mm: meminit: only set page reserved in the memblock region
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122 unsigned long dirty_balance_reserve __read_mostly;
123
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127 #ifdef CONFIG_PM_SLEEP
128 /*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137 static gfp_t saved_gfp_mask;
138
139 void pm_restore_gfp_mask(void)
140 {
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
146 }
147
148 void pm_restrict_gfp_mask(void)
149 {
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
154 }
155
156 bool pm_suspended_storage(void)
157 {
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167
168 static void __free_pages_ok(struct page *page, unsigned int order);
169
170 /*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 32,
190 #endif
191 32,
192 };
193
194 EXPORT_SYMBOL(totalram_pages);
195
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
208 };
209
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235
236 int page_group_by_mobility_disabled __read_mostly;
237
238 void set_pageblock_migratetype(struct page *page, int migratetype)
239 {
240 if (unlikely(page_group_by_mobility_disabled &&
241 migratetype < MIGRATE_PCPTYPES))
242 migratetype = MIGRATE_UNMOVABLE;
243
244 set_pageblock_flags_group(page, (unsigned long)migratetype,
245 PB_migrate, PB_migrate_end);
246 }
247
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
383 #ifdef CONFIG_DEBUG_PAGEALLOC
384 unsigned int _debug_guardpage_minorder;
385 bool _debug_pagealloc_enabled __read_mostly;
386 bool _debug_guardpage_enabled __read_mostly;
387
388 static int __init early_debug_pagealloc(char *buf)
389 {
390 if (!buf)
391 return -EINVAL;
392
393 if (strcmp(buf, "on") == 0)
394 _debug_pagealloc_enabled = true;
395
396 return 0;
397 }
398 early_param("debug_pagealloc", early_debug_pagealloc);
399
400 static bool need_debug_guardpage(void)
401 {
402 /* If we don't use debug_pagealloc, we don't need guard page */
403 if (!debug_pagealloc_enabled())
404 return false;
405
406 return true;
407 }
408
409 static void init_debug_guardpage(void)
410 {
411 if (!debug_pagealloc_enabled())
412 return;
413
414 _debug_guardpage_enabled = true;
415 }
416
417 struct page_ext_operations debug_guardpage_ops = {
418 .need = need_debug_guardpage,
419 .init = init_debug_guardpage,
420 };
421
422 static int __init debug_guardpage_minorder_setup(char *buf)
423 {
424 unsigned long res;
425
426 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
427 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
428 return 0;
429 }
430 _debug_guardpage_minorder = res;
431 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
432 return 0;
433 }
434 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
435
436 static inline void set_page_guard(struct zone *zone, struct page *page,
437 unsigned int order, int migratetype)
438 {
439 struct page_ext *page_ext;
440
441 if (!debug_guardpage_enabled())
442 return;
443
444 page_ext = lookup_page_ext(page);
445 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
446
447 INIT_LIST_HEAD(&page->lru);
448 set_page_private(page, order);
449 /* Guard pages are not available for any usage */
450 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
451 }
452
453 static inline void clear_page_guard(struct zone *zone, struct page *page,
454 unsigned int order, int migratetype)
455 {
456 struct page_ext *page_ext;
457
458 if (!debug_guardpage_enabled())
459 return;
460
461 page_ext = lookup_page_ext(page);
462 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
463
464 set_page_private(page, 0);
465 if (!is_migrate_isolate(migratetype))
466 __mod_zone_freepage_state(zone, (1 << order), migratetype);
467 }
468 #else
469 struct page_ext_operations debug_guardpage_ops = { NULL, };
470 static inline void set_page_guard(struct zone *zone, struct page *page,
471 unsigned int order, int migratetype) {}
472 static inline void clear_page_guard(struct zone *zone, struct page *page,
473 unsigned int order, int migratetype) {}
474 #endif
475
476 static inline void set_page_order(struct page *page, unsigned int order)
477 {
478 set_page_private(page, order);
479 __SetPageBuddy(page);
480 }
481
482 static inline void rmv_page_order(struct page *page)
483 {
484 __ClearPageBuddy(page);
485 set_page_private(page, 0);
486 }
487
488 /*
489 * This function checks whether a page is free && is the buddy
490 * we can do coalesce a page and its buddy if
491 * (a) the buddy is not in a hole &&
492 * (b) the buddy is in the buddy system &&
493 * (c) a page and its buddy have the same order &&
494 * (d) a page and its buddy are in the same zone.
495 *
496 * For recording whether a page is in the buddy system, we set ->_mapcount
497 * PAGE_BUDDY_MAPCOUNT_VALUE.
498 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
499 * serialized by zone->lock.
500 *
501 * For recording page's order, we use page_private(page).
502 */
503 static inline int page_is_buddy(struct page *page, struct page *buddy,
504 unsigned int order)
505 {
506 if (!pfn_valid_within(page_to_pfn(buddy)))
507 return 0;
508
509 if (page_is_guard(buddy) && page_order(buddy) == order) {
510 if (page_zone_id(page) != page_zone_id(buddy))
511 return 0;
512
513 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
514
515 return 1;
516 }
517
518 if (PageBuddy(buddy) && page_order(buddy) == order) {
519 /*
520 * zone check is done late to avoid uselessly
521 * calculating zone/node ids for pages that could
522 * never merge.
523 */
524 if (page_zone_id(page) != page_zone_id(buddy))
525 return 0;
526
527 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
528
529 return 1;
530 }
531 return 0;
532 }
533
534 /*
535 * Freeing function for a buddy system allocator.
536 *
537 * The concept of a buddy system is to maintain direct-mapped table
538 * (containing bit values) for memory blocks of various "orders".
539 * The bottom level table contains the map for the smallest allocatable
540 * units of memory (here, pages), and each level above it describes
541 * pairs of units from the levels below, hence, "buddies".
542 * At a high level, all that happens here is marking the table entry
543 * at the bottom level available, and propagating the changes upward
544 * as necessary, plus some accounting needed to play nicely with other
545 * parts of the VM system.
546 * At each level, we keep a list of pages, which are heads of continuous
547 * free pages of length of (1 << order) and marked with _mapcount
548 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
549 * field.
550 * So when we are allocating or freeing one, we can derive the state of the
551 * other. That is, if we allocate a small block, and both were
552 * free, the remainder of the region must be split into blocks.
553 * If a block is freed, and its buddy is also free, then this
554 * triggers coalescing into a block of larger size.
555 *
556 * -- nyc
557 */
558
559 static inline void __free_one_page(struct page *page,
560 unsigned long pfn,
561 struct zone *zone, unsigned int order,
562 int migratetype)
563 {
564 unsigned long page_idx;
565 unsigned long combined_idx;
566 unsigned long uninitialized_var(buddy_idx);
567 struct page *buddy;
568 int max_order = MAX_ORDER;
569
570 VM_BUG_ON(!zone_is_initialized(zone));
571 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
572
573 VM_BUG_ON(migratetype == -1);
574 if (is_migrate_isolate(migratetype)) {
575 /*
576 * We restrict max order of merging to prevent merge
577 * between freepages on isolate pageblock and normal
578 * pageblock. Without this, pageblock isolation
579 * could cause incorrect freepage accounting.
580 */
581 max_order = min(MAX_ORDER, pageblock_order + 1);
582 } else {
583 __mod_zone_freepage_state(zone, 1 << order, migratetype);
584 }
585
586 page_idx = pfn & ((1 << max_order) - 1);
587
588 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
589 VM_BUG_ON_PAGE(bad_range(zone, page), page);
590
591 while (order < max_order - 1) {
592 buddy_idx = __find_buddy_index(page_idx, order);
593 buddy = page + (buddy_idx - page_idx);
594 if (!page_is_buddy(page, buddy, order))
595 break;
596 /*
597 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
598 * merge with it and move up one order.
599 */
600 if (page_is_guard(buddy)) {
601 clear_page_guard(zone, buddy, order, migratetype);
602 } else {
603 list_del(&buddy->lru);
604 zone->free_area[order].nr_free--;
605 rmv_page_order(buddy);
606 }
607 combined_idx = buddy_idx & page_idx;
608 page = page + (combined_idx - page_idx);
609 page_idx = combined_idx;
610 order++;
611 }
612 set_page_order(page, order);
613
614 /*
615 * If this is not the largest possible page, check if the buddy
616 * of the next-highest order is free. If it is, it's possible
617 * that pages are being freed that will coalesce soon. In case,
618 * that is happening, add the free page to the tail of the list
619 * so it's less likely to be used soon and more likely to be merged
620 * as a higher order page
621 */
622 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
623 struct page *higher_page, *higher_buddy;
624 combined_idx = buddy_idx & page_idx;
625 higher_page = page + (combined_idx - page_idx);
626 buddy_idx = __find_buddy_index(combined_idx, order + 1);
627 higher_buddy = higher_page + (buddy_idx - combined_idx);
628 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
629 list_add_tail(&page->lru,
630 &zone->free_area[order].free_list[migratetype]);
631 goto out;
632 }
633 }
634
635 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
636 out:
637 zone->free_area[order].nr_free++;
638 }
639
640 static inline int free_pages_check(struct page *page)
641 {
642 const char *bad_reason = NULL;
643 unsigned long bad_flags = 0;
644
645 if (unlikely(page_mapcount(page)))
646 bad_reason = "nonzero mapcount";
647 if (unlikely(page->mapping != NULL))
648 bad_reason = "non-NULL mapping";
649 if (unlikely(atomic_read(&page->_count) != 0))
650 bad_reason = "nonzero _count";
651 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
652 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
653 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
654 }
655 #ifdef CONFIG_MEMCG
656 if (unlikely(page->mem_cgroup))
657 bad_reason = "page still charged to cgroup";
658 #endif
659 if (unlikely(bad_reason)) {
660 bad_page(page, bad_reason, bad_flags);
661 return 1;
662 }
663 page_cpupid_reset_last(page);
664 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
665 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
666 return 0;
667 }
668
669 /*
670 * Frees a number of pages from the PCP lists
671 * Assumes all pages on list are in same zone, and of same order.
672 * count is the number of pages to free.
673 *
674 * If the zone was previously in an "all pages pinned" state then look to
675 * see if this freeing clears that state.
676 *
677 * And clear the zone's pages_scanned counter, to hold off the "all pages are
678 * pinned" detection logic.
679 */
680 static void free_pcppages_bulk(struct zone *zone, int count,
681 struct per_cpu_pages *pcp)
682 {
683 int migratetype = 0;
684 int batch_free = 0;
685 int to_free = count;
686 unsigned long nr_scanned;
687
688 spin_lock(&zone->lock);
689 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
690 if (nr_scanned)
691 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
692
693 while (to_free) {
694 struct page *page;
695 struct list_head *list;
696
697 /*
698 * Remove pages from lists in a round-robin fashion. A
699 * batch_free count is maintained that is incremented when an
700 * empty list is encountered. This is so more pages are freed
701 * off fuller lists instead of spinning excessively around empty
702 * lists
703 */
704 do {
705 batch_free++;
706 if (++migratetype == MIGRATE_PCPTYPES)
707 migratetype = 0;
708 list = &pcp->lists[migratetype];
709 } while (list_empty(list));
710
711 /* This is the only non-empty list. Free them all. */
712 if (batch_free == MIGRATE_PCPTYPES)
713 batch_free = to_free;
714
715 do {
716 int mt; /* migratetype of the to-be-freed page */
717
718 page = list_entry(list->prev, struct page, lru);
719 /* must delete as __free_one_page list manipulates */
720 list_del(&page->lru);
721 mt = get_freepage_migratetype(page);
722 if (unlikely(has_isolate_pageblock(zone)))
723 mt = get_pageblock_migratetype(page);
724
725 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
726 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
727 trace_mm_page_pcpu_drain(page, 0, mt);
728 } while (--to_free && --batch_free && !list_empty(list));
729 }
730 spin_unlock(&zone->lock);
731 }
732
733 static void free_one_page(struct zone *zone,
734 struct page *page, unsigned long pfn,
735 unsigned int order,
736 int migratetype)
737 {
738 unsigned long nr_scanned;
739 spin_lock(&zone->lock);
740 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
741 if (nr_scanned)
742 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
743
744 if (unlikely(has_isolate_pageblock(zone) ||
745 is_migrate_isolate(migratetype))) {
746 migratetype = get_pfnblock_migratetype(page, pfn);
747 }
748 __free_one_page(page, pfn, zone, order, migratetype);
749 spin_unlock(&zone->lock);
750 }
751
752 static int free_tail_pages_check(struct page *head_page, struct page *page)
753 {
754 if (!IS_ENABLED(CONFIG_DEBUG_VM))
755 return 0;
756 if (unlikely(!PageTail(page))) {
757 bad_page(page, "PageTail not set", 0);
758 return 1;
759 }
760 if (unlikely(page->first_page != head_page)) {
761 bad_page(page, "first_page not consistent", 0);
762 return 1;
763 }
764 return 0;
765 }
766
767 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
768 unsigned long zone, int nid)
769 {
770 struct zone *z = &NODE_DATA(nid)->node_zones[zone];
771
772 set_page_links(page, zone, nid, pfn);
773 mminit_verify_page_links(page, zone, nid, pfn);
774 init_page_count(page);
775 page_mapcount_reset(page);
776 page_cpupid_reset_last(page);
777
778 /*
779 * Mark the block movable so that blocks are reserved for
780 * movable at startup. This will force kernel allocations
781 * to reserve their blocks rather than leaking throughout
782 * the address space during boot when many long-lived
783 * kernel allocations are made. Later some blocks near
784 * the start are marked MIGRATE_RESERVE by
785 * setup_zone_migrate_reserve()
786 *
787 * bitmap is created for zone's valid pfn range. but memmap
788 * can be created for invalid pages (for alignment)
789 * check here not to call set_pageblock_migratetype() against
790 * pfn out of zone.
791 */
792 if ((z->zone_start_pfn <= pfn)
793 && (pfn < zone_end_pfn(z))
794 && !(pfn & (pageblock_nr_pages - 1)))
795 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
796
797 INIT_LIST_HEAD(&page->lru);
798 #ifdef WANT_PAGE_VIRTUAL
799 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
800 if (!is_highmem_idx(zone))
801 set_page_address(page, __va(pfn << PAGE_SHIFT));
802 #endif
803 }
804
805 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
806 int nid)
807 {
808 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
809 }
810
811 /*
812 * Initialised pages do not have PageReserved set. This function is
813 * called for each range allocated by the bootmem allocator and
814 * marks the pages PageReserved. The remaining valid pages are later
815 * sent to the buddy page allocator.
816 */
817 void reserve_bootmem_region(unsigned long start, unsigned long end)
818 {
819 unsigned long start_pfn = PFN_DOWN(start);
820 unsigned long end_pfn = PFN_UP(end);
821
822 for (; start_pfn < end_pfn; start_pfn++)
823 if (pfn_valid(start_pfn))
824 SetPageReserved(pfn_to_page(start_pfn));
825 }
826
827 static bool free_pages_prepare(struct page *page, unsigned int order)
828 {
829 bool compound = PageCompound(page);
830 int i, bad = 0;
831
832 VM_BUG_ON_PAGE(PageTail(page), page);
833 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
834
835 trace_mm_page_free(page, order);
836 kmemcheck_free_shadow(page, order);
837 kasan_free_pages(page, order);
838
839 if (PageAnon(page))
840 page->mapping = NULL;
841 bad += free_pages_check(page);
842 for (i = 1; i < (1 << order); i++) {
843 if (compound)
844 bad += free_tail_pages_check(page, page + i);
845 bad += free_pages_check(page + i);
846 }
847 if (bad)
848 return false;
849
850 reset_page_owner(page, order);
851
852 if (!PageHighMem(page)) {
853 debug_check_no_locks_freed(page_address(page),
854 PAGE_SIZE << order);
855 debug_check_no_obj_freed(page_address(page),
856 PAGE_SIZE << order);
857 }
858 arch_free_page(page, order);
859 kernel_map_pages(page, 1 << order, 0);
860
861 return true;
862 }
863
864 static void __free_pages_ok(struct page *page, unsigned int order)
865 {
866 unsigned long flags;
867 int migratetype;
868 unsigned long pfn = page_to_pfn(page);
869
870 if (!free_pages_prepare(page, order))
871 return;
872
873 migratetype = get_pfnblock_migratetype(page, pfn);
874 local_irq_save(flags);
875 __count_vm_events(PGFREE, 1 << order);
876 set_freepage_migratetype(page, migratetype);
877 free_one_page(page_zone(page), page, pfn, order, migratetype);
878 local_irq_restore(flags);
879 }
880
881 void __init __free_pages_bootmem(struct page *page, unsigned int order)
882 {
883 unsigned int nr_pages = 1 << order;
884 struct page *p = page;
885 unsigned int loop;
886
887 prefetchw(p);
888 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
889 prefetchw(p + 1);
890 __ClearPageReserved(p);
891 set_page_count(p, 0);
892 }
893 __ClearPageReserved(p);
894 set_page_count(p, 0);
895
896 page_zone(page)->managed_pages += nr_pages;
897 set_page_refcounted(page);
898 __free_pages(page, order);
899 }
900
901 #ifdef CONFIG_CMA
902 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
903 void __init init_cma_reserved_pageblock(struct page *page)
904 {
905 unsigned i = pageblock_nr_pages;
906 struct page *p = page;
907
908 do {
909 __ClearPageReserved(p);
910 set_page_count(p, 0);
911 } while (++p, --i);
912
913 set_pageblock_migratetype(page, MIGRATE_CMA);
914
915 if (pageblock_order >= MAX_ORDER) {
916 i = pageblock_nr_pages;
917 p = page;
918 do {
919 set_page_refcounted(p);
920 __free_pages(p, MAX_ORDER - 1);
921 p += MAX_ORDER_NR_PAGES;
922 } while (i -= MAX_ORDER_NR_PAGES);
923 } else {
924 set_page_refcounted(page);
925 __free_pages(page, pageblock_order);
926 }
927
928 adjust_managed_page_count(page, pageblock_nr_pages);
929 }
930 #endif
931
932 /*
933 * The order of subdivision here is critical for the IO subsystem.
934 * Please do not alter this order without good reasons and regression
935 * testing. Specifically, as large blocks of memory are subdivided,
936 * the order in which smaller blocks are delivered depends on the order
937 * they're subdivided in this function. This is the primary factor
938 * influencing the order in which pages are delivered to the IO
939 * subsystem according to empirical testing, and this is also justified
940 * by considering the behavior of a buddy system containing a single
941 * large block of memory acted on by a series of small allocations.
