mm, page_alloc: move __GFP_HARDWALL modifications out of the fastpath
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355
356 void set_pageblock_migratetype(struct page *page, int migratetype)
357 {
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
360 migratetype = MIGRATE_UNMOVABLE;
361
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364 }
365
366 #ifdef CONFIG_DEBUG_VM
367 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
368 {
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
372 unsigned long sp, start_pfn;
373
374 do {
375 seq = zone_span_seqbegin(zone);
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
378 if (!zone_spans_pfn(zone, pfn))
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
382 if (ret)
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
386
387 return ret;
388 }
389
390 static int page_is_consistent(struct zone *zone, struct page *page)
391 {
392 if (!pfn_valid_within(page_to_pfn(page)))
393 return 0;
394 if (zone != page_zone(page))
395 return 0;
396
397 return 1;
398 }
399 /*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402 static int bad_range(struct zone *zone, struct page *page)
403 {
404 if (page_outside_zone_boundaries(zone, page))
405 return 1;
406 if (!page_is_consistent(zone, page))
407 return 1;
408
409 return 0;
410 }
411 #else
412 static inline int bad_range(struct zone *zone, struct page *page)
413 {
414 return 0;
415 }
416 #endif
417
418 static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
420 {
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
427 page_mapcount_reset(page); /* remove PageBuddy */
428 return;
429 }
430
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
441 pr_alert(
442 "BUG: Bad page state: %lu messages suppressed\n",
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
452 current->comm, page_to_pfn(page));
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
458 dump_page_owner(page);
459
460 print_modules();
461 dump_stack();
462 out:
463 /* Leave bad fields for debug, except PageBuddy could make trouble */
464 page_mapcount_reset(page); /* remove PageBuddy */
465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
466 }
467
468 /*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
472 *
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
475 *
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
478 *
479 * The first tail page's ->compound_order holds the order of allocation.
480 * This usage means that zero-order pages may not be compound.
481 */
482
483 void free_compound_page(struct page *page)
484 {
485 __free_pages_ok(page, compound_order(page));
486 }
487
488 void prep_compound_page(struct page *page, unsigned int order)
489 {
490 int i;
491 int nr_pages = 1 << order;
492
493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
498 set_page_count(p, 0);
499 p->mapping = TAIL_MAPPING;
500 set_compound_head(p, page);
501 }
502 atomic_set(compound_mapcount_ptr(page), -1);
503 }
504
505 #ifdef CONFIG_DEBUG_PAGEALLOC
506 unsigned int _debug_guardpage_minorder;
507 bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
509 EXPORT_SYMBOL(_debug_pagealloc_enabled);
510 bool _debug_guardpage_enabled __read_mostly;
511
512 static int __init early_debug_pagealloc(char *buf)
513 {
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
523 return 0;
524 }
525 early_param("debug_pagealloc", early_debug_pagealloc);
526
527 static bool need_debug_guardpage(void)
528 {
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
533 return true;
534 }
535
536 static void init_debug_guardpage(void)
537 {
538 if (!debug_pagealloc_enabled())
539 return;
540
541 _debug_guardpage_enabled = true;
542 }
543
544 struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547 };
548
549 static int __init debug_guardpage_minorder_setup(char *buf)
550 {
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
554 pr_err("Bad debug_guardpage_minorder value\n");
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
559 return 0;
560 }
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
563 static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
565 {
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
578 }
579
580 static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
582 {
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
594 }
595 #else
596 struct page_ext_operations debug_guardpage_ops = { NULL, };
597 static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599 static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
601 #endif
602
603 static inline void set_page_order(struct page *page, unsigned int order)
604 {
605 set_page_private(page, order);
606 __SetPageBuddy(page);
607 }
608
609 static inline void rmv_page_order(struct page *page)
610 {
611 __ClearPageBuddy(page);
612 set_page_private(page, 0);
613 }
614
615 /*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
618 * (a) the buddy is not in a hole &&
619 * (b) the buddy is in the buddy system &&
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
622 *
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
627 *
628 * For recording page's order, we use page_private(page).
629 */
630 static inline int page_is_buddy(struct page *page, struct page *buddy,
631 unsigned int order)
632 {
633 if (!pfn_valid_within(page_to_pfn(buddy)))
634 return 0;
635
636 if (page_is_guard(buddy) && page_order(buddy) == order) {
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
642 return 1;
643 }
644
645 if (PageBuddy(buddy) && page_order(buddy) == order) {
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
656 return 1;
657 }
658 return 0;
659 }
660
661 /*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
677 * So when we are allocating or freeing one, we can derive the state of the
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
680 * If a block is freed, and its buddy is also free, then this
681 * triggers coalescing into a block of larger size.
682 *
683 * -- nyc
684 */
685
686 static inline void __free_one_page(struct page *page,
687 unsigned long pfn,
688 struct zone *zone, unsigned int order,
689 int migratetype)
690 {
691 unsigned long page_idx;
692 unsigned long combined_idx;
693 unsigned long uninitialized_var(buddy_idx);
694 struct page *buddy;
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
698
699 VM_BUG_ON(!zone_is_initialized(zone));
700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
701
702 VM_BUG_ON(migratetype == -1);
703 if (likely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705
706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
707
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
710
711 continue_merging:
712 while (order < max_order - 1) {
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
715 if (!page_is_buddy(page, buddy, order))
716 goto done_merging;
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
722 clear_page_guard(zone, buddy, order, migratetype);
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
728 combined_idx = buddy_idx & page_idx;
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758 done_merging:
759 set_page_order(page, order);
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
770 struct page *higher_page, *higher_buddy;
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
774 higher_buddy = higher_page + (buddy_idx - combined_idx);
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783 out:
784 zone->free_area[order].nr_free++;
785 }
786
787 static inline int free_pages_check(struct page *page)
788 {
789 const char *bad_reason = NULL;
790 unsigned long bad_flags = 0;
791
792 if (unlikely(atomic_read(&page->_mapcount) != -1))
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
796 if (unlikely(page_ref_count(page) != 0))
797 bad_reason = "nonzero _refcount";
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
802 #ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805 #endif
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
808 return 1;
809 }
810 page_cpupid_reset_last(page);
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
814 }
815
816 /*
817 * Frees a number of pages from the PCP lists
818 * Assumes all pages on list are in same zone, and of same order.
819 * count is the number of pages to free.
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
827 static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
829 {
830 int migratetype = 0;
831 int batch_free = 0;
832 int to_free = count;
833 unsigned long nr_scanned;
834
835 spin_lock(&zone->lock);
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
839
840 while (to_free) {
841 struct page *page;
842 struct list_head *list;
843
844 /*
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
850 */
851 do {
852 batch_free++;
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
857
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
862 do {
863 int mt; /* migratetype of the to-be-freed page */
864
865 page = list_last_entry(list, struct page, lru);
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
868
869 mt = get_pcppage_migratetype(page);
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
873 if (unlikely(has_isolate_pageblock(zone)))
874 mt = get_pageblock_migratetype(page);
875
876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
877 trace_mm_page_pcpu_drain(page, 0, mt);
878 } while (--to_free && --batch_free && !list_empty(list));
879 }
880 spin_unlock(&zone->lock);
881 }
882
883 static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
885 unsigned int order,
886 int migratetype)
887 {
888 unsigned long nr_scanned;
889 spin_lock(&zone->lock);
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
893
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
897 }
898 __free_one_page(page, pfn, zone, order, migratetype);
899 spin_unlock(&zone->lock);
900 }
901
902 static int free_tail_pages_check(struct page *head_page, struct page *page)
903 {
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
916 switch (page - head_page) {
917 case 1:
918 /* the first tail page: ->mapping is compound_mapcount() */
919 if (unlikely(compound_mapcount(page))) {
920 bad_page(page, "nonzero compound_mapcount", 0);
921 goto out;
922 }
923 break;
924 case 2:
925 /*
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
928 */
929 break;
930 default:
931 if (page->mapping != TAIL_MAPPING) {
932 bad_page(page, "corrupted mapping in tail page", 0);
933 goto out;
934 }
935 break;
936 }
937 if (unlikely(!PageTail(page))) {
938 bad_page(page, "PageTail not set", 0);
939 goto out;
940 }
941 if (unlikely(compound_head(page) != head_page)) {
942 bad_page(page, "compound_head not consistent", 0);
943 goto out;
944 }
945 ret = 0;
946 out:
947 page->mapping = NULL;
948 clear_compound_head(page);
949 return ret;
950 }
951
952 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954 {
955 set_page_links(page, zone, nid, pfn);
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
959
960 INIT_LIST_HEAD(&page->lru);
961 #ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965 #endif
966 }
967
968 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970 {
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972 }
973
974 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975 static void init_reserved_page(unsigned long pfn)
976 {
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993 }
994 #else
995 static inline void init_reserved_page(unsigned long pfn)
996 {
997 }
998 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
1000 /*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
1006 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1007 {
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
1020 SetPageReserved(page);
1021 }
1022 }
1023 }
1024
1025 static bool free_pages_prepare(struct page *page, unsigned int order)
1026 {
1027 int bad = 0;
1028
1029 VM_BUG_ON_PAGE(PageTail(page), page);
1030
1031 trace_mm_page_free(page, order);
1032 kmemcheck_free_shadow(page, order);
1033 kasan_free_pages(page, order);
1034
1035 /*
1036 * Check tail pages before head page information is cleared to
1037 * avoid checking PageCompound for order-0 pages.
1038 */
1039 if (unlikely(order)) {
1040 bool compound = PageCompound(page);
1041 int i;
1042
1043 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1044
1045 for (i = 1; i < (1 << order); i++) {
1046 if (compound)
1047 bad += free_tail_pages_check(page, page + i);
1048 bad += free_pages_check(page + i);
1049 }
1050 }
1051 if (PageAnonHead(page))
1052 page->mapping = NULL;
1053 bad += free_pages_check(page);
1054 if (bad)
1055 return false;
1056
1057 reset_page_owner(page, order);
1058
1059 if (!PageHighMem(page)) {
1060 debug_check_no_locks_freed(page_address(page),
1061 PAGE_SIZE << order);
1062 debug_check_no_obj_freed(page_address(page),
1063 PAGE_SIZE << order);
1064 }
1065 arch_free_page(page, order);
1066 kernel_poison_pages(page, 1 << order, 0);
1067 kernel_map_pages(page, 1 << order, 0);
1068
1069 return true;
1070 }
1071
1072 static void __free_pages_ok(struct page *page, unsigned int order)
1073 {
1074 unsigned long flags;
1075 int migratetype;
1076 unsigned long pfn = page_to_pfn(page);
1077
1078 if (!free_pages_prepare(page, order))
1079 return;
1080
1081 migratetype = get_pfnblock_migratetype(page, pfn);
1082 local_irq_save(flags);
1083 __count_vm_events(PGFREE, 1 << order);
1084 free_one_page(page_zone(page), page, pfn, order, migratetype);
1085 local_irq_restore(flags);
1086 }
1087
1088 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1089 {
1090 unsigned int nr_pages = 1 << order;
1091 struct page *p = page;
1092 unsigned int loop;
1093
1094 prefetchw(p);
1095 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1096 prefetchw(p + 1);
1097 __ClearPageReserved(p);
1098 set_page_count(p, 0);
1099 }
1100 __ClearPageReserved(p);
1101 set_page_count(p, 0);
1102
1103 page_zone(page)->managed_pages += nr_pages;
1104 set_page_refcounted(page);
1105 __free_pages(page, order);
1106 }
1107
1108 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1109 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1110
1111 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1112
1113 int __meminit early_pfn_to_nid(unsigned long pfn)
1114 {
1115 static DEFINE_SPINLOCK(early_pfn_lock);
1116 int nid;
1117
1118 spin_lock(&early_pfn_lock);
1119 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1120 if (nid < 0)
1121 nid = 0;
1122 spin_unlock(&early_pfn_lock);
1123
1124 return nid;
1125 }
1126 #endif
1127
1128 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1129 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1130 struct mminit_pfnnid_cache *state)
1131 {
1132 int nid;
1133
1134 nid = __early_pfn_to_nid(pfn, state);
1135 if (nid >= 0 && nid != node)
1136 return false;
1137 return true;
1138 }
1139
1140 /* Only safe to use early in boot when initialisation is single-threaded */
1141 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1142 {
1143 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1144 }
1145
1146 #else
1147
1148 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1149 {
1150 return true;
1151 }
1152 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1153 struct mminit_pfnnid_cache *state)
1154 {
1155 return true;
1156 }
1157 #endif
1158
1159
1160 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1161 unsigned int order)
1162 {
1163 if (early_page_uninitialised(pfn))
1164 return;
1165 return __free_pages_boot_core(page, order);
1166 }
1167
1168 /*
1169 * Check that the whole (or subset of) a pageblock given by the interval of
1170 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1171 * with the migration of free compaction scanner. The scanners then need to
1172 * use only pfn_valid_within() check for arches that allow holes within
1173 * pageblocks.
1174 *
1175 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1176 *
1177 * It's possible on some configurations to have a setup like node0 node1 node0
1178 * i.e. it's possible that all pages within a zones range of pages do not
1179 * belong to a single zone. We assume that a border between node0 and node1
1180 * can occur within a single pageblock, but not a node0 node1 node0
1181 * interleaving within a single pageblock. It is therefore sufficient to check
1182 * the first and last page of a pageblock and avoid checking each individual
1183 * page in a pageblock.
1184 */
1185 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1186 unsigned long end_pfn, struct zone *zone)
1187 {
1188 struct page *start_page;
1189 struct page *end_page;
1190
1191 /* end_pfn is one past the range we are checking */
1192 end_pfn--;
1193
1194 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1195 return NULL;
1196
1197 start_page = pfn_to_page(start_pfn);
1198
1199 if (page_zone(start_page) != zone)
1200 return NULL;
1201
1202 end_page = pfn_to_page(end_pfn);
1203
1204 /* This gives a shorter code than deriving page_zone(end_page) */
1205 if (page_zone_id(start_page) != page_zone_id(end_page))
1206 return NULL;
1207
1208 return start_page;
1209 }
1210
1211 void set_zone_contiguous(struct zone *zone)
1212 {
1213 unsigned long block_start_pfn = zone->zone_start_pfn;
1214 unsigned long block_end_pfn;
1215
1216 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1217 for (; block_start_pfn < zone_end_pfn(zone);
1218 block_start_pfn = block_end_pfn,
1219 block_end_pfn += pageblock_nr_pages) {
1220
1221 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1222
1223 if (!__pageblock_pfn_to_page(block_start_pfn,
1224 block_end_pfn, zone))
1225 return;
1226 }
1227
1228 /* We confirm that there is no hole */
1229 zone->contiguous = true;
1230 }
1231
1232 void clear_zone_contiguous(struct zone *zone)
1233 {
1234 zone->contiguous = false;
1235 }
1236
1237 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1238 static void __init deferred_free_range(struct page *page,
1239 unsigned long pfn, int nr_pages)
1240 {
1241 int i;
1242
1243 if (!page)
1244 return;
1245
1246 /* Free a large naturally-aligned chunk if possible */
1247 if (nr_pages == MAX_ORDER_NR_PAGES &&
1248 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1249 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1250 __free_pages_boot_core(page, MAX_ORDER-1);
1251 return;
1252 }
1253
1254 for (i = 0; i < nr_pages; i++, page++)
1255 __free_pages_boot_core(page, 0);
1256 }
1257
1258 /* Completion tracking for deferred_init_memmap() threads */
1259 static atomic_t pgdat_init_n_undone __initdata;
1260 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1261
1262 static inline void __init pgdat_init_report_one_done(void)
1263 {
1264 if (atomic_dec_and_test(&pgdat_init_n_undone))
1265 complete(&pgdat_init_all_done_comp);
1266 }
1267
1268 /* Initialise remaining memory on a node */
1269 static int __init deferred_init_memmap(void *data)
1270 {
1271 pg_data_t *pgdat = data;
1272 int nid = pgdat->node_id;
1273 struct mminit_pfnnid_cache nid_init_state = { };
1274 unsigned long start = jiffies;
1275 unsigned long nr_pages = 0;
1276 unsigned long walk_start, walk_end;
1277 int i, zid;
1278 struct zone *zone;
1279 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1280 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1281
1282 if (first_init_pfn == ULONG_MAX) {
1283 pgdat_init_report_one_done();
1284 return 0;
1285 }
1286
1287 /* Bind memory initialisation thread to a local node if possible */
1288 if (!cpumask_empty(cpumask))
1289 set_cpus_allowed_ptr(current, cpumask);
1290
1291 /* Sanity check boundaries */
1292 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1293 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1294 pgdat->first_deferred_pfn = ULONG_MAX;
1295
1296 /* Only the highest zone is deferred so find it */
1297 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1298 zone = pgdat->node_zones + zid;
1299 if (first_init_pfn < zone_end_pfn(zone))
1300 break;
1301 }
1302
1303 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1304 unsigned long pfn, end_pfn;
1305 struct page *page = NULL;
1306 struct page *free_base_page = NULL;
1307 unsigned long free_base_pfn = 0;
1308 int nr_to_free = 0;
1309
1310 end_pfn = min(walk_end, zone_end_pfn(zone));
1311 pfn = first_init_pfn;
1312 if (pfn < walk_start)
1313 pfn = walk_start;
1314 if (pfn < zone->zone_start_pfn)
1315 pfn = zone->zone_start_pfn;
1316
1317 for (; pfn < end_pfn; pfn++) {
1318 if (!pfn_valid_within(pfn))
1319 goto free_range;
1320
1321 /*
1322 * Ensure pfn_valid is checked every
1323 * MAX_ORDER_NR_PAGES for memory holes
1324 */
1325 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1326 if (!pfn_valid(pfn)) {
1327 page = NULL;
1328 goto free_range;
1329 }
1330 }
1331
1332 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1333 page = NULL;
1334 goto free_range;
1335 }
1336
1337 /* Minimise pfn page lookups and scheduler checks */
1338 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1339 page++;
1340 } else {
1341 nr_pages += nr_to_free;
1342 deferred_free_range(free_base_page,
1343 free_base_pfn, nr_to_free);
1344 free_base_page = NULL;
1345 free_base_pfn = nr_to_free = 0;
1346
1347 page = pfn_to_page(pfn);
1348 cond_resched();
1349 }
1350
1351 if (page->flags) {
1352 VM_BUG_ON(page_zone(page) != zone);
1353 goto free_range;
1354 }
1355
1356 __init_single_page(page, pfn, zid, nid);
1357 if (!free_base_page) {
1358 free_base_page = page;
1359 free_base_pfn = pfn;
1360 nr_to_free = 0;
1361 }
1362 nr_to_free++;
1363
1364 /* Where possible, batch up pages for a single free */
1365 continue;
1366 free_range:
1367 /* Free the current block of pages to allocator */
1368 nr_pages += nr_to_free;
1369 deferred_free_range(free_base_page, free_base_pfn,
1370 nr_to_free);
1371 free_base_page = NULL;
1372 free_base_pfn = nr_to_free = 0;
1373 }
1374
1375 first_init_pfn = max(end_pfn, first_init_pfn);
1376 }
1377
1378 /* Sanity check that the next zone really is unpopulated */
1379 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1380
1381 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1382 jiffies_to_msecs(jiffies - start));
1383
1384 pgdat_init_report_one_done();
1385 return 0;
1386 }
1387 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1388
1389 void __init page_alloc_init_late(void)
1390 {
1391 struct zone *zone;
1392
1393 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1394 int nid;
1395
1396 /* There will be num_node_state(N_MEMORY) threads */
1397 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1398 for_each_node_state(nid, N_MEMORY) {
1399 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1400 }
1401
1402 /* Block until all are initialised */
1403 wait_for_completion(&pgdat_init_all_done_comp);
1404
1405 /* Reinit limits that are based on free pages after the kernel is up */
1406 files_maxfiles_init();
1407 #endif
1408
1409 for_each_populated_zone(zone)
1410 set_zone_contiguous(zone);
1411 }
1412
1413 #ifdef CONFIG_CMA
1414 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1415 void __init init_cma_reserved_pageblock(struct page *page)
1416 {
1417 unsigned i = pageblock_nr_pages;
1418 struct page *p = page;
1419
1420 do {
1421 __ClearPageReserved(p);
1422 set_page_count(p, 0);
1423 } while (++p, --i);
1424
1425 set_pageblock_migratetype(page, MIGRATE_CMA);
1426
1427 if (pageblock_order >= MAX_ORDER) {
1428 i = pageblock_nr_pages;
1429 p = page;
1430 do {
1431 set_page_refcounted(p);
1432 __free_pages(p, MAX_ORDER - 1);
1433 p += MAX_ORDER_NR_PAGES;
1434 } while (i -= MAX_ORDER_NR_PAGES);
1435 } else {
1436 set_page_refcounted(page);
1437 __free_pages(page, pageblock_order);
1438 }
1439
1440 adjust_managed_page_count(page, pageblock_nr_pages);
1441 }
1442 #endif
1443
1444 /*
1445 * The order of subdivision here is critical for the IO subsystem.
1446 * Please do not alter this order without good reasons and regression
1447 * testing. Specifically, as large blocks of memory are subdivided,
1448 * the order in which smaller blocks are delivered depends on the order
1449 * they're subdivided in this function. This is the primary factor
1450 * influencing the order in which pages are delivered to the IO
1451 * subsystem according to empirical testing, and this is also justified
1452 * by considering the behavior of a buddy system containing a single
1453 * large block of memory acted on by a series of small allocations.
1454 * This behavior is a critical factor in sglist merging's success.
1455 *
1456 * -- nyc
1457 */
1458 static inline void expand(struct zone *zone, struct page *page,
1459 int low, int high, struct free_area *area,
1460 int migratetype)
1461 {
1462 unsigned long size = 1 << high;
1463
1464 while (high > low) {
1465 area--;
1466 high--;
1467 size >>= 1;
1468 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1469
1470 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1471 debug_guardpage_enabled() &&
1472 high < debug_guardpage_minorder()) {
1473 /*
1474 * Mark as guard pages (or page), that will allow to
1475 * merge back to allocator when buddy will be freed.
1476 * Corresponding page table entries will not be touched,
1477 * pages will stay not present in virtual address space
1478 */
1479 set_page_guard(zone, &page[size], high, migratetype);
1480 continue;
1481 }
1482 list_add(&page[size].lru, &area->free_list[migratetype]);
1483 area->nr_free++;
1484 set_page_order(&page[size], high);
1485 }
1486 }
1487
1488 /*
1489 * This page is about to be returned from the page allocator
1490 */
1491 static inline int check_new_page(struct page *page)
1492 {
1493 const char *bad_reason = NULL;
1494 unsigned long bad_flags = 0;
1495
1496 if (unlikely(atomic_read(&page->_mapcount) != -1))
1497 bad_reason = "nonzero mapcount";
1498 if (unlikely(page->mapping != NULL))
1499 bad_reason = "non-NULL mapping";
1500 if (unlikely(page_ref_count(page) != 0))
1501 bad_reason = "nonzero _count";
1502 if (unlikely(page->flags & __PG_HWPOISON)) {
1503 bad_reason = "HWPoisoned (hardware-corrupted)";
1504 bad_flags = __PG_HWPOISON;
1505 }
1506 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1507 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1508 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1509 }
1510 #ifdef CONFIG_MEMCG
1511 if (unlikely(page->mem_cgroup))
1512 bad_reason = "page still charged to cgroup";
1513 #endif
1514 if (unlikely(bad_reason)) {
1515 bad_page(page, bad_reason, bad_flags);
1516 return 1;
1517 }
1518 return 0;
1519 }
1520
1521 static inline bool free_pages_prezeroed(bool poisoned)
1522 {
1523 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1524 page_poisoning_enabled() && poisoned;
1525 }
1526
1527 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1528 unsigned int alloc_flags)
1529 {
1530 int i;
1531 bool poisoned = true;
1532
1533 for (i = 0; i < (1 << order); i++) {
1534 struct page *p = page + i;
1535 if (unlikely(check_new_page(p)))
1536 return 1;
1537 if (poisoned)
1538 poisoned &= page_is_poisoned(p);
1539 }
1540
1541 set_page_private(page, 0);
1542 set_page_refcounted(page);
1543
1544 arch_alloc_page(page, order);
1545 kernel_map_pages(page, 1 << order, 1);
1546 kernel_poison_pages(page, 1 << order, 1);
1547 kasan_alloc_pages(page, order);
1548
1549 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1550 for (i = 0; i < (1 << order); i++)
1551 clear_highpage(page + i);
1552
1553 if (order && (gfp_flags & __GFP_COMP))
1554 prep_compound_page(page, order);
1555
1556 set_page_owner(page, order, gfp_flags);
1557
1558 /*
1559 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1560 * allocate the page. The expectation is that the caller is taking
1561 * steps that will free more memory. The caller should avoid the page
1562 * being used for !PFMEMALLOC purposes.
