mm, oom: organize oom context into struct
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 #ifdef CONFIG_PM_SLEEP
129 /*
130 * The following functions are used by the suspend/hibernate code to temporarily
131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132 * while devices are suspended. To avoid races with the suspend/hibernate code,
133 * they should always be called with pm_mutex held (gfp_allowed_mask also should
134 * only be modified with pm_mutex held, unless the suspend/hibernate code is
135 * guaranteed not to run in parallel with that modification).
136 */
137
138 static gfp_t saved_gfp_mask;
139
140 void pm_restore_gfp_mask(void)
141 {
142 WARN_ON(!mutex_is_locked(&pm_mutex));
143 if (saved_gfp_mask) {
144 gfp_allowed_mask = saved_gfp_mask;
145 saved_gfp_mask = 0;
146 }
147 }
148
149 void pm_restrict_gfp_mask(void)
150 {
151 WARN_ON(!mutex_is_locked(&pm_mutex));
152 WARN_ON(saved_gfp_mask);
153 saved_gfp_mask = gfp_allowed_mask;
154 gfp_allowed_mask &= ~GFP_IOFS;
155 }
156
157 bool pm_suspended_storage(void)
158 {
159 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
160 return false;
161 return true;
162 }
163 #endif /* CONFIG_PM_SLEEP */
164
165 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
166 int pageblock_order __read_mostly;
167 #endif
168
169 static void __free_pages_ok(struct page *page, unsigned int order);
170
171 /*
172 * results with 256, 32 in the lowmem_reserve sysctl:
173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174 * 1G machine -> (16M dma, 784M normal, 224M high)
175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
178 *
179 * TBD: should special case ZONE_DMA32 machines here - in those we normally
180 * don't need any ZONE_NORMAL reservation
181 */
182 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
183 #ifdef CONFIG_ZONE_DMA
184 256,
185 #endif
186 #ifdef CONFIG_ZONE_DMA32
187 256,
188 #endif
189 #ifdef CONFIG_HIGHMEM
190 32,
191 #endif
192 32,
193 };
194
195 EXPORT_SYMBOL(totalram_pages);
196
197 static char * const zone_names[MAX_NR_ZONES] = {
198 #ifdef CONFIG_ZONE_DMA
199 "DMA",
200 #endif
201 #ifdef CONFIG_ZONE_DMA32
202 "DMA32",
203 #endif
204 "Normal",
205 #ifdef CONFIG_HIGHMEM
206 "HighMem",
207 #endif
208 "Movable",
209 };
210
211 int min_free_kbytes = 1024;
212 int user_min_free_kbytes = -1;
213
214 static unsigned long __meminitdata nr_kernel_pages;
215 static unsigned long __meminitdata nr_all_pages;
216 static unsigned long __meminitdata dma_reserve;
217
218 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
221 static unsigned long __initdata required_kernelcore;
222 static unsigned long __initdata required_movablecore;
223 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
224
225 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
226 int movable_zone;
227 EXPORT_SYMBOL(movable_zone);
228 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
229
230 #if MAX_NUMNODES > 1
231 int nr_node_ids __read_mostly = MAX_NUMNODES;
232 int nr_online_nodes __read_mostly = 1;
233 EXPORT_SYMBOL(nr_node_ids);
234 EXPORT_SYMBOL(nr_online_nodes);
235 #endif
236
237 int page_group_by_mobility_disabled __read_mostly;
238
239 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
240 static inline void reset_deferred_meminit(pg_data_t *pgdat)
241 {
242 pgdat->first_deferred_pfn = ULONG_MAX;
243 }
244
245 /* Returns true if the struct page for the pfn is uninitialised */
246 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
247 {
248 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
249 return true;
250
251 return false;
252 }
253
254 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
255 {
256 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
257 return true;
258
259 return false;
260 }
261
262 /*
263 * Returns false when the remaining initialisation should be deferred until
264 * later in the boot cycle when it can be parallelised.
265 */
266 static inline bool update_defer_init(pg_data_t *pgdat,
267 unsigned long pfn, unsigned long zone_end,
268 unsigned long *nr_initialised)
269 {
270 /* Always populate low zones for address-contrained allocations */
271 if (zone_end < pgdat_end_pfn(pgdat))
272 return true;
273
274 /* Initialise at least 2G of the highest zone */
275 (*nr_initialised)++;
276 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
277 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
278 pgdat->first_deferred_pfn = pfn;
279 return false;
280 }
281
282 return true;
283 }
284 #else
285 static inline void reset_deferred_meminit(pg_data_t *pgdat)
286 {
287 }
288
289 static inline bool early_page_uninitialised(unsigned long pfn)
290 {
291 return false;
292 }
293
294 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295 {
296 return false;
297 }
298
299 static inline bool update_defer_init(pg_data_t *pgdat,
300 unsigned long pfn, unsigned long zone_end,
301 unsigned long *nr_initialised)
302 {
303 return true;
304 }
305 #endif
306
307
308 void set_pageblock_migratetype(struct page *page, int migratetype)
309 {
310 if (unlikely(page_group_by_mobility_disabled &&
311 migratetype < MIGRATE_PCPTYPES))
312 migratetype = MIGRATE_UNMOVABLE;
313
314 set_pageblock_flags_group(page, (unsigned long)migratetype,
315 PB_migrate, PB_migrate_end);
316 }
317
318 #ifdef CONFIG_DEBUG_VM
319 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
320 {
321 int ret = 0;
322 unsigned seq;
323 unsigned long pfn = page_to_pfn(page);
324 unsigned long sp, start_pfn;
325
326 do {
327 seq = zone_span_seqbegin(zone);
328 start_pfn = zone->zone_start_pfn;
329 sp = zone->spanned_pages;
330 if (!zone_spans_pfn(zone, pfn))
331 ret = 1;
332 } while (zone_span_seqretry(zone, seq));
333
334 if (ret)
335 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
336 pfn, zone_to_nid(zone), zone->name,
337 start_pfn, start_pfn + sp);
338
339 return ret;
340 }
341
342 static int page_is_consistent(struct zone *zone, struct page *page)
343 {
344 if (!pfn_valid_within(page_to_pfn(page)))
345 return 0;
346 if (zone != page_zone(page))
347 return 0;
348
349 return 1;
350 }
351 /*
352 * Temporary debugging check for pages not lying within a given zone.
353 */
354 static int bad_range(struct zone *zone, struct page *page)
355 {
356 if (page_outside_zone_boundaries(zone, page))
357 return 1;
358 if (!page_is_consistent(zone, page))
359 return 1;
360
361 return 0;
362 }
363 #else
364 static inline int bad_range(struct zone *zone, struct page *page)
365 {
366 return 0;
367 }
368 #endif
369
370 static void bad_page(struct page *page, const char *reason,
371 unsigned long bad_flags)
372 {
373 static unsigned long resume;
374 static unsigned long nr_shown;
375 static unsigned long nr_unshown;
376
377 /* Don't complain about poisoned pages */
378 if (PageHWPoison(page)) {
379 page_mapcount_reset(page); /* remove PageBuddy */
380 return;
381 }
382
383 /*
384 * Allow a burst of 60 reports, then keep quiet for that minute;
385 * or allow a steady drip of one report per second.
386 */
387 if (nr_shown == 60) {
388 if (time_before(jiffies, resume)) {
389 nr_unshown++;
390 goto out;
391 }
392 if (nr_unshown) {
393 printk(KERN_ALERT
394 "BUG: Bad page state: %lu messages suppressed\n",
395 nr_unshown);
396 nr_unshown = 0;
397 }
398 nr_shown = 0;
399 }
400 if (nr_shown++ == 0)
401 resume = jiffies + 60 * HZ;
402
403 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
404 current->comm, page_to_pfn(page));
405 dump_page_badflags(page, reason, bad_flags);
406
407 print_modules();
408 dump_stack();
409 out:
410 /* Leave bad fields for debug, except PageBuddy could make trouble */
411 page_mapcount_reset(page); /* remove PageBuddy */
412 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
413 }
414
415 /*
416 * Higher-order pages are called "compound pages". They are structured thusly:
417 *
418 * The first PAGE_SIZE page is called the "head page".
419 *
420 * The remaining PAGE_SIZE pages are called "tail pages".
421 *
422 * All pages have PG_compound set. All tail pages have their ->first_page
423 * pointing at the head page.
424 *
425 * The first tail page's ->lru.next holds the address of the compound page's
426 * put_page() function. Its ->lru.prev holds the order of allocation.
427 * This usage means that zero-order pages may not be compound.
428 */
429
430 static void free_compound_page(struct page *page)
431 {
432 __free_pages_ok(page, compound_order(page));
433 }
434
435 void prep_compound_page(struct page *page, unsigned long order)
436 {
437 int i;
438 int nr_pages = 1 << order;
439
440 set_compound_page_dtor(page, free_compound_page);
441 set_compound_order(page, order);
442 __SetPageHead(page);
443 for (i = 1; i < nr_pages; i++) {
444 struct page *p = page + i;
445 set_page_count(p, 0);
446 p->first_page = page;
447 /* Make sure p->first_page is always valid for PageTail() */
448 smp_wmb();
449 __SetPageTail(p);
450 }
451 }
452
453 #ifdef CONFIG_DEBUG_PAGEALLOC
454 unsigned int _debug_guardpage_minorder;
455 bool _debug_pagealloc_enabled __read_mostly;
456 bool _debug_guardpage_enabled __read_mostly;
457
458 static int __init early_debug_pagealloc(char *buf)
459 {
460 if (!buf)
461 return -EINVAL;
462
463 if (strcmp(buf, "on") == 0)
464 _debug_pagealloc_enabled = true;
465
466 return 0;
467 }
468 early_param("debug_pagealloc", early_debug_pagealloc);
469
470 static bool need_debug_guardpage(void)
471 {
472 /* If we don't use debug_pagealloc, we don't need guard page */
473 if (!debug_pagealloc_enabled())
474 return false;
475
476 return true;
477 }
478
479 static void init_debug_guardpage(void)
480 {
481 if (!debug_pagealloc_enabled())
482 return;
483
484 _debug_guardpage_enabled = true;
485 }
486
487 struct page_ext_operations debug_guardpage_ops = {
488 .need = need_debug_guardpage,
489 .init = init_debug_guardpage,
490 };
491
492 static int __init debug_guardpage_minorder_setup(char *buf)
493 {
494 unsigned long res;
495
496 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
497 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
498 return 0;
499 }
500 _debug_guardpage_minorder = res;
501 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
502 return 0;
503 }
504 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
505
506 static inline void set_page_guard(struct zone *zone, struct page *page,
507 unsigned int order, int migratetype)
508 {
509 struct page_ext *page_ext;
510
511 if (!debug_guardpage_enabled())
512 return;
513
514 page_ext = lookup_page_ext(page);
515 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
516
517 INIT_LIST_HEAD(&page->lru);
518 set_page_private(page, order);
519 /* Guard pages are not available for any usage */
520 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
521 }
522
523 static inline void clear_page_guard(struct zone *zone, struct page *page,
524 unsigned int order, int migratetype)
525 {
526 struct page_ext *page_ext;
527
528 if (!debug_guardpage_enabled())
529 return;
530
531 page_ext = lookup_page_ext(page);
532 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
533
534 set_page_private(page, 0);
535 if (!is_migrate_isolate(migratetype))
536 __mod_zone_freepage_state(zone, (1 << order), migratetype);
537 }
538 #else
539 struct page_ext_operations debug_guardpage_ops = { NULL, };
540 static inline void set_page_guard(struct zone *zone, struct page *page,
541 unsigned int order, int migratetype) {}
542 static inline void clear_page_guard(struct zone *zone, struct page *page,
543 unsigned int order, int migratetype) {}
544 #endif
545
546 static inline void set_page_order(struct page *page, unsigned int order)
547 {
548 set_page_private(page, order);
549 __SetPageBuddy(page);
550 }
551
552 static inline void rmv_page_order(struct page *page)
553 {
554 __ClearPageBuddy(page);
555 set_page_private(page, 0);
556 }
557
558 /*
559 * This function checks whether a page is free && is the buddy
560 * we can do coalesce a page and its buddy if
561 * (a) the buddy is not in a hole &&
562 * (b) the buddy is in the buddy system &&
563 * (c) a page and its buddy have the same order &&
564 * (d) a page and its buddy are in the same zone.
565 *
566 * For recording whether a page is in the buddy system, we set ->_mapcount
567 * PAGE_BUDDY_MAPCOUNT_VALUE.
568 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
569 * serialized by zone->lock.
570 *
571 * For recording page's order, we use page_private(page).
572 */
573 static inline int page_is_buddy(struct page *page, struct page *buddy,
574 unsigned int order)
575 {
576 if (!pfn_valid_within(page_to_pfn(buddy)))
577 return 0;
578
579 if (page_is_guard(buddy) && page_order(buddy) == order) {
580 if (page_zone_id(page) != page_zone_id(buddy))
581 return 0;
582
583 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
584
585 return 1;
586 }
587
588 if (PageBuddy(buddy) && page_order(buddy) == order) {
589 /*
590 * zone check is done late to avoid uselessly
591 * calculating zone/node ids for pages that could
592 * never merge.
593 */
594 if (page_zone_id(page) != page_zone_id(buddy))
595 return 0;
596
597 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
598
599 return 1;
600 }
601 return 0;
602 }
603
604 /*
605 * Freeing function for a buddy system allocator.
606 *
607 * The concept of a buddy system is to maintain direct-mapped table
608 * (containing bit values) for memory blocks of various "orders".
609 * The bottom level table contains the map for the smallest allocatable
610 * units of memory (here, pages), and each level above it describes
611 * pairs of units from the levels below, hence, "buddies".
612 * At a high level, all that happens here is marking the table entry
613 * at the bottom level available, and propagating the changes upward
614 * as necessary, plus some accounting needed to play nicely with other
615 * parts of the VM system.
616 * At each level, we keep a list of pages, which are heads of continuous
617 * free pages of length of (1 << order) and marked with _mapcount
618 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
619 * field.
620 * So when we are allocating or freeing one, we can derive the state of the
621 * other. That is, if we allocate a small block, and both were
622 * free, the remainder of the region must be split into blocks.
623 * If a block is freed, and its buddy is also free, then this
624 * triggers coalescing into a block of larger size.
625 *
626 * -- nyc
627 */
628
629 static inline void __free_one_page(struct page *page,
630 unsigned long pfn,
631 struct zone *zone, unsigned int order,
632 int migratetype)
633 {
634 unsigned long page_idx;
635 unsigned long combined_idx;
636 unsigned long uninitialized_var(buddy_idx);
637 struct page *buddy;
638 int max_order = MAX_ORDER;
639
640 VM_BUG_ON(!zone_is_initialized(zone));
641 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
642
643 VM_BUG_ON(migratetype == -1);
644 if (is_migrate_isolate(migratetype)) {
645 /*
646 * We restrict max order of merging to prevent merge
647 * between freepages on isolate pageblock and normal
648 * pageblock. Without this, pageblock isolation
649 * could cause incorrect freepage accounting.
650 */
651 max_order = min(MAX_ORDER, pageblock_order + 1);
652 } else {
653 __mod_zone_freepage_state(zone, 1 << order, migratetype);
654 }
655
656 page_idx = pfn & ((1 << max_order) - 1);
657
658 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
659 VM_BUG_ON_PAGE(bad_range(zone, page), page);
660
661 while (order < max_order - 1) {
662 buddy_idx = __find_buddy_index(page_idx, order);
663 buddy = page + (buddy_idx - page_idx);
664 if (!page_is_buddy(page, buddy, order))
665 break;
666 /*
667 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
668 * merge with it and move up one order.
669 */
670 if (page_is_guard(buddy)) {
671 clear_page_guard(zone, buddy, order, migratetype);
672 } else {
673 list_del(&buddy->lru);
674 zone->free_area[order].nr_free--;
675 rmv_page_order(buddy);
676 }
677 combined_idx = buddy_idx & page_idx;
678 page = page + (combined_idx - page_idx);
679 page_idx = combined_idx;
680 order++;
681 }
682 set_page_order(page, order);
683
684 /*
685 * If this is not the largest possible page, check if the buddy
686 * of the next-highest order is free. If it is, it's possible
687 * that pages are being freed that will coalesce soon. In case,
688 * that is happening, add the free page to the tail of the list
689 * so it's less likely to be used soon and more likely to be merged
690 * as a higher order page
691 */
692 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
693 struct page *higher_page, *higher_buddy;
694 combined_idx = buddy_idx & page_idx;
695 higher_page = page + (combined_idx - page_idx);
696 buddy_idx = __find_buddy_index(combined_idx, order + 1);
697 higher_buddy = higher_page + (buddy_idx - combined_idx);
698 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
699 list_add_tail(&page->lru,
700 &zone->free_area[order].free_list[migratetype]);
701 goto out;
702 }
703 }
704
705 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
706 out:
707 zone->free_area[order].nr_free++;
708 }
709
710 static inline int free_pages_check(struct page *page)
711 {
712 const char *bad_reason = NULL;
713 unsigned long bad_flags = 0;
714
715 if (unlikely(page_mapcount(page)))
716 bad_reason = "nonzero mapcount";
717 if (unlikely(page->mapping != NULL))
718 bad_reason = "non-NULL mapping";
719 if (unlikely(atomic_read(&page->_count) != 0))
720 bad_reason = "nonzero _count";
721 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
722 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
723 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
724 }
725 #ifdef CONFIG_MEMCG
726 if (unlikely(page->mem_cgroup))
727 bad_reason = "page still charged to cgroup";
728 #endif
729 if (unlikely(bad_reason)) {
730 bad_page(page, bad_reason, bad_flags);
731 return 1;
732 }
733 page_cpupid_reset_last(page);
734 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
735 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
736 return 0;
737 }
738
739 /*
740 * Frees a number of pages from the PCP lists
741 * Assumes all pages on list are in same zone, and of same order.
742 * count is the number of pages to free.
743 *
744 * If the zone was previously in an "all pages pinned" state then look to
745 * see if this freeing clears that state.
746 *
747 * And clear the zone's pages_scanned counter, to hold off the "all pages are
748 * pinned" detection logic.
749 */
750 static void free_pcppages_bulk(struct zone *zone, int count,
751 struct per_cpu_pages *pcp)
752 {
753 int migratetype = 0;
754 int batch_free = 0;
755 int to_free = count;
756 unsigned long nr_scanned;
757
758 spin_lock(&zone->lock);
759 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
760 if (nr_scanned)
761 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
762
763 while (to_free) {
764 struct page *page;
765 struct list_head *list;
766
767 /*
768 * Remove pages from lists in a round-robin fashion. A
769 * batch_free count is maintained that is incremented when an
770 * empty list is encountered. This is so more pages are freed
771 * off fuller lists instead of spinning excessively around empty
772 * lists
773 */
774 do {
775 batch_free++;
776 if (++migratetype == MIGRATE_PCPTYPES)
777 migratetype = 0;
778 list = &pcp->lists[migratetype];
779 } while (list_empty(list));
780
781 /* This is the only non-empty list. Free them all. */
782 if (batch_free == MIGRATE_PCPTYPES)
783 batch_free = to_free;
784
785 do {
786 int mt; /* migratetype of the to-be-freed page */
787
788 page = list_entry(list->prev, struct page, lru);
789 /* must delete as __free_one_page list manipulates */
790 list_del(&page->lru);
791 mt = get_freepage_migratetype(page);
792 if (unlikely(has_isolate_pageblock(zone)))
793 mt = get_pageblock_migratetype(page);
794
795 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
796 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
797 trace_mm_page_pcpu_drain(page, 0, mt);
798 } while (--to_free && --batch_free && !list_empty(list));
799 }
800 spin_unlock(&zone->lock);
801 }
802
803 static void free_one_page(struct zone *zone,
804 struct page *page, unsigned long pfn,
805 unsigned int order,
806 int migratetype)
807 {
808 unsigned long nr_scanned;
809 spin_lock(&zone->lock);
810 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
811 if (nr_scanned)
812 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
813
814 if (unlikely(has_isolate_pageblock(zone) ||
815 is_migrate_isolate(migratetype))) {
816 migratetype = get_pfnblock_migratetype(page, pfn);
817 }
818 __free_one_page(page, pfn, zone, order, migratetype);
819 spin_unlock(&zone->lock);
820 }
821
822 static int free_tail_pages_check(struct page *head_page, struct page *page)
823 {
824 if (!IS_ENABLED(CONFIG_DEBUG_VM))
825 return 0;
826 if (unlikely(!PageTail(page))) {
827 bad_page(page, "PageTail not set", 0);
828 return 1;
829 }
830 if (unlikely(page->first_page != head_page)) {
831 bad_page(page, "first_page not consistent", 0);
832 return 1;
833 }
834 return 0;
835 }
836
837 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
838 unsigned long zone, int nid)
839 {
840 set_page_links(page, zone, nid, pfn);
841 init_page_count(page);
842 page_mapcount_reset(page);
843 page_cpupid_reset_last(page);
844
845 INIT_LIST_HEAD(&page->lru);
846 #ifdef WANT_PAGE_VIRTUAL
847 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
848 if (!is_highmem_idx(zone))
849 set_page_address(page, __va(pfn << PAGE_SHIFT));
850 #endif
851 }
852
853 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
854 int nid)
855 {
856 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
857 }
858
859 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
860 static void init_reserved_page(unsigned long pfn)
861 {
862 pg_data_t *pgdat;
863 int nid, zid;
864
865 if (!early_page_uninitialised(pfn))
866 return;
867
868 nid = early_pfn_to_nid(pfn);
869 pgdat = NODE_DATA(nid);
870
871 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
872 struct zone *zone = &pgdat->node_zones[zid];
873
874 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
875 break;
876 }
877 __init_single_pfn(pfn, zid, nid);
878 }
879 #else
880 static inline void init_reserved_page(unsigned long pfn)
881 {
882 }
883 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
884
885 /*
886 * Initialised pages do not have PageReserved set. This function is
887 * called for each range allocated by the bootmem allocator and
888 * marks the pages PageReserved. The remaining valid pages are later
889 * sent to the buddy page allocator.