942 * This behavior is a critical factor in sglist merging's success.
943 *
944 * -- nyc
945 */
946 static inline void expand(struct zone *zone, struct page *page,
947 int low, int high, struct free_area *area,
948 int migratetype)
949 {
950 unsigned long size = 1 << high;
951
952 while (high > low) {
953 area--;
954 high--;
955 size >>= 1;
956 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
957
958 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
959 debug_guardpage_enabled() &&
960 high < debug_guardpage_minorder()) {
961 /*
962 * Mark as guard pages (or page), that will allow to
963 * merge back to allocator when buddy will be freed.
964 * Corresponding page table entries will not be touched,
965 * pages will stay not present in virtual address space
966 */
967 set_page_guard(zone, &page[size], high, migratetype);
968 continue;
969 }
970 list_add(&page[size].lru, &area->free_list[migratetype]);
971 area->nr_free++;
972 set_page_order(&page[size], high);
973 }
974 }
975
976 /*
977 * This page is about to be returned from the page allocator
978 */
979 static inline int check_new_page(struct page *page)
980 {
981 const char *bad_reason = NULL;
982 unsigned long bad_flags = 0;
983
984 if (unlikely(page_mapcount(page)))
985 bad_reason = "nonzero mapcount";
986 if (unlikely(page->mapping != NULL))
987 bad_reason = "non-NULL mapping";
988 if (unlikely(atomic_read(&page->_count) != 0))
989 bad_reason = "nonzero _count";
990 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
991 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
992 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
993 }
994 #ifdef CONFIG_MEMCG
995 if (unlikely(page->mem_cgroup))
996 bad_reason = "page still charged to cgroup";
997 #endif
998 if (unlikely(bad_reason)) {
999 bad_page(page, bad_reason, bad_flags);
1000 return 1;
1001 }
1002 return 0;
1003 }
1004
1005 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1006 int alloc_flags)
1007 {
1008 int i;
1009
1010 for (i = 0; i < (1 << order); i++) {
1011 struct page *p = page + i;
1012 if (unlikely(check_new_page(p)))
1013 return 1;
1014 }
1015
1016 set_page_private(page, 0);
1017 set_page_refcounted(page);
1018
1019 arch_alloc_page(page, order);
1020 kernel_map_pages(page, 1 << order, 1);
1021 kasan_alloc_pages(page, order);
1022
1023 if (gfp_flags & __GFP_ZERO)
1024 for (i = 0; i < (1 << order); i++)
1025 clear_highpage(page + i);
1026
1027 if (order && (gfp_flags & __GFP_COMP))
1028 prep_compound_page(page, order);
1029
1030 set_page_owner(page, order, gfp_flags);
1031
1032 /*
1033 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1034 * allocate the page. The expectation is that the caller is taking
1035 * steps that will free more memory. The caller should avoid the page
1036 * being used for !PFMEMALLOC purposes.
1037 */
1038 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1039
1040 return 0;
1041 }
1042
1043 /*
1044 * Go through the free lists for the given migratetype and remove
1045 * the smallest available page from the freelists
1046 */
1047 static inline
1048 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1049 int migratetype)
1050 {
1051 unsigned int current_order;
1052 struct free_area *area;
1053 struct page *page;
1054
1055 /* Find a page of the appropriate size in the preferred list */
1056 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1057 area = &(zone->free_area[current_order]);
1058 if (list_empty(&area->free_list[migratetype]))
1059 continue;
1060
1061 page = list_entry(area->free_list[migratetype].next,
1062 struct page, lru);
1063 list_del(&page->lru);
1064 rmv_page_order(page);
1065 area->nr_free--;
1066 expand(zone, page, order, current_order, area, migratetype);
1067 set_freepage_migratetype(page, migratetype);
1068 return page;
1069 }
1070
1071 return NULL;
1072 }
1073
1074
1075 /*
1076 * This array describes the order lists are fallen back to when
1077 * the free lists for the desirable migrate type are depleted
1078 */
1079 static int fallbacks[MIGRATE_TYPES][4] = {
1080 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1081 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1082 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1083 #ifdef CONFIG_CMA
1084 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1085 #endif
1086 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1087 #ifdef CONFIG_MEMORY_ISOLATION
1088 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1089 #endif
1090 };
1091
1092 #ifdef CONFIG_CMA
1093 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1094 unsigned int order)
1095 {
1096 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1097 }
1098 #else
1099 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1100 unsigned int order) { return NULL; }
1101 #endif
1102
1103 /*
1104 * Move the free pages in a range to the free lists of the requested type.
1105 * Note that start_page and end_pages are not aligned on a pageblock
1106 * boundary. If alignment is required, use move_freepages_block()
1107 */
1108 int move_freepages(struct zone *zone,
1109 struct page *start_page, struct page *end_page,
1110 int migratetype)
1111 {
1112 struct page *page;
1113 unsigned long order;
1114 int pages_moved = 0;
1115
1116 #ifndef CONFIG_HOLES_IN_ZONE
1117 /*
1118 * page_zone is not safe to call in this context when
1119 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1120 * anyway as we check zone boundaries in move_freepages_block().
1121 * Remove at a later date when no bug reports exist related to
1122 * grouping pages by mobility
1123 */
1124 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1125 #endif
1126
1127 for (page = start_page; page <= end_page;) {
1128 /* Make sure we are not inadvertently changing nodes */
1129 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1130
1131 if (!pfn_valid_within(page_to_pfn(page))) {
1132 page++;
1133 continue;
1134 }
1135
1136 if (!PageBuddy(page)) {
1137 page++;
1138 continue;
1139 }
1140
1141 order = page_order(page);
1142 list_move(&page->lru,
1143 &zone->free_area[order].free_list[migratetype]);
1144 set_freepage_migratetype(page, migratetype);
1145 page += 1 << order;
1146 pages_moved += 1 << order;
1147 }
1148
1149 return pages_moved;
1150 }
1151
1152 int move_freepages_block(struct zone *zone, struct page *page,
1153 int migratetype)
1154 {
1155 unsigned long start_pfn, end_pfn;
1156 struct page *start_page, *end_page;
1157
1158 start_pfn = page_to_pfn(page);
1159 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1160 start_page = pfn_to_page(start_pfn);
1161 end_page = start_page + pageblock_nr_pages - 1;
1162 end_pfn = start_pfn + pageblock_nr_pages - 1;
1163
1164 /* Do not cross zone boundaries */
1165 if (!zone_spans_pfn(zone, start_pfn))
1166 start_page = page;
1167 if (!zone_spans_pfn(zone, end_pfn))
1168 return 0;
1169
1170 return move_freepages(zone, start_page, end_page, migratetype);
1171 }
1172
1173 static void change_pageblock_range(struct page *pageblock_page,
1174 int start_order, int migratetype)
1175 {
1176 int nr_pageblocks = 1 << (start_order - pageblock_order);
1177
1178 while (nr_pageblocks--) {
1179 set_pageblock_migratetype(pageblock_page, migratetype);
1180 pageblock_page += pageblock_nr_pages;
1181 }
1182 }
1183
1184 /*
1185 * When we are falling back to another migratetype during allocation, try to
1186 * steal extra free pages from the same pageblocks to satisfy further
1187 * allocations, instead of polluting multiple pageblocks.
1188 *
1189 * If we are stealing a relatively large buddy page, it is likely there will
1190 * be more free pages in the pageblock, so try to steal them all. For
1191 * reclaimable and unmovable allocations, we steal regardless of page size,
1192 * as fragmentation caused by those allocations polluting movable pageblocks
1193 * is worse than movable allocations stealing from unmovable and reclaimable
1194 * pageblocks.
1195 */
1196 static bool can_steal_fallback(unsigned int order, int start_mt)
1197 {
1198 /*
1199 * Leaving this order check is intended, although there is
1200 * relaxed order check in next check. The reason is that
1201 * we can actually steal whole pageblock if this condition met,
1202 * but, below check doesn't guarantee it and that is just heuristic
1203 * so could be changed anytime.
1204 */
1205 if (order >= pageblock_order)
1206 return true;
1207
1208 if (order >= pageblock_order / 2 ||
1209 start_mt == MIGRATE_RECLAIMABLE ||
1210 start_mt == MIGRATE_UNMOVABLE ||
1211 page_group_by_mobility_disabled)
1212 return true;
1213
1214 return false;
1215 }
1216
1217 /*
1218 * This function implements actual steal behaviour. If order is large enough,
1219 * we can steal whole pageblock. If not, we first move freepages in this
1220 * pageblock and check whether half of pages are moved or not. If half of
1221 * pages are moved, we can change migratetype of pageblock and permanently
1222 * use it's pages as requested migratetype in the future.
1223 */
1224 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1225 int start_type)
1226 {
1227 int current_order = page_order(page);
1228 int pages;
1229
1230 /* Take ownership for orders >= pageblock_order */
1231 if (current_order >= pageblock_order) {
1232 change_pageblock_range(page, current_order, start_type);
1233 return;
1234 }
1235
1236 pages = move_freepages_block(zone, page, start_type);
1237
1238 /* Claim the whole block if over half of it is free */
1239 if (pages >= (1 << (pageblock_order-1)) ||
1240 page_group_by_mobility_disabled)
1241 set_pageblock_migratetype(page, start_type);
1242 }
1243
1244 /*
1245 * Check whether there is a suitable fallback freepage with requested order.
1246 * If only_stealable is true, this function returns fallback_mt only if
1247 * we can steal other freepages all together. This would help to reduce
1248 * fragmentation due to mixed migratetype pages in one pageblock.
1249 */
1250 int find_suitable_fallback(struct free_area *area, unsigned int order,
1251 int migratetype, bool only_stealable, bool *can_steal)
1252 {
1253 int i;
1254 int fallback_mt;
1255
1256 if (area->nr_free == 0)
1257 return -1;
1258
1259 *can_steal = false;
1260 for (i = 0;; i++) {
1261 fallback_mt = fallbacks[migratetype][i];
1262 if (fallback_mt == MIGRATE_RESERVE)
1263 break;
1264
1265 if (list_empty(&area->free_list[fallback_mt]))
1266 continue;
1267
1268 if (can_steal_fallback(order, migratetype))
1269 *can_steal = true;
1270
1271 if (!only_stealable)
1272 return fallback_mt;
1273
1274 if (*can_steal)
1275 return fallback_mt;
1276 }
1277
1278 return -1;
1279 }
1280
1281 /* Remove an element from the buddy allocator from the fallback list */
1282 static inline struct page *
1283 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1284 {
1285 struct free_area *area;
1286 unsigned int current_order;
1287 struct page *page;
1288 int fallback_mt;
1289 bool can_steal;
1290
1291 /* Find the largest possible block of pages in the other list */
1292 for (current_order = MAX_ORDER-1;
1293 current_order >= order && current_order <= MAX_ORDER-1;
1294 --current_order) {
1295 area = &(zone->free_area[current_order]);
1296 fallback_mt = find_suitable_fallback(area, current_order,
1297 start_migratetype, false, &can_steal);
1298 if (fallback_mt == -1)
1299 continue;
1300
1301 page = list_entry(area->free_list[fallback_mt].next,
1302 struct page, lru);
1303 if (can_steal)
1304 steal_suitable_fallback(zone, page, start_migratetype);
1305
1306 /* Remove the page from the freelists */
1307 area->nr_free--;
1308 list_del(&page->lru);
1309 rmv_page_order(page);
1310
1311 expand(zone, page, order, current_order, area,
1312 start_migratetype);
1313 /*
1314 * The freepage_migratetype may differ from pageblock's
1315 * migratetype depending on the decisions in
1316 * try_to_steal_freepages(). This is OK as long as it
1317 * does not differ for MIGRATE_CMA pageblocks. For CMA
1318 * we need to make sure unallocated pages flushed from
1319 * pcp lists are returned to the correct freelist.
1320 */
1321 set_freepage_migratetype(page, start_migratetype);
1322
1323 trace_mm_page_alloc_extfrag(page, order, current_order,
1324 start_migratetype, fallback_mt);
1325
1326 return page;
1327 }
1328
1329 return NULL;
1330 }
1331
1332 /*
1333 * Do the hard work of removing an element from the buddy allocator.
1334 * Call me with the zone->lock already held.
1335 */
1336 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1337 int migratetype)
1338 {
1339 struct page *page;
1340
1341 retry_reserve:
1342 page = __rmqueue_smallest(zone, order, migratetype);
1343
1344 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1345 if (migratetype == MIGRATE_MOVABLE)
1346 page = __rmqueue_cma_fallback(zone, order);
1347
1348 if (!page)
1349 page = __rmqueue_fallback(zone, order, migratetype);
1350
1351 /*
1352 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1353 * is used because __rmqueue_smallest is an inline function
1354 * and we want just one call site
1355 */
1356 if (!page) {
1357 migratetype = MIGRATE_RESERVE;
1358 goto retry_reserve;
1359 }
1360 }
1361
1362 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1363 return page;
1364 }
1365
1366 /*
1367 * Obtain a specified number of elements from the buddy allocator, all under
1368 * a single hold of the lock, for efficiency. Add them to the supplied list.
1369 * Returns the number of new pages which were placed at *list.
1370 */
1371 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1372 unsigned long count, struct list_head *list,
1373 int migratetype, bool cold)
1374 {
1375 int i;
1376
1377 spin_lock(&zone->lock);
1378 for (i = 0; i < count; ++i) {
1379 struct page *page = __rmqueue(zone, order, migratetype);
1380 if (unlikely(page == NULL))
1381 break;
1382
1383 /*
1384 * Split buddy pages returned by expand() are received here
1385 * in physical page order. The page is added to the callers and
1386 * list and the list head then moves forward. From the callers
1387 * perspective, the linked list is ordered by page number in
1388 * some conditions. This is useful for IO devices that can
1389 * merge IO requests if the physical pages are ordered
1390 * properly.
1391 */
1392 if (likely(!cold))
1393 list_add(&page->lru, list);
1394 else
1395 list_add_tail(&page->lru, list);
1396 list = &page->lru;
1397 if (is_migrate_cma(get_freepage_migratetype(page)))
1398 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1399 -(1 << order));
1400 }
1401 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1402 spin_unlock(&zone->lock);
1403 return i;
1404 }
1405
1406 #ifdef CONFIG_NUMA
1407 /*
1408 * Called from the vmstat counter updater to drain pagesets of this
1409 * currently executing processor on remote nodes after they have
1410 * expired.
1411 *
1412 * Note that this function must be called with the thread pinned to
1413 * a single processor.
1414 */
1415 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1416 {
1417 unsigned long flags;
1418 int to_drain, batch;
1419
1420 local_irq_save(flags);
1421 batch = READ_ONCE(pcp->batch);
1422 to_drain = min(pcp->count, batch);
1423 if (to_drain > 0) {
1424 free_pcppages_bulk(zone, to_drain, pcp);
1425 pcp->count -= to_drain;
1426 }
1427 local_irq_restore(flags);
1428 }
1429 #endif
1430
1431 /*
1432 * Drain pcplists of the indicated processor and zone.
1433 *
1434 * The processor must either be the current processor and the
1435 * thread pinned to the current processor or a processor that
1436 * is not online.
1437 */
1438 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1439 {
1440 unsigned long flags;
1441 struct per_cpu_pageset *pset;
1442 struct per_cpu_pages *pcp;
1443
1444 local_irq_save(flags);
1445 pset = per_cpu_ptr(zone->pageset, cpu);
1446
1447 pcp = &pset->pcp;
1448 if (pcp->count) {
1449 free_pcppages_bulk(zone, pcp->count, pcp);
1450 pcp->count = 0;
1451 }
1452 local_irq_restore(flags);
1453 }
1454
1455 /*
1456 * Drain pcplists of all zones on the indicated processor.
1457 *
1458 * The processor must either be the current processor and the
1459 * thread pinned to the current processor or a processor that
1460 * is not online.
1461 */
1462 static void drain_pages(unsigned int cpu)
1463 {
1464 struct zone *zone;
1465
1466 for_each_populated_zone(zone) {
1467 drain_pages_zone(cpu, zone);
1468 }
1469 }
1470
1471 /*
1472 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1473 *
1474 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1475 * the single zone's pages.
1476 */
1477 void drain_local_pages(struct zone *zone)
1478 {
1479 int cpu = smp_processor_id();
1480
1481 if (zone)
1482 drain_pages_zone(cpu, zone);
1483 else
1484 drain_pages(cpu);
1485 }
1486
1487 /*
1488 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1489 *
1490 * When zone parameter is non-NULL, spill just the single zone's pages.
1491 *
1492 * Note that this code is protected against sending an IPI to an offline
1493 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1494 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1495 * nothing keeps CPUs from showing up after we populated the cpumask and
1496 * before the call to on_each_cpu_mask().