1563 */
1564 if (alloc_flags & ALLOC_NO_WATERMARKS)
1565 set_page_pfmemalloc(page);
1566 else
1567 clear_page_pfmemalloc(page);
1568
1569 return 0;
1570 }
1571
1572 /*
1573 * Go through the free lists for the given migratetype and remove
1574 * the smallest available page from the freelists
1575 */
1576 static inline
1577 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1578 int migratetype)
1579 {
1580 unsigned int current_order;
1581 struct free_area *area;
1582 struct page *page;
1583
1584 /* Find a page of the appropriate size in the preferred list */
1585 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1586 area = &(zone->free_area[current_order]);
1587 page = list_first_entry_or_null(&area->free_list[migratetype],
1588 struct page, lru);
1589 if (!page)
1590 continue;
1591 list_del(&page->lru);
1592 rmv_page_order(page);
1593 area->nr_free--;
1594 expand(zone, page, order, current_order, area, migratetype);
1595 set_pcppage_migratetype(page, migratetype);
1596 return page;
1597 }
1598
1599 return NULL;
1600 }
1601
1602
1603 /*
1604 * This array describes the order lists are fallen back to when
1605 * the free lists for the desirable migrate type are depleted
1606 */
1607 static int fallbacks[MIGRATE_TYPES][4] = {
1608 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1609 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1610 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1611 #ifdef CONFIG_CMA
1612 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1613 #endif
1614 #ifdef CONFIG_MEMORY_ISOLATION
1615 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1616 #endif
1617 };
1618
1619 #ifdef CONFIG_CMA
1620 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1621 unsigned int order)
1622 {
1623 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1624 }
1625 #else
1626 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1627 unsigned int order) { return NULL; }
1628 #endif
1629
1630 /*
1631 * Move the free pages in a range to the free lists of the requested type.
1632 * Note that start_page and end_pages are not aligned on a pageblock
1633 * boundary. If alignment is required, use move_freepages_block()
1634 */
1635 int move_freepages(struct zone *zone,
1636 struct page *start_page, struct page *end_page,
1637 int migratetype)
1638 {
1639 struct page *page;
1640 unsigned int order;
1641 int pages_moved = 0;
1642
1643 #ifndef CONFIG_HOLES_IN_ZONE
1644 /*
1645 * page_zone is not safe to call in this context when
1646 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1647 * anyway as we check zone boundaries in move_freepages_block().
1648 * Remove at a later date when no bug reports exist related to
1649 * grouping pages by mobility
1650 */
1651 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1652 #endif
1653
1654 for (page = start_page; page <= end_page;) {
1655 /* Make sure we are not inadvertently changing nodes */
1656 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1657
1658 if (!pfn_valid_within(page_to_pfn(page))) {
1659 page++;
1660 continue;
1661 }
1662
1663 if (!PageBuddy(page)) {
1664 page++;
1665 continue;
1666 }
1667
1668 order = page_order(page);
1669 list_move(&page->lru,
1670 &zone->free_area[order].free_list[migratetype]);
1671 page += 1 << order;
1672 pages_moved += 1 << order;
1673 }
1674
1675 return pages_moved;
1676 }
1677
1678 int move_freepages_block(struct zone *zone, struct page *page,
1679 int migratetype)
1680 {
1681 unsigned long start_pfn, end_pfn;
1682 struct page *start_page, *end_page;
1683
1684 start_pfn = page_to_pfn(page);
1685 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1686 start_page = pfn_to_page(start_pfn);
1687 end_page = start_page + pageblock_nr_pages - 1;
1688 end_pfn = start_pfn + pageblock_nr_pages - 1;
1689
1690 /* Do not cross zone boundaries */
1691 if (!zone_spans_pfn(zone, start_pfn))
1692 start_page = page;
1693 if (!zone_spans_pfn(zone, end_pfn))
1694 return 0;
1695
1696 return move_freepages(zone, start_page, end_page, migratetype);
1697 }
1698
1699 static void change_pageblock_range(struct page *pageblock_page,
1700 int start_order, int migratetype)
1701 {
1702 int nr_pageblocks = 1 << (start_order - pageblock_order);
1703
1704 while (nr_pageblocks--) {
1705 set_pageblock_migratetype(pageblock_page, migratetype);
1706 pageblock_page += pageblock_nr_pages;
1707 }
1708 }
1709
1710 /*
1711 * When we are falling back to another migratetype during allocation, try to
1712 * steal extra free pages from the same pageblocks to satisfy further
1713 * allocations, instead of polluting multiple pageblocks.
1714 *
1715 * If we are stealing a relatively large buddy page, it is likely there will
1716 * be more free pages in the pageblock, so try to steal them all. For
1717 * reclaimable and unmovable allocations, we steal regardless of page size,
1718 * as fragmentation caused by those allocations polluting movable pageblocks
1719 * is worse than movable allocations stealing from unmovable and reclaimable
1720 * pageblocks.
1721 */
1722 static bool can_steal_fallback(unsigned int order, int start_mt)
1723 {
1724 /*
1725 * Leaving this order check is intended, although there is
1726 * relaxed order check in next check. The reason is that
1727 * we can actually steal whole pageblock if this condition met,
1728 * but, below check doesn't guarantee it and that is just heuristic
1729 * so could be changed anytime.
1730 */
1731 if (order >= pageblock_order)
1732 return true;
1733
1734 if (order >= pageblock_order / 2 ||
1735 start_mt == MIGRATE_RECLAIMABLE ||
1736 start_mt == MIGRATE_UNMOVABLE ||
1737 page_group_by_mobility_disabled)
1738 return true;
1739
1740 return false;
1741 }
1742
1743 /*
1744 * This function implements actual steal behaviour. If order is large enough,
1745 * we can steal whole pageblock. If not, we first move freepages in this
1746 * pageblock and check whether half of pages are moved or not. If half of
1747 * pages are moved, we can change migratetype of pageblock and permanently
1748 * use it's pages as requested migratetype in the future.
1749 */
1750 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1751 int start_type)
1752 {
1753 unsigned int current_order = page_order(page);
1754 int pages;
1755
1756 /* Take ownership for orders >= pageblock_order */
1757 if (current_order >= pageblock_order) {
1758 change_pageblock_range(page, current_order, start_type);
1759 return;
1760 }
1761
1762 pages = move_freepages_block(zone, page, start_type);
1763
1764 /* Claim the whole block if over half of it is free */
1765 if (pages >= (1 << (pageblock_order-1)) ||
1766 page_group_by_mobility_disabled)
1767 set_pageblock_migratetype(page, start_type);
1768 }
1769
1770 /*
1771 * Check whether there is a suitable fallback freepage with requested order.
1772 * If only_stealable is true, this function returns fallback_mt only if
1773 * we can steal other freepages all together. This would help to reduce
1774 * fragmentation due to mixed migratetype pages in one pageblock.
1775 */
1776 int find_suitable_fallback(struct free_area *area, unsigned int order,
1777 int migratetype, bool only_stealable, bool *can_steal)
1778 {
1779 int i;
1780 int fallback_mt;
1781
1782 if (area->nr_free == 0)
1783 return -1;
1784
1785 *can_steal = false;
1786 for (i = 0;; i++) {
1787 fallback_mt = fallbacks[migratetype][i];
1788 if (fallback_mt == MIGRATE_TYPES)
1789 break;
1790
1791 if (list_empty(&area->free_list[fallback_mt]))
1792 continue;
1793
1794 if (can_steal_fallback(order, migratetype))
1795 *can_steal = true;
1796
1797 if (!only_stealable)
1798 return fallback_mt;
1799
1800 if (*can_steal)
1801 return fallback_mt;
1802 }
1803
1804 return -1;
1805 }
1806
1807 /*
1808 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1809 * there are no empty page blocks that contain a page with a suitable order
1810 */
1811 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1812 unsigned int alloc_order)
1813 {
1814 int mt;
1815 unsigned long max_managed, flags;
1816
1817 /*
1818 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1819 * Check is race-prone but harmless.
1820 */
1821 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1822 if (zone->nr_reserved_highatomic >= max_managed)
1823 return;
1824
1825 spin_lock_irqsave(&zone->lock, flags);
1826
1827 /* Recheck the nr_reserved_highatomic limit under the lock */
1828 if (zone->nr_reserved_highatomic >= max_managed)
1829 goto out_unlock;
1830
1831 /* Yoink! */
1832 mt = get_pageblock_migratetype(page);
1833 if (mt != MIGRATE_HIGHATOMIC &&
1834 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1835 zone->nr_reserved_highatomic += pageblock_nr_pages;
1836 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1837 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1838 }
1839
1840 out_unlock:
1841 spin_unlock_irqrestore(&zone->lock, flags);
1842 }
1843
1844 /*
1845 * Used when an allocation is about to fail under memory pressure. This
1846 * potentially hurts the reliability of high-order allocations when under
1847 * intense memory pressure but failed atomic allocations should be easier
1848 * to recover from than an OOM.
1849 */
1850 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1851 {
1852 struct zonelist *zonelist = ac->zonelist;
1853 unsigned long flags;
1854 struct zoneref *z;
1855 struct zone *zone;
1856 struct page *page;
1857 int order;
1858
1859 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1860 ac->nodemask) {
1861 /* Preserve at least one pageblock */
1862 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1863 continue;
1864
1865 spin_lock_irqsave(&zone->lock, flags);
1866 for (order = 0; order < MAX_ORDER; order++) {
1867 struct free_area *area = &(zone->free_area[order]);
1868
1869 page = list_first_entry_or_null(
1870 &area->free_list[MIGRATE_HIGHATOMIC],
1871 struct page, lru);
1872 if (!page)
1873 continue;
1874
1875 /*
1876 * It should never happen but changes to locking could
1877 * inadvertently allow a per-cpu drain to add pages
1878 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1879 * and watch for underflows.
1880 */
1881 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1882 zone->nr_reserved_highatomic);
1883
1884 /*
1885 * Convert to ac->migratetype and avoid the normal
1886 * pageblock stealing heuristics. Minimally, the caller
1887 * is doing the work and needs the pages. More
1888 * importantly, if the block was always converted to
1889 * MIGRATE_UNMOVABLE or another type then the number
1890 * of pageblocks that cannot be completely freed
1891 * may increase.
1892 */
1893 set_pageblock_migratetype(page, ac->migratetype);
1894 move_freepages_block(zone, page, ac->migratetype);
1895 spin_unlock_irqrestore(&zone->lock, flags);
1896 return;
1897 }
1898 spin_unlock_irqrestore(&zone->lock, flags);
1899 }
1900 }
1901
1902 /* Remove an element from the buddy allocator from the fallback list */
1903 static inline struct page *
1904 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1905 {
1906 struct free_area *area;
1907 unsigned int current_order;
1908 struct page *page;
1909 int fallback_mt;
1910 bool can_steal;
1911
1912 /* Find the largest possible block of pages in the other list */
1913 for (current_order = MAX_ORDER-1;
1914 current_order >= order && current_order <= MAX_ORDER-1;
1915 --current_order) {
1916 area = &(zone->free_area[current_order]);
1917 fallback_mt = find_suitable_fallback(area, current_order,
1918 start_migratetype, false, &can_steal);
1919 if (fallback_mt == -1)
1920 continue;
1921
1922 page = list_first_entry(&area->free_list[fallback_mt],
1923 struct page, lru);
1924 if (can_steal)
1925 steal_suitable_fallback(zone, page, start_migratetype);
1926
1927 /* Remove the page from the freelists */
1928 area->nr_free--;
1929 list_del(&page->lru);
1930 rmv_page_order(page);
1931
1932 expand(zone, page, order, current_order, area,
1933 start_migratetype);
1934 /*
1935 * The pcppage_migratetype may differ from pageblock's
1936 * migratetype depending on the decisions in
1937 * find_suitable_fallback(). This is OK as long as it does not
1938 * differ for MIGRATE_CMA pageblocks. Those can be used as
1939 * fallback only via special __rmqueue_cma_fallback() function
1940 */
1941 set_pcppage_migratetype(page, start_migratetype);
1942
1943 trace_mm_page_alloc_extfrag(page, order, current_order,
1944 start_migratetype, fallback_mt);
1945
1946 return page;
1947 }
1948
1949 return NULL;
1950 }
1951
1952 /*
1953 * Do the hard work of removing an element from the buddy allocator.
1954 * Call me with the zone->lock already held.
1955 */
1956 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1957 int migratetype)
1958 {
1959 struct page *page;
1960
1961 page = __rmqueue_smallest(zone, order, migratetype);
1962 if (unlikely(!page)) {
1963 if (migratetype == MIGRATE_MOVABLE)
1964 page = __rmqueue_cma_fallback(zone, order);
1965
1966 if (!page)
1967 page = __rmqueue_fallback(zone, order, migratetype);
1968 }
1969
1970 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1971 return page;
1972 }
1973
1974 /*
1975 * Obtain a specified number of elements from the buddy allocator, all under
1976 * a single hold of the lock, for efficiency. Add them to the supplied list.
1977 * Returns the number of new pages which were placed at *list.
1978 */
1979 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1980 unsigned long count, struct list_head *list,
1981 int migratetype, bool cold)
1982 {
1983 int i;
1984
1985 spin_lock(&zone->lock);
1986 for (i = 0; i < count; ++i) {
1987 struct page *page = __rmqueue(zone, order, migratetype);
1988 if (unlikely(page == NULL))
1989 break;
1990
1991 /*
1992 * Split buddy pages returned by expand() are received here
1993 * in physical page order. The page is added to the callers and
1994 * list and the list head then moves forward. From the callers
1995 * perspective, the linked list is ordered by page number in
1996 * some conditions. This is useful for IO devices that can
1997 * merge IO requests if the physical pages are ordered
1998 * properly.
1999 */
2000 if (likely(!cold))
2001 list_add(&page->lru, list);
2002 else
2003 list_add_tail(&page->lru, list);
2004 list = &page->lru;
2005 if (is_migrate_cma(get_pcppage_migratetype(page)))
2006 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2007 -(1 << order));
2008 }
2009 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2010 spin_unlock(&zone->lock);
2011 return i;
2012 }
2013
2014 #ifdef CONFIG_NUMA
2015 /*
2016 * Called from the vmstat counter updater to drain pagesets of this
2017 * currently executing processor on remote nodes after they have
2018 * expired.
2019 *
2020 * Note that this function must be called with the thread pinned to
2021 * a single processor.
2022 */
2023 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2024 {
2025 unsigned long flags;
2026 int to_drain, batch;
2027
2028 local_irq_save(flags);
2029 batch = READ_ONCE(pcp->batch);
2030 to_drain = min(pcp->count, batch);
2031 if (to_drain > 0) {
2032 free_pcppages_bulk(zone, to_drain, pcp);
2033 pcp->count -= to_drain;
2034 }
2035 local_irq_restore(flags);
2036 }
2037 #endif
2038
2039 /*
2040 * Drain pcplists of the indicated processor and zone.
2041 *
2042 * The processor must either be the current processor and the
2043 * thread pinned to the current processor or a processor that
2044 * is not online.
2045 */
2046 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2047 {
2048 unsigned long flags;
2049 struct per_cpu_pageset *pset;
2050 struct per_cpu_pages *pcp;
2051
2052 local_irq_save(flags);
2053 pset = per_cpu_ptr(zone->pageset, cpu);
2054
2055 pcp = &pset->pcp;
2056 if (pcp->count) {
2057 free_pcppages_bulk(zone, pcp->count, pcp);
2058 pcp->count = 0;
2059 }
2060 local_irq_restore(flags);
2061 }
2062
2063 /*
2064 * Drain pcplists of all zones on the indicated processor.
2065 *
2066 * The processor must either be the current processor and the
2067 * thread pinned to the current processor or a processor that
2068 * is not online.
2069 */
2070 static void drain_pages(unsigned int cpu)
2071 {
2072 struct zone *zone;
2073
2074 for_each_populated_zone(zone) {
2075 drain_pages_zone(cpu, zone);
2076 }
2077 }
2078
2079 /*
2080 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2081 *
2082 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2083 * the single zone's pages.
2084 */
2085 void drain_local_pages(struct zone *zone)
2086 {
2087 int cpu = smp_processor_id();
2088
2089 if (zone)
2090 drain_pages_zone(cpu, zone);
2091 else
2092 drain_pages(cpu);
2093 }
2094
2095 /*
2096 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2097 *
2098 * When zone parameter is non-NULL, spill just the single zone's pages.
2099 *
2100 * Note that this code is protected against sending an IPI to an offline
2101 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2102 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2103 * nothing keeps CPUs from showing up after we populated the cpumask and
2104 * before the call to on_each_cpu_mask().
2105 */
2106 void drain_all_pages(struct zone *zone)
2107 {
2108 int cpu;
2109
2110 /*
2111 * Allocate in the BSS so we wont require allocation in
2112 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2113 */
2114 static cpumask_t cpus_with_pcps;
2115
2116 /*
2117 * We don't care about racing with CPU hotplug event
2118 * as offline notification will cause the notified
2119 * cpu to drain that CPU pcps and on_each_cpu_mask
2120 * disables preemption as part of its processing
2121 */
2122 for_each_online_cpu(cpu) {
2123 struct per_cpu_pageset *pcp;
2124 struct zone *z;
2125 bool has_pcps = false;
2126
2127 if (zone) {
2128 pcp = per_cpu_ptr(zone->pageset, cpu);
2129 if (pcp->pcp.count)
2130 has_pcps = true;
2131 } else {
2132 for_each_populated_zone(z) {
2133 pcp = per_cpu_ptr(z->pageset, cpu);
2134 if (pcp->pcp.count) {
2135 has_pcps = true;
2136 break;
2137 }
2138 }
2139 }
2140
2141 if (has_pcps)
2142 cpumask_set_cpu(cpu, &cpus_with_pcps);
2143 else
2144 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2145 }
2146 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2147 zone, 1);
2148 }
2149
2150 #ifdef CONFIG_HIBERNATION
2151
2152 void mark_free_pages(struct zone *zone)
2153 {
2154 unsigned long pfn, max_zone_pfn;
2155 unsigned long flags;
2156 unsigned int order, t;
2157 struct page *page;
2158
2159 if (zone_is_empty(zone))
2160 return;
2161
2162 spin_lock_irqsave(&zone->lock, flags);
2163
2164 max_zone_pfn = zone_end_pfn(zone);
2165 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2166 if (pfn_valid(pfn)) {
2167 page = pfn_to_page(pfn);
2168
2169 if (page_zone(page) != zone)
2170 continue;
2171
2172 if (!swsusp_page_is_forbidden(page))
2173 swsusp_unset_page_free(page);
2174 }
2175
2176 for_each_migratetype_order(order, t) {
2177 list_for_each_entry(page,
2178 &zone->free_area[order].free_list[t], lru) {
2179 unsigned long i;
2180
2181 pfn = page_to_pfn(page);
2182 for (i = 0; i < (1UL << order); i++)
2183 swsusp_set_page_free(pfn_to_page(pfn + i));
2184 }
2185 }
2186 spin_unlock_irqrestore(&zone->lock, flags);
2187 }
2188 #endif /* CONFIG_PM */
2189
2190 /*
2191 * Free a 0-order page
2192 * cold == true ? free a cold page : free a hot page
2193 */
2194 void free_hot_cold_page(struct page *page, bool cold)
2195 {
2196 struct zone *zone = page_zone(page);
2197 struct per_cpu_pages *pcp;
2198 unsigned long flags;
2199 unsigned long pfn = page_to_pfn(page);
2200 int migratetype;
2201
2202 if (!free_pages_prepare(page, 0))
2203 return;
2204
2205 migratetype = get_pfnblock_migratetype(page, pfn);
2206 set_pcppage_migratetype(page, migratetype);
2207 local_irq_save(flags);
2208 __count_vm_event(PGFREE);
2209
2210 /*
2211 * We only track unmovable, reclaimable and movable on pcp lists.
2212 * Free ISOLATE pages back to the allocator because they are being
2213 * offlined but treat RESERVE as movable pages so we can get those
2214 * areas back if necessary. Otherwise, we may have to free
2215 * excessively into the page allocator
2216 */
2217 if (migratetype >= MIGRATE_PCPTYPES) {
2218 if (unlikely(is_migrate_isolate(migratetype))) {
2219 free_one_page(zone, page, pfn, 0, migratetype);
2220 goto out;
2221 }
2222 migratetype = MIGRATE_MOVABLE;
2223 }
2224
2225 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2226 if (!cold)
2227 list_add(&page->lru, &pcp->lists[migratetype]);
2228 else
2229 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2230 pcp->count++;
2231 if (pcp->count >= pcp->high) {
2232 unsigned long batch = READ_ONCE(pcp->batch);
2233 free_pcppages_bulk(zone, batch, pcp);
2234 pcp->count -= batch;
2235 }
2236
2237 out:
2238 local_irq_restore(flags);
2239 }
2240
2241 /*
2242 * Free a list of 0-order pages
2243 */
2244 void free_hot_cold_page_list(struct list_head *list, bool cold)
2245 {
2246 struct page *page, *next;
2247
2248 list_for_each_entry_safe(page, next, list, lru) {
2249 trace_mm_page_free_batched(page, cold);
2250 free_hot_cold_page(page, cold);
2251 }
2252 }
2253
2254 /*
2255 * split_page takes a non-compound higher-order page, and splits it into
2256 * n (1<<order) sub-pages: page[0..n]
2257 * Each sub-page must be freed individually.
2258 *
2259 * Note: this is probably too low level an operation for use in drivers.
2260 * Please consult with lkml before using this in your driver.
2261 */
2262 void split_page(struct page *page, unsigned int order)
2263 {
2264 int i;
2265 gfp_t gfp_mask;
2266
2267 VM_BUG_ON_PAGE(PageCompound(page), page);
2268 VM_BUG_ON_PAGE(!page_count(page), page);
2269
2270 #ifdef CONFIG_KMEMCHECK
2271 /*
2272 * Split shadow pages too, because free(page[0]) would
2273 * otherwise free the whole shadow.
2274 */
2275 if (kmemcheck_page_is_tracked(page))
2276 split_page(virt_to_page(page[0].shadow), order);
2277 #endif
2278
2279 gfp_mask = get_page_owner_gfp(page);
2280 set_page_owner(page, 0, gfp_mask);
2281 for (i = 1; i < (1 << order); i++) {
2282 set_page_refcounted(page + i);
2283 set_page_owner(page + i, 0, gfp_mask);
2284 }
2285 }
2286 EXPORT_SYMBOL_GPL(split_page);
2287
2288 int __isolate_free_page(struct page *page, unsigned int order)
2289 {
2290 unsigned long watermark;
2291 struct zone *zone;
2292 int mt;
2293
2294 BUG_ON(!PageBuddy(page));
2295
2296 zone = page_zone(page);
2297 mt = get_pageblock_migratetype(page);
2298
2299 if (!is_migrate_isolate(mt)) {
2300 /* Obey watermarks as if the page was being allocated */
2301 watermark = low_wmark_pages(zone) + (1 << order);
2302 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2303 return 0;
2304
2305 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2306 }
2307
2308 /* Remove page from free list */
2309 list_del(&page->lru);
2310 zone->free_area[order].nr_free--;
2311 rmv_page_order(page);
2312
2313 set_page_owner(page, order, __GFP_MOVABLE);
2314
2315 /* Set the pageblock if the isolated page is at least a pageblock */
2316 if (order >= pageblock_order - 1) {
2317 struct page *endpage = page + (1 << order) - 1;
2318 for (; page < endpage; page += pageblock_nr_pages) {
2319 int mt = get_pageblock_migratetype(page);
2320 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2321 set_pageblock_migratetype(page,
2322 MIGRATE_MOVABLE);
2323 }
2324 }
2325
2326
2327 return 1UL << order;
2328 }
2329
2330 /*
2331 * Similar to split_page except the page is already free. As this is only
2332 * being used for migration, the migratetype of the block also changes.
2333 * As this is called with interrupts disabled, the caller is responsible
2334 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2335 * are enabled.
2336 *
2337 * Note: this is probably too low level an operation for use in drivers.
2338 * Please consult with lkml before using this in your driver.
2339 */
2340 int split_free_page(struct page *page)
2341 {
2342 unsigned int order;
2343 int nr_pages;
2344
2345 order = page_order(page);
2346
2347 nr_pages = __isolate_free_page(page, order);
2348 if (!nr_pages)
2349 return 0;
2350
2351 /* Split into individual pages */
2352 set_page_refcounted(page);
2353 split_page(page, order);
2354 return nr_pages;
2355 }
2356
2357 /*
2358 * Update NUMA hit/miss statistics
2359 *
2360 * Must be called with interrupts disabled.
2361 *
2362 * When __GFP_OTHER_NODE is set assume the node of the preferred
2363 * zone is the local node. This is useful for daemons who allocate
2364 * memory on behalf of other processes.