890 */
891 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
892 {
893 unsigned long start_pfn = PFN_DOWN(start);
894 unsigned long end_pfn = PFN_UP(end);
895
896 for (; start_pfn < end_pfn; start_pfn++) {
897 if (pfn_valid(start_pfn)) {
898 struct page *page = pfn_to_page(start_pfn);
899
900 init_reserved_page(start_pfn);
901 SetPageReserved(page);
902 }
903 }
904 }
905
906 static bool free_pages_prepare(struct page *page, unsigned int order)
907 {
908 bool compound = PageCompound(page);
909 int i, bad = 0;
910
911 VM_BUG_ON_PAGE(PageTail(page), page);
912 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
913
914 trace_mm_page_free(page, order);
915 kmemcheck_free_shadow(page, order);
916 kasan_free_pages(page, order);
917
918 if (PageAnon(page))
919 page->mapping = NULL;
920 bad += free_pages_check(page);
921 for (i = 1; i < (1 << order); i++) {
922 if (compound)
923 bad += free_tail_pages_check(page, page + i);
924 bad += free_pages_check(page + i);
925 }
926 if (bad)
927 return false;
928
929 reset_page_owner(page, order);
930
931 if (!PageHighMem(page)) {
932 debug_check_no_locks_freed(page_address(page),
933 PAGE_SIZE << order);
934 debug_check_no_obj_freed(page_address(page),
935 PAGE_SIZE << order);
936 }
937 arch_free_page(page, order);
938 kernel_map_pages(page, 1 << order, 0);
939
940 return true;
941 }
942
943 static void __free_pages_ok(struct page *page, unsigned int order)
944 {
945 unsigned long flags;
946 int migratetype;
947 unsigned long pfn = page_to_pfn(page);
948
949 if (!free_pages_prepare(page, order))
950 return;
951
952 migratetype = get_pfnblock_migratetype(page, pfn);
953 local_irq_save(flags);
954 __count_vm_events(PGFREE, 1 << order);
955 set_freepage_migratetype(page, migratetype);
956 free_one_page(page_zone(page), page, pfn, order, migratetype);
957 local_irq_restore(flags);
958 }
959
960 static void __init __free_pages_boot_core(struct page *page,
961 unsigned long pfn, unsigned int order)
962 {
963 unsigned int nr_pages = 1 << order;
964 struct page *p = page;
965 unsigned int loop;
966
967 prefetchw(p);
968 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
969 prefetchw(p + 1);
970 __ClearPageReserved(p);
971 set_page_count(p, 0);
972 }
973 __ClearPageReserved(p);
974 set_page_count(p, 0);
975
976 page_zone(page)->managed_pages += nr_pages;
977 set_page_refcounted(page);
978 __free_pages(page, order);
979 }
980
981 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
982 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
983
984 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
985
986 int __meminit early_pfn_to_nid(unsigned long pfn)
987 {
988 static DEFINE_SPINLOCK(early_pfn_lock);
989 int nid;
990
991 spin_lock(&early_pfn_lock);
992 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
993 if (nid < 0)
994 nid = 0;
995 spin_unlock(&early_pfn_lock);
996
997 return nid;
998 }
999 #endif
1000
1001 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1002 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1003 struct mminit_pfnnid_cache *state)
1004 {
1005 int nid;
1006
1007 nid = __early_pfn_to_nid(pfn, state);
1008 if (nid >= 0 && nid != node)
1009 return false;
1010 return true;
1011 }
1012
1013 /* Only safe to use early in boot when initialisation is single-threaded */
1014 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1015 {
1016 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1017 }
1018
1019 #else
1020
1021 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1022 {
1023 return true;
1024 }
1025 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 struct mminit_pfnnid_cache *state)
1027 {
1028 return true;
1029 }
1030 #endif
1031
1032
1033 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1034 unsigned int order)
1035 {
1036 if (early_page_uninitialised(pfn))
1037 return;
1038 return __free_pages_boot_core(page, pfn, order);
1039 }
1040
1041 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1042 static void __init deferred_free_range(struct page *page,
1043 unsigned long pfn, int nr_pages)
1044 {
1045 int i;
1046
1047 if (!page)
1048 return;
1049
1050 /* Free a large naturally-aligned chunk if possible */
1051 if (nr_pages == MAX_ORDER_NR_PAGES &&
1052 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1053 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1054 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1055 return;
1056 }
1057
1058 for (i = 0; i < nr_pages; i++, page++, pfn++)
1059 __free_pages_boot_core(page, pfn, 0);
1060 }
1061
1062 /* Completion tracking for deferred_init_memmap() threads */
1063 static atomic_t pgdat_init_n_undone __initdata;
1064 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1065
1066 static inline void __init pgdat_init_report_one_done(void)
1067 {
1068 if (atomic_dec_and_test(&pgdat_init_n_undone))
1069 complete(&pgdat_init_all_done_comp);
1070 }
1071
1072 /* Initialise remaining memory on a node */
1073 static int __init deferred_init_memmap(void *data)
1074 {
1075 pg_data_t *pgdat = data;
1076 int nid = pgdat->node_id;
1077 struct mminit_pfnnid_cache nid_init_state = { };
1078 unsigned long start = jiffies;
1079 unsigned long nr_pages = 0;
1080 unsigned long walk_start, walk_end;
1081 int i, zid;
1082 struct zone *zone;
1083 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1084 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1085
1086 if (first_init_pfn == ULONG_MAX) {
1087 pgdat_init_report_one_done();
1088 return 0;
1089 }
1090
1091 /* Bind memory initialisation thread to a local node if possible */
1092 if (!cpumask_empty(cpumask))
1093 set_cpus_allowed_ptr(current, cpumask);
1094
1095 /* Sanity check boundaries */
1096 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1097 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1098 pgdat->first_deferred_pfn = ULONG_MAX;
1099
1100 /* Only the highest zone is deferred so find it */
1101 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1102 zone = pgdat->node_zones + zid;
1103 if (first_init_pfn < zone_end_pfn(zone))
1104 break;
1105 }
1106
1107 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1108 unsigned long pfn, end_pfn;
1109 struct page *page = NULL;
1110 struct page *free_base_page = NULL;
1111 unsigned long free_base_pfn = 0;
1112 int nr_to_free = 0;
1113
1114 end_pfn = min(walk_end, zone_end_pfn(zone));
1115 pfn = first_init_pfn;
1116 if (pfn < walk_start)
1117 pfn = walk_start;
1118 if (pfn < zone->zone_start_pfn)
1119 pfn = zone->zone_start_pfn;
1120
1121 for (; pfn < end_pfn; pfn++) {
1122 if (!pfn_valid_within(pfn))
1123 goto free_range;
1124
1125 /*
1126 * Ensure pfn_valid is checked every
1127 * MAX_ORDER_NR_PAGES for memory holes
1128 */
1129 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1130 if (!pfn_valid(pfn)) {
1131 page = NULL;
1132 goto free_range;
1133 }
1134 }
1135
1136 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1137 page = NULL;
1138 goto free_range;
1139 }
1140
1141 /* Minimise pfn page lookups and scheduler checks */
1142 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1143 page++;
1144 } else {
1145 nr_pages += nr_to_free;
1146 deferred_free_range(free_base_page,
1147 free_base_pfn, nr_to_free);
1148 free_base_page = NULL;
1149 free_base_pfn = nr_to_free = 0;
1150
1151 page = pfn_to_page(pfn);
1152 cond_resched();
1153 }
1154
1155 if (page->flags) {
1156 VM_BUG_ON(page_zone(page) != zone);
1157 goto free_range;
1158 }
1159
1160 __init_single_page(page, pfn, zid, nid);
1161 if (!free_base_page) {
1162 free_base_page = page;
1163 free_base_pfn = pfn;
1164 nr_to_free = 0;
1165 }
1166 nr_to_free++;
1167
1168 /* Where possible, batch up pages for a single free */
1169 continue;
1170 free_range:
1171 /* Free the current block of pages to allocator */
1172 nr_pages += nr_to_free;
1173 deferred_free_range(free_base_page, free_base_pfn,
1174 nr_to_free);
1175 free_base_page = NULL;
1176 free_base_pfn = nr_to_free = 0;
1177 }
1178
1179 first_init_pfn = max(end_pfn, first_init_pfn);
1180 }
1181
1182 /* Sanity check that the next zone really is unpopulated */
1183 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1184
1185 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1186 jiffies_to_msecs(jiffies - start));
1187
1188 pgdat_init_report_one_done();
1189 return 0;
1190 }
1191
1192 void __init page_alloc_init_late(void)
1193 {
1194 int nid;
1195
1196 /* There will be num_node_state(N_MEMORY) threads */
1197 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1198 for_each_node_state(nid, N_MEMORY) {
1199 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1200 }
1201
1202 /* Block until all are initialised */
1203 wait_for_completion(&pgdat_init_all_done_comp);
1204
1205 /* Reinit limits that are based on free pages after the kernel is up */
1206 files_maxfiles_init();
1207 }
1208 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1209
1210 #ifdef CONFIG_CMA
1211 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1212 void __init init_cma_reserved_pageblock(struct page *page)
1213 {
1214 unsigned i = pageblock_nr_pages;
1215 struct page *p = page;
1216
1217 do {
1218 __ClearPageReserved(p);
1219 set_page_count(p, 0);
1220 } while (++p, --i);
1221
1222 set_pageblock_migratetype(page, MIGRATE_CMA);
1223
1224 if (pageblock_order >= MAX_ORDER) {
1225 i = pageblock_nr_pages;
1226 p = page;
1227 do {
1228 set_page_refcounted(p);
1229 __free_pages(p, MAX_ORDER - 1);
1230 p += MAX_ORDER_NR_PAGES;
1231 } while (i -= MAX_ORDER_NR_PAGES);
1232 } else {
1233 set_page_refcounted(page);
1234 __free_pages(page, pageblock_order);
1235 }
1236
1237 adjust_managed_page_count(page, pageblock_nr_pages);
1238 }
1239 #endif
1240
1241 /*
1242 * The order of subdivision here is critical for the IO subsystem.
1243 * Please do not alter this order without good reasons and regression
1244 * testing. Specifically, as large blocks of memory are subdivided,
1245 * the order in which smaller blocks are delivered depends on the order
1246 * they're subdivided in this function. This is the primary factor
1247 * influencing the order in which pages are delivered to the IO
1248 * subsystem according to empirical testing, and this is also justified
1249 * by considering the behavior of a buddy system containing a single
1250 * large block of memory acted on by a series of small allocations.
1251 * This behavior is a critical factor in sglist merging's success.
1252 *
1253 * -- nyc
1254 */
1255 static inline void expand(struct zone *zone, struct page *page,
1256 int low, int high, struct free_area *area,
1257 int migratetype)
1258 {
1259 unsigned long size = 1 << high;
1260
1261 while (high > low) {
1262 area--;
1263 high--;
1264 size >>= 1;
1265 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1266
1267 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1268 debug_guardpage_enabled() &&
1269 high < debug_guardpage_minorder()) {
1270 /*
1271 * Mark as guard pages (or page), that will allow to
1272 * merge back to allocator when buddy will be freed.
1273 * Corresponding page table entries will not be touched,
1274 * pages will stay not present in virtual address space
1275 */
1276 set_page_guard(zone, &page[size], high, migratetype);
1277 continue;
1278 }
1279 list_add(&page[size].lru, &area->free_list[migratetype]);
1280 area->nr_free++;
1281 set_page_order(&page[size], high);
1282 }
1283 }
1284
1285 /*
1286 * This page is about to be returned from the page allocator
1287 */
1288 static inline int check_new_page(struct page *page)
1289 {
1290 const char *bad_reason = NULL;
1291 unsigned long bad_flags = 0;
1292
1293 if (unlikely(page_mapcount(page)))
1294 bad_reason = "nonzero mapcount";
1295 if (unlikely(page->mapping != NULL))
1296 bad_reason = "non-NULL mapping";
1297 if (unlikely(atomic_read(&page->_count) != 0))
1298 bad_reason = "nonzero _count";
1299 if (unlikely(page->flags & __PG_HWPOISON)) {
1300 bad_reason = "HWPoisoned (hardware-corrupted)";
1301 bad_flags = __PG_HWPOISON;
1302 }
1303 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1304 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1305 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1306 }
1307 #ifdef CONFIG_MEMCG
1308 if (unlikely(page->mem_cgroup))
1309 bad_reason = "page still charged to cgroup";
1310 #endif
1311 if (unlikely(bad_reason)) {
1312 bad_page(page, bad_reason, bad_flags);
1313 return 1;
1314 }
1315 return 0;
1316 }
1317
1318 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1319 int alloc_flags)
1320 {
1321 int i;
1322
1323 for (i = 0; i < (1 << order); i++) {
1324 struct page *p = page + i;
1325 if (unlikely(check_new_page(p)))
1326 return 1;
1327 }
1328
1329 set_page_private(page, 0);
1330 set_page_refcounted(page);
1331
1332 arch_alloc_page(page, order);
1333 kernel_map_pages(page, 1 << order, 1);
1334 kasan_alloc_pages(page, order);
1335
1336 if (gfp_flags & __GFP_ZERO)
1337 for (i = 0; i < (1 << order); i++)
1338 clear_highpage(page + i);
1339
1340 if (order && (gfp_flags & __GFP_COMP))
1341 prep_compound_page(page, order);
1342
1343 set_page_owner(page, order, gfp_flags);
1344
1345 /*
1346 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1347 * allocate the page. The expectation is that the caller is taking
1348 * steps that will free more memory. The caller should avoid the page
1349 * being used for !PFMEMALLOC purposes.
1350 */
1351 if (alloc_flags & ALLOC_NO_WATERMARKS)
1352 set_page_pfmemalloc(page);
1353 else
1354 clear_page_pfmemalloc(page);
1355
1356 return 0;
1357 }
1358
1359 /*
1360 * Go through the free lists for the given migratetype and remove
1361 * the smallest available page from the freelists
1362 */
1363 static inline
1364 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1365 int migratetype)
1366 {
1367 unsigned int current_order;
1368 struct free_area *area;
1369 struct page *page;
1370
1371 /* Find a page of the appropriate size in the preferred list */
1372 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1373 area = &(zone->free_area[current_order]);
1374 if (list_empty(&area->free_list[migratetype]))
1375 continue;
1376
1377 page = list_entry(area->free_list[migratetype].next,
1378 struct page, lru);
1379 list_del(&page->lru);
1380 rmv_page_order(page);
1381 area->nr_free--;
1382 expand(zone, page, order, current_order, area, migratetype);
1383 set_freepage_migratetype(page, migratetype);
1384 return page;
1385 }
1386
1387 return NULL;
1388 }
1389
1390
1391 /*
1392 * This array describes the order lists are fallen back to when
1393 * the free lists for the desirable migrate type are depleted
1394 */
1395 static int fallbacks[MIGRATE_TYPES][4] = {
1396 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1397 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1398 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1399 #ifdef CONFIG_CMA
1400 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1401 #endif
1402 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1403 #ifdef CONFIG_MEMORY_ISOLATION
1404 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1405 #endif
1406 };
1407
1408 #ifdef CONFIG_CMA
1409 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1410 unsigned int order)
1411 {
1412 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1413 }
1414 #else
1415 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1416 unsigned int order) { return NULL; }
1417 #endif
1418
1419 /*
1420 * Move the free pages in a range to the free lists of the requested type.
1421 * Note that start_page and end_pages are not aligned on a pageblock
1422 * boundary. If alignment is required, use move_freepages_block()
1423 */
1424 int move_freepages(struct zone *zone,
1425 struct page *start_page, struct page *end_page,
1426 int migratetype)
1427 {
1428 struct page *page;
1429 unsigned long order;
1430 int pages_moved = 0;
1431
1432 #ifndef CONFIG_HOLES_IN_ZONE
1433 /*
1434 * page_zone is not safe to call in this context when
1435 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1436 * anyway as we check zone boundaries in move_freepages_block().
1437 * Remove at a later date when no bug reports exist related to
1438 * grouping pages by mobility
1439 */
1440 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1441 #endif
1442
1443 for (page = start_page; page <= end_page;) {
1444 /* Make sure we are not inadvertently changing nodes */
1445 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1446
1447 if (!pfn_valid_within(page_to_pfn(page))) {
1448 page++;
1449 continue;
1450 }
1451
1452 if (!PageBuddy(page)) {
1453 page++;
1454 continue;
1455 }
1456
1457 order = page_order(page);
1458 list_move(&page->lru,
1459 &zone->free_area[order].free_list[migratetype]);
1460 set_freepage_migratetype(page, migratetype);
1461 page += 1 << order;
1462 pages_moved += 1 << order;
1463 }
1464
1465 return pages_moved;
1466 }
1467
1468 int move_freepages_block(struct zone *zone, struct page *page,
1469 int migratetype)
1470 {
1471 unsigned long start_pfn, end_pfn;
1472 struct page *start_page, *end_page;
1473
1474 start_pfn = page_to_pfn(page);
1475 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1476 start_page = pfn_to_page(start_pfn);
1477 end_page = start_page + pageblock_nr_pages - 1;
1478 end_pfn = start_pfn + pageblock_nr_pages - 1;
1479
1480 /* Do not cross zone boundaries */
1481 if (!zone_spans_pfn(zone, start_pfn))
1482 start_page = page;
1483 if (!zone_spans_pfn(zone, end_pfn))
1484 return 0;
1485
1486 return move_freepages(zone, start_page, end_page, migratetype);
1487 }
1488
1489 static void change_pageblock_range(struct page *pageblock_page,
1490 int start_order, int migratetype)
1491 {
1492 int nr_pageblocks = 1 << (start_order - pageblock_order);
1493
1494 while (nr_pageblocks--) {
1495 set_pageblock_migratetype(pageblock_page, migratetype);
1496 pageblock_page += pageblock_nr_pages;
1497 }
1498 }
1499
1500 /*
1501 * When we are falling back to another migratetype during allocation, try to
1502 * steal extra free pages from the same pageblocks to satisfy further
1503 * allocations, instead of polluting multiple pageblocks.
1504 *
1505 * If we are stealing a relatively large buddy page, it is likely there will
1506 * be more free pages in the pageblock, so try to steal them all. For
1507 * reclaimable and unmovable allocations, we steal regardless of page size,
1508 * as fragmentation caused by those allocations polluting movable pageblocks
1509 * is worse than movable allocations stealing from unmovable and reclaimable
1510 * pageblocks.
1511 */
1512 static bool can_steal_fallback(unsigned int order, int start_mt)
1513 {
1514 /*
1515 * Leaving this order check is intended, although there is
1516 * relaxed order check in next check. The reason is that
1517 * we can actually steal whole pageblock if this condition met,
1518 * but, below check doesn't guarantee it and that is just heuristic
1519 * so could be changed anytime.
1520 */
1521 if (order >= pageblock_order)
1522 return true;
1523
1524 if (order >= pageblock_order / 2 ||
1525 start_mt == MIGRATE_RECLAIMABLE ||
1526 start_mt == MIGRATE_UNMOVABLE ||
1527 page_group_by_mobility_disabled)
1528 return true;
1529
1530 return false;
1531 }
1532
1533 /*
1534 * This function implements actual steal behaviour. If order is large enough,
1535 * we can steal whole pageblock. If not, we first move freepages in this
1536 * pageblock and check whether half of pages are moved or not. If half of
1537 * pages are moved, we can change migratetype of pageblock and permanently
1538 * use it's pages as requested migratetype in the future.
1539 */
1540 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1541 int start_type)
1542 {
1543 int current_order = page_order(page);
1544 int pages;
1545
1546 /* Take ownership for orders >= pageblock_order */
1547 if (current_order >= pageblock_order) {
1548 change_pageblock_range(page, current_order, start_type);
1549 return;
1550 }
1551
1552 pages = move_freepages_block(zone, page, start_type);
1553
1554 /* Claim the whole block if over half of it is free */
1555 if (pages >= (1 << (pageblock_order-1)) ||
1556 page_group_by_mobility_disabled)
1557 set_pageblock_migratetype(page, start_type);
1558 }
1559
1560 /*
1561 * Check whether there is a suitable fallback freepage with requested order.
1562 * If only_stealable is true, this function returns fallback_mt only if
1563 * we can steal other freepages all together. This would help to reduce
1564 * fragmentation due to mixed migratetype pages in one pageblock.
1565 */
1566 int find_suitable_fallback(struct free_area *area, unsigned int order,
1567 int migratetype, bool only_stealable, bool *can_steal)
1568 {
1569 int i;
1570 int fallback_mt;
1571
1572 if (area->nr_free == 0)
1573 return -1;
1574
1575 *can_steal = false;
1576 for (i = 0;; i++) {
1577 fallback_mt = fallbacks[migratetype][i];
1578 if (fallback_mt == MIGRATE_RESERVE)
1579 break;
1580
1581 if (list_empty(&area->free_list[fallback_mt]))
1582 continue;
1583
1584 if (can_steal_fallback(order, migratetype))
1585 *can_steal = true;
1586
1587 if (!only_stealable)
1588 return fallback_mt;
1589
1590 if (*can_steal)
1591 return fallback_mt;
1592 }
1593
1594 return -1;
1595 }
1596
1597 /* Remove an element from the buddy allocator from the fallback list */
1598 static inline struct page *
1599 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1600 {
1601 struct free_area *area;
1602 unsigned int current_order;
1603 struct page *page;
1604 int fallback_mt;
1605 bool can_steal;
1606
1607 /* Find the largest possible block of pages in the other list */
1608 for (current_order = MAX_ORDER-1;
1609 current_order >= order && current_order <= MAX_ORDER-1;
1610 --current_order) {
1611 area = &(zone->free_area[current_order]);
1612 fallback_mt = find_suitable_fallback(area, current_order,
1613 start_migratetype, false, &can_steal);
1614 if (fallback_mt == -1)
1615 continue;
1616
1617 page = list_entry(area->free_list[fallback_mt].next,
1618 struct page, lru);
1619 if (can_steal)
1620 steal_suitable_fallback(zone, page, start_migratetype);
1621
1622 /* Remove the page from the freelists */
1623 area->nr_free--;
1624 list_del(&page->lru);
1625 rmv_page_order(page);
1626
1627 expand(zone, page, order, current_order, area,
1628 start_migratetype);
1629 /*
1630 * The freepage_migratetype may differ from pageblock's
1631 * migratetype depending on the decisions in
1632 * try_to_steal_freepages(). This is OK as long as it
1633 * does not differ for MIGRATE_CMA pageblocks. For CMA
1634 * we need to make sure unallocated pages flushed from
1635 * pcp lists are returned to the correct freelist.
1636 */
1637 set_freepage_migratetype(page, start_migratetype);
1638
1639 trace_mm_page_alloc_extfrag(page, order, current_order,
1640 start_migratetype, fallback_mt);
1641
1642 return page;
1643 }
1644
1645 return NULL;
1646 }
1647
1648 /*
1649 * Do the hard work of removing an element from the buddy allocator.
1650 * Call me with the zone->lock already held.
1651 */
1652 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1653 int migratetype)
1654 {
1655 struct page *page;
1656
1657 retry_reserve:
1658 page = __rmqueue_smallest(zone, order, migratetype);
1659
1660 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1661 if (migratetype == MIGRATE_MOVABLE)
1662 page = __rmqueue_cma_fallback(zone, order);
1663
1664 if (!page)
1665 page = __rmqueue_fallback(zone, order, migratetype);
1666
1667 /*
1668 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1669 * is used because __rmqueue_smallest is an inline function
1670 * and we want just one call site
1671 */
1672 if (!page) {
1673 migratetype = MIGRATE_RESERVE;
1674 goto retry_reserve;
1675 }
1676 }
1677
1678 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1679 return page;
1680 }
1681
1682 /*
1683 * Obtain a specified number of elements from the buddy allocator, all under
1684 * a single hold of the lock, for efficiency. Add them to the supplied list.
1685 * Returns the number of new pages which were placed at *list.
1686 */
1687 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1688 unsigned long count, struct list_head *list,
1689 int migratetype, bool cold)
1690 {
1691 int i;
1692
1693 spin_lock(&zone->lock);
1694 for (i = 0; i < count; ++i) {
1695 struct page *page = __rmqueue(zone, order, migratetype);
1696 if (unlikely(page == NULL))
1697 break;
1698
1699 /*
1700 * Split buddy pages returned by expand() are received here
1701 * in physical page order. The page is added to the callers and
1702 * list and the list head then moves forward. From the callers
1703 * perspective, the linked list is ordered by page number in
1704 * some conditions. This is useful for IO devices that can
1705 * merge IO requests if the physical pages are ordered
1706 * properly.
1707 */
1708 if (likely(!cold))
1709 list_add(&page->lru, list);
1710 else
1711 list_add_tail(&page->lru, list);
1712 list = &page->lru;
1713 if (is_migrate_cma(get_freepage_migratetype(page)))
1714 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1715 -(1 << order));
1716 }
1717 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1718 spin_unlock(&zone->lock);
1719 return i;
1720 }
1721
1722 #ifdef CONFIG_NUMA
1723 /*
1724 * Called from the vmstat counter updater to drain pagesets of this
1725 * currently executing processor on remote nodes after they have
1726 * expired.
1727 *
1728 * Note that this function must be called with the thread pinned to
1729 * a single processor.
1730 */
1731 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1732 {
1733 unsigned long flags;
1734 int to_drain, batch;
1735
1736 local_irq_save(flags);
1737 batch = READ_ONCE(pcp->batch);
1738 to_drain = min(pcp->count, batch);
1739 if (to_drain > 0) {
1740 free_pcppages_bulk(zone, to_drain, pcp);
1741 pcp->count -= to_drain;
1742 }
1743 local_irq_restore(flags);
1744 }
1745 #endif
1746
1747 /*
1748 * Drain pcplists of the indicated processor and zone.
1749 *
1750 * The processor must either be the current processor and the
1751 * thread pinned to the current processor or a processor that
1752 * is not online.
1753 */
1754 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1755 {
1756 unsigned long flags;
1757 struct per_cpu_pageset *pset;
1758 struct per_cpu_pages *pcp;
1759
1760 local_irq_save(flags);
1761 pset = per_cpu_ptr(zone->pageset, cpu);
1762
1763 pcp = &pset->pcp;
1764 if (pcp->count) {
1765 free_pcppages_bulk(zone, pcp->count, pcp);
1766 pcp->count = 0;
1767 }
1768 local_irq_restore(flags);
1769 }
1770
1771 /*
1772 * Drain pcplists of all zones on the indicated processor.
1773 *
1774 * The processor must either be the current processor and the
1775 * thread pinned to the current processor or a processor that
1776 * is not online.
1777 */
1778 static void drain_pages(unsigned int cpu)
1779 {
1780 struct zone *zone;
1781
1782 for_each_populated_zone(zone) {
1783 drain_pages_zone(cpu, zone);
1784 }
1785 }
1786
1787 /*
1788 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1789 *
1790 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1791 * the single zone's pages.
1792 */
1793 void drain_local_pages(struct zone *zone)
1794 {
1795 int cpu = smp_processor_id();
1796
1797 if (zone)
1798 drain_pages_zone(cpu, zone);
1799 else
1800 drain_pages(cpu);
1801 }
1802
1803 /*
1804 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1805 *
1806 * When zone parameter is non-NULL, spill just the single zone's pages.
1807 *
1808 * Note that this code is protected against sending an IPI to an offline
1809 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1810 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1811 * nothing keeps CPUs from showing up after we populated the cpumask and
1812 * before the call to on_each_cpu_mask().
1813 */
1814 void drain_all_pages(struct zone *zone)
1815 {
1816 int cpu;
1817
1818 /*
1819 * Allocate in the BSS so we wont require allocation in
1820 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1821 */
1822 static cpumask_t cpus_with_pcps;
1823
1824 /*
1825 * We don't care about racing with CPU hotplug event
1826 * as offline notification will cause the notified
1827 * cpu to drain that CPU pcps and on_each_cpu_mask
1828 * disables preemption as part of its processing
1829 */
1830 for_each_online_cpu(cpu) {
1831 struct per_cpu_pageset *pcp;
1832 struct zone *z;
1833 bool has_pcps = false;
1834
1835 if (zone) {
1836 pcp = per_cpu_ptr(zone->pageset, cpu);
1837 if (pcp->pcp.count)
1838 has_pcps = true;
1839 } else {
1840 for_each_populated_zone(z) {
1841 pcp = per_cpu_ptr(z->pageset, cpu);
1842 if (pcp->pcp.count) {
1843 has_pcps = true;
1844 break;
1845 }
1846 }
1847 }
1848
1849 if (has_pcps)
1850 cpumask_set_cpu(cpu, &cpus_with_pcps);
1851 else
1852 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1853 }
1854 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1855 zone, 1);
1856 }
1857
1858 #ifdef CONFIG_HIBERNATION
1859
1860 void mark_free_pages(struct zone *zone)
1861 {
1862 unsigned long pfn, max_zone_pfn;
1863 unsigned long flags;
1864 unsigned int order, t;
1865 struct list_head *curr;
1866
1867 if (zone_is_empty(zone))
1868 return;
1869
1870 spin_lock_irqsave(&zone->lock, flags);
1871
1872 max_zone_pfn = zone_end_pfn(zone);
1873 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1874 if (pfn_valid(pfn)) {
1875 struct page *page = pfn_to_page(pfn);
1876
1877 if (!swsusp_page_is_forbidden(page))
1878 swsusp_unset_page_free(page);
1879 }
1880
1881 for_each_migratetype_order(order, t) {
1882 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1883 unsigned long i;
1884
1885 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1886 for (i = 0; i < (1UL << order); i++)
1887 swsusp_set_page_free(pfn_to_page(pfn + i));
1888 }
1889 }
1890 spin_unlock_irqrestore(&zone->lock, flags);
1891 }
1892 #endif /* CONFIG_PM */
1893
1894 /*
1895 * Free a 0-order page
1896 * cold == true ? free a cold page : free a hot page
1897 */
1898 void free_hot_cold_page(struct page *page, bool cold)
1899 {
1900 struct zone *zone = page_zone(page);
1901 struct per_cpu_pages *pcp;
1902 unsigned long flags;
1903 unsigned long pfn = page_to_pfn(page);
1904 int migratetype;
1905
1906 if (!free_pages_prepare(page, 0))
1907 return;
1908
1909 migratetype = get_pfnblock_migratetype(page, pfn);
1910 set_freepage_migratetype(page, migratetype);
1911 local_irq_save(flags);
1912 __count_vm_event(PGFREE);
1913
1914 /*
1915 * We only track unmovable, reclaimable and movable on pcp lists.