1497 */
1498 void drain_all_pages(struct zone *zone)
1499 {
1500 int cpu;
1501
1502 /*
1503 * Allocate in the BSS so we wont require allocation in
1504 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1505 */
1506 static cpumask_t cpus_with_pcps;
1507
1508 /*
1509 * We don't care about racing with CPU hotplug event
1510 * as offline notification will cause the notified
1511 * cpu to drain that CPU pcps and on_each_cpu_mask
1512 * disables preemption as part of its processing
1513 */
1514 for_each_online_cpu(cpu) {
1515 struct per_cpu_pageset *pcp;
1516 struct zone *z;
1517 bool has_pcps = false;
1518
1519 if (zone) {
1520 pcp = per_cpu_ptr(zone->pageset, cpu);
1521 if (pcp->pcp.count)
1522 has_pcps = true;
1523 } else {
1524 for_each_populated_zone(z) {
1525 pcp = per_cpu_ptr(z->pageset, cpu);
1526 if (pcp->pcp.count) {
1527 has_pcps = true;
1528 break;
1529 }
1530 }
1531 }
1532
1533 if (has_pcps)
1534 cpumask_set_cpu(cpu, &cpus_with_pcps);
1535 else
1536 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1537 }
1538 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1539 zone, 1);
1540 }
1541
1542 #ifdef CONFIG_HIBERNATION
1543
1544 void mark_free_pages(struct zone *zone)
1545 {
1546 unsigned long pfn, max_zone_pfn;
1547 unsigned long flags;
1548 unsigned int order, t;
1549 struct list_head *curr;
1550
1551 if (zone_is_empty(zone))
1552 return;
1553
1554 spin_lock_irqsave(&zone->lock, flags);
1555
1556 max_zone_pfn = zone_end_pfn(zone);
1557 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1558 if (pfn_valid(pfn)) {
1559 struct page *page = pfn_to_page(pfn);
1560
1561 if (!swsusp_page_is_forbidden(page))
1562 swsusp_unset_page_free(page);
1563 }
1564
1565 for_each_migratetype_order(order, t) {
1566 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1567 unsigned long i;
1568
1569 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1570 for (i = 0; i < (1UL << order); i++)
1571 swsusp_set_page_free(pfn_to_page(pfn + i));
1572 }
1573 }
1574 spin_unlock_irqrestore(&zone->lock, flags);
1575 }
1576 #endif /* CONFIG_PM */
1577
1578 /*
1579 * Free a 0-order page
1580 * cold == true ? free a cold page : free a hot page
1581 */
1582 void free_hot_cold_page(struct page *page, bool cold)
1583 {
1584 struct zone *zone = page_zone(page);
1585 struct per_cpu_pages *pcp;
1586 unsigned long flags;
1587 unsigned long pfn = page_to_pfn(page);
1588 int migratetype;
1589
1590 if (!free_pages_prepare(page, 0))
1591 return;
1592
1593 migratetype = get_pfnblock_migratetype(page, pfn);
1594 set_freepage_migratetype(page, migratetype);
1595 local_irq_save(flags);
1596 __count_vm_event(PGFREE);
1597
1598 /*
1599 * We only track unmovable, reclaimable and movable on pcp lists.
1600 * Free ISOLATE pages back to the allocator because they are being
1601 * offlined but treat RESERVE as movable pages so we can get those
1602 * areas back if necessary. Otherwise, we may have to free
1603 * excessively into the page allocator
1604 */
1605 if (migratetype >= MIGRATE_PCPTYPES) {
1606 if (unlikely(is_migrate_isolate(migratetype))) {
1607 free_one_page(zone, page, pfn, 0, migratetype);
1608 goto out;
1609 }
1610 migratetype = MIGRATE_MOVABLE;
1611 }
1612
1613 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1614 if (!cold)
1615 list_add(&page->lru, &pcp->lists[migratetype]);
1616 else
1617 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1618 pcp->count++;
1619 if (pcp->count >= pcp->high) {
1620 unsigned long batch = READ_ONCE(pcp->batch);
1621 free_pcppages_bulk(zone, batch, pcp);
1622 pcp->count -= batch;
1623 }
1624
1625 out:
1626 local_irq_restore(flags);
1627 }
1628
1629 /*
1630 * Free a list of 0-order pages
1631 */
1632 void free_hot_cold_page_list(struct list_head *list, bool cold)
1633 {
1634 struct page *page, *next;
1635
1636 list_for_each_entry_safe(page, next, list, lru) {
1637 trace_mm_page_free_batched(page, cold);
1638 free_hot_cold_page(page, cold);
1639 }
1640 }
1641
1642 /*
1643 * split_page takes a non-compound higher-order page, and splits it into
1644 * n (1<<order) sub-pages: page[0..n]
1645 * Each sub-page must be freed individually.
1646 *
1647 * Note: this is probably too low level an operation for use in drivers.
1648 * Please consult with lkml before using this in your driver.
1649 */
1650 void split_page(struct page *page, unsigned int order)
1651 {
1652 int i;
1653
1654 VM_BUG_ON_PAGE(PageCompound(page), page);
1655 VM_BUG_ON_PAGE(!page_count(page), page);
1656
1657 #ifdef CONFIG_KMEMCHECK
1658 /*
1659 * Split shadow pages too, because free(page[0]) would
1660 * otherwise free the whole shadow.
1661 */
1662 if (kmemcheck_page_is_tracked(page))
1663 split_page(virt_to_page(page[0].shadow), order);
1664 #endif
1665
1666 set_page_owner(page, 0, 0);
1667 for (i = 1; i < (1 << order); i++) {
1668 set_page_refcounted(page + i);
1669 set_page_owner(page + i, 0, 0);
1670 }
1671 }
1672 EXPORT_SYMBOL_GPL(split_page);
1673
1674 int __isolate_free_page(struct page *page, unsigned int order)
1675 {
1676 unsigned long watermark;
1677 struct zone *zone;
1678 int mt;
1679
1680 BUG_ON(!PageBuddy(page));
1681
1682 zone = page_zone(page);
1683 mt = get_pageblock_migratetype(page);
1684
1685 if (!is_migrate_isolate(mt)) {
1686 /* Obey watermarks as if the page was being allocated */
1687 watermark = low_wmark_pages(zone) + (1 << order);
1688 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1689 return 0;
1690
1691 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1692 }
1693
1694 /* Remove page from free list */
1695 list_del(&page->lru);
1696 zone->free_area[order].nr_free--;
1697 rmv_page_order(page);
1698
1699 /* Set the pageblock if the isolated page is at least a pageblock */
1700 if (order >= pageblock_order - 1) {
1701 struct page *endpage = page + (1 << order) - 1;
1702 for (; page < endpage; page += pageblock_nr_pages) {
1703 int mt = get_pageblock_migratetype(page);
1704 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1705 set_pageblock_migratetype(page,
1706 MIGRATE_MOVABLE);
1707 }
1708 }
1709
1710 set_page_owner(page, order, 0);
1711 return 1UL << order;
1712 }
1713
1714 /*
1715 * Similar to split_page except the page is already free. As this is only
1716 * being used for migration, the migratetype of the block also changes.
1717 * As this is called with interrupts disabled, the caller is responsible
1718 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1719 * are enabled.
1720 *
1721 * Note: this is probably too low level an operation for use in drivers.
1722 * Please consult with lkml before using this in your driver.
1723 */
1724 int split_free_page(struct page *page)
1725 {
1726 unsigned int order;
1727 int nr_pages;
1728
1729 order = page_order(page);
1730
1731 nr_pages = __isolate_free_page(page, order);
1732 if (!nr_pages)
1733 return 0;
1734
1735 /* Split into individual pages */
1736 set_page_refcounted(page);
1737 split_page(page, order);
1738 return nr_pages;
1739 }
1740
1741 /*
1742 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1743 */
1744 static inline
1745 struct page *buffered_rmqueue(struct zone *preferred_zone,
1746 struct zone *zone, unsigned int order,
1747 gfp_t gfp_flags, int migratetype)
1748 {
1749 unsigned long flags;
1750 struct page *page;
1751 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1752
1753 if (likely(order == 0)) {
1754 struct per_cpu_pages *pcp;
1755 struct list_head *list;
1756
1757 local_irq_save(flags);
1758 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1759 list = &pcp->lists[migratetype];
1760 if (list_empty(list)) {
1761 pcp->count += rmqueue_bulk(zone, 0,
1762 pcp->batch, list,
1763 migratetype, cold);
1764 if (unlikely(list_empty(list)))
1765 goto failed;
1766 }
1767
1768 if (cold)
1769 page = list_entry(list->prev, struct page, lru);
1770 else
1771 page = list_entry(list->next, struct page, lru);
1772
1773 list_del(&page->lru);
1774 pcp->count--;
1775 } else {
1776 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1777 /*
1778 * __GFP_NOFAIL is not to be used in new code.
1779 *
1780 * All __GFP_NOFAIL callers should be fixed so that they
1781 * properly detect and handle allocation failures.
1782 *
1783 * We most definitely don't want callers attempting to
1784 * allocate greater than order-1 page units with
1785 * __GFP_NOFAIL.
1786 */
1787 WARN_ON_ONCE(order > 1);
1788 }
1789 spin_lock_irqsave(&zone->lock, flags);
1790 page = __rmqueue(zone, order, migratetype);
1791 spin_unlock(&zone->lock);
1792 if (!page)
1793 goto failed;
1794 __mod_zone_freepage_state(zone, -(1 << order),
1795 get_freepage_migratetype(page));
1796 }
1797
1798 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1799 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1800 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1801 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1802
1803 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1804 zone_statistics(preferred_zone, zone, gfp_flags);
1805 local_irq_restore(flags);
1806
1807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1808 return page;
1809
1810 failed:
1811 local_irq_restore(flags);
1812 return NULL;
1813 }
1814
1815 #ifdef CONFIG_FAIL_PAGE_ALLOC
1816
1817 static struct {
1818 struct fault_attr attr;
1819
1820 u32 ignore_gfp_highmem;
1821 u32 ignore_gfp_wait;
1822 u32 min_order;
1823 } fail_page_alloc = {
1824 .attr = FAULT_ATTR_INITIALIZER,
1825 .ignore_gfp_wait = 1,
1826 .ignore_gfp_highmem = 1,
1827 .min_order = 1,
1828 };
1829
1830 static int __init setup_fail_page_alloc(char *str)
1831 {
1832 return setup_fault_attr(&fail_page_alloc.attr, str);
1833 }
1834 __setup("fail_page_alloc=", setup_fail_page_alloc);
1835
1836 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1837 {
1838 if (order < fail_page_alloc.min_order)
1839 return false;
1840 if (gfp_mask & __GFP_NOFAIL)
1841 return false;
1842 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1843 return false;
1844 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1845 return false;
1846
1847 return should_fail(&fail_page_alloc.attr, 1 << order);
1848 }
1849
1850 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1851
1852 static int __init fail_page_alloc_debugfs(void)
1853 {
1854 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1855 struct dentry *dir;
1856
1857 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1858 &fail_page_alloc.attr);
1859 if (IS_ERR(dir))
1860 return PTR_ERR(dir);
1861
1862 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1863 &fail_page_alloc.ignore_gfp_wait))
1864 goto fail;
1865 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1866 &fail_page_alloc.ignore_gfp_highmem))
1867 goto fail;
1868 if (!debugfs_create_u32("min-order", mode, dir,
1869 &fail_page_alloc.min_order))
1870 goto fail;
1871
1872 return 0;
1873 fail:
1874 debugfs_remove_recursive(dir);
1875
1876 return -ENOMEM;
1877 }
1878
1879 late_initcall(fail_page_alloc_debugfs);
1880
1881 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1882
1883 #else /* CONFIG_FAIL_PAGE_ALLOC */
1884
1885 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1886 {
1887 return false;
1888 }
1889
1890 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1891
1892 /*
1893 * Return true if free pages are above 'mark'. This takes into account the order
1894 * of the allocation.
1895 */
1896 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1897 unsigned long mark, int classzone_idx, int alloc_flags,
1898 long free_pages)
1899 {
1900 /* free_pages may go negative - that's OK */
1901 long min = mark;
1902 int o;
1903 long free_cma = 0;
1904
1905 free_pages -= (1 << order) - 1;
1906 if (alloc_flags & ALLOC_HIGH)
1907 min -= min / 2;
1908 if (alloc_flags & ALLOC_HARDER)
1909 min -= min / 4;
1910 #ifdef CONFIG_CMA
1911 /* If allocation can't use CMA areas don't use free CMA pages */
1912 if (!(alloc_flags & ALLOC_CMA))
1913 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1914 #endif
1915
1916 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1917 return false;
1918 for (o = 0; o < order; o++) {
1919 /* At the next order, this order's pages become unavailable */
1920 free_pages -= z->free_area[o].nr_free << o;
1921
1922 /* Require fewer higher order pages to be free */
1923 min >>= 1;
1924
1925 if (free_pages <= min)
1926 return false;
1927 }
1928 return true;
1929 }
1930
1931 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1932 int classzone_idx, int alloc_flags)
1933 {
1934 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1935 zone_page_state(z, NR_FREE_PAGES));
1936 }
1937
1938 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1939 unsigned long mark, int classzone_idx, int alloc_flags)
1940 {
1941 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1942
1943 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1944 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1945
1946 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1947 free_pages);
1948 }
1949
1950 #ifdef CONFIG_NUMA
1951 /*
1952 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1953 * skip over zones that are not allowed by the cpuset, or that have
1954 * been recently (in last second) found to be nearly full. See further
1955 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1956 * that have to skip over a lot of full or unallowed zones.
1957 *
1958 * If the zonelist cache is present in the passed zonelist, then
1959 * returns a pointer to the allowed node mask (either the current
1960 * tasks mems_allowed, or node_states[N_MEMORY].)
1961 *
1962 * If the zonelist cache is not available for this zonelist, does
1963 * nothing and returns NULL.
1964 *
1965 * If the fullzones BITMAP in the zonelist cache is stale (more than
1966 * a second since last zap'd) then we zap it out (clear its bits.)
1967 *
1968 * We hold off even calling zlc_setup, until after we've checked the
1969 * first zone in the zonelist, on the theory that most allocations will
1970 * be satisfied from that first zone, so best to examine that zone as
1971 * quickly as we can.
1972 */
1973 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1974 {
1975 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1976 nodemask_t *allowednodes; /* zonelist_cache approximation */
1977
1978 zlc = zonelist->zlcache_ptr;
1979 if (!zlc)
1980 return NULL;
1981
1982 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1983 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1984 zlc->last_full_zap = jiffies;
1985 }
1986
1987 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1988 &cpuset_current_mems_allowed :
1989 &node_states[N_MEMORY];
1990 return allowednodes;
1991 }
1992
1993 /*
1994 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1995 * if it is worth looking at further for free memory:
1996 * 1) Check that the zone isn't thought to be full (doesn't have its
1997 * bit set in the zonelist_cache fullzones BITMAP).
1998 * 2) Check that the zones node (obtained from the zonelist_cache
1999 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2000 * Return true (non-zero) if zone is worth looking at further, or
2001 * else return false (zero) if it is not.
2002 *
2003 * This check -ignores- the distinction between various watermarks,
2004 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2005 * found to be full for any variation of these watermarks, it will
2006 * be considered full for up to one second by all requests, unless
2007 * we are so low on memory on all allowed nodes that we are forced
2008 * into the second scan of the zonelist.
2009 *
2010 * In the second scan we ignore this zonelist cache and exactly
2011 * apply the watermarks to all zones, even it is slower to do so.
2012 * We are low on memory in the second scan, and should leave no stone
2013 * unturned looking for a free page.
2014 */
2015 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2016 nodemask_t *allowednodes)
2017 {
2018 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2019 int i; /* index of *z in zonelist zones */
2020 int n; /* node that zone *z is on */
2021
2022 zlc = zonelist->zlcache_ptr;
2023 if (!zlc)
2024 return 1;
2025
2026 i = z - zonelist->_zonerefs;
2027 n = zlc->z_to_n[i];
2028
2029 /* This zone is worth trying if it is allowed but not full */
2030 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2031 }
2032
2033 /*
2034 * Given 'z' scanning a zonelist, set the corresponding bit in
2035 * zlc->fullzones, so that subsequent attempts to allocate a page
2036 * from that zone don't waste time re-examining it.
2037 */
2038 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2039 {
2040 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2041 int i; /* index of *z in zonelist zones */
2042
2043 zlc = zonelist->zlcache_ptr;
2044 if (!zlc)
2045 return;
2046
2047 i = z - zonelist->_zonerefs;
2048
2049 set_bit(i, zlc->fullzones);
2050 }
2051
2052 /*
2053 * clear all zones full, called after direct reclaim makes progress so that
2054 * a zone that was recently full is not skipped over for up to a second
2055 */
2056 static void zlc_clear_zones_full(struct zonelist *zonelist)
2057 {
2058 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2059
2060 zlc = zonelist->zlcache_ptr;
2061 if (!zlc)
2062 return;
2063
2064 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2065 }
2066
2067 static bool zone_local(struct zone *local_zone, struct zone *zone)
2068 {
2069 return local_zone->node == zone->node;
2070 }
2071
2072 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2073 {
2074 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2075 RECLAIM_DISTANCE;
2076 }
2077
2078 #else /* CONFIG_NUMA */
2079
2080 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2081 {
2082 return NULL;
2083 }
2084
2085 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2086 nodemask_t *allowednodes)
2087 {
2088 return 1;
2089 }
2090
2091 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2092 {
2093 }
2094
2095 static void zlc_clear_zones_full(struct zonelist *zonelist)
2096 {
2097 }
2098
2099 static bool zone_local(struct zone *local_zone, struct zone *zone)
2100 {
2101 return true;
2102 }
2103
2104 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2105 {
2106 return true;
2107 }
2108
2109 #endif /* CONFIG_NUMA */
2110
2111 static void reset_alloc_batches(struct zone *preferred_zone)
2112 {
2113 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2114
2115 do {
2116 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2117 high_wmark_pages(zone) - low_wmark_pages(zone) -
2118 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2119 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2120 } while (zone++ != preferred_zone);
2121 }
2122
2123 /*
2124 * get_page_from_freelist goes through the zonelist trying to allocate
2125 * a page.
2126 */
2127 static struct page *
2128 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2129 const struct alloc_context *ac)
2130 {
2131 struct zonelist *zonelist = ac->zonelist;
2132 struct zoneref *z;
2133 struct page *page = NULL;
2134 struct zone *zone;
2135 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2136 int zlc_active = 0; /* set if using zonelist_cache */
2137 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2138 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2139 (gfp_mask & __GFP_WRITE);
2140 int nr_fair_skipped = 0;
2141 bool zonelist_rescan;
2142
2143 zonelist_scan:
2144 zonelist_rescan = false;
2145
2146 /*
2147 * Scan zonelist, looking for a zone with enough free.
2148 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2149 */
2150 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2151 ac->nodemask) {
2152 unsigned long mark;
2153
2154 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2155 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2156 continue;
2157 if (cpusets_enabled() &&
2158 (alloc_flags & ALLOC_CPUSET) &&
2159 !cpuset_zone_allowed(zone, gfp_mask))
2160 continue;
2161 /*
2162 * Distribute pages in proportion to the individual
2163 * zone size to ensure fair page aging. The zone a
2164 * page was allocated in should have no effect on the
2165 * time the page has in memory before being reclaimed.
2166 */
2167 if (alloc_flags & ALLOC_FAIR) {
2168 if (!zone_local(ac->preferred_zone, zone))
2169 break;
2170 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2171 nr_fair_skipped++;
2172 continue;
2173 }
2174 }
2175 /*
2176 * When allocating a page cache page for writing, we
2177 * want to get it from a zone that is within its dirty
2178 * limit, such that no single zone holds more than its
2179 * proportional share of globally allowed dirty pages.