2365 */
2366 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2367 gfp_t flags)
2368 {
2369 #ifdef CONFIG_NUMA
2370 int local_nid = numa_node_id();
2371 enum zone_stat_item local_stat = NUMA_LOCAL;
2372
2373 if (unlikely(flags & __GFP_OTHER_NODE)) {
2374 local_stat = NUMA_OTHER;
2375 local_nid = preferred_zone->node;
2376 }
2377
2378 if (z->node == local_nid) {
2379 __inc_zone_state(z, NUMA_HIT);
2380 __inc_zone_state(z, local_stat);
2381 } else {
2382 __inc_zone_state(z, NUMA_MISS);
2383 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2384 }
2385 #endif
2386 }
2387
2388 /*
2389 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2390 */
2391 static inline
2392 struct page *buffered_rmqueue(struct zone *preferred_zone,
2393 struct zone *zone, unsigned int order,
2394 gfp_t gfp_flags, unsigned int alloc_flags,
2395 int migratetype)
2396 {
2397 unsigned long flags;
2398 struct page *page;
2399 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2400
2401 if (likely(order == 0)) {
2402 struct per_cpu_pages *pcp;
2403 struct list_head *list;
2404
2405 local_irq_save(flags);
2406 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2407 list = &pcp->lists[migratetype];
2408 if (list_empty(list)) {
2409 pcp->count += rmqueue_bulk(zone, 0,
2410 pcp->batch, list,
2411 migratetype, cold);
2412 if (unlikely(list_empty(list)))
2413 goto failed;
2414 }
2415
2416 if (cold)
2417 page = list_last_entry(list, struct page, lru);
2418 else
2419 page = list_first_entry(list, struct page, lru);
2420
2421 __dec_zone_state(zone, NR_ALLOC_BATCH);
2422 list_del(&page->lru);
2423 pcp->count--;
2424 } else {
2425 /*
2426 * We most definitely don't want callers attempting to
2427 * allocate greater than order-1 page units with __GFP_NOFAIL.
2428 */
2429 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2430 spin_lock_irqsave(&zone->lock, flags);
2431
2432 page = NULL;
2433 if (alloc_flags & ALLOC_HARDER) {
2434 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2435 if (page)
2436 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2437 }
2438 if (!page)
2439 page = __rmqueue(zone, order, migratetype);
2440 spin_unlock(&zone->lock);
2441 if (!page)
2442 goto failed;
2443 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2444 __mod_zone_freepage_state(zone, -(1 << order),
2445 get_pcppage_migratetype(page));
2446 }
2447
2448 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2449 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2450 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2451
2452 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2453 zone_statistics(preferred_zone, zone, gfp_flags);
2454 local_irq_restore(flags);
2455
2456 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2457 return page;
2458
2459 failed:
2460 local_irq_restore(flags);
2461 return NULL;
2462 }
2463
2464 #ifdef CONFIG_FAIL_PAGE_ALLOC
2465
2466 static struct {
2467 struct fault_attr attr;
2468
2469 bool ignore_gfp_highmem;
2470 bool ignore_gfp_reclaim;
2471 u32 min_order;
2472 } fail_page_alloc = {
2473 .attr = FAULT_ATTR_INITIALIZER,
2474 .ignore_gfp_reclaim = true,
2475 .ignore_gfp_highmem = true,
2476 .min_order = 1,
2477 };
2478
2479 static int __init setup_fail_page_alloc(char *str)
2480 {
2481 return setup_fault_attr(&fail_page_alloc.attr, str);
2482 }
2483 __setup("fail_page_alloc=", setup_fail_page_alloc);
2484
2485 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2486 {
2487 if (order < fail_page_alloc.min_order)
2488 return false;
2489 if (gfp_mask & __GFP_NOFAIL)
2490 return false;
2491 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2492 return false;
2493 if (fail_page_alloc.ignore_gfp_reclaim &&
2494 (gfp_mask & __GFP_DIRECT_RECLAIM))
2495 return false;
2496
2497 return should_fail(&fail_page_alloc.attr, 1 << order);
2498 }
2499
2500 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2501
2502 static int __init fail_page_alloc_debugfs(void)
2503 {
2504 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2505 struct dentry *dir;
2506
2507 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2508 &fail_page_alloc.attr);
2509 if (IS_ERR(dir))
2510 return PTR_ERR(dir);
2511
2512 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2513 &fail_page_alloc.ignore_gfp_reclaim))
2514 goto fail;
2515 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2516 &fail_page_alloc.ignore_gfp_highmem))
2517 goto fail;
2518 if (!debugfs_create_u32("min-order", mode, dir,
2519 &fail_page_alloc.min_order))
2520 goto fail;
2521
2522 return 0;
2523 fail:
2524 debugfs_remove_recursive(dir);
2525
2526 return -ENOMEM;
2527 }
2528
2529 late_initcall(fail_page_alloc_debugfs);
2530
2531 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2532
2533 #else /* CONFIG_FAIL_PAGE_ALLOC */
2534
2535 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2536 {
2537 return false;
2538 }
2539
2540 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2541
2542 /*
2543 * Return true if free base pages are above 'mark'. For high-order checks it
2544 * will return true of the order-0 watermark is reached and there is at least
2545 * one free page of a suitable size. Checking now avoids taking the zone lock
2546 * to check in the allocation paths if no pages are free.
2547 */
2548 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2549 unsigned long mark, int classzone_idx,
2550 unsigned int alloc_flags,
2551 long free_pages)
2552 {
2553 long min = mark;
2554 int o;
2555 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2556
2557 /* free_pages may go negative - that's OK */
2558 free_pages -= (1 << order) - 1;
2559
2560 if (alloc_flags & ALLOC_HIGH)
2561 min -= min / 2;
2562
2563 /*
2564 * If the caller does not have rights to ALLOC_HARDER then subtract
2565 * the high-atomic reserves. This will over-estimate the size of the
2566 * atomic reserve but it avoids a search.
2567 */
2568 if (likely(!alloc_harder))
2569 free_pages -= z->nr_reserved_highatomic;
2570 else
2571 min -= min / 4;
2572
2573 #ifdef CONFIG_CMA
2574 /* If allocation can't use CMA areas don't use free CMA pages */
2575 if (!(alloc_flags & ALLOC_CMA))
2576 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2577 #endif
2578
2579 /*
2580 * Check watermarks for an order-0 allocation request. If these
2581 * are not met, then a high-order request also cannot go ahead
2582 * even if a suitable page happened to be free.
2583 */
2584 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2585 return false;
2586
2587 /* If this is an order-0 request then the watermark is fine */
2588 if (!order)
2589 return true;
2590
2591 /* For a high-order request, check at least one suitable page is free */
2592 for (o = order; o < MAX_ORDER; o++) {
2593 struct free_area *area = &z->free_area[o];
2594 int mt;
2595
2596 if (!area->nr_free)
2597 continue;
2598
2599 if (alloc_harder)
2600 return true;
2601
2602 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2603 if (!list_empty(&area->free_list[mt]))
2604 return true;
2605 }
2606
2607 #ifdef CONFIG_CMA
2608 if ((alloc_flags & ALLOC_CMA) &&
2609 !list_empty(&area->free_list[MIGRATE_CMA])) {
2610 return true;
2611 }
2612 #endif
2613 }
2614 return false;
2615 }
2616
2617 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2618 int classzone_idx, unsigned int alloc_flags)
2619 {
2620 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2621 zone_page_state(z, NR_FREE_PAGES));
2622 }
2623
2624 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2625 unsigned long mark, int classzone_idx)
2626 {
2627 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2628
2629 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2630 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2631
2632 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2633 free_pages);
2634 }
2635
2636 #ifdef CONFIG_NUMA
2637 static bool zone_local(struct zone *local_zone, struct zone *zone)
2638 {
2639 return local_zone->node == zone->node;
2640 }
2641
2642 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2643 {
2644 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2645 RECLAIM_DISTANCE;
2646 }
2647 #else /* CONFIG_NUMA */
2648 static bool zone_local(struct zone *local_zone, struct zone *zone)
2649 {
2650 return true;
2651 }
2652
2653 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2654 {
2655 return true;
2656 }
2657 #endif /* CONFIG_NUMA */
2658
2659 static void reset_alloc_batches(struct zone *preferred_zone)
2660 {
2661 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2662
2663 do {
2664 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2665 high_wmark_pages(zone) - low_wmark_pages(zone) -
2666 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2667 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2668 } while (zone++ != preferred_zone);
2669 }
2670
2671 /*
2672 * get_page_from_freelist goes through the zonelist trying to allocate
2673 * a page.
2674 */
2675 static struct page *
2676 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2677 const struct alloc_context *ac)
2678 {
2679 struct zoneref *z;
2680 struct zone *zone;
2681 bool fair_skipped;
2682 bool zonelist_rescan;
2683
2684 zonelist_scan:
2685 zonelist_rescan = false;
2686
2687 /*
2688 * Scan zonelist, looking for a zone with enough free.
2689 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2690 */
2691 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2692 ac->nodemask) {
2693 struct page *page;
2694 unsigned long mark;
2695
2696 if (cpusets_enabled() &&
2697 (alloc_flags & ALLOC_CPUSET) &&
2698 !cpuset_zone_allowed(zone, gfp_mask))
2699 continue;
2700 /*
2701 * Distribute pages in proportion to the individual
2702 * zone size to ensure fair page aging. The zone a
2703 * page was allocated in should have no effect on the
2704 * time the page has in memory before being reclaimed.
2705 */
2706 if (alloc_flags & ALLOC_FAIR) {
2707 if (!zone_local(ac->preferred_zone, zone))
2708 break;
2709 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2710 fair_skipped = true;
2711 continue;
2712 }
2713 }
2714 /*
2715 * When allocating a page cache page for writing, we
2716 * want to get it from a zone that is within its dirty
2717 * limit, such that no single zone holds more than its
2718 * proportional share of globally allowed dirty pages.
2719 * The dirty limits take into account the zone's
2720 * lowmem reserves and high watermark so that kswapd
2721 * should be able to balance it without having to
2722 * write pages from its LRU list.
2723 *
2724 * This may look like it could increase pressure on
2725 * lower zones by failing allocations in higher zones
2726 * before they are full. But the pages that do spill
2727 * over are limited as the lower zones are protected
2728 * by this very same mechanism. It should not become
2729 * a practical burden to them.
2730 *
2731 * XXX: For now, allow allocations to potentially
2732 * exceed the per-zone dirty limit in the slowpath
2733 * (spread_dirty_pages unset) before going into reclaim,
2734 * which is important when on a NUMA setup the allowed
2735 * zones are together not big enough to reach the
2736 * global limit. The proper fix for these situations
2737 * will require awareness of zones in the
2738 * dirty-throttling and the flusher threads.
2739 */
2740 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2741 continue;
2742
2743 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2744 if (!zone_watermark_ok(zone, order, mark,
2745 ac->classzone_idx, alloc_flags)) {
2746 int ret;
2747
2748 /* Checked here to keep the fast path fast */
2749 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2750 if (alloc_flags & ALLOC_NO_WATERMARKS)
2751 goto try_this_zone;
2752
2753 if (zone_reclaim_mode == 0 ||
2754 !zone_allows_reclaim(ac->preferred_zone, zone))
2755 continue;
2756
2757 ret = zone_reclaim(zone, gfp_mask, order);
2758 switch (ret) {
2759 case ZONE_RECLAIM_NOSCAN:
2760 /* did not scan */
2761 continue;
2762 case ZONE_RECLAIM_FULL:
2763 /* scanned but unreclaimable */
2764 continue;
2765 default:
2766 /* did we reclaim enough */
2767 if (zone_watermark_ok(zone, order, mark,
2768 ac->classzone_idx, alloc_flags))
2769 goto try_this_zone;
2770
2771 continue;
2772 }
2773 }
2774
2775 try_this_zone:
2776 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2777 gfp_mask, alloc_flags, ac->migratetype);
2778 if (page) {
2779 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2780 goto try_this_zone;
2781
2782 /*
2783 * If this is a high-order atomic allocation then check
2784 * if the pageblock should be reserved for the future
2785 */
2786 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2787 reserve_highatomic_pageblock(page, zone, order);
2788
2789 return page;
2790 }
2791 }
2792
2793 /*
2794 * The first pass makes sure allocations are spread fairly within the
2795 * local node. However, the local node might have free pages left
2796 * after the fairness batches are exhausted, and remote zones haven't
2797 * even been considered yet. Try once more without fairness, and
2798 * include remote zones now, before entering the slowpath and waking
2799 * kswapd: prefer spilling to a remote zone over swapping locally.
2800 */
2801 if (alloc_flags & ALLOC_FAIR) {
2802 alloc_flags &= ~ALLOC_FAIR;
2803 if (fair_skipped) {
2804 zonelist_rescan = true;
2805 reset_alloc_batches(ac->preferred_zone);
2806 }
2807 if (nr_online_nodes > 1)
2808 zonelist_rescan = true;
2809 }
2810
2811 if (zonelist_rescan)
2812 goto zonelist_scan;
2813
2814 return NULL;
2815 }
2816
2817 /*
2818 * Large machines with many possible nodes should not always dump per-node
2819 * meminfo in irq context.
2820 */
2821 static inline bool should_suppress_show_mem(void)
2822 {
2823 bool ret = false;
2824
2825 #if NODES_SHIFT > 8
2826 ret = in_interrupt();
2827 #endif
2828 return ret;
2829 }
2830
2831 static DEFINE_RATELIMIT_STATE(nopage_rs,
2832 DEFAULT_RATELIMIT_INTERVAL,
2833 DEFAULT_RATELIMIT_BURST);
2834
2835 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2836 {
2837 unsigned int filter = SHOW_MEM_FILTER_NODES;
2838
2839 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2840 debug_guardpage_minorder() > 0)
2841 return;
2842
2843 /*
2844 * This documents exceptions given to allocations in certain
2845 * contexts that are allowed to allocate outside current's set
2846 * of allowed nodes.
2847 */
2848 if (!(gfp_mask & __GFP_NOMEMALLOC))
2849 if (test_thread_flag(TIF_MEMDIE) ||
2850 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2851 filter &= ~SHOW_MEM_FILTER_NODES;
2852 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2853 filter &= ~SHOW_MEM_FILTER_NODES;
2854
2855 if (fmt) {
2856 struct va_format vaf;
2857 va_list args;
2858
2859 va_start(args, fmt);
2860
2861 vaf.fmt = fmt;
2862 vaf.va = &args;
2863
2864 pr_warn("%pV", &vaf);
2865
2866 va_end(args);
2867 }
2868
2869 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2870 current->comm, order, gfp_mask, &gfp_mask);
2871 dump_stack();
2872 if (!should_suppress_show_mem())
2873 show_mem(filter);
2874 }
2875
2876 static inline struct page *
2877 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2878 const struct alloc_context *ac, unsigned long *did_some_progress)
2879 {
2880 struct oom_control oc = {
2881 .zonelist = ac->zonelist,
2882 .nodemask = ac->nodemask,
2883 .gfp_mask = gfp_mask,
2884 .order = order,
2885 };
2886 struct page *page;
2887
2888 *did_some_progress = 0;
2889
2890 /*
2891 * Acquire the oom lock. If that fails, somebody else is
2892 * making progress for us.
2893 */
2894 if (!mutex_trylock(&oom_lock)) {
2895 *did_some_progress = 1;
2896 schedule_timeout_uninterruptible(1);
2897 return NULL;
2898 }
2899
2900 /*
2901 * Go through the zonelist yet one more time, keep very high watermark
2902 * here, this is only to catch a parallel oom killing, we must fail if
2903 * we're still under heavy pressure.
2904 */
2905 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2906 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2907 if (page)
2908 goto out;
2909
2910 if (!(gfp_mask & __GFP_NOFAIL)) {
2911 /* Coredumps can quickly deplete all memory reserves */
2912 if (current->flags & PF_DUMPCORE)
2913 goto out;
2914 /* The OOM killer will not help higher order allocs */
2915 if (order > PAGE_ALLOC_COSTLY_ORDER)
2916 goto out;
2917 /* The OOM killer does not needlessly kill tasks for lowmem */
2918 if (ac->high_zoneidx < ZONE_NORMAL)
2919 goto out;
2920 if (pm_suspended_storage())
2921 goto out;
2922 /*
2923 * XXX: GFP_NOFS allocations should rather fail than rely on
2924 * other request to make a forward progress.
2925 * We are in an unfortunate situation where out_of_memory cannot
2926 * do much for this context but let's try it to at least get
2927 * access to memory reserved if the current task is killed (see
2928 * out_of_memory). Once filesystems are ready to handle allocation
2929 * failures more gracefully we should just bail out here.
2930 */
2931
2932 /* The OOM killer may not free memory on a specific node */
2933 if (gfp_mask & __GFP_THISNODE)
2934 goto out;
2935 }
2936 /* Exhausted what can be done so it's blamo time */
2937 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2938 *did_some_progress = 1;
2939
2940 if (gfp_mask & __GFP_NOFAIL) {
2941 page = get_page_from_freelist(gfp_mask, order,
2942 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2943 /*
2944 * fallback to ignore cpuset restriction if our nodes
2945 * are depleted
2946 */
2947 if (!page)
2948 page = get_page_from_freelist(gfp_mask, order,
2949 ALLOC_NO_WATERMARKS, ac);
2950 }
2951 }
2952 out:
2953 mutex_unlock(&oom_lock);
2954 return page;
2955 }
2956
2957 #ifdef CONFIG_COMPACTION
2958 /* Try memory compaction for high-order allocations before reclaim */
2959 static struct page *
2960 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2961 unsigned int alloc_flags, const struct alloc_context *ac,
2962 enum migrate_mode mode, int *contended_compaction,
2963 bool *deferred_compaction)
2964 {
2965 unsigned long compact_result;
2966 struct page *page;
2967
2968 if (!order)
2969 return NULL;
2970
2971 current->flags |= PF_MEMALLOC;
2972 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2973 mode, contended_compaction);
2974 current->flags &= ~PF_MEMALLOC;
2975
2976 switch (compact_result) {
2977 case COMPACT_DEFERRED:
2978 *deferred_compaction = true;
2979 /* fall-through */
2980 case COMPACT_SKIPPED:
2981 return NULL;
2982 default:
2983 break;
2984 }
2985
2986 /*
2987 * At least in one zone compaction wasn't deferred or skipped, so let's
2988 * count a compaction stall
2989 */
2990 count_vm_event(COMPACTSTALL);
2991
2992 page = get_page_from_freelist(gfp_mask, order,
2993 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2994
2995 if (page) {
2996 struct zone *zone = page_zone(page);
2997
2998 zone->compact_blockskip_flush = false;
2999 compaction_defer_reset(zone, order, true);
3000 count_vm_event(COMPACTSUCCESS);
3001 return page;
3002 }
3003
3004 /*
3005 * It's bad if compaction run occurs and fails. The most likely reason
3006 * is that pages exist, but not enough to satisfy watermarks.
3007 */
3008 count_vm_event(COMPACTFAIL);
3009
3010 cond_resched();
3011
3012 return NULL;
3013 }
3014 #else
3015 static inline struct page *
3016 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3017 unsigned int alloc_flags, const struct alloc_context *ac,
3018 enum migrate_mode mode, int *contended_compaction,
3019 bool *deferred_compaction)
3020 {
3021 return NULL;
3022 }
3023 #endif /* CONFIG_COMPACTION */
3024
3025 /* Perform direct synchronous page reclaim */
3026 static int
3027 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3028 const struct alloc_context *ac)
3029 {
3030 struct reclaim_state reclaim_state;
3031 int progress;
3032
3033 cond_resched();
3034
3035 /* We now go into synchronous reclaim */
3036 cpuset_memory_pressure_bump();
3037 current->flags |= PF_MEMALLOC;
3038 lockdep_set_current_reclaim_state(gfp_mask);
3039 reclaim_state.reclaimed_slab = 0;
3040 current->reclaim_state = &reclaim_state;
3041
3042 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3043 ac->nodemask);
3044
3045 current->reclaim_state = NULL;
3046 lockdep_clear_current_reclaim_state();
3047 current->flags &= ~PF_MEMALLOC;
3048
3049 cond_resched();
3050
3051 return progress;
3052 }
3053
3054 /* The really slow allocator path where we enter direct reclaim */
3055 static inline struct page *
3056 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3057 unsigned int alloc_flags, const struct alloc_context *ac,
3058 unsigned long *did_some_progress)
3059 {
3060 struct page *page = NULL;
3061 bool drained = false;
3062
3063 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3064 if (unlikely(!(*did_some_progress)))
3065 return NULL;
3066
3067 retry:
3068 page = get_page_from_freelist(gfp_mask, order,
3069 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3070
3071 /*
3072 * If an allocation failed after direct reclaim, it could be because
3073 * pages are pinned on the per-cpu lists or in high alloc reserves.
3074 * Shrink them them and try again
3075 */
3076 if (!page && !drained) {
3077 unreserve_highatomic_pageblock(ac);
3078 drain_all_pages(NULL);
3079 drained = true;
3080 goto retry;
3081 }
3082
3083 return page;
3084 }
3085
3086 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3087 {
3088 struct zoneref *z;
3089 struct zone *zone;
3090
3091 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3092 ac->high_zoneidx, ac->nodemask)
3093 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3094 }
3095
3096 static inline unsigned int
3097 gfp_to_alloc_flags(gfp_t gfp_mask)
3098 {
3099 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3100
3101 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3102 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3103
3104 /*
3105 * The caller may dip into page reserves a bit more if the caller
3106 * cannot run direct reclaim, or if the caller has realtime scheduling
3107 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3108 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3109 */
3110 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3111
3112 if (gfp_mask & __GFP_ATOMIC) {
3113 /*
3114 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3115 * if it can't schedule.
3116 */
3117 if (!(gfp_mask & __GFP_NOMEMALLOC))
3118 alloc_flags |= ALLOC_HARDER;
3119 /*
3120 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3121 * comment for __cpuset_node_allowed().
3122 */
3123 alloc_flags &= ~ALLOC_CPUSET;
3124 } else if (unlikely(rt_task(current)) && !in_interrupt())
3125 alloc_flags |= ALLOC_HARDER;
3126
3127 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3128 if (gfp_mask & __GFP_MEMALLOC)
3129 alloc_flags |= ALLOC_NO_WATERMARKS;
3130 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3131 alloc_flags |= ALLOC_NO_WATERMARKS;
3132 else if (!in_interrupt() &&
3133 ((current->flags & PF_MEMALLOC) ||
3134 unlikely(test_thread_flag(TIF_MEMDIE))))
3135 alloc_flags |= ALLOC_NO_WATERMARKS;
3136 }
3137 #ifdef CONFIG_CMA
3138 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3139 alloc_flags |= ALLOC_CMA;
3140 #endif
3141 return alloc_flags;
3142 }
3143
3144 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3145 {
3146 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3147 }
3148
3149 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3150 {
3151 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3152 }
3153
3154 static inline struct page *
3155 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3156 struct alloc_context *ac)
3157 {
3158 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3159 struct page *page = NULL;
3160 unsigned int alloc_flags;
3161 unsigned long pages_reclaimed = 0;
3162 unsigned long did_some_progress;
3163 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3164 bool deferred_compaction = false;
3165 int contended_compaction = COMPACT_CONTENDED_NONE;
3166
3167 /*
3168 * In the slowpath, we sanity check order to avoid ever trying to
3169 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3170 * be using allocators in order of preference for an area that is
3171 * too large.
3172 */
3173 if (order >= MAX_ORDER) {
3174 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3175 return NULL;
3176 }
3177
3178 /*
3179 * We also sanity check to catch abuse of atomic reserves being used by
3180 * callers that are not in atomic context.
3181 */
3182 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3183 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3184 gfp_mask &= ~__GFP_ATOMIC;
3185
3186 retry:
3187 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3188 wake_all_kswapds(order, ac);
3189
3190 /*
3191 * OK, we're below the kswapd watermark and have kicked background
3192 * reclaim. Now things get more complex, so set up alloc_flags according
3193 * to how we want to proceed.
3194 */
3195 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3196
3197 /* This is the last chance, in general, before the goto nopage. */
3198 page = get_page_from_freelist(gfp_mask, order,
3199 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3200 if (page)
3201 goto got_pg;
3202
3203 /* Allocate without watermarks if the context allows */
3204 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3205 /*
3206 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3207 * the allocation is high priority and these type of
3208 * allocations are system rather than user orientated
3209 */
3210 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3211 page = get_page_from_freelist(gfp_mask, order,
3212 ALLOC_NO_WATERMARKS, ac);
3213 if (page)
3214 goto got_pg;
3215 }
3216
3217 /* Caller is not willing to reclaim, we can't balance anything */
3218 if (!can_direct_reclaim) {
3219 /*
3220 * All existing users of the __GFP_NOFAIL are blockable, so warn
3221 * of any new users that actually allow this type of allocation
3222 * to fail.
3223 */
3224 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3225 goto nopage;
3226 }
3227
3228 /* Avoid recursion of direct reclaim */
3229 if (current->flags & PF_MEMALLOC) {
3230 /*
3231 * __GFP_NOFAIL request from this context is rather bizarre
3232 * because we cannot reclaim anything and only can loop waiting
3233 * for somebody to do a work for us.