1916 * Free ISOLATE pages back to the allocator because they are being
1917 * offlined but treat RESERVE as movable pages so we can get those
1918 * areas back if necessary. Otherwise, we may have to free
1919 * excessively into the page allocator
1920 */
1921 if (migratetype >= MIGRATE_PCPTYPES) {
1922 if (unlikely(is_migrate_isolate(migratetype))) {
1923 free_one_page(zone, page, pfn, 0, migratetype);
1924 goto out;
1925 }
1926 migratetype = MIGRATE_MOVABLE;
1927 }
1928
1929 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1930 if (!cold)
1931 list_add(&page->lru, &pcp->lists[migratetype]);
1932 else
1933 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1934 pcp->count++;
1935 if (pcp->count >= pcp->high) {
1936 unsigned long batch = READ_ONCE(pcp->batch);
1937 free_pcppages_bulk(zone, batch, pcp);
1938 pcp->count -= batch;
1939 }
1940
1941 out:
1942 local_irq_restore(flags);
1943 }
1944
1945 /*
1946 * Free a list of 0-order pages
1947 */
1948 void free_hot_cold_page_list(struct list_head *list, bool cold)
1949 {
1950 struct page *page, *next;
1951
1952 list_for_each_entry_safe(page, next, list, lru) {
1953 trace_mm_page_free_batched(page, cold);
1954 free_hot_cold_page(page, cold);
1955 }
1956 }
1957
1958 /*
1959 * split_page takes a non-compound higher-order page, and splits it into
1960 * n (1<<order) sub-pages: page[0..n]
1961 * Each sub-page must be freed individually.
1962 *
1963 * Note: this is probably too low level an operation for use in drivers.
1964 * Please consult with lkml before using this in your driver.
1965 */
1966 void split_page(struct page *page, unsigned int order)
1967 {
1968 int i;
1969 gfp_t gfp_mask;
1970
1971 VM_BUG_ON_PAGE(PageCompound(page), page);
1972 VM_BUG_ON_PAGE(!page_count(page), page);
1973
1974 #ifdef CONFIG_KMEMCHECK
1975 /*
1976 * Split shadow pages too, because free(page[0]) would
1977 * otherwise free the whole shadow.
1978 */
1979 if (kmemcheck_page_is_tracked(page))
1980 split_page(virt_to_page(page[0].shadow), order);
1981 #endif
1982
1983 gfp_mask = get_page_owner_gfp(page);
1984 set_page_owner(page, 0, gfp_mask);
1985 for (i = 1; i < (1 << order); i++) {
1986 set_page_refcounted(page + i);
1987 set_page_owner(page + i, 0, gfp_mask);
1988 }
1989 }
1990 EXPORT_SYMBOL_GPL(split_page);
1991
1992 int __isolate_free_page(struct page *page, unsigned int order)
1993 {
1994 unsigned long watermark;
1995 struct zone *zone;
1996 int mt;
1997
1998 BUG_ON(!PageBuddy(page));
1999
2000 zone = page_zone(page);
2001 mt = get_pageblock_migratetype(page);
2002
2003 if (!is_migrate_isolate(mt)) {
2004 /* Obey watermarks as if the page was being allocated */
2005 watermark = low_wmark_pages(zone) + (1 << order);
2006 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2007 return 0;
2008
2009 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2010 }
2011
2012 /* Remove page from free list */
2013 list_del(&page->lru);
2014 zone->free_area[order].nr_free--;
2015 rmv_page_order(page);
2016
2017 set_page_owner(page, order, __GFP_MOVABLE);
2018
2019 /* Set the pageblock if the isolated page is at least a pageblock */
2020 if (order >= pageblock_order - 1) {
2021 struct page *endpage = page + (1 << order) - 1;
2022 for (; page < endpage; page += pageblock_nr_pages) {
2023 int mt = get_pageblock_migratetype(page);
2024 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2025 set_pageblock_migratetype(page,
2026 MIGRATE_MOVABLE);
2027 }
2028 }
2029
2030
2031 return 1UL << order;
2032 }
2033
2034 /*
2035 * Similar to split_page except the page is already free. As this is only
2036 * being used for migration, the migratetype of the block also changes.
2037 * As this is called with interrupts disabled, the caller is responsible
2038 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2039 * are enabled.
2040 *
2041 * Note: this is probably too low level an operation for use in drivers.
2042 * Please consult with lkml before using this in your driver.
2043 */
2044 int split_free_page(struct page *page)
2045 {
2046 unsigned int order;
2047 int nr_pages;
2048
2049 order = page_order(page);
2050
2051 nr_pages = __isolate_free_page(page, order);
2052 if (!nr_pages)
2053 return 0;
2054
2055 /* Split into individual pages */
2056 set_page_refcounted(page);
2057 split_page(page, order);
2058 return nr_pages;
2059 }
2060
2061 /*
2062 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2063 */
2064 static inline
2065 struct page *buffered_rmqueue(struct zone *preferred_zone,
2066 struct zone *zone, unsigned int order,
2067 gfp_t gfp_flags, int migratetype)
2068 {
2069 unsigned long flags;
2070 struct page *page;
2071 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2072
2073 if (likely(order == 0)) {
2074 struct per_cpu_pages *pcp;
2075 struct list_head *list;
2076
2077 local_irq_save(flags);
2078 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2079 list = &pcp->lists[migratetype];
2080 if (list_empty(list)) {
2081 pcp->count += rmqueue_bulk(zone, 0,
2082 pcp->batch, list,
2083 migratetype, cold);
2084 if (unlikely(list_empty(list)))
2085 goto failed;
2086 }
2087
2088 if (cold)
2089 page = list_entry(list->prev, struct page, lru);
2090 else
2091 page = list_entry(list->next, struct page, lru);
2092
2093 list_del(&page->lru);
2094 pcp->count--;
2095 } else {
2096 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2097 /*
2098 * __GFP_NOFAIL is not to be used in new code.
2099 *
2100 * All __GFP_NOFAIL callers should be fixed so that they
2101 * properly detect and handle allocation failures.
2102 *
2103 * We most definitely don't want callers attempting to
2104 * allocate greater than order-1 page units with
2105 * __GFP_NOFAIL.
2106 */
2107 WARN_ON_ONCE(order > 1);
2108 }
2109 spin_lock_irqsave(&zone->lock, flags);
2110 page = __rmqueue(zone, order, migratetype);
2111 spin_unlock(&zone->lock);
2112 if (!page)
2113 goto failed;
2114 __mod_zone_freepage_state(zone, -(1 << order),
2115 get_freepage_migratetype(page));
2116 }
2117
2118 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2119 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2120 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2121 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2122
2123 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2124 zone_statistics(preferred_zone, zone, gfp_flags);
2125 local_irq_restore(flags);
2126
2127 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2128 return page;
2129
2130 failed:
2131 local_irq_restore(flags);
2132 return NULL;
2133 }
2134
2135 #ifdef CONFIG_FAIL_PAGE_ALLOC
2136
2137 static struct {
2138 struct fault_attr attr;
2139
2140 u32 ignore_gfp_highmem;
2141 u32 ignore_gfp_wait;
2142 u32 min_order;
2143 } fail_page_alloc = {
2144 .attr = FAULT_ATTR_INITIALIZER,
2145 .ignore_gfp_wait = 1,
2146 .ignore_gfp_highmem = 1,
2147 .min_order = 1,
2148 };
2149
2150 static int __init setup_fail_page_alloc(char *str)
2151 {
2152 return setup_fault_attr(&fail_page_alloc.attr, str);
2153 }
2154 __setup("fail_page_alloc=", setup_fail_page_alloc);
2155
2156 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2157 {
2158 if (order < fail_page_alloc.min_order)
2159 return false;
2160 if (gfp_mask & __GFP_NOFAIL)
2161 return false;
2162 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2163 return false;
2164 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2165 return false;
2166
2167 return should_fail(&fail_page_alloc.attr, 1 << order);
2168 }
2169
2170 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2171
2172 static int __init fail_page_alloc_debugfs(void)
2173 {
2174 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2175 struct dentry *dir;
2176
2177 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2178 &fail_page_alloc.attr);
2179 if (IS_ERR(dir))
2180 return PTR_ERR(dir);
2181
2182 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2183 &fail_page_alloc.ignore_gfp_wait))
2184 goto fail;
2185 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2186 &fail_page_alloc.ignore_gfp_highmem))
2187 goto fail;
2188 if (!debugfs_create_u32("min-order", mode, dir,
2189 &fail_page_alloc.min_order))
2190 goto fail;
2191
2192 return 0;
2193 fail:
2194 debugfs_remove_recursive(dir);
2195
2196 return -ENOMEM;
2197 }
2198
2199 late_initcall(fail_page_alloc_debugfs);
2200
2201 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2202
2203 #else /* CONFIG_FAIL_PAGE_ALLOC */
2204
2205 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2206 {
2207 return false;
2208 }
2209
2210 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2211
2212 /*
2213 * Return true if free pages are above 'mark'. This takes into account the order
2214 * of the allocation.
2215 */
2216 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2217 unsigned long mark, int classzone_idx, int alloc_flags,
2218 long free_pages)
2219 {
2220 /* free_pages may go negative - that's OK */
2221 long min = mark;
2222 int o;
2223 long free_cma = 0;
2224
2225 free_pages -= (1 << order) - 1;
2226 if (alloc_flags & ALLOC_HIGH)
2227 min -= min / 2;
2228 if (alloc_flags & ALLOC_HARDER)
2229 min -= min / 4;
2230 #ifdef CONFIG_CMA
2231 /* If allocation can't use CMA areas don't use free CMA pages */
2232 if (!(alloc_flags & ALLOC_CMA))
2233 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2234 #endif
2235
2236 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2237 return false;
2238 for (o = 0; o < order; o++) {
2239 /* At the next order, this order's pages become unavailable */
2240 free_pages -= z->free_area[o].nr_free << o;
2241
2242 /* Require fewer higher order pages to be free */
2243 min >>= 1;
2244
2245 if (free_pages <= min)
2246 return false;
2247 }
2248 return true;
2249 }
2250
2251 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2252 int classzone_idx, int alloc_flags)
2253 {
2254 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2255 zone_page_state(z, NR_FREE_PAGES));
2256 }
2257
2258 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2259 unsigned long mark, int classzone_idx, int alloc_flags)
2260 {
2261 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2262
2263 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2264 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2265
2266 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2267 free_pages);
2268 }
2269
2270 #ifdef CONFIG_NUMA
2271 /*
2272 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2273 * skip over zones that are not allowed by the cpuset, or that have
2274 * been recently (in last second) found to be nearly full. See further
2275 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2276 * that have to skip over a lot of full or unallowed zones.
2277 *
2278 * If the zonelist cache is present in the passed zonelist, then
2279 * returns a pointer to the allowed node mask (either the current
2280 * tasks mems_allowed, or node_states[N_MEMORY].)
2281 *
2282 * If the zonelist cache is not available for this zonelist, does
2283 * nothing and returns NULL.
2284 *
2285 * If the fullzones BITMAP in the zonelist cache is stale (more than
2286 * a second since last zap'd) then we zap it out (clear its bits.)
2287 *
2288 * We hold off even calling zlc_setup, until after we've checked the
2289 * first zone in the zonelist, on the theory that most allocations will
2290 * be satisfied from that first zone, so best to examine that zone as
2291 * quickly as we can.
2292 */
2293 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2294 {
2295 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2296 nodemask_t *allowednodes; /* zonelist_cache approximation */
2297
2298 zlc = zonelist->zlcache_ptr;
2299 if (!zlc)
2300 return NULL;
2301
2302 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2303 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2304 zlc->last_full_zap = jiffies;
2305 }
2306
2307 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2308 &cpuset_current_mems_allowed :
2309 &node_states[N_MEMORY];
2310 return allowednodes;
2311 }
2312
2313 /*
2314 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2315 * if it is worth looking at further for free memory:
2316 * 1) Check that the zone isn't thought to be full (doesn't have its
2317 * bit set in the zonelist_cache fullzones BITMAP).
2318 * 2) Check that the zones node (obtained from the zonelist_cache
2319 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2320 * Return true (non-zero) if zone is worth looking at further, or
2321 * else return false (zero) if it is not.
2322 *
2323 * This check -ignores- the distinction between various watermarks,
2324 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2325 * found to be full for any variation of these watermarks, it will
2326 * be considered full for up to one second by all requests, unless
2327 * we are so low on memory on all allowed nodes that we are forced
2328 * into the second scan of the zonelist.
2329 *
2330 * In the second scan we ignore this zonelist cache and exactly
2331 * apply the watermarks to all zones, even it is slower to do so.
2332 * We are low on memory in the second scan, and should leave no stone
2333 * unturned looking for a free page.
2334 */
2335 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2336 nodemask_t *allowednodes)
2337 {
2338 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2339 int i; /* index of *z in zonelist zones */
2340 int n; /* node that zone *z is on */
2341
2342 zlc = zonelist->zlcache_ptr;
2343 if (!zlc)
2344 return 1;
2345
2346 i = z - zonelist->_zonerefs;
2347 n = zlc->z_to_n[i];
2348
2349 /* This zone is worth trying if it is allowed but not full */
2350 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2351 }
2352
2353 /*
2354 * Given 'z' scanning a zonelist, set the corresponding bit in
2355 * zlc->fullzones, so that subsequent attempts to allocate a page
2356 * from that zone don't waste time re-examining it.
2357 */
2358 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2359 {
2360 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2361 int i; /* index of *z in zonelist zones */
2362
2363 zlc = zonelist->zlcache_ptr;
2364 if (!zlc)
2365 return;
2366
2367 i = z - zonelist->_zonerefs;
2368
2369 set_bit(i, zlc->fullzones);
2370 }
2371
2372 /*
2373 * clear all zones full, called after direct reclaim makes progress so that
2374 * a zone that was recently full is not skipped over for up to a second
2375 */
2376 static void zlc_clear_zones_full(struct zonelist *zonelist)
2377 {
2378 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2379
2380 zlc = zonelist->zlcache_ptr;
2381 if (!zlc)
2382 return;
2383
2384 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2385 }
2386
2387 static bool zone_local(struct zone *local_zone, struct zone *zone)
2388 {
2389 return local_zone->node == zone->node;
2390 }
2391
2392 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2393 {
2394 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2395 RECLAIM_DISTANCE;
2396 }
2397
2398 #else /* CONFIG_NUMA */
2399
2400 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2401 {
2402 return NULL;
2403 }
2404
2405 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2406 nodemask_t *allowednodes)
2407 {
2408 return 1;
2409 }
2410
2411 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2412 {
2413 }
2414
2415 static void zlc_clear_zones_full(struct zonelist *zonelist)
2416 {
2417 }
2418
2419 static bool zone_local(struct zone *local_zone, struct zone *zone)
2420 {
2421 return true;
2422 }
2423
2424 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2425 {
2426 return true;
2427 }
2428
2429 #endif /* CONFIG_NUMA */
2430
2431 static void reset_alloc_batches(struct zone *preferred_zone)
2432 {
2433 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2434
2435 do {
2436 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2437 high_wmark_pages(zone) - low_wmark_pages(zone) -
2438 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2439 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2440 } while (zone++ != preferred_zone);
2441 }
2442
2443 /*
2444 * get_page_from_freelist goes through the zonelist trying to allocate
2445 * a page.
2446 */
2447 static struct page *
2448 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2449 const struct alloc_context *ac)
2450 {
2451 struct zonelist *zonelist = ac->zonelist;
2452 struct zoneref *z;
2453 struct page *page = NULL;
2454 struct zone *zone;
2455 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2456 int zlc_active = 0; /* set if using zonelist_cache */
2457 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2458 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2459 (gfp_mask & __GFP_WRITE);
2460 int nr_fair_skipped = 0;
2461 bool zonelist_rescan;
2462
2463 zonelist_scan:
2464 zonelist_rescan = false;
2465
2466 /*
2467 * Scan zonelist, looking for a zone with enough free.
2468 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2469 */
2470 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2471 ac->nodemask) {
2472 unsigned long mark;
2473
2474 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2475 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2476 continue;
2477 if (cpusets_enabled() &&
2478 (alloc_flags & ALLOC_CPUSET) &&
2479 !cpuset_zone_allowed(zone, gfp_mask))
2480 continue;
2481 /*
2482 * Distribute pages in proportion to the individual
2483 * zone size to ensure fair page aging. The zone a
2484 * page was allocated in should have no effect on the
2485 * time the page has in memory before being reclaimed.
2486 */
2487 if (alloc_flags & ALLOC_FAIR) {
2488 if (!zone_local(ac->preferred_zone, zone))
2489 break;
2490 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2491 nr_fair_skipped++;
2492 continue;
2493 }
2494 }
2495 /*
2496 * When allocating a page cache page for writing, we
2497 * want to get it from a zone that is within its dirty
2498 * limit, such that no single zone holds more than its
2499 * proportional share of globally allowed dirty pages.
2500 * The dirty limits take into account the zone's
2501 * lowmem reserves and high watermark so that kswapd
2502 * should be able to balance it without having to
2503 * write pages from its LRU list.
2504 *
2505 * This may look like it could increase pressure on
2506 * lower zones by failing allocations in higher zones
2507 * before they are full. But the pages that do spill
2508 * over are limited as the lower zones are protected
2509 * by this very same mechanism. It should not become
2510 * a practical burden to them.
2511 *
2512 * XXX: For now, allow allocations to potentially
2513 * exceed the per-zone dirty limit in the slowpath
2514 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2515 * which is important when on a NUMA setup the allowed
2516 * zones are together not big enough to reach the
2517 * global limit. The proper fix for these situations
2518 * will require awareness of zones in the
2519 * dirty-throttling and the flusher threads.
2520 */
2521 if (consider_zone_dirty && !zone_dirty_ok(zone))
2522 continue;
2523
2524 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2525 if (!zone_watermark_ok(zone, order, mark,
2526 ac->classzone_idx, alloc_flags)) {
2527 int ret;
2528
2529 /* Checked here to keep the fast path fast */
2530 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2531 if (alloc_flags & ALLOC_NO_WATERMARKS)
2532 goto try_this_zone;
2533
2534 if (IS_ENABLED(CONFIG_NUMA) &&
2535 !did_zlc_setup && nr_online_nodes > 1) {
2536 /*
2537 * we do zlc_setup if there are multiple nodes
2538 * and before considering the first zone allowed
2539 * by the cpuset.
2540 */
2541 allowednodes = zlc_setup(zonelist, alloc_flags);
2542 zlc_active = 1;
2543 did_zlc_setup = 1;
2544 }
2545
2546 if (zone_reclaim_mode == 0 ||
2547 !zone_allows_reclaim(ac->preferred_zone, zone))
2548 goto this_zone_full;
2549
2550 /*
2551 * As we may have just activated ZLC, check if the first
2552 * eligible zone has failed zone_reclaim recently.
2553 */
2554 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2555 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2556 continue;
2557
2558 ret = zone_reclaim(zone, gfp_mask, order);
2559 switch (ret) {
2560 case ZONE_RECLAIM_NOSCAN:
2561 /* did not scan */
2562 continue;
2563 case ZONE_RECLAIM_FULL:
2564 /* scanned but unreclaimable */
2565 continue;
2566 default:
2567 /* did we reclaim enough */
2568 if (zone_watermark_ok(zone, order, mark,
2569 ac->classzone_idx, alloc_flags))
2570 goto try_this_zone;
2571
2572 /*
2573 * Failed to reclaim enough to meet watermark.
2574 * Only mark the zone full if checking the min
2575 * watermark or if we failed to reclaim just
2576 * 1<<order pages or else the page allocator
2577 * fastpath will prematurely mark zones full
2578 * when the watermark is between the low and
2579 * min watermarks.
2580 */
2581 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2582 ret == ZONE_RECLAIM_SOME)
2583 goto this_zone_full;
2584
2585 continue;
2586 }
2587 }
2588
2589 try_this_zone:
2590 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2591 gfp_mask, ac->migratetype);
2592 if (page) {
2593 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2594 goto try_this_zone;
2595 return page;
2596 }
2597 this_zone_full:
2598 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2599 zlc_mark_zone_full(zonelist, z);
2600 }
2601
2602 /*
2603 * The first pass makes sure allocations are spread fairly within the
2604 * local node. However, the local node might have free pages left
2605 * after the fairness batches are exhausted, and remote zones haven't
2606 * even been considered yet. Try once more without fairness, and
2607 * include remote zones now, before entering the slowpath and waking
2608 * kswapd: prefer spilling to a remote zone over swapping locally.
2609 */
2610 if (alloc_flags & ALLOC_FAIR) {
2611 alloc_flags &= ~ALLOC_FAIR;
2612 if (nr_fair_skipped) {
2613 zonelist_rescan = true;
2614 reset_alloc_batches(ac->preferred_zone);
2615 }
2616 if (nr_online_nodes > 1)
2617 zonelist_rescan = true;
2618 }
2619
2620 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2621 /* Disable zlc cache for second zonelist scan */
2622 zlc_active = 0;
2623 zonelist_rescan = true;
2624 }
2625
2626 if (zonelist_rescan)
2627 goto zonelist_scan;
2628
2629 return NULL;
2630 }
2631
2632 /*
2633 * Large machines with many possible nodes should not always dump per-node
2634 * meminfo in irq context.
2635 */
2636 static inline bool should_suppress_show_mem(void)
2637 {
2638 bool ret = false;
2639
2640 #if NODES_SHIFT > 8
2641 ret = in_interrupt();
2642 #endif
2643 return ret;
2644 }
2645
2646 static DEFINE_RATELIMIT_STATE(nopage_rs,
2647 DEFAULT_RATELIMIT_INTERVAL,
2648 DEFAULT_RATELIMIT_BURST);
2649
2650 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2651 {
2652 unsigned int filter = SHOW_MEM_FILTER_NODES;
2653
2654 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2655 debug_guardpage_minorder() > 0)
2656 return;
2657
2658 /*
2659 * This documents exceptions given to allocations in certain
2660 * contexts that are allowed to allocate outside current's set
2661 * of allowed nodes.
2662 */
2663 if (!(gfp_mask & __GFP_NOMEMALLOC))
2664 if (test_thread_flag(TIF_MEMDIE) ||
2665 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2666 filter &= ~SHOW_MEM_FILTER_NODES;
2667 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2668 filter &= ~SHOW_MEM_FILTER_NODES;
2669
2670 if (fmt) {
2671 struct va_format vaf;
2672 va_list args;
2673
2674 va_start(args, fmt);
2675
2676 vaf.fmt = fmt;
2677 vaf.va = &args;
2678
2679 pr_warn("%pV", &vaf);
2680
2681 va_end(args);
2682 }
2683
2684 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2685 current->comm, order, gfp_mask);
2686
2687 dump_stack();
2688 if (!should_suppress_show_mem())
2689 show_mem(filter);
2690 }
2691
2692 static inline struct page *
2693 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2694 const struct alloc_context *ac, unsigned long *did_some_progress)
2695 {
2696 struct oom_control oc = {
2697 .zonelist = ac->zonelist,
2698 .nodemask = ac->nodemask,
2699 .gfp_mask = gfp_mask,
2700 .order = order,
2701 .force_kill = false,
2702 };
2703 struct page *page;
2704
2705 *did_some_progress = 0;
2706
2707 /*
2708 * Acquire the oom lock. If that fails, somebody else is
2709 * making progress for us.
2710 */
2711 if (!mutex_trylock(&oom_lock)) {
2712 *did_some_progress = 1;
2713 schedule_timeout_uninterruptible(1);
2714 return NULL;
2715 }
2716
2717 /*
2718 * Go through the zonelist yet one more time, keep very high watermark
2719 * here, this is only to catch a parallel oom killing, we must fail if
2720 * we're still under heavy pressure.
2721 */
2722 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2723 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2724 if (page)
2725 goto out;
2726
2727 if (!(gfp_mask & __GFP_NOFAIL)) {
2728 /* Coredumps can quickly deplete all memory reserves */
2729 if (current->flags & PF_DUMPCORE)
2730 goto out;
2731 /* The OOM killer will not help higher order allocs */
2732 if (order > PAGE_ALLOC_COSTLY_ORDER)
2733 goto out;
2734 /* The OOM killer does not needlessly kill tasks for lowmem */
2735 if (ac->high_zoneidx < ZONE_NORMAL)
2736 goto out;
2737 /* The OOM killer does not compensate for IO-less reclaim */
2738 if (!(gfp_mask & __GFP_FS)) {
2739 /*
2740 * XXX: Page reclaim didn't yield anything,
2741 * and the OOM killer can't be invoked, but
2742 * keep looping as per tradition.
2743 */
2744 *did_some_progress = 1;
2745 goto out;
2746 }
2747 if (pm_suspended_storage())
2748 goto out;
2749 /* The OOM killer may not free memory on a specific node */
2750 if (gfp_mask & __GFP_THISNODE)
2751 goto out;
2752 }
2753 /* Exhausted what can be done so it's blamo time */
2754 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2755 *did_some_progress = 1;
2756 out:
2757 mutex_unlock(&oom_lock);
2758 return page;
2759 }
2760
2761 #ifdef CONFIG_COMPACTION
2762 /* Try memory compaction for high-order allocations before reclaim */
2763 static struct page *
2764 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2765 int alloc_flags, const struct alloc_context *ac,
2766 enum migrate_mode mode, int *contended_compaction,
2767 bool *deferred_compaction)
2768 {
2769 unsigned long compact_result;
2770 struct page *page;
2771
2772 if (!order)
2773 return NULL;
2774
2775 current->flags |= PF_MEMALLOC;
2776 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2777 mode, contended_compaction);
2778 current->flags &= ~PF_MEMALLOC;
2779
2780 switch (compact_result) {
2781 case COMPACT_DEFERRED:
2782 *deferred_compaction = true;
2783 /* fall-through */
2784 case COMPACT_SKIPPED:
2785 return NULL;
2786 default:
2787 break;
2788 }
2789
2790 /*
2791 * At least in one zone compaction wasn't deferred or skipped, so let's
2792 * count a compaction stall
2793 */
2794 count_vm_event(COMPACTSTALL);
2795
2796 page = get_page_from_freelist(gfp_mask, order,
2797 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2798
2799 if (page) {
2800 struct zone *zone = page_zone(page);
2801
2802 zone->compact_blockskip_flush = false;
2803 compaction_defer_reset(zone, order, true);
2804 count_vm_event(COMPACTSUCCESS);
2805 return page;
2806 }
2807
2808 /*
2809 * It's bad if compaction run occurs and fails. The most likely reason
2810 * is that pages exist, but not enough to satisfy watermarks.