2180 * The dirty limits take into account the zone's
2181 * lowmem reserves and high watermark so that kswapd
2182 * should be able to balance it without having to
2183 * write pages from its LRU list.
2184 *
2185 * This may look like it could increase pressure on
2186 * lower zones by failing allocations in higher zones
2187 * before they are full. But the pages that do spill
2188 * over are limited as the lower zones are protected
2189 * by this very same mechanism. It should not become
2190 * a practical burden to them.
2191 *
2192 * XXX: For now, allow allocations to potentially
2193 * exceed the per-zone dirty limit in the slowpath
2194 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2195 * which is important when on a NUMA setup the allowed
2196 * zones are together not big enough to reach the
2197 * global limit. The proper fix for these situations
2198 * will require awareness of zones in the
2199 * dirty-throttling and the flusher threads.
2200 */
2201 if (consider_zone_dirty && !zone_dirty_ok(zone))
2202 continue;
2203
2204 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2205 if (!zone_watermark_ok(zone, order, mark,
2206 ac->classzone_idx, alloc_flags)) {
2207 int ret;
2208
2209 /* Checked here to keep the fast path fast */
2210 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2211 if (alloc_flags & ALLOC_NO_WATERMARKS)
2212 goto try_this_zone;
2213
2214 if (IS_ENABLED(CONFIG_NUMA) &&
2215 !did_zlc_setup && nr_online_nodes > 1) {
2216 /*
2217 * we do zlc_setup if there are multiple nodes
2218 * and before considering the first zone allowed
2219 * by the cpuset.
2220 */
2221 allowednodes = zlc_setup(zonelist, alloc_flags);
2222 zlc_active = 1;
2223 did_zlc_setup = 1;
2224 }
2225
2226 if (zone_reclaim_mode == 0 ||
2227 !zone_allows_reclaim(ac->preferred_zone, zone))
2228 goto this_zone_full;
2229
2230 /*
2231 * As we may have just activated ZLC, check if the first
2232 * eligible zone has failed zone_reclaim recently.
2233 */
2234 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2235 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2236 continue;
2237
2238 ret = zone_reclaim(zone, gfp_mask, order);
2239 switch (ret) {
2240 case ZONE_RECLAIM_NOSCAN:
2241 /* did not scan */
2242 continue;
2243 case ZONE_RECLAIM_FULL:
2244 /* scanned but unreclaimable */
2245 continue;
2246 default:
2247 /* did we reclaim enough */
2248 if (zone_watermark_ok(zone, order, mark,
2249 ac->classzone_idx, alloc_flags))
2250 goto try_this_zone;
2251
2252 /*
2253 * Failed to reclaim enough to meet watermark.
2254 * Only mark the zone full if checking the min
2255 * watermark or if we failed to reclaim just
2256 * 1<<order pages or else the page allocator
2257 * fastpath will prematurely mark zones full
2258 * when the watermark is between the low and
2259 * min watermarks.
2260 */
2261 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2262 ret == ZONE_RECLAIM_SOME)
2263 goto this_zone_full;
2264
2265 continue;
2266 }
2267 }
2268
2269 try_this_zone:
2270 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2271 gfp_mask, ac->migratetype);
2272 if (page) {
2273 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2274 goto try_this_zone;
2275 return page;
2276 }
2277 this_zone_full:
2278 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2279 zlc_mark_zone_full(zonelist, z);
2280 }
2281
2282 /*
2283 * The first pass makes sure allocations are spread fairly within the
2284 * local node. However, the local node might have free pages left
2285 * after the fairness batches are exhausted, and remote zones haven't
2286 * even been considered yet. Try once more without fairness, and
2287 * include remote zones now, before entering the slowpath and waking
2288 * kswapd: prefer spilling to a remote zone over swapping locally.
2289 */
2290 if (alloc_flags & ALLOC_FAIR) {
2291 alloc_flags &= ~ALLOC_FAIR;
2292 if (nr_fair_skipped) {
2293 zonelist_rescan = true;
2294 reset_alloc_batches(ac->preferred_zone);
2295 }
2296 if (nr_online_nodes > 1)
2297 zonelist_rescan = true;
2298 }
2299
2300 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2301 /* Disable zlc cache for second zonelist scan */
2302 zlc_active = 0;
2303 zonelist_rescan = true;
2304 }
2305
2306 if (zonelist_rescan)
2307 goto zonelist_scan;
2308
2309 return NULL;
2310 }
2311
2312 /*
2313 * Large machines with many possible nodes should not always dump per-node
2314 * meminfo in irq context.
2315 */
2316 static inline bool should_suppress_show_mem(void)
2317 {
2318 bool ret = false;
2319
2320 #if NODES_SHIFT > 8
2321 ret = in_interrupt();
2322 #endif
2323 return ret;
2324 }
2325
2326 static DEFINE_RATELIMIT_STATE(nopage_rs,
2327 DEFAULT_RATELIMIT_INTERVAL,
2328 DEFAULT_RATELIMIT_BURST);
2329
2330 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2331 {
2332 unsigned int filter = SHOW_MEM_FILTER_NODES;
2333
2334 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2335 debug_guardpage_minorder() > 0)
2336 return;
2337
2338 /*
2339 * This documents exceptions given to allocations in certain
2340 * contexts that are allowed to allocate outside current's set
2341 * of allowed nodes.
2342 */
2343 if (!(gfp_mask & __GFP_NOMEMALLOC))
2344 if (test_thread_flag(TIF_MEMDIE) ||
2345 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2346 filter &= ~SHOW_MEM_FILTER_NODES;
2347 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2348 filter &= ~SHOW_MEM_FILTER_NODES;
2349
2350 if (fmt) {
2351 struct va_format vaf;
2352 va_list args;
2353
2354 va_start(args, fmt);
2355
2356 vaf.fmt = fmt;
2357 vaf.va = &args;
2358
2359 pr_warn("%pV", &vaf);
2360
2361 va_end(args);
2362 }
2363
2364 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2365 current->comm, order, gfp_mask);
2366
2367 dump_stack();
2368 if (!should_suppress_show_mem())
2369 show_mem(filter);
2370 }
2371
2372 static inline struct page *
2373 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2374 const struct alloc_context *ac, unsigned long *did_some_progress)
2375 {
2376 struct page *page;
2377
2378 *did_some_progress = 0;
2379
2380 /*
2381 * Acquire the oom lock. If that fails, somebody else is
2382 * making progress for us.
2383 */
2384 if (!mutex_trylock(&oom_lock)) {
2385 *did_some_progress = 1;
2386 schedule_timeout_uninterruptible(1);
2387 return NULL;
2388 }
2389
2390 /*
2391 * Go through the zonelist yet one more time, keep very high watermark
2392 * here, this is only to catch a parallel oom killing, we must fail if
2393 * we're still under heavy pressure.
2394 */
2395 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2396 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2397 if (page)
2398 goto out;
2399
2400 if (!(gfp_mask & __GFP_NOFAIL)) {
2401 /* Coredumps can quickly deplete all memory reserves */
2402 if (current->flags & PF_DUMPCORE)
2403 goto out;
2404 /* The OOM killer will not help higher order allocs */
2405 if (order > PAGE_ALLOC_COSTLY_ORDER)
2406 goto out;
2407 /* The OOM killer does not needlessly kill tasks for lowmem */
2408 if (ac->high_zoneidx < ZONE_NORMAL)
2409 goto out;
2410 /* The OOM killer does not compensate for IO-less reclaim */
2411 if (!(gfp_mask & __GFP_FS)) {
2412 /*
2413 * XXX: Page reclaim didn't yield anything,
2414 * and the OOM killer can't be invoked, but
2415 * keep looping as per tradition.
2416 */
2417 *did_some_progress = 1;
2418 goto out;
2419 }
2420 if (pm_suspended_storage())
2421 goto out;
2422 /* The OOM killer may not free memory on a specific node */
2423 if (gfp_mask & __GFP_THISNODE)
2424 goto out;
2425 }
2426 /* Exhausted what can be done so it's blamo time */
2427 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2428 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2429 *did_some_progress = 1;
2430 out:
2431 mutex_unlock(&oom_lock);
2432 return page;
2433 }
2434
2435 #ifdef CONFIG_COMPACTION
2436 /* Try memory compaction for high-order allocations before reclaim */
2437 static struct page *
2438 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2439 int alloc_flags, const struct alloc_context *ac,
2440 enum migrate_mode mode, int *contended_compaction,
2441 bool *deferred_compaction)
2442 {
2443 unsigned long compact_result;
2444 struct page *page;
2445
2446 if (!order)
2447 return NULL;
2448
2449 current->flags |= PF_MEMALLOC;
2450 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2451 mode, contended_compaction);
2452 current->flags &= ~PF_MEMALLOC;
2453
2454 switch (compact_result) {
2455 case COMPACT_DEFERRED:
2456 *deferred_compaction = true;
2457 /* fall-through */
2458 case COMPACT_SKIPPED:
2459 return NULL;
2460 default:
2461 break;
2462 }
2463
2464 /*
2465 * At least in one zone compaction wasn't deferred or skipped, so let's
2466 * count a compaction stall
2467 */
2468 count_vm_event(COMPACTSTALL);
2469
2470 page = get_page_from_freelist(gfp_mask, order,
2471 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2472
2473 if (page) {
2474 struct zone *zone = page_zone(page);
2475
2476 zone->compact_blockskip_flush = false;
2477 compaction_defer_reset(zone, order, true);
2478 count_vm_event(COMPACTSUCCESS);
2479 return page;
2480 }
2481
2482 /*
2483 * It's bad if compaction run occurs and fails. The most likely reason
2484 * is that pages exist, but not enough to satisfy watermarks.
2485 */
2486 count_vm_event(COMPACTFAIL);
2487
2488 cond_resched();
2489
2490 return NULL;
2491 }
2492 #else
2493 static inline struct page *
2494 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2495 int alloc_flags, const struct alloc_context *ac,
2496 enum migrate_mode mode, int *contended_compaction,
2497 bool *deferred_compaction)
2498 {
2499 return NULL;
2500 }
2501 #endif /* CONFIG_COMPACTION */
2502
2503 /* Perform direct synchronous page reclaim */
2504 static int
2505 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2506 const struct alloc_context *ac)
2507 {
2508 struct reclaim_state reclaim_state;
2509 int progress;
2510
2511 cond_resched();
2512
2513 /* We now go into synchronous reclaim */
2514 cpuset_memory_pressure_bump();
2515 current->flags |= PF_MEMALLOC;
2516 lockdep_set_current_reclaim_state(gfp_mask);
2517 reclaim_state.reclaimed_slab = 0;
2518 current->reclaim_state = &reclaim_state;
2519
2520 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2521 ac->nodemask);
2522
2523 current->reclaim_state = NULL;
2524 lockdep_clear_current_reclaim_state();
2525 current->flags &= ~PF_MEMALLOC;
2526
2527 cond_resched();
2528
2529 return progress;
2530 }
2531
2532 /* The really slow allocator path where we enter direct reclaim */
2533 static inline struct page *
2534 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2535 int alloc_flags, const struct alloc_context *ac,
2536 unsigned long *did_some_progress)
2537 {
2538 struct page *page = NULL;
2539 bool drained = false;
2540
2541 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2542 if (unlikely(!(*did_some_progress)))
2543 return NULL;
2544
2545 /* After successful reclaim, reconsider all zones for allocation */
2546 if (IS_ENABLED(CONFIG_NUMA))
2547 zlc_clear_zones_full(ac->zonelist);
2548
2549 retry:
2550 page = get_page_from_freelist(gfp_mask, order,
2551 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2552
2553 /*
2554 * If an allocation failed after direct reclaim, it could be because
2555 * pages are pinned on the per-cpu lists. Drain them and try again
2556 */
2557 if (!page && !drained) {
2558 drain_all_pages(NULL);
2559 drained = true;
2560 goto retry;
2561 }
2562
2563 return page;
2564 }
2565
2566 /*
2567 * This is called in the allocator slow-path if the allocation request is of
2568 * sufficient urgency to ignore watermarks and take other desperate measures
2569 */
2570 static inline struct page *
2571 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2572 const struct alloc_context *ac)
2573 {
2574 struct page *page;
2575
2576 do {
2577 page = get_page_from_freelist(gfp_mask, order,
2578 ALLOC_NO_WATERMARKS, ac);
2579
2580 if (!page && gfp_mask & __GFP_NOFAIL)
2581 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2582 HZ/50);
2583 } while (!page && (gfp_mask & __GFP_NOFAIL));
2584
2585 return page;
2586 }
2587
2588 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2589 {
2590 struct zoneref *z;
2591 struct zone *zone;
2592
2593 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2594 ac->high_zoneidx, ac->nodemask)
2595 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2596 }
2597
2598 static inline int
2599 gfp_to_alloc_flags(gfp_t gfp_mask)
2600 {
2601 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2602 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2603
2604 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2605 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2606
2607 /*
2608 * The caller may dip into page reserves a bit more if the caller
2609 * cannot run direct reclaim, or if the caller has realtime scheduling
2610 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2611 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2612 */
2613 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2614
2615 if (atomic) {
2616 /*
2617 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2618 * if it can't schedule.
2619 */
2620 if (!(gfp_mask & __GFP_NOMEMALLOC))
2621 alloc_flags |= ALLOC_HARDER;
2622 /*
2623 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2624 * comment for __cpuset_node_allowed().
2625 */
2626 alloc_flags &= ~ALLOC_CPUSET;
2627 } else if (unlikely(rt_task(current)) && !in_interrupt())
2628 alloc_flags |= ALLOC_HARDER;
2629
2630 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2631 if (gfp_mask & __GFP_MEMALLOC)
2632 alloc_flags |= ALLOC_NO_WATERMARKS;
2633 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2634 alloc_flags |= ALLOC_NO_WATERMARKS;
2635 else if (!in_interrupt() &&
2636 ((current->flags & PF_MEMALLOC) ||
2637 unlikely(test_thread_flag(TIF_MEMDIE))))
2638 alloc_flags |= ALLOC_NO_WATERMARKS;
2639 }
2640 #ifdef CONFIG_CMA
2641 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2642 alloc_flags |= ALLOC_CMA;
2643 #endif
2644 return alloc_flags;
2645 }
2646
2647 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2648 {
2649 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2650 }
2651
2652 static inline struct page *
2653 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2654 struct alloc_context *ac)
2655 {
2656 const gfp_t wait = gfp_mask & __GFP_WAIT;
2657 struct page *page = NULL;
2658 int alloc_flags;
2659 unsigned long pages_reclaimed = 0;
2660 unsigned long did_some_progress;
2661 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2662 bool deferred_compaction = false;
2663 int contended_compaction = COMPACT_CONTENDED_NONE;
2664
2665 /*
2666 * In the slowpath, we sanity check order to avoid ever trying to
2667 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2668 * be using allocators in order of preference for an area that is
2669 * too large.
2670 */
2671 if (order >= MAX_ORDER) {
2672 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2673 return NULL;
2674 }
2675
2676 /*
2677 * If this allocation cannot block and it is for a specific node, then
2678 * fail early. There's no need to wakeup kswapd or retry for a
2679 * speculative node-specific allocation.
2680 */
2681 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2682 goto nopage;
2683
2684 retry:
2685 if (!(gfp_mask & __GFP_NO_KSWAPD))
2686 wake_all_kswapds(order, ac);
2687
2688 /*
2689 * OK, we're below the kswapd watermark and have kicked background
2690 * reclaim. Now things get more complex, so set up alloc_flags according
2691 * to how we want to proceed.
2692 */
2693 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2694
2695 /*
2696 * Find the true preferred zone if the allocation is unconstrained by
2697 * cpusets.
2698 */
2699 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2700 struct zoneref *preferred_zoneref;
2701 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2702 ac->high_zoneidx, NULL, &ac->preferred_zone);
2703 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2704 }
2705
2706 /* This is the last chance, in general, before the goto nopage. */
2707 page = get_page_from_freelist(gfp_mask, order,
2708 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2709 if (page)
2710 goto got_pg;
2711
2712 /* Allocate without watermarks if the context allows */
2713 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2714 /*
2715 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2716 * the allocation is high priority and these type of
2717 * allocations are system rather than user orientated
2718 */
2719 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2720
2721 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2722
2723 if (page) {
2724 goto got_pg;
2725 }
2726 }
2727
2728 /* Atomic allocations - we can't balance anything */
2729 if (!wait) {
2730 /*
2731 * All existing users of the deprecated __GFP_NOFAIL are
2732 * blockable, so warn of any new users that actually allow this
2733 * type of allocation to fail.
2734 */
2735 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2736 goto nopage;
2737 }
2738
2739 /* Avoid recursion of direct reclaim */
2740 if (current->flags & PF_MEMALLOC)
2741 goto nopage;
2742
2743 /* Avoid allocations with no watermarks from looping endlessly */
2744 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2745 goto nopage;
2746
2747 /*
2748 * Try direct compaction. The first pass is asynchronous. Subsequent
2749 * attempts after direct reclaim are synchronous
2750 */
2751 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2752 migration_mode,
2753 &contended_compaction,
2754 &deferred_compaction);
2755 if (page)
2756 goto got_pg;
2757
2758 /* Checks for THP-specific high-order allocations */
2759 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2760 /*
2761 * If compaction is deferred for high-order allocations, it is
2762 * because sync compaction recently failed. If this is the case
2763 * and the caller requested a THP allocation, we do not want
2764 * to heavily disrupt the system, so we fail the allocation
2765 * instead of entering direct reclaim.
2766 */
2767 if (deferred_compaction)
2768 goto nopage;
2769
2770 /*
2771 * In all zones where compaction was attempted (and not
2772 * deferred or skipped), lock contention has been detected.
2773 * For THP allocation we do not want to disrupt the others
2774 * so we fallback to base pages instead.
2775 */
2776 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2777 goto nopage;
2778
2779 /*
2780 * If compaction was aborted due to need_resched(), we do not
2781 * want to further increase allocation latency, unless it is
2782 * khugepaged trying to collapse.
2783 */
2784 if (contended_compaction == COMPACT_CONTENDED_SCHED
2785 && !(current->flags & PF_KTHREAD))
2786 goto nopage;
2787 }
2788
2789 /*
2790 * It can become very expensive to allocate transparent hugepages at
2791 * fault, so use asynchronous memory compaction for THP unless it is
2792 * khugepaged trying to collapse.