3234 */
3235 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3236 cond_resched();
3237 goto retry;
3238 }
3239 goto nopage;
3240 }
3241
3242 /* Avoid allocations with no watermarks from looping endlessly */
3243 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3244 goto nopage;
3245
3246 /*
3247 * Try direct compaction. The first pass is asynchronous. Subsequent
3248 * attempts after direct reclaim are synchronous
3249 */
3250 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3251 migration_mode,
3252 &contended_compaction,
3253 &deferred_compaction);
3254 if (page)
3255 goto got_pg;
3256
3257 /* Checks for THP-specific high-order allocations */
3258 if (is_thp_gfp_mask(gfp_mask)) {
3259 /*
3260 * If compaction is deferred for high-order allocations, it is
3261 * because sync compaction recently failed. If this is the case
3262 * and the caller requested a THP allocation, we do not want
3263 * to heavily disrupt the system, so we fail the allocation
3264 * instead of entering direct reclaim.
3265 */
3266 if (deferred_compaction)
3267 goto nopage;
3268
3269 /*
3270 * In all zones where compaction was attempted (and not
3271 * deferred or skipped), lock contention has been detected.
3272 * For THP allocation we do not want to disrupt the others
3273 * so we fallback to base pages instead.
3274 */
3275 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3276 goto nopage;
3277
3278 /*
3279 * If compaction was aborted due to need_resched(), we do not
3280 * want to further increase allocation latency, unless it is
3281 * khugepaged trying to collapse.
3282 */
3283 if (contended_compaction == COMPACT_CONTENDED_SCHED
3284 && !(current->flags & PF_KTHREAD))
3285 goto nopage;
3286 }
3287
3288 /*
3289 * It can become very expensive to allocate transparent hugepages at
3290 * fault, so use asynchronous memory compaction for THP unless it is
3291 * khugepaged trying to collapse.
3292 */
3293 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3294 migration_mode = MIGRATE_SYNC_LIGHT;
3295
3296 /* Try direct reclaim and then allocating */
3297 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3298 &did_some_progress);
3299 if (page)
3300 goto got_pg;
3301
3302 /* Do not loop if specifically requested */
3303 if (gfp_mask & __GFP_NORETRY)
3304 goto noretry;
3305
3306 /* Keep reclaiming pages as long as there is reasonable progress */
3307 pages_reclaimed += did_some_progress;
3308 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3309 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3310 /* Wait for some write requests to complete then retry */
3311 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3312 goto retry;
3313 }
3314
3315 /* Reclaim has failed us, start killing things */
3316 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3317 if (page)
3318 goto got_pg;
3319
3320 /* Retry as long as the OOM killer is making progress */
3321 if (did_some_progress)
3322 goto retry;
3323
3324 noretry:
3325 /*
3326 * High-order allocations do not necessarily loop after
3327 * direct reclaim and reclaim/compaction depends on compaction
3328 * being called after reclaim so call directly if necessary
3329 */
3330 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3331 ac, migration_mode,
3332 &contended_compaction,
3333 &deferred_compaction);
3334 if (page)
3335 goto got_pg;
3336 nopage:
3337 warn_alloc_failed(gfp_mask, order, NULL);
3338 got_pg:
3339 return page;
3340 }
3341
3342 /*
3343 * This is the 'heart' of the zoned buddy allocator.
3344 */
3345 struct page *
3346 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3347 struct zonelist *zonelist, nodemask_t *nodemask)
3348 {
3349 struct zoneref *preferred_zoneref;
3350 struct page *page;
3351 unsigned int cpuset_mems_cookie;
3352 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3353 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3354 struct alloc_context ac = {
3355 .high_zoneidx = gfp_zone(gfp_mask),
3356 .zonelist = zonelist,
3357 .nodemask = nodemask,
3358 .migratetype = gfpflags_to_migratetype(gfp_mask),
3359 };
3360
3361 if (cpusets_enabled()) {
3362 alloc_mask |= __GFP_HARDWALL;
3363 alloc_flags |= ALLOC_CPUSET;
3364 if (!ac.nodemask)
3365 ac.nodemask = &cpuset_current_mems_allowed;
3366 }
3367
3368 gfp_mask &= gfp_allowed_mask;
3369
3370 lockdep_trace_alloc(gfp_mask);
3371
3372 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3373
3374 if (should_fail_alloc_page(gfp_mask, order))
3375 return NULL;
3376
3377 /*
3378 * Check the zones suitable for the gfp_mask contain at least one
3379 * valid zone. It's possible to have an empty zonelist as a result
3380 * of __GFP_THISNODE and a memoryless node
3381 */
3382 if (unlikely(!zonelist->_zonerefs->zone))
3383 return NULL;
3384
3385 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3386 alloc_flags |= ALLOC_CMA;
3387
3388 retry_cpuset:
3389 cpuset_mems_cookie = read_mems_allowed_begin();
3390
3391 /* Dirty zone balancing only done in the fast path */
3392 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3393
3394 /* The preferred zone is used for statistics later */
3395 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3396 ac.nodemask, &ac.preferred_zone);
3397 if (!ac.preferred_zone) {
3398 page = NULL;
3399 goto out;
3400 }
3401
3402 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3403
3404 /* First allocation attempt */
3405 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3406 if (unlikely(!page)) {
3407 /*
3408 * Runtime PM, block IO and its error handling path
3409 * can deadlock because I/O on the device might not
3410 * complete.
3411 */
3412 alloc_mask = memalloc_noio_flags(gfp_mask);
3413 ac.spread_dirty_pages = false;
3414
3415 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3416 }
3417
3418 if (kmemcheck_enabled && page)
3419 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3420
3421 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3422
3423 out:
3424 /*
3425 * When updating a task's mems_allowed, it is possible to race with
3426 * parallel threads in such a way that an allocation can fail while
3427 * the mask is being updated. If a page allocation is about to fail,
3428 * check if the cpuset changed during allocation and if so, retry.
3429 */
3430 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3431 alloc_mask = gfp_mask;
3432 goto retry_cpuset;
3433 }
3434
3435 return page;
3436 }
3437 EXPORT_SYMBOL(__alloc_pages_nodemask);
3438
3439 /*
3440 * Common helper functions.
3441 */
3442 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3443 {
3444 struct page *page;
3445
3446 /*
3447 * __get_free_pages() returns a 32-bit address, which cannot represent
3448 * a highmem page
3449 */
3450 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3451
3452 page = alloc_pages(gfp_mask, order);
3453 if (!page)
3454 return 0;
3455 return (unsigned long) page_address(page);
3456 }
3457 EXPORT_SYMBOL(__get_free_pages);
3458
3459 unsigned long get_zeroed_page(gfp_t gfp_mask)
3460 {
3461 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3462 }
3463 EXPORT_SYMBOL(get_zeroed_page);
3464
3465 void __free_pages(struct page *page, unsigned int order)
3466 {
3467 if (put_page_testzero(page)) {
3468 if (order == 0)
3469 free_hot_cold_page(page, false);
3470 else
3471 __free_pages_ok(page, order);
3472 }
3473 }
3474
3475 EXPORT_SYMBOL(__free_pages);
3476
3477 void free_pages(unsigned long addr, unsigned int order)
3478 {
3479 if (addr != 0) {
3480 VM_BUG_ON(!virt_addr_valid((void *)addr));
3481 __free_pages(virt_to_page((void *)addr), order);
3482 }
3483 }
3484
3485 EXPORT_SYMBOL(free_pages);
3486
3487 /*
3488 * Page Fragment:
3489 * An arbitrary-length arbitrary-offset area of memory which resides
3490 * within a 0 or higher order page. Multiple fragments within that page
3491 * are individually refcounted, in the page's reference counter.
3492 *
3493 * The page_frag functions below provide a simple allocation framework for
3494 * page fragments. This is used by the network stack and network device
3495 * drivers to provide a backing region of memory for use as either an
3496 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3497 */
3498 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3499 gfp_t gfp_mask)
3500 {
3501 struct page *page = NULL;
3502 gfp_t gfp = gfp_mask;
3503
3504 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3505 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3506 __GFP_NOMEMALLOC;
3507 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3508 PAGE_FRAG_CACHE_MAX_ORDER);
3509 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3510 #endif
3511 if (unlikely(!page))
3512 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3513
3514 nc->va = page ? page_address(page) : NULL;
3515
3516 return page;
3517 }
3518
3519 void *__alloc_page_frag(struct page_frag_cache *nc,
3520 unsigned int fragsz, gfp_t gfp_mask)
3521 {
3522 unsigned int size = PAGE_SIZE;
3523 struct page *page;
3524 int offset;
3525
3526 if (unlikely(!nc->va)) {
3527 refill:
3528 page = __page_frag_refill(nc, gfp_mask);
3529 if (!page)
3530 return NULL;
3531
3532 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3533 /* if size can vary use size else just use PAGE_SIZE */
3534 size = nc->size;
3535 #endif
3536 /* Even if we own the page, we do not use atomic_set().
3537 * This would break get_page_unless_zero() users.
3538 */
3539 page_ref_add(page, size - 1);
3540
3541 /* reset page count bias and offset to start of new frag */
3542 nc->pfmemalloc = page_is_pfmemalloc(page);
3543 nc->pagecnt_bias = size;
3544 nc->offset = size;
3545 }
3546
3547 offset = nc->offset - fragsz;
3548 if (unlikely(offset < 0)) {
3549 page = virt_to_page(nc->va);
3550
3551 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3552 goto refill;
3553
3554 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3555 /* if size can vary use size else just use PAGE_SIZE */
3556 size = nc->size;
3557 #endif
3558 /* OK, page count is 0, we can safely set it */
3559 set_page_count(page, size);
3560
3561 /* reset page count bias and offset to start of new frag */
3562 nc->pagecnt_bias = size;
3563 offset = size - fragsz;
3564 }
3565
3566 nc->pagecnt_bias--;
3567 nc->offset = offset;
3568
3569 return nc->va + offset;
3570 }
3571 EXPORT_SYMBOL(__alloc_page_frag);
3572
3573 /*
3574 * Frees a page fragment allocated out of either a compound or order 0 page.
3575 */
3576 void __free_page_frag(void *addr)
3577 {
3578 struct page *page = virt_to_head_page(addr);
3579
3580 if (unlikely(put_page_testzero(page)))
3581 __free_pages_ok(page, compound_order(page));
3582 }
3583 EXPORT_SYMBOL(__free_page_frag);
3584
3585 /*
3586 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3587 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3588 * equivalent to alloc_pages.
3589 *
3590 * It should be used when the caller would like to use kmalloc, but since the
3591 * allocation is large, it has to fall back to the page allocator.
3592 */
3593 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3594 {
3595 struct page *page;
3596
3597 page = alloc_pages(gfp_mask, order);
3598 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3599 __free_pages(page, order);
3600 page = NULL;
3601 }
3602 return page;
3603 }
3604
3605 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3606 {
3607 struct page *page;
3608
3609 page = alloc_pages_node(nid, gfp_mask, order);
3610 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3611 __free_pages(page, order);
3612 page = NULL;
3613 }
3614 return page;
3615 }
3616
3617 /*
3618 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3619 * alloc_kmem_pages.
3620 */
3621 void __free_kmem_pages(struct page *page, unsigned int order)
3622 {
3623 memcg_kmem_uncharge(page, order);
3624 __free_pages(page, order);
3625 }
3626
3627 void free_kmem_pages(unsigned long addr, unsigned int order)
3628 {
3629 if (addr != 0) {
3630 VM_BUG_ON(!virt_addr_valid((void *)addr));
3631 __free_kmem_pages(virt_to_page((void *)addr), order);
3632 }
3633 }
3634
3635 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3636 size_t size)
3637 {
3638 if (addr) {
3639 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3640 unsigned long used = addr + PAGE_ALIGN(size);
3641
3642 split_page(virt_to_page((void *)addr), order);
3643 while (used < alloc_end) {
3644 free_page(used);
3645 used += PAGE_SIZE;
3646 }
3647 }
3648 return (void *)addr;
3649 }
3650
3651 /**
3652 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3653 * @size: the number of bytes to allocate
3654 * @gfp_mask: GFP flags for the allocation
3655 *
3656 * This function is similar to alloc_pages(), except that it allocates the
3657 * minimum number of pages to satisfy the request. alloc_pages() can only
3658 * allocate memory in power-of-two pages.
3659 *
3660 * This function is also limited by MAX_ORDER.
3661 *
3662 * Memory allocated by this function must be released by free_pages_exact().
3663 */
3664 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3665 {
3666 unsigned int order = get_order(size);
3667 unsigned long addr;
3668
3669 addr = __get_free_pages(gfp_mask, order);
3670 return make_alloc_exact(addr, order, size);
3671 }
3672 EXPORT_SYMBOL(alloc_pages_exact);
3673
3674 /**
3675 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3676 * pages on a node.
3677 * @nid: the preferred node ID where memory should be allocated
3678 * @size: the number of bytes to allocate
3679 * @gfp_mask: GFP flags for the allocation
3680 *
3681 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3682 * back.
3683 */
3684 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3685 {
3686 unsigned int order = get_order(size);
3687 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3688 if (!p)
3689 return NULL;
3690 return make_alloc_exact((unsigned long)page_address(p), order, size);
3691 }
3692
3693 /**
3694 * free_pages_exact - release memory allocated via alloc_pages_exact()
3695 * @virt: the value returned by alloc_pages_exact.
3696 * @size: size of allocation, same value as passed to alloc_pages_exact().
3697 *
3698 * Release the memory allocated by a previous call to alloc_pages_exact.
3699 */
3700 void free_pages_exact(void *virt, size_t size)
3701 {
3702 unsigned long addr = (unsigned long)virt;
3703 unsigned long end = addr + PAGE_ALIGN(size);
3704
3705 while (addr < end) {
3706 free_page(addr);
3707 addr += PAGE_SIZE;
3708 }
3709 }
3710 EXPORT_SYMBOL(free_pages_exact);
3711
3712 /**
3713 * nr_free_zone_pages - count number of pages beyond high watermark
3714 * @offset: The zone index of the highest zone
3715 *
3716 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3717 * high watermark within all zones at or below a given zone index. For each
3718 * zone, the number of pages is calculated as:
3719 * managed_pages - high_pages
3720 */
3721 static unsigned long nr_free_zone_pages(int offset)
3722 {
3723 struct zoneref *z;
3724 struct zone *zone;
3725
3726 /* Just pick one node, since fallback list is circular */
3727 unsigned long sum = 0;
3728
3729 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3730
3731 for_each_zone_zonelist(zone, z, zonelist, offset) {
3732 unsigned long size = zone->managed_pages;
3733 unsigned long high = high_wmark_pages(zone);
3734 if (size > high)
3735 sum += size - high;
3736 }
3737
3738 return sum;
3739 }
3740
3741 /**
3742 * nr_free_buffer_pages - count number of pages beyond high watermark
3743 *
3744 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3745 * watermark within ZONE_DMA and ZONE_NORMAL.
3746 */
3747 unsigned long nr_free_buffer_pages(void)
3748 {
3749 return nr_free_zone_pages(gfp_zone(GFP_USER));
3750 }
3751 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3752
3753 /**
3754 * nr_free_pagecache_pages - count number of pages beyond high watermark
3755 *
3756 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3757 * high watermark within all zones.
3758 */
3759 unsigned long nr_free_pagecache_pages(void)
3760 {
3761 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3762 }
3763
3764 static inline void show_node(struct zone *zone)
3765 {
3766 if (IS_ENABLED(CONFIG_NUMA))
3767 printk("Node %d ", zone_to_nid(zone));
3768 }
3769
3770 long si_mem_available(void)
3771 {
3772 long available;
3773 unsigned long pagecache;
3774 unsigned long wmark_low = 0;
3775 unsigned long pages[NR_LRU_LISTS];
3776 struct zone *zone;
3777 int lru;
3778
3779 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3780 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3781
3782 for_each_zone(zone)
3783 wmark_low += zone->watermark[WMARK_LOW];
3784
3785 /*
3786 * Estimate the amount of memory available for userspace allocations,
3787 * without causing swapping.
3788 */
3789 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3790
3791 /*
3792 * Not all the page cache can be freed, otherwise the system will
3793 * start swapping. Assume at least half of the page cache, or the
3794 * low watermark worth of cache, needs to stay.
3795 */
3796 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3797 pagecache -= min(pagecache / 2, wmark_low);
3798 available += pagecache;
3799
3800 /*
3801 * Part of the reclaimable slab consists of items that are in use,
3802 * and cannot be freed. Cap this estimate at the low watermark.
3803 */
3804 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3805 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3806
3807 if (available < 0)
3808 available = 0;
3809 return available;
3810 }
3811 EXPORT_SYMBOL_GPL(si_mem_available);
3812
3813 void si_meminfo(struct sysinfo *val)
3814 {
3815 val->totalram = totalram_pages;
3816 val->sharedram = global_page_state(NR_SHMEM);
3817 val->freeram = global_page_state(NR_FREE_PAGES);
3818 val->bufferram = nr_blockdev_pages();
3819 val->totalhigh = totalhigh_pages;
3820 val->freehigh = nr_free_highpages();
3821 val->mem_unit = PAGE_SIZE;
3822 }
3823
3824 EXPORT_SYMBOL(si_meminfo);
3825
3826 #ifdef CONFIG_NUMA
3827 void si_meminfo_node(struct sysinfo *val, int nid)
3828 {
3829 int zone_type; /* needs to be signed */
3830 unsigned long managed_pages = 0;
3831 unsigned long managed_highpages = 0;
3832 unsigned long free_highpages = 0;
3833 pg_data_t *pgdat = NODE_DATA(nid);
3834
3835 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3836 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3837 val->totalram = managed_pages;
3838 val->sharedram = node_page_state(nid, NR_SHMEM);
3839 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3840 #ifdef CONFIG_HIGHMEM
3841 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3842 struct zone *zone = &pgdat->node_zones[zone_type];
3843
3844 if (is_highmem(zone)) {
3845 managed_highpages += zone->managed_pages;
3846 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3847 }
3848 }
3849 val->totalhigh = managed_highpages;
3850 val->freehigh = free_highpages;
3851 #else
3852 val->totalhigh = managed_highpages;
3853 val->freehigh = free_highpages;
3854 #endif
3855 val->mem_unit = PAGE_SIZE;
3856 }
3857 #endif
3858
3859 /*
3860 * Determine whether the node should be displayed or not, depending on whether
3861 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3862 */
3863 bool skip_free_areas_node(unsigned int flags, int nid)
3864 {
3865 bool ret = false;
3866 unsigned int cpuset_mems_cookie;
3867
3868 if (!(flags & SHOW_MEM_FILTER_NODES))
3869 goto out;
3870
3871 do {
3872 cpuset_mems_cookie = read_mems_allowed_begin();
3873 ret = !node_isset(nid, cpuset_current_mems_allowed);
3874 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3875 out:
3876 return ret;
3877 }
3878
3879 #define K(x) ((x) << (PAGE_SHIFT-10))
3880
3881 static void show_migration_types(unsigned char type)
3882 {
3883 static const char types[MIGRATE_TYPES] = {
3884 [MIGRATE_UNMOVABLE] = 'U',
3885 [MIGRATE_MOVABLE] = 'M',
3886 [MIGRATE_RECLAIMABLE] = 'E',
3887 [MIGRATE_HIGHATOMIC] = 'H',
3888 #ifdef CONFIG_CMA
3889 [MIGRATE_CMA] = 'C',
3890 #endif
3891 #ifdef CONFIG_MEMORY_ISOLATION
3892 [MIGRATE_ISOLATE] = 'I',
3893 #endif
3894 };
3895 char tmp[MIGRATE_TYPES + 1];
3896 char *p = tmp;
3897 int i;
3898
3899 for (i = 0; i < MIGRATE_TYPES; i++) {
3900 if (type & (1 << i))
3901 *p++ = types[i];
3902 }
3903
3904 *p = '\0';
3905 printk("(%s) ", tmp);
3906 }
3907
3908 /*
3909 * Show free area list (used inside shift_scroll-lock stuff)
3910 * We also calculate the percentage fragmentation. We do this by counting the
3911 * memory on each free list with the exception of the first item on the list.
3912 *
3913 * Bits in @filter:
3914 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3915 * cpuset.
3916 */
3917 void show_free_areas(unsigned int filter)
3918 {
3919 unsigned long free_pcp = 0;
3920 int cpu;
3921 struct zone *zone;
3922
3923 for_each_populated_zone(zone) {
3924 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3925 continue;
3926
3927 for_each_online_cpu(cpu)
3928 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3929 }
3930
3931 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3932 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3933 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3934 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3935 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3936 " free:%lu free_pcp:%lu free_cma:%lu\n",
3937 global_page_state(NR_ACTIVE_ANON),
3938 global_page_state(NR_INACTIVE_ANON),
3939 global_page_state(NR_ISOLATED_ANON),
3940 global_page_state(NR_ACTIVE_FILE),
3941 global_page_state(NR_INACTIVE_FILE),
3942 global_page_state(NR_ISOLATED_FILE),
3943 global_page_state(NR_UNEVICTABLE),
3944 global_page_state(NR_FILE_DIRTY),
3945 global_page_state(NR_WRITEBACK),
3946 global_page_state(NR_UNSTABLE_NFS),
3947 global_page_state(NR_SLAB_RECLAIMABLE),
3948 global_page_state(NR_SLAB_UNRECLAIMABLE),
3949 global_page_state(NR_FILE_MAPPED),
3950 global_page_state(NR_SHMEM),
3951 global_page_state(NR_PAGETABLE),
3952 global_page_state(NR_BOUNCE),
3953 global_page_state(NR_FREE_PAGES),
3954 free_pcp,
3955 global_page_state(NR_FREE_CMA_PAGES));
3956
3957 for_each_populated_zone(zone) {
3958 int i;
3959
3960 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3961 continue;
3962
3963 free_pcp = 0;
3964 for_each_online_cpu(cpu)
3965 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3966
3967 show_node(zone);
3968 printk("%s"
3969 " free:%lukB"
3970 " min:%lukB"
3971 " low:%lukB"
3972 " high:%lukB"
3973 " active_anon:%lukB"
3974 " inactive_anon:%lukB"
3975 " active_file:%lukB"
3976 " inactive_file:%lukB"
3977 " unevictable:%lukB"
3978 " isolated(anon):%lukB"
3979 " isolated(file):%lukB"
3980 " present:%lukB"
3981 " managed:%lukB"
3982 " mlocked:%lukB"
3983 " dirty:%lukB"
3984 " writeback:%lukB"
3985 " mapped:%lukB"
3986 " shmem:%lukB"
3987 " slab_reclaimable:%lukB"
3988 " slab_unreclaimable:%lukB"
3989 " kernel_stack:%lukB"
3990 " pagetables:%lukB"
3991 " unstable:%lukB"
3992 " bounce:%lukB"
3993 " free_pcp:%lukB"
3994 " local_pcp:%ukB"
3995 " free_cma:%lukB"
3996 " writeback_tmp:%lukB"
3997 " pages_scanned:%lu"
3998 " all_unreclaimable? %s"
3999 "\n",
4000 zone->name,
4001 K(zone_page_state(zone, NR_FREE_PAGES)),
4002 K(min_wmark_pages(zone)),
4003 K(low_wmark_pages(zone)),
4004 K(high_wmark_pages(zone)),
4005 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4006 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4007 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4008 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4009 K(zone_page_state(zone, NR_UNEVICTABLE)),
4010 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4011 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4012 K(zone->present_pages),
4013 K(zone->managed_pages),
4014 K(zone_page_state(zone, NR_MLOCK)),
4015 K(zone_page_state(zone, NR_FILE_DIRTY)),
4016 K(zone_page_state(zone, NR_WRITEBACK)),
4017 K(zone_page_state(zone, NR_FILE_MAPPED)),
4018 K(zone_page_state(zone, NR_SHMEM)),
4019 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4020 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4021 zone_page_state(zone, NR_KERNEL_STACK) *
4022 THREAD_SIZE / 1024,
4023 K(zone_page_state(zone, NR_PAGETABLE)),
4024 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4025 K(zone_page_state(zone, NR_BOUNCE)),
4026 K(free_pcp),
4027 K(this_cpu_read(zone->pageset->pcp.count)),
4028 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4029 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4030 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4031 (!zone_reclaimable(zone) ? "yes" : "no")
4032 );
4033 printk("lowmem_reserve[]:");
4034 for (i = 0; i < MAX_NR_ZONES; i++)
4035 printk(" %ld", zone->lowmem_reserve[i]);
4036 printk("\n");
4037 }
4038
4039 for_each_populated_zone(zone) {
4040 unsigned int order;
4041 unsigned long nr[MAX_ORDER], flags, total = 0;
4042 unsigned char types[MAX_ORDER];
4043
4044 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4045 continue;
4046 show_node(zone);
4047 printk("%s: ", zone->name);
4048
4049 spin_lock_irqsave(&zone->lock, flags);
4050 for (order = 0; order < MAX_ORDER; order++) {
4051 struct free_area *area = &zone->free_area[order];
4052 int type;
4053
4054 nr[order] = area->nr_free;
4055 total += nr[order] << order;
4056
4057 types[order] = 0;
4058 for (type = 0; type < MIGRATE_TYPES; type++) {
4059 if (!list_empty(&area->free_list[type]))
4060 types[order] |= 1 << type;
4061 }
4062 }
4063 spin_unlock_irqrestore(&zone->lock, flags);
4064 for (order = 0; order < MAX_ORDER; order++) {
4065 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4066 if (nr[order])
4067 show_migration_types(types[order]);
4068 }
4069 printk("= %lukB\n", K(total));
4070 }
4071
4072 hugetlb_show_meminfo();
4073
4074 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4075
4076 show_swap_cache_info();
4077 }
4078
4079 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4080 {
4081 zoneref->zone = zone;
4082 zoneref->zone_idx = zone_idx(zone);
4083 }
4084
4085 /*
4086 * Builds allocation fallback zone lists.
