLUG
4645 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4646 {
4647 unsigned long size = 1;
4648
4649 pages /= PAGES_PER_WAITQUEUE;
4650
4651 while (size < pages)
4652 size <<= 1;
4653
4654 /*
4655 * Once we have dozens or even hundreds of threads sleeping
4656 * on IO we've got bigger problems than wait queue collision.
4657 * Limit the size of the wait table to a reasonable size.
4658 */
4659 size = min(size, 4096UL);
4660
4661 return max(size, 4UL);
4662 }
4663 #else
4664 /*
4665 * A zone's size might be changed by hot-add, so it is not possible to determine
4666 * a suitable size for its wait_table. So we use the maximum size now.
4667 *
4668 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4669 *
4670 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4671 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4672 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4673 *
4674 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4675 * or more by the traditional way. (See above). It equals:
4676 *
4677 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4678 * ia64(16K page size) : = ( 8G + 4M)byte.
4679 * powerpc (64K page size) : = (32G +16M)byte.
4680 */
4681 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4682 {
4683 return 4096UL;
4684 }
4685 #endif
4686
4687 /*
4688 * This is an integer logarithm so that shifts can be used later
4689 * to extract the more random high bits from the multiplicative
4690 * hash function before the remainder is taken.
4691 */
4692 static inline unsigned long wait_table_bits(unsigned long size)
4693 {
4694 return ffz(~size);
4695 }
4696
4697 /*
4698 * Initially all pages are reserved - free ones are freed
4699 * up by free_all_bootmem() once the early boot process is
4700 * done. Non-atomic initialization, single-pass.
4701 */
4702 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4703 unsigned long start_pfn, enum memmap_context context)
4704 {
4705 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4706 unsigned long end_pfn = start_pfn + size;
4707 pg_data_t *pgdat = NODE_DATA(nid);
4708 unsigned long pfn;
4709 unsigned long nr_initialised = 0;
4710 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4711 struct memblock_region *r = NULL, *tmp;
4712 #endif
4713
4714 if (highest_memmap_pfn < end_pfn - 1)
4715 highest_memmap_pfn = end_pfn - 1;
4716
4717 /*
4718 * Honor reservation requested by the driver for this ZONE_DEVICE
4719 * memory
4720 */
4721 if (altmap && start_pfn == altmap->base_pfn)
4722 start_pfn += altmap->reserve;
4723
4724 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4725 /*
4726 * There can be holes in boot-time mem_map[]s handed to this
4727 * function. They do not exist on hotplugged memory.
4728 */
4729 if (context != MEMMAP_EARLY)
4730 goto not_early;
4731
4732 if (!early_pfn_valid(pfn))
4733 continue;
4734 if (!early_pfn_in_nid(pfn, nid))
4735 continue;
4736 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4737 break;
4738
4739 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4740 /*
4741 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4742 * from zone_movable_pfn[nid] to end of each node should be
4743 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4744 */
4745 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4746 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4747 continue;
4748
4749 /*
4750 * Check given memblock attribute by firmware which can affect
4751 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4752 * mirrored, it's an overlapped memmap init. skip it.
4753 */
4754 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4755 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4756 for_each_memblock(memory, tmp)
4757 if (pfn < memblock_region_memory_end_pfn(tmp))
4758 break;
4759 r = tmp;
4760 }
4761 if (pfn >= memblock_region_memory_base_pfn(r) &&
4762 memblock_is_mirror(r)) {
4763 /* already initialized as NORMAL */
4764 pfn = memblock_region_memory_end_pfn(r);
4765 continue;
4766 }
4767 }
4768 #endif
4769
4770 not_early:
4771 /*
4772 * Mark the block movable so that blocks are reserved for
4773 * movable at startup. This will force kernel allocations
4774 * to reserve their blocks rather than leaking throughout
4775 * the address space during boot when many long-lived
4776 * kernel allocations are made.
4777 *
4778 * bitmap is created for zone's valid pfn range. but memmap
4779 * can be created for invalid pages (for alignment)
4780 * check here not to call set_pageblock_migratetype() against
4781 * pfn out of zone.
4782 */
4783 if (!(pfn & (pageblock_nr_pages - 1))) {
4784 struct page *page = pfn_to_page(pfn);
4785
4786 __init_single_page(page, pfn, zone, nid);
4787 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4788 } else {
4789 __init_single_pfn(pfn, zone, nid);
4790 }
4791 }
4792 }
4793
4794 static void __meminit zone_init_free_lists(struct zone *zone)
4795 {
4796 unsigned int order, t;
4797 for_each_migratetype_order(order, t) {
4798 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4799 zone->free_area[order].nr_free = 0;
4800 }
4801 }
4802
4803 #ifndef __HAVE_ARCH_MEMMAP_INIT
4804 #define memmap_init(size, nid, zone, start_pfn) \
4805 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4806 #endif
4807
4808 static int zone_batchsize(struct zone *zone)
4809 {
4810 #ifdef CONFIG_MMU
4811 int batch;
4812
4813 /*
4814 * The per-cpu-pages pools are set to around 1000th of the
4815 * size of the zone. But no more than 1/2 of a meg.
4816 *
4817 * OK, so we don't know how big the cache is. So guess.
4818 */
4819 batch = zone->managed_pages / 1024;
4820 if (batch * PAGE_SIZE > 512 * 1024)
4821 batch = (512 * 1024) / PAGE_SIZE;
4822 batch /= 4; /* We effectively *= 4 below */
4823 if (batch < 1)
4824 batch = 1;
4825
4826 /*
4827 * Clamp the batch to a 2^n - 1 value. Having a power
4828 * of 2 value was found to be more likely to have
4829 * suboptimal cache aliasing properties in some cases.
4830 *
4831 * For example if 2 tasks are alternately allocating
4832 * batches of pages, one task can end up with a lot
4833 * of pages of one half of the possible page colors
4834 * and the other with pages of the other colors.
4835 */
4836 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4837
4838 return batch;
4839
4840 #else
4841 /* The deferral and batching of frees should be suppressed under NOMMU
4842 * conditions.
4843 *
4844 * The problem is that NOMMU needs to be able to allocate large chunks
4845 * of contiguous memory as there's no hardware page translation to
4846 * assemble apparent contiguous memory from discontiguous pages.
4847 *
4848 * Queueing large contiguous runs of pages for batching, however,
4849 * causes the pages to actually be freed in smaller chunks. As there
4850 * can be a significant delay between the individual batches being
4851 * recycled, this leads to the once large chunks of space being
4852 * fragmented and becoming unavailable for high-order allocations.
4853 */
4854 return 0;
4855 #endif
4856 }
4857
4858 /*
4859 * pcp->high and pcp->batch values are related and dependent on one another:
4860 * ->batch must never be higher then ->high.
4861 * The following function updates them in a safe manner without read side
4862 * locking.
4863 *
4864 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4865 * those fields changing asynchronously (acording the the above rule).
4866 *
4867 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4868 * outside of boot time (or some other assurance that no concurrent updaters
4869 * exist).
4870 */
4871 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4872 unsigned long batch)
4873 {
4874 /* start with a fail safe value for batch */
4875 pcp->batch = 1;
4876 smp_wmb();
4877
4878 /* Update high, then batch, in order */
4879 pcp->high = high;
4880 smp_wmb();
4881
4882 pcp->batch = batch;
4883 }
4884
4885 /* a companion to pageset_set_high() */
4886 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4887 {
4888 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4889 }
4890
4891 static void pageset_init(struct per_cpu_pageset *p)
4892 {
4893 struct per_cpu_pages *pcp;
4894 int migratetype;
4895
4896 memset(p, 0, sizeof(*p));
4897
4898 pcp = &p->pcp;
4899 pcp->count = 0;
4900 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4901 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4902 }
4903
4904 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4905 {
4906 pageset_init(p);
4907 pageset_set_batch(p, batch);
4908 }
4909
4910 /*
4911 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4912 * to the value high for the pageset p.
4913 */
4914 static void pageset_set_high(struct per_cpu_pageset *p,
4915 unsigned long high)
4916 {
4917 unsigned long batch = max(1UL, high / 4);
4918 if ((high / 4) > (PAGE_SHIFT * 8))
4919 batch = PAGE_SHIFT * 8;
4920
4921 pageset_update(&p->pcp, high, batch);
4922 }
4923
4924 static void pageset_set_high_and_batch(struct zone *zone,
4925 struct per_cpu_pageset *pcp)
4926 {
4927 if (percpu_pagelist_fraction)
4928 pageset_set_high(pcp,
4929 (zone->managed_pages /
4930 percpu_pagelist_fraction));
4931 else
4932 pageset_set_batch(pcp, zone_batchsize(zone));
4933 }
4934
4935 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4936 {
4937 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4938
4939 pageset_init(pcp);
4940 pageset_set_high_and_batch(zone, pcp);
4941 }
4942
4943 static void __meminit setup_zone_pageset(struct zone *zone)
4944 {
4945 int cpu;
4946 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4947 for_each_possible_cpu(cpu)
4948 zone_pageset_init(zone, cpu);
4949 }
4950
4951 /*
4952 * Allocate per cpu pagesets and initialize them.
4953 * Before this call only boot pagesets were available.
4954 */
4955 void __init setup_per_cpu_pageset(void)
4956 {
4957 struct zone *zone;
4958
4959 for_each_populated_zone(zone)
4960 setup_zone_pageset(zone);
4961 }
4962
4963 static noinline __init_refok
4964 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4965 {
4966 int i;
4967 size_t alloc_size;
4968
4969 /*
4970 * The per-page waitqueue mechanism uses hashed waitqueues
4971 * per zone.
4972 */
4973 zone->wait_table_hash_nr_entries =
4974 wait_table_hash_nr_entries(zone_size_pages);
4975 zone->wait_table_bits =
4976 wait_table_bits(zone->wait_table_hash_nr_entries);
4977 alloc_size = zone->wait_table_hash_nr_entries
4978 * sizeof(wait_queue_head_t);
4979
4980 if (!slab_is_available()) {
4981 zone->wait_table = (wait_queue_head_t *)
4982 memblock_virt_alloc_node_nopanic(
4983 alloc_size, zone->zone_pgdat->node_id);
4984 } else {
4985 /*
4986 * This case means that a zone whose size was 0 gets new memory
4987 * via memory hot-add.