2793 */
2794 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2795 (current->flags & PF_KTHREAD))
2796 migration_mode = MIGRATE_SYNC_LIGHT;
2797
2798 /* Try direct reclaim and then allocating */
2799 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2800 &did_some_progress);
2801 if (page)
2802 goto got_pg;
2803
2804 /* Do not loop if specifically requested */
2805 if (gfp_mask & __GFP_NORETRY)
2806 goto noretry;
2807
2808 /* Keep reclaiming pages as long as there is reasonable progress */
2809 pages_reclaimed += did_some_progress;
2810 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
2811 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
2812 /* Wait for some write requests to complete then retry */
2813 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2814 goto retry;
2815 }
2816
2817 /* Reclaim has failed us, start killing things */
2818 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
2819 if (page)
2820 goto got_pg;
2821
2822 /* Retry as long as the OOM killer is making progress */
2823 if (did_some_progress)
2824 goto retry;
2825
2826 noretry:
2827 /*
2828 * High-order allocations do not necessarily loop after
2829 * direct reclaim and reclaim/compaction depends on compaction
2830 * being called after reclaim so call directly if necessary
2831 */
2832 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
2833 ac, migration_mode,
2834 &contended_compaction,
2835 &deferred_compaction);
2836 if (page)
2837 goto got_pg;
2838 nopage:
2839 warn_alloc_failed(gfp_mask, order, NULL);
2840 got_pg:
2841 return page;
2842 }
2843
2844 /*
2845 * This is the 'heart' of the zoned buddy allocator.
2846 */
2847 struct page *
2848 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2849 struct zonelist *zonelist, nodemask_t *nodemask)
2850 {
2851 struct zoneref *preferred_zoneref;
2852 struct page *page = NULL;
2853 unsigned int cpuset_mems_cookie;
2854 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2855 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2856 struct alloc_context ac = {
2857 .high_zoneidx = gfp_zone(gfp_mask),
2858 .nodemask = nodemask,
2859 .migratetype = gfpflags_to_migratetype(gfp_mask),
2860 };
2861
2862 gfp_mask &= gfp_allowed_mask;
2863
2864 lockdep_trace_alloc(gfp_mask);
2865
2866 might_sleep_if(gfp_mask & __GFP_WAIT);
2867
2868 if (should_fail_alloc_page(gfp_mask, order))
2869 return NULL;
2870
2871 /*
2872 * Check the zones suitable for the gfp_mask contain at least one
2873 * valid zone. It's possible to have an empty zonelist as a result
2874 * of __GFP_THISNODE and a memoryless node
2875 */
2876 if (unlikely(!zonelist->_zonerefs->zone))
2877 return NULL;
2878
2879 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2880 alloc_flags |= ALLOC_CMA;
2881
2882 retry_cpuset:
2883 cpuset_mems_cookie = read_mems_allowed_begin();
2884
2885 /* We set it here, as __alloc_pages_slowpath might have changed it */
2886 ac.zonelist = zonelist;
2887 /* The preferred zone is used for statistics later */
2888 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2889 ac.nodemask ? : &cpuset_current_mems_allowed,
2890 &ac.preferred_zone);
2891 if (!ac.preferred_zone)
2892 goto out;
2893 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2894
2895 /* First allocation attempt */
2896 alloc_mask = gfp_mask|__GFP_HARDWALL;
2897 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2898 if (unlikely(!page)) {
2899 /*
2900 * Runtime PM, block IO and its error handling path
2901 * can deadlock because I/O on the device might not
2902 * complete.
2903 */
2904 alloc_mask = memalloc_noio_flags(gfp_mask);
2905
2906 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2907 }
2908
2909 if (kmemcheck_enabled && page)
2910 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2911
2912 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2913
2914 out:
2915 /*
2916 * When updating a task's mems_allowed, it is possible to race with
2917 * parallel threads in such a way that an allocation can fail while
2918 * the mask is being updated. If a page allocation is about to fail,
2919 * check if the cpuset changed during allocation and if so, retry.
2920 */
2921 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2922 goto retry_cpuset;
2923
2924 return page;
2925 }
2926 EXPORT_SYMBOL(__alloc_pages_nodemask);
2927
2928 /*
2929 * Common helper functions.
2930 */
2931 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2932 {
2933 struct page *page;
2934
2935 /*
2936 * __get_free_pages() returns a 32-bit address, which cannot represent
2937 * a highmem page
2938 */
2939 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2940
2941 page = alloc_pages(gfp_mask, order);
2942 if (!page)
2943 return 0;
2944 return (unsigned long) page_address(page);
2945 }
2946 EXPORT_SYMBOL(__get_free_pages);
2947
2948 unsigned long get_zeroed_page(gfp_t gfp_mask)
2949 {
2950 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2951 }
2952 EXPORT_SYMBOL(get_zeroed_page);
2953
2954 void __free_pages(struct page *page, unsigned int order)
2955 {
2956 if (put_page_testzero(page)) {
2957 if (order == 0)
2958 free_hot_cold_page(page, false);
2959 else
2960 __free_pages_ok(page, order);
2961 }
2962 }
2963
2964 EXPORT_SYMBOL(__free_pages);
2965
2966 void free_pages(unsigned long addr, unsigned int order)
2967 {
2968 if (addr != 0) {
2969 VM_BUG_ON(!virt_addr_valid((void *)addr));
2970 __free_pages(virt_to_page((void *)addr), order);
2971 }
2972 }
2973
2974 EXPORT_SYMBOL(free_pages);
2975
2976 /*
2977 * Page Fragment:
2978 * An arbitrary-length arbitrary-offset area of memory which resides
2979 * within a 0 or higher order page. Multiple fragments within that page
2980 * are individually refcounted, in the page's reference counter.
2981 *
2982 * The page_frag functions below provide a simple allocation framework for
2983 * page fragments. This is used by the network stack and network device
2984 * drivers to provide a backing region of memory for use as either an
2985 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
2986 */
2987 static struct page *__page_frag_refill(struct page_frag_cache *nc,
2988 gfp_t gfp_mask)
2989 {
2990 struct page *page = NULL;
2991 gfp_t gfp = gfp_mask;
2992
2993 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
2994 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
2995 __GFP_NOMEMALLOC;
2996 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
2997 PAGE_FRAG_CACHE_MAX_ORDER);
2998 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
2999 #endif
3000 if (unlikely(!page))
3001 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3002
3003 nc->va = page ? page_address(page) : NULL;
3004
3005 return page;
3006 }
3007
3008 void *__alloc_page_frag(struct page_frag_cache *nc,
3009 unsigned int fragsz, gfp_t gfp_mask)
3010 {
3011 unsigned int size = PAGE_SIZE;
3012 struct page *page;
3013 int offset;
3014
3015 if (unlikely(!nc->va)) {
3016 refill:
3017 page = __page_frag_refill(nc, gfp_mask);
3018 if (!page)
3019 return NULL;
3020
3021 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3022 /* if size can vary use size else just use PAGE_SIZE */
3023 size = nc->size;
3024 #endif
3025 /* Even if we own the page, we do not use atomic_set().
3026 * This would break get_page_unless_zero() users.
3027 */
3028 atomic_add(size - 1, &page->_count);
3029
3030 /* reset page count bias and offset to start of new frag */
3031 nc->pfmemalloc = page->pfmemalloc;
3032 nc->pagecnt_bias = size;
3033 nc->offset = size;
3034 }
3035
3036 offset = nc->offset - fragsz;
3037 if (unlikely(offset < 0)) {
3038 page = virt_to_page(nc->va);
3039
3040 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3041 goto refill;
3042
3043 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3044 /* if size can vary use size else just use PAGE_SIZE */
3045 size = nc->size;
3046 #endif
3047 /* OK, page count is 0, we can safely set it */
3048 atomic_set(&page->_count, size);
3049
3050 /* reset page count bias and offset to start of new frag */
3051 nc->pagecnt_bias = size;
3052 offset = size - fragsz;
3053 }
3054
3055 nc->pagecnt_bias--;
3056 nc->offset = offset;
3057
3058 return nc->va + offset;
3059 }
3060 EXPORT_SYMBOL(__alloc_page_frag);
3061
3062 /*
3063 * Frees a page fragment allocated out of either a compound or order 0 page.
3064 */
3065 void __free_page_frag(void *addr)
3066 {
3067 struct page *page = virt_to_head_page(addr);
3068
3069 if (unlikely(put_page_testzero(page)))
3070 __free_pages_ok(page, compound_order(page));
3071 }
3072 EXPORT_SYMBOL(__free_page_frag);
3073
3074 /*
3075 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3076 * of the current memory cgroup.
3077 *
3078 * It should be used when the caller would like to use kmalloc, but since the
3079 * allocation is large, it has to fall back to the page allocator.
3080 */
3081 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3082 {
3083 struct page *page;
3084 struct mem_cgroup *memcg = NULL;
3085
3086 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3087 return NULL;
3088 page = alloc_pages(gfp_mask, order);
3089 memcg_kmem_commit_charge(page, memcg, order);
3090 return page;
3091 }
3092
3093 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3094 {
3095 struct page *page;
3096 struct mem_cgroup *memcg = NULL;
3097
3098 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3099 return NULL;
3100 page = alloc_pages_node(nid, gfp_mask, order);
3101 memcg_kmem_commit_charge(page, memcg, order);
3102 return page;
3103 }
3104
3105 /*
3106 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3107 * alloc_kmem_pages.
3108 */
3109 void __free_kmem_pages(struct page *page, unsigned int order)
3110 {
3111 memcg_kmem_uncharge_pages(page, order);
3112 __free_pages(page, order);
3113 }
3114
3115 void free_kmem_pages(unsigned long addr, unsigned int order)
3116 {
3117 if (addr != 0) {
3118 VM_BUG_ON(!virt_addr_valid((void *)addr));
3119 __free_kmem_pages(virt_to_page((void *)addr), order);
3120 }
3121 }
3122
3123 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3124 {
3125 if (addr) {
3126 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3127 unsigned long used = addr + PAGE_ALIGN(size);
3128
3129 split_page(virt_to_page((void *)addr), order);
3130 while (used < alloc_end) {
3131 free_page(used);
3132 used += PAGE_SIZE;
3133 }
3134 }
3135 return (void *)addr;
3136 }
3137
3138 /**
3139 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3140 * @size: the number of bytes to allocate
3141 * @gfp_mask: GFP flags for the allocation
3142 *
3143 * This function is similar to alloc_pages(), except that it allocates the
3144 * minimum number of pages to satisfy the request. alloc_pages() can only
3145 * allocate memory in power-of-two pages.
3146 *
3147 * This function is also limited by MAX_ORDER.
3148 *
3149 * Memory allocated by this function must be released by free_pages_exact().
3150 */
3151 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3152 {
3153 unsigned int order = get_order(size);
3154 unsigned long addr;
3155
3156 addr = __get_free_pages(gfp_mask, order);
3157 return make_alloc_exact(addr, order, size);
3158 }
3159 EXPORT_SYMBOL(alloc_pages_exact);
3160
3161 /**
3162 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3163 * pages on a node.
3164 * @nid: the preferred node ID where memory should be allocated
3165 * @size: the number of bytes to allocate
3166 * @gfp_mask: GFP flags for the allocation
3167 *
3168 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3169 * back.
3170 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3171 * but is not exact.
3172 */
3173 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3174 {
3175 unsigned order = get_order(size);
3176 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3177 if (!p)
3178 return NULL;
3179 return make_alloc_exact((unsigned long)page_address(p), order, size);
3180 }
3181
3182 /**
3183 * free_pages_exact - release memory allocated via alloc_pages_exact()
3184 * @virt: the value returned by alloc_pages_exact.
3185 * @size: size of allocation, same value as passed to alloc_pages_exact().
3186 *
3187 * Release the memory allocated by a previous call to alloc_pages_exact.
3188 */
3189 void free_pages_exact(void *virt, size_t size)
3190 {
3191 unsigned long addr = (unsigned long)virt;
3192 unsigned long end = addr + PAGE_ALIGN(size);
3193
3194 while (addr < end) {
3195 free_page(addr);
3196 addr += PAGE_SIZE;
3197 }
3198 }
3199 EXPORT_SYMBOL(free_pages_exact);
3200
3201 /**
3202 * nr_free_zone_pages - count number of pages beyond high watermark
3203 * @offset: The zone index of the highest zone
3204 *
3205 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3206 * high watermark within all zones at or below a given zone index. For each
3207 * zone, the number of pages is calculated as:
3208 * managed_pages - high_pages
3209 */
3210 static unsigned long nr_free_zone_pages(int offset)
3211 {
3212 struct zoneref *z;
3213 struct zone *zone;
3214
3215 /* Just pick one node, since fallback list is circular */
3216 unsigned long sum = 0;
3217
3218 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3219
3220 for_each_zone_zonelist(zone, z, zonelist, offset) {
3221 unsigned long size = zone->managed_pages;
3222 unsigned long high = high_wmark_pages(zone);
3223 if (size > high)
3224 sum += size - high;
3225 }
3226
3227 return sum;
3228 }
3229
3230 /**
3231 * nr_free_buffer_pages - count number of pages beyond high watermark
3232 *
3233 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3234 * watermark within ZONE_DMA and ZONE_NORMAL.
3235 */
3236 unsigned long nr_free_buffer_pages(void)
3237 {
3238 return nr_free_zone_pages(gfp_zone(GFP_USER));
3239 }
3240 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3241
3242 /**
3243 * nr_free_pagecache_pages - count number of pages beyond high watermark
3244 *
3245 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3246 * high watermark within all zones.
3247 */
3248 unsigned long nr_free_pagecache_pages(void)
3249 {
3250 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3251 }
3252
3253 static inline void show_node(struct zone *zone)
3254 {
3255 if (IS_ENABLED(CONFIG_NUMA))
3256 printk("Node %d ", zone_to_nid(zone));
3257 }
3258
3259 void si_meminfo(struct sysinfo *val)
3260 {
3261 val->totalram = totalram_pages;
3262 val->sharedram = global_page_state(NR_SHMEM);
3263 val->freeram = global_page_state(NR_FREE_PAGES);
3264 val->bufferram = nr_blockdev_pages();
3265 val->totalhigh = totalhigh_pages;
3266 val->freehigh = nr_free_highpages();
3267 val->mem_unit = PAGE_SIZE;
3268 }
3269
3270 EXPORT_SYMBOL(si_meminfo);
3271
3272 #ifdef CONFIG_NUMA
3273 void si_meminfo_node(struct sysinfo *val, int nid)
3274 {
3275 int zone_type; /* needs to be signed */
3276 unsigned long managed_pages = 0;
3277 pg_data_t *pgdat = NODE_DATA(nid);
3278
3279 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3280 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3281 val->totalram = managed_pages;
3282 val->sharedram = node_page_state(nid, NR_SHMEM);
3283 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3284 #ifdef CONFIG_HIGHMEM
3285 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3286 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3287 NR_FREE_PAGES);
3288 #else
3289 val->totalhigh = 0;
3290 val->freehigh = 0;
3291 #endif
3292 val->mem_unit = PAGE_SIZE;
3293 }
3294 #endif
3295
3296 /*
3297 * Determine whether the node should be displayed or not, depending on whether
3298 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3299 */
3300 bool skip_free_areas_node(unsigned int flags, int nid)
3301 {
3302 bool ret = false;
3303 unsigned int cpuset_mems_cookie;
3304
3305 if (!(flags & SHOW_MEM_FILTER_NODES))
3306 goto out;
3307
3308 do {
3309 cpuset_mems_cookie = read_mems_allowed_begin();
3310 ret = !node_isset(nid, cpuset_current_mems_allowed);
3311 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3312 out:
3313 return ret;
3314 }
3315
3316 #define K(x) ((x) << (PAGE_SHIFT-10))
3317
3318 static void show_migration_types(unsigned char type)
3319 {
3320 static const char types[MIGRATE_TYPES] = {
3321 [MIGRATE_UNMOVABLE] = 'U',
3322 [MIGRATE_RECLAIMABLE] = 'E',
3323 [MIGRATE_MOVABLE] = 'M',
3324 [MIGRATE_RESERVE] = 'R',
3325 #ifdef CONFIG_CMA
3326 [MIGRATE_CMA] = 'C',
3327 #endif
3328 #ifdef CONFIG_MEMORY_ISOLATION
3329 [MIGRATE_ISOLATE] = 'I',
3330 #endif
3331 };
3332 char tmp[MIGRATE_TYPES + 1];
3333 char *p = tmp;
3334 int i;
3335
3336 for (i = 0; i < MIGRATE_TYPES; i++) {
3337 if (type & (1 << i))
3338 *p++ = types[i];
3339 }
3340
3341 *p = '\0';
3342 printk("(%s) ", tmp);
3343 }
3344
3345 /*
3346 * Show free area list (used inside shift_scroll-lock stuff)
3347 * We also calculate the percentage fragmentation. We do this by counting the
3348 * memory on each free list with the exception of the first item on the list.
3349 *
3350 * Bits in @filter:
3351 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3352 * cpuset.