2811 */
2812 count_vm_event(COMPACTFAIL);
2813
2814 cond_resched();
2815
2816 return NULL;
2817 }
2818 #else
2819 static inline struct page *
2820 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2821 int alloc_flags, const struct alloc_context *ac,
2822 enum migrate_mode mode, int *contended_compaction,
2823 bool *deferred_compaction)
2824 {
2825 return NULL;
2826 }
2827 #endif /* CONFIG_COMPACTION */
2828
2829 /* Perform direct synchronous page reclaim */
2830 static int
2831 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2832 const struct alloc_context *ac)
2833 {
2834 struct reclaim_state reclaim_state;
2835 int progress;
2836
2837 cond_resched();
2838
2839 /* We now go into synchronous reclaim */
2840 cpuset_memory_pressure_bump();
2841 current->flags |= PF_MEMALLOC;
2842 lockdep_set_current_reclaim_state(gfp_mask);
2843 reclaim_state.reclaimed_slab = 0;
2844 current->reclaim_state = &reclaim_state;
2845
2846 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2847 ac->nodemask);
2848
2849 current->reclaim_state = NULL;
2850 lockdep_clear_current_reclaim_state();
2851 current->flags &= ~PF_MEMALLOC;
2852
2853 cond_resched();
2854
2855 return progress;
2856 }
2857
2858 /* The really slow allocator path where we enter direct reclaim */
2859 static inline struct page *
2860 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2861 int alloc_flags, const struct alloc_context *ac,
2862 unsigned long *did_some_progress)
2863 {
2864 struct page *page = NULL;
2865 bool drained = false;
2866
2867 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2868 if (unlikely(!(*did_some_progress)))
2869 return NULL;
2870
2871 /* After successful reclaim, reconsider all zones for allocation */
2872 if (IS_ENABLED(CONFIG_NUMA))
2873 zlc_clear_zones_full(ac->zonelist);
2874
2875 retry:
2876 page = get_page_from_freelist(gfp_mask, order,
2877 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2878
2879 /*
2880 * If an allocation failed after direct reclaim, it could be because
2881 * pages are pinned on the per-cpu lists. Drain them and try again
2882 */
2883 if (!page && !drained) {
2884 drain_all_pages(NULL);
2885 drained = true;
2886 goto retry;
2887 }
2888
2889 return page;
2890 }
2891
2892 /*
2893 * This is called in the allocator slow-path if the allocation request is of
2894 * sufficient urgency to ignore watermarks and take other desperate measures
2895 */
2896 static inline struct page *
2897 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2898 const struct alloc_context *ac)
2899 {
2900 struct page *page;
2901
2902 do {
2903 page = get_page_from_freelist(gfp_mask, order,
2904 ALLOC_NO_WATERMARKS, ac);
2905
2906 if (!page && gfp_mask & __GFP_NOFAIL)
2907 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2908 HZ/50);
2909 } while (!page && (gfp_mask & __GFP_NOFAIL));
2910
2911 return page;
2912 }
2913
2914 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2915 {
2916 struct zoneref *z;
2917 struct zone *zone;
2918
2919 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2920 ac->high_zoneidx, ac->nodemask)
2921 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2922 }
2923
2924 static inline int
2925 gfp_to_alloc_flags(gfp_t gfp_mask)
2926 {
2927 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2928 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2929
2930 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2931 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2932
2933 /*
2934 * The caller may dip into page reserves a bit more if the caller
2935 * cannot run direct reclaim, or if the caller has realtime scheduling
2936 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2937 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2938 */
2939 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2940
2941 if (atomic) {
2942 /*
2943 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2944 * if it can't schedule.
2945 */
2946 if (!(gfp_mask & __GFP_NOMEMALLOC))
2947 alloc_flags |= ALLOC_HARDER;
2948 /*
2949 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2950 * comment for __cpuset_node_allowed().
2951 */
2952 alloc_flags &= ~ALLOC_CPUSET;
2953 } else if (unlikely(rt_task(current)) && !in_interrupt())
2954 alloc_flags |= ALLOC_HARDER;
2955
2956 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2957 if (gfp_mask & __GFP_MEMALLOC)
2958 alloc_flags |= ALLOC_NO_WATERMARKS;
2959 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2960 alloc_flags |= ALLOC_NO_WATERMARKS;
2961 else if (!in_interrupt() &&
2962 ((current->flags & PF_MEMALLOC) ||
2963 unlikely(test_thread_flag(TIF_MEMDIE))))
2964 alloc_flags |= ALLOC_NO_WATERMARKS;
2965 }
2966 #ifdef CONFIG_CMA
2967 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2968 alloc_flags |= ALLOC_CMA;
2969 #endif
2970 return alloc_flags;
2971 }
2972
2973 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2974 {
2975 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2976 }
2977
2978 static inline struct page *
2979 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2980 struct alloc_context *ac)
2981 {
2982 const gfp_t wait = gfp_mask & __GFP_WAIT;
2983 struct page *page = NULL;
2984 int alloc_flags;
2985 unsigned long pages_reclaimed = 0;
2986 unsigned long did_some_progress;
2987 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2988 bool deferred_compaction = false;
2989 int contended_compaction = COMPACT_CONTENDED_NONE;
2990
2991 /*
2992 * In the slowpath, we sanity check order to avoid ever trying to
2993 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2994 * be using allocators in order of preference for an area that is
2995 * too large.
2996 */
2997 if (order >= MAX_ORDER) {
2998 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2999 return NULL;
3000 }
3001
3002 /*
3003 * If this allocation cannot block and it is for a specific node, then
3004 * fail early. There's no need to wakeup kswapd or retry for a
3005 * speculative node-specific allocation.
3006 */
3007 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
3008 goto nopage;
3009
3010 retry:
3011 if (!(gfp_mask & __GFP_NO_KSWAPD))
3012 wake_all_kswapds(order, ac);
3013
3014 /*
3015 * OK, we're below the kswapd watermark and have kicked background
3016 * reclaim. Now things get more complex, so set up alloc_flags according
3017 * to how we want to proceed.
3018 */
3019 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3020
3021 /*
3022 * Find the true preferred zone if the allocation is unconstrained by
3023 * cpusets.
3024 */
3025 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3026 struct zoneref *preferred_zoneref;
3027 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3028 ac->high_zoneidx, NULL, &ac->preferred_zone);
3029 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3030 }
3031
3032 /* This is the last chance, in general, before the goto nopage. */
3033 page = get_page_from_freelist(gfp_mask, order,
3034 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3035 if (page)
3036 goto got_pg;
3037
3038 /* Allocate without watermarks if the context allows */
3039 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3040 /*
3041 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3042 * the allocation is high priority and these type of
3043 * allocations are system rather than user orientated
3044 */
3045 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3046
3047 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3048
3049 if (page) {
3050 goto got_pg;
3051 }
3052 }
3053
3054 /* Atomic allocations - we can't balance anything */
3055 if (!wait) {
3056 /*
3057 * All existing users of the deprecated __GFP_NOFAIL are
3058 * blockable, so warn of any new users that actually allow this
3059 * type of allocation to fail.
3060 */
3061 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3062 goto nopage;
3063 }
3064
3065 /* Avoid recursion of direct reclaim */
3066 if (current->flags & PF_MEMALLOC)
3067 goto nopage;
3068
3069 /* Avoid allocations with no watermarks from looping endlessly */
3070 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3071 goto nopage;
3072
3073 /*
3074 * Try direct compaction. The first pass is asynchronous. Subsequent
3075 * attempts after direct reclaim are synchronous
3076 */
3077 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3078 migration_mode,
3079 &contended_compaction,
3080 &deferred_compaction);
3081 if (page)
3082 goto got_pg;
3083
3084 /* Checks for THP-specific high-order allocations */
3085 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3086 /*
3087 * If compaction is deferred for high-order allocations, it is
3088 * because sync compaction recently failed. If this is the case
3089 * and the caller requested a THP allocation, we do not want
3090 * to heavily disrupt the system, so we fail the allocation
3091 * instead of entering direct reclaim.
3092 */
3093 if (deferred_compaction)
3094 goto nopage;
3095
3096 /*
3097 * In all zones where compaction was attempted (and not
3098 * deferred or skipped), lock contention has been detected.
3099 * For THP allocation we do not want to disrupt the others
3100 * so we fallback to base pages instead.
3101 */
3102 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3103 goto nopage;
3104
3105 /*
3106 * If compaction was aborted due to need_resched(), we do not
3107 * want to further increase allocation latency, unless it is
3108 * khugepaged trying to collapse.
3109 */
3110 if (contended_compaction == COMPACT_CONTENDED_SCHED
3111 && !(current->flags & PF_KTHREAD))
3112 goto nopage;
3113 }
3114
3115 /*
3116 * It can become very expensive to allocate transparent hugepages at
3117 * fault, so use asynchronous memory compaction for THP unless it is
3118 * khugepaged trying to collapse.
3119 */
3120 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3121 (current->flags & PF_KTHREAD))
3122 migration_mode = MIGRATE_SYNC_LIGHT;
3123
3124 /* Try direct reclaim and then allocating */
3125 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3126 &did_some_progress);
3127 if (page)
3128 goto got_pg;
3129
3130 /* Do not loop if specifically requested */
3131 if (gfp_mask & __GFP_NORETRY)
3132 goto noretry;
3133
3134 /* Keep reclaiming pages as long as there is reasonable progress */
3135 pages_reclaimed += did_some_progress;
3136 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3137 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3138 /* Wait for some write requests to complete then retry */
3139 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3140 goto retry;
3141 }
3142
3143 /* Reclaim has failed us, start killing things */
3144 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3145 if (page)
3146 goto got_pg;
3147
3148 /* Retry as long as the OOM killer is making progress */
3149 if (did_some_progress)
3150 goto retry;
3151
3152 noretry:
3153 /*
3154 * High-order allocations do not necessarily loop after
3155 * direct reclaim and reclaim/compaction depends on compaction
3156 * being called after reclaim so call directly if necessary
3157 */
3158 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3159 ac, migration_mode,
3160 &contended_compaction,
3161 &deferred_compaction);
3162 if (page)
3163 goto got_pg;
3164 nopage:
3165 warn_alloc_failed(gfp_mask, order, NULL);
3166 got_pg:
3167 return page;
3168 }
3169
3170 /*
3171 * This is the 'heart' of the zoned buddy allocator.
3172 */
3173 struct page *
3174 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3175 struct zonelist *zonelist, nodemask_t *nodemask)
3176 {
3177 struct zoneref *preferred_zoneref;
3178 struct page *page = NULL;
3179 unsigned int cpuset_mems_cookie;
3180 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3181 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3182 struct alloc_context ac = {
3183 .high_zoneidx = gfp_zone(gfp_mask),
3184 .nodemask = nodemask,
3185 .migratetype = gfpflags_to_migratetype(gfp_mask),
3186 };
3187
3188 gfp_mask &= gfp_allowed_mask;
3189
3190 lockdep_trace_alloc(gfp_mask);
3191
3192 might_sleep_if(gfp_mask & __GFP_WAIT);
3193
3194 if (should_fail_alloc_page(gfp_mask, order))
3195 return NULL;
3196
3197 /*
3198 * Check the zones suitable for the gfp_mask contain at least one
3199 * valid zone. It's possible to have an empty zonelist as a result
3200 * of __GFP_THISNODE and a memoryless node
3201 */
3202 if (unlikely(!zonelist->_zonerefs->zone))
3203 return NULL;
3204
3205 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3206 alloc_flags |= ALLOC_CMA;
3207
3208 retry_cpuset:
3209 cpuset_mems_cookie = read_mems_allowed_begin();
3210
3211 /* We set it here, as __alloc_pages_slowpath might have changed it */
3212 ac.zonelist = zonelist;
3213 /* The preferred zone is used for statistics later */
3214 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3215 ac.nodemask ? : &cpuset_current_mems_allowed,
3216 &ac.preferred_zone);
3217 if (!ac.preferred_zone)
3218 goto out;
3219 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3220
3221 /* First allocation attempt */
3222 alloc_mask = gfp_mask|__GFP_HARDWALL;
3223 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3224 if (unlikely(!page)) {
3225 /*
3226 * Runtime PM, block IO and its error handling path
3227 * can deadlock because I/O on the device might not
3228 * complete.
3229 */
3230 alloc_mask = memalloc_noio_flags(gfp_mask);
3231
3232 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3233 }
3234
3235 if (kmemcheck_enabled && page)
3236 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3237
3238 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3239
3240 out:
3241 /*
3242 * When updating a task's mems_allowed, it is possible to race with
3243 * parallel threads in such a way that an allocation can fail while
3244 * the mask is being updated. If a page allocation is about to fail,
3245 * check if the cpuset changed during allocation and if so, retry.
3246 */
3247 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3248 goto retry_cpuset;
3249
3250 return page;
3251 }
3252 EXPORT_SYMBOL(__alloc_pages_nodemask);
3253
3254 /*
3255 * Common helper functions.
3256 */
3257 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3258 {
3259 struct page *page;
3260
3261 /*
3262 * __get_free_pages() returns a 32-bit address, which cannot represent
3263 * a highmem page
3264 */
3265 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3266
3267 page = alloc_pages(gfp_mask, order);
3268 if (!page)
3269 return 0;
3270 return (unsigned long) page_address(page);
3271 }
3272 EXPORT_SYMBOL(__get_free_pages);
3273
3274 unsigned long get_zeroed_page(gfp_t gfp_mask)
3275 {
3276 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3277 }
3278 EXPORT_SYMBOL(get_zeroed_page);
3279
3280 void __free_pages(struct page *page, unsigned int order)
3281 {
3282 if (put_page_testzero(page)) {
3283 if (order == 0)
3284 free_hot_cold_page(page, false);
3285 else
3286 __free_pages_ok(page, order);
3287 }
3288 }
3289
3290 EXPORT_SYMBOL(__free_pages);
3291
3292 void free_pages(unsigned long addr, unsigned int order)
3293 {
3294 if (addr != 0) {
3295 VM_BUG_ON(!virt_addr_valid((void *)addr));
3296 __free_pages(virt_to_page((void *)addr), order);
3297 }
3298 }
3299
3300 EXPORT_SYMBOL(free_pages);
3301
3302 /*
3303 * Page Fragment:
3304 * An arbitrary-length arbitrary-offset area of memory which resides
3305 * within a 0 or higher order page. Multiple fragments within that page
3306 * are individually refcounted, in the page's reference counter.
3307 *
3308 * The page_frag functions below provide a simple allocation framework for
3309 * page fragments. This is used by the network stack and network device
3310 * drivers to provide a backing region of memory for use as either an
3311 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3312 */
3313 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3314 gfp_t gfp_mask)
3315 {
3316 struct page *page = NULL;
3317 gfp_t gfp = gfp_mask;
3318
3319 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3320 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3321 __GFP_NOMEMALLOC;
3322 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3323 PAGE_FRAG_CACHE_MAX_ORDER);
3324 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3325 #endif
3326 if (unlikely(!page))
3327 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3328
3329 nc->va = page ? page_address(page) : NULL;
3330
3331 return page;
3332 }
3333
3334 void *__alloc_page_frag(struct page_frag_cache *nc,
3335 unsigned int fragsz, gfp_t gfp_mask)
3336 {
3337 unsigned int size = PAGE_SIZE;
3338 struct page *page;
3339 int offset;
3340
3341 if (unlikely(!nc->va)) {
3342 refill:
3343 page = __page_frag_refill(nc, gfp_mask);
3344 if (!page)
3345 return NULL;
3346
3347 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3348 /* if size can vary use size else just use PAGE_SIZE */
3349 size = nc->size;
3350 #endif
3351 /* Even if we own the page, we do not use atomic_set().
3352 * This would break get_page_unless_zero() users.
3353 */
3354 atomic_add(size - 1, &page->_count);
3355
3356 /* reset page count bias and offset to start of new frag */
3357 nc->pfmemalloc = page_is_pfmemalloc(page);
3358 nc->pagecnt_bias = size;
3359 nc->offset = size;
3360 }
3361
3362 offset = nc->offset - fragsz;
3363 if (unlikely(offset < 0)) {
3364 page = virt_to_page(nc->va);
3365
3366 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3367 goto refill;
3368
3369 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3370 /* if size can vary use size else just use PAGE_SIZE */
3371 size = nc->size;
3372 #endif
3373 /* OK, page count is 0, we can safely set it */
3374 atomic_set(&page->_count, size);
3375
3376 /* reset page count bias and offset to start of new frag */
3377 nc->pagecnt_bias = size;
3378 offset = size - fragsz;
3379 }
3380
3381 nc->pagecnt_bias--;
3382 nc->offset = offset;
3383
3384 return nc->va + offset;
3385 }
3386 EXPORT_SYMBOL(__alloc_page_frag);
3387
3388 /*
3389 * Frees a page fragment allocated out of either a compound or order 0 page.
3390 */
3391 void __free_page_frag(void *addr)
3392 {
3393 struct page *page = virt_to_head_page(addr);
3394
3395 if (unlikely(put_page_testzero(page)))
3396 __free_pages_ok(page, compound_order(page));
3397 }
3398 EXPORT_SYMBOL(__free_page_frag);
3399
3400 /*
3401 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3402 * of the current memory cgroup.
3403 *
3404 * It should be used when the caller would like to use kmalloc, but since the
3405 * allocation is large, it has to fall back to the page allocator.
3406 */
3407 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3408 {
3409 struct page *page;
3410 struct mem_cgroup *memcg = NULL;
3411
3412 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3413 return NULL;
3414 page = alloc_pages(gfp_mask, order);
3415 memcg_kmem_commit_charge(page, memcg, order);
3416 return page;
3417 }
3418
3419 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3420 {
3421 struct page *page;
3422 struct mem_cgroup *memcg = NULL;
3423
3424 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3425 return NULL;
3426 page = alloc_pages_node(nid, gfp_mask, order);
3427 memcg_kmem_commit_charge(page, memcg, order);
3428 return page;
3429 }
3430
3431 /*
3432 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3433 * alloc_kmem_pages.
3434 */
3435 void __free_kmem_pages(struct page *page, unsigned int order)
3436 {
3437 memcg_kmem_uncharge_pages(page, order);
3438 __free_pages(page, order);
3439 }
3440
3441 void free_kmem_pages(unsigned long addr, unsigned int order)
3442 {
3443 if (addr != 0) {
3444 VM_BUG_ON(!virt_addr_valid((void *)addr));
3445 __free_kmem_pages(virt_to_page((void *)addr), order);
3446 }
3447 }
3448
3449 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3450 {
3451 if (addr) {
3452 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3453 unsigned long used = addr + PAGE_ALIGN(size);
3454
3455 split_page(virt_to_page((void *)addr), order);
3456 while (used < alloc_end) {
3457 free_page(used);
3458 used += PAGE_SIZE;
3459 }
3460 }
3461 return (void *)addr;
3462 }
3463
3464 /**
3465 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3466 * @size: the number of bytes to allocate
3467 * @gfp_mask: GFP flags for the allocation
3468 *
3469 * This function is similar to alloc_pages(), except that it allocates the
3470 * minimum number of pages to satisfy the request. alloc_pages() can only
3471 * allocate memory in power-of-two pages.
3472 *
3473 * This function is also limited by MAX_ORDER.
3474 *
3475 * Memory allocated by this function must be released by free_pages_exact().
3476 */
3477 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3478 {
3479 unsigned int order = get_order(size);
3480 unsigned long addr;
3481
3482 addr = __get_free_pages(gfp_mask, order);
3483 return make_alloc_exact(addr, order, size);
3484 }
3485 EXPORT_SYMBOL(alloc_pages_exact);
3486
3487 /**
3488 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3489 * pages on a node.
3490 * @nid: the preferred node ID where memory should be allocated
3491 * @size: the number of bytes to allocate
3492 * @gfp_mask: GFP flags for the allocation
3493 *
3494 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3495 * back.
3496 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3497 * but is not exact.
3498 */
3499 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3500 {
3501 unsigned order = get_order(size);
3502 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3503 if (!p)
3504 return NULL;
3505 return make_alloc_exact((unsigned long)page_address(p), order, size);
3506 }
3507
3508 /**
3509 * free_pages_exact - release memory allocated via alloc_pages_exact()
3510 * @virt: the value returned by alloc_pages_exact.
3511 * @size: size of allocation, same value as passed to alloc_pages_exact().
3512 *
3513 * Release the memory allocated by a previous call to alloc_pages_exact.
3514 */
3515 void free_pages_exact(void *virt, size_t size)
3516 {
3517 unsigned long addr = (unsigned long)virt;
3518 unsigned long end = addr + PAGE_ALIGN(size);
3519
3520 while (addr < end) {
3521 free_page(addr);
3522 addr += PAGE_SIZE;
3523 }
3524 }
3525 EXPORT_SYMBOL(free_pages_exact);
3526
3527 /**
3528 * nr_free_zone_pages - count number of pages beyond high watermark
3529 * @offset: The zone index of the highest zone
3530 *
3531 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3532 * high watermark within all zones at or below a given zone index. For each
3533 * zone, the number of pages is calculated as:
3534 * managed_pages - high_pages
3535 */
3536 static unsigned long nr_free_zone_pages(int offset)
3537 {
3538 struct zoneref *z;
3539 struct zone *zone;
3540
3541 /* Just pick one node, since fallback list is circular */
3542 unsigned long sum = 0;
3543
3544 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3545
3546 for_each_zone_zonelist(zone, z, zonelist, offset) {
3547 unsigned long size = zone->managed_pages;
3548 unsigned long high = high_wmark_pages(zone);
3549 if (size > high)
3550 sum += size - high;
3551 }
3552
3553 return sum;
3554 }
3555
3556 /**
3557 * nr_free_buffer_pages - count number of pages beyond high watermark
3558 *
3559 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3560 * watermark within ZONE_DMA and ZONE_NORMAL.
3561 */
3562 unsigned long nr_free_buffer_pages(void)
3563 {
3564 return nr_free_zone_pages(gfp_zone(GFP_USER));
3565 }
3566 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3567
3568 /**
3569 * nr_free_pagecache_pages - count number of pages beyond high watermark
3570 *
3571 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3572 * high watermark within all zones.
3573 */
3574 unsigned long nr_free_pagecache_pages(void)
3575 {
3576 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3577 }
3578
3579 static inline void show_node(struct zone *zone)
3580 {
3581 if (IS_ENABLED(CONFIG_NUMA))
3582 printk("Node %d ", zone_to_nid(zone));
3583 }
3584
3585 void si_meminfo(struct sysinfo *val)
3586 {
3587 val->totalram = totalram_pages;
3588 val->sharedram = global_page_state(NR_SHMEM);
3589 val->freeram = global_page_state(NR_FREE_PAGES);
3590 val->bufferram = nr_blockdev_pages();
3591 val->totalhigh = totalhigh_pages;
3592 val->freehigh = nr_free_highpages();
3593 val->mem_unit = PAGE_SIZE;
3594 }
3595
3596 EXPORT_SYMBOL(si_meminfo);
3597
3598 #ifdef CONFIG_NUMA
3599 void si_meminfo_node(struct sysinfo *val, int nid)
3600 {
3601 int zone_type; /* needs to be signed */
3602 unsigned long managed_pages = 0;
3603 pg_data_t *pgdat = NODE_DATA(nid);
3604
3605 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3606 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3607 val->totalram = managed_pages;
3608 val->sharedram = node_page_state(nid, NR_SHMEM);
3609 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3610 #ifdef CONFIG_HIGHMEM
3611 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3612 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3613 NR_FREE_PAGES);
3614 #else
3615 val->totalhigh = 0;
3616 val->freehigh = 0;
3617 #endif
3618 val->mem_unit = PAGE_SIZE;
3619 }
3620 #endif
3621
3622 /*
3623 * Determine whether the node should be displayed or not, depending on whether
3624 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3625 */
3626 bool skip_free_areas_node(unsigned int flags, int nid)
3627 {
3628 bool ret = false;
3629 unsigned int cpuset_mems_cookie;
3630
3631 if (!(flags & SHOW_MEM_FILTER_NODES))
3632 goto out;
3633
3634 do {
3635 cpuset_mems_cookie = read_mems_allowed_begin();
3636 ret = !node_isset(nid, cpuset_current_mems_allowed);
3637 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3638 out:
3639 return ret;
3640 }
3641
3642 #define K(x) ((x) << (PAGE_SHIFT-10))
3643
3644 static void show_migration_types(unsigned char type)
3645 {
3646 static const char types[MIGRATE_TYPES] = {
3647 [MIGRATE_UNMOVABLE] = 'U',
3648 [MIGRATE_RECLAIMABLE] = 'E',
3649 [MIGRATE_MOVABLE] = 'M',
3650 [MIGRATE_RESERVE] = 'R',
3651 #ifdef CONFIG_CMA
3652 [MIGRATE_CMA] = 'C',
3653 #endif
3654 #ifdef CONFIG_MEMORY_ISOLATION
3655 [MIGRATE_ISOLATE] = 'I',
3656 #endif
3657 };
3658 char tmp[MIGRATE_TYPES + 1];
3659 char *p = tmp;
3660 int i;
3661
3662 for (i = 0; i < MIGRATE_TYPES; i++) {
3663 if (type & (1 << i))
3664 *p++ = types[i];
3665 }
3666
3667 *p = '\0';
3668 printk("(%s) ", tmp);
3669 }
3670
3671 /*
3672 * Show free area list (used inside shift_scroll-lock stuff)
3673 * We also calculate the percentage fragmentation. We do this by counting the
3674 * memory on each free list with the exception of the first item on the list.
3675 *
3676 * Bits in @filter:
3677 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3678 * cpuset.