4988 * But it may be the case that a new node was hot-added. In
4989 * this case vmalloc() will not be able to use this new node's
4990 * memory - this wait_table must be initialized to use this new
4991 * node itself as well.
4992 * To use this new node's memory, further consideration will be
4993 * necessary.
4994 */
4995 zone->wait_table = vmalloc(alloc_size);
4996 }
4997 if (!zone->wait_table)
4998 return -ENOMEM;
4999
5000 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5001 init_waitqueue_head(zone->wait_table + i);
5002
5003 return 0;
5004 }
5005
5006 static __meminit void zone_pcp_init(struct zone *zone)
5007 {
5008 /*
5009 * per cpu subsystem is not up at this point. The following code
5010 * relies on the ability of the linker to provide the
5011 * offset of a (static) per cpu variable into the per cpu area.
5012 */
5013 zone->pageset = &boot_pageset;
5014
5015 if (populated_zone(zone))
5016 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5017 zone->name, zone->present_pages,
5018 zone_batchsize(zone));
5019 }
5020
5021 int __meminit init_currently_empty_zone(struct zone *zone,
5022 unsigned long zone_start_pfn,
5023 unsigned long size)
5024 {
5025 struct pglist_data *pgdat = zone->zone_pgdat;
5026 int ret;
5027 ret = zone_wait_table_init(zone, size);
5028 if (ret)
5029 return ret;
5030 pgdat->nr_zones = zone_idx(zone) + 1;
5031
5032 zone->zone_start_pfn = zone_start_pfn;
5033
5034 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5035 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5036 pgdat->node_id,
5037 (unsigned long)zone_idx(zone),
5038 zone_start_pfn, (zone_start_pfn + size));
5039
5040 zone_init_free_lists(zone);
5041
5042 return 0;
5043 }
5044
5045 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5046 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5047
5048 /*
5049 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5050 */
5051 int __meminit __early_pfn_to_nid(unsigned long pfn,
5052 struct mminit_pfnnid_cache *state)
5053 {
5054 unsigned long start_pfn, end_pfn;
5055 int nid;
5056
5057 if (state->last_start <= pfn && pfn < state->last_end)
5058 return state->last_nid;
5059
5060 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5061 if (nid != -1) {
5062 state->last_start = start_pfn;
5063 state->last_end = end_pfn;
5064 state->last_nid = nid;
5065 }
5066
5067 return nid;
5068 }
5069 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5070
5071 /**
5072 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5073 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5074 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5075 *
5076 * If an architecture guarantees that all ranges registered contain no holes
5077 * and may be freed, this this function may be used instead of calling
5078 * memblock_free_early_nid() manually.
5079 */
5080 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5081 {
5082 unsigned long start_pfn, end_pfn;
5083 int i, this_nid;
5084
5085 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5086 start_pfn = min(start_pfn, max_low_pfn);
5087 end_pfn = min(end_pfn, max_low_pfn);
5088
5089 if (start_pfn < end_pfn)
5090 memblock_free_early_nid(PFN_PHYS(start_pfn),
5091 (end_pfn - start_pfn) << PAGE_SHIFT,
5092 this_nid);
5093 }
5094 }
5095
5096 /**
5097 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5098 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5099 *
5100 * If an architecture guarantees that all ranges registered contain no holes and may
5101 * be freed, this function may be used instead of calling memory_present() manually.
5102 */
5103 void __init sparse_memory_present_with_active_regions(int nid)
5104 {
5105 unsigned long start_pfn, end_pfn;
5106 int i, this_nid;
5107
5108 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5109 memory_present(this_nid, start_pfn, end_pfn);
5110 }
5111
5112 /**
5113 * get_pfn_range_for_nid - Return the start and end page frames for a node
5114 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5115 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5116 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5117 *
5118 * It returns the start and end page frame of a node based on information
5119 * provided by memblock_set_node(). If called for a node
5120 * with no available memory, a warning is printed and the start and end
5121 * PFNs will be 0.
5122 */
5123 void __meminit get_pfn_range_for_nid(unsigned int nid,
5124 unsigned long *start_pfn, unsigned long *end_pfn)
5125 {
5126 unsigned long this_start_pfn, this_end_pfn;
5127 int i;
5128
5129 *start_pfn = -1UL;
5130 *end_pfn = 0;
5131
5132 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5133 *start_pfn = min(*start_pfn, this_start_pfn);
5134 *end_pfn = max(*end_pfn, this_end_pfn);
5135 }
5136
5137 if (*start_pfn == -1UL)
5138 *start_pfn = 0;
5139 }
5140
5141 /*
5142 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5143 * assumption is made that zones within a node are ordered in monotonic
5144 * increasing memory addresses so that the "highest" populated zone is used
5145 */
5146 static void __init find_usable_zone_for_movable(void)
5147 {
5148 int zone_index;
5149 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5150 if (zone_index == ZONE_MOVABLE)
5151 continue;
5152
5153 if (arch_zone_highest_possible_pfn[zone_index] >
5154 arch_zone_lowest_possible_pfn[zone_index])
5155 break;
5156 }
5157
5158 VM_BUG_ON(zone_index == -1);
5159 movable_zone = zone_index;
5160 }
5161
5162 /*
5163 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5164 * because it is sized independent of architecture. Unlike the other zones,
5165 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5166 * in each node depending on the size of each node and how evenly kernelcore
5167 * is distributed. This helper function adjusts the zone ranges
5168 * provided by the architecture for a given node by using the end of the
5169 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5170 * zones within a node are in order of monotonic increases memory addresses
5171 */
5172 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5173 unsigned long zone_type,
5174 unsigned long node_start_pfn,
5175 unsigned long node_end_pfn,
5176 unsigned long *zone_start_pfn,
5177 unsigned long *zone_end_pfn)
5178 {
5179 /* Only adjust if ZONE_MOVABLE is on this node */
5180 if (zone_movable_pfn[nid]) {
5181 /* Size ZONE_MOVABLE */
5182 if (zone_type == ZONE_MOVABLE) {
5183 *zone_start_pfn = zone_movable_pfn[nid];
5184 *zone_end_pfn = min(node_end_pfn,
5185 arch_zone_highest_possible_pfn[movable_zone]);
5186
5187 /* Check if this whole range is within ZONE_MOVABLE */
5188 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5189 *zone_start_pfn = *zone_end_pfn;
5190 }
5191 }
5192
5193 /*
5194 * Return the number of pages a zone spans in a node, including holes
5195 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5196 */
5197 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5198 unsigned long zone_type,
5199 unsigned long node_start_pfn,
5200 unsigned long node_end_pfn,
5201 unsigned long *zone_start_pfn,
5202 unsigned long *zone_end_pfn,
5203 unsigned long *ignored)
5204 {
5205 /* When hotadd a new node from cpu_up(), the node should be empty */
5206 if (!node_start_pfn && !node_end_pfn)
5207 return 0;
5208
5209 /* Get the start and end of the zone */
5210 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5211 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5212 adjust_zone_range_for_zone_movable(nid, zone_type,
5213 node_start_pfn, node_end_pfn,
5214 zone_start_pfn, zone_end_pfn);
5215
5216 /* Check that this node has pages within the zone's required range */
5217 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5218 return 0;
5219
5220 /* Move the zone boundaries inside the node if necessary */
5221 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5222 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5223
5224 /* Return the spanned pages */
5225 return *zone_end_pfn - *zone_start_pfn;
5226 }
5227
5228 /*
5229 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5230 * then all holes in the requested range will be accounted for.
5231 */
5232 unsigned long __meminit __absent_pages_in_range(int nid,
5233 unsigned long range_start_pfn,
5234 unsigned long range_end_pfn)
5235 {
5236 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5237 unsigned long start_pfn, end_pfn;
5238 int i;
5239
5240 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5241 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5242 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5243 nr_absent -= end_pfn - start_pfn;
5244 }
5245 return nr_absent;
5246 }
5247
5248 /**
5249 * absent_pages_in_range - Return number of page frames in holes within a range
5250 * @start_pfn: The start PFN to start searching for holes
5251 * @end_pfn: The end PFN to stop searching for holes
5252 *
5253 * It returns the number of pages frames in memory holes within a range.
5254 */
5255 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5256 unsigned long end_pfn)
5257 {
5258 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5259 }
5260
5261 /* Return the number of page frames in holes in a zone on a node */
5262 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5263 unsigned long zone_type,
5264 unsigned long node_start_pfn,
5265 unsigned long node_end_pfn,
5266 unsigned long *ignored)
5267 {
5268 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5269 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5270 unsigned long zone_start_pfn, zone_end_pfn;
5271 unsigned long nr_absent;
5272
5273 /* When hotadd a new node from cpu_up(), the node should be empty */
5274 if (!node_start_pfn && !node_end_pfn)
5275 return 0;
5276
5277 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5278 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5279
5280 adjust_zone_range_for_zone_movable(nid, zone_type,
5281 node_start_pfn, node_end_pfn,
5282 &zone_start_pfn, &zone_end_pfn);
5283 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5284
5285 /*
5286 * ZONE_MOVABLE handling.
5287 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5288 * and vice versa.