3353 */
3354 void show_free_areas(unsigned int filter)
3355 {
3356 unsigned long free_pcp = 0;
3357 int cpu;
3358 struct zone *zone;
3359
3360 for_each_populated_zone(zone) {
3361 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3362 continue;
3363
3364 for_each_online_cpu(cpu)
3365 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3366 }
3367
3368 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3369 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3370 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3371 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3372 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3373 " free:%lu free_pcp:%lu free_cma:%lu\n",
3374 global_page_state(NR_ACTIVE_ANON),
3375 global_page_state(NR_INACTIVE_ANON),
3376 global_page_state(NR_ISOLATED_ANON),
3377 global_page_state(NR_ACTIVE_FILE),
3378 global_page_state(NR_INACTIVE_FILE),
3379 global_page_state(NR_ISOLATED_FILE),
3380 global_page_state(NR_UNEVICTABLE),
3381 global_page_state(NR_FILE_DIRTY),
3382 global_page_state(NR_WRITEBACK),
3383 global_page_state(NR_UNSTABLE_NFS),
3384 global_page_state(NR_SLAB_RECLAIMABLE),
3385 global_page_state(NR_SLAB_UNRECLAIMABLE),
3386 global_page_state(NR_FILE_MAPPED),
3387 global_page_state(NR_SHMEM),
3388 global_page_state(NR_PAGETABLE),
3389 global_page_state(NR_BOUNCE),
3390 global_page_state(NR_FREE_PAGES),
3391 free_pcp,
3392 global_page_state(NR_FREE_CMA_PAGES));
3393
3394 for_each_populated_zone(zone) {
3395 int i;
3396
3397 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3398 continue;
3399
3400 free_pcp = 0;
3401 for_each_online_cpu(cpu)
3402 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3403
3404 show_node(zone);
3405 printk("%s"
3406 " free:%lukB"
3407 " min:%lukB"
3408 " low:%lukB"
3409 " high:%lukB"
3410 " active_anon:%lukB"
3411 " inactive_anon:%lukB"
3412 " active_file:%lukB"
3413 " inactive_file:%lukB"
3414 " unevictable:%lukB"
3415 " isolated(anon):%lukB"
3416 " isolated(file):%lukB"
3417 " present:%lukB"
3418 " managed:%lukB"
3419 " mlocked:%lukB"
3420 " dirty:%lukB"
3421 " writeback:%lukB"
3422 " mapped:%lukB"
3423 " shmem:%lukB"
3424 " slab_reclaimable:%lukB"
3425 " slab_unreclaimable:%lukB"
3426 " kernel_stack:%lukB"
3427 " pagetables:%lukB"
3428 " unstable:%lukB"
3429 " bounce:%lukB"
3430 " free_pcp:%lukB"
3431 " local_pcp:%ukB"
3432 " free_cma:%lukB"
3433 " writeback_tmp:%lukB"
3434 " pages_scanned:%lu"
3435 " all_unreclaimable? %s"
3436 "\n",
3437 zone->name,
3438 K(zone_page_state(zone, NR_FREE_PAGES)),
3439 K(min_wmark_pages(zone)),
3440 K(low_wmark_pages(zone)),
3441 K(high_wmark_pages(zone)),
3442 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3443 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3444 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3445 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3446 K(zone_page_state(zone, NR_UNEVICTABLE)),
3447 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3448 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3449 K(zone->present_pages),
3450 K(zone->managed_pages),
3451 K(zone_page_state(zone, NR_MLOCK)),
3452 K(zone_page_state(zone, NR_FILE_DIRTY)),
3453 K(zone_page_state(zone, NR_WRITEBACK)),
3454 K(zone_page_state(zone, NR_FILE_MAPPED)),
3455 K(zone_page_state(zone, NR_SHMEM)),
3456 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3457 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3458 zone_page_state(zone, NR_KERNEL_STACK) *
3459 THREAD_SIZE / 1024,
3460 K(zone_page_state(zone, NR_PAGETABLE)),
3461 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3462 K(zone_page_state(zone, NR_BOUNCE)),
3463 K(free_pcp),
3464 K(this_cpu_read(zone->pageset->pcp.count)),
3465 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3466 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3467 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3468 (!zone_reclaimable(zone) ? "yes" : "no")
3469 );
3470 printk("lowmem_reserve[]:");
3471 for (i = 0; i < MAX_NR_ZONES; i++)
3472 printk(" %ld", zone->lowmem_reserve[i]);
3473 printk("\n");
3474 }
3475
3476 for_each_populated_zone(zone) {
3477 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3478 unsigned char types[MAX_ORDER];
3479
3480 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3481 continue;
3482 show_node(zone);
3483 printk("%s: ", zone->name);
3484
3485 spin_lock_irqsave(&zone->lock, flags);
3486 for (order = 0; order < MAX_ORDER; order++) {
3487 struct free_area *area = &zone->free_area[order];
3488 int type;
3489
3490 nr[order] = area->nr_free;
3491 total += nr[order] << order;
3492
3493 types[order] = 0;
3494 for (type = 0; type < MIGRATE_TYPES; type++) {
3495 if (!list_empty(&area->free_list[type]))
3496 types[order] |= 1 << type;
3497 }
3498 }
3499 spin_unlock_irqrestore(&zone->lock, flags);
3500 for (order = 0; order < MAX_ORDER; order++) {
3501 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3502 if (nr[order])
3503 show_migration_types(types[order]);
3504 }
3505 printk("= %lukB\n", K(total));
3506 }
3507
3508 hugetlb_show_meminfo();
3509
3510 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3511
3512 show_swap_cache_info();
3513 }
3514
3515 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3516 {
3517 zoneref->zone = zone;
3518 zoneref->zone_idx = zone_idx(zone);
3519 }
3520
3521 /*
3522 * Builds allocation fallback zone lists.
3523 *
3524 * Add all populated zones of a node to the zonelist.
3525 */
3526 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3527 int nr_zones)
3528 {
3529 struct zone *zone;
3530 enum zone_type zone_type = MAX_NR_ZONES;
3531
3532 do {
3533 zone_type--;
3534 zone = pgdat->node_zones + zone_type;
3535 if (populated_zone(zone)) {
3536 zoneref_set_zone(zone,
3537 &zonelist->_zonerefs[nr_zones++]);
3538 check_highest_zone(zone_type);
3539 }
3540 } while (zone_type);
3541
3542 return nr_zones;
3543 }
3544
3545
3546 /*
3547 * zonelist_order:
3548 * 0 = automatic detection of better ordering.
3549 * 1 = order by ([node] distance, -zonetype)
3550 * 2 = order by (-zonetype, [node] distance)
3551 *
3552 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3553 * the same zonelist. So only NUMA can configure this param.
3554 */
3555 #define ZONELIST_ORDER_DEFAULT 0
3556 #define ZONELIST_ORDER_NODE 1
3557 #define ZONELIST_ORDER_ZONE 2
3558
3559 /* zonelist order in the kernel.
3560 * set_zonelist_order() will set this to NODE or ZONE.
3561 */
3562 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3563 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3564
3565
3566 #ifdef CONFIG_NUMA
3567 /* The value user specified ....changed by config */
3568 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3569 /* string for sysctl */
3570 #define NUMA_ZONELIST_ORDER_LEN 16
3571 char numa_zonelist_order[16] = "default";
3572
3573 /*
3574 * interface for configure zonelist ordering.
3575 * command line option "numa_zonelist_order"
3576 * = "[dD]efault - default, automatic configuration.
3577 * = "[nN]ode - order by node locality, then by zone within node
3578 * = "[zZ]one - order by zone, then by locality within zone
3579 */
3580
3581 static int __parse_numa_zonelist_order(char *s)
3582 {
3583 if (*s == 'd' || *s == 'D') {
3584 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3585 } else if (*s == 'n' || *s == 'N') {
3586 user_zonelist_order = ZONELIST_ORDER_NODE;
3587 } else if (*s == 'z' || *s == 'Z') {
3588 user_zonelist_order = ZONELIST_ORDER_ZONE;
3589 } else {
3590 printk(KERN_WARNING
3591 "Ignoring invalid numa_zonelist_order value: "
3592 "%s\n", s);
3593 return -EINVAL;
3594 }
3595 return 0;
3596 }
3597
3598 static __init int setup_numa_zonelist_order(char *s)
3599 {
3600 int ret;
3601
3602 if (!s)
3603 return 0;
3604
3605 ret = __parse_numa_zonelist_order(s);
3606 if (ret == 0)
3607 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3608
3609 return ret;
3610 }
3611 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3612
3613 /*
3614 * sysctl handler for numa_zonelist_order
3615 */
3616 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3617 void __user *buffer, size_t *length,
3618 loff_t *ppos)
3619 {
3620 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3621 int ret;
3622 static DEFINE_MUTEX(zl_order_mutex);
3623
3624 mutex_lock(&zl_order_mutex);
3625 if (write) {
3626 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3627 ret = -EINVAL;
3628 goto out;
3629 }
3630 strcpy(saved_string, (char *)table->data);
3631 }
3632 ret = proc_dostring(table, write, buffer, length, ppos);
3633 if (ret)
3634 goto out;
3635 if (write) {
3636 int oldval = user_zonelist_order;
3637
3638 ret = __parse_numa_zonelist_order((char *)table->data);
3639 if (ret) {
3640 /*
3641 * bogus value. restore saved string
3642 */
3643 strncpy((char *)table->data, saved_string,
3644 NUMA_ZONELIST_ORDER_LEN);
3645 user_zonelist_order = oldval;
3646 } else if (oldval != user_zonelist_order) {
3647 mutex_lock(&zonelists_mutex);
3648 build_all_zonelists(NULL, NULL);
3649 mutex_unlock(&zonelists_mutex);
3650 }
3651 }
3652 out:
3653 mutex_unlock(&zl_order_mutex);
3654 return ret;
3655 }
3656
3657
3658 #define MAX_NODE_LOAD (nr_online_nodes)
3659 static int node_load[MAX_NUMNODES];
3660
3661 /**
3662 * find_next_best_node - find the next node that should appear in a given node's fallback list
3663 * @node: node whose fallback list we're appending
3664 * @used_node_mask: nodemask_t of already used nodes
3665 *
3666 * We use a number of factors to determine which is the next node that should
3667 * appear on a given node's fallback list. The node should not have appeared
3668 * already in @node's fallback list, and it should be the next closest node
3669 * according to the distance array (which contains arbitrary distance values
3670 * from each node to each node in the system), and should also prefer nodes
3671 * with no CPUs, since presumably they'll have very little allocation pressure
3672 * on them otherwise.
3673 * It returns -1 if no node is found.
3674 */
3675 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3676 {
3677 int n, val;
3678 int min_val = INT_MAX;
3679 int best_node = NUMA_NO_NODE;
3680 const struct cpumask *tmp = cpumask_of_node(0);
3681
3682 /* Use the local node if we haven't already */
3683 if (!node_isset(node, *used_node_mask)) {
3684 node_set(node, *used_node_mask);
3685 return node;
3686 }
3687
3688 for_each_node_state(n, N_MEMORY) {
3689
3690 /* Don't want a node to appear more than once */
3691 if (node_isset(n, *used_node_mask))
3692 continue;
3693
3694 /* Use the distance array to find the distance */
3695 val = node_distance(node, n);
3696
3697 /* Penalize nodes under us ("prefer the next node") */
3698 val += (n < node);
3699
3700 /* Give preference to headless and unused nodes */
3701 tmp = cpumask_of_node(n);
3702 if (!cpumask_empty(tmp))
3703 val += PENALTY_FOR_NODE_WITH_CPUS;
3704
3705 /* Slight preference for less loaded node */
3706 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3707 val += node_load[n];
3708
3709 if (val < min_val) {
3710 min_val = val;
3711 best_node = n;
3712 }
3713 }
3714
3715 if (best_node >= 0)
3716 node_set(best_node, *used_node_mask);
3717
3718 return best_node;
3719 }
3720
3721
3722 /*
3723 * Build zonelists ordered by node and zones within node.
3724 * This results in maximum locality--normal zone overflows into local
3725 * DMA zone, if any--but risks exhausting DMA zone.
3726 */
3727 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3728 {
3729 int j;
3730 struct zonelist *zonelist;
3731
3732 zonelist = &pgdat->node_zonelists[0];
3733 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3734 ;
3735 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3736 zonelist->_zonerefs[j].zone = NULL;
3737 zonelist->_zonerefs[j].zone_idx = 0;
3738 }
3739
3740 /*
3741 * Build gfp_thisnode zonelists
3742 */
3743 static void build_thisnode_zonelists(pg_data_t *pgdat)
3744 {
3745 int j;
3746 struct zonelist *zonelist;
3747
3748 zonelist = &pgdat->node_zonelists[1];
3749 j = build_zonelists_node(pgdat, zonelist, 0);
3750 zonelist->_zonerefs[j].zone = NULL;
3751 zonelist->_zonerefs[j].zone_idx = 0;
3752 }
3753
3754 /*
3755 * Build zonelists ordered by zone and nodes within zones.
3756 * This results in conserving DMA zone[s] until all Normal memory is
3757 * exhausted, but results in overflowing to remote node while memory
3758 * may still exist in local DMA zone.
3759 */
3760 static int node_order[MAX_NUMNODES];
3761
3762 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3763 {
3764 int pos, j, node;
3765 int zone_type; /* needs to be signed */
3766 struct zone *z;
3767 struct zonelist *zonelist;
3768
3769 zonelist = &pgdat->node_zonelists[0];
3770 pos = 0;
3771 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3772 for (j = 0; j < nr_nodes; j++) {
3773 node = node_order[j];
3774 z = &NODE_DATA(node)->node_zones[zone_type];
3775 if (populated_zone(z)) {
3776 zoneref_set_zone(z,
3777 &zonelist->_zonerefs[pos++]);
3778 check_highest_zone(zone_type);
3779 }
3780 }
3781 }
3782 zonelist->_zonerefs[pos].zone = NULL;
3783 zonelist->_zonerefs[pos].zone_idx = 0;
3784 }
3785
3786 #if defined(CONFIG_64BIT)
3787 /*
3788 * Devices that require DMA32/DMA are relatively rare and do not justify a
3789 * penalty to every machine in case the specialised case applies. Default
3790 * to Node-ordering on 64-bit NUMA machines
3791 */
3792 static int default_zonelist_order(void)
3793 {
3794 return ZONELIST_ORDER_NODE;
3795 }
3796 #else
3797 /*
3798 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3799 * by the kernel. If processes running on node 0 deplete the low memory zone
3800 * then reclaim will occur more frequency increasing stalls and potentially
3801 * be easier to OOM if a large percentage of the zone is under writeback or
3802 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3803 * Hence, default to zone ordering on 32-bit.
3804 */
3805 static int default_zonelist_order(void)
3806 {
3807 return ZONELIST_ORDER_ZONE;
3808 }
3809 #endif /* CONFIG_64BIT */
3810
3811 static void set_zonelist_order(void)
3812 {
3813 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3814 current_zonelist_order = default_zonelist_order();
3815 else
3816 current_zonelist_order = user_zonelist_order;
3817 }
3818
3819 static void build_zonelists(pg_data_t *pgdat)
3820 {
3821 int j, node, load;
3822 enum zone_type i;
3823 nodemask_t used_mask;
3824 int local_node, prev_node;
3825 struct zonelist *zonelist;
3826 int order = current_zonelist_order;
3827
3828 /* initialize zonelists */
3829 for (i = 0; i < MAX_ZONELISTS; i++) {
3830 zonelist = pgdat->node_zonelists + i;
3831 zonelist->_zonerefs[0].zone = NULL;
3832 zonelist->_zonerefs[0].zone_idx = 0;
3833 }
3834
3835 /* NUMA-aware ordering of nodes */
3836 local_node = pgdat->node_id;
3837 load = nr_online_nodes;
3838 prev_node = local_node;
3839 nodes_clear(used_mask);
3840
3841 memset(node_order, 0, sizeof(node_order));
3842 j = 0;
3843
3844 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3845 /*
3846 * We don't want to pressure a particular node.
3847 * So adding penalty to the first node in same
3848 * distance group to make it round-robin.
3849 */
3850 if (node_distance(local_node, node) !=
3851 node_distance(local_node, prev_node))
3852 node_load[node] = load;
3853
3854 prev_node = node;
3855 load--;
3856 if (order == ZONELIST_ORDER_NODE)
3857 build_zonelists_in_node_order(pgdat, node);
3858 else
3859 node_order[j++] = node; /* remember order */
3860 }
3861
3862 if (order == ZONELIST_ORDER_ZONE) {
3863 /* calculate node order -- i.e., DMA last! */
3864 build_zonelists_in_zone_order(pgdat, j);
3865 }
3866
3867 build_thisnode_zonelists(pgdat);
3868 }
3869
3870 /* Construct the zonelist performance cache - see further mmzone.h */
3871 static void build_zonelist_cache(pg_data_t *pgdat)
3872 {
3873 struct zonelist *zonelist;
3874 struct zonelist_cache *zlc;
3875 struct zoneref *z;
3876
3877 zonelist = &pgdat->node_zonelists[0];
3878 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3879 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3880 for (z = zonelist->_zonerefs; z->zone; z++)
3881 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3882 }
3883
3884 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3885 /*
3886 * Return node id of node used for "local" allocations.
3887 * I.e., first node id of first zone in arg node's generic zonelist.
3888 * Used for initializing percpu 'numa_mem', which is used primarily
3889 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3890 */
3891 int local_memory_node(int node)
3892 {
3893 struct zone *zone;
3894
3895 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3896 gfp_zone(GFP_KERNEL),
3897 NULL,
3898 &zone);
3899 return zone->node;
3900 }
3901 #endif
3902
3903 #else /* CONFIG_NUMA */
3904
3905 static void set_zonelist_order(void)
3906 {
3907 current_zonelist_order = ZONELIST_ORDER_ZONE;
3908 }
3909
3910 static void build_zonelists(pg_data_t *pgdat)
3911 {
3912 int node, local_node;
3913 enum zone_type j;
3914 struct zonelist *zonelist;
3915
3916 local_node = pgdat->node_id;
3917
3918 zonelist = &pgdat->node_zonelists[0];
3919 j = build_zonelists_node(pgdat, zonelist, 0);
3920
3921 /*
3922 * Now we build the zonelist so that it contains the zones
3923 * of all the other nodes.
3924 * We don't want to pressure a particular node, so when
3925 * building the zones for node N, we make sure that the
3926 * zones coming right after the local ones are those from
3927 * node N+1 (modulo N)
3928 */
3929 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3930 if (!node_online(node))
3931 continue;
3932 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3933 }
3934 for (node = 0; node < local_node; node++) {
3935 if (!node_online(node))
3936 continue;
3937 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3938 }
3939
3940 zonelist->_zonerefs[j].zone = NULL;
3941 zonelist->_zonerefs[j].zone_idx = 0;
3942 }
3943
3944 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3945 static void build_zonelist_cache(pg_data_t *pgdat)
3946 {
3947 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3948 }
3949
3950 #endif /* CONFIG_NUMA */
3951
3952 /*
3953 * Boot pageset table. One per cpu which is going to be used for all
3954 * zones and all nodes. The parameters will be set in such a way
3955 * that an item put on a list will immediately be handed over to
3956 * the buddy list. This is safe since pageset manipulation is done
3957 * with interrupts disabled.
3958 *
3959 * The boot_pagesets must be kept even after bootup is complete for
3960 * unused processors and/or zones. They do play a role for bootstrapping
3961 * hotplugged processors.