4087 *
4088 * Add all populated zones of a node to the zonelist.
4089 */
4090 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4091 int nr_zones)
4092 {
4093 struct zone *zone;
4094 enum zone_type zone_type = MAX_NR_ZONES;
4095
4096 do {
4097 zone_type--;
4098 zone = pgdat->node_zones + zone_type;
4099 if (populated_zone(zone)) {
4100 zoneref_set_zone(zone,
4101 &zonelist->_zonerefs[nr_zones++]);
4102 check_highest_zone(zone_type);
4103 }
4104 } while (zone_type);
4105
4106 return nr_zones;
4107 }
4108
4109
4110 /*
4111 * zonelist_order:
4112 * 0 = automatic detection of better ordering.
4113 * 1 = order by ([node] distance, -zonetype)
4114 * 2 = order by (-zonetype, [node] distance)
4115 *
4116 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4117 * the same zonelist. So only NUMA can configure this param.
4118 */
4119 #define ZONELIST_ORDER_DEFAULT 0
4120 #define ZONELIST_ORDER_NODE 1
4121 #define ZONELIST_ORDER_ZONE 2
4122
4123 /* zonelist order in the kernel.
4124 * set_zonelist_order() will set this to NODE or ZONE.
4125 */
4126 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4127 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4128
4129
4130 #ifdef CONFIG_NUMA
4131 /* The value user specified ....changed by config */
4132 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4133 /* string for sysctl */
4134 #define NUMA_ZONELIST_ORDER_LEN 16
4135 char numa_zonelist_order[16] = "default";
4136
4137 /*
4138 * interface for configure zonelist ordering.
4139 * command line option "numa_zonelist_order"
4140 * = "[dD]efault - default, automatic configuration.
4141 * = "[nN]ode - order by node locality, then by zone within node
4142 * = "[zZ]one - order by zone, then by locality within zone
4143 */
4144
4145 static int __parse_numa_zonelist_order(char *s)
4146 {
4147 if (*s == 'd' || *s == 'D') {
4148 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4149 } else if (*s == 'n' || *s == 'N') {
4150 user_zonelist_order = ZONELIST_ORDER_NODE;
4151 } else if (*s == 'z' || *s == 'Z') {
4152 user_zonelist_order = ZONELIST_ORDER_ZONE;
4153 } else {
4154 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4155 return -EINVAL;
4156 }
4157 return 0;
4158 }
4159
4160 static __init int setup_numa_zonelist_order(char *s)
4161 {
4162 int ret;
4163
4164 if (!s)
4165 return 0;
4166
4167 ret = __parse_numa_zonelist_order(s);
4168 if (ret == 0)
4169 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4170
4171 return ret;
4172 }
4173 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4174
4175 /*
4176 * sysctl handler for numa_zonelist_order
4177 */
4178 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4179 void __user *buffer, size_t *length,
4180 loff_t *ppos)
4181 {
4182 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4183 int ret;
4184 static DEFINE_MUTEX(zl_order_mutex);
4185
4186 mutex_lock(&zl_order_mutex);
4187 if (write) {
4188 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4189 ret = -EINVAL;
4190 goto out;
4191 }
4192 strcpy(saved_string, (char *)table->data);
4193 }
4194 ret = proc_dostring(table, write, buffer, length, ppos);
4195 if (ret)
4196 goto out;
4197 if (write) {
4198 int oldval = user_zonelist_order;
4199
4200 ret = __parse_numa_zonelist_order((char *)table->data);
4201 if (ret) {
4202 /*
4203 * bogus value. restore saved string
4204 */
4205 strncpy((char *)table->data, saved_string,
4206 NUMA_ZONELIST_ORDER_LEN);
4207 user_zonelist_order = oldval;
4208 } else if (oldval != user_zonelist_order) {
4209 mutex_lock(&zonelists_mutex);
4210 build_all_zonelists(NULL, NULL);
4211 mutex_unlock(&zonelists_mutex);
4212 }
4213 }
4214 out:
4215 mutex_unlock(&zl_order_mutex);
4216 return ret;
4217 }
4218
4219
4220 #define MAX_NODE_LOAD (nr_online_nodes)
4221 static int node_load[MAX_NUMNODES];
4222
4223 /**
4224 * find_next_best_node - find the next node that should appear in a given node's fallback list
4225 * @node: node whose fallback list we're appending
4226 * @used_node_mask: nodemask_t of already used nodes
4227 *
4228 * We use a number of factors to determine which is the next node that should
4229 * appear on a given node's fallback list. The node should not have appeared
4230 * already in @node's fallback list, and it should be the next closest node
4231 * according to the distance array (which contains arbitrary distance values
4232 * from each node to each node in the system), and should also prefer nodes
4233 * with no CPUs, since presumably they'll have very little allocation pressure
4234 * on them otherwise.
4235 * It returns -1 if no node is found.
4236 */
4237 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4238 {
4239 int n, val;
4240 int min_val = INT_MAX;
4241 int best_node = NUMA_NO_NODE;
4242 const struct cpumask *tmp = cpumask_of_node(0);
4243
4244 /* Use the local node if we haven't already */
4245 if (!node_isset(node, *used_node_mask)) {
4246 node_set(node, *used_node_mask);
4247 return node;
4248 }
4249
4250 for_each_node_state(n, N_MEMORY) {
4251
4252 /* Don't want a node to appear more than once */
4253 if (node_isset(n, *used_node_mask))
4254 continue;
4255
4256 /* Use the distance array to find the distance */
4257 val = node_distance(node, n);
4258
4259 /* Penalize nodes under us ("prefer the next node") */
4260 val += (n < node);
4261
4262 /* Give preference to headless and unused nodes */
4263 tmp = cpumask_of_node(n);
4264 if (!cpumask_empty(tmp))
4265 val += PENALTY_FOR_NODE_WITH_CPUS;
4266
4267 /* Slight preference for less loaded node */
4268 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4269 val += node_load[n];
4270
4271 if (val < min_val) {
4272 min_val = val;
4273 best_node = n;
4274 }
4275 }
4276
4277 if (best_node >= 0)
4278 node_set(best_node, *used_node_mask);
4279
4280 return best_node;
4281 }
4282
4283
4284 /*
4285 * Build zonelists ordered by node and zones within node.
4286 * This results in maximum locality--normal zone overflows into local
4287 * DMA zone, if any--but risks exhausting DMA zone.
4288 */
4289 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4290 {
4291 int j;
4292 struct zonelist *zonelist;
4293
4294 zonelist = &pgdat->node_zonelists[0];
4295 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4296 ;
4297 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4298 zonelist->_zonerefs[j].zone = NULL;
4299 zonelist->_zonerefs[j].zone_idx = 0;
4300 }
4301
4302 /*
4303 * Build gfp_thisnode zonelists
4304 */
4305 static void build_thisnode_zonelists(pg_data_t *pgdat)
4306 {
4307 int j;
4308 struct zonelist *zonelist;
4309
4310 zonelist = &pgdat->node_zonelists[1];
4311 j = build_zonelists_node(pgdat, zonelist, 0);
4312 zonelist->_zonerefs[j].zone = NULL;
4313 zonelist->_zonerefs[j].zone_idx = 0;
4314 }
4315
4316 /*
4317 * Build zonelists ordered by zone and nodes within zones.
4318 * This results in conserving DMA zone[s] until all Normal memory is
4319 * exhausted, but results in overflowing to remote node while memory
4320 * may still exist in local DMA zone.
4321 */
4322 static int node_order[MAX_NUMNODES];
4323
4324 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4325 {
4326 int pos, j, node;
4327 int zone_type; /* needs to be signed */
4328 struct zone *z;
4329 struct zonelist *zonelist;
4330
4331 zonelist = &pgdat->node_zonelists[0];
4332 pos = 0;
4333 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4334 for (j = 0; j < nr_nodes; j++) {
4335 node = node_order[j];
4336 z = &NODE_DATA(node)->node_zones[zone_type];
4337 if (populated_zone(z)) {
4338 zoneref_set_zone(z,
4339 &zonelist->_zonerefs[pos++]);
4340 check_highest_zone(zone_type);
4341 }
4342 }
4343 }
4344 zonelist->_zonerefs[pos].zone = NULL;
4345 zonelist->_zonerefs[pos].zone_idx = 0;
4346 }
4347
4348 #if defined(CONFIG_64BIT)
4349 /*
4350 * Devices that require DMA32/DMA are relatively rare and do not justify a
4351 * penalty to every machine in case the specialised case applies. Default
4352 * to Node-ordering on 64-bit NUMA machines
4353 */
4354 static int default_zonelist_order(void)
4355 {
4356 return ZONELIST_ORDER_NODE;
4357 }
4358 #else
4359 /*
4360 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4361 * by the kernel. If processes running on node 0 deplete the low memory zone
4362 * then reclaim will occur more frequency increasing stalls and potentially
4363 * be easier to OOM if a large percentage of the zone is under writeback or
4364 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4365 * Hence, default to zone ordering on 32-bit.
4366 */
4367 static int default_zonelist_order(void)
4368 {
4369 return ZONELIST_ORDER_ZONE;
4370 }
4371 #endif /* CONFIG_64BIT */
4372
4373 static void set_zonelist_order(void)
4374 {
4375 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4376 current_zonelist_order = default_zonelist_order();
4377 else
4378 current_zonelist_order = user_zonelist_order;
4379 }
4380
4381 static void build_zonelists(pg_data_t *pgdat)
4382 {
4383 int i, node, load;
4384 nodemask_t used_mask;
4385 int local_node, prev_node;
4386 struct zonelist *zonelist;
4387 unsigned int order = current_zonelist_order;
4388
4389 /* initialize zonelists */
4390 for (i = 0; i < MAX_ZONELISTS; i++) {
4391 zonelist = pgdat->node_zonelists + i;
4392 zonelist->_zonerefs[0].zone = NULL;
4393 zonelist->_zonerefs[0].zone_idx = 0;
4394 }
4395
4396 /* NUMA-aware ordering of nodes */
4397 local_node = pgdat->node_id;
4398 load = nr_online_nodes;
4399 prev_node = local_node;
4400 nodes_clear(used_mask);
4401
4402 memset(node_order, 0, sizeof(node_order));
4403 i = 0;
4404
4405 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4406 /*
4407 * We don't want to pressure a particular node.
4408 * So adding penalty to the first node in same
4409 * distance group to make it round-robin.
4410 */
4411 if (node_distance(local_node, node) !=
4412 node_distance(local_node, prev_node))
4413 node_load[node] = load;
4414
4415 prev_node = node;
4416 load--;
4417 if (order == ZONELIST_ORDER_NODE)
4418 build_zonelists_in_node_order(pgdat, node);
4419 else
4420 node_order[i++] = node; /* remember order */
4421 }
4422
4423 if (order == ZONELIST_ORDER_ZONE) {
4424 /* calculate node order -- i.e., DMA last! */
4425 build_zonelists_in_zone_order(pgdat, i);
4426 }
4427
4428 build_thisnode_zonelists(pgdat);
4429 }
4430
4431 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4432 /*
4433 * Return node id of node used for "local" allocations.
4434 * I.e., first node id of first zone in arg node's generic zonelist.
4435 * Used for initializing percpu 'numa_mem', which is used primarily
4436 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4437 */
4438 int local_memory_node(int node)
4439 {
4440 struct zone *zone;
4441
4442 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4443 gfp_zone(GFP_KERNEL),
4444 NULL,
4445 &zone);
4446 return zone->node;
4447 }
4448 #endif
4449
4450 #else /* CONFIG_NUMA */
4451
4452 static void set_zonelist_order(void)
4453 {
4454 current_zonelist_order = ZONELIST_ORDER_ZONE;
4455 }
4456
4457 static void build_zonelists(pg_data_t *pgdat)
4458 {
4459 int node, local_node;
4460 enum zone_type j;
4461 struct zonelist *zonelist;
4462
4463 local_node = pgdat->node_id;
4464
4465 zonelist = &pgdat->node_zonelists[0];
4466 j = build_zonelists_node(pgdat, zonelist, 0);
4467
4468 /*
4469 * Now we build the zonelist so that it contains the zones
4470 * of all the other nodes.
4471 * We don't want to pressure a particular node, so when
4472 * building the zones for node N, we make sure that the
4473 * zones coming right after the local ones are those from
4474 * node N+1 (modulo N)
4475 */
4476 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4477 if (!node_online(node))
4478 continue;
4479 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4480 }
4481 for (node = 0; node < local_node; node++) {
4482 if (!node_online(node))
4483 continue;
4484 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4485 }
4486
4487 zonelist->_zonerefs[j].zone = NULL;
4488 zonelist->_zonerefs[j].zone_idx = 0;
4489 }
4490
4491 #endif /* CONFIG_NUMA */
4492
4493 /*
4494 * Boot pageset table. One per cpu which is going to be used for all
4495 * zones and all nodes. The parameters will be set in such a way
4496 * that an item put on a list will immediately be handed over to
4497 * the buddy list. This is safe since pageset manipulation is done
4498 * with interrupts disabled.
4499 *
4500 * The boot_pagesets must be kept even after bootup is complete for
4501 * unused processors and/or zones. They do play a role for bootstrapping
4502 * hotplugged processors.
4503 *
4504 * zoneinfo_show() and maybe other functions do
4505 * not check if the processor is online before following the pageset pointer.
4506 * Other parts of the kernel may not check if the zone is available.
4507 */
4508 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4509 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4510 static void setup_zone_pageset(struct zone *zone);
4511
4512 /*
4513 * Global mutex to protect against size modification of zonelists
4514 * as well as to serialize pageset setup for the new populated zone.
4515 */
4516 DEFINE_MUTEX(zonelists_mutex);
4517
4518 /* return values int ....just for stop_machine() */
4519 static int __build_all_zonelists(void *data)
4520 {
4521 int nid;
4522 int cpu;
4523 pg_data_t *self = data;
4524
4525 #ifdef CONFIG_NUMA
4526 memset(node_load, 0, sizeof(node_load));
4527 #endif
4528
4529 if (self && !node_online(self->node_id)) {
4530 build_zonelists(self);
4531 }
4532
4533 for_each_online_node(nid) {
4534 pg_data_t *pgdat = NODE_DATA(nid);
4535
4536 build_zonelists(pgdat);
4537 }
4538
4539 /*
4540 * Initialize the boot_pagesets that are going to be used
4541 * for bootstrapping processors. The real pagesets for
4542 * each zone will be allocated later when the per cpu
4543 * allocator is available.
4544 *
4545 * boot_pagesets are used also for bootstrapping offline
4546 * cpus if the system is already booted because the pagesets
4547 * are needed to initialize allocators on a specific cpu too.
4548 * F.e. the percpu allocator needs the page allocator which
4549 * needs the percpu allocator in order to allocate its pagesets
4550 * (a chicken-egg dilemma).
4551 */
4552 for_each_possible_cpu(cpu) {
4553 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4554
4555 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4556 /*
4557 * We now know the "local memory node" for each node--
4558 * i.e., the node of the first zone in the generic zonelist.
4559 * Set up numa_mem percpu variable for on-line cpus. During
4560 * boot, only the boot cpu should be on-line; we'll init the
4561 * secondary cpus' numa_mem as they come on-line. During
4562 * node/memory hotplug, we'll fixup all on-line cpus.
4563 */
4564 if (cpu_online(cpu))
4565 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4566 #endif
4567 }
4568
4569 return 0;
4570 }
4571
4572 static noinline void __init
4573 build_all_zonelists_init(void)
4574 {
4575 __build_all_zonelists(NULL);
4576 mminit_verify_zonelist();
4577 cpuset_init_current_mems_allowed();
4578 }
4579
4580 /*
4581 * Called with zonelists_mutex held always
4582 * unless system_state == SYSTEM_BOOTING.
4583 *
4584 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4585 * [we're only called with non-NULL zone through __meminit paths] and
4586 * (2) call of __init annotated helper build_all_zonelists_init
4587 * [protected by SYSTEM_BOOTING].
4588 */
4589 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4590 {
4591 set_zonelist_order();
4592
4593 if (system_state == SYSTEM_BOOTING) {
4594 build_all_zonelists_init();
4595 } else {
4596 #ifdef CONFIG_MEMORY_HOTPLUG
4597 if (zone)
4598 setup_zone_pageset(zone);
4599 #endif
4600 /* we have to stop all cpus to guarantee there is no user
4601 of zonelist */
4602 stop_machine(__build_all_zonelists, pgdat, NULL);
4603 /* cpuset refresh routine should be here */
4604 }
4605 vm_total_pages = nr_free_pagecache_pages();
4606 /*
4607 * Disable grouping by mobility if the number of pages in the
4608 * system is too low to allow the mechanism to work. It would be
4609 * more accurate, but expensive to check per-zone. This check is
4610 * made on memory-hotadd so a system can start with mobility
4611 * disabled and enable it later
4612 */
4613 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4614 page_group_by_mobility_disabled = 1;
4615 else
4616 page_group_by_mobility_disabled = 0;
4617
4618 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4619 nr_online_nodes,
4620 zonelist_order_name[current_zonelist_order],
4621 page_group_by_mobility_disabled ? "off" : "on",
4622 vm_total_pages);
4623 #ifdef CONFIG_NUMA
4624 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4625 #endif
4626 }
4627
4628 /*
4629 * Helper functions to size the waitqueue hash table.
4630 * Essentially these want to choose hash table sizes sufficiently
4631 * large so that collisions trying to wait on pages are rare.
4632 * But in fact, the number of active page waitqueues on typical
4633 * systems is ridiculously low, less than 200. So this is even
4634 * conservative, even though it seems large.
4635 *
4636 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4637 * waitqueues, i.e. the size of the waitq table given the number of pages.
4638 */
4639 #define PAGES_PER_WAITQUEUE 256
4640
4641 #ifndef CONFIG_MEMORY_HOTPLUG
4642 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4643 {
4644 unsigned long size = 1;
4645
4646 pages /= PAGES_PER_WAITQUEUE;
4647
4648 while (size < pages)
4649 size <<= 1;
4650
4651 /*
4652 * Once we have dozens or even hundreds of threads sleeping
4653 * on IO we've got bigger problems than wait queue collision.
4654 * Limit the size of the wait table to a reasonable size.
4655 */
4656 size = min(size, 4096UL);
4657
4658 return max(size, 4UL);
4659 }
4660 #else
4661 /*
4662 * A zone's size might be changed by hot-add, so it is not possible to determine
4663 * a suitable size for its wait_table. So we use the maximum size now.
4664 *
4665 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4666 *
4667 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4668 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4669 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4670 *
4671 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4672 * or more by the traditional way. (See above). It equals:
4673 *
4674 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4675 * ia64(16K page size) : = ( 8G + 4M)byte.
4676 * powerpc (64K page size) : = (32G +16M)byte.
4677 */
4678 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4679 {
4680 return 4096UL;
4681 }
4682 #endif
4683
4684 /*
4685 * This is an integer logarithm so that shifts can be used later
4686 * to extract the more random high bits from the multiplicative
4687 * hash function before the remainder is taken.
4688 */
4689 static inline unsigned long wait_table_bits(unsigned long size)
4690 {
4691 return ffz(~size);
4692 }
4693
4694 /*
4695 * Initially all pages are reserved - free ones are freed
4696 * up by free_all_bootmem() once the early boot process is
4697 * done. Non-atomic initialization, single-pass.
4698 */
4699 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4700 unsigned long start_pfn, enum memmap_context context)
4701 {
4702 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4703 unsigned long end_pfn = start_pfn + size;
4704 pg_data_t *pgdat = NODE_DATA(nid);
4705 unsigned long pfn;
4706 unsigned long nr_initialised = 0;
4707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4708 struct memblock_region *r = NULL, *tmp;
4709 #endif
4710
4711 if (highest_memmap_pfn < end_pfn - 1)
4712 highest_memmap_pfn = end_pfn - 1;
4713
4714 /*
4715 * Honor reservation requested by the driver for this ZONE_DEVICE
4716 * memory
4717 */
4718 if (altmap && start_pfn == altmap->base_pfn)
4719 start_pfn += altmap->reserve;
4720
4721 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4722 /*
4723 * There can be holes in boot-time mem_map[]s handed to this
4724 * function. They do not exist on hotplugged memory.
4725 */
4726 if (context != MEMMAP_EARLY)
4727 goto not_early;
4728
4729 if (!early_pfn_valid(pfn))
4730 continue;
4731 if (!early_pfn_in_nid(pfn, nid))
4732 continue;
4733 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4734 break;
4735
4736 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4737 /*
4738 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4739 * from zone_movable_pfn[nid] to end of each node should be
4740 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4741 */
4742 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4743 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4744 continue;
4745
4746 /*
4747 * Check given memblock attribute by firmware which can affect
4748 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4749 * mirrored, it's an overlapped memmap init. skip it.
4750 */
4751 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4752 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4753 for_each_memblock(memory, tmp)
4754 if (pfn < memblock_region_memory_end_pfn(tmp))
4755 break;
4756 r = tmp;
4757 }
4758 if (pfn >= memblock_region_memory_base_pfn(r) &&
4759 memblock_is_mirror(r)) {
4760 /* already initialized as NORMAL */
4761 pfn = memblock_region_memory_end_pfn(r);
4762 continue;
4763 }
4764 }
4765 #endif
4766
4767 not_early:
4768 /*
4769 * Mark the block movable so that blocks are reserved for
4770 * movable at startup. This will force kernel allocations
4771 * to reserve their blocks rather than leaking throughout
4772 * the address space during boot when many long-lived
4773 * kernel allocations are made.
4774 *
4775 * bitmap is created for zone's valid pfn range. but memmap
4776 * can be created for invalid pages (for alignment)
4777 * check here not to call set_pageblock_migratetype() against
4778 * pfn out of zone.
4779 */
4780 if (!(pfn & (pageblock_nr_pages - 1))) {
4781 struct page *page = pfn_to_page(pfn);
4782
4783 __init_single_page(page, pfn, zone, nid);
4784 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4785 } else {
4786 __init_single_pfn(pfn, zone, nid);
4787 }
4788 }
4789 }
4790
4791 static void __meminit zone_init_free_lists(struct zone *zone)
4792 {
4793 unsigned int order, t;
4794 for_each_migratetype_order(order, t) {
4795 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4796 zone->free_area[order].nr_free = 0;
4797 }
4798 }
4799
4800 #ifndef __HAVE_ARCH_MEMMAP_INIT
4801 #define memmap_init(size, nid, zone, start_pfn) \
4802 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4803 #endif
4804
4805 static int zone_batchsize(struct zone *zone)
4806 {
4807 #ifdef CONFIG_MMU
4808 int batch;
4809
4810 /*
4811 * The per-cpu-pages pools are set to around 1000th of the
4812 * size of the zone. But no more than 1/2 of a meg.
4813 *
4814 * OK, so we don't know how big the cache is. So guess.
4815 */
4816 batch = zone->managed_pages / 1024;
4817 if (batch * PAGE_SIZE > 512 * 1024)
4818 batch = (512 * 1024) / PAGE_SIZE;
4819 batch /= 4; /* We effectively *= 4 below */
4820 if (batch < 1)
4821 batch = 1;
4822
4823 /*
4824 * Clamp the batch to a 2^n - 1 value. Having a power
4825 * of 2 value was found to be more likely to have
4826 * suboptimal cache aliasing properties in some cases.
4827 *
4828 * For example if 2 tasks are alternately allocating
4829 * batches of pages, one task can end up with a lot
4830 * of pages of one half of the possible page colors
4831 * and the other with pages of the other colors.
4832 */
4833 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4834
4835 return batch;
4836
4837 #else
4838 /* The deferral and batching of frees should be suppressed under NOMMU
4839 * conditions.
4840 *
4841 * The problem is that NOMMU needs to be able to allocate large chunks
4842 * of contiguous memory as there's no hardware page translation to
4843 * assemble apparent contiguous memory from discontiguous pages.
4844 *
4845 * Queueing large contiguous runs of pages for batching, however,
4846 * causes the pages to actually be freed in smaller chunks. As there
4847 * can be a significant delay between the individual batches being
4848 * recycled, this leads to the once large chunks of space being
4849 * fragmented and becoming unavailable for high-order allocations.
4850 */
4851 return 0;
4852 #endif
4853 }
4854
4855 /*
4856 * pcp->high and pcp->batch values are related and dependent on one another:
4857 * ->batch must never be higher then ->high.
4858 * The following function updates them in a safe manner without read side
4859 * locking.
4860 *
4861 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4862 * those fields changing asynchronously (acording the the above rule).