5289 */
5290 if (zone_movable_pfn[nid]) {
5291 if (mirrored_kernelcore) {
5292 unsigned long start_pfn, end_pfn;
5293 struct memblock_region *r;
5294
5295 for_each_memblock(memory, r) {
5296 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5297 zone_start_pfn, zone_end_pfn);
5298 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5299 zone_start_pfn, zone_end_pfn);
5300
5301 if (zone_type == ZONE_MOVABLE &&
5302 memblock_is_mirror(r))
5303 nr_absent += end_pfn - start_pfn;
5304
5305 if (zone_type == ZONE_NORMAL &&
5306 !memblock_is_mirror(r))
5307 nr_absent += end_pfn - start_pfn;
5308 }
5309 } else {
5310 if (zone_type == ZONE_NORMAL)
5311 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5312 }
5313 }
5314
5315 return nr_absent;
5316 }
5317
5318 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5319 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5320 unsigned long zone_type,
5321 unsigned long node_start_pfn,
5322 unsigned long node_end_pfn,
5323 unsigned long *zone_start_pfn,
5324 unsigned long *zone_end_pfn,
5325 unsigned long *zones_size)
5326 {
5327 unsigned int zone;
5328
5329 *zone_start_pfn = node_start_pfn;
5330 for (zone = 0; zone < zone_type; zone++)
5331 *zone_start_pfn += zones_size[zone];
5332
5333 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5334
5335 return zones_size[zone_type];
5336 }
5337
5338 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5339 unsigned long zone_type,
5340 unsigned long node_start_pfn,
5341 unsigned long node_end_pfn,
5342 unsigned long *zholes_size)
5343 {
5344 if (!zholes_size)
5345 return 0;
5346
5347 return zholes_size[zone_type];
5348 }
5349
5350 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5351
5352 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5353 unsigned long node_start_pfn,
5354 unsigned long node_end_pfn,
5355 unsigned long *zones_size,
5356 unsigned long *zholes_size)
5357 {
5358 unsigned long realtotalpages = 0, totalpages = 0;
5359 enum zone_type i;
5360
5361 for (i = 0; i < MAX_NR_ZONES; i++) {
5362 struct zone *zone = pgdat->node_zones + i;
5363 unsigned long zone_start_pfn, zone_end_pfn;
5364 unsigned long size, real_size;
5365
5366 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5367 node_start_pfn,
5368 node_end_pfn,
5369 &zone_start_pfn,
5370 &zone_end_pfn,
5371 zones_size);
5372 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5373 node_start_pfn, node_end_pfn,
5374 zholes_size);
5375 if (size)
5376 zone->zone_start_pfn = zone_start_pfn;
5377 else
5378 zone->zone_start_pfn = 0;
5379 zone->spanned_pages = size;
5380 zone->present_pages = real_size;
5381
5382 totalpages += size;
5383 realtotalpages += real_size;
5384 }
5385
5386 pgdat->node_spanned_pages = totalpages;
5387 pgdat->node_present_pages = realtotalpages;
5388 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5389 realtotalpages);
5390 }
5391
5392 #ifndef CONFIG_SPARSEMEM
5393 /*
5394 * Calculate the size of the zone->blockflags rounded to an unsigned long
5395 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5396 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5397 * round what is now in bits to nearest long in bits, then return it in
5398 * bytes.
5399 */
5400 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5401 {
5402 unsigned long usemapsize;
5403
5404 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5405 usemapsize = roundup(zonesize, pageblock_nr_pages);
5406 usemapsize = usemapsize >> pageblock_order;
5407 usemapsize *= NR_PAGEBLOCK_BITS;
5408 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5409
5410 return usemapsize / 8;
5411 }
5412
5413 static void __init setup_usemap(struct pglist_data *pgdat,
5414 struct zone *zone,
5415 unsigned long zone_start_pfn,
5416 unsigned long zonesize)
5417 {
5418 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5419 zone->pageblock_flags = NULL;
5420 if (usemapsize)
5421 zone->pageblock_flags =
5422 memblock_virt_alloc_node_nopanic(usemapsize,
5423 pgdat->node_id);
5424 }
5425 #else
5426 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5427 unsigned long zone_start_pfn, unsigned long zonesize) {}
5428 #endif /* CONFIG_SPARSEMEM */
5429
5430 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5431
5432 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5433 void __paginginit set_pageblock_order(void)
5434 {
5435 unsigned int order;
5436
5437 /* Check that pageblock_nr_pages has not already been setup */
5438 if (pageblock_order)
5439 return;
5440
5441 if (HPAGE_SHIFT > PAGE_SHIFT)
5442 order = HUGETLB_PAGE_ORDER;
5443 else
5444 order = MAX_ORDER - 1;
5445
5446 /*
5447 * Assume the largest contiguous order of interest is a huge page.
5448 * This value may be variable depending on boot parameters on IA64 and
5449 * powerpc.
5450 */
5451 pageblock_order = order;
5452 }
5453 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5454
5455 /*
5456 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5457 * is unused as pageblock_order is set at compile-time. See
5458 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5459 * the kernel config
5460 */
5461 void __paginginit set_pageblock_order(void)
5462 {
5463 }
5464
5465 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5466
5467 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5468 unsigned long present_pages)
5469 {
5470 unsigned long pages = spanned_pages;
5471
5472 /*
5473 * Provide a more accurate estimation if there are holes within
5474 * the zone and SPARSEMEM is in use. If there are holes within the
5475 * zone, each populated memory region may cost us one or two extra
5476 * memmap pages due to alignment because memmap pages for each
5477 * populated regions may not naturally algined on page boundary.
5478 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5479 */
5480 if (spanned_pages > present_pages + (present_pages >> 4) &&
5481 IS_ENABLED(CONFIG_SPARSEMEM))
5482 pages = present_pages;
5483
5484 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5485 }
5486
5487 /*
5488 * Set up the zone data structures:
5489 * - mark all pages reserved
5490 * - mark all memory queues empty
5491 * - clear the memory bitmaps
5492 *
5493 * NOTE: pgdat should get zeroed by caller.
5494 */
5495 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5496 {
5497 enum zone_type j;
5498 int nid = pgdat->node_id;
5499 int ret;
5500
5501 pgdat_resize_init(pgdat);
5502 #ifdef CONFIG_NUMA_BALANCING
5503 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5504 pgdat->numabalancing_migrate_nr_pages = 0;
5505 pgdat->numabalancing_migrate_next_window = jiffies;
5506 #endif
5507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5508 spin_lock_init(&pgdat->split_queue_lock);
5509 INIT_LIST_HEAD(&pgdat->split_queue);
5510 pgdat->split_queue_len = 0;
5511 #endif
5512 init_waitqueue_head(&pgdat->kswapd_wait);
5513 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5514 #ifdef CONFIG_COMPACTION
5515 init_waitqueue_head(&pgdat->kcompactd_wait);
5516 #endif
5517 pgdat_page_ext_init(pgdat);
5518
5519 for (j = 0; j < MAX_NR_ZONES; j++) {
5520 struct zone *zone = pgdat->node_zones + j;
5521 unsigned long size, realsize, freesize, memmap_pages;
5522 unsigned long zone_start_pfn = zone->zone_start_pfn;
5523
5524 size = zone->spanned_pages;
5525 realsize = freesize = zone->present_pages;
5526
5527 /*
5528 * Adjust freesize so that it accounts for how much memory
5529 * is used by this zone for memmap. This affects the watermark
5530 * and per-cpu initialisations
5531 */
5532 memmap_pages = calc_memmap_size(size, realsize);
5533 if (!is_highmem_idx(j)) {
5534 if (freesize >= memmap_pages) {
5535 freesize -= memmap_pages;
5536 if (memmap_pages)
5537 printk(KERN_DEBUG
5538 " %s zone: %lu pages used for memmap\n",
5539 zone_names[j], memmap_pages);
5540 } else
5541 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5542 zone_names[j], memmap_pages, freesize);
5543 }
5544
5545 /* Account for reserved pages */
5546 if (j == 0 && freesize > dma_reserve) {
5547 freesize -= dma_reserve;
5548 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5549 zone_names[0], dma_reserve);
5550 }
5551
5552 if (!is_highmem_idx(j))
5553 nr_kernel_pages += freesize;
5554 /* Charge for highmem memmap if there are enough kernel pages */
5555 else if (nr_kernel_pages > memmap_pages * 2)
5556 nr_kernel_pages -= memmap_pages;
5557 nr_all_pages += freesize;
5558
5559 /*
5560 * Set an approximate value for lowmem here, it will be adjusted
5561 * when the bootmem allocator frees pages into the buddy system.
5562 * And all highmem pages will be managed by the buddy system.
5563 */
5564 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5565 #ifdef CONFIG_NUMA
5566 zone->node = nid;
5567 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5568 / 100;
5569 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5570 #endif
5571 zone->name = zone_names[j];
5572 spin_lock_init(&zone->lock);
5573 spin_lock_init(&zone->lru_lock);
5574 zone_seqlock_init(zone);
5575 zone->zone_pgdat = pgdat;
5576 zone_pcp_init(zone);
5577
5578 /* For bootup, initialized properly in watermark setup */
5579 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5580
5581 lruvec_init(&zone->lruvec);
5582 if (!size)
5583 continue;
5584
5585 set_pageblock_order();
5586 setup_usemap(pgdat, zone, zone_start_pfn, size);
5587 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5588 BUG_ON(ret);
5589 memmap_init(size, nid, j, zone_start_pfn);
5590 }
5591 }
5592
5593 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5594 {
5595 unsigned long __maybe_unused start = 0;
5596 unsigned long __maybe_unused offset = 0;
5597
5598 /* Skip empty nodes */
5599 if (!pgdat->node_spanned_pages)
5600 return;
5601
5602 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5603 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5604 offset = pgdat->node_start_pfn - start;
5605 /* ia64 gets its own node_mem_map, before this, without bootmem */
5606 if (!pgdat->node_mem_map) {
5607 unsigned long size, end;
5608 struct page *map;
5609
5610 /*
5611 * The zone's endpoints aren't required to be MAX_ORDER
5612 * aligned but the node_mem_map endpoints must be in order
5613 * for the buddy allocator to function correctly.
5614 */
5615 end = pgdat_end_pfn(pgdat);
5616 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5617 size = (end - start) * sizeof(struct page);
5618 map = alloc_remap(pgdat->node_id, size);
5619 if (!map)
5620 map = memblock_virt_alloc_node_nopanic(size,
5621 pgdat->node_id);
5622 pgdat->node_mem_map = map + offset;
5623 }
5624 #ifndef CONFIG_NEED_MULTIPLE_NODES
5625 /*
5626 * With no DISCONTIG, the global mem_map is just set as node 0's
5627 */
5628 if (pgdat == NODE_DATA(0)) {
5629 mem_map = NODE_DATA(0)->node_mem_map;
5630 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5631 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5632 mem_map -= offset;
5633 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5634 }
5635 #endif
5636 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5637 }
5638
5639 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5640 unsigned long node_start_pfn, unsigned long *zholes_size)
5641 {
5642 pg_data_t *pgdat = NODE_DATA(nid);
5643 unsigned long start_pfn = 0;
5644 unsigned long end_pfn = 0;
5645
5646 /* pg_data_t should be reset to zero when it's allocated */
5647 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5648
5649 reset_deferred_meminit(pgdat);
5650 pgdat->node_id = nid;
5651 pgdat->node_start_pfn = node_start_pfn;
5652 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5653 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5654 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5655 (u64)start_pfn << PAGE_SHIFT,
5656 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5657 #else
5658 start_pfn = node_start_pfn;
5659 #endif
5660 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5661 zones_size, zholes_size);
5662
5663 alloc_node_mem_map(pgdat);
5664 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5665 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5666 nid, (unsigned long)pgdat,
5667 (unsigned long)pgdat->node_mem_map);
5668 #endif
5669
5670 free_area_init_core(pgdat);
5671 }
5672
5673 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5674
5675 #if MAX_NUMNODES > 1
5676 /*
5677 * Figure out the number of possible node ids.