3962 *
3963 * zoneinfo_show() and maybe other functions do
3964 * not check if the processor is online before following the pageset pointer.
3965 * Other parts of the kernel may not check if the zone is available.
3966 */
3967 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3968 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3969 static void setup_zone_pageset(struct zone *zone);
3970
3971 /*
3972 * Global mutex to protect against size modification of zonelists
3973 * as well as to serialize pageset setup for the new populated zone.
3974 */
3975 DEFINE_MUTEX(zonelists_mutex);
3976
3977 /* return values int ....just for stop_machine() */
3978 static int __build_all_zonelists(void *data)
3979 {
3980 int nid;
3981 int cpu;
3982 pg_data_t *self = data;
3983
3984 #ifdef CONFIG_NUMA
3985 memset(node_load, 0, sizeof(node_load));
3986 #endif
3987
3988 if (self && !node_online(self->node_id)) {
3989 build_zonelists(self);
3990 build_zonelist_cache(self);
3991 }
3992
3993 for_each_online_node(nid) {
3994 pg_data_t *pgdat = NODE_DATA(nid);
3995
3996 build_zonelists(pgdat);
3997 build_zonelist_cache(pgdat);
3998 }
3999
4000 /*
4001 * Initialize the boot_pagesets that are going to be used
4002 * for bootstrapping processors. The real pagesets for
4003 * each zone will be allocated later when the per cpu
4004 * allocator is available.
4005 *
4006 * boot_pagesets are used also for bootstrapping offline
4007 * cpus if the system is already booted because the pagesets
4008 * are needed to initialize allocators on a specific cpu too.
4009 * F.e. the percpu allocator needs the page allocator which
4010 * needs the percpu allocator in order to allocate its pagesets
4011 * (a chicken-egg dilemma).
4012 */
4013 for_each_possible_cpu(cpu) {
4014 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4015
4016 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4017 /*
4018 * We now know the "local memory node" for each node--
4019 * i.e., the node of the first zone in the generic zonelist.
4020 * Set up numa_mem percpu variable for on-line cpus. During
4021 * boot, only the boot cpu should be on-line; we'll init the
4022 * secondary cpus' numa_mem as they come on-line. During
4023 * node/memory hotplug, we'll fixup all on-line cpus.
4024 */
4025 if (cpu_online(cpu))
4026 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4027 #endif
4028 }
4029
4030 return 0;
4031 }
4032
4033 static noinline void __init
4034 build_all_zonelists_init(void)
4035 {
4036 __build_all_zonelists(NULL);
4037 mminit_verify_zonelist();
4038 cpuset_init_current_mems_allowed();
4039 }
4040
4041 /*
4042 * Called with zonelists_mutex held always
4043 * unless system_state == SYSTEM_BOOTING.
4044 *
4045 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4046 * [we're only called with non-NULL zone through __meminit paths] and
4047 * (2) call of __init annotated helper build_all_zonelists_init
4048 * [protected by SYSTEM_BOOTING].
4049 */
4050 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4051 {
4052 set_zonelist_order();
4053
4054 if (system_state == SYSTEM_BOOTING) {
4055 build_all_zonelists_init();
4056 } else {
4057 #ifdef CONFIG_MEMORY_HOTPLUG
4058 if (zone)
4059 setup_zone_pageset(zone);
4060 #endif
4061 /* we have to stop all cpus to guarantee there is no user
4062 of zonelist */
4063 stop_machine(__build_all_zonelists, pgdat, NULL);
4064 /* cpuset refresh routine should be here */
4065 }
4066 vm_total_pages = nr_free_pagecache_pages();
4067 /*
4068 * Disable grouping by mobility if the number of pages in the
4069 * system is too low to allow the mechanism to work. It would be
4070 * more accurate, but expensive to check per-zone. This check is
4071 * made on memory-hotadd so a system can start with mobility
4072 * disabled and enable it later
4073 */
4074 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4075 page_group_by_mobility_disabled = 1;
4076 else
4077 page_group_by_mobility_disabled = 0;
4078
4079 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4080 "Total pages: %ld\n",
4081 nr_online_nodes,
4082 zonelist_order_name[current_zonelist_order],
4083 page_group_by_mobility_disabled ? "off" : "on",
4084 vm_total_pages);
4085 #ifdef CONFIG_NUMA
4086 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4087 #endif
4088 }
4089
4090 /*
4091 * Helper functions to size the waitqueue hash table.
4092 * Essentially these want to choose hash table sizes sufficiently
4093 * large so that collisions trying to wait on pages are rare.
4094 * But in fact, the number of active page waitqueues on typical
4095 * systems is ridiculously low, less than 200. So this is even
4096 * conservative, even though it seems large.
4097 *
4098 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4099 * waitqueues, i.e. the size of the waitq table given the number of pages.
4100 */
4101 #define PAGES_PER_WAITQUEUE 256
4102
4103 #ifndef CONFIG_MEMORY_HOTPLUG
4104 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4105 {
4106 unsigned long size = 1;
4107
4108 pages /= PAGES_PER_WAITQUEUE;
4109
4110 while (size < pages)
4111 size <<= 1;
4112
4113 /*
4114 * Once we have dozens or even hundreds of threads sleeping
4115 * on IO we've got bigger problems than wait queue collision.
4116 * Limit the size of the wait table to a reasonable size.
4117 */
4118 size = min(size, 4096UL);
4119
4120 return max(size, 4UL);
4121 }
4122 #else
4123 /*
4124 * A zone's size might be changed by hot-add, so it is not possible to determine
4125 * a suitable size for its wait_table. So we use the maximum size now.
4126 *
4127 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4128 *
4129 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4130 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4131 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4132 *
4133 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4134 * or more by the traditional way. (See above). It equals:
4135 *
4136 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4137 * ia64(16K page size) : = ( 8G + 4M)byte.
4138 * powerpc (64K page size) : = (32G +16M)byte.
4139 */
4140 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4141 {
4142 return 4096UL;
4143 }
4144 #endif
4145
4146 /*
4147 * This is an integer logarithm so that shifts can be used later
4148 * to extract the more random high bits from the multiplicative
4149 * hash function before the remainder is taken.
4150 */
4151 static inline unsigned long wait_table_bits(unsigned long size)
4152 {
4153 return ffz(~size);
4154 }
4155
4156 /*
4157 * Check if a pageblock contains reserved pages
4158 */
4159 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4160 {
4161 unsigned long pfn;
4162
4163 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4164 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4165 return 1;
4166 }
4167 return 0;
4168 }
4169
4170 /*
4171 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4172 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4173 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4174 * higher will lead to a bigger reserve which will get freed as contiguous
4175 * blocks as reclaim kicks in
4176 */
4177 static void setup_zone_migrate_reserve(struct zone *zone)
4178 {
4179 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4180 struct page *page;
4181 unsigned long block_migratetype;
4182 int reserve;
4183 int old_reserve;
4184
4185 /*
4186 * Get the start pfn, end pfn and the number of blocks to reserve
4187 * We have to be careful to be aligned to pageblock_nr_pages to
4188 * make sure that we always check pfn_valid for the first page in
4189 * the block.
4190 */
4191 start_pfn = zone->zone_start_pfn;
4192 end_pfn = zone_end_pfn(zone);
4193 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4194 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4195 pageblock_order;
4196
4197 /*
4198 * Reserve blocks are generally in place to help high-order atomic
4199 * allocations that are short-lived. A min_free_kbytes value that
4200 * would result in more than 2 reserve blocks for atomic allocations
4201 * is assumed to be in place to help anti-fragmentation for the
4202 * future allocation of hugepages at runtime.
4203 */
4204 reserve = min(2, reserve);
4205 old_reserve = zone->nr_migrate_reserve_block;
4206
4207 /* When memory hot-add, we almost always need to do nothing */
4208 if (reserve == old_reserve)
4209 return;
4210 zone->nr_migrate_reserve_block = reserve;
4211
4212 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4213 if (!pfn_valid(pfn))
4214 continue;
4215 page = pfn_to_page(pfn);
4216
4217 /* Watch out for overlapping nodes */
4218 if (page_to_nid(page) != zone_to_nid(zone))
4219 continue;
4220
4221 block_migratetype = get_pageblock_migratetype(page);
4222
4223 /* Only test what is necessary when the reserves are not met */
4224 if (reserve > 0) {
4225 /*
4226 * Blocks with reserved pages will never free, skip
4227 * them.
4228 */
4229 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4230 if (pageblock_is_reserved(pfn, block_end_pfn))
4231 continue;
4232
4233 /* If this block is reserved, account for it */
4234 if (block_migratetype == MIGRATE_RESERVE) {
4235 reserve--;
4236 continue;
4237 }
4238
4239 /* Suitable for reserving if this block is movable */
4240 if (block_migratetype == MIGRATE_MOVABLE) {
4241 set_pageblock_migratetype(page,
4242 MIGRATE_RESERVE);
4243 move_freepages_block(zone, page,
4244 MIGRATE_RESERVE);
4245 reserve--;
4246 continue;
4247 }
4248 } else if (!old_reserve) {
4249 /*
4250 * At boot time we don't need to scan the whole zone
4251 * for turning off MIGRATE_RESERVE.
4252 */
4253 break;
4254 }
4255
4256 /*
4257 * If the reserve is met and this is a previous reserved block,
4258 * take it back
4259 */
4260 if (block_migratetype == MIGRATE_RESERVE) {
4261 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4262 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4263 }
4264 }
4265 }
4266
4267 /*
4268 * Initially all pages are reserved - free ones are freed
4269 * up by free_all_bootmem() once the early boot process is
4270 * done. Non-atomic initialization, single-pass.
4271 */
4272 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4273 unsigned long start_pfn, enum memmap_context context)
4274 {
4275 unsigned long end_pfn = start_pfn + size;
4276 unsigned long pfn;
4277 struct zone *z;
4278
4279 if (highest_memmap_pfn < end_pfn - 1)
4280 highest_memmap_pfn = end_pfn - 1;
4281
4282 z = &NODE_DATA(nid)->node_zones[zone];
4283 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4284 /*
4285 * There can be holes in boot-time mem_map[]s
4286 * handed to this function. They do not
4287 * exist on hotplugged memory.
4288 */
4289 if (context == MEMMAP_EARLY) {
4290 if (!early_pfn_valid(pfn))
4291 continue;
4292 if (!early_pfn_in_nid(pfn, nid))
4293 continue;
4294 }
4295 __init_single_pfn(pfn, zone, nid);
4296 }
4297 }
4298
4299 static void __meminit zone_init_free_lists(struct zone *zone)
4300 {
4301 unsigned int order, t;
4302 for_each_migratetype_order(order, t) {
4303 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4304 zone->free_area[order].nr_free = 0;
4305 }
4306 }
4307
4308 #ifndef __HAVE_ARCH_MEMMAP_INIT
4309 #define memmap_init(size, nid, zone, start_pfn) \
4310 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4311 #endif
4312
4313 static int zone_batchsize(struct zone *zone)
4314 {
4315 #ifdef CONFIG_MMU
4316 int batch;
4317
4318 /*
4319 * The per-cpu-pages pools are set to around 1000th of the
4320 * size of the zone. But no more than 1/2 of a meg.
4321 *
4322 * OK, so we don't know how big the cache is. So guess.
4323 */
4324 batch = zone->managed_pages / 1024;
4325 if (batch * PAGE_SIZE > 512 * 1024)
4326 batch = (512 * 1024) / PAGE_SIZE;
4327 batch /= 4; /* We effectively *= 4 below */
4328 if (batch < 1)
4329 batch = 1;
4330
4331 /*
4332 * Clamp the batch to a 2^n - 1 value. Having a power
4333 * of 2 value was found to be more likely to have
4334 * suboptimal cache aliasing properties in some cases.
4335 *
4336 * For example if 2 tasks are alternately allocating
4337 * batches of pages, one task can end up with a lot
4338 * of pages of one half of the possible page colors
4339 * and the other with pages of the other colors.
4340 */
4341 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4342
4343 return batch;
4344
4345 #else
4346 /* The deferral and batching of frees should be suppressed under NOMMU
4347 * conditions.
4348 *
4349 * The problem is that NOMMU needs to be able to allocate large chunks
4350 * of contiguous memory as there's no hardware page translation to
4351 * assemble apparent contiguous memory from discontiguous pages.
4352 *
4353 * Queueing large contiguous runs of pages for batching, however,
4354 * causes the pages to actually be freed in smaller chunks. As there
4355 * can be a significant delay between the individual batches being
4356 * recycled, this leads to the once large chunks of space being
4357 * fragmented and becoming unavailable for high-order allocations.
4358 */
4359 return 0;
4360 #endif
4361 }
4362
4363 /*
4364 * pcp->high and pcp->batch values are related and dependent on one another:
4365 * ->batch must never be higher then ->high.
4366 * The following function updates them in a safe manner without read side
4367 * locking.
4368 *
4369 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4370 * those fields changing asynchronously (acording the the above rule).
4371 *
4372 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4373 * outside of boot time (or some other assurance that no concurrent updaters
4374 * exist).
4375 */
4376 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4377 unsigned long batch)
4378 {
4379 /* start with a fail safe value for batch */
4380 pcp->batch = 1;
4381 smp_wmb();
4382
4383 /* Update high, then batch, in order */
4384 pcp->high = high;
4385 smp_wmb();
4386
4387 pcp->batch = batch;
4388 }
4389
4390 /* a companion to pageset_set_high() */
4391 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4392 {
4393 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4394 }
4395
4396 static void pageset_init(struct per_cpu_pageset *p)
4397 {
4398 struct per_cpu_pages *pcp;
4399 int migratetype;
4400
4401 memset(p, 0, sizeof(*p));
4402
4403 pcp = &p->pcp;
4404 pcp->count = 0;
4405 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4406 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4407 }
4408
4409 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4410 {
4411 pageset_init(p);
4412 pageset_set_batch(p, batch);
4413 }
4414
4415 /*
4416 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4417 * to the value high for the pageset p.
4418 */
4419 static void pageset_set_high(struct per_cpu_pageset *p,
4420 unsigned long high)
4421 {
4422 unsigned long batch = max(1UL, high / 4);
4423 if ((high / 4) > (PAGE_SHIFT * 8))
4424 batch = PAGE_SHIFT * 8;
4425
4426 pageset_update(&p->pcp, high, batch);
4427 }
4428
4429 static void pageset_set_high_and_batch(struct zone *zone,
4430 struct per_cpu_pageset *pcp)
4431 {
4432 if (percpu_pagelist_fraction)
4433 pageset_set_high(pcp,
4434 (zone->managed_pages /
4435 percpu_pagelist_fraction));
4436 else
4437 pageset_set_batch(pcp, zone_batchsize(zone));
4438 }
4439
4440 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4441 {
4442 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4443
4444 pageset_init(pcp);
4445 pageset_set_high_and_batch(zone, pcp);
4446 }
4447
4448 static void __meminit setup_zone_pageset(struct zone *zone)
4449 {
4450 int cpu;
4451 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4452 for_each_possible_cpu(cpu)
4453 zone_pageset_init(zone, cpu);
4454 }
4455
4456 /*
4457 * Allocate per cpu pagesets and initialize them.
4458 * Before this call only boot pagesets were available.
4459 */
4460 void __init setup_per_cpu_pageset(void)
4461 {
4462 struct zone *zone;
4463
4464 for_each_populated_zone(zone)
4465 setup_zone_pageset(zone);
4466 }
4467
4468 static noinline __init_refok
4469 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4470 {
4471 int i;
4472 size_t alloc_size;
4473
4474 /*
4475 * The per-page waitqueue mechanism uses hashed waitqueues
4476 * per zone.
4477 */
4478 zone->wait_table_hash_nr_entries =
4479 wait_table_hash_nr_entries(zone_size_pages);
4480 zone->wait_table_bits =
4481 wait_table_bits(zone->wait_table_hash_nr_entries);
4482 alloc_size = zone->wait_table_hash_nr_entries
4483 * sizeof(wait_queue_head_t);
4484
4485 if (!slab_is_available()) {
4486 zone->wait_table = (wait_queue_head_t *)
4487 memblock_virt_alloc_node_nopanic(
4488 alloc_size, zone->zone_pgdat->node_id);
4489 } else {
4490 /*
4491 * This case means that a zone whose size was 0 gets new memory
4492 * via memory hot-add.
4493 * But it may be the case that a new node was hot-added. In
4494 * this case vmalloc() will not be able to use this new node's
4495 * memory - this wait_table must be initialized to use this new
4496 * node itself as well.
4497 * To use this new node's memory, further consideration will be
4498 * necessary.
4499 */
4500 zone->wait_table = vmalloc(alloc_size);
4501 }
4502 if (!zone->wait_table)
4503 return -ENOMEM;
4504
4505 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4506 init_waitqueue_head(zone->wait_table + i);
4507
4508 return 0;
4509 }
4510
4511 static __meminit void zone_pcp_init(struct zone *zone)
4512 {
4513 /*
4514 * per cpu subsystem is not up at this point. The following code
4515 * relies on the ability of the linker to provide the
4516 * offset of a (static) per cpu variable into the per cpu area.
4517 */
4518 zone->pageset = &boot_pageset;
4519
4520 if (populated_zone(zone))
4521 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4522 zone->name, zone->present_pages,
4523 zone_batchsize(zone));
4524 }
4525
4526 int __meminit init_currently_empty_zone(struct zone *zone,
4527 unsigned long zone_start_pfn,
4528 unsigned long size,
4529 enum memmap_context context)
4530 {
4531 struct pglist_data *pgdat = zone->zone_pgdat;
4532 int ret;
4533 ret = zone_wait_table_init(zone, size);
4534 if (ret)
4535 return ret;
4536 pgdat->nr_zones = zone_idx(zone) + 1;
4537
4538 zone->zone_start_pfn = zone_start_pfn;
4539
4540 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4541 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4542 pgdat->node_id,
4543 (unsigned long)zone_idx(zone),
4544 zone_start_pfn, (zone_start_pfn + size));
4545
4546 zone_init_free_lists(zone);
4547
4548 return 0;
4549 }
4550
4551 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4552 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4553 /*
4554 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4555 */
4556 int __meminit __early_pfn_to_nid(unsigned long pfn)
4557 {
4558 unsigned long start_pfn, end_pfn;
4559 int nid;
4560 /*
4561 * NOTE: The following SMP-unsafe globals are only used early in boot
4562 * when the kernel is running single-threaded.