3679 */
3680 void show_free_areas(unsigned int filter)
3681 {
3682 unsigned long free_pcp = 0;
3683 int cpu;
3684 struct zone *zone;
3685
3686 for_each_populated_zone(zone) {
3687 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3688 continue;
3689
3690 for_each_online_cpu(cpu)
3691 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3692 }
3693
3694 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3695 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3696 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3697 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3698 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3699 " free:%lu free_pcp:%lu free_cma:%lu\n",
3700 global_page_state(NR_ACTIVE_ANON),
3701 global_page_state(NR_INACTIVE_ANON),
3702 global_page_state(NR_ISOLATED_ANON),
3703 global_page_state(NR_ACTIVE_FILE),
3704 global_page_state(NR_INACTIVE_FILE),
3705 global_page_state(NR_ISOLATED_FILE),
3706 global_page_state(NR_UNEVICTABLE),
3707 global_page_state(NR_FILE_DIRTY),
3708 global_page_state(NR_WRITEBACK),
3709 global_page_state(NR_UNSTABLE_NFS),
3710 global_page_state(NR_SLAB_RECLAIMABLE),
3711 global_page_state(NR_SLAB_UNRECLAIMABLE),
3712 global_page_state(NR_FILE_MAPPED),
3713 global_page_state(NR_SHMEM),
3714 global_page_state(NR_PAGETABLE),
3715 global_page_state(NR_BOUNCE),
3716 global_page_state(NR_FREE_PAGES),
3717 free_pcp,
3718 global_page_state(NR_FREE_CMA_PAGES));
3719
3720 for_each_populated_zone(zone) {
3721 int i;
3722
3723 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3724 continue;
3725
3726 free_pcp = 0;
3727 for_each_online_cpu(cpu)
3728 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3729
3730 show_node(zone);
3731 printk("%s"
3732 " free:%lukB"
3733 " min:%lukB"
3734 " low:%lukB"
3735 " high:%lukB"
3736 " active_anon:%lukB"
3737 " inactive_anon:%lukB"
3738 " active_file:%lukB"
3739 " inactive_file:%lukB"
3740 " unevictable:%lukB"
3741 " isolated(anon):%lukB"
3742 " isolated(file):%lukB"
3743 " present:%lukB"
3744 " managed:%lukB"
3745 " mlocked:%lukB"
3746 " dirty:%lukB"
3747 " writeback:%lukB"
3748 " mapped:%lukB"
3749 " shmem:%lukB"
3750 " slab_reclaimable:%lukB"
3751 " slab_unreclaimable:%lukB"
3752 " kernel_stack:%lukB"
3753 " pagetables:%lukB"
3754 " unstable:%lukB"
3755 " bounce:%lukB"
3756 " free_pcp:%lukB"
3757 " local_pcp:%ukB"
3758 " free_cma:%lukB"
3759 " writeback_tmp:%lukB"
3760 " pages_scanned:%lu"
3761 " all_unreclaimable? %s"
3762 "\n",
3763 zone->name,
3764 K(zone_page_state(zone, NR_FREE_PAGES)),
3765 K(min_wmark_pages(zone)),
3766 K(low_wmark_pages(zone)),
3767 K(high_wmark_pages(zone)),
3768 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3769 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3770 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3771 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3772 K(zone_page_state(zone, NR_UNEVICTABLE)),
3773 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3774 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3775 K(zone->present_pages),
3776 K(zone->managed_pages),
3777 K(zone_page_state(zone, NR_MLOCK)),
3778 K(zone_page_state(zone, NR_FILE_DIRTY)),
3779 K(zone_page_state(zone, NR_WRITEBACK)),
3780 K(zone_page_state(zone, NR_FILE_MAPPED)),
3781 K(zone_page_state(zone, NR_SHMEM)),
3782 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3783 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3784 zone_page_state(zone, NR_KERNEL_STACK) *
3785 THREAD_SIZE / 1024,
3786 K(zone_page_state(zone, NR_PAGETABLE)),
3787 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3788 K(zone_page_state(zone, NR_BOUNCE)),
3789 K(free_pcp),
3790 K(this_cpu_read(zone->pageset->pcp.count)),
3791 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3792 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3793 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3794 (!zone_reclaimable(zone) ? "yes" : "no")
3795 );
3796 printk("lowmem_reserve[]:");
3797 for (i = 0; i < MAX_NR_ZONES; i++)
3798 printk(" %ld", zone->lowmem_reserve[i]);
3799 printk("\n");
3800 }
3801
3802 for_each_populated_zone(zone) {
3803 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3804 unsigned char types[MAX_ORDER];
3805
3806 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3807 continue;
3808 show_node(zone);
3809 printk("%s: ", zone->name);
3810
3811 spin_lock_irqsave(&zone->lock, flags);
3812 for (order = 0; order < MAX_ORDER; order++) {
3813 struct free_area *area = &zone->free_area[order];
3814 int type;
3815
3816 nr[order] = area->nr_free;
3817 total += nr[order] << order;
3818
3819 types[order] = 0;
3820 for (type = 0; type < MIGRATE_TYPES; type++) {
3821 if (!list_empty(&area->free_list[type]))
3822 types[order] |= 1 << type;
3823 }
3824 }
3825 spin_unlock_irqrestore(&zone->lock, flags);
3826 for (order = 0; order < MAX_ORDER; order++) {
3827 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3828 if (nr[order])
3829 show_migration_types(types[order]);
3830 }
3831 printk("= %lukB\n", K(total));
3832 }
3833
3834 hugetlb_show_meminfo();
3835
3836 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3837
3838 show_swap_cache_info();
3839 }
3840
3841 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3842 {
3843 zoneref->zone = zone;
3844 zoneref->zone_idx = zone_idx(zone);
3845 }
3846
3847 /*
3848 * Builds allocation fallback zone lists.
3849 *
3850 * Add all populated zones of a node to the zonelist.
3851 */
3852 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3853 int nr_zones)
3854 {
3855 struct zone *zone;
3856 enum zone_type zone_type = MAX_NR_ZONES;
3857
3858 do {
3859 zone_type--;
3860 zone = pgdat->node_zones + zone_type;
3861 if (populated_zone(zone)) {
3862 zoneref_set_zone(zone,
3863 &zonelist->_zonerefs[nr_zones++]);
3864 check_highest_zone(zone_type);
3865 }
3866 } while (zone_type);
3867
3868 return nr_zones;
3869 }
3870
3871
3872 /*
3873 * zonelist_order:
3874 * 0 = automatic detection of better ordering.
3875 * 1 = order by ([node] distance, -zonetype)
3876 * 2 = order by (-zonetype, [node] distance)
3877 *
3878 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3879 * the same zonelist. So only NUMA can configure this param.
3880 */
3881 #define ZONELIST_ORDER_DEFAULT 0
3882 #define ZONELIST_ORDER_NODE 1
3883 #define ZONELIST_ORDER_ZONE 2
3884
3885 /* zonelist order in the kernel.
3886 * set_zonelist_order() will set this to NODE or ZONE.
3887 */
3888 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3889 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3890
3891
3892 #ifdef CONFIG_NUMA
3893 /* The value user specified ....changed by config */
3894 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3895 /* string for sysctl */
3896 #define NUMA_ZONELIST_ORDER_LEN 16
3897 char numa_zonelist_order[16] = "default";
3898
3899 /*
3900 * interface for configure zonelist ordering.
3901 * command line option "numa_zonelist_order"
3902 * = "[dD]efault - default, automatic configuration.
3903 * = "[nN]ode - order by node locality, then by zone within node
3904 * = "[zZ]one - order by zone, then by locality within zone
3905 */
3906
3907 static int __parse_numa_zonelist_order(char *s)
3908 {
3909 if (*s == 'd' || *s == 'D') {
3910 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3911 } else if (*s == 'n' || *s == 'N') {
3912 user_zonelist_order = ZONELIST_ORDER_NODE;
3913 } else if (*s == 'z' || *s == 'Z') {
3914 user_zonelist_order = ZONELIST_ORDER_ZONE;
3915 } else {
3916 printk(KERN_WARNING
3917 "Ignoring invalid numa_zonelist_order value: "
3918 "%s\n", s);
3919 return -EINVAL;
3920 }
3921 return 0;
3922 }
3923
3924 static __init int setup_numa_zonelist_order(char *s)
3925 {
3926 int ret;
3927
3928 if (!s)
3929 return 0;
3930
3931 ret = __parse_numa_zonelist_order(s);
3932 if (ret == 0)
3933 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3934
3935 return ret;
3936 }
3937 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3938
3939 /*
3940 * sysctl handler for numa_zonelist_order
3941 */
3942 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3943 void __user *buffer, size_t *length,
3944 loff_t *ppos)
3945 {
3946 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3947 int ret;
3948 static DEFINE_MUTEX(zl_order_mutex);
3949
3950 mutex_lock(&zl_order_mutex);
3951 if (write) {
3952 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3953 ret = -EINVAL;
3954 goto out;
3955 }
3956 strcpy(saved_string, (char *)table->data);
3957 }
3958 ret = proc_dostring(table, write, buffer, length, ppos);
3959 if (ret)
3960 goto out;
3961 if (write) {
3962 int oldval = user_zonelist_order;
3963
3964 ret = __parse_numa_zonelist_order((char *)table->data);
3965 if (ret) {
3966 /*
3967 * bogus value. restore saved string
3968 */
3969 strncpy((char *)table->data, saved_string,
3970 NUMA_ZONELIST_ORDER_LEN);
3971 user_zonelist_order = oldval;
3972 } else if (oldval != user_zonelist_order) {
3973 mutex_lock(&zonelists_mutex);
3974 build_all_zonelists(NULL, NULL);
3975 mutex_unlock(&zonelists_mutex);
3976 }
3977 }
3978 out:
3979 mutex_unlock(&zl_order_mutex);
3980 return ret;
3981 }
3982
3983
3984 #define MAX_NODE_LOAD (nr_online_nodes)
3985 static int node_load[MAX_NUMNODES];
3986
3987 /**
3988 * find_next_best_node - find the next node that should appear in a given node's fallback list
3989 * @node: node whose fallback list we're appending
3990 * @used_node_mask: nodemask_t of already used nodes
3991 *
3992 * We use a number of factors to determine which is the next node that should
3993 * appear on a given node's fallback list. The node should not have appeared
3994 * already in @node's fallback list, and it should be the next closest node
3995 * according to the distance array (which contains arbitrary distance values
3996 * from each node to each node in the system), and should also prefer nodes
3997 * with no CPUs, since presumably they'll have very little allocation pressure
3998 * on them otherwise.
3999 * It returns -1 if no node is found.
4000 */
4001 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4002 {
4003 int n, val;
4004 int min_val = INT_MAX;
4005 int best_node = NUMA_NO_NODE;
4006 const struct cpumask *tmp = cpumask_of_node(0);
4007
4008 /* Use the local node if we haven't already */
4009 if (!node_isset(node, *used_node_mask)) {
4010 node_set(node, *used_node_mask);
4011 return node;
4012 }
4013
4014 for_each_node_state(n, N_MEMORY) {
4015
4016 /* Don't want a node to appear more than once */
4017 if (node_isset(n, *used_node_mask))
4018 continue;
4019
4020 /* Use the distance array to find the distance */
4021 val = node_distance(node, n);
4022
4023 /* Penalize nodes under us ("prefer the next node") */
4024 val += (n < node);
4025
4026 /* Give preference to headless and unused nodes */
4027 tmp = cpumask_of_node(n);
4028 if (!cpumask_empty(tmp))
4029 val += PENALTY_FOR_NODE_WITH_CPUS;
4030
4031 /* Slight preference for less loaded node */
4032 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4033 val += node_load[n];
4034
4035 if (val < min_val) {
4036 min_val = val;
4037 best_node = n;
4038 }
4039 }
4040
4041 if (best_node >= 0)
4042 node_set(best_node, *used_node_mask);
4043
4044 return best_node;
4045 }
4046
4047
4048 /*
4049 * Build zonelists ordered by node and zones within node.
4050 * This results in maximum locality--normal zone overflows into local
4051 * DMA zone, if any--but risks exhausting DMA zone.
4052 */
4053 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4054 {
4055 int j;
4056 struct zonelist *zonelist;
4057
4058 zonelist = &pgdat->node_zonelists[0];
4059 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4060 ;
4061 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4062 zonelist->_zonerefs[j].zone = NULL;
4063 zonelist->_zonerefs[j].zone_idx = 0;
4064 }
4065
4066 /*
4067 * Build gfp_thisnode zonelists
4068 */
4069 static void build_thisnode_zonelists(pg_data_t *pgdat)
4070 {
4071 int j;
4072 struct zonelist *zonelist;
4073
4074 zonelist = &pgdat->node_zonelists[1];
4075 j = build_zonelists_node(pgdat, zonelist, 0);
4076 zonelist->_zonerefs[j].zone = NULL;
4077 zonelist->_zonerefs[j].zone_idx = 0;
4078 }
4079
4080 /*
4081 * Build zonelists ordered by zone and nodes within zones.
4082 * This results in conserving DMA zone[s] until all Normal memory is
4083 * exhausted, but results in overflowing to remote node while memory
4084 * may still exist in local DMA zone.
4085 */
4086 static int node_order[MAX_NUMNODES];
4087
4088 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4089 {
4090 int pos, j, node;
4091 int zone_type; /* needs to be signed */
4092 struct zone *z;
4093 struct zonelist *zonelist;
4094
4095 zonelist = &pgdat->node_zonelists[0];
4096 pos = 0;
4097 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4098 for (j = 0; j < nr_nodes; j++) {
4099 node = node_order[j];
4100 z = &NODE_DATA(node)->node_zones[zone_type];
4101 if (populated_zone(z)) {
4102 zoneref_set_zone(z,
4103 &zonelist->_zonerefs[pos++]);
4104 check_highest_zone(zone_type);
4105 }
4106 }
4107 }
4108 zonelist->_zonerefs[pos].zone = NULL;
4109 zonelist->_zonerefs[pos].zone_idx = 0;
4110 }
4111
4112 #if defined(CONFIG_64BIT)
4113 /*
4114 * Devices that require DMA32/DMA are relatively rare and do not justify a
4115 * penalty to every machine in case the specialised case applies. Default
4116 * to Node-ordering on 64-bit NUMA machines
4117 */
4118 static int default_zonelist_order(void)
4119 {
4120 return ZONELIST_ORDER_NODE;
4121 }
4122 #else
4123 /*
4124 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4125 * by the kernel. If processes running on node 0 deplete the low memory zone
4126 * then reclaim will occur more frequency increasing stalls and potentially
4127 * be easier to OOM if a large percentage of the zone is under writeback or
4128 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4129 * Hence, default to zone ordering on 32-bit.
4130 */
4131 static int default_zonelist_order(void)
4132 {
4133 return ZONELIST_ORDER_ZONE;
4134 }
4135 #endif /* CONFIG_64BIT */
4136
4137 static void set_zonelist_order(void)
4138 {
4139 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4140 current_zonelist_order = default_zonelist_order();
4141 else
4142 current_zonelist_order = user_zonelist_order;
4143 }
4144
4145 static void build_zonelists(pg_data_t *pgdat)
4146 {
4147 int j, node, load;
4148 enum zone_type i;
4149 nodemask_t used_mask;
4150 int local_node, prev_node;
4151 struct zonelist *zonelist;
4152 int order = current_zonelist_order;
4153
4154 /* initialize zonelists */
4155 for (i = 0; i < MAX_ZONELISTS; i++) {
4156 zonelist = pgdat->node_zonelists + i;
4157 zonelist->_zonerefs[0].zone = NULL;
4158 zonelist->_zonerefs[0].zone_idx = 0;
4159 }
4160
4161 /* NUMA-aware ordering of nodes */
4162 local_node = pgdat->node_id;
4163 load = nr_online_nodes;
4164 prev_node = local_node;
4165 nodes_clear(used_mask);
4166
4167 memset(node_order, 0, sizeof(node_order));
4168 j = 0;
4169
4170 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4171 /*
4172 * We don't want to pressure a particular node.
4173 * So adding penalty to the first node in same
4174 * distance group to make it round-robin.
4175 */
4176 if (node_distance(local_node, node) !=
4177 node_distance(local_node, prev_node))
4178 node_load[node] = load;
4179
4180 prev_node = node;
4181 load--;
4182 if (order == ZONELIST_ORDER_NODE)
4183 build_zonelists_in_node_order(pgdat, node);
4184 else
4185 node_order[j++] = node; /* remember order */
4186 }
4187
4188 if (order == ZONELIST_ORDER_ZONE) {
4189 /* calculate node order -- i.e., DMA last! */
4190 build_zonelists_in_zone_order(pgdat, j);
4191 }
4192
4193 build_thisnode_zonelists(pgdat);
4194 }
4195
4196 /* Construct the zonelist performance cache - see further mmzone.h */
4197 static void build_zonelist_cache(pg_data_t *pgdat)
4198 {
4199 struct zonelist *zonelist;
4200 struct zonelist_cache *zlc;
4201 struct zoneref *z;
4202
4203 zonelist = &pgdat->node_zonelists[0];
4204 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4205 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4206 for (z = zonelist->_zonerefs; z->zone; z++)
4207 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4208 }
4209
4210 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4211 /*
4212 * Return node id of node used for "local" allocations.
4213 * I.e., first node id of first zone in arg node's generic zonelist.
4214 * Used for initializing percpu 'numa_mem', which is used primarily
4215 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4216 */
4217 int local_memory_node(int node)
4218 {
4219 struct zone *zone;
4220
4221 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4222 gfp_zone(GFP_KERNEL),
4223 NULL,
4224 &zone);
4225 return zone->node;
4226 }
4227 #endif
4228
4229 #else /* CONFIG_NUMA */
4230
4231 static void set_zonelist_order(void)
4232 {
4233 current_zonelist_order = ZONELIST_ORDER_ZONE;
4234 }
4235
4236 static void build_zonelists(pg_data_t *pgdat)
4237 {
4238 int node, local_node;
4239 enum zone_type j;
4240 struct zonelist *zonelist;
4241
4242 local_node = pgdat->node_id;
4243
4244 zonelist = &pgdat->node_zonelists[0];
4245 j = build_zonelists_node(pgdat, zonelist, 0);
4246
4247 /*
4248 * Now we build the zonelist so that it contains the zones
4249 * of all the other nodes.
4250 * We don't want to pressure a particular node, so when
4251 * building the zones for node N, we make sure that the
4252 * zones coming right after the local ones are those from
4253 * node N+1 (modulo N)
4254 */
4255 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4256 if (!node_online(node))
4257 continue;
4258 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4259 }
4260 for (node = 0; node < local_node; node++) {
4261 if (!node_online(node))
4262 continue;
4263 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4264 }
4265
4266 zonelist->_zonerefs[j].zone = NULL;
4267 zonelist->_zonerefs[j].zone_idx = 0;
4268 }
4269
4270 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4271 static void build_zonelist_cache(pg_data_t *pgdat)
4272 {
4273 pgdat->node_zonelists[0].zlcache_ptr = NULL;
4274 }
4275
4276 #endif /* CONFIG_NUMA */
4277
4278 /*
4279 * Boot pageset table. One per cpu which is going to be used for all
4280 * zones and all nodes. The parameters will be set in such a way
4281 * that an item put on a list will immediately be handed over to
4282 * the buddy list. This is safe since pageset manipulation is done
4283 * with interrupts disabled.
4284 *
4285 * The boot_pagesets must be kept even after bootup is complete for
4286 * unused processors and/or zones. They do play a role for bootstrapping
4287 * hotplugged processors.
4288 *
4289 * zoneinfo_show() and maybe other functions do
4290 * not check if the processor is online before following the pageset pointer.
4291 * Other parts of the kernel may not check if the zone is available.
4292 */
4293 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4294 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4295 static void setup_zone_pageset(struct zone *zone);
4296
4297 /*
4298 * Global mutex to protect against size modification of zonelists
4299 * as well as to serialize pageset setup for the new populated zone.
4300 */
4301 DEFINE_MUTEX(zonelists_mutex);
4302
4303 /* return values int ....just for stop_machine() */
4304 static int __build_all_zonelists(void *data)
4305 {
4306 int nid;
4307 int cpu;
4308 pg_data_t *self = data;
4309
4310 #ifdef CONFIG_NUMA
4311 memset(node_load, 0, sizeof(node_load));
4312 #endif
4313
4314 if (self && !node_online(self->node_id)) {
4315 build_zonelists(self);
4316 build_zonelist_cache(self);
4317 }
4318
4319 for_each_online_node(nid) {
4320 pg_data_t *pgdat = NODE_DATA(nid);
4321
4322 build_zonelists(pgdat);
4323 build_zonelist_cache(pgdat);
4324 }
4325
4326 /*
4327 * Initialize the boot_pagesets that are going to be used
4328 * for bootstrapping processors. The real pagesets for
4329 * each zone will be allocated later when the per cpu
4330 * allocator is available.
4331 *
4332 * boot_pagesets are used also for bootstrapping offline
4333 * cpus if the system is already booted because the pagesets
4334 * are needed to initialize allocators on a specific cpu too.
4335 * F.e. the percpu allocator needs the page allocator which
4336 * needs the percpu allocator in order to allocate its pagesets
4337 * (a chicken-egg dilemma).
4338 */
4339 for_each_possible_cpu(cpu) {
4340 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4341
4342 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4343 /*
4344 * We now know the "local memory node" for each node--
4345 * i.e., the node of the first zone in the generic zonelist.
4346 * Set up numa_mem percpu variable for on-line cpus. During
4347 * boot, only the boot cpu should be on-line; we'll init the
4348 * secondary cpus' numa_mem as they come on-line. During
4349 * node/memory hotplug, we'll fixup all on-line cpus.
4350 */
4351 if (cpu_online(cpu))
4352 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4353 #endif
4354 }
4355
4356 return 0;
4357 }
4358
4359 static noinline void __init
4360 build_all_zonelists_init(void)
4361 {
4362 __build_all_zonelists(NULL);
4363 mminit_verify_zonelist();
4364 cpuset_init_current_mems_allowed();
4365 }
4366
4367 /*
4368 * Called with zonelists_mutex held always
4369 * unless system_state == SYSTEM_BOOTING.
4370 *
4371 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4372 * [we're only called with non-NULL zone through __meminit paths] and
4373 * (2) call of __init annotated helper build_all_zonelists_init
4374 * [protected by SYSTEM_BOOTING].
4375 */
4376 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4377 {
4378 set_zonelist_order();
4379
4380 if (system_state == SYSTEM_BOOTING) {
4381 build_all_zonelists_init();
4382 } else {
4383 #ifdef CONFIG_MEMORY_HOTPLUG
4384 if (zone)
4385 setup_zone_pageset(zone);
4386 #endif
4387 /* we have to stop all cpus to guarantee there is no user
4388 of zonelist */
4389 stop_machine(__build_all_zonelists, pgdat, NULL);
4390 /* cpuset refresh routine should be here */
4391 }
4392 vm_total_pages = nr_free_pagecache_pages();
4393 /*
4394 * Disable grouping by mobility if the number of pages in the
4395 * system is too low to allow the mechanism to work. It would be
4396 * more accurate, but expensive to check per-zone. This check is
4397 * made on memory-hotadd so a system can start with mobility
4398 * disabled and enable it later
4399 */
4400 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4401 page_group_by_mobility_disabled = 1;
4402 else
4403 page_group_by_mobility_disabled = 0;
4404
4405 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4406 "Total pages: %ld\n",
4407 nr_online_nodes,
4408 zonelist_order_name[current_zonelist_order],
4409 page_group_by_mobility_disabled ? "off" : "on",
4410 vm_total_pages);
4411 #ifdef CONFIG_NUMA
4412 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4413 #endif
4414 }
4415
4416 /*
4417 * Helper functions to size the waitqueue hash table.
4418 * Essentially these want to choose hash table sizes sufficiently
4419 * large so that collisions trying to wait on pages are rare.
4420 * But in fact, the number of active page waitqueues on typical
4421 * systems is ridiculously low, less than 200. So this is even
4422 * conservative, even though it seems large.
4423 *
4424 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4425 * waitqueues, i.e. the size of the waitq table given the number of pages.
4426 */
4427 #define PAGES_PER_WAITQUEUE 256
4428
4429 #ifndef CONFIG_MEMORY_HOTPLUG
4430 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4431 {
4432 unsigned long size = 1;
4433
4434 pages /= PAGES_PER_WAITQUEUE;
4435
4436 while (size < pages)
4437 size <<= 1;
4438
4439 /*
4440 * Once we have dozens or even hundreds of threads sleeping
4441 * on IO we've got bigger problems than wait queue collision.
4442 * Limit the size of the wait table to a reasonable size.
4443 */
4444 size = min(size, 4096UL);
4445
4446 return max(size, 4UL);
4447 }
4448 #else
4449 /*
4450 * A zone's size might be changed by hot-add, so it is not possible to determine
4451 * a suitable size for its wait_table. So we use the maximum size now.
4452 *
4453 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4454 *
4455 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4456 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4457 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4458 *
4459 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4460 * or more by the traditional way. (See above). It equals:
4461 *
4462 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4463 * ia64(16K page size) : = ( 8G + 4M)byte.
4464 * powerpc (64K page size) : = (32G +16M)byte.
4465 */
4466 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4467 {
4468 return 4096UL;
4469 }
4470 #endif
4471
4472 /*
4473 * This is an integer logarithm so that shifts can be used later
4474 * to extract the more random high bits from the multiplicative
4475 * hash function before the remainder is taken.
4476 */
4477 static inline unsigned long wait_table_bits(unsigned long size)
4478 {
4479 return ffz(~size);
4480 }
4481
4482 /*
4483 * Check if a pageblock contains reserved pages
4484 */
4485 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4486 {
4487 unsigned long pfn;
4488
4489 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4490 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4491 return 1;
4492 }
4493 return 0;
4494 }
4495
4496 /*
4497 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4498 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4499 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4500 * higher will lead to a bigger reserve which will get freed as contiguous
4501 * blocks as reclaim kicks in
4502 */
4503 static void setup_zone_migrate_reserve(struct zone *zone)
4504 {
4505 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4506 struct page *page;
4507 unsigned long block_migratetype;
4508 int reserve;
4509 int old_reserve;
4510
4511 /*
4512 * Get the start pfn, end pfn and the number of blocks to reserve
4513 * We have to be careful to be aligned to pageblock_nr_pages to
4514 * make sure that we always check pfn_valid for the first page in
4515 * the block.