5678 */
5679 void __init setup_nr_node_ids(void)
5680 {
5681 unsigned int highest;
5682
5683 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5684 nr_node_ids = highest + 1;
5685 }
5686 #endif
5687
5688 /**
5689 * node_map_pfn_alignment - determine the maximum internode alignment
5690 *
5691 * This function should be called after node map is populated and sorted.
5692 * It calculates the maximum power of two alignment which can distinguish
5693 * all the nodes.
5694 *
5695 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5696 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5697 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5698 * shifted, 1GiB is enough and this function will indicate so.
5699 *
5700 * This is used to test whether pfn -> nid mapping of the chosen memory
5701 * model has fine enough granularity to avoid incorrect mapping for the
5702 * populated node map.
5703 *
5704 * Returns the determined alignment in pfn's. 0 if there is no alignment
5705 * requirement (single node).
5706 */
5707 unsigned long __init node_map_pfn_alignment(void)
5708 {
5709 unsigned long accl_mask = 0, last_end = 0;
5710 unsigned long start, end, mask;
5711 int last_nid = -1;
5712 int i, nid;
5713
5714 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5715 if (!start || last_nid < 0 || last_nid == nid) {
5716 last_nid = nid;
5717 last_end = end;
5718 continue;
5719 }
5720
5721 /*
5722 * Start with a mask granular enough to pin-point to the
5723 * start pfn and tick off bits one-by-one until it becomes
5724 * too coarse to separate the current node from the last.
5725 */
5726 mask = ~((1 << __ffs(start)) - 1);
5727 while (mask && last_end <= (start & (mask << 1)))
5728 mask <<= 1;
5729
5730 /* accumulate all internode masks */
5731 accl_mask |= mask;
5732 }
5733
5734 /* convert mask to number of pages */
5735 return ~accl_mask + 1;
5736 }
5737
5738 /* Find the lowest pfn for a node */
5739 static unsigned long __init find_min_pfn_for_node(int nid)
5740 {
5741 unsigned long min_pfn = ULONG_MAX;
5742 unsigned long start_pfn;
5743 int i;
5744
5745 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5746 min_pfn = min(min_pfn, start_pfn);
5747
5748 if (min_pfn == ULONG_MAX) {
5749 pr_warn("Could not find start_pfn for node %d\n", nid);
5750 return 0;
5751 }
5752
5753 return min_pfn;
5754 }
5755
5756 /**
5757 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5758 *
5759 * It returns the minimum PFN based on information provided via
5760 * memblock_set_node().
5761 */
5762 unsigned long __init find_min_pfn_with_active_regions(void)
5763 {
5764 return find_min_pfn_for_node(MAX_NUMNODES);
5765 }
5766
5767 /*
5768 * early_calculate_totalpages()
5769 * Sum pages in active regions for movable zone.
5770 * Populate N_MEMORY for calculating usable_nodes.
5771 */
5772 static unsigned long __init early_calculate_totalpages(void)
5773 {
5774 unsigned long totalpages = 0;
5775 unsigned long start_pfn, end_pfn;
5776 int i, nid;
5777
5778 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5779 unsigned long pages = end_pfn - start_pfn;
5780
5781 totalpages += pages;
5782 if (pages)
5783 node_set_state(nid, N_MEMORY);
5784 }
5785 return totalpages;
5786 }
5787
5788 /*
5789 * Find the PFN the Movable zone begins in each node. Kernel memory
5790 * is spread evenly between nodes as long as the nodes have enough
5791 * memory. When they don't, some nodes will have more kernelcore than
5792 * others
5793 */
5794 static void __init find_zone_movable_pfns_for_nodes(void)
5795 {
5796 int i, nid;
5797 unsigned long usable_startpfn;
5798 unsigned long kernelcore_node, kernelcore_remaining;
5799 /* save the state before borrow the nodemask */
5800 nodemask_t saved_node_state = node_states[N_MEMORY];
5801 unsigned long totalpages = early_calculate_totalpages();
5802 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5803 struct memblock_region *r;
5804
5805 /* Need to find movable_zone earlier when movable_node is specified. */
5806 find_usable_zone_for_movable();
5807
5808 /*
5809 * If movable_node is specified, ignore kernelcore and movablecore
5810 * options.
5811 */
5812 if (movable_node_is_enabled()) {
5813 for_each_memblock(memory, r) {
5814 if (!memblock_is_hotpluggable(r))
5815 continue;
5816
5817 nid = r->nid;
5818
5819 usable_startpfn = PFN_DOWN(r->base);
5820 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5821 min(usable_startpfn, zone_movable_pfn[nid]) :
5822 usable_startpfn;
5823 }
5824
5825 goto out2;
5826 }
5827
5828 /*
5829 * If kernelcore=mirror is specified, ignore movablecore option
5830 */
5831 if (mirrored_kernelcore) {
5832 bool mem_below_4gb_not_mirrored = false;
5833
5834 for_each_memblock(memory, r) {
5835 if (memblock_is_mirror(r))
5836 continue;
5837
5838 nid = r->nid;
5839
5840 usable_startpfn = memblock_region_memory_base_pfn(r);
5841
5842 if (usable_startpfn < 0x100000) {
5843 mem_below_4gb_not_mirrored = true;
5844 continue;
5845 }
5846
5847 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5848 min(usable_startpfn, zone_movable_pfn[nid]) :
5849 usable_startpfn;
5850 }
5851
5852 if (mem_below_4gb_not_mirrored)
5853 pr_warn("This configuration results in unmirrored kernel memory.");
5854
5855 goto out2;
5856 }
5857
5858 /*
5859 * If movablecore=nn[KMG] was specified, calculate what size of
5860 * kernelcore that corresponds so that memory usable for
5861 * any allocation type is evenly spread. If both kernelcore
5862 * and movablecore are specified, then the value of kernelcore
5863 * will be used for required_kernelcore if it's greater than
5864 * what movablecore would have allowed.
5865 */
5866 if (required_movablecore) {
5867 unsigned long corepages;
5868
5869 /*
5870 * Round-up so that ZONE_MOVABLE is at least as large as what
5871 * was requested by the user
5872 */
5873 required_movablecore =
5874 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5875 required_movablecore = min(totalpages, required_movablecore);
5876 corepages = totalpages - required_movablecore;
5877
5878 required_kernelcore = max(required_kernelcore, corepages);
5879 }
5880
5881 /*
5882 * If kernelcore was not specified or kernelcore size is larger
5883 * than totalpages, there is no ZONE_MOVABLE.
5884 */
5885 if (!required_kernelcore || required_kernelcore >= totalpages)
5886 goto out;
5887
5888 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5889 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5890
5891 restart:
5892 /* Spread kernelcore memory as evenly as possible throughout nodes */
5893 kernelcore_node = required_kernelcore / usable_nodes;
5894 for_each_node_state(nid, N_MEMORY) {
5895 unsigned long start_pfn, end_pfn;
5896
5897 /*
5898 * Recalculate kernelcore_node if the division per node
5899 * now exceeds what is necessary to satisfy the requested
5900 * amount of memory for the kernel
5901 */
5902 if (required_kernelcore < kernelcore_node)
5903 kernelcore_node = required_kernelcore / usable_nodes;
5904
5905 /*
5906 * As the map is walked, we track how much memory is usable
5907 * by the kernel using kernelcore_remaining. When it is
5908 * 0, the rest of the node is usable by ZONE_MOVABLE
5909 */
5910 kernelcore_remaining = kernelcore_node;
5911
5912 /* Go through each range of PFNs within this node */
5913 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5914 unsigned long size_pages;
5915
5916 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5917 if (start_pfn >= end_pfn)
5918 continue;
5919
5920 /* Account for what is only usable for kernelcore */
5921 if (start_pfn < usable_startpfn) {
5922 unsigned long kernel_pages;
5923 kernel_pages = min(end_pfn, usable_startpfn)
5924 - start_pfn;
5925
5926 kernelcore_remaining -= min(kernel_pages,
5927 kernelcore_remaining);
5928 required_kernelcore -= min(kernel_pages,
5929 required_kernelcore);
5930
5931 /* Continue if range is now fully accounted */
5932 if (end_pfn <= usable_startpfn) {
5933
5934 /*
5935 * Push zone_movable_pfn to the end so
5936 * that if we have to rebalance
5937 * kernelcore across nodes, we will
5938 * not double account here
5939 */
5940 zone_movable_pfn[nid] = end_pfn;
5941 continue;
5942 }
5943 start_pfn = usable_startpfn;
5944 }
5945
5946 /*
5947 * The usable PFN range for ZONE_MOVABLE is from
5948 * start_pfn->end_pfn. Calculate size_pages as the
5949 * number of pages used as kernelcore
5950 */
5951 size_pages = end_pfn - start_pfn;
5952 if (size_pages > kernelcore_remaining)
5953 size_pages = kernelcore_remaining;
5954 zone_movable_pfn[nid] = start_pfn + size_pages;
5955
5956 /*
5957 * Some kernelcore has been met, update counts and
5958 * break if the kernelcore for this node has been
5959 * satisfied
5960 */
5961 required_kernelcore -= min(required_kernelcore,
5962 size_pages);
5963 kernelcore_remaining -= size_pages;
5964 if (!kernelcore_remaining)
5965 break;
5966 }
5967 }
5968
5969 /*
5970 * If there is still required_kernelcore, we do another pass with one
5971 * less node in the count. This will push zone_movable_pfn[nid] further
5972 * along on the nodes that still have memory until kernelcore is
5973 * satisfied
5974 */
5975 usable_nodes--;
5976 if (usable_nodes && required_kernelcore > usable_nodes)
5977 goto restart;
5978
5979 out2:
5980 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5981 for (nid = 0; nid < MAX_NUMNODES; nid++)
5982 zone_movable_pfn[nid] =
5983 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5984
5985 out:
5986 /* restore the node_state */
5987 node_states[N_MEMORY] = saved_node_state;
5988 }
5989
5990 /* Any regular or high memory on that node ? */
5991 static void check_for_memory(pg_data_t *pgdat, int nid)
5992 {
5993 enum zone_type zone_type;
5994
5995 if (N_MEMORY == N_NORMAL_MEMORY)
5996 return;
5997
5998 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5999 struct zone *zone = &pgdat->node_zones[zone_type];
6000 if (populated_zone(zone)) {
6001 node_set_state(nid, N_HIGH_MEMORY);
6002 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6003 zone_type <= ZONE_NORMAL)
6004 node_set_state(nid, N_NORMAL_MEMORY);
6005 break;
6006 }
6007 }
6008 }
6009
6010 /**
6011 * free_area_init_nodes - Initialise all pg_data_t and zone data
6012 * @max_zone_pfn: an array of max PFNs for each zone
6013 *
6014 * This will call free_area_init_node() for each active node in the system.