4863 *
4864 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4865 * outside of boot time (or some other assurance that no concurrent updaters
4866 * exist).
4867 */
4868 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4869 unsigned long batch)
4870 {
4871 /* start with a fail safe value for batch */
4872 pcp->batch = 1;
4873 smp_wmb();
4874
4875 /* Update high, then batch, in order */
4876 pcp->high = high;
4877 smp_wmb();
4878
4879 pcp->batch = batch;
4880 }
4881
4882 /* a companion to pageset_set_high() */
4883 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4884 {
4885 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4886 }
4887
4888 static void pageset_init(struct per_cpu_pageset *p)
4889 {
4890 struct per_cpu_pages *pcp;
4891 int migratetype;
4892
4893 memset(p, 0, sizeof(*p));
4894
4895 pcp = &p->pcp;
4896 pcp->count = 0;
4897 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4898 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4899 }
4900
4901 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4902 {
4903 pageset_init(p);
4904 pageset_set_batch(p, batch);
4905 }
4906
4907 /*
4908 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4909 * to the value high for the pageset p.
4910 */
4911 static void pageset_set_high(struct per_cpu_pageset *p,
4912 unsigned long high)
4913 {
4914 unsigned long batch = max(1UL, high / 4);
4915 if ((high / 4) > (PAGE_SHIFT * 8))
4916 batch = PAGE_SHIFT * 8;
4917
4918 pageset_update(&p->pcp, high, batch);
4919 }
4920
4921 static void pageset_set_high_and_batch(struct zone *zone,
4922 struct per_cpu_pageset *pcp)
4923 {
4924 if (percpu_pagelist_fraction)
4925 pageset_set_high(pcp,
4926 (zone->managed_pages /
4927 percpu_pagelist_fraction));
4928 else
4929 pageset_set_batch(pcp, zone_batchsize(zone));
4930 }
4931
4932 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4933 {
4934 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4935
4936 pageset_init(pcp);
4937 pageset_set_high_and_batch(zone, pcp);
4938 }
4939
4940 static void __meminit setup_zone_pageset(struct zone *zone)
4941 {
4942 int cpu;
4943 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4944 for_each_possible_cpu(cpu)
4945 zone_pageset_init(zone, cpu);
4946 }
4947
4948 /*
4949 * Allocate per cpu pagesets and initialize them.
4950 * Before this call only boot pagesets were available.
4951 */
4952 void __init setup_per_cpu_pageset(void)
4953 {
4954 struct zone *zone;
4955
4956 for_each_populated_zone(zone)
4957 setup_zone_pageset(zone);
4958 }
4959
4960 static noinline __init_refok
4961 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4962 {
4963 int i;
4964 size_t alloc_size;
4965
4966 /*
4967 * The per-page waitqueue mechanism uses hashed waitqueues
4968 * per zone.
4969 */
4970 zone->wait_table_hash_nr_entries =
4971 wait_table_hash_nr_entries(zone_size_pages);
4972 zone->wait_table_bits =
4973 wait_table_bits(zone->wait_table_hash_nr_entries);
4974 alloc_size = zone->wait_table_hash_nr_entries
4975 * sizeof(wait_queue_head_t);
4976
4977 if (!slab_is_available()) {
4978 zone->wait_table = (wait_queue_head_t *)
4979 memblock_virt_alloc_node_nopanic(
4980 alloc_size, zone->zone_pgdat->node_id);
4981 } else {
4982 /*
4983 * This case means that a zone whose size was 0 gets new memory
4984 * via memory hot-add.
4985 * But it may be the case that a new node was hot-added. In
4986 * this case vmalloc() will not be able to use this new node's
4987 * memory - this wait_table must be initialized to use this new
4988 * node itself as well.
4989 * To use this new node's memory, further consideration will be
4990 * necessary.
4991 */
4992 zone->wait_table = vmalloc(alloc_size);
4993 }
4994 if (!zone->wait_table)
4995 return -ENOMEM;
4996
4997 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4998 init_waitqueue_head(zone->wait_table + i);
4999
5000 return 0;
5001 }
5002
5003 static __meminit void zone_pcp_init(struct zone *zone)
5004 {
5005 /*
5006 * per cpu subsystem is not up at this point. The following code
5007 * relies on the ability of the linker to provide the
5008 * offset of a (static) per cpu variable into the per cpu area.
5009 */
5010 zone->pageset = &boot_pageset;
5011
5012 if (populated_zone(zone))
5013 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5014 zone->name, zone->present_pages,
5015 zone_batchsize(zone));
5016 }
5017
5018 int __meminit init_currently_empty_zone(struct zone *zone,
5019 unsigned long zone_start_pfn,
5020 unsigned long size)
5021 {
5022 struct pglist_data *pgdat = zone->zone_pgdat;
5023 int ret;
5024 ret = zone_wait_table_init(zone, size);
5025 if (ret)
5026 return ret;
5027 pgdat->nr_zones = zone_idx(zone) + 1;
5028
5029 zone->zone_start_pfn = zone_start_pfn;
5030
5031 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5032 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5033 pgdat->node_id,
5034 (unsigned long)zone_idx(zone),
5035 zone_start_pfn, (zone_start_pfn + size));
5036
5037 zone_init_free_lists(zone);
5038
5039 return 0;
5040 }
5041
5042 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5043 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5044
5045 /*
5046 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5047 */
5048 int __meminit __early_pfn_to_nid(unsigned long pfn,
5049 struct mminit_pfnnid_cache *state)
5050 {
5051 unsigned long start_pfn, end_pfn;
5052 int nid;
5053
5054 if (state->last_start <= pfn && pfn < state->last_end)
5055 return state->last_nid;
5056
5057 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5058 if (nid != -1) {
5059 state->last_start = start_pfn;
5060 state->last_end = end_pfn;
5061 state->last_nid = nid;
5062 }
5063
5064 return nid;
5065 }
5066 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5067
5068 /**
5069 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5070 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5071 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5072 *
5073 * If an architecture guarantees that all ranges registered contain no holes
5074 * and may be freed, this this function may be used instead of calling
5075 * memblock_free_early_nid() manually.
5076 */
5077 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5078 {
5079 unsigned long start_pfn, end_pfn;
5080 int i, this_nid;
5081
5082 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5083 start_pfn = min(start_pfn, max_low_pfn);
5084 end_pfn = min(end_pfn, max_low_pfn);
5085
5086 if (start_pfn < end_pfn)
5087 memblock_free_early_nid(PFN_PHYS(start_pfn),
5088 (end_pfn - start_pfn) << PAGE_SHIFT,
5089 this_nid);
5090 }
5091 }
5092
5093 /**
5094 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5095 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5096 *
5097 * If an architecture guarantees that all ranges registered contain no holes and may
5098 * be freed, this function may be used instead of calling memory_present() manually.
5099 */
5100 void __init sparse_memory_present_with_active_regions(int nid)
5101 {
5102 unsigned long start_pfn, end_pfn;
5103 int i, this_nid;
5104
5105 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5106 memory_present(this_nid, start_pfn, end_pfn);
5107 }
5108
5109 /**
5110 * get_pfn_range_for_nid - Return the start and end page frames for a node
5111 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5112 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5113 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5114 *
5115 * It returns the start and end page frame of a node based on information
5116 * provided by memblock_set_node(). If called for a node
5117 * with no available memory, a warning is printed and the start and end
5118 * PFNs will be 0.
5119 */
5120 void __meminit get_pfn_range_for_nid(unsigned int nid,
5121 unsigned long *start_pfn, unsigned long *end_pfn)
5122 {
5123 unsigned long this_start_pfn, this_end_pfn;
5124 int i;
5125
5126 *start_pfn = -1UL;
5127 *end_pfn = 0;
5128
5129 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5130 *start_pfn = min(*start_pfn, this_start_pfn);
5131 *end_pfn = max(*end_pfn, this_end_pfn);
5132 }
5133
5134 if (*start_pfn == -1UL)
5135 *start_pfn = 0;
5136 }
5137
5138 /*
5139 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5140 * assumption is made that zones within a node are ordered in monotonic
5141 * increasing memory addresses so that the "highest" populated zone is used
5142 */
5143 static void __init find_usable_zone_for_movable(void)
5144 {
5145 int zone_index;
5146 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5147 if (zone_index == ZONE_MOVABLE)
5148 continue;
5149
5150 if (arch_zone_highest_possible_pfn[zone_index] >
5151 arch_zone_lowest_possible_pfn[zone_index])
5152 break;
5153 }
5154
5155 VM_BUG_ON(zone_index == -1);
5156 movable_zone = zone_index;
5157 }
5158
5159 /*
5160 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5161 * because it is sized independent of architecture. Unlike the other zones,
5162 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5163 * in each node depending on the size of each node and how evenly kernelcore
5164 * is distributed. This helper function adjusts the zone ranges
5165 * provided by the architecture for a given node by using the end of the
5166 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5167 * zones within a node are in order of monotonic increases memory addresses
5168 */
5169 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5170 unsigned long zone_type,
5171 unsigned long node_start_pfn,
5172 unsigned long node_end_pfn,
5173 unsigned long *zone_start_pfn,
5174 unsigned long *zone_end_pfn)
5175 {
5176 /* Only adjust if ZONE_MOVABLE is on this node */
5177 if (zone_movable_pfn[nid]) {
5178 /* Size ZONE_MOVABLE */
5179 if (zone_type == ZONE_MOVABLE) {
5180 *zone_start_pfn = zone_movable_pfn[nid];
5181 *zone_end_pfn = min(node_end_pfn,
5182 arch_zone_highest_possible_pfn[movable_zone]);
5183
5184 /* Check if this whole range is within ZONE_MOVABLE */
5185 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5186 *zone_start_pfn = *zone_end_pfn;
5187 }
5188 }
5189
5190 /*
5191 * Return the number of pages a zone spans in a node, including holes
5192 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5193 */
5194 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5195 unsigned long zone_type,
5196 unsigned long node_start_pfn,
5197 unsigned long node_end_pfn,
5198 unsigned long *zone_start_pfn,
5199 unsigned long *zone_end_pfn,
5200 unsigned long *ignored)
5201 {
5202 /* When hotadd a new node from cpu_up(), the node should be empty */
5203 if (!node_start_pfn && !node_end_pfn)
5204 return 0;
5205
5206 /* Get the start and end of the zone */
5207 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5208 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5209 adjust_zone_range_for_zone_movable(nid, zone_type,
5210 node_start_pfn, node_end_pfn,
5211 zone_start_pfn, zone_end_pfn);
5212
5213 /* Check that this node has pages within the zone's required range */
5214 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5215 return 0;
5216
5217 /* Move the zone boundaries inside the node if necessary */
5218 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5219 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5220
5221 /* Return the spanned pages */
5222 return *zone_end_pfn - *zone_start_pfn;
5223 }
5224
5225 /*
5226 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5227 * then all holes in the requested range will be accounted for.
5228 */
5229 unsigned long __meminit __absent_pages_in_range(int nid,
5230 unsigned long range_start_pfn,
5231 unsigned long range_end_pfn)
5232 {
5233 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5234 unsigned long start_pfn, end_pfn;
5235 int i;
5236
5237 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5238 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5239 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5240 nr_absent -= end_pfn - start_pfn;
5241 }
5242 return nr_absent;
5243 }
5244
5245 /**
5246 * absent_pages_in_range - Return number of page frames in holes within a range
5247 * @start_pfn: The start PFN to start searching for holes
5248 * @end_pfn: The end PFN to stop searching for holes
5249 *
5250 * It returns the number of pages frames in memory holes within a range.
5251 */
5252 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5253 unsigned long end_pfn)
5254 {
5255 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5256 }
5257
5258 /* Return the number of page frames in holes in a zone on a node */
5259 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5260 unsigned long zone_type,
5261 unsigned long node_start_pfn,
5262 unsigned long node_end_pfn,
5263 unsigned long *ignored)
5264 {
5265 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5266 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5267 unsigned long zone_start_pfn, zone_end_pfn;
5268 unsigned long nr_absent;
5269
5270 /* When hotadd a new node from cpu_up(), the node should be empty */
5271 if (!node_start_pfn && !node_end_pfn)
5272 return 0;
5273
5274 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5275 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5276
5277 adjust_zone_range_for_zone_movable(nid, zone_type,
5278 node_start_pfn, node_end_pfn,
5279 &zone_start_pfn, &zone_end_pfn);
5280 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5281
5282 /*
5283 * ZONE_MOVABLE handling.
5284 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5285 * and vice versa.
5286 */
5287 if (zone_movable_pfn[nid]) {
5288 if (mirrored_kernelcore) {
5289 unsigned long start_pfn, end_pfn;
5290 struct memblock_region *r;
5291
5292 for_each_memblock(memory, r) {
5293 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5294 zone_start_pfn, zone_end_pfn);
5295 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5296 zone_start_pfn, zone_end_pfn);
5297
5298 if (zone_type == ZONE_MOVABLE &&
5299 memblock_is_mirror(r))
5300 nr_absent += end_pfn - start_pfn;
5301
5302 if (zone_type == ZONE_NORMAL &&
5303 !memblock_is_mirror(r))
5304 nr_absent += end_pfn - start_pfn;
5305 }
5306 } else {
5307 if (zone_type == ZONE_NORMAL)
5308 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5309 }
5310 }
5311
5312 return nr_absent;
5313 }
5314
5315 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5316 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5317 unsigned long zone_type,
5318 unsigned long node_start_pfn,
5319 unsigned long node_end_pfn,
5320 unsigned long *zone_start_pfn,
5321 unsigned long *zone_end_pfn,
5322 unsigned long *zones_size)
5323 {
5324 unsigned int zone;
5325
5326 *zone_start_pfn = node_start_pfn;
5327 for (zone = 0; zone < zone_type; zone++)
5328 *zone_start_pfn += zones_size[zone];
5329
5330 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5331
5332 return zones_size[zone_type];
5333 }
5334
5335 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5336 unsigned long zone_type,
5337 unsigned long node_start_pfn,
5338 unsigned long node_end_pfn,
5339 unsigned long *zholes_size)
5340 {
5341 if (!zholes_size)
5342 return 0;
5343
5344 return zholes_size[zone_type];
5345 }
5346
5347 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5348
5349 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5350 unsigned long node_start_pfn,
5351 unsigned long node_end_pfn,
5352 unsigned long *zones_size,
5353 unsigned long *zholes_size)
5354 {
5355 unsigned long realtotalpages = 0, totalpages = 0;
5356 enum zone_type i;
5357
5358 for (i = 0; i < MAX_NR_ZONES; i++) {
5359 struct zone *zone = pgdat->node_zones + i;
5360 unsigned long zone_start_pfn, zone_end_pfn;
5361 unsigned long size, real_size;
5362
5363 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5364 node_start_pfn,
5365 node_end_pfn,
5366 &zone_start_pfn,
5367 &zone_end_pfn,
5368 zones_size);
5369 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5370 node_start_pfn, node_end_pfn,
5371 zholes_size);
5372 if (size)
5373 zone->zone_start_pfn = zone_start_pfn;
5374 else
5375 zone->zone_start_pfn = 0;
5376 zone->spanned_pages = size;
5377 zone->present_pages = real_size;
5378
5379 totalpages += size;
5380 realtotalpages += real_size;
5381 }
5382
5383 pgdat->node_spanned_pages = totalpages;
5384 pgdat->node_present_pages = realtotalpages;
5385 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5386 realtotalpages);
5387 }
5388
5389 #ifndef CONFIG_SPARSEMEM
5390 /*
5391 * Calculate the size of the zone->blockflags rounded to an unsigned long
5392 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5393 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5394 * round what is now in bits to nearest long in bits, then return it in
5395 * bytes.
5396 */
5397 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5398 {
5399 unsigned long usemapsize;
5400
5401 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5402 usemapsize = roundup(zonesize, pageblock_nr_pages);
5403 usemapsize = usemapsize >> pageblock_order;
5404 usemapsize *= NR_PAGEBLOCK_BITS;
5405 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5406
5407 return usemapsize / 8;
5408 }
5409
5410 static void __init setup_usemap(struct pglist_data *pgdat,
5411 struct zone *zone,
5412 unsigned long zone_start_pfn,
5413 unsigned long zonesize)
5414 {
5415 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5416 zone->pageblock_flags = NULL;
5417 if (usemapsize)
5418 zone->pageblock_flags =
5419 memblock_virt_alloc_node_nopanic(usemapsize,
5420 pgdat->node_id);
5421 }
5422 #else
5423 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5424 unsigned long zone_start_pfn, unsigned long zonesize) {}
5425 #endif /* CONFIG_SPARSEMEM */
5426
5427 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5428
5429 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5430 void __paginginit set_pageblock_order(void)
5431 {
5432 unsigned int order;
5433
5434 /* Check that pageblock_nr_pages has not already been setup */
5435 if (pageblock_order)
5436 return;
5437
5438 if (HPAGE_SHIFT > PAGE_SHIFT)
5439 order = HUGETLB_PAGE_ORDER;
5440 else
5441 order = MAX_ORDER - 1;
5442
5443 /*
5444 * Assume the largest contiguous order of interest is a huge page.
5445 * This value may be variable depending on boot parameters on IA64 and
5446 * powerpc.
5447 */
5448 pageblock_order = order;
5449 }
5450 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5451
5452 /*
5453 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5454 * is unused as pageblock_order is set at compile-time. See
5455 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5456 * the kernel config
5457 */
5458 void __paginginit set_pageblock_order(void)
5459 {
5460 }
5461
5462 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5463
5464 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5465 unsigned long present_pages)
5466 {
5467 unsigned long pages = spanned_pages;
5468
5469 /*
5470 * Provide a more accurate estimation if there are holes within
5471 * the zone and SPARSEMEM is in use. If there are holes within the
5472 * zone, each populated memory region may cost us one or two extra
5473 * memmap pages due to alignment because memmap pages for each
5474 * populated regions may not naturally algined on page boundary.
5475 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5476 */
5477 if (spanned_pages > present_pages + (present_pages >> 4) &&
5478 IS_ENABLED(CONFIG_SPARSEMEM))
5479 pages = present_pages;
5480
5481 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5482 }
5483
5484 /*
5485 * Set up the zone data structures:
5486 * - mark all pages reserved
5487 * - mark all memory queues empty
5488 * - clear the memory bitmaps
5489 *
5490 * NOTE: pgdat should get zeroed by caller.
5491 */
5492 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5493 {
5494 enum zone_type j;
5495 int nid = pgdat->node_id;
5496 int ret;
5497
5498 pgdat_resize_init(pgdat);
5499 #ifdef CONFIG_NUMA_BALANCING
5500 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5501 pgdat->numabalancing_migrate_nr_pages = 0;
5502 pgdat->numabalancing_migrate_next_window = jiffies;
5503 #endif
5504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5505 spin_lock_init(&pgdat->split_queue_lock);
5506 INIT_LIST_HEAD(&pgdat->split_queue);
5507 pgdat->split_queue_len = 0;
5508 #endif
5509 init_waitqueue_head(&pgdat->kswapd_wait);
5510 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5511 #ifdef CONFIG_COMPACTION
5512 init_waitqueue_head(&pgdat->kcompactd_wait);
5513 #endif
5514 pgdat_page_ext_init(pgdat);
5515
5516 for (j = 0; j < MAX_NR_ZONES; j++) {
5517 struct zone *zone = pgdat->node_zones + j;
5518 unsigned long size, realsize, freesize, memmap_pages;
5519 unsigned long zone_start_pfn = zone->zone_start_pfn;
5520
5521 size = zone->spanned_pages;
5522 realsize = freesize = zone->present_pages;
5523
5524 /*
5525 * Adjust freesize so that it accounts for how much memory
5526 * is used by this zone for memmap. This affects the watermark
5527 * and per-cpu initialisations
5528 */
5529 memmap_pages = calc_memmap_size(size, realsize);
5530 if (!is_highmem_idx(j)) {
5531 if (freesize >= memmap_pages) {
5532 freesize -= memmap_pages;
5533 if (memmap_pages)
5534 printk(KERN_DEBUG
5535 " %s zone: %lu pages used for memmap\n",
5536 zone_names[j], memmap_pages);
5537 } else
5538 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5539 zone_names[j], memmap_pages, freesize);
5540 }
5541
5542 /* Account for reserved pages */
5543 if (j == 0 && freesize > dma_reserve) {
5544 freesize -= dma_reserve;
5545 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5546 zone_names[0], dma_reserve);
5547 }
5548
5549 if (!is_highmem_idx(j))
5550 nr_kernel_pages += freesize;
5551 /* Charge for highmem memmap if there are enough kernel pages */
5552 else if (nr_kernel_pages > memmap_pages * 2)
5553 nr_kernel_pages -= memmap_pages;
5554 nr_all_pages += freesize;
5555
5556 /*
5557 * Set an approximate value for lowmem here, it will be adjusted
5558 * when the bootmem allocator frees pages into the buddy system.
5559 * And all highmem pages will be managed by the buddy system.
5560 */
5561 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5562 #ifdef CONFIG_NUMA
5563 zone->node = nid;
5564 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5565 / 100;
5566 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5567 #endif
5568 zone->name = zone_names[j];
5569 spin_lock_init(&zone->lock);
5570 spin_lock_init(&zone->lru_lock);
5571 zone_seqlock_init(zone);
5572 zone->zone_pgdat = pgdat;
5573 zone_pcp_init(zone);
5574
5575 /* For bootup, initialized properly in watermark setup */
5576 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5577
5578 lruvec_init(&zone->lruvec);
5579 if (!size)
5580 continue;
5581
5582 set_pageblock_order();
5583 setup_usemap(pgdat, zone, zone_start_pfn, size);
5584 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5585 BUG_ON(ret);
5586 memmap_init(size, nid, j, zone_start_pfn);
5587 }
5588 }
5589
5590 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5591 {
5592 unsigned long __maybe_unused start = 0;
5593 unsigned long __maybe_unused offset = 0;
5594
5595 /* Skip empty nodes */
5596 if (!pgdat->node_spanned_pages)
5597 return;
5598
5599 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5600 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5601 offset = pgdat->node_start_pfn - start;
5602 /* ia64 gets its own node_mem_map, before this, without bootmem */
5603 if (!pgdat->node_mem_map) {
5604 unsigned long size, end;
5605 struct page *map;
5606
5607 /*
5608 * The zone's endpoints aren't required to be MAX_ORDER
5609 * aligned but the node_mem_map endpoints must be in order
5610 * for the buddy allocator to function correctly.
5611 */
5612 end = pgdat_end_pfn(pgdat);
5613 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5614 size = (end - start) * sizeof(struct page);
5615 map = alloc_remap(pgdat->node_id, size);
5616 if (!map)
5617 map = memblock_virt_alloc_node_nopanic(size,
5618 pgdat->node_id);
5619 pgdat->node_mem_map = map + offset;
5620 }
5621 #ifndef CONFIG_NEED_MULTIPLE_NODES
5622 /*
5623 * With no DISCONTIG, the global mem_map is just set as node 0's
5624 */
5625 if (pgdat == NODE_DATA(0)) {
5626 mem_map = NODE_DATA(0)->node_mem_map;
5627 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5628 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5629 mem_map -= offset;
5630 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5631 }
5632 #endif
5633 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5634 }
5635
5636 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5637 unsigned long node_start_pfn, unsigned long *zholes_size)
5638 {
5639 pg_data_t *pgdat = NODE_DATA(nid);
5640 unsigned long start_pfn = 0;
5641 unsigned long end_pfn = 0;
5642
5643 /* pg_data_t should be reset to zero when it's allocated */
5644 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5645
5646 reset_deferred_meminit(pgdat);
5647 pgdat->node_id = nid;
5648 pgdat->node_start_pfn = node_start_pfn;
5649 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5650 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5651 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5652 (u64)start_pfn << PAGE_SHIFT,
5653 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5654 #else
5655 start_pfn = node_start_pfn;
5656 #endif
5657 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5658 zones_size, zholes_size);
5659
5660 alloc_node_mem_map(pgdat);
5661 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5662 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5663 nid, (unsigned long)pgdat,
5664 (unsigned long)pgdat->node_mem_map);
5665 #endif
5666
5667 free_area_init_core(pgdat);
5668 }
5669
5670 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5671
5672 #if MAX_NUMNODES > 1
5673 /*
5674 * Figure out the number of possible node ids.
5675 */
5676 void __init setup_nr_node_ids(void)
5677 {
5678 unsigned int highest;
5679
5680 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5681 nr_node_ids = highest + 1;
5682 }
5683 #endif
5684
5685 /**
5686 * node_map_pfn_alignment - determine the maximum internode alignment
5687 *
5688 * This function should be called after node map is populated and sorted.
5689 * It calculates the maximum power of two alignment which can distinguish
5690 * all the nodes.
5691 *
5692 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5693 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5694 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5695 * shifted, 1GiB is enough and this function will indicate so.
5696 *
5697 * This is used to test whether pfn -> nid mapping of the chosen memory
5698 * model has fine enough granularity to avoid incorrect mapping for the
5699 * populated node map.