4516 */
4517 start_pfn = zone->zone_start_pfn;
4518 end_pfn = zone_end_pfn(zone);
4519 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4520 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4521 pageblock_order;
4522
4523 /*
4524 * Reserve blocks are generally in place to help high-order atomic
4525 * allocations that are short-lived. A min_free_kbytes value that
4526 * would result in more than 2 reserve blocks for atomic allocations
4527 * is assumed to be in place to help anti-fragmentation for the
4528 * future allocation of hugepages at runtime.
4529 */
4530 reserve = min(2, reserve);
4531 old_reserve = zone->nr_migrate_reserve_block;
4532
4533 /* When memory hot-add, we almost always need to do nothing */
4534 if (reserve == old_reserve)
4535 return;
4536 zone->nr_migrate_reserve_block = reserve;
4537
4538 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4539 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4540 return;
4541
4542 if (!pfn_valid(pfn))
4543 continue;
4544 page = pfn_to_page(pfn);
4545
4546 /* Watch out for overlapping nodes */
4547 if (page_to_nid(page) != zone_to_nid(zone))
4548 continue;
4549
4550 block_migratetype = get_pageblock_migratetype(page);
4551
4552 /* Only test what is necessary when the reserves are not met */
4553 if (reserve > 0) {
4554 /*
4555 * Blocks with reserved pages will never free, skip
4556 * them.
4557 */
4558 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4559 if (pageblock_is_reserved(pfn, block_end_pfn))
4560 continue;
4561
4562 /* If this block is reserved, account for it */
4563 if (block_migratetype == MIGRATE_RESERVE) {
4564 reserve--;
4565 continue;
4566 }
4567
4568 /* Suitable for reserving if this block is movable */
4569 if (block_migratetype == MIGRATE_MOVABLE) {
4570 set_pageblock_migratetype(page,
4571 MIGRATE_RESERVE);
4572 move_freepages_block(zone, page,
4573 MIGRATE_RESERVE);
4574 reserve--;
4575 continue;
4576 }
4577 } else if (!old_reserve) {
4578 /*
4579 * At boot time we don't need to scan the whole zone
4580 * for turning off MIGRATE_RESERVE.
4581 */
4582 break;
4583 }
4584
4585 /*
4586 * If the reserve is met and this is a previous reserved block,
4587 * take it back
4588 */
4589 if (block_migratetype == MIGRATE_RESERVE) {
4590 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4591 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4592 }
4593 }
4594 }
4595
4596 /*
4597 * Initially all pages are reserved - free ones are freed
4598 * up by free_all_bootmem() once the early boot process is
4599 * done. Non-atomic initialization, single-pass.
4600 */
4601 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4602 unsigned long start_pfn, enum memmap_context context)
4603 {
4604 pg_data_t *pgdat = NODE_DATA(nid);
4605 unsigned long end_pfn = start_pfn + size;
4606 unsigned long pfn;
4607 struct zone *z;
4608 unsigned long nr_initialised = 0;
4609
4610 if (highest_memmap_pfn < end_pfn - 1)
4611 highest_memmap_pfn = end_pfn - 1;
4612
4613 z = &pgdat->node_zones[zone];
4614 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4615 /*
4616 * There can be holes in boot-time mem_map[]s
4617 * handed to this function. They do not
4618 * exist on hotplugged memory.
4619 */
4620 if (context == MEMMAP_EARLY) {
4621 if (!early_pfn_valid(pfn))
4622 continue;
4623 if (!early_pfn_in_nid(pfn, nid))
4624 continue;
4625 if (!update_defer_init(pgdat, pfn, end_pfn,
4626 &nr_initialised))
4627 break;
4628 }
4629
4630 /*
4631 * Mark the block movable so that blocks are reserved for
4632 * movable at startup. This will force kernel allocations
4633 * to reserve their blocks rather than leaking throughout
4634 * the address space during boot when many long-lived
4635 * kernel allocations are made. Later some blocks near
4636 * the start are marked MIGRATE_RESERVE by
4637 * setup_zone_migrate_reserve()
4638 *
4639 * bitmap is created for zone's valid pfn range. but memmap
4640 * can be created for invalid pages (for alignment)
4641 * check here not to call set_pageblock_migratetype() against
4642 * pfn out of zone.
4643 */
4644 if (!(pfn & (pageblock_nr_pages - 1))) {
4645 struct page *page = pfn_to_page(pfn);
4646
4647 __init_single_page(page, pfn, zone, nid);
4648 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4649 } else {
4650 __init_single_pfn(pfn, zone, nid);
4651 }
4652 }
4653 }
4654
4655 static void __meminit zone_init_free_lists(struct zone *zone)
4656 {
4657 unsigned int order, t;
4658 for_each_migratetype_order(order, t) {
4659 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4660 zone->free_area[order].nr_free = 0;
4661 }
4662 }
4663
4664 #ifndef __HAVE_ARCH_MEMMAP_INIT
4665 #define memmap_init(size, nid, zone, start_pfn) \
4666 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4667 #endif
4668
4669 static int zone_batchsize(struct zone *zone)
4670 {
4671 #ifdef CONFIG_MMU
4672 int batch;
4673
4674 /*
4675 * The per-cpu-pages pools are set to around 1000th of the
4676 * size of the zone. But no more than 1/2 of a meg.
4677 *
4678 * OK, so we don't know how big the cache is. So guess.
4679 */
4680 batch = zone->managed_pages / 1024;
4681 if (batch * PAGE_SIZE > 512 * 1024)
4682 batch = (512 * 1024) / PAGE_SIZE;
4683 batch /= 4; /* We effectively *= 4 below */
4684 if (batch < 1)
4685 batch = 1;
4686
4687 /*
4688 * Clamp the batch to a 2^n - 1 value. Having a power
4689 * of 2 value was found to be more likely to have
4690 * suboptimal cache aliasing properties in some cases.
4691 *
4692 * For example if 2 tasks are alternately allocating
4693 * batches of pages, one task can end up with a lot
4694 * of pages of one half of the possible page colors
4695 * and the other with pages of the other colors.
4696 */
4697 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4698
4699 return batch;
4700
4701 #else
4702 /* The deferral and batching of frees should be suppressed under NOMMU
4703 * conditions.
4704 *
4705 * The problem is that NOMMU needs to be able to allocate large chunks
4706 * of contiguous memory as there's no hardware page translation to
4707 * assemble apparent contiguous memory from discontiguous pages.
4708 *
4709 * Queueing large contiguous runs of pages for batching, however,
4710 * causes the pages to actually be freed in smaller chunks. As there
4711 * can be a significant delay between the individual batches being
4712 * recycled, this leads to the once large chunks of space being
4713 * fragmented and becoming unavailable for high-order allocations.
4714 */
4715 return 0;
4716 #endif
4717 }
4718
4719 /*
4720 * pcp->high and pcp->batch values are related and dependent on one another:
4721 * ->batch must never be higher then ->high.
4722 * The following function updates them in a safe manner without read side
4723 * locking.
4724 *
4725 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4726 * those fields changing asynchronously (acording the the above rule).
4727 *
4728 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4729 * outside of boot time (or some other assurance that no concurrent updaters
4730 * exist).
4731 */
4732 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4733 unsigned long batch)
4734 {
4735 /* start with a fail safe value for batch */
4736 pcp->batch = 1;
4737 smp_wmb();
4738
4739 /* Update high, then batch, in order */
4740 pcp->high = high;
4741 smp_wmb();
4742
4743 pcp->batch = batch;
4744 }
4745
4746 /* a companion to pageset_set_high() */
4747 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4748 {
4749 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4750 }
4751
4752 static void pageset_init(struct per_cpu_pageset *p)
4753 {
4754 struct per_cpu_pages *pcp;
4755 int migratetype;
4756
4757 memset(p, 0, sizeof(*p));
4758
4759 pcp = &p->pcp;
4760 pcp->count = 0;
4761 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4762 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4763 }
4764
4765 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4766 {
4767 pageset_init(p);
4768 pageset_set_batch(p, batch);
4769 }
4770
4771 /*
4772 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4773 * to the value high for the pageset p.
4774 */
4775 static void pageset_set_high(struct per_cpu_pageset *p,
4776 unsigned long high)
4777 {
4778 unsigned long batch = max(1UL, high / 4);
4779 if ((high / 4) > (PAGE_SHIFT * 8))
4780 batch = PAGE_SHIFT * 8;
4781
4782 pageset_update(&p->pcp, high, batch);
4783 }
4784
4785 static void pageset_set_high_and_batch(struct zone *zone,
4786 struct per_cpu_pageset *pcp)
4787 {
4788 if (percpu_pagelist_fraction)
4789 pageset_set_high(pcp,
4790 (zone->managed_pages /
4791 percpu_pagelist_fraction));
4792 else
4793 pageset_set_batch(pcp, zone_batchsize(zone));
4794 }
4795
4796 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4797 {
4798 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4799
4800 pageset_init(pcp);
4801 pageset_set_high_and_batch(zone, pcp);
4802 }
4803
4804 static void __meminit setup_zone_pageset(struct zone *zone)
4805 {
4806 int cpu;
4807 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4808 for_each_possible_cpu(cpu)
4809 zone_pageset_init(zone, cpu);
4810 }
4811
4812 /*
4813 * Allocate per cpu pagesets and initialize them.
4814 * Before this call only boot pagesets were available.
4815 */
4816 void __init setup_per_cpu_pageset(void)
4817 {
4818 struct zone *zone;
4819
4820 for_each_populated_zone(zone)
4821 setup_zone_pageset(zone);
4822 }
4823
4824 static noinline __init_refok
4825 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4826 {
4827 int i;
4828 size_t alloc_size;
4829
4830 /*
4831 * The per-page waitqueue mechanism uses hashed waitqueues
4832 * per zone.
4833 */
4834 zone->wait_table_hash_nr_entries =
4835 wait_table_hash_nr_entries(zone_size_pages);
4836 zone->wait_table_bits =
4837 wait_table_bits(zone->wait_table_hash_nr_entries);
4838 alloc_size = zone->wait_table_hash_nr_entries
4839 * sizeof(wait_queue_head_t);
4840
4841 if (!slab_is_available()) {
4842 zone->wait_table = (wait_queue_head_t *)
4843 memblock_virt_alloc_node_nopanic(
4844 alloc_size, zone->zone_pgdat->node_id);
4845 } else {
4846 /*
4847 * This case means that a zone whose size was 0 gets new memory
4848 * via memory hot-add.
4849 * But it may be the case that a new node was hot-added. In
4850 * this case vmalloc() will not be able to use this new node's
4851 * memory - this wait_table must be initialized to use this new
4852 * node itself as well.
4853 * To use this new node's memory, further consideration will be
4854 * necessary.
4855 */
4856 zone->wait_table = vmalloc(alloc_size);
4857 }
4858 if (!zone->wait_table)
4859 return -ENOMEM;
4860
4861 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4862 init_waitqueue_head(zone->wait_table + i);
4863
4864 return 0;
4865 }
4866
4867 static __meminit void zone_pcp_init(struct zone *zone)
4868 {
4869 /*
4870 * per cpu subsystem is not up at this point. The following code
4871 * relies on the ability of the linker to provide the
4872 * offset of a (static) per cpu variable into the per cpu area.
4873 */
4874 zone->pageset = &boot_pageset;
4875
4876 if (populated_zone(zone))
4877 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4878 zone->name, zone->present_pages,
4879 zone_batchsize(zone));
4880 }
4881
4882 int __meminit init_currently_empty_zone(struct zone *zone,
4883 unsigned long zone_start_pfn,
4884 unsigned long size,
4885 enum memmap_context context)
4886 {
4887 struct pglist_data *pgdat = zone->zone_pgdat;
4888 int ret;
4889 ret = zone_wait_table_init(zone, size);
4890 if (ret)
4891 return ret;
4892 pgdat->nr_zones = zone_idx(zone) + 1;
4893
4894 zone->zone_start_pfn = zone_start_pfn;
4895
4896 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4897 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4898 pgdat->node_id,
4899 (unsigned long)zone_idx(zone),
4900 zone_start_pfn, (zone_start_pfn + size));
4901
4902 zone_init_free_lists(zone);
4903
4904 return 0;
4905 }
4906
4907 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4908 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4909
4910 /*
4911 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4912 */
4913 int __meminit __early_pfn_to_nid(unsigned long pfn,
4914 struct mminit_pfnnid_cache *state)
4915 {
4916 unsigned long start_pfn, end_pfn;
4917 int nid;
4918
4919 if (state->last_start <= pfn && pfn < state->last_end)
4920 return state->last_nid;
4921
4922 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4923 if (nid != -1) {
4924 state->last_start = start_pfn;
4925 state->last_end = end_pfn;
4926 state->last_nid = nid;
4927 }
4928
4929 return nid;
4930 }
4931 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4932
4933 /**
4934 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4935 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4936 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4937 *
4938 * If an architecture guarantees that all ranges registered contain no holes
4939 * and may be freed, this this function may be used instead of calling
4940 * memblock_free_early_nid() manually.
4941 */
4942 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4943 {
4944 unsigned long start_pfn, end_pfn;
4945 int i, this_nid;
4946
4947 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4948 start_pfn = min(start_pfn, max_low_pfn);
4949 end_pfn = min(end_pfn, max_low_pfn);
4950
4951 if (start_pfn < end_pfn)
4952 memblock_free_early_nid(PFN_PHYS(start_pfn),
4953 (end_pfn - start_pfn) << PAGE_SHIFT,
4954 this_nid);
4955 }
4956 }
4957
4958 /**
4959 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4960 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4961 *
4962 * If an architecture guarantees that all ranges registered contain no holes and may
4963 * be freed, this function may be used instead of calling memory_present() manually.
4964 */
4965 void __init sparse_memory_present_with_active_regions(int nid)
4966 {
4967 unsigned long start_pfn, end_pfn;
4968 int i, this_nid;
4969
4970 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4971 memory_present(this_nid, start_pfn, end_pfn);
4972 }
4973
4974 /**
4975 * get_pfn_range_for_nid - Return the start and end page frames for a node
4976 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4977 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4978 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4979 *
4980 * It returns the start and end page frame of a node based on information
4981 * provided by memblock_set_node(). If called for a node
4982 * with no available memory, a warning is printed and the start and end
4983 * PFNs will be 0.
4984 */
4985 void __meminit get_pfn_range_for_nid(unsigned int nid,
4986 unsigned long *start_pfn, unsigned long *end_pfn)
4987 {
4988 unsigned long this_start_pfn, this_end_pfn;
4989 int i;
4990
4991 *start_pfn = -1UL;
4992 *end_pfn = 0;
4993
4994 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4995 *start_pfn = min(*start_pfn, this_start_pfn);
4996 *end_pfn = max(*end_pfn, this_end_pfn);
4997 }
4998
4999 if (*start_pfn == -1UL)
5000 *start_pfn = 0;
5001 }
5002
5003 /*
5004 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5005 * assumption is made that zones within a node are ordered in monotonic
5006 * increasing memory addresses so that the "highest" populated zone is used
5007 */
5008 static void __init find_usable_zone_for_movable(void)
5009 {
5010 int zone_index;
5011 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5012 if (zone_index == ZONE_MOVABLE)
5013 continue;
5014
5015 if (arch_zone_highest_possible_pfn[zone_index] >
5016 arch_zone_lowest_possible_pfn[zone_index])
5017 break;
5018 }
5019
5020 VM_BUG_ON(zone_index == -1);
5021 movable_zone = zone_index;
5022 }
5023
5024 /*
5025 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5026 * because it is sized independent of architecture. Unlike the other zones,
5027 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5028 * in each node depending on the size of each node and how evenly kernelcore
5029 * is distributed. This helper function adjusts the zone ranges
5030 * provided by the architecture for a given node by using the end of the
5031 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5032 * zones within a node are in order of monotonic increases memory addresses
5033 */
5034 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5035 unsigned long zone_type,
5036 unsigned long node_start_pfn,
5037 unsigned long node_end_pfn,
5038 unsigned long *zone_start_pfn,
5039 unsigned long *zone_end_pfn)
5040 {
5041 /* Only adjust if ZONE_MOVABLE is on this node */
5042 if (zone_movable_pfn[nid]) {
5043 /* Size ZONE_MOVABLE */
5044 if (zone_type == ZONE_MOVABLE) {
5045 *zone_start_pfn = zone_movable_pfn[nid];
5046 *zone_end_pfn = min(node_end_pfn,
5047 arch_zone_highest_possible_pfn[movable_zone]);
5048
5049 /* Adjust for ZONE_MOVABLE starting within this range */
5050 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5051 *zone_end_pfn > zone_movable_pfn[nid]) {
5052 *zone_end_pfn = zone_movable_pfn[nid];
5053
5054 /* Check if this whole range is within ZONE_MOVABLE */
5055 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5056 *zone_start_pfn = *zone_end_pfn;
5057 }
5058 }
5059
5060 /*
5061 * Return the number of pages a zone spans in a node, including holes
5062 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5063 */
5064 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5065 unsigned long zone_type,
5066 unsigned long node_start_pfn,
5067 unsigned long node_end_pfn,
5068 unsigned long *ignored)
5069 {
5070 unsigned long zone_start_pfn, zone_end_pfn;
5071
5072 /* When hotadd a new node, the node should be empty */
5073 if (!node_start_pfn && !node_end_pfn)
5074 return 0;
5075
5076 /* Get the start and end of the zone */
5077 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5078 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5079 adjust_zone_range_for_zone_movable(nid, zone_type,
5080 node_start_pfn, node_end_pfn,
5081 &zone_start_pfn, &zone_end_pfn);
5082
5083 /* Check that this node has pages within the zone's required range */
5084 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5085 return 0;
5086
5087 /* Move the zone boundaries inside the node if necessary */
5088 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5089 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5090
5091 /* Return the spanned pages */
5092 return zone_end_pfn - zone_start_pfn;
5093 }
5094
5095 /*
5096 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5097 * then all holes in the requested range will be accounted for.
5098 */
5099 unsigned long __meminit __absent_pages_in_range(int nid,
5100 unsigned long range_start_pfn,
5101 unsigned long range_end_pfn)
5102 {
5103 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5104 unsigned long start_pfn, end_pfn;
5105 int i;
5106
5107 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5108 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5109 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5110 nr_absent -= end_pfn - start_pfn;
5111 }
5112 return nr_absent;
5113 }
5114
5115 /**
5116 * absent_pages_in_range - Return number of page frames in holes within a range
5117 * @start_pfn: The start PFN to start searching for holes
5118 * @end_pfn: The end PFN to stop searching for holes
5119 *
5120 * It returns the number of pages frames in memory holes within a range.
5121 */
5122 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5123 unsigned long end_pfn)
5124 {
5125 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5126 }
5127
5128 /* Return the number of page frames in holes in a zone on a node */
5129 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5130 unsigned long zone_type,
5131 unsigned long node_start_pfn,
5132 unsigned long node_end_pfn,
5133 unsigned long *ignored)
5134 {
5135 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5136 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5137 unsigned long zone_start_pfn, zone_end_pfn;
5138
5139 /* When hotadd a new node, the node should be empty */
5140 if (!node_start_pfn && !node_end_pfn)
5141 return 0;
5142
5143 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5144 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5145
5146 adjust_zone_range_for_zone_movable(nid, zone_type,
5147 node_start_pfn, node_end_pfn,
5148 &zone_start_pfn, &zone_end_pfn);
5149 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5150 }
5151
5152 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5153 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5154 unsigned long zone_type,
5155 unsigned long node_start_pfn,
5156 unsigned long node_end_pfn,
5157 unsigned long *zones_size)
5158 {
5159 return zones_size[zone_type];
5160 }
5161
5162 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5163 unsigned long zone_type,
5164 unsigned long node_start_pfn,
5165 unsigned long node_end_pfn,
5166 unsigned long *zholes_size)
5167 {
5168 if (!zholes_size)
5169 return 0;
5170
5171 return zholes_size[zone_type];
5172 }
5173
5174 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5175
5176 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5177 unsigned long node_start_pfn,
5178 unsigned long node_end_pfn,
5179 unsigned long *zones_size,
5180 unsigned long *zholes_size)
5181 {
5182 unsigned long realtotalpages = 0, totalpages = 0;
5183 enum zone_type i;
5184
5185 for (i = 0; i < MAX_NR_ZONES; i++) {
5186 struct zone *zone = pgdat->node_zones + i;
5187 unsigned long size, real_size;
5188
5189 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5190 node_start_pfn,
5191 node_end_pfn,
5192 zones_size);
5193 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5194 node_start_pfn, node_end_pfn,
5195 zholes_size);
5196 zone->spanned_pages = size;
5197 zone->present_pages = real_size;
5198
5199 totalpages += size;
5200 realtotalpages += real_size;
5201 }
5202
5203 pgdat->node_spanned_pages = totalpages;
5204 pgdat->node_present_pages = realtotalpages;
5205 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5206 realtotalpages);
5207 }
5208
5209 #ifndef CONFIG_SPARSEMEM
5210 /*
5211 * Calculate the size of the zone->blockflags rounded to an unsigned long
5212 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5213 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5214 * round what is now in bits to nearest long in bits, then return it in
5215 * bytes.
5216 */
5217 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5218 {
5219 unsigned long usemapsize;
5220
5221 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5222 usemapsize = roundup(zonesize, pageblock_nr_pages);
5223 usemapsize = usemapsize >> pageblock_order;
5224 usemapsize *= NR_PAGEBLOCK_BITS;
5225 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5226
5227 return usemapsize / 8;
5228 }
5229
5230 static void __init setup_usemap(struct pglist_data *pgdat,
5231 struct zone *zone,
5232 unsigned long zone_start_pfn,
5233 unsigned long zonesize)
5234 {
5235 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5236 zone->pageblock_flags = NULL;
5237 if (usemapsize)
5238 zone->pageblock_flags =
5239 memblock_virt_alloc_node_nopanic(usemapsize,
5240 pgdat->node_id);
5241 }
5242 #else
5243 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5244 unsigned long zone_start_pfn, unsigned long zonesize) {}
5245 #endif /* CONFIG_SPARSEMEM */
5246
5247 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5248
5249 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5250 void __paginginit set_pageblock_order(void)
5251 {
5252 unsigned int order;
5253
5254 /* Check that pageblock_nr_pages has not already been setup */
5255 if (pageblock_order)
5256 return;
5257
5258 if (HPAGE_SHIFT > PAGE_SHIFT)
5259 order = HUGETLB_PAGE_ORDER;
5260 else
5261 order = MAX_ORDER - 1;
5262
5263 /*
5264 * Assume the largest contiguous order of interest is a huge page.
5265 * This value may be variable depending on boot parameters on IA64 and
5266 * powerpc.
5267 */
5268 pageblock_order = order;
5269 }
5270 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5271
5272 /*
5273 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5274 * is unused as pageblock_order is set at compile-time. See
5275 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5276 * the kernel config
5277 */
5278 void __paginginit set_pageblock_order(void)
5279 {
5280 }
5281
5282 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5283
5284 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5285 unsigned long present_pages)
5286 {
5287 unsigned long pages = spanned_pages;
5288
5289 /*
5290 * Provide a more accurate estimation if there are holes within
5291 * the zone and SPARSEMEM is in use. If there are holes within the
5292 * zone, each populated memory region may cost us one or two extra
5293 * memmap pages due to alignment because memmap pages for each
5294 * populated regions may not naturally algined on page boundary.
5295 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5296 */
5297 if (spanned_pages > present_pages + (present_pages >> 4) &&
5298 IS_ENABLED(CONFIG_SPARSEMEM))
5299 pages = present_pages;
5300
5301 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5302 }
5303
5304 /*
5305 * Set up the zone data structures:
5306 * - mark all pages reserved
5307 * - mark all memory queues empty
5308 * - clear the memory bitmaps
5309 *
5310 * NOTE: pgdat should get zeroed by caller.
5311 */
5312 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5313 {
5314 enum zone_type j;
5315 int nid = pgdat->node_id;
5316 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5317 int ret;
5318
5319 pgdat_resize_init(pgdat);
5320 #ifdef CONFIG_NUMA_BALANCING
5321 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5322 pgdat->numabalancing_migrate_nr_pages = 0;
5323 pgdat->numabalancing_migrate_next_window = jiffies;
5324 #endif
5325 init_waitqueue_head(&pgdat->kswapd_wait);
5326 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5327 pgdat_page_ext_init(pgdat);
5328
5329 for (j = 0; j < MAX_NR_ZONES; j++) {
5330 struct zone *zone = pgdat->node_zones + j;
5331 unsigned long size, realsize, freesize, memmap_pages;
5332
5333 size = zone->spanned_pages;
5334 realsize = freesize = zone->present_pages;
5335
5336 /*
5337 * Adjust freesize so that it accounts for how much memory
5338 * is used by this zone for memmap. This affects the watermark
5339 * and per-cpu initialisations
5340 */
5341 memmap_pages = calc_memmap_size(size, realsize);
5342 if (!is_highmem_idx(j)) {
5343 if (freesize >= memmap_pages) {
5344 freesize -= memmap_pages;
5345 if (memmap_pages)
5346 printk(KERN_DEBUG
5347 " %s zone: %lu pages used for memmap\n",
5348 zone_names[j], memmap_pages);
5349 } else
5350 printk(KERN_WARNING
5351 " %s zone: %lu pages exceeds freesize %lu\n",
5352 zone_names[j], memmap_pages, freesize);
5353 }
5354
5355 /* Account for reserved pages */
5356 if (j == 0 && freesize > dma_reserve) {
5357 freesize -= dma_reserve;
5358 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5359 zone_names[0], dma_reserve);
5360 }
5361
5362 if (!is_highmem_idx(j))
5363 nr_kernel_pages += freesize;
5364 /* Charge for highmem memmap if there are enough kernel pages */
5365 else if (nr_kernel_pages > memmap_pages * 2)
5366 nr_kernel_pages -= memmap_pages;
5367 nr_all_pages += freesize;
5368
5369 /*
5370 * Set an approximate value for lowmem here, it will be adjusted
5371 * when the bootmem allocator frees pages into the buddy system.