6015 * Using the page ranges provided by memblock_set_node(), the size of each
6016 * zone in each node and their holes is calculated. If the maximum PFN
6017 * between two adjacent zones match, it is assumed that the zone is empty.
6018 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6019 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6020 * starts where the previous one ended. For example, ZONE_DMA32 starts
6021 * at arch_max_dma_pfn.
6022 */
6023 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6024 {
6025 unsigned long start_pfn, end_pfn;
6026 int i, nid;
6027
6028 /* Record where the zone boundaries are */
6029 memset(arch_zone_lowest_possible_pfn, 0,
6030 sizeof(arch_zone_lowest_possible_pfn));
6031 memset(arch_zone_highest_possible_pfn, 0,
6032 sizeof(arch_zone_highest_possible_pfn));
6033 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6034 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6035 for (i = 1; i < MAX_NR_ZONES; i++) {
6036 if (i == ZONE_MOVABLE)
6037 continue;
6038 arch_zone_lowest_possible_pfn[i] =
6039 arch_zone_highest_possible_pfn[i-1];
6040 arch_zone_highest_possible_pfn[i] =
6041 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6042 }
6043 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6044 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6045
6046 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6047 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6048 find_zone_movable_pfns_for_nodes();
6049
6050 /* Print out the zone ranges */
6051 pr_info("Zone ranges:\n");
6052 for (i = 0; i < MAX_NR_ZONES; i++) {
6053 if (i == ZONE_MOVABLE)
6054 continue;
6055 pr_info(" %-8s ", zone_names[i]);
6056 if (arch_zone_lowest_possible_pfn[i] ==
6057 arch_zone_highest_possible_pfn[i])
6058 pr_cont("empty\n");
6059 else
6060 pr_cont("[mem %#018Lx-%#018Lx]\n",
6061 (u64)arch_zone_lowest_possible_pfn[i]
6062 << PAGE_SHIFT,
6063 ((u64)arch_zone_highest_possible_pfn[i]
6064 << PAGE_SHIFT) - 1);
6065 }
6066
6067 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6068 pr_info("Movable zone start for each node\n");
6069 for (i = 0; i < MAX_NUMNODES; i++) {
6070 if (zone_movable_pfn[i])
6071 pr_info(" Node %d: %#018Lx\n", i,
6072 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6073 }
6074
6075 /* Print out the early node map */
6076 pr_info("Early memory node ranges\n");
6077 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6078 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6079 (u64)start_pfn << PAGE_SHIFT,
6080 ((u64)end_pfn << PAGE_SHIFT) - 1);
6081
6082 /* Initialise every node */
6083 mminit_verify_pageflags_layout();
6084 setup_nr_node_ids();
6085 for_each_online_node(nid) {
6086 pg_data_t *pgdat = NODE_DATA(nid);
6087 free_area_init_node(nid, NULL,
6088 find_min_pfn_for_node(nid), NULL);
6089
6090 /* Any memory on that node */
6091 if (pgdat->node_present_pages)
6092 node_set_state(nid, N_MEMORY);
6093 check_for_memory(pgdat, nid);
6094 }
6095 }
6096
6097 static int __init cmdline_parse_core(char *p, unsigned long *core)
6098 {
6099 unsigned long long coremem;
6100 if (!p)
6101 return -EINVAL;
6102
6103 coremem = memparse(p, &p);
6104 *core = coremem >> PAGE_SHIFT;
6105
6106 /* Paranoid check that UL is enough for the coremem value */
6107 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6108
6109 return 0;
6110 }
6111
6112 /*
6113 * kernelcore=size sets the amount of memory for use for allocations that
6114 * cannot be reclaimed or migrated.
6115 */
6116 static int __init cmdline_parse_kernelcore(char *p)
6117 {
6118 /* parse kernelcore=mirror */
6119 if (parse_option_str(p, "mirror")) {
6120 mirrored_kernelcore = true;
6121 return 0;
6122 }
6123
6124 return cmdline_parse_core(p, &required_kernelcore);
6125 }
6126
6127 /*
6128 * movablecore=size sets the amount of memory for use for allocations that
6129 * can be reclaimed or migrated.
6130 */
6131 static int __init cmdline_parse_movablecore(char *p)
6132 {
6133 return cmdline_parse_core(p, &required_movablecore);
6134 }
6135
6136 early_param("kernelcore", cmdline_parse_kernelcore);
6137 early_param("movablecore", cmdline_parse_movablecore);
6138
6139 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6140
6141 void adjust_managed_page_count(struct page *page, long count)
6142 {
6143 spin_lock(&managed_page_count_lock);
6144 page_zone(page)->managed_pages += count;
6145 totalram_pages += count;
6146 #ifdef CONFIG_HIGHMEM
6147 if (PageHighMem(page))
6148 totalhigh_pages += count;
6149 #endif
6150 spin_unlock(&managed_page_count_lock);
6151 }
6152 EXPORT_SYMBOL(adjust_managed_page_count);
6153
6154 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6155 {
6156 void *pos;
6157 unsigned long pages = 0;
6158
6159 start = (void *)PAGE_ALIGN((unsigned long)start);
6160 end = (void *)((unsigned long)end & PAGE_MASK);
6161 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6162 if ((unsigned int)poison <= 0xFF)
6163 memset(pos, poison, PAGE_SIZE);
6164 free_reserved_page(virt_to_page(pos));
6165 }
6166
6167 if (pages && s)
6168 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6169 s, pages << (PAGE_SHIFT - 10), start, end);
6170
6171 return pages;
6172 }
6173 EXPORT_SYMBOL(free_reserved_area);
6174
6175 #ifdef CONFIG_HIGHMEM
6176 void free_highmem_page(struct page *page)
6177 {
6178 __free_reserved_page(page);
6179 totalram_pages++;
6180 page_zone(page)->managed_pages++;
6181 totalhigh_pages++;
6182 }
6183 #endif
6184
6185
6186 void __init mem_init_print_info(const char *str)
6187 {
6188 unsigned long physpages, codesize, datasize, rosize, bss_size;
6189 unsigned long init_code_size, init_data_size;
6190
6191 physpages = get_num_physpages();
6192 codesize = _etext - _stext;
6193 datasize = _edata - _sdata;
6194 rosize = __end_rodata - __start_rodata;
6195 bss_size = __bss_stop - __bss_start;
6196 init_data_size = __init_end - __init_begin;
6197 init_code_size = _einittext - _sinittext;
6198
6199 /*
6200 * Detect special cases and adjust section sizes accordingly:
6201 * 1) .init.* may be embedded into .data sections
6202 * 2) .init.text.* may be out of [__init_begin, __init_end],
6203 * please refer to arch/tile/kernel/vmlinux.lds.S.
6204 * 3) .rodata.* may be embedded into .text or .data sections.
6205 */
6206 #define adj_init_size(start, end, size, pos, adj) \
6207 do { \
6208 if (start <= pos && pos < end && size > adj) \
6209 size -= adj; \
6210 } while (0)
6211
6212 adj_init_size(__init_begin, __init_end, init_data_size,
6213 _sinittext, init_code_size);
6214 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6215 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6216 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6217 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6218
6219 #undef adj_init_size
6220
6221 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6222 #ifdef CONFIG_HIGHMEM
6223 ", %luK highmem"
6224 #endif
6225 "%s%s)\n",
6226 nr_free_pages() << (PAGE_SHIFT - 10),
6227 physpages << (PAGE_SHIFT - 10),
6228 codesize >> 10, datasize >> 10, rosize >> 10,
6229 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6230 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6231 totalcma_pages << (PAGE_SHIFT - 10),
6232 #ifdef CONFIG_HIGHMEM
6233 totalhigh_pages << (PAGE_SHIFT - 10),
6234 #endif
6235 str ? ", " : "", str ? str : "");
6236 }
6237
6238 /**
6239 * set_dma_reserve - set the specified number of pages reserved in the first zone
6240 * @new_dma_reserve: The number of pages to mark reserved
6241 *
6242 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6243 * In the DMA zone, a significant percentage may be consumed by kernel image
6244 * and other unfreeable allocations which can skew the watermarks badly. This
6245 * function may optionally be used to account for unfreeable pages in the
6246 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6247 * smaller per-cpu batchsize.
6248 */
6249 void __init set_dma_reserve(unsigned long new_dma_reserve)
6250 {
6251 dma_reserve = new_dma_reserve;
6252 }
6253
6254 void __init free_area_init(unsigned long *zones_size)
6255 {
6256 free_area_init_node(0, zones_size,
6257 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6258 }
6259
6260 static int page_alloc_cpu_notify(struct notifier_block *self,
6261 unsigned long action, void *hcpu)
6262 {
6263 int cpu = (unsigned long)hcpu;
6264
6265 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6266 lru_add_drain_cpu(cpu);
6267 drain_pages(cpu);
6268
6269 /*
6270 * Spill the event counters of the dead processor
6271 * into the current processors event counters.
6272 * This artificially elevates the count of the current
6273 * processor.
6274 */
6275 vm_events_fold_cpu(cpu);
6276
6277 /*
6278 * Zero the differential counters of the dead processor
6279 * so that the vm statistics are consistent.
6280 *
6281 * This is only okay since the processor is dead and cannot
6282 * race with what we are doing.
6283 */
6284 cpu_vm_stats_fold(cpu);
6285 }
6286 return NOTIFY_OK;
6287 }
6288
6289 void __init page_alloc_init(void)
6290 {
6291 hotcpu_notifier(page_alloc_cpu_notify, 0);
6292 }
6293
6294 /*
6295 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6296 * or min_free_kbytes changes.