5700 *
5701 * Returns the determined alignment in pfn's. 0 if there is no alignment
5702 * requirement (single node).
5703 */
5704 unsigned long __init node_map_pfn_alignment(void)
5705 {
5706 unsigned long accl_mask = 0, last_end = 0;
5707 unsigned long start, end, mask;
5708 int last_nid = -1;
5709 int i, nid;
5710
5711 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5712 if (!start || last_nid < 0 || last_nid == nid) {
5713 last_nid = nid;
5714 last_end = end;
5715 continue;
5716 }
5717
5718 /*
5719 * Start with a mask granular enough to pin-point to the
5720 * start pfn and tick off bits one-by-one until it becomes
5721 * too coarse to separate the current node from the last.
5722 */
5723 mask = ~((1 << __ffs(start)) - 1);
5724 while (mask && last_end <= (start & (mask << 1)))
5725 mask <<= 1;
5726
5727 /* accumulate all internode masks */
5728 accl_mask |= mask;
5729 }
5730
5731 /* convert mask to number of pages */
5732 return ~accl_mask + 1;
5733 }
5734
5735 /* Find the lowest pfn for a node */
5736 static unsigned long __init find_min_pfn_for_node(int nid)
5737 {
5738 unsigned long min_pfn = ULONG_MAX;
5739 unsigned long start_pfn;
5740 int i;
5741
5742 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5743 min_pfn = min(min_pfn, start_pfn);
5744
5745 if (min_pfn == ULONG_MAX) {
5746 pr_warn("Could not find start_pfn for node %d\n", nid);
5747 return 0;
5748 }
5749
5750 return min_pfn;
5751 }
5752
5753 /**
5754 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5755 *
5756 * It returns the minimum PFN based on information provided via
5757 * memblock_set_node().
5758 */
5759 unsigned long __init find_min_pfn_with_active_regions(void)
5760 {
5761 return find_min_pfn_for_node(MAX_NUMNODES);
5762 }
5763
5764 /*
5765 * early_calculate_totalpages()
5766 * Sum pages in active regions for movable zone.
5767 * Populate N_MEMORY for calculating usable_nodes.
5768 */
5769 static unsigned long __init early_calculate_totalpages(void)
5770 {
5771 unsigned long totalpages = 0;
5772 unsigned long start_pfn, end_pfn;
5773 int i, nid;
5774
5775 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5776 unsigned long pages = end_pfn - start_pfn;
5777
5778 totalpages += pages;
5779 if (pages)
5780 node_set_state(nid, N_MEMORY);
5781 }
5782 return totalpages;
5783 }
5784
5785 /*
5786 * Find the PFN the Movable zone begins in each node. Kernel memory
5787 * is spread evenly between nodes as long as the nodes have enough
5788 * memory. When they don't, some nodes will have more kernelcore than
5789 * others
5790 */
5791 static void __init find_zone_movable_pfns_for_nodes(void)
5792 {
5793 int i, nid;
5794 unsigned long usable_startpfn;
5795 unsigned long kernelcore_node, kernelcore_remaining;
5796 /* save the state before borrow the nodemask */
5797 nodemask_t saved_node_state = node_states[N_MEMORY];
5798 unsigned long totalpages = early_calculate_totalpages();
5799 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5800 struct memblock_region *r;
5801
5802 /* Need to find movable_zone earlier when movable_node is specified. */
5803 find_usable_zone_for_movable();
5804
5805 /*
5806 * If movable_node is specified, ignore kernelcore and movablecore
5807 * options.
5808 */
5809 if (movable_node_is_enabled()) {
5810 for_each_memblock(memory, r) {
5811 if (!memblock_is_hotpluggable(r))
5812 continue;
5813
5814 nid = r->nid;
5815
5816 usable_startpfn = PFN_DOWN(r->base);
5817 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5818 min(usable_startpfn, zone_movable_pfn[nid]) :
5819 usable_startpfn;
5820 }
5821
5822 goto out2;
5823 }
5824
5825 /*
5826 * If kernelcore=mirror is specified, ignore movablecore option
5827 */
5828 if (mirrored_kernelcore) {
5829 bool mem_below_4gb_not_mirrored = false;
5830
5831 for_each_memblock(memory, r) {
5832 if (memblock_is_mirror(r))
5833 continue;
5834
5835 nid = r->nid;
5836
5837 usable_startpfn = memblock_region_memory_base_pfn(r);
5838
5839 if (usable_startpfn < 0x100000) {
5840 mem_below_4gb_not_mirrored = true;
5841 continue;
5842 }
5843
5844 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5845 min(usable_startpfn, zone_movable_pfn[nid]) :
5846 usable_startpfn;
5847 }
5848
5849 if (mem_below_4gb_not_mirrored)
5850 pr_warn("This configuration results in unmirrored kernel memory.");
5851
5852 goto out2;
5853 }
5854
5855 /*
5856 * If movablecore=nn[KMG] was specified, calculate what size of
5857 * kernelcore that corresponds so that memory usable for
5858 * any allocation type is evenly spread. If both kernelcore
5859 * and movablecore are specified, then the value of kernelcore
5860 * will be used for required_kernelcore if it's greater than
5861 * what movablecore would have allowed.
5862 */
5863 if (required_movablecore) {
5864 unsigned long corepages;
5865
5866 /*
5867 * Round-up so that ZONE_MOVABLE is at least as large as what
5868 * was requested by the user
5869 */
5870 required_movablecore =
5871 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5872 required_movablecore = min(totalpages, required_movablecore);
5873 corepages = totalpages - required_movablecore;
5874
5875 required_kernelcore = max(required_kernelcore, corepages);
5876 }
5877
5878 /*
5879 * If kernelcore was not specified or kernelcore size is larger
5880 * than totalpages, there is no ZONE_MOVABLE.
5881 */
5882 if (!required_kernelcore || required_kernelcore >= totalpages)
5883 goto out;
5884
5885 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5886 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5887
5888 restart:
5889 /* Spread kernelcore memory as evenly as possible throughout nodes */
5890 kernelcore_node = required_kernelcore / usable_nodes;
5891 for_each_node_state(nid, N_MEMORY) {
5892 unsigned long start_pfn, end_pfn;
5893
5894 /*
5895 * Recalculate kernelcore_node if the division per node
5896 * now exceeds what is necessary to satisfy the requested
5897 * amount of memory for the kernel
5898 */
5899 if (required_kernelcore < kernelcore_node)
5900 kernelcore_node = required_kernelcore / usable_nodes;
5901
5902 /*
5903 * As the map is walked, we track how much memory is usable
5904 * by the kernel using kernelcore_remaining. When it is
5905 * 0, the rest of the node is usable by ZONE_MOVABLE
5906 */
5907 kernelcore_remaining = kernelcore_node;
5908
5909 /* Go through each range of PFNs within this node */
5910 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5911 unsigned long size_pages;
5912
5913 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5914 if (start_pfn >= end_pfn)
5915 continue;
5916
5917 /* Account for what is only usable for kernelcore */
5918 if (start_pfn < usable_startpfn) {
5919 unsigned long kernel_pages;
5920 kernel_pages = min(end_pfn, usable_startpfn)
5921 - start_pfn;
5922
5923 kernelcore_remaining -= min(kernel_pages,
5924 kernelcore_remaining);
5925 required_kernelcore -= min(kernel_pages,
5926 required_kernelcore);
5927
5928 /* Continue if range is now fully accounted */
5929 if (end_pfn <= usable_startpfn) {
5930
5931 /*
5932 * Push zone_movable_pfn to the end so
5933 * that if we have to rebalance
5934 * kernelcore across nodes, we will
5935 * not double account here
5936 */
5937 zone_movable_pfn[nid] = end_pfn;
5938 continue;
5939 }
5940 start_pfn = usable_startpfn;
5941 }
5942
5943 /*
5944 * The usable PFN range for ZONE_MOVABLE is from
5945 * start_pfn->end_pfn. Calculate size_pages as the
5946 * number of pages used as kernelcore
5947 */
5948 size_pages = end_pfn - start_pfn;
5949 if (size_pages > kernelcore_remaining)
5950 size_pages = kernelcore_remaining;
5951 zone_movable_pfn[nid] = start_pfn + size_pages;
5952
5953 /*
5954 * Some kernelcore has been met, update counts and
5955 * break if the kernelcore for this node has been
5956 * satisfied
5957 */
5958 required_kernelcore -= min(required_kernelcore,
5959 size_pages);
5960 kernelcore_remaining -= size_pages;
5961 if (!kernelcore_remaining)
5962 break;
5963 }
5964 }
5965
5966 /*
5967 * If there is still required_kernelcore, we do another pass with one
5968 * less node in the count. This will push zone_movable_pfn[nid] further
5969 * along on the nodes that still have memory until kernelcore is
5970 * satisfied
5971 */
5972 usable_nodes--;
5973 if (usable_nodes && required_kernelcore > usable_nodes)
5974 goto restart;
5975
5976 out2:
5977 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5978 for (nid = 0; nid < MAX_NUMNODES; nid++)
5979 zone_movable_pfn[nid] =
5980 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5981
5982 out:
5983 /* restore the node_state */
5984 node_states[N_MEMORY] = saved_node_state;
5985 }
5986
5987 /* Any regular or high memory on that node ? */
5988 static void check_for_memory(pg_data_t *pgdat, int nid)
5989 {
5990 enum zone_type zone_type;
5991
5992 if (N_MEMORY == N_NORMAL_MEMORY)
5993 return;
5994
5995 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5996 struct zone *zone = &pgdat->node_zones[zone_type];
5997 if (populated_zone(zone)) {
5998 node_set_state(nid, N_HIGH_MEMORY);
5999 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6000 zone_type <= ZONE_NORMAL)
6001 node_set_state(nid, N_NORMAL_MEMORY);
6002 break;
6003 }
6004 }
6005 }
6006
6007 /**
6008 * free_area_init_nodes - Initialise all pg_data_t and zone data
6009 * @max_zone_pfn: an array of max PFNs for each zone
6010 *
6011 * This will call free_area_init_node() for each active node in the system.
6012 * Using the page ranges provided by memblock_set_node(), the size of each
6013 * zone in each node and their holes is calculated. If the maximum PFN
6014 * between two adjacent zones match, it is assumed that the zone is empty.
6015 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6016 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6017 * starts where the previous one ended. For example, ZONE_DMA32 starts
6018 * at arch_max_dma_pfn.
6019 */
6020 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6021 {
6022 unsigned long start_pfn, end_pfn;
6023 int i, nid;
6024
6025 /* Record where the zone boundaries are */
6026 memset(arch_zone_lowest_possible_pfn, 0,
6027 sizeof(arch_zone_lowest_possible_pfn));
6028 memset(arch_zone_highest_possible_pfn, 0,
6029 sizeof(arch_zone_highest_possible_pfn));
6030 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6031 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6032 for (i = 1; i < MAX_NR_ZONES; i++) {
6033 if (i == ZONE_MOVABLE)
6034 continue;
6035 arch_zone_lowest_possible_pfn[i] =
6036 arch_zone_highest_possible_pfn[i-1];
6037 arch_zone_highest_possible_pfn[i] =
6038 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6039 }
6040 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6041 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6042
6043 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6044 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6045 find_zone_movable_pfns_for_nodes();
6046
6047 /* Print out the zone ranges */
6048 pr_info("Zone ranges:\n");
6049 for (i = 0; i < MAX_NR_ZONES; i++) {
6050 if (i == ZONE_MOVABLE)
6051 continue;
6052 pr_info(" %-8s ", zone_names[i]);
6053 if (arch_zone_lowest_possible_pfn[i] ==
6054 arch_zone_highest_possible_pfn[i])
6055 pr_cont("empty\n");
6056 else
6057 pr_cont("[mem %#018Lx-%#018Lx]\n",
6058 (u64)arch_zone_lowest_possible_pfn[i]
6059 << PAGE_SHIFT,
6060 ((u64)arch_zone_highest_possible_pfn[i]
6061 << PAGE_SHIFT) - 1);
6062 }
6063
6064 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6065 pr_info("Movable zone start for each node\n");
6066 for (i = 0; i < MAX_NUMNODES; i++) {
6067 if (zone_movable_pfn[i])
6068 pr_info(" Node %d: %#018Lx\n", i,
6069 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6070 }
6071
6072 /* Print out the early node map */
6073 pr_info("Early memory node ranges\n");
6074 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6075 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6076 (u64)start_pfn << PAGE_SHIFT,
6077 ((u64)end_pfn << PAGE_SHIFT) - 1);
6078
6079 /* Initialise every node */
6080 mminit_verify_pageflags_layout();
6081 setup_nr_node_ids();
6082 for_each_online_node(nid) {
6083 pg_data_t *pgdat = NODE_DATA(nid);
6084 free_area_init_node(nid, NULL,
6085 find_min_pfn_for_node(nid), NULL);
6086
6087 /* Any memory on that node */
6088 if (pgdat->node_present_pages)
6089 node_set_state(nid, N_MEMORY);
6090 check_for_memory(pgdat, nid);
6091 }
6092 }
6093
6094 static int __init cmdline_parse_core(char *p, unsigned long *core)
6095 {
6096 unsigned long long coremem;
6097 if (!p)
6098 return -EINVAL;
6099
6100 coremem = memparse(p, &p);
6101 *core = coremem >> PAGE_SHIFT;
6102
6103 /* Paranoid check that UL is enough for the coremem value */
6104 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6105
6106 return 0;
6107 }
6108
6109 /*
6110 * kernelcore=size sets the amount of memory for use for allocations that
6111 * cannot be reclaimed or migrated.
6112 */
6113 static int __init cmdline_parse_kernelcore(char *p)
6114 {
6115 /* parse kernelcore=mirror */
6116 if (parse_option_str(p, "mirror")) {
6117 mirrored_kernelcore = true;
6118 return 0;
6119 }
6120
6121 return cmdline_parse_core(p, &required_kernelcore);
6122 }
6123
6124 /*
6125 * movablecore=size sets the amount of memory for use for allocations that
6126 * can be reclaimed or migrated.
6127 */
6128 static int __init cmdline_parse_movablecore(char *p)
6129 {
6130 return cmdline_parse_core(p, &required_movablecore);
6131 }
6132
6133 early_param("kernelcore", cmdline_parse_kernelcore);
6134 early_param("movablecore", cmdline_parse_movablecore);
6135
6136 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6137
6138 void adjust_managed_page_count(struct page *page, long count)
6139 {
6140 spin_lock(&managed_page_count_lock);
6141 page_zone(page)->managed_pages += count;
6142 totalram_pages += count;
6143 #ifdef CONFIG_HIGHMEM
6144 if (PageHighMem(page))
6145 totalhigh_pages += count;
6146 #endif
6147 spin_unlock(&managed_page_count_lock);
6148 }
6149 EXPORT_SYMBOL(adjust_managed_page_count);
6150
6151 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6152 {
6153 void *pos;
6154 unsigned long pages = 0;
6155
6156 start = (void *)PAGE_ALIGN((unsigned long)start);
6157 end = (void *)((unsigned long)end & PAGE_MASK);
6158 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6159 if ((unsigned int)poison <= 0xFF)
6160 memset(pos, poison, PAGE_SIZE);
6161 free_reserved_page(virt_to_page(pos));
6162 }
6163
6164 if (pages && s)
6165 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6166 s, pages << (PAGE_SHIFT - 10), start, end);
6167
6168 return pages;
6169 }
6170 EXPORT_SYMBOL(free_reserved_area);
6171
6172 #ifdef CONFIG_HIGHMEM
6173 void free_highmem_page(struct page *page)
6174 {
6175 __free_reserved_page(page);
6176 totalram_pages++;
6177 page_zone(page)->managed_pages++;
6178 totalhigh_pages++;
6179 }
6180 #endif
6181
6182
6183 void __init mem_init_print_info(const char *str)
6184 {
6185 unsigned long physpages, codesize, datasize, rosize, bss_size;
6186 unsigned long init_code_size, init_data_size;
6187
6188 physpages = get_num_physpages();
6189 codesize = _etext - _stext;
6190 datasize = _edata - _sdata;
6191 rosize = __end_rodata - __start_rodata;
6192 bss_size = __bss_stop - __bss_start;
6193 init_data_size = __init_end - __init_begin;
6194 init_code_size = _einittext - _sinittext;
6195
6196 /*
6197 * Detect special cases and adjust section sizes accordingly:
6198 * 1) .init.* may be embedded into .data sections
6199 * 2) .init.text.* may be out of [__init_begin, __init_end],
6200 * please refer to arch/tile/kernel/vmlinux.lds.S.
6201 * 3) .rodata.* may be embedded into .text or .data sections.
6202 */
6203 #define adj_init_size(start, end, size, pos, adj) \
6204 do { \
6205 if (start <= pos && pos < end && size > adj) \
6206 size -= adj; \
6207 } while (0)
6208
6209 adj_init_size(__init_begin, __init_end, init_data_size,
6210 _sinittext, init_code_size);
6211 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6212 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6213 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6214 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6215
6216 #undef adj_init_size
6217
6218 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6219 #ifdef CONFIG_HIGHMEM
6220 ", %luK highmem"
6221 #endif
6222 "%s%s)\n",
6223 nr_free_pages() << (PAGE_SHIFT - 10),
6224 physpages << (PAGE_SHIFT - 10),
6225 codesize >> 10, datasize >> 10, rosize >> 10,
6226 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6227 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6228 totalcma_pages << (PAGE_SHIFT - 10),
6229 #ifdef CONFIG_HIGHMEM
6230 totalhigh_pages << (PAGE_SHIFT - 10),
6231 #endif
6232 str ? ", " : "", str ? str : "");
6233 }
6234
6235 /**
6236 * set_dma_reserve - set the specified number of pages reserved in the first zone
6237 * @new_dma_reserve: The number of pages to mark reserved
6238 *
6239 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6240 * In the DMA zone, a significant percentage may be consumed by kernel image
6241 * and other unfreeable allocations which can skew the watermarks badly. This
6242 * function may optionally be used to account for unfreeable pages in the
6243 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6244 * smaller per-cpu batchsize.
6245 */
6246 void __init set_dma_reserve(unsigned long new_dma_reserve)
6247 {
6248 dma_reserve = new_dma_reserve;
6249 }
6250
6251 void __init free_area_init(unsigned long *zones_size)
6252 {
6253 free_area_init_node(0, zones_size,
6254 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6255 }
6256
6257 static int page_alloc_cpu_notify(struct notifier_block *self,
6258 unsigned long action, void *hcpu)
6259 {
6260 int cpu = (unsigned long)hcpu;
6261
6262 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6263 lru_add_drain_cpu(cpu);
6264 drain_pages(cpu);
6265
6266 /*
6267 * Spill the event counters of the dead processor
6268 * into the current processors event counters.
6269 * This artificially elevates the count of the current
6270 * processor.
6271 */
6272 vm_events_fold_cpu(cpu);
6273
6274 /*
6275 * Zero the differential counters of the dead processor
6276 * so that the vm statistics are consistent.
6277 *
6278 * This is only okay since the processor is dead and cannot
6279 * race with what we are doing.
6280 */
6281 cpu_vm_stats_fold(cpu);
6282 }
6283 return NOTIFY_OK;
6284 }
6285
6286 void __init page_alloc_init(void)
6287 {
6288 hotcpu_notifier(page_alloc_cpu_notify, 0);
6289 }
6290
6291 /*
6292 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6293 * or min_free_kbytes changes.
6294 */
6295 static void calculate_totalreserve_pages(void)
6296 {
6297 struct pglist_data *pgdat;
6298 unsigned long reserve_pages = 0;
6299 enum zone_type i, j;
6300
6301 for_each_online_pgdat(pgdat) {
6302 for (i = 0; i < MAX_NR_ZONES; i++) {
6303 struct zone *zone = pgdat->node_zones + i;
6304 long max = 0;
6305
6306 /* Find valid and maximum lowmem_reserve in the zone */
6307 for (j = i; j < MAX_NR_ZONES; j++) {
6308 if (zone->lowmem_reserve[j] > max)
6309 max = zone->lowmem_reserve[j];
6310 }
6311
6312 /* we treat the high watermark as reserved pages. */
6313 max += high_wmark_pages(zone);
6314
6315 if (max > zone->managed_pages)
6316 max = zone->managed_pages;
6317
6318 zone->totalreserve_pages = max;
6319
6320 reserve_pages += max;
6321 }
6322 }
6323 totalreserve_pages = reserve_pages;
6324 }
6325
6326 /*
6327 * setup_per_zone_lowmem_reserve - called whenever
6328 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6329 * has a correct pages reserved value, so an adequate number of
6330 * pages are left in the zone after a successful __alloc_pages().
6331 */
6332 static void setup_per_zone_lowmem_reserve(void)
6333 {
6334 struct pglist_data *pgdat;
6335 enum zone_type j, idx;
6336
6337 for_each_online_pgdat(pgdat) {
6338 for (j = 0; j < MAX_NR_ZONES; j++) {
6339 struct zone *zone = pgdat->node_zones + j;
6340 unsigned long managed_pages = zone->managed_pages;
6341
6342 zone->lowmem_reserve[j] = 0;
6343
6344 idx = j;
6345 while (idx) {
6346 struct zone *lower_zone;
6347
6348 idx--;
6349
6350 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6351 sysctl_lowmem_reserve_ratio[idx] = 1;
6352
6353 lower_zone = pgdat->node_zones + idx;
6354 lower_zone->lowmem_reserve[j] = managed_pages /
6355 sysctl_lowmem_reserve_ratio[idx];
6356 managed_pages += lower_zone->managed_pages;
6357 }
6358 }
6359 }
6360
6361 /* update totalreserve_pages */
6362 calculate_totalreserve_pages();
6363 }
6364
6365 static void __setup_per_zone_wmarks(void)
6366 {
6367 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6368 unsigned long lowmem_pages = 0;
6369 struct zone *zone;
6370 unsigned long flags;
6371
6372 /* Calculate total number of !ZONE_HIGHMEM pages */
6373 for_each_zone(zone) {
6374 if (!is_highmem(zone))
6375 lowmem_pages += zone->managed_pages;
6376 }
6377
6378 for_each_zone(zone) {
6379 u64 tmp;
6380
6381 spin_lock_irqsave(&zone->lock, flags);
6382 tmp = (u64)pages_min * zone->managed_pages;
6383 do_div(tmp, lowmem_pages);
6384 if (is_highmem(zone)) {
6385 /*
6386 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6387 * need highmem pages, so cap pages_min to a small
6388 * value here.
6389 *
6390 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6391 * deltas control asynch page reclaim, and so should
6392 * not be capped for highmem.
6393 */
6394 unsigned long min_pages;
6395
6396 min_pages = zone->managed_pages / 1024;
6397 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6398 zone->watermark[WMARK_MIN] = min_pages;
6399 } else {
6400 /*
6401 * If it's a lowmem zone, reserve a number of pages
6402 * proportionate to the zone's size.
6403 */
6404 zone->watermark[WMARK_MIN] = tmp;
6405 }
6406
6407 /*
6408 * Set the kswapd watermarks distance according to the
6409 * scale factor in proportion to available memory, but
6410 * ensure a minimum size on small systems.
6411 */
6412 tmp = max_t(u64, tmp >> 2,
6413 mult_frac(zone->managed_pages,
6414 watermark_scale_factor, 10000));
6415
6416 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6417 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6418
6419 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6420 high_wmark_pages(zone) - low_wmark_pages(zone) -
6421 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6422
6423 spin_unlock_irqrestore(&zone->lock, flags);
6424 }
6425
6426 /* update totalreserve_pages */
6427 calculate_totalreserve_pages();
6428 }
6429
6430 /**
6431 * setup_per_zone_wmarks - called when min_free_kbytes changes
6432 * or when memory is hot-{added|removed}
6433 *
6434 * Ensures that the watermark[min,low,high] values for each zone are set
6435 * correctly with respect to min_free_kbytes.
6436 */
6437 void setup_per_zone_wmarks(void)
6438 {
6439 mutex_lock(&zonelists_mutex);
6440 __setup_per_zone_wmarks();
6441 mutex_unlock(&zonelists_mutex);
6442 }
6443
6444 /*
6445 * The inactive anon list should be small enough that the VM never has to
6446 * do too much work, but large enough that each inactive page has a chance
6447 * to be referenced again before it is swapped out.
6448 *
6449 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6450 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6451 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6452 * the anonymous pages are kept on the inactive list.
6453 *
6454 * total target max
6455 * memory ratio inactive anon
6456 * -------------------------------------
6457 * 10MB 1 5MB
6458 * 100MB 1 50MB
6459 * 1GB 3 250MB
6460 * 10GB 10 0.9GB
6461 * 100GB 31 3GB
6462 * 1TB 101 10GB
6463 * 10TB 320 32GB
6464 */
6465 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6466 {
6467 unsigned int gb, ratio;
6468
6469 /* Zone size in gigabytes */
6470 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6471 if (gb)
6472 ratio = int_sqrt(10 * gb);
6473 else
6474 ratio = 1;
6475
6476 zone->inactive_ratio = ratio;
6477 }
6478
6479 static void __meminit setup_per_zone_inactive_ratio(void)
6480 {
6481 struct zone *zone;
6482
6483 for_each_zone(zone)
6484 calculate_zone_inactive_ratio(zone);
6485 }
6486
6487 /*
6488 * Initialise min_free_kbytes.