5372 * And all highmem pages will be managed by the buddy system.
5373 */
5374 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5375 #ifdef CONFIG_NUMA
5376 zone->node = nid;
5377 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5378 / 100;
5379 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5380 #endif
5381 zone->name = zone_names[j];
5382 spin_lock_init(&zone->lock);
5383 spin_lock_init(&zone->lru_lock);
5384 zone_seqlock_init(zone);
5385 zone->zone_pgdat = pgdat;
5386 zone_pcp_init(zone);
5387
5388 /* For bootup, initialized properly in watermark setup */
5389 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5390
5391 lruvec_init(&zone->lruvec);
5392 if (!size)
5393 continue;
5394
5395 set_pageblock_order();
5396 setup_usemap(pgdat, zone, zone_start_pfn, size);
5397 ret = init_currently_empty_zone(zone, zone_start_pfn,
5398 size, MEMMAP_EARLY);
5399 BUG_ON(ret);
5400 memmap_init(size, nid, j, zone_start_pfn);
5401 zone_start_pfn += size;
5402 }
5403 }
5404
5405 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5406 {
5407 /* Skip empty nodes */
5408 if (!pgdat->node_spanned_pages)
5409 return;
5410
5411 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5412 /* ia64 gets its own node_mem_map, before this, without bootmem */
5413 if (!pgdat->node_mem_map) {
5414 unsigned long size, start, end;
5415 struct page *map;
5416
5417 /*
5418 * The zone's endpoints aren't required to be MAX_ORDER
5419 * aligned but the node_mem_map endpoints must be in order
5420 * for the buddy allocator to function correctly.
5421 */
5422 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5423 end = pgdat_end_pfn(pgdat);
5424 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5425 size = (end - start) * sizeof(struct page);
5426 map = alloc_remap(pgdat->node_id, size);
5427 if (!map)
5428 map = memblock_virt_alloc_node_nopanic(size,
5429 pgdat->node_id);
5430 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5431 }
5432 #ifndef CONFIG_NEED_MULTIPLE_NODES
5433 /*
5434 * With no DISCONTIG, the global mem_map is just set as node 0's
5435 */
5436 if (pgdat == NODE_DATA(0)) {
5437 mem_map = NODE_DATA(0)->node_mem_map;
5438 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5439 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5440 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5441 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5442 }
5443 #endif
5444 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5445 }
5446
5447 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5448 unsigned long node_start_pfn, unsigned long *zholes_size)
5449 {
5450 pg_data_t *pgdat = NODE_DATA(nid);
5451 unsigned long start_pfn = 0;
5452 unsigned long end_pfn = 0;
5453
5454 /* pg_data_t should be reset to zero when it's allocated */
5455 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5456
5457 reset_deferred_meminit(pgdat);
5458 pgdat->node_id = nid;
5459 pgdat->node_start_pfn = node_start_pfn;
5460 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5461 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5462 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5463 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5464 #endif
5465 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5466 zones_size, zholes_size);
5467
5468 alloc_node_mem_map(pgdat);
5469 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5470 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5471 nid, (unsigned long)pgdat,
5472 (unsigned long)pgdat->node_mem_map);
5473 #endif
5474
5475 free_area_init_core(pgdat);
5476 }
5477
5478 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5479
5480 #if MAX_NUMNODES > 1
5481 /*
5482 * Figure out the number of possible node ids.
5483 */
5484 void __init setup_nr_node_ids(void)
5485 {
5486 unsigned int highest;
5487
5488 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5489 nr_node_ids = highest + 1;
5490 }
5491 #endif
5492
5493 /**
5494 * node_map_pfn_alignment - determine the maximum internode alignment
5495 *
5496 * This function should be called after node map is populated and sorted.
5497 * It calculates the maximum power of two alignment which can distinguish
5498 * all the nodes.
5499 *
5500 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5501 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5502 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5503 * shifted, 1GiB is enough and this function will indicate so.
5504 *
5505 * This is used to test whether pfn -> nid mapping of the chosen memory
5506 * model has fine enough granularity to avoid incorrect mapping for the
5507 * populated node map.
5508 *
5509 * Returns the determined alignment in pfn's. 0 if there is no alignment
5510 * requirement (single node).
5511 */
5512 unsigned long __init node_map_pfn_alignment(void)
5513 {
5514 unsigned long accl_mask = 0, last_end = 0;
5515 unsigned long start, end, mask;
5516 int last_nid = -1;
5517 int i, nid;
5518
5519 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5520 if (!start || last_nid < 0 || last_nid == nid) {
5521 last_nid = nid;
5522 last_end = end;
5523 continue;
5524 }
5525
5526 /*
5527 * Start with a mask granular enough to pin-point to the
5528 * start pfn and tick off bits one-by-one until it becomes
5529 * too coarse to separate the current node from the last.
5530 */
5531 mask = ~((1 << __ffs(start)) - 1);
5532 while (mask && last_end <= (start & (mask << 1)))
5533 mask <<= 1;
5534
5535 /* accumulate all internode masks */
5536 accl_mask |= mask;
5537 }
5538
5539 /* convert mask to number of pages */
5540 return ~accl_mask + 1;
5541 }
5542
5543 /* Find the lowest pfn for a node */
5544 static unsigned long __init find_min_pfn_for_node(int nid)
5545 {
5546 unsigned long min_pfn = ULONG_MAX;
5547 unsigned long start_pfn;
5548 int i;
5549
5550 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5551 min_pfn = min(min_pfn, start_pfn);
5552
5553 if (min_pfn == ULONG_MAX) {
5554 printk(KERN_WARNING
5555 "Could not find start_pfn for node %d\n", nid);
5556 return 0;
5557 }
5558
5559 return min_pfn;
5560 }
5561
5562 /**
5563 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5564 *
5565 * It returns the minimum PFN based on information provided via
5566 * memblock_set_node().
5567 */
5568 unsigned long __init find_min_pfn_with_active_regions(void)
5569 {
5570 return find_min_pfn_for_node(MAX_NUMNODES);
5571 }
5572
5573 /*
5574 * early_calculate_totalpages()
5575 * Sum pages in active regions for movable zone.
5576 * Populate N_MEMORY for calculating usable_nodes.
5577 */
5578 static unsigned long __init early_calculate_totalpages(void)
5579 {
5580 unsigned long totalpages = 0;
5581 unsigned long start_pfn, end_pfn;
5582 int i, nid;
5583
5584 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5585 unsigned long pages = end_pfn - start_pfn;
5586
5587 totalpages += pages;
5588 if (pages)
5589 node_set_state(nid, N_MEMORY);
5590 }
5591 return totalpages;
5592 }
5593
5594 /*
5595 * Find the PFN the Movable zone begins in each node. Kernel memory
5596 * is spread evenly between nodes as long as the nodes have enough
5597 * memory. When they don't, some nodes will have more kernelcore than
5598 * others
5599 */
5600 static void __init find_zone_movable_pfns_for_nodes(void)
5601 {
5602 int i, nid;
5603 unsigned long usable_startpfn;
5604 unsigned long kernelcore_node, kernelcore_remaining;
5605 /* save the state before borrow the nodemask */
5606 nodemask_t saved_node_state = node_states[N_MEMORY];
5607 unsigned long totalpages = early_calculate_totalpages();
5608 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5609 struct memblock_region *r;
5610
5611 /* Need to find movable_zone earlier when movable_node is specified. */
5612 find_usable_zone_for_movable();
5613
5614 /*
5615 * If movable_node is specified, ignore kernelcore and movablecore
5616 * options.
5617 */
5618 if (movable_node_is_enabled()) {
5619 for_each_memblock(memory, r) {
5620 if (!memblock_is_hotpluggable(r))
5621 continue;
5622
5623 nid = r->nid;
5624
5625 usable_startpfn = PFN_DOWN(r->base);
5626 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5627 min(usable_startpfn, zone_movable_pfn[nid]) :
5628 usable_startpfn;
5629 }
5630
5631 goto out2;
5632 }
5633
5634 /*
5635 * If movablecore=nn[KMG] was specified, calculate what size of
5636 * kernelcore that corresponds so that memory usable for
5637 * any allocation type is evenly spread. If both kernelcore
5638 * and movablecore are specified, then the value of kernelcore
5639 * will be used for required_kernelcore if it's greater than
5640 * what movablecore would have allowed.
5641 */
5642 if (required_movablecore) {
5643 unsigned long corepages;
5644
5645 /*
5646 * Round-up so that ZONE_MOVABLE is at least as large as what
5647 * was requested by the user
5648 */
5649 required_movablecore =
5650 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5651 corepages = totalpages - required_movablecore;
5652
5653 required_kernelcore = max(required_kernelcore, corepages);
5654 }
5655
5656 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5657 if (!required_kernelcore)
5658 goto out;
5659
5660 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5661 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5662
5663 restart:
5664 /* Spread kernelcore memory as evenly as possible throughout nodes */
5665 kernelcore_node = required_kernelcore / usable_nodes;
5666 for_each_node_state(nid, N_MEMORY) {
5667 unsigned long start_pfn, end_pfn;
5668
5669 /*
5670 * Recalculate kernelcore_node if the division per node
5671 * now exceeds what is necessary to satisfy the requested
5672 * amount of memory for the kernel
5673 */
5674 if (required_kernelcore < kernelcore_node)
5675 kernelcore_node = required_kernelcore / usable_nodes;
5676
5677 /*
5678 * As the map is walked, we track how much memory is usable
5679 * by the kernel using kernelcore_remaining. When it is
5680 * 0, the rest of the node is usable by ZONE_MOVABLE
5681 */
5682 kernelcore_remaining = kernelcore_node;
5683
5684 /* Go through each range of PFNs within this node */
5685 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5686 unsigned long size_pages;
5687
5688 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5689 if (start_pfn >= end_pfn)
5690 continue;
5691
5692 /* Account for what is only usable for kernelcore */
5693 if (start_pfn < usable_startpfn) {
5694 unsigned long kernel_pages;
5695 kernel_pages = min(end_pfn, usable_startpfn)
5696 - start_pfn;
5697
5698 kernelcore_remaining -= min(kernel_pages,
5699 kernelcore_remaining);
5700 required_kernelcore -= min(kernel_pages,
5701 required_kernelcore);
5702
5703 /* Continue if range is now fully accounted */
5704 if (end_pfn <= usable_startpfn) {
5705
5706 /*
5707 * Push zone_movable_pfn to the end so
5708 * that if we have to rebalance
5709 * kernelcore across nodes, we will
5710 * not double account here
5711 */
5712 zone_movable_pfn[nid] = end_pfn;
5713 continue;
5714 }
5715 start_pfn = usable_startpfn;
5716 }
5717
5718 /*
5719 * The usable PFN range for ZONE_MOVABLE is from
5720 * start_pfn->end_pfn. Calculate size_pages as the
5721 * number of pages used as kernelcore
5722 */
5723 size_pages = end_pfn - start_pfn;
5724 if (size_pages > kernelcore_remaining)
5725 size_pages = kernelcore_remaining;
5726 zone_movable_pfn[nid] = start_pfn + size_pages;
5727
5728 /*
5729 * Some kernelcore has been met, update counts and
5730 * break if the kernelcore for this node has been
5731 * satisfied
5732 */
5733 required_kernelcore -= min(required_kernelcore,
5734 size_pages);
5735 kernelcore_remaining -= size_pages;
5736 if (!kernelcore_remaining)
5737 break;
5738 }
5739 }
5740
5741 /*
5742 * If there is still required_kernelcore, we do another pass with one
5743 * less node in the count. This will push zone_movable_pfn[nid] further
5744 * along on the nodes that still have memory until kernelcore is
5745 * satisfied
5746 */
5747 usable_nodes--;
5748 if (usable_nodes && required_kernelcore > usable_nodes)
5749 goto restart;
5750
5751 out2:
5752 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5753 for (nid = 0; nid < MAX_NUMNODES; nid++)
5754 zone_movable_pfn[nid] =
5755 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5756
5757 out:
5758 /* restore the node_state */
5759 node_states[N_MEMORY] = saved_node_state;
5760 }
5761
5762 /* Any regular or high memory on that node ? */
5763 static void check_for_memory(pg_data_t *pgdat, int nid)
5764 {
5765 enum zone_type zone_type;
5766
5767 if (N_MEMORY == N_NORMAL_MEMORY)
5768 return;
5769
5770 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5771 struct zone *zone = &pgdat->node_zones[zone_type];
5772 if (populated_zone(zone)) {
5773 node_set_state(nid, N_HIGH_MEMORY);
5774 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5775 zone_type <= ZONE_NORMAL)
5776 node_set_state(nid, N_NORMAL_MEMORY);
5777 break;
5778 }
5779 }
5780 }
5781
5782 /**
5783 * free_area_init_nodes - Initialise all pg_data_t and zone data
5784 * @max_zone_pfn: an array of max PFNs for each zone
5785 *
5786 * This will call free_area_init_node() for each active node in the system.
5787 * Using the page ranges provided by memblock_set_node(), the size of each
5788 * zone in each node and their holes is calculated. If the maximum PFN
5789 * between two adjacent zones match, it is assumed that the zone is empty.
5790 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5791 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5792 * starts where the previous one ended. For example, ZONE_DMA32 starts
5793 * at arch_max_dma_pfn.
5794 */
5795 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5796 {
5797 unsigned long start_pfn, end_pfn;
5798 int i, nid;
5799
5800 /* Record where the zone boundaries are */
5801 memset(arch_zone_lowest_possible_pfn, 0,
5802 sizeof(arch_zone_lowest_possible_pfn));
5803 memset(arch_zone_highest_possible_pfn, 0,
5804 sizeof(arch_zone_highest_possible_pfn));
5805 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5806 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5807 for (i = 1; i < MAX_NR_ZONES; i++) {
5808 if (i == ZONE_MOVABLE)
5809 continue;
5810 arch_zone_lowest_possible_pfn[i] =
5811 arch_zone_highest_possible_pfn[i-1];
5812 arch_zone_highest_possible_pfn[i] =
5813 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5814 }
5815 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5816 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5817
5818 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5819 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5820 find_zone_movable_pfns_for_nodes();
5821
5822 /* Print out the zone ranges */
5823 pr_info("Zone ranges:\n");
5824 for (i = 0; i < MAX_NR_ZONES; i++) {
5825 if (i == ZONE_MOVABLE)
5826 continue;
5827 pr_info(" %-8s ", zone_names[i]);
5828 if (arch_zone_lowest_possible_pfn[i] ==
5829 arch_zone_highest_possible_pfn[i])
5830 pr_cont("empty\n");
5831 else
5832 pr_cont("[mem %#018Lx-%#018Lx]\n",
5833 (u64)arch_zone_lowest_possible_pfn[i]
5834 << PAGE_SHIFT,
5835 ((u64)arch_zone_highest_possible_pfn[i]
5836 << PAGE_SHIFT) - 1);
5837 }
5838
5839 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5840 pr_info("Movable zone start for each node\n");
5841 for (i = 0; i < MAX_NUMNODES; i++) {
5842 if (zone_movable_pfn[i])
5843 pr_info(" Node %d: %#018Lx\n", i,
5844 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5845 }
5846
5847 /* Print out the early node map */
5848 pr_info("Early memory node ranges\n");
5849 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5850 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5851 (u64)start_pfn << PAGE_SHIFT,
5852 ((u64)end_pfn << PAGE_SHIFT) - 1);
5853
5854 /* Initialise every node */
5855 mminit_verify_pageflags_layout();
5856 setup_nr_node_ids();
5857 for_each_online_node(nid) {
5858 pg_data_t *pgdat = NODE_DATA(nid);
5859 free_area_init_node(nid, NULL,
5860 find_min_pfn_for_node(nid), NULL);
5861
5862 /* Any memory on that node */
5863 if (pgdat->node_present_pages)
5864 node_set_state(nid, N_MEMORY);
5865 check_for_memory(pgdat, nid);
5866 }
5867 }
5868
5869 static int __init cmdline_parse_core(char *p, unsigned long *core)
5870 {
5871 unsigned long long coremem;
5872 if (!p)
5873 return -EINVAL;
5874
5875 coremem = memparse(p, &p);
5876 *core = coremem >> PAGE_SHIFT;
5877
5878 /* Paranoid check that UL is enough for the coremem value */
5879 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5880
5881 return 0;
5882 }
5883
5884 /*
5885 * kernelcore=size sets the amount of memory for use for allocations that
5886 * cannot be reclaimed or migrated.
5887 */
5888 static int __init cmdline_parse_kernelcore(char *p)
5889 {
5890 return cmdline_parse_core(p, &required_kernelcore);
5891 }
5892
5893 /*
5894 * movablecore=size sets the amount of memory for use for allocations that
5895 * can be reclaimed or migrated.
5896 */
5897 static int __init cmdline_parse_movablecore(char *p)
5898 {
5899 return cmdline_parse_core(p, &required_movablecore);
5900 }
5901
5902 early_param("kernelcore", cmdline_parse_kernelcore);
5903 early_param("movablecore", cmdline_parse_movablecore);
5904
5905 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5906
5907 void adjust_managed_page_count(struct page *page, long count)
5908 {
5909 spin_lock(&managed_page_count_lock);
5910 page_zone(page)->managed_pages += count;
5911 totalram_pages += count;
5912 #ifdef CONFIG_HIGHMEM
5913 if (PageHighMem(page))
5914 totalhigh_pages += count;
5915 #endif
5916 spin_unlock(&managed_page_count_lock);
5917 }
5918 EXPORT_SYMBOL(adjust_managed_page_count);
5919
5920 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5921 {
5922 void *pos;
5923 unsigned long pages = 0;
5924
5925 start = (void *)PAGE_ALIGN((unsigned long)start);
5926 end = (void *)((unsigned long)end & PAGE_MASK);
5927 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5928 if ((unsigned int)poison <= 0xFF)
5929 memset(pos, poison, PAGE_SIZE);
5930 free_reserved_page(virt_to_page(pos));
5931 }
5932
5933 if (pages && s)
5934 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5935 s, pages << (PAGE_SHIFT - 10), start, end);
5936
5937 return pages;
5938 }
5939 EXPORT_SYMBOL(free_reserved_area);
5940
5941 #ifdef CONFIG_HIGHMEM
5942 void free_highmem_page(struct page *page)
5943 {
5944 __free_reserved_page(page);
5945 totalram_pages++;
5946 page_zone(page)->managed_pages++;
5947 totalhigh_pages++;
5948 }
5949 #endif
5950
5951
5952 void __init mem_init_print_info(const char *str)
5953 {
5954 unsigned long physpages, codesize, datasize, rosize, bss_size;
5955 unsigned long init_code_size, init_data_size;
5956
5957 physpages = get_num_physpages();
5958 codesize = _etext - _stext;
5959 datasize = _edata - _sdata;
5960 rosize = __end_rodata - __start_rodata;
5961 bss_size = __bss_stop - __bss_start;
5962 init_data_size = __init_end - __init_begin;
5963 init_code_size = _einittext - _sinittext;
5964
5965 /*
5966 * Detect special cases and adjust section sizes accordingly:
5967 * 1) .init.* may be embedded into .data sections
5968 * 2) .init.text.* may be out of [__init_begin, __init_end],
5969 * please refer to arch/tile/kernel/vmlinux.lds.S.
5970 * 3) .rodata.* may be embedded into .text or .data sections.
5971 */
5972 #define adj_init_size(start, end, size, pos, adj) \
5973 do { \
5974 if (start <= pos && pos < end && size > adj) \
5975 size -= adj; \
5976 } while (0)
5977
5978 adj_init_size(__init_begin, __init_end, init_data_size,
5979 _sinittext, init_code_size);
5980 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5981 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5982 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5983 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5984
5985 #undef adj_init_size
5986
5987 pr_info("Memory: %luK/%luK available "
5988 "(%luK kernel code, %luK rwdata, %luK rodata, "
5989 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5990 #ifdef CONFIG_HIGHMEM
5991 ", %luK highmem"
5992 #endif
5993 "%s%s)\n",
5994 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5995 codesize >> 10, datasize >> 10, rosize >> 10,
5996 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5997 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5998 totalcma_pages << (PAGE_SHIFT-10),
5999 #ifdef CONFIG_HIGHMEM
6000 totalhigh_pages << (PAGE_SHIFT-10),
6001 #endif
6002 str ? ", " : "", str ? str : "");
6003 }
6004
6005 /**
6006 * set_dma_reserve - set the specified number of pages reserved in the first zone
6007 * @new_dma_reserve: The number of pages to mark reserved
6008 *
6009 * The per-cpu batchsize and zone watermarks are determined by present_pages.
6010 * In the DMA zone, a significant percentage may be consumed by kernel image
6011 * and other unfreeable allocations which can skew the watermarks badly. This
6012 * function may optionally be used to account for unfreeable pages in the
6013 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6014 * smaller per-cpu batchsize.
6015 */
6016 void __init set_dma_reserve(unsigned long new_dma_reserve)
6017 {
6018 dma_reserve = new_dma_reserve;
6019 }
6020
6021 void __init free_area_init(unsigned long *zones_size)
6022 {
6023 free_area_init_node(0, zones_size,
6024 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6025 }
6026
6027 static int page_alloc_cpu_notify(struct notifier_block *self,
6028 unsigned long action, void *hcpu)
6029 {
6030 int cpu = (unsigned long)hcpu;
6031
6032 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6033 lru_add_drain_cpu(cpu);
6034 drain_pages(cpu);
6035
6036 /*
6037 * Spill the event counters of the dead processor
6038 * into the current processors event counters.
6039 * This artificially elevates the count of the current
6040 * processor.
6041 */
6042 vm_events_fold_cpu(cpu);
6043
6044 /*
6045 * Zero the differential counters of the dead processor
6046 * so that the vm statistics are consistent.
6047 *
6048 * This is only okay since the processor is dead and cannot
6049 * race with what we are doing.
6050 */
6051 cpu_vm_stats_fold(cpu);
6052 }
6053 return NOTIFY_OK;
6054 }
6055
6056 void __init page_alloc_init(void)
6057 {
6058 hotcpu_notifier(page_alloc_cpu_notify, 0);
6059 }
6060
6061 /*
6062 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6063 * or min_free_kbytes changes.
6064 */
6065 static void calculate_totalreserve_pages(void)
6066 {
6067 struct pglist_data *pgdat;
6068 unsigned long reserve_pages = 0;
6069 enum zone_type i, j;
6070
6071 for_each_online_pgdat(pgdat) {
6072 for (i = 0; i < MAX_NR_ZONES; i++) {
6073 struct zone *zone = pgdat->node_zones + i;
6074 long max = 0;
6075
6076 /* Find valid and maximum lowmem_reserve in the zone */
6077 for (j = i; j < MAX_NR_ZONES; j++) {
6078 if (zone->lowmem_reserve[j] > max)
6079 max = zone->lowmem_reserve[j];
6080 }
6081
6082 /* we treat the high watermark as reserved pages. */
6083 max += high_wmark_pages(zone);
6084
6085 if (max > zone->managed_pages)
6086 max = zone->managed_pages;
6087 reserve_pages += max;
6088 /*
6089 * Lowmem reserves are not available to
6090 * GFP_HIGHUSER page cache allocations and
6091 * kswapd tries to balance zones to their high
6092 * watermark. As a result, neither should be
6093 * regarded as dirtyable memory, to prevent a
6094 * situation where reclaim has to clean pages
6095 * in order to balance the zones.
6096 */
6097 zone->dirty_balance_reserve = max;
6098 }
6099 }
6100 dirty_balance_reserve = reserve_pages;
6101 totalreserve_pages = reserve_pages;
6102 }
6103
6104 /*
6105 * setup_per_zone_lowmem_reserve - called whenever
6106 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6107 * has a correct pages reserved value, so an adequate number of
6108 * pages are left in the zone after a successful __alloc_pages().
6109 */
6110 static void setup_per_zone_lowmem_reserve(void)
6111 {
6112 struct pglist_data *pgdat;
6113 enum zone_type j, idx;
6114
6115 for_each_online_pgdat(pgdat) {
6116 for (j = 0; j < MAX_NR_ZONES; j++) {
6117 struct zone *zone = pgdat->node_zones + j;
6118 unsigned long managed_pages = zone->managed_pages;
6119
6120 zone->lowmem_reserve[j] = 0;
6121
6122 idx = j;
6123 while (idx) {
6124 struct zone *lower_zone;
6125
6126 idx--;
6127
6128 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6129 sysctl_lowmem_reserve_ratio[idx] = 1;
6130
6131 lower_zone = pgdat->node_zones + idx;
6132 lower_zone->lowmem_reserve[j] = managed_pages /
6133 sysctl_lowmem_reserve_ratio[idx];
6134 managed_pages += lower_zone->managed_pages;
6135 }
6136 }
6137 }
6138
6139 /* update totalreserve_pages */
6140 calculate_totalreserve_pages();
6141 }
6142
6143 static void __setup_per_zone_wmarks(void)
6144 {
6145 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6146 unsigned long lowmem_pages = 0;
6147 struct zone *zone;
6148 unsigned long flags;
6149
6150 /* Calculate total number of !ZONE_HIGHMEM pages */
6151 for_each_zone(zone) {
6152 if (!is_highmem(zone))
6153 lowmem_pages += zone->managed_pages;
6154 }
6155
6156 for_each_zone(zone) {
6157 u64 tmp;
6158
6159 spin_lock_irqsave(&zone->lock, flags);
6160 tmp = (u64)pages_min * zone->managed_pages;
6161 do_div(tmp, lowmem_pages);
6162 if (is_highmem(zone)) {
6163 /*
6164 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6165 * need highmem pages, so cap pages_min to a small
6166 * value here.
6167 *
6168 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6169 * deltas control asynch page reclaim, and so should
6170 * not be capped for highmem.
6171 */
6172 unsigned long min_pages;
6173
6174 min_pages = zone->managed_pages / 1024;
6175 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6176 zone->watermark[WMARK_MIN] = min_pages;
6177 } else {
6178 /*
6179 * If it's a lowmem zone, reserve a number of pages
6180 * proportionate to the zone's size.