6297 */
6298 static void calculate_totalreserve_pages(void)
6299 {
6300 struct pglist_data *pgdat;
6301 unsigned long reserve_pages = 0;
6302 enum zone_type i, j;
6303
6304 for_each_online_pgdat(pgdat) {
6305 for (i = 0; i < MAX_NR_ZONES; i++) {
6306 struct zone *zone = pgdat->node_zones + i;
6307 long max = 0;
6308
6309 /* Find valid and maximum lowmem_reserve in the zone */
6310 for (j = i; j < MAX_NR_ZONES; j++) {
6311 if (zone->lowmem_reserve[j] > max)
6312 max = zone->lowmem_reserve[j];
6313 }
6314
6315 /* we treat the high watermark as reserved pages. */
6316 max += high_wmark_pages(zone);
6317
6318 if (max > zone->managed_pages)
6319 max = zone->managed_pages;
6320
6321 zone->totalreserve_pages = max;
6322
6323 reserve_pages += max;
6324 }
6325 }
6326 totalreserve_pages = reserve_pages;
6327 }
6328
6329 /*
6330 * setup_per_zone_lowmem_reserve - called whenever
6331 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6332 * has a correct pages reserved value, so an adequate number of
6333 * pages are left in the zone after a successful __alloc_pages().
6334 */
6335 static void setup_per_zone_lowmem_reserve(void)
6336 {
6337 struct pglist_data *pgdat;
6338 enum zone_type j, idx;
6339
6340 for_each_online_pgdat(pgdat) {
6341 for (j = 0; j < MAX_NR_ZONES; j++) {
6342 struct zone *zone = pgdat->node_zones + j;
6343 unsigned long managed_pages = zone->managed_pages;
6344
6345 zone->lowmem_reserve[j] = 0;
6346
6347 idx = j;
6348 while (idx) {
6349 struct zone *lower_zone;
6350
6351 idx--;
6352
6353 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6354 sysctl_lowmem_reserve_ratio[idx] = 1;
6355
6356 lower_zone = pgdat->node_zones + idx;
6357 lower_zone->lowmem_reserve[j] = managed_pages /
6358 sysctl_lowmem_reserve_ratio[idx];
6359 managed_pages += lower_zone->managed_pages;
6360 }
6361 }
6362 }
6363
6364 /* update totalreserve_pages */
6365 calculate_totalreserve_pages();
6366 }
6367
6368 static void __setup_per_zone_wmarks(void)
6369 {
6370 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6371 unsigned long lowmem_pages = 0;
6372 struct zone *zone;
6373 unsigned long flags;
6374
6375 /* Calculate total number of !ZONE_HIGHMEM pages */
6376 for_each_zone(zone) {
6377 if (!is_highmem(zone))
6378 lowmem_pages += zone->managed_pages;
6379 }
6380
6381 for_each_zone(zone) {
6382 u64 tmp;
6383
6384 spin_lock_irqsave(&zone->lock, flags);
6385 tmp = (u64)pages_min * zone->managed_pages;
6386 do_div(tmp, lowmem_pages);
6387 if (is_highmem(zone)) {
6388 /*
6389 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6390 * need highmem pages, so cap pages_min to a small
6391 * value here.
6392 *
6393 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6394 * deltas control asynch page reclaim, and so should
6395 * not be capped for highmem.
6396 */
6397 unsigned long min_pages;
6398
6399 min_pages = zone->managed_pages / 1024;
6400 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6401 zone->watermark[WMARK_MIN] = min_pages;
6402 } else {
6403 /*
6404 * If it's a lowmem zone, reserve a number of pages
6405 * proportionate to the zone's size.
6406 */
6407 zone->watermark[WMARK_MIN] = tmp;
6408 }
6409
6410 /*
6411 * Set the kswapd watermarks distance according to the
6412 * scale factor in proportion to available memory, but
6413 * ensure a minimum size on small systems.
6414 */
6415 tmp = max_t(u64, tmp >> 2,
6416 mult_frac(zone->managed_pages,
6417 watermark_scale_factor, 10000));
6418
6419 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6420 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6421
6422 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6423 high_wmark_pages(zone) - low_wmark_pages(zone) -
6424 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6425
6426 spin_unlock_irqrestore(&zone->lock, flags);
6427 }
6428
6429 /* update totalreserve_pages */
6430 calculate_totalreserve_pages();
6431 }
6432
6433 /**
6434 * setup_per_zone_wmarks - called when min_free_kbytes changes
6435 * or when memory is hot-{added|removed}
6436 *
6437 * Ensures that the watermark[min,low,high] values for each zone are set
6438 * correctly with respect to min_free_kbytes.
6439 */
6440 void setup_per_zone_wmarks(void)
6441 {
6442 mutex_lock(&zonelists_mutex);
6443 __setup_per_zone_wmarks();
6444 mutex_unlock(&zonelists_mutex);
6445 }
6446
6447 /*
6448 * The inactive anon list should be small enough that the VM never has to
6449 * do too much work, but large enough that each inactive page has a chance
6450 * to be referenced again before it is swapped out.
6451 *
6452 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6453 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6454 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6455 * the anonymous pages are kept on the inactive list.
6456 *
6457 * total target max
6458 * memory ratio inactive anon
6459 * -------------------------------------
6460 * 10MB 1 5MB
6461 * 100MB 1 50MB
6462 * 1GB 3 250MB
6463 * 10GB 10 0.9GB
6464 * 100GB 31 3GB
6465 * 1TB 101 10GB
6466 * 10TB 320 32GB
6467 */
6468 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6469 {
6470 unsigned int gb, ratio;
6471
6472 /* Zone size in gigabytes */
6473 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6474 if (gb)
6475 ratio = int_sqrt(10 * gb);
6476 else
6477 ratio = 1;
6478
6479 zone->inactive_ratio = ratio;
6480 }
6481
6482 static void __meminit setup_per_zone_inactive_ratio(void)
6483 {
6484 struct zone *zone;
6485
6486 for_each_zone(zone)
6487 calculate_zone_inactive_ratio(zone);
6488 }
6489
6490 /*
6491 * Initialise min_free_kbytes.
6492 *
6493 * For small machines we want it small (128k min). For large machines
6494 * we want it large (64MB max). But it is not linear, because network
6495 * bandwidth does not increase linearly with machine size. We use
6496 *
6497 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6498 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6499 *
6500 * which yields
6501 *
6502 * 16MB: 512k
6503 * 32MB: 724k
6504 * 64MB: 1024k
6505 * 128MB: 1448k
6506 * 256MB: 2048k
6507 * 512MB: 2896k
6508 * 1024MB: 4096k
6509 * 2048MB: 5792k
6510 * 4096MB: 8192k
6511 * 8192MB: 11584k
6512 * 16384MB: 16384k
6513 */
6514 int __meminit init_per_zone_wmark_min(void)
6515 {
6516 unsigned long lowmem_kbytes;
6517 int new_min_free_kbytes;
6518
6519 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6520 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6521
6522 if (new_min_free_kbytes > user_min_free_kbytes) {
6523 min_free_kbytes = new_min_free_kbytes;
6524 if (min_free_kbytes < 128)
6525 min_free_kbytes = 128;
6526 if (min_free_kbytes > 65536)
6527 min_free_kbytes = 65536;
6528 } else {
6529 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6530 new_min_free_kbytes, user_min_free_kbytes);
6531 }
6532 setup_per_zone_wmarks();
6533 refresh_zone_stat_thresholds();
6534 setup_per_zone_lowmem_reserve();
6535 setup_per_zone_inactive_ratio();
6536 return 0;
6537 }
6538 core_initcall(init_per_zone_wmark_min)
6539
6540 /*
6541 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6542 * that we can call two helper functions whenever min_free_kbytes
6543 * changes.
6544 */
6545 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6546 void __user *buffer, size_t *length, loff_t *ppos)
6547 {
6548 int rc;
6549
6550 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6551 if (rc)
6552 return rc;
6553
6554 if (write) {
6555 user_min_free_kbytes = min_free_kbytes;
6556 setup_per_zone_wmarks();
6557 }
6558 return 0;
6559 }
6560
6561 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6562 void __user *buffer, size_t *length, loff_t *ppos)
6563 {
6564 int rc;
6565
6566 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6567 if (rc)
6568 return rc;
6569
6570 if (write)
6571 setup_per_zone_wmarks();
6572
6573 return 0;
6574 }
6575
6576 #ifdef CONFIG_NUMA
6577 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6578 void __user *buffer, size_t *length, loff_t *ppos)
6579 {
6580 struct zone *zone;
6581 int rc;
6582
6583 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6584 if (rc)
6585 return rc;
6586
6587 for_each_zone(zone)
6588 zone->min_unmapped_pages = (zone->managed_pages *
6589 sysctl_min_unmapped_ratio) / 100;
6590 return 0;
6591 }
6592
6593 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6594 void __user *buffer, size_t *length, loff_t *ppos)
6595 {
6596 struct zone *zone;
6597 int rc;
6598
6599 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6600 if (rc)
6601 return rc;
6602
6603 for_each_zone(zone)
6604 zone->min_slab_pages = (zone->managed_pages *
6605 sysctl_min_slab_ratio) / 100;
6606 return 0;
6607 }
6608 #endif
6609
6610 /*
6611 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6612 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6613 * whenever sysctl_lowmem_reserve_ratio changes.
6614 *
6615 * The reserve ratio obviously has absolutely no relation with the
6616 * minimum watermarks. The lowmem reserve ratio can only make sense
6617 * if in function of the boot time zone sizes.
6618 */
6619 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6620 void __user *buffer, size_t *length, loff_t *ppos)
6621 {
6622 proc_dointvec_minmax(table, write, buffer, length, ppos);
6623 setup_per_zone_lowmem_reserve();
6624 return 0;
6625 }
6626
6627 /*
6628 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6629 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6630 * pagelist can have before it gets flushed back to buddy allocator.