6489 *
6490 * For small machines we want it small (128k min). For large machines
6491 * we want it large (64MB max). But it is not linear, because network
6492 * bandwidth does not increase linearly with machine size. We use
6493 *
6494 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6495 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6496 *
6497 * which yields
6498 *
6499 * 16MB: 512k
6500 * 32MB: 724k
6501 * 64MB: 1024k
6502 * 128MB: 1448k
6503 * 256MB: 2048k
6504 * 512MB: 2896k
6505 * 1024MB: 4096k
6506 * 2048MB: 5792k
6507 * 4096MB: 8192k
6508 * 8192MB: 11584k
6509 * 16384MB: 16384k
6510 */
6511 int __meminit init_per_zone_wmark_min(void)
6512 {
6513 unsigned long lowmem_kbytes;
6514 int new_min_free_kbytes;
6515
6516 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6517 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6518
6519 if (new_min_free_kbytes > user_min_free_kbytes) {
6520 min_free_kbytes = new_min_free_kbytes;
6521 if (min_free_kbytes < 128)
6522 min_free_kbytes = 128;
6523 if (min_free_kbytes > 65536)
6524 min_free_kbytes = 65536;
6525 } else {
6526 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6527 new_min_free_kbytes, user_min_free_kbytes);
6528 }
6529 setup_per_zone_wmarks();
6530 refresh_zone_stat_thresholds();
6531 setup_per_zone_lowmem_reserve();
6532 setup_per_zone_inactive_ratio();
6533 return 0;
6534 }
6535 core_initcall(init_per_zone_wmark_min)
6536
6537 /*
6538 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6539 * that we can call two helper functions whenever min_free_kbytes
6540 * changes.
6541 */
6542 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6543 void __user *buffer, size_t *length, loff_t *ppos)
6544 {
6545 int rc;
6546
6547 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6548 if (rc)
6549 return rc;
6550
6551 if (write) {
6552 user_min_free_kbytes = min_free_kbytes;
6553 setup_per_zone_wmarks();
6554 }
6555 return 0;
6556 }
6557
6558 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6559 void __user *buffer, size_t *length, loff_t *ppos)
6560 {
6561 int rc;
6562
6563 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6564 if (rc)
6565 return rc;
6566
6567 if (write)
6568 setup_per_zone_wmarks();
6569
6570 return 0;
6571 }
6572
6573 #ifdef CONFIG_NUMA
6574 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6575 void __user *buffer, size_t *length, loff_t *ppos)
6576 {
6577 struct zone *zone;
6578 int rc;
6579
6580 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6581 if (rc)
6582 return rc;
6583
6584 for_each_zone(zone)
6585 zone->min_unmapped_pages = (zone->managed_pages *
6586 sysctl_min_unmapped_ratio) / 100;
6587 return 0;
6588 }
6589
6590 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6591 void __user *buffer, size_t *length, loff_t *ppos)
6592 {
6593 struct zone *zone;
6594 int rc;
6595
6596 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6597 if (rc)
6598 return rc;
6599
6600 for_each_zone(zone)
6601 zone->min_slab_pages = (zone->managed_pages *
6602 sysctl_min_slab_ratio) / 100;
6603 return 0;
6604 }
6605 #endif
6606
6607 /*
6608 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6609 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6610 * whenever sysctl_lowmem_reserve_ratio changes.
6611 *
6612 * The reserve ratio obviously has absolutely no relation with the
6613 * minimum watermarks. The lowmem reserve ratio can only make sense
6614 * if in function of the boot time zone sizes.
6615 */
6616 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6617 void __user *buffer, size_t *length, loff_t *ppos)
6618 {
6619 proc_dointvec_minmax(table, write, buffer, length, ppos);
6620 setup_per_zone_lowmem_reserve();
6621 return 0;
6622 }
6623
6624 /*
6625 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6626 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6627 * pagelist can have before it gets flushed back to buddy allocator.
6628 */
6629 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6630 void __user *buffer, size_t *length, loff_t *ppos)
6631 {
6632 struct zone *zone;
6633 int old_percpu_pagelist_fraction;
6634 int ret;
6635
6636 mutex_lock(&pcp_batch_high_lock);
6637 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6638
6639 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6640 if (!write || ret < 0)
6641 goto out;
6642
6643 /* Sanity checking to avoid pcp imbalance */
6644 if (percpu_pagelist_fraction &&
6645 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6646 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6647 ret = -EINVAL;
6648 goto out;
6649 }
6650
6651 /* No change? */
6652 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6653 goto out;
6654
6655 for_each_populated_zone(zone) {
6656 unsigned int cpu;
6657
6658 for_each_possible_cpu(cpu)
6659 pageset_set_high_and_batch(zone,
6660 per_cpu_ptr(zone->pageset, cpu));
6661 }
6662 out:
6663 mutex_unlock(&pcp_batch_high_lock);
6664 return ret;
6665 }
6666
6667 #ifdef CONFIG_NUMA
6668 int hashdist = HASHDIST_DEFAULT;
6669
6670 static int __init set_hashdist(char *str)
6671 {
6672 if (!str)
6673 return 0;
6674 hashdist = simple_strtoul(str, &str, 0);
6675 return 1;
6676 }
6677 __setup("hashdist=", set_hashdist);
6678 #endif
6679
6680 /*
6681 * allocate a large system hash table from bootmem
6682 * - it is assumed that the hash table must contain an exact power-of-2
6683 * quantity of entries
6684 * - limit is the number of hash buckets, not the total allocation size
6685 */
6686 void *__init alloc_large_system_hash(const char *tablename,
6687 unsigned long bucketsize,
6688 unsigned long numentries,
6689 int scale,
6690 int flags,
6691 unsigned int *_hash_shift,
6692 unsigned int *_hash_mask,
6693 unsigned long low_limit,
6694 unsigned long high_limit)
6695 {
6696 unsigned long long max = high_limit;
6697 unsigned long log2qty, size;
6698 void *table = NULL;
6699
6700 /* allow the kernel cmdline to have a say */
6701 if (!numentries) {
6702 /* round applicable memory size up to nearest megabyte */
6703 numentries = nr_kernel_pages;
6704
6705 /* It isn't necessary when PAGE_SIZE >= 1MB */
6706 if (PAGE_SHIFT < 20)
6707 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6708
6709 /* limit to 1 bucket per 2^scale bytes of low memory */
6710 if (scale > PAGE_SHIFT)
6711 numentries >>= (scale - PAGE_SHIFT);
6712 else
6713 numentries <<= (PAGE_SHIFT - scale);
6714
6715 /* Make sure we've got at least a 0-order allocation.. */
6716 if (unlikely(flags & HASH_SMALL)) {
6717 /* Makes no sense without HASH_EARLY */
6718 WARN_ON(!(flags & HASH_EARLY));
6719 if (!(numentries >> *_hash_shift)) {
6720 numentries = 1UL << *_hash_shift;
6721 BUG_ON(!numentries);
6722 }
6723 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6724 numentries = PAGE_SIZE / bucketsize;
6725 }
6726 numentries = roundup_pow_of_two(numentries);
6727
6728 /* limit allocation size to 1/16 total memory by default */
6729 if (max == 0) {
6730 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6731 do_div(max, bucketsize);
6732 }
6733 max = min(max, 0x80000000ULL);
6734
6735 if (numentries < low_limit)
6736 numentries = low_limit;
6737 if (numentries > max)
6738 numentries = max;
6739
6740 log2qty = ilog2(numentries);
6741
6742 do {
6743 size = bucketsize << log2qty;
6744 if (flags & HASH_EARLY)
6745 table = memblock_virt_alloc_nopanic(size, 0);
6746 else if (hashdist)
6747 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6748 else {
6749 /*
6750 * If bucketsize is not a power-of-two, we may free
6751 * some pages at the end of hash table which
6752 * alloc_pages_exact() automatically does
6753 */
6754 if (get_order(size) < MAX_ORDER) {
6755 table = alloc_pages_exact(size, GFP_ATOMIC);
6756 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6757 }
6758 }
6759 } while (!table && size > PAGE_SIZE && --log2qty);
6760
6761 if (!table)
6762 panic("Failed to allocate %s hash table\n", tablename);
6763
6764 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6765 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6766
6767 if (_hash_shift)
6768 *_hash_shift = log2qty;
6769 if (_hash_mask)
6770 *_hash_mask = (1 << log2qty) - 1;
6771
6772 return table;
6773 }
6774
6775 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6776 static inline unsigned long *get_pageblock_bitmap(struct page *page,
6777 unsigned long pfn)
6778 {
6779 #ifdef CONFIG_SPARSEMEM
6780 return __pfn_to_section(pfn)->pageblock_flags;
6781 #else
6782 return page_zone(page)->pageblock_flags;
6783 #endif /* CONFIG_SPARSEMEM */
6784 }
6785
6786 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
6787 {
6788 #ifdef CONFIG_SPARSEMEM
6789 pfn &= (PAGES_PER_SECTION-1);
6790 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6791 #else
6792 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
6793 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6794 #endif /* CONFIG_SPARSEMEM */
6795 }
6796
6797 /**
6798 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6799 * @page: The page within the block of interest
6800 * @pfn: The target page frame number
6801 * @end_bitidx: The last bit of interest to retrieve
6802 * @mask: mask of bits that the caller is interested in
6803 *
6804 * Return: pageblock_bits flags
6805 */
6806 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6807 unsigned long end_bitidx,
6808 unsigned long mask)
6809 {
6810 unsigned long *bitmap;
6811 unsigned long bitidx, word_bitidx;
6812 unsigned long word;
6813
6814 bitmap = get_pageblock_bitmap(page, pfn);
6815 bitidx = pfn_to_bitidx(page, pfn);
6816 word_bitidx = bitidx / BITS_PER_LONG;
6817 bitidx &= (BITS_PER_LONG-1);
6818
6819 word = bitmap[word_bitidx];
6820 bitidx += end_bitidx;
6821 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6822 }
6823
6824 /**
6825 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6826 * @page: The page within the block of interest
6827 * @flags: The flags to set
6828 * @pfn: The target page frame number
6829 * @end_bitidx: The last bit of interest
6830 * @mask: mask of bits that the caller is interested in
6831 */
6832 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6833 unsigned long pfn,
6834 unsigned long end_bitidx,
6835 unsigned long mask)
6836 {
6837 unsigned long *bitmap;
6838 unsigned long bitidx, word_bitidx;
6839 unsigned long old_word, word;
6840
6841 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6842
6843 bitmap = get_pageblock_bitmap(page, pfn);
6844 bitidx = pfn_to_bitidx(page, pfn);
6845 word_bitidx = bitidx / BITS_PER_LONG;
6846 bitidx &= (BITS_PER_LONG-1);
6847
6848 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
6849
6850 bitidx += end_bitidx;
6851 mask <<= (BITS_PER_LONG - bitidx - 1);
6852 flags <<= (BITS_PER_LONG - bitidx - 1);
6853
6854 word = READ_ONCE(bitmap[word_bitidx]);
6855 for (;;) {
6856 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6857 if (word == old_word)
6858 break;
6859 word = old_word;
6860 }
6861 }
6862
6863 /*
6864 * This function checks whether pageblock includes unmovable pages or not.
6865 * If @count is not zero, it is okay to include less @count unmovable pages
6866 *
6867 * PageLRU check without isolation or lru_lock could race so that
6868 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6869 * expect this function should be exact.
6870 */
6871 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6872 bool skip_hwpoisoned_pages)
6873 {
6874 unsigned long pfn, iter, found;
6875 int mt;
6876
6877 /*
6878 * For avoiding noise data, lru_add_drain_all() should be called
6879 * If ZONE_MOVABLE, the zone never contains unmovable pages
6880 */
6881 if (zone_idx(zone) == ZONE_MOVABLE)
6882 return false;
6883 mt = get_pageblock_migratetype(page);
6884 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6885 return false;
6886
6887 pfn = page_to_pfn(page);
6888 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6889 unsigned long check = pfn + iter;
6890
6891 if (!pfn_valid_within(check))
6892 continue;
6893
6894 page = pfn_to_page(check);
6895
6896 /*
6897 * Hugepages are not in LRU lists, but they're movable.
6898 * We need not scan over tail pages bacause we don't
6899 * handle each tail page individually in migration.
6900 */
6901 if (PageHuge(page)) {
6902 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6903 continue;
6904 }
6905
6906 /*
6907 * We can't use page_count without pin a page
6908 * because another CPU can free compound page.
6909 * This check already skips compound tails of THP
6910 * because their page->_refcount is zero at all time.
6911 */
6912 if (!page_ref_count(page)) {
6913 if (PageBuddy(page))
6914 iter += (1 << page_order(page)) - 1;
6915 continue;
6916 }
6917
6918 /*
6919 * The HWPoisoned page may be not in buddy system, and
6920 * page_count() is not 0.
6921 */
6922 if (skip_hwpoisoned_pages && PageHWPoison(page))
6923 continue;
6924
6925 if (!PageLRU(page))
6926 found++;
6927 /*
6928 * If there are RECLAIMABLE pages, we need to check
6929 * it. But now, memory offline itself doesn't call
6930 * shrink_node_slabs() and it still to be fixed.
6931 */
6932 /*
6933 * If the page is not RAM, page_count()should be 0.
6934 * we don't need more check. This is an _used_ not-movable page.
6935 *
6936 * The problematic thing here is PG_reserved pages. PG_reserved
6937 * is set to both of a memory hole page and a _used_ kernel
6938 * page at boot.
6939 */
6940 if (found > count)
6941 return true;
6942 }
6943 return false;
6944 }
6945
6946 bool is_pageblock_removable_nolock(struct page *page)
6947 {
6948 struct zone *zone;
6949 unsigned long pfn;
6950
6951 /*
6952 * We have to be careful here because we are iterating over memory
6953 * sections which are not zone aware so we might end up outside of
6954 * the zone but still within the section.
6955 * We have to take care about the node as well. If the node is offline
6956 * its NODE_DATA will be NULL - see page_zone.
6957 */
6958 if (!node_online(page_to_nid(page)))
6959 return false;
6960
6961 zone = page_zone(page);
6962 pfn = page_to_pfn(page);
6963 if (!zone_spans_pfn(zone, pfn))
6964 return false;
6965
6966 return !has_unmovable_pages(zone, page, 0, true);
6967 }
6968
6969 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6970
6971 static unsigned long pfn_max_align_down(unsigned long pfn)
6972 {
6973 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6974 pageblock_nr_pages) - 1);
6975 }
6976
6977 static unsigned long pfn_max_align_up(unsigned long pfn)
6978 {
6979 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6980 pageblock_nr_pages));
6981 }
6982
6983 /* [start, end) must belong to a single zone. */
6984 static int __alloc_contig_migrate_range(struct compact_control *cc,
6985 unsigned long start, unsigned long end)
6986 {
6987 /* This function is based on compact_zone() from compaction.c. */
6988 unsigned long nr_reclaimed;
6989 unsigned long pfn = start;
6990 unsigned int tries = 0;
6991 int ret = 0;
6992
6993 migrate_prep();
6994
6995 while (pfn < end || !list_empty(&cc->migratepages)) {
6996 if (fatal_signal_pending(current)) {
6997 ret = -EINTR;
6998 break;
6999 }
7000
7001 if (list_empty(&cc->migratepages)) {
7002 cc->nr_migratepages = 0;
7003 pfn = isolate_migratepages_range(cc, pfn, end);
7004 if (!pfn) {
7005 ret = -EINTR;
7006 break;
7007 }
7008 tries = 0;
7009 } else if (++tries == 5) {
7010 ret = ret < 0 ? ret : -EBUSY;
7011 break;
7012 }
7013
7014 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7015 &cc->migratepages);
7016 cc->nr_migratepages -= nr_reclaimed;
7017
7018 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7019 NULL, 0, cc->mode, MR_CMA);
7020 }
7021 if (ret < 0) {
7022 putback_movable_pages(&cc->migratepages);
7023 return ret;
7024 }
7025 return 0;
7026 }
7027
7028 /**
7029 * alloc_contig_range() -- tries to allocate given range of pages
7030 * @start: start PFN to allocate
7031 * @end: one-past-the-last PFN to allocate
7032 * @migratetype: migratetype of the underlaying pageblocks (either
7033 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7034 * in range must have the same migratetype and it must
7035 * be either of the two.
7036 *
7037 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7038 * aligned, however it's the caller's responsibility to guarantee that
7039 * we are the only thread that changes migrate type of pageblocks the
7040 * pages fall in.
7041 *
7042 * The PFN range must belong to a single zone.
7043 *
7044 * Returns zero on success or negative error code. On success all
7045 * pages which PFN is in [start, end) are allocated for the caller and
7046 * need to be freed with free_contig_range().
7047 */
7048 int alloc_contig_range(unsigned long start, unsigned long end,
7049 unsigned migratetype)
7050 {
7051 unsigned long outer_start, outer_end;
7052 unsigned int order;
7053 int ret = 0;
7054
7055 struct compact_control cc = {
7056 .nr_migratepages = 0,
7057 .order = -1,
7058 .zone = page_zone(pfn_to_page(start)),
7059 .mode = MIGRATE_SYNC,
7060 .ignore_skip_hint = true,
7061 };
7062 INIT_LIST_HEAD(&cc.migratepages);
7063
7064 /*
7065 * What we do here is we mark all pageblocks in range as
7066 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7067 * have different sizes, and due to the way page allocator
7068 * work, we align the range to biggest of the two pages so
7069 * that page allocator won't try to merge buddies from
7070 * different pageblocks and change MIGRATE_ISOLATE to some
7071 * other migration type.
7072 *
7073 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7074 * migrate the pages from an unaligned range (ie. pages that
7075 * we are interested in). This will put all the pages in
7076 * range back to page allocator as MIGRATE_ISOLATE.
7077 *
7078 * When this is done, we take the pages in range from page
7079 * allocator removing them from the buddy system. This way
7080 * page allocator will never consider using them.
7081 *
7082 * This lets us mark the pageblocks back as
7083 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7084 * aligned range but not in the unaligned, original range are
7085 * put back to page allocator so that buddy can use them.
7086 */
7087
7088 ret = start_isolate_page_range(pfn_max_align_down(start),
7089 pfn_max_align_up(end), migratetype,
7090 false);
7091 if (ret)
7092 return ret;
7093
7094 /*
7095 * In case of -EBUSY, we'd like to know which page causes problem.
7096 * So, just fall through. We will check it in test_pages_isolated().
7097 */
7098 ret = __alloc_contig_migrate_range(&cc, start, end);
7099 if (ret && ret != -EBUSY)
7100 goto done;
7101
7102 /*
7103 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7104 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7105 * more, all pages in [start, end) are free in page allocator.
7106 * What we are going to do is to allocate all pages from
7107 * [start, end) (that is remove them from page allocator).
7108 *
7109 * The only problem is that pages at the beginning and at the
7110 * end of interesting range may be not aligned with pages that
7111 * page allocator holds, ie. they can be part of higher order
7112 * pages. Because of this, we reserve the bigger range and
7113 * once this is done free the pages we are not interested in.
7114 *
7115 * We don't have to hold zone->lock here because the pages are
7116 * isolated thus they won't get removed from buddy.
7117 */
7118
7119 lru_add_drain_all();
7120 drain_all_pages(cc.zone);
7121
7122 order = 0;
7123 outer_start = start;
7124 while (!PageBuddy(pfn_to_page(outer_start))) {
7125 if (++order >= MAX_ORDER) {
7126 outer_start = start;
7127 break;
7128 }
7129 outer_start &= ~0UL << order;
7130 }
7131
7132 if (outer_start != start) {
7133 order = page_order(pfn_to_page(outer_start));
7134
7135 /*
7136 * outer_start page could be small order buddy page and
7137 * it doesn't include start page. Adjust outer_start
7138 * in this case to report failed page properly
7139 * on tracepoint in test_pages_isolated()
7140 */
7141 if (outer_start + (1UL << order) <= start)
7142 outer_start = start;
7143 }
7144
7145 /* Make sure the range is really isolated. */
7146 if (test_pages_isolated(outer_start, end, false)) {
7147 pr_info("%s: [%lx, %lx) PFNs busy\n",
7148 __func__, outer_start, end);
7149 ret = -EBUSY;
7150 goto done;
7151 }
7152
7153 /* Grab isolated pages from freelists. */
7154 outer_end = isolate_freepages_range(&cc, outer_start, end);
7155 if (!outer_end) {
7156 ret = -EBUSY;
7157 goto done;
7158 }
7159
7160 /* Free head and tail (if any) */
7161 if (start != outer_start)
7162 free_contig_range(outer_start, start - outer_start);
7163 if (end != outer_end)
7164 free_contig_range(end, outer_end - end);
7165
7166 done:
7167 undo_isolate_page_range(pfn_max_align_down(start),
7168 pfn_max_align_up(end), migratetype);
7169 return ret;
7170 }
7171
7172 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7173 {
7174 unsigned int count = 0;
7175
7176 for (; nr_pages--; pfn++) {
7177 struct page *page = pfn_to_page(pfn);
7178
7179 count += page_count(page) != 1;
7180 __free_page(page);
7181 }
7182 WARN(count != 0, "%d pages are still in use!\n", count);
7183 }
7184 #endif
7185
7186 #ifdef CONFIG_MEMORY_HOTPLUG
7187 /*
7188 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7189 * page high values need to be recalulated.
7190 */
7191 void __meminit zone_pcp_update(struct zone *zone)
7192 {
7193 unsigned cpu;
7194 mutex_lock(&pcp_batch_high_lock);
7195 for_each_possible_cpu(cpu)
7196 pageset_set_high_and_batch(zone,
7197 per_cpu_ptr(zone->pageset, cpu));
7198 mutex_unlock(&pcp_batch_high_lock);
7199 }
7200 #endif
7201
7202 void zone_pcp_reset(struct zone *zone)
7203 {
7204 unsigned long flags;
7205 int cpu;
7206 struct per_cpu_pageset *pset;
7207
7208 /* avoid races with drain_pages() */
7209 local_irq_save(flags);
7210 if (zone->pageset != &boot_pageset) {
7211 for_each_online_cpu(cpu) {
7212 pset = per_cpu_ptr(zone->pageset, cpu);
7213 drain_zonestat(zone, pset);
7214 }
7215 free_percpu(zone->pageset);
7216 zone->pageset = &boot_pageset;
7217 }
7218 local_irq_restore(flags);
7219 }
7220
7221 #ifdef CONFIG_MEMORY_HOTREMOVE
7222 /*
7223 * All pages in the range must be in a single zone and isolated
7224 * before calling this.
7225 */
7226 void
7227 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7228 {
7229 struct page *page;
7230 struct zone *zone;
7231 unsigned int order, i;
7232 unsigned long pfn;
7233 unsigned long flags;
7234 /* find the first valid pfn */
7235 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7236 if (pfn_valid(pfn))
7237 break;
7238 if (pfn == end_pfn)
7239 return;
7240 zone = page_zone(pfn_to_page(pfn));
7241 spin_lock_irqsave(&zone->lock, flags);
7242 pfn = start_pfn;
7243 while (pfn < end_pfn) {
7244 if (!pfn_valid(pfn)) {
7245 pfn++;
7246 continue;
7247 }
7248 page = pfn_to_page(pfn);
7249 /*
7250 * The HWPoisoned page may be not in buddy system, and
7251 * page_count() is not 0.
7252 */
7253 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7254 pfn++;
7255 SetPageReserved(page);
7256 continue;
7257 }
7258
7259 BUG_ON(page_count(page));
7260 BUG_ON(!PageBuddy(page));
7261 order = page_order(page);
7262 #ifdef CONFIG_DEBUG_VM
7263 pr_info("remove from free list %lx %d %lx\n",
7264 pfn, 1 << order, end_pfn);
7265 #endif
7266 list_del(&page->lru);
7267 rmv_page_order(page);
7268 zone->free_area[order].nr_free--;
7269 for (i = 0; i < (1 << order); i++)
7270 SetPageReserved((page+i));
7271 pfn += (1 << order);
7272 }
7273 spin_unlock_irqrestore(&zone->lock, flags);
7274 }
7275 #endif
7276
7277 bool is_free_buddy_page(struct page *page)
7278 {
7279 struct zone *zone = page_zone(page);
7280 unsigned long pfn = page_to_pfn(page);
7281 unsigned long flags;
7282 unsigned int order;
7283
7284 spin_lock_irqsave(&zone->lock, flags);
7285 for (order = 0; order < MAX_ORDER; order++) {
7286 struct page *page_head = page - (pfn & ((1 << order) - 1));
7287
7288 if (PageBuddy(page_head) && page_order(page_head) >= order)
7289 break;
7290 }
7291 spin_unlock_irqrestore(&zone->lock, flags);
7292
7293 return order < MAX_ORDER;
7294 }
This page took 0.229884 seconds and 6 git commands to generate.