6181 */
6182 zone->watermark[WMARK_MIN] = tmp;
6183 }
6184
6185 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6186 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6187
6188 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6189 high_wmark_pages(zone) - low_wmark_pages(zone) -
6190 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6191
6192 setup_zone_migrate_reserve(zone);
6193 spin_unlock_irqrestore(&zone->lock, flags);
6194 }
6195
6196 /* update totalreserve_pages */
6197 calculate_totalreserve_pages();
6198 }
6199
6200 /**
6201 * setup_per_zone_wmarks - called when min_free_kbytes changes
6202 * or when memory is hot-{added|removed}
6203 *
6204 * Ensures that the watermark[min,low,high] values for each zone are set
6205 * correctly with respect to min_free_kbytes.
6206 */
6207 void setup_per_zone_wmarks(void)
6208 {
6209 mutex_lock(&zonelists_mutex);
6210 __setup_per_zone_wmarks();
6211 mutex_unlock(&zonelists_mutex);
6212 }
6213
6214 /*
6215 * The inactive anon list should be small enough that the VM never has to
6216 * do too much work, but large enough that each inactive page has a chance
6217 * to be referenced again before it is swapped out.
6218 *
6219 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6220 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6221 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6222 * the anonymous pages are kept on the inactive list.
6223 *
6224 * total target max
6225 * memory ratio inactive anon
6226 * -------------------------------------
6227 * 10MB 1 5MB
6228 * 100MB 1 50MB
6229 * 1GB 3 250MB
6230 * 10GB 10 0.9GB
6231 * 100GB 31 3GB
6232 * 1TB 101 10GB
6233 * 10TB 320 32GB
6234 */
6235 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6236 {
6237 unsigned int gb, ratio;
6238
6239 /* Zone size in gigabytes */
6240 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6241 if (gb)
6242 ratio = int_sqrt(10 * gb);
6243 else
6244 ratio = 1;
6245
6246 zone->inactive_ratio = ratio;
6247 }
6248
6249 static void __meminit setup_per_zone_inactive_ratio(void)
6250 {
6251 struct zone *zone;
6252
6253 for_each_zone(zone)
6254 calculate_zone_inactive_ratio(zone);
6255 }
6256
6257 /*
6258 * Initialise min_free_kbytes.
6259 *
6260 * For small machines we want it small (128k min). For large machines
6261 * we want it large (64MB max). But it is not linear, because network
6262 * bandwidth does not increase linearly with machine size. We use
6263 *
6264 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6265 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6266 *
6267 * which yields
6268 *
6269 * 16MB: 512k
6270 * 32MB: 724k
6271 * 64MB: 1024k
6272 * 128MB: 1448k
6273 * 256MB: 2048k
6274 * 512MB: 2896k
6275 * 1024MB: 4096k
6276 * 2048MB: 5792k
6277 * 4096MB: 8192k
6278 * 8192MB: 11584k
6279 * 16384MB: 16384k
6280 */
6281 int __meminit init_per_zone_wmark_min(void)
6282 {
6283 unsigned long lowmem_kbytes;
6284 int new_min_free_kbytes;
6285
6286 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6287 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6288
6289 if (new_min_free_kbytes > user_min_free_kbytes) {
6290 min_free_kbytes = new_min_free_kbytes;
6291 if (min_free_kbytes < 128)
6292 min_free_kbytes = 128;
6293 if (min_free_kbytes > 65536)
6294 min_free_kbytes = 65536;
6295 } else {
6296 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6297 new_min_free_kbytes, user_min_free_kbytes);
6298 }
6299 setup_per_zone_wmarks();
6300 refresh_zone_stat_thresholds();
6301 setup_per_zone_lowmem_reserve();
6302 setup_per_zone_inactive_ratio();
6303 return 0;
6304 }
6305 module_init(init_per_zone_wmark_min)
6306
6307 /*
6308 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6309 * that we can call two helper functions whenever min_free_kbytes
6310 * changes.
6311 */
6312 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6313 void __user *buffer, size_t *length, loff_t *ppos)
6314 {
6315 int rc;
6316
6317 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6318 if (rc)
6319 return rc;
6320
6321 if (write) {
6322 user_min_free_kbytes = min_free_kbytes;
6323 setup_per_zone_wmarks();
6324 }
6325 return 0;
6326 }
6327
6328 #ifdef CONFIG_NUMA
6329 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6330 void __user *buffer, size_t *length, loff_t *ppos)
6331 {
6332 struct zone *zone;
6333 int rc;
6334
6335 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6336 if (rc)
6337 return rc;
6338
6339 for_each_zone(zone)
6340 zone->min_unmapped_pages = (zone->managed_pages *
6341 sysctl_min_unmapped_ratio) / 100;
6342 return 0;
6343 }
6344
6345 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6346 void __user *buffer, size_t *length, loff_t *ppos)
6347 {
6348 struct zone *zone;
6349 int rc;
6350
6351 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6352 if (rc)
6353 return rc;
6354
6355 for_each_zone(zone)
6356 zone->min_slab_pages = (zone->managed_pages *
6357 sysctl_min_slab_ratio) / 100;
6358 return 0;
6359 }
6360 #endif
6361
6362 /*
6363 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6364 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6365 * whenever sysctl_lowmem_reserve_ratio changes.
6366 *
6367 * The reserve ratio obviously has absolutely no relation with the
6368 * minimum watermarks. The lowmem reserve ratio can only make sense
6369 * if in function of the boot time zone sizes.
6370 */
6371 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6372 void __user *buffer, size_t *length, loff_t *ppos)
6373 {
6374 proc_dointvec_minmax(table, write, buffer, length, ppos);
6375 setup_per_zone_lowmem_reserve();
6376 return 0;
6377 }
6378
6379 /*
6380 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6381 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6382 * pagelist can have before it gets flushed back to buddy allocator.
6383 */
6384 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6385 void __user *buffer, size_t *length, loff_t *ppos)
6386 {
6387 struct zone *zone;
6388 int old_percpu_pagelist_fraction;
6389 int ret;
6390
6391 mutex_lock(&pcp_batch_high_lock);
6392 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6393
6394 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6395 if (!write || ret < 0)
6396 goto out;
6397
6398 /* Sanity checking to avoid pcp imbalance */
6399 if (percpu_pagelist_fraction &&
6400 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6401 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6402 ret = -EINVAL;
6403 goto out;
6404 }
6405
6406 /* No change? */
6407 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6408 goto out;
6409
6410 for_each_populated_zone(zone) {
6411 unsigned int cpu;
6412
6413 for_each_possible_cpu(cpu)
6414 pageset_set_high_and_batch(zone,
6415 per_cpu_ptr(zone->pageset, cpu));
6416 }
6417 out:
6418 mutex_unlock(&pcp_batch_high_lock);
6419 return ret;
6420 }
6421
6422 #ifdef CONFIG_NUMA
6423 int hashdist = HASHDIST_DEFAULT;
6424
6425 static int __init set_hashdist(char *str)
6426 {
6427 if (!str)
6428 return 0;
6429 hashdist = simple_strtoul(str, &str, 0);
6430 return 1;
6431 }
6432 __setup("hashdist=", set_hashdist);
6433 #endif
6434
6435 /*
6436 * allocate a large system hash table from bootmem
6437 * - it is assumed that the hash table must contain an exact power-of-2
6438 * quantity of entries
6439 * - limit is the number of hash buckets, not the total allocation size
6440 */
6441 void *__init alloc_large_system_hash(const char *tablename,
6442 unsigned long bucketsize,
6443 unsigned long numentries,
6444 int scale,
6445 int flags,
6446 unsigned int *_hash_shift,
6447 unsigned int *_hash_mask,
6448 unsigned long low_limit,
6449 unsigned long high_limit)
6450 {
6451 unsigned long long max = high_limit;
6452 unsigned long log2qty, size;
6453 void *table = NULL;
6454
6455 /* allow the kernel cmdline to have a say */
6456 if (!numentries) {
6457 /* round applicable memory size up to nearest megabyte */
6458 numentries = nr_kernel_pages;
6459
6460 /* It isn't necessary when PAGE_SIZE >= 1MB */
6461 if (PAGE_SHIFT < 20)
6462 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6463
6464 /* limit to 1 bucket per 2^scale bytes of low memory */
6465 if (scale > PAGE_SHIFT)
6466 numentries >>= (scale - PAGE_SHIFT);
6467 else
6468 numentries <<= (PAGE_SHIFT - scale);
6469
6470 /* Make sure we've got at least a 0-order allocation.. */
6471 if (unlikely(flags & HASH_SMALL)) {
6472 /* Makes no sense without HASH_EARLY */
6473 WARN_ON(!(flags & HASH_EARLY));
6474 if (!(numentries >> *_hash_shift)) {
6475 numentries = 1UL << *_hash_shift;
6476 BUG_ON(!numentries);
6477 }
6478 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6479 numentries = PAGE_SIZE / bucketsize;
6480 }
6481 numentries = roundup_pow_of_two(numentries);
6482
6483 /* limit allocation size to 1/16 total memory by default */
6484 if (max == 0) {
6485 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6486 do_div(max, bucketsize);
6487 }
6488 max = min(max, 0x80000000ULL);
6489
6490 if (numentries < low_limit)
6491 numentries = low_limit;
6492 if (numentries > max)
6493 numentries = max;
6494
6495 log2qty = ilog2(numentries);
6496
6497 do {
6498 size = bucketsize << log2qty;
6499 if (flags & HASH_EARLY)
6500 table = memblock_virt_alloc_nopanic(size, 0);
6501 else if (hashdist)
6502 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6503 else {
6504 /*
6505 * If bucketsize is not a power-of-two, we may free
6506 * some pages at the end of hash table which
6507 * alloc_pages_exact() automatically does
6508 */
6509 if (get_order(size) < MAX_ORDER) {
6510 table = alloc_pages_exact(size, GFP_ATOMIC);
6511 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6512 }
6513 }
6514 } while (!table && size > PAGE_SIZE && --log2qty);
6515
6516 if (!table)
6517 panic("Failed to allocate %s hash table\n", tablename);
6518
6519 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6520 tablename,
6521 (1UL << log2qty),
6522 ilog2(size) - PAGE_SHIFT,
6523 size);
6524
6525 if (_hash_shift)
6526 *_hash_shift = log2qty;
6527 if (_hash_mask)
6528 *_hash_mask = (1 << log2qty) - 1;
6529
6530 return table;
6531 }
6532
6533 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6534 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6535 unsigned long pfn)
6536 {
6537 #ifdef CONFIG_SPARSEMEM
6538 return __pfn_to_section(pfn)->pageblock_flags;
6539 #else
6540 return zone->pageblock_flags;
6541 #endif /* CONFIG_SPARSEMEM */
6542 }
6543
6544 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6545 {
6546 #ifdef CONFIG_SPARSEMEM
6547 pfn &= (PAGES_PER_SECTION-1);
6548 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6549 #else
6550 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6551 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6552 #endif /* CONFIG_SPARSEMEM */
6553 }
6554
6555 /**
6556 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6557 * @page: The page within the block of interest
6558 * @pfn: The target page frame number
6559 * @end_bitidx: The last bit of interest to retrieve
6560 * @mask: mask of bits that the caller is interested in
6561 *
6562 * Return: pageblock_bits flags
6563 */
6564 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6565 unsigned long end_bitidx,
6566 unsigned long mask)
6567 {
6568 struct zone *zone;
6569 unsigned long *bitmap;
6570 unsigned long bitidx, word_bitidx;
6571 unsigned long word;
6572
6573 zone = page_zone(page);
6574 bitmap = get_pageblock_bitmap(zone, pfn);
6575 bitidx = pfn_to_bitidx(zone, pfn);
6576 word_bitidx = bitidx / BITS_PER_LONG;
6577 bitidx &= (BITS_PER_LONG-1);
6578
6579 word = bitmap[word_bitidx];
6580 bitidx += end_bitidx;
6581 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6582 }
6583
6584 /**
6585 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6586 * @page: The page within the block of interest
6587 * @flags: The flags to set
6588 * @pfn: The target page frame number
6589 * @end_bitidx: The last bit of interest
6590 * @mask: mask of bits that the caller is interested in
6591 */
6592 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6593 unsigned long pfn,
6594 unsigned long end_bitidx,
6595 unsigned long mask)
6596 {
6597 struct zone *zone;
6598 unsigned long *bitmap;
6599 unsigned long bitidx, word_bitidx;
6600 unsigned long old_word, word;
6601
6602 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6603
6604 zone = page_zone(page);
6605 bitmap = get_pageblock_bitmap(zone, pfn);
6606 bitidx = pfn_to_bitidx(zone, pfn);
6607 word_bitidx = bitidx / BITS_PER_LONG;
6608 bitidx &= (BITS_PER_LONG-1);
6609
6610 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6611
6612 bitidx += end_bitidx;
6613 mask <<= (BITS_PER_LONG - bitidx - 1);
6614 flags <<= (BITS_PER_LONG - bitidx - 1);
6615
6616 word = READ_ONCE(bitmap[word_bitidx]);
6617 for (;;) {
6618 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6619 if (word == old_word)
6620 break;
6621 word = old_word;
6622 }
6623 }
6624
6625 /*
6626 * This function checks whether pageblock includes unmovable pages or not.
6627 * If @count is not zero, it is okay to include less @count unmovable pages
6628 *
6629 * PageLRU check without isolation or lru_lock could race so that
6630 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6631 * expect this function should be exact.
6632 */
6633 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6634 bool skip_hwpoisoned_pages)
6635 {
6636 unsigned long pfn, iter, found;
6637 int mt;
6638
6639 /*
6640 * For avoiding noise data, lru_add_drain_all() should be called
6641 * If ZONE_MOVABLE, the zone never contains unmovable pages
6642 */
6643 if (zone_idx(zone) == ZONE_MOVABLE)
6644 return false;
6645 mt = get_pageblock_migratetype(page);
6646 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6647 return false;
6648
6649 pfn = page_to_pfn(page);
6650 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6651 unsigned long check = pfn + iter;
6652
6653 if (!pfn_valid_within(check))
6654 continue;
6655
6656 page = pfn_to_page(check);
6657
6658 /*
6659 * Hugepages are not in LRU lists, but they're movable.
6660 * We need not scan over tail pages bacause we don't
6661 * handle each tail page individually in migration.
6662 */
6663 if (PageHuge(page)) {
6664 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6665 continue;
6666 }
6667
6668 /*
6669 * We can't use page_count without pin a page
6670 * because another CPU can free compound page.
6671 * This check already skips compound tails of THP
6672 * because their page->_count is zero at all time.
6673 */
6674 if (!atomic_read(&page->_count)) {
6675 if (PageBuddy(page))
6676 iter += (1 << page_order(page)) - 1;
6677 continue;
6678 }
6679
6680 /*
6681 * The HWPoisoned page may be not in buddy system, and
6682 * page_count() is not 0.
6683 */
6684 if (skip_hwpoisoned_pages && PageHWPoison(page))
6685 continue;
6686
6687 if (!PageLRU(page))
6688 found++;
6689 /*
6690 * If there are RECLAIMABLE pages, we need to check
6691 * it. But now, memory offline itself doesn't call
6692 * shrink_node_slabs() and it still to be fixed.
6693 */
6694 /*
6695 * If the page is not RAM, page_count()should be 0.
6696 * we don't need more check. This is an _used_ not-movable page.
6697 *
6698 * The problematic thing here is PG_reserved pages. PG_reserved
6699 * is set to both of a memory hole page and a _used_ kernel
6700 * page at boot.
6701 */
6702 if (found > count)
6703 return true;
6704 }
6705 return false;
6706 }
6707
6708 bool is_pageblock_removable_nolock(struct page *page)
6709 {
6710 struct zone *zone;
6711 unsigned long pfn;
6712
6713 /*
6714 * We have to be careful here because we are iterating over memory
6715 * sections which are not zone aware so we might end up outside of
6716 * the zone but still within the section.
6717 * We have to take care about the node as well. If the node is offline
6718 * its NODE_DATA will be NULL - see page_zone.
6719 */
6720 if (!node_online(page_to_nid(page)))
6721 return false;
6722
6723 zone = page_zone(page);
6724 pfn = page_to_pfn(page);
6725 if (!zone_spans_pfn(zone, pfn))
6726 return false;
6727
6728 return !has_unmovable_pages(zone, page, 0, true);
6729 }
6730
6731 #ifdef CONFIG_CMA
6732
6733 static unsigned long pfn_max_align_down(unsigned long pfn)
6734 {
6735 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6736 pageblock_nr_pages) - 1);
6737 }
6738
6739 static unsigned long pfn_max_align_up(unsigned long pfn)
6740 {
6741 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6742 pageblock_nr_pages));
6743 }
6744
6745 /* [start, end) must belong to a single zone. */
6746 static int __alloc_contig_migrate_range(struct compact_control *cc,
6747 unsigned long start, unsigned long end)
6748 {
6749 /* This function is based on compact_zone() from compaction.c. */
6750 unsigned long nr_reclaimed;
6751 unsigned long pfn = start;
6752 unsigned int tries = 0;
6753 int ret = 0;
6754
6755 migrate_prep();
6756
6757 while (pfn < end || !list_empty(&cc->migratepages)) {
6758 if (fatal_signal_pending(current)) {
6759 ret = -EINTR;
6760 break;
6761 }
6762
6763 if (list_empty(&cc->migratepages)) {
6764 cc->nr_migratepages = 0;
6765 pfn = isolate_migratepages_range(cc, pfn, end);
6766 if (!pfn) {
6767 ret = -EINTR;
6768 break;
6769 }
6770 tries = 0;
6771 } else if (++tries == 5) {
6772 ret = ret < 0 ? ret : -EBUSY;
6773 break;
6774 }
6775
6776 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6777 &cc->migratepages);
6778 cc->nr_migratepages -= nr_reclaimed;
6779
6780 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6781 NULL, 0, cc->mode, MR_CMA);
6782 }
6783 if (ret < 0) {
6784 putback_movable_pages(&cc->migratepages);
6785 return ret;
6786 }
6787 return 0;
6788 }
6789
6790 /**
6791 * alloc_contig_range() -- tries to allocate given range of pages
6792 * @start: start PFN to allocate
6793 * @end: one-past-the-last PFN to allocate
6794 * @migratetype: migratetype of the underlaying pageblocks (either
6795 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6796 * in range must have the same migratetype and it must
6797 * be either of the two.
6798 *
6799 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6800 * aligned, however it's the caller's responsibility to guarantee that
6801 * we are the only thread that changes migrate type of pageblocks the
6802 * pages fall in.
6803 *
6804 * The PFN range must belong to a single zone.
6805 *
6806 * Returns zero on success or negative error code. On success all
6807 * pages which PFN is in [start, end) are allocated for the caller and
6808 * need to be freed with free_contig_range().
6809 */
6810 int alloc_contig_range(unsigned long start, unsigned long end,
6811 unsigned migratetype)
6812 {
6813 unsigned long outer_start, outer_end;
6814 int ret = 0, order;
6815
6816 struct compact_control cc = {
6817 .nr_migratepages = 0,
6818 .order = -1,
6819 .zone = page_zone(pfn_to_page(start)),
6820 .mode = MIGRATE_SYNC,
6821 .ignore_skip_hint = true,
6822 };
6823 INIT_LIST_HEAD(&cc.migratepages);
6824
6825 /*
6826 * What we do here is we mark all pageblocks in range as
6827 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6828 * have different sizes, and due to the way page allocator
6829 * work, we align the range to biggest of the two pages so
6830 * that page allocator won't try to merge buddies from
6831 * different pageblocks and change MIGRATE_ISOLATE to some
6832 * other migration type.
6833 *
6834 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6835 * migrate the pages from an unaligned range (ie. pages that
6836 * we are interested in). This will put all the pages in
6837 * range back to page allocator as MIGRATE_ISOLATE.
6838 *
6839 * When this is done, we take the pages in range from page
6840 * allocator removing them from the buddy system. This way
6841 * page allocator will never consider using them.
6842 *
6843 * This lets us mark the pageblocks back as
6844 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6845 * aligned range but not in the unaligned, original range are
6846 * put back to page allocator so that buddy can use them.
6847 */
6848
6849 ret = start_isolate_page_range(pfn_max_align_down(start),
6850 pfn_max_align_up(end), migratetype,
6851 false);
6852 if (ret)
6853 return ret;
6854
6855 ret = __alloc_contig_migrate_range(&cc, start, end);
6856 if (ret)
6857 goto done;
6858
6859 /*
6860 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6861 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6862 * more, all pages in [start, end) are free in page allocator.
6863 * What we are going to do is to allocate all pages from
6864 * [start, end) (that is remove them from page allocator).
6865 *
6866 * The only problem is that pages at the beginning and at the
6867 * end of interesting range may be not aligned with pages that
6868 * page allocator holds, ie. they can be part of higher order
6869 * pages. Because of this, we reserve the bigger range and
6870 * once this is done free the pages we are not interested in.
6871 *
6872 * We don't have to hold zone->lock here because the pages are
6873 * isolated thus they won't get removed from buddy.
6874 */
6875
6876 lru_add_drain_all();
6877 drain_all_pages(cc.zone);
6878
6879 order = 0;
6880 outer_start = start;
6881 while (!PageBuddy(pfn_to_page(outer_start))) {
6882 if (++order >= MAX_ORDER) {
6883 ret = -EBUSY;
6884 goto done;
6885 }
6886 outer_start &= ~0UL << order;
6887 }
6888
6889 /* Make sure the range is really isolated. */
6890 if (test_pages_isolated(outer_start, end, false)) {
6891 pr_info("%s: [%lx, %lx) PFNs busy\n",
6892 __func__, outer_start, end);
6893 ret = -EBUSY;
6894 goto done;
6895 }
6896
6897 /* Grab isolated pages from freelists. */
6898 outer_end = isolate_freepages_range(&cc, outer_start, end);
6899 if (!outer_end) {
6900 ret = -EBUSY;
6901 goto done;
6902 }
6903
6904 /* Free head and tail (if any) */
6905 if (start != outer_start)
6906 free_contig_range(outer_start, start - outer_start);
6907 if (end != outer_end)
6908 free_contig_range(end, outer_end - end);
6909
6910 done:
6911 undo_isolate_page_range(pfn_max_align_down(start),
6912 pfn_max_align_up(end), migratetype);
6913 return ret;
6914 }
6915
6916 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6917 {
6918 unsigned int count = 0;
6919
6920 for (; nr_pages--; pfn++) {
6921 struct page *page = pfn_to_page(pfn);
6922
6923 count += page_count(page) != 1;
6924 __free_page(page);
6925 }
6926 WARN(count != 0, "%d pages are still in use!\n", count);
6927 }
6928 #endif
6929
6930 #ifdef CONFIG_MEMORY_HOTPLUG
6931 /*
6932 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6933 * page high values need to be recalulated.
6934 */
6935 void __meminit zone_pcp_update(struct zone *zone)
6936 {
6937 unsigned cpu;
6938 mutex_lock(&pcp_batch_high_lock);
6939 for_each_possible_cpu(cpu)
6940 pageset_set_high_and_batch(zone,
6941 per_cpu_ptr(zone->pageset, cpu));
6942 mutex_unlock(&pcp_batch_high_lock);
6943 }
6944 #endif
6945
6946 void zone_pcp_reset(struct zone *zone)
6947 {
6948 unsigned long flags;
6949 int cpu;
6950 struct per_cpu_pageset *pset;
6951
6952 /* avoid races with drain_pages() */
6953 local_irq_save(flags);
6954 if (zone->pageset != &boot_pageset) {
6955 for_each_online_cpu(cpu) {
6956 pset = per_cpu_ptr(zone->pageset, cpu);
6957 drain_zonestat(zone, pset);
6958 }
6959 free_percpu(zone->pageset);
6960 zone->pageset = &boot_pageset;
6961 }
6962 local_irq_restore(flags);
6963 }
6964
6965 #ifdef CONFIG_MEMORY_HOTREMOVE
6966 /*
6967 * All pages in the range must be isolated before calling this.
6968 */
6969 void
6970 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6971 {
6972 struct page *page;
6973 struct zone *zone;
6974 unsigned int order, i;
6975 unsigned long pfn;
6976 unsigned long flags;
6977 /* find the first valid pfn */
6978 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6979 if (pfn_valid(pfn))
6980 break;
6981 if (pfn == end_pfn)
6982 return;
6983 zone = page_zone(pfn_to_page(pfn));
6984 spin_lock_irqsave(&zone->lock, flags);
6985 pfn = start_pfn;
6986 while (pfn < end_pfn) {
6987 if (!pfn_valid(pfn)) {
6988 pfn++;
6989 continue;
6990 }
6991 page = pfn_to_page(pfn);
6992 /*
6993 * The HWPoisoned page may be not in buddy system, and
6994 * page_count() is not 0.
6995 */
6996 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6997 pfn++;
6998 SetPageReserved(page);
6999 continue;
7000 }
7001
7002 BUG_ON(page_count(page));
7003 BUG_ON(!PageBuddy(page));
7004 order = page_order(page);
7005 #ifdef CONFIG_DEBUG_VM
7006 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7007 pfn, 1 << order, end_pfn);
7008 #endif
7009 list_del(&page->lru);
7010 rmv_page_order(page);
7011 zone->free_area[order].nr_free--;
7012 for (i = 0; i < (1 << order); i++)
7013 SetPageReserved((page+i));
7014 pfn += (1 << order);
7015 }
7016 spin_unlock_irqrestore(&zone->lock, flags);
7017 }
7018 #endif
7019
7020 #ifdef CONFIG_MEMORY_FAILURE
7021 bool is_free_buddy_page(struct page *page)
7022 {
7023 struct zone *zone = page_zone(page);
7024 unsigned long pfn = page_to_pfn(page);
7025 unsigned long flags;
7026 unsigned int order;
7027
7028 spin_lock_irqsave(&zone->lock, flags);
7029 for (order = 0; order < MAX_ORDER; order++) {
7030 struct page *page_head = page - (pfn & ((1 << order) - 1));
7031
7032 if (PageBuddy(page_head) && page_order(page_head) >= order)
7033 break;
7034 }
7035 spin_unlock_irqrestore(&zone->lock, flags);
7036
7037 return order < MAX_ORDER;
7038 }
7039 #endif
This page took 0.221593 seconds and 6 git commands to generate.