6631 */
6632 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6633 void __user *buffer, size_t *length, loff_t *ppos)
6634 {
6635 struct zone *zone;
6636 int old_percpu_pagelist_fraction;
6637 int ret;
6638
6639 mutex_lock(&pcp_batch_high_lock);
6640 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6641
6642 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6643 if (!write || ret < 0)
6644 goto out;
6645
6646 /* Sanity checking to avoid pcp imbalance */
6647 if (percpu_pagelist_fraction &&
6648 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6649 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6650 ret = -EINVAL;
6651 goto out;
6652 }
6653
6654 /* No change? */
6655 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6656 goto out;
6657
6658 for_each_populated_zone(zone) {
6659 unsigned int cpu;
6660
6661 for_each_possible_cpu(cpu)
6662 pageset_set_high_and_batch(zone,
6663 per_cpu_ptr(zone->pageset, cpu));
6664 }
6665 out:
6666 mutex_unlock(&pcp_batch_high_lock);
6667 return ret;
6668 }
6669
6670 #ifdef CONFIG_NUMA
6671 int hashdist = HASHDIST_DEFAULT;
6672
6673 static int __init set_hashdist(char *str)
6674 {
6675 if (!str)
6676 return 0;
6677 hashdist = simple_strtoul(str, &str, 0);
6678 return 1;
6679 }
6680 __setup("hashdist=", set_hashdist);
6681 #endif
6682
6683 /*
6684 * allocate a large system hash table from bootmem
6685 * - it is assumed that the hash table must contain an exact power-of-2
6686 * quantity of entries
6687 * - limit is the number of hash buckets, not the total allocation size
6688 */
6689 void *__init alloc_large_system_hash(const char *tablename,
6690 unsigned long bucketsize,
6691 unsigned long numentries,
6692 int scale,
6693 int flags,
6694 unsigned int *_hash_shift,
6695 unsigned int *_hash_mask,
6696 unsigned long low_limit,
6697 unsigned long high_limit)
6698 {
6699 unsigned long long max = high_limit;
6700 unsigned long log2qty, size;
6701 void *table = NULL;
6702
6703 /* allow the kernel cmdline to have a say */
6704 if (!numentries) {
6705 /* round applicable memory size up to nearest megabyte */
6706 numentries = nr_kernel_pages;
6707
6708 /* It isn't necessary when PAGE_SIZE >= 1MB */
6709 if (PAGE_SHIFT < 20)
6710 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6711
6712 /* limit to 1 bucket per 2^scale bytes of low memory */
6713 if (scale > PAGE_SHIFT)
6714 numentries >>= (scale - PAGE_SHIFT);
6715 else
6716 numentries <<= (PAGE_SHIFT - scale);
6717
6718 /* Make sure we've got at least a 0-order allocation.. */
6719 if (unlikely(flags & HASH_SMALL)) {
6720 /* Makes no sense without HASH_EARLY */
6721 WARN_ON(!(flags & HASH_EARLY));
6722 if (!(numentries >> *_hash_shift)) {
6723 numentries = 1UL << *_hash_shift;
6724 BUG_ON(!numentries);
6725 }
6726 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6727 numentries = PAGE_SIZE / bucketsize;
6728 }
6729 numentries = roundup_pow_of_two(numentries);
6730
6731 /* limit allocation size to 1/16 total memory by default */
6732 if (max == 0) {
6733 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6734 do_div(max, bucketsize);
6735 }
6736 max = min(max, 0x80000000ULL);
6737
6738 if (numentries < low_limit)
6739 numentries = low_limit;
6740 if (numentries > max)
6741 numentries = max;
6742
6743 log2qty = ilog2(numentries);
6744
6745 do {
6746 size = bucketsize << log2qty;
6747 if (flags & HASH_EARLY)
6748 table = memblock_virt_alloc_nopanic(size, 0);
6749 else if (hashdist)
6750 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6751 else {
6752 /*
6753 * If bucketsize is not a power-of-two, we may free
6754 * some pages at the end of hash table which
6755 * alloc_pages_exact() automatically does
6756 */
6757 if (get_order(size) < MAX_ORDER) {
6758 table = alloc_pages_exact(size, GFP_ATOMIC);
6759 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6760 }
6761 }
6762 } while (!table && size > PAGE_SIZE && --log2qty);
6763
6764 if (!table)
6765 panic("Failed to allocate %s hash table\n", tablename);
6766
6767 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6768 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6769
6770 if (_hash_shift)
6771 *_hash_shift = log2qty;
6772 if (_hash_mask)
6773 *_hash_mask = (1 << log2qty) - 1;
6774
6775 return table;
6776 }
6777
6778 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6779 static inline unsigned long *get_pageblock_bitmap(struct page *page,
6780 unsigned long pfn)
6781 {
6782 #ifdef CONFIG_SPARSEMEM
6783 return __pfn_to_section(pfn)->pageblock_flags;
6784 #else
6785 return page_zone(page)->pageblock_flags;
6786 #endif /* CONFIG_SPARSEMEM */
6787 }
6788
6789 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
6790 {
6791 #ifdef CONFIG_SPARSEMEM
6792 pfn &= (PAGES_PER_SECTION-1);
6793 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6794 #else
6795 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
6796 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6797 #endif /* CONFIG_SPARSEMEM */
6798 }
6799
6800 /**
6801 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6802 * @page: The page within the block of interest
6803 * @pfn: The target page frame number
6804 * @end_bitidx: The last bit of interest to retrieve
6805 * @mask: mask of bits that the caller is interested in
6806 *
6807 * Return: pageblock_bits flags
6808 */
6809 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6810 unsigned long end_bitidx,
6811 unsigned long mask)
6812 {
6813 unsigned long *bitmap;
6814 unsigned long bitidx, word_bitidx;
6815 unsigned long word;
6816
6817 bitmap = get_pageblock_bitmap(page, pfn);
6818 bitidx = pfn_to_bitidx(page, pfn);
6819 word_bitidx = bitidx / BITS_PER_LONG;
6820 bitidx &= (BITS_PER_LONG-1);
6821
6822 word = bitmap[word_bitidx];
6823 bitidx += end_bitidx;
6824 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6825 }
6826
6827 /**
6828 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6829 * @page: The page within the block of interest
6830 * @flags: The flags to set
6831 * @pfn: The target page frame number
6832 * @end_bitidx: The last bit of interest
6833 * @mask: mask of bits that the caller is interested in
6834 */
6835 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6836 unsigned long pfn,
6837 unsigned long end_bitidx,
6838 unsigned long mask)
6839 {
6840 unsigned long *bitmap;
6841 unsigned long bitidx, word_bitidx;
6842 unsigned long old_word, word;
6843
6844 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6845
6846 bitmap = get_pageblock_bitmap(page, pfn);
6847 bitidx = pfn_to_bitidx(page, pfn);
6848 word_bitidx = bitidx / BITS_PER_LONG;
6849 bitidx &= (BITS_PER_LONG-1);
6850
6851 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
6852
6853 bitidx += end_bitidx;
6854 mask <<= (BITS_PER_LONG - bitidx - 1);
6855 flags <<= (BITS_PER_LONG - bitidx - 1);
6856
6857 word = READ_ONCE(bitmap[word_bitidx]);
6858 for (;;) {
6859 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6860 if (word == old_word)
6861 break;
6862 word = old_word;
6863 }
6864 }
6865
6866 /*
6867 * This function checks whether pageblock includes unmovable pages or not.
6868 * If @count is not zero, it is okay to include less @count unmovable pages
6869 *
6870 * PageLRU check without isolation or lru_lock could race so that
6871 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6872 * expect this function should be exact.
6873 */
6874 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6875 bool skip_hwpoisoned_pages)
6876 {
6877 unsigned long pfn, iter, found;
6878 int mt;
6879
6880 /*
6881 * For avoiding noise data, lru_add_drain_all() should be called
6882 * If ZONE_MOVABLE, the zone never contains unmovable pages
6883 */
6884 if (zone_idx(zone) == ZONE_MOVABLE)
6885 return false;
6886 mt = get_pageblock_migratetype(page);
6887 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6888 return false;
6889
6890 pfn = page_to_pfn(page);
6891 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6892 unsigned long check = pfn + iter;
6893
6894 if (!pfn_valid_within(check))
6895 continue;
6896
6897 page = pfn_to_page(check);
6898
6899 /*
6900 * Hugepages are not in LRU lists, but they're movable.
6901 * We need not scan over tail pages bacause we don't
6902 * handle each tail page individually in migration.
6903 */
6904 if (PageHuge(page)) {
6905 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6906 continue;
6907 }
6908
6909 /*
6910 * We can't use page_count without pin a page
6911 * because another CPU can free compound page.
6912 * This check already skips compound tails of THP
6913 * because their page->_refcount is zero at all time.
6914 */
6915 if (!page_ref_count(page)) {
6916 if (PageBuddy(page))
6917 iter += (1 << page_order(page)) - 1;
6918 continue;
6919 }
6920
6921 /*
6922 * The HWPoisoned page may be not in buddy system, and
6923 * page_count() is not 0.
6924 */
6925 if (skip_hwpoisoned_pages && PageHWPoison(page))
6926 continue;
6927
6928 if (!PageLRU(page))
6929 found++;
6930 /*
6931 * If there are RECLAIMABLE pages, we need to check
6932 * it. But now, memory offline itself doesn't call
6933 * shrink_node_slabs() and it still to be fixed.
6934 */
6935 /*
6936 * If the page is not RAM, page_count()should be 0.
6937 * we don't need more check. This is an _used_ not-movable page.
6938 *
6939 * The problematic thing here is PG_reserved pages. PG_reserved
6940 * is set to both of a memory hole page and a _used_ kernel
6941 * page at boot.
6942 */
6943 if (found > count)
6944 return true;
6945 }
6946 return false;
6947 }
6948
6949 bool is_pageblock_removable_nolock(struct page *page)
6950 {
6951 struct zone *zone;
6952 unsigned long pfn;
6953
6954 /*
6955 * We have to be careful here because we are iterating over memory
6956 * sections which are not zone aware so we might end up outside of
6957 * the zone but still within the section.
6958 * We have to take care about the node as well. If the node is offline
6959 * its NODE_DATA will be NULL - see page_zone.
6960 */
6961 if (!node_online(page_to_nid(page)))
6962 return false;
6963
6964 zone = page_zone(page);
6965 pfn = page_to_pfn(page);
6966 if (!zone_spans_pfn(zone, pfn))
6967 return false;
6968
6969 return !has_unmovable_pages(zone, page, 0, true);
6970 }
6971
6972 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6973
6974 static unsigned long pfn_max_align_down(unsigned long pfn)
6975 {
6976 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6977 pageblock_nr_pages) - 1);
6978 }
6979
6980 static unsigned long pfn_max_align_up(unsigned long pfn)
6981 {
6982 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6983 pageblock_nr_pages));
6984 }
6985
6986 /* [start, end) must belong to a single zone. */
6987 static int __alloc_contig_migrate_range(struct compact_control *cc,
6988 unsigned long start, unsigned long end)
6989 {
6990 /* This function is based on compact_zone() from compaction.c. */
6991 unsigned long nr_reclaimed;
6992 unsigned long pfn = start;
6993 unsigned int tries = 0;
6994 int ret = 0;
6995
6996 migrate_prep();
6997
6998 while (pfn < end || !list_empty(&cc->migratepages)) {
6999 if (fatal_signal_pending(current)) {
7000 ret = -EINTR;
7001 break;
7002 }
7003
7004 if (list_empty(&cc->migratepages)) {
7005 cc->nr_migratepages = 0;
7006 pfn = isolate_migratepages_range(cc, pfn, end);
7007 if (!pfn) {
7008 ret = -EINTR;
7009 break;
7010 }
7011 tries = 0;
7012 } else if (++tries == 5) {
7013 ret = ret < 0 ? ret : -EBUSY;
7014 break;
7015 }
7016
7017 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7018 &cc->migratepages);
7019 cc->nr_migratepages -= nr_reclaimed;
7020
7021 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7022 NULL, 0, cc->mode, MR_CMA);
7023 }
7024 if (ret < 0) {
7025 putback_movable_pages(&cc->migratepages);
7026 return ret;
7027 }
7028 return 0;
7029 }
7030
7031 /**
7032 * alloc_contig_range() -- tries to allocate given range of pages
7033 * @start: start PFN to allocate
7034 * @end: one-past-the-last PFN to allocate
7035 * @migratetype: migratetype of the underlaying pageblocks (either
7036 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7037 * in range must have the same migratetype and it must
7038 * be either of the two.
7039 *
7040 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7041 * aligned, however it's the caller's responsibility to guarantee that
7042 * we are the only thread that changes migrate type of pageblocks the
7043 * pages fall in.
7044 *
7045 * The PFN range must belong to a single zone.
7046 *
7047 * Returns zero on success or negative error code. On success all
7048 * pages which PFN is in [start, end) are allocated for the caller and
7049 * need to be freed with free_contig_range().
7050 */
7051 int alloc_contig_range(unsigned long start, unsigned long end,
7052 unsigned migratetype)
7053 {
7054 unsigned long outer_start, outer_end;
7055 unsigned int order;
7056 int ret = 0;
7057
7058 struct compact_control cc = {
7059 .nr_migratepages = 0,
7060 .order = -1,
7061 .zone = page_zone(pfn_to_page(start)),
7062 .mode = MIGRATE_SYNC,
7063 .ignore_skip_hint = true,
7064 };
7065 INIT_LIST_HEAD(&cc.migratepages);
7066
7067 /*
7068 * What we do here is we mark all pageblocks in range as
7069 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7070 * have different sizes, and due to the way page allocator
7071 * work, we align the range to biggest of the two pages so
7072 * that page allocator won't try to merge buddies from
7073 * different pageblocks and change MIGRATE_ISOLATE to some
7074 * other migration type.
7075 *
7076 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7077 * migrate the pages from an unaligned range (ie. pages that
7078 * we are interested in). This will put all the pages in
7079 * range back to page allocator as MIGRATE_ISOLATE.
7080 *
7081 * When this is done, we take the pages in range from page
7082 * allocator removing them from the buddy system. This way
7083 * page allocator will never consider using them.
7084 *
7085 * This lets us mark the pageblocks back as
7086 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7087 * aligned range but not in the unaligned, original range are
7088 * put back to page allocator so that buddy can use them.
7089 */
7090
7091 ret = start_isolate_page_range(pfn_max_align_down(start),
7092 pfn_max_align_up(end), migratetype,
7093 false);
7094 if (ret)
7095 return ret;
7096
7097 /*
7098 * In case of -EBUSY, we'd like to know which page causes problem.
7099 * So, just fall through. We will check it in test_pages_isolated().
7100 */
7101 ret = __alloc_contig_migrate_range(&cc, start, end);
7102 if (ret && ret != -EBUSY)
7103 goto done;
7104
7105 /*
7106 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7107 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7108 * more, all pages in [start, end) are free in page allocator.
7109 * What we are going to do is to allocate all pages from
7110 * [start, end) (that is remove them from page allocator).
7111 *
7112 * The only problem is that pages at the beginning and at the
7113 * end of interesting range may be not aligned with pages that
7114 * page allocator holds, ie. they can be part of higher order
7115 * pages. Because of this, we reserve the bigger range and
7116 * once this is done free the pages we are not interested in.
7117 *
7118 * We don't have to hold zone->lock here because the pages are
7119 * isolated thus they won't get removed from buddy.
7120 */
7121
7122 lru_add_drain_all();
7123 drain_all_pages(cc.zone);
7124
7125 order = 0;
7126 outer_start = start;
7127 while (!PageBuddy(pfn_to_page(outer_start))) {
7128 if (++order >= MAX_ORDER) {
7129 outer_start = start;
7130 break;
7131 }
7132 outer_start &= ~0UL << order;
7133 }
7134
7135 if (outer_start != start) {
7136 order = page_order(pfn_to_page(outer_start));
7137
7138 /*
7139 * outer_start page could be small order buddy page and
7140 * it doesn't include start page. Adjust outer_start
7141 * in this case to report failed page properly
7142 * on tracepoint in test_pages_isolated()
7143 */
7144 if (outer_start + (1UL << order) <= start)
7145 outer_start = start;
7146 }
7147
7148 /* Make sure the range is really isolated. */
7149 if (test_pages_isolated(outer_start, end, false)) {
7150 pr_info("%s: [%lx, %lx) PFNs busy\n",
7151 __func__, outer_start, end);
7152 ret = -EBUSY;
7153 goto done;
7154 }
7155
7156 /* Grab isolated pages from freelists. */
7157 outer_end = isolate_freepages_range(&cc, outer_start, end);
7158 if (!outer_end) {
7159 ret = -EBUSY;
7160 goto done;
7161 }
7162
7163 /* Free head and tail (if any) */
7164 if (start != outer_start)
7165 free_contig_range(outer_start, start - outer_start);
7166 if (end != outer_end)
7167 free_contig_range(end, outer_end - end);
7168
7169 done:
7170 undo_isolate_page_range(pfn_max_align_down(start),
7171 pfn_max_align_up(end), migratetype);
7172 return ret;
7173 }
7174
7175 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7176 {
7177 unsigned int count = 0;
7178
7179 for (; nr_pages--; pfn++) {
7180 struct page *page = pfn_to_page(pfn);
7181
7182 count += page_count(page) != 1;
7183 __free_page(page);
7184 }
7185 WARN(count != 0, "%d pages are still in use!\n", count);
7186 }
7187 #endif
7188
7189 #ifdef CONFIG_MEMORY_HOTPLUG
7190 /*
7191 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7192 * page high values need to be recalulated.
7193 */
7194 void __meminit zone_pcp_update(struct zone *zone)
7195 {
7196 unsigned cpu;
7197 mutex_lock(&pcp_batch_high_lock);
7198 for_each_possible_cpu(cpu)
7199 pageset_set_high_and_batch(zone,
7200 per_cpu_ptr(zone->pageset, cpu));
7201 mutex_unlock(&pcp_batch_high_lock);
7202 }
7203 #endif
7204
7205 void zone_pcp_reset(struct zone *zone)
7206 {
7207 unsigned long flags;
7208 int cpu;
7209 struct per_cpu_pageset *pset;
7210
7211 /* avoid races with drain_pages() */
7212 local_irq_save(flags);
7213 if (zone->pageset != &boot_pageset) {
7214 for_each_online_cpu(cpu) {
7215 pset = per_cpu_ptr(zone->pageset, cpu);
7216 drain_zonestat(zone, pset);
7217 }
7218 free_percpu(zone->pageset);
7219 zone->pageset = &boot_pageset;
7220 }
7221 local_irq_restore(flags);
7222 }
7223
7224 #ifdef CONFIG_MEMORY_HOTREMOVE
7225 /*
7226 * All pages in the range must be in a single zone and isolated
7227 * before calling this.
7228 */
7229 void
7230 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7231 {
7232 struct page *page;
7233 struct zone *zone;
7234 unsigned int order, i;
7235 unsigned long pfn;
7236 unsigned long flags;
7237 /* find the first valid pfn */
7238 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7239 if (pfn_valid(pfn))
7240 break;
7241 if (pfn == end_pfn)
7242 return;
7243 zone = page_zone(pfn_to_page(pfn));
7244 spin_lock_irqsave(&zone->lock, flags);
7245 pfn = start_pfn;
7246 while (pfn < end_pfn) {
7247 if (!pfn_valid(pfn)) {
7248 pfn++;
7249 continue;
7250 }
7251 page = pfn_to_page(pfn);
7252 /*
7253 * The HWPoisoned page may be not in buddy system, and
7254 * page_count() is not 0.
7255 */
7256 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7257 pfn++;
7258 SetPageReserved(page);
7259 continue;
7260 }
7261
7262 BUG_ON(page_count(page));
7263 BUG_ON(!PageBuddy(page));
7264 order = page_order(page);
7265 #ifdef CONFIG_DEBUG_VM
7266 pr_info("remove from free list %lx %d %lx\n",
7267 pfn, 1 << order, end_pfn);
7268 #endif
7269 list_del(&page->lru);
7270 rmv_page_order(page);
7271 zone->free_area[order].nr_free--;
7272 for (i = 0; i < (1 << order); i++)
7273 SetPageReserved((page+i));
7274 pfn += (1 << order);
7275 }
7276 spin_unlock_irqrestore(&zone->lock, flags);
7277 }
7278 #endif
7279
7280 bool is_free_buddy_page(struct page *page)
7281 {
7282 struct zone *zone = page_zone(page);
7283 unsigned long pfn = page_to_pfn(page);
7284 unsigned long flags;
7285 unsigned int order;
7286
7287 spin_lock_irqsave(&zone->lock, flags);
7288 for (order = 0; order < MAX_ORDER; order++) {
7289 struct page *page_head = page - (pfn & ((1 << order) - 1));
7290
7291 if (PageBuddy(page_head) && page_order(page_head) >= order)
7292 break;
7293 }
7294 spin_unlock_irqrestore(&zone->lock, flags);
7295
7296 return order < MAX_ORDER;
7297 }
This page took 0.210121 seconds and 6 git commands to generate.