4563 */
4564 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4565 static int __meminitdata last_nid;
4566
4567 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4568 return last_nid;
4569
4570 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4571 if (nid != -1) {
4572 last_start_pfn = start_pfn;
4573 last_end_pfn = end_pfn;
4574 last_nid = nid;
4575 }
4576
4577 return nid;
4578 }
4579 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4580
4581 int __meminit early_pfn_to_nid(unsigned long pfn)
4582 {
4583 int nid;
4584
4585 nid = __early_pfn_to_nid(pfn);
4586 if (nid >= 0)
4587 return nid;
4588 /* just returns 0 */
4589 return 0;
4590 }
4591
4592 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4593 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4594 {
4595 int nid;
4596
4597 nid = __early_pfn_to_nid(pfn);
4598 if (nid >= 0 && nid != node)
4599 return false;
4600 return true;
4601 }
4602 #endif
4603
4604 /**
4605 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4606 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4607 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4608 *
4609 * If an architecture guarantees that all ranges registered contain no holes
4610 * and may be freed, this this function may be used instead of calling
4611 * memblock_free_early_nid() manually.
4612 */
4613 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4614 {
4615 unsigned long start_pfn, end_pfn;
4616 int i, this_nid;
4617
4618 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4619 start_pfn = min(start_pfn, max_low_pfn);
4620 end_pfn = min(end_pfn, max_low_pfn);
4621
4622 if (start_pfn < end_pfn)
4623 memblock_free_early_nid(PFN_PHYS(start_pfn),
4624 (end_pfn - start_pfn) << PAGE_SHIFT,
4625 this_nid);
4626 }
4627 }
4628
4629 /**
4630 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4631 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4632 *
4633 * If an architecture guarantees that all ranges registered contain no holes and may
4634 * be freed, this function may be used instead of calling memory_present() manually.
4635 */
4636 void __init sparse_memory_present_with_active_regions(int nid)
4637 {
4638 unsigned long start_pfn, end_pfn;
4639 int i, this_nid;
4640
4641 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4642 memory_present(this_nid, start_pfn, end_pfn);
4643 }
4644
4645 /**
4646 * get_pfn_range_for_nid - Return the start and end page frames for a node
4647 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4648 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4649 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4650 *
4651 * It returns the start and end page frame of a node based on information
4652 * provided by memblock_set_node(). If called for a node
4653 * with no available memory, a warning is printed and the start and end
4654 * PFNs will be 0.
4655 */
4656 void __meminit get_pfn_range_for_nid(unsigned int nid,
4657 unsigned long *start_pfn, unsigned long *end_pfn)
4658 {
4659 unsigned long this_start_pfn, this_end_pfn;
4660 int i;
4661
4662 *start_pfn = -1UL;
4663 *end_pfn = 0;
4664
4665 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4666 *start_pfn = min(*start_pfn, this_start_pfn);
4667 *end_pfn = max(*end_pfn, this_end_pfn);
4668 }
4669
4670 if (*start_pfn == -1UL)
4671 *start_pfn = 0;
4672 }
4673
4674 /*
4675 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4676 * assumption is made that zones within a node are ordered in monotonic
4677 * increasing memory addresses so that the "highest" populated zone is used
4678 */
4679 static void __init find_usable_zone_for_movable(void)
4680 {
4681 int zone_index;
4682 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4683 if (zone_index == ZONE_MOVABLE)
4684 continue;
4685
4686 if (arch_zone_highest_possible_pfn[zone_index] >
4687 arch_zone_lowest_possible_pfn[zone_index])
4688 break;
4689 }
4690
4691 VM_BUG_ON(zone_index == -1);
4692 movable_zone = zone_index;
4693 }
4694
4695 /*
4696 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4697 * because it is sized independent of architecture. Unlike the other zones,
4698 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4699 * in each node depending on the size of each node and how evenly kernelcore
4700 * is distributed. This helper function adjusts the zone ranges
4701 * provided by the architecture for a given node by using the end of the
4702 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4703 * zones within a node are in order of monotonic increases memory addresses
4704 */
4705 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4706 unsigned long zone_type,
4707 unsigned long node_start_pfn,
4708 unsigned long node_end_pfn,
4709 unsigned long *zone_start_pfn,
4710 unsigned long *zone_end_pfn)
4711 {
4712 /* Only adjust if ZONE_MOVABLE is on this node */
4713 if (zone_movable_pfn[nid]) {
4714 /* Size ZONE_MOVABLE */
4715 if (zone_type == ZONE_MOVABLE) {
4716 *zone_start_pfn = zone_movable_pfn[nid];
4717 *zone_end_pfn = min(node_end_pfn,
4718 arch_zone_highest_possible_pfn[movable_zone]);
4719
4720 /* Adjust for ZONE_MOVABLE starting within this range */
4721 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4722 *zone_end_pfn > zone_movable_pfn[nid]) {
4723 *zone_end_pfn = zone_movable_pfn[nid];
4724
4725 /* Check if this whole range is within ZONE_MOVABLE */
4726 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4727 *zone_start_pfn = *zone_end_pfn;
4728 }
4729 }
4730
4731 /*
4732 * Return the number of pages a zone spans in a node, including holes
4733 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4734 */
4735 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4736 unsigned long zone_type,
4737 unsigned long node_start_pfn,
4738 unsigned long node_end_pfn,
4739 unsigned long *ignored)
4740 {
4741 unsigned long zone_start_pfn, zone_end_pfn;
4742
4743 /* Get the start and end of the zone */
4744 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4745 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4746 adjust_zone_range_for_zone_movable(nid, zone_type,
4747 node_start_pfn, node_end_pfn,
4748 &zone_start_pfn, &zone_end_pfn);
4749
4750 /* Check that this node has pages within the zone's required range */
4751 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4752 return 0;
4753
4754 /* Move the zone boundaries inside the node if necessary */
4755 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4756 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4757
4758 /* Return the spanned pages */
4759 return zone_end_pfn - zone_start_pfn;
4760 }
4761
4762 /*
4763 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4764 * then all holes in the requested range will be accounted for.
4765 */
4766 unsigned long __meminit __absent_pages_in_range(int nid,
4767 unsigned long range_start_pfn,
4768 unsigned long range_end_pfn)
4769 {
4770 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4771 unsigned long start_pfn, end_pfn;
4772 int i;
4773
4774 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4775 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4776 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4777 nr_absent -= end_pfn - start_pfn;
4778 }
4779 return nr_absent;
4780 }
4781
4782 /**
4783 * absent_pages_in_range - Return number of page frames in holes within a range
4784 * @start_pfn: The start PFN to start searching for holes
4785 * @end_pfn: The end PFN to stop searching for holes
4786 *
4787 * It returns the number of pages frames in memory holes within a range.
4788 */
4789 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4790 unsigned long end_pfn)
4791 {
4792 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4793 }
4794
4795 /* Return the number of page frames in holes in a zone on a node */
4796 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4797 unsigned long zone_type,
4798 unsigned long node_start_pfn,
4799 unsigned long node_end_pfn,
4800 unsigned long *ignored)
4801 {
4802 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4803 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4804 unsigned long zone_start_pfn, zone_end_pfn;
4805
4806 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4807 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4808
4809 adjust_zone_range_for_zone_movable(nid, zone_type,
4810 node_start_pfn, node_end_pfn,
4811 &zone_start_pfn, &zone_end_pfn);
4812 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4813 }
4814
4815 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4816 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4817 unsigned long zone_type,
4818 unsigned long node_start_pfn,
4819 unsigned long node_end_pfn,
4820 unsigned long *zones_size)
4821 {
4822 return zones_size[zone_type];
4823 }
4824
4825 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4826 unsigned long zone_type,
4827 unsigned long node_start_pfn,
4828 unsigned long node_end_pfn,
4829 unsigned long *zholes_size)
4830 {
4831 if (!zholes_size)
4832 return 0;
4833
4834 return zholes_size[zone_type];
4835 }
4836
4837 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4838
4839 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4840 unsigned long node_start_pfn,
4841 unsigned long node_end_pfn,
4842 unsigned long *zones_size,
4843 unsigned long *zholes_size)
4844 {
4845 unsigned long realtotalpages = 0, totalpages = 0;
4846 enum zone_type i;
4847
4848 for (i = 0; i < MAX_NR_ZONES; i++) {
4849 struct zone *zone = pgdat->node_zones + i;
4850 unsigned long size, real_size;
4851
4852 size = zone_spanned_pages_in_node(pgdat->node_id, i,
4853 node_start_pfn,
4854 node_end_pfn,
4855 zones_size);
4856 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
4857 node_start_pfn, node_end_pfn,
4858 zholes_size);
4859 zone->spanned_pages = size;
4860 zone->present_pages = real_size;
4861
4862 totalpages += size;
4863 realtotalpages += real_size;
4864 }
4865
4866 pgdat->node_spanned_pages = totalpages;
4867 pgdat->node_present_pages = realtotalpages;
4868 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4869 realtotalpages);
4870 }
4871
4872 #ifndef CONFIG_SPARSEMEM
4873 /*
4874 * Calculate the size of the zone->blockflags rounded to an unsigned long
4875 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4876 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4877 * round what is now in bits to nearest long in bits, then return it in
4878 * bytes.
4879 */
4880 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4881 {
4882 unsigned long usemapsize;
4883
4884 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4885 usemapsize = roundup(zonesize, pageblock_nr_pages);
4886 usemapsize = usemapsize >> pageblock_order;
4887 usemapsize *= NR_PAGEBLOCK_BITS;
4888 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4889
4890 return usemapsize / 8;
4891 }
4892
4893 static void __init setup_usemap(struct pglist_data *pgdat,
4894 struct zone *zone,
4895 unsigned long zone_start_pfn,
4896 unsigned long zonesize)
4897 {
4898 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4899 zone->pageblock_flags = NULL;
4900 if (usemapsize)
4901 zone->pageblock_flags =
4902 memblock_virt_alloc_node_nopanic(usemapsize,
4903 pgdat->node_id);
4904 }
4905 #else
4906 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4907 unsigned long zone_start_pfn, unsigned long zonesize) {}
4908 #endif /* CONFIG_SPARSEMEM */
4909
4910 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4911
4912 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4913 void __paginginit set_pageblock_order(void)
4914 {
4915 unsigned int order;
4916
4917 /* Check that pageblock_nr_pages has not already been setup */
4918 if (pageblock_order)
4919 return;
4920
4921 if (HPAGE_SHIFT > PAGE_SHIFT)
4922 order = HUGETLB_PAGE_ORDER;
4923 else
4924 order = MAX_ORDER - 1;
4925
4926 /*
4927 * Assume the largest contiguous order of interest is a huge page.
4928 * This value may be variable depending on boot parameters on IA64 and
4929 * powerpc.
4930 */
4931 pageblock_order = order;
4932 }
4933 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4934
4935 /*
4936 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4937 * is unused as pageblock_order is set at compile-time. See
4938 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4939 * the kernel config
4940 */
4941 void __paginginit set_pageblock_order(void)
4942 {
4943 }
4944
4945 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4946
4947 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4948 unsigned long present_pages)
4949 {
4950 unsigned long pages = spanned_pages;
4951
4952 /*
4953 * Provide a more accurate estimation if there are holes within
4954 * the zone and SPARSEMEM is in use. If there are holes within the
4955 * zone, each populated memory region may cost us one or two extra
4956 * memmap pages due to alignment because memmap pages for each
4957 * populated regions may not naturally algined on page boundary.
4958 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4959 */
4960 if (spanned_pages > present_pages + (present_pages >> 4) &&
4961 IS_ENABLED(CONFIG_SPARSEMEM))
4962 pages = present_pages;
4963
4964 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4965 }
4966
4967 /*
4968 * Set up the zone data structures:
4969 * - mark all pages reserved
4970 * - mark all memory queues empty
4971 * - clear the memory bitmaps
4972 *
4973 * NOTE: pgdat should get zeroed by caller.
4974 */
4975 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4976 unsigned long node_start_pfn, unsigned long node_end_pfn)
4977 {
4978 enum zone_type j;
4979 int nid = pgdat->node_id;
4980 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4981 int ret;
4982
4983 pgdat_resize_init(pgdat);
4984 #ifdef CONFIG_NUMA_BALANCING
4985 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4986 pgdat->numabalancing_migrate_nr_pages = 0;
4987 pgdat->numabalancing_migrate_next_window = jiffies;
4988 #endif
4989 init_waitqueue_head(&pgdat->kswapd_wait);
4990 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4991 pgdat_page_ext_init(pgdat);
4992
4993 for (j = 0; j < MAX_NR_ZONES; j++) {
4994 struct zone *zone = pgdat->node_zones + j;
4995 unsigned long size, realsize, freesize, memmap_pages;
4996
4997 size = zone->spanned_pages;
4998 realsize = freesize = zone->present_pages;
4999
5000 /*
5001 * Adjust freesize so that it accounts for how much memory
5002 * is used by this zone for memmap. This affects the watermark
5003 * and per-cpu initialisations
5004 */
5005 memmap_pages = calc_memmap_size(size, realsize);
5006 if (!is_highmem_idx(j)) {
5007 if (freesize >= memmap_pages) {
5008 freesize -= memmap_pages;
5009 if (memmap_pages)
5010 printk(KERN_DEBUG
5011 " %s zone: %lu pages used for memmap\n",
5012 zone_names[j], memmap_pages);
5013 } else
5014 printk(KERN_WARNING
5015 " %s zone: %lu pages exceeds freesize %lu\n",
5016 zone_names[j], memmap_pages, freesize);
5017 }
5018
5019 /* Account for reserved pages */
5020 if (j == 0 && freesize > dma_reserve) {
5021 freesize -= dma_reserve;
5022 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5023 zone_names[0], dma_reserve);
5024 }
5025
5026 if (!is_highmem_idx(j))
5027 nr_kernel_pages += freesize;
5028 /* Charge for highmem memmap if there are enough kernel pages */
5029 else if (nr_kernel_pages > memmap_pages * 2)
5030 nr_kernel_pages -= memmap_pages;
5031 nr_all_pages += freesize;
5032
5033 /*
5034 * Set an approximate value for lowmem here, it will be adjusted
5035 * when the bootmem allocator frees pages into the buddy system.
5036 * And all highmem pages will be managed by the buddy system.
5037 */
5038 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5039 #ifdef CONFIG_NUMA
5040 zone->node = nid;
5041 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5042 / 100;
5043 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5044 #endif
5045 zone->name = zone_names[j];
5046 spin_lock_init(&zone->lock);
5047 spin_lock_init(&zone->lru_lock);
5048 zone_seqlock_init(zone);
5049 zone->zone_pgdat = pgdat;
5050 zone_pcp_init(zone);
5051
5052 /* For bootup, initialized properly in watermark setup */
5053 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5054
5055 lruvec_init(&zone->lruvec);
5056 if (!size)
5057 continue;
5058
5059 set_pageblock_order();
5060 setup_usemap(pgdat, zone, zone_start_pfn, size);
5061 ret = init_currently_empty_zone(zone, zone_start_pfn,
5062 size, MEMMAP_EARLY);
5063 BUG_ON(ret);
5064 memmap_init(size, nid, j, zone_start_pfn);
5065 zone_start_pfn += size;
5066 }
5067 }
5068
5069 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5070 {
5071 /* Skip empty nodes */
5072 if (!pgdat->node_spanned_pages)
5073 return;
5074
5075 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5076 /* ia64 gets its own node_mem_map, before this, without bootmem */
5077 if (!pgdat->node_mem_map) {
5078 unsigned long size, start, end;
5079 struct page *map;
5080
5081 /*
5082 * The zone's endpoints aren't required to be MAX_ORDER
5083 * aligned but the node_mem_map endpoints must be in order
5084 * for the buddy allocator to function correctly.
5085 */
5086 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5087 end = pgdat_end_pfn(pgdat);
5088 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5089 size = (end - start) * sizeof(struct page);
5090 map = alloc_remap(pgdat->node_id, size);
5091 if (!map)
5092 map = memblock_virt_alloc_node_nopanic(size,
5093 pgdat->node_id);
5094 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5095 }
5096 #ifndef CONFIG_NEED_MULTIPLE_NODES
5097 /*
5098 * With no DISCONTIG, the global mem_map is just set as node 0's
5099 */
5100 if (pgdat == NODE_DATA(0)) {
5101 mem_map = NODE_DATA(0)->node_mem_map;
5102 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5103 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5104 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5105 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5106 }
5107 #endif
5108 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5109 }
5110
5111 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5112 unsigned long node_start_pfn, unsigned long *zholes_size)
5113 {
5114 pg_data_t *pgdat = NODE_DATA(nid);
5115 unsigned long start_pfn = 0;
5116 unsigned long end_pfn = 0;
5117
5118 /* pg_data_t should be reset to zero when it's allocated */
5119 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5120
5121 pgdat->node_id = nid;
5122 pgdat->node_start_pfn = node_start_pfn;
5123 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5124 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5125 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5126 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5127 #endif
5128 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5129 zones_size, zholes_size);
5130
5131 alloc_node_mem_map(pgdat);
5132 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5133 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5134 nid, (unsigned long)pgdat,
5135 (unsigned long)pgdat->node_mem_map);
5136 #endif
5137
5138 free_area_init_core(pgdat, start_pfn, end_pfn);
5139 }
5140
5141 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5142
5143 #if MAX_NUMNODES > 1
5144 /*
5145 * Figure out the number of possible node ids.
5146 */
5147 void __init setup_nr_node_ids(void)
5148 {
5149 unsigned int node;
5150 unsigned int highest = 0;
5151
5152 for_each_node_mask(node, node_possible_map)
5153 highest = node;
5154 nr_node_ids = highest + 1;
5155 }
5156 #endif
5157
5158 /**
5159 * node_map_pfn_alignment - determine the maximum internode alignment
5160 *
5161 * This function should be called after node map is populated and sorted.
5162 * It calculates the maximum power of two alignment which can distinguish
5163 * all the nodes.
5164 *
5165 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5166 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5167 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5168 * shifted, 1GiB is enough and this function will indicate so.
5169 *
5170 * This is used to test whether pfn -> nid mapping of the chosen memory
5171 * model has fine enough granularity to avoid incorrect mapping for the
5172 * populated node map.
5173 *
5174 * Returns the determined alignment in pfn's. 0 if there is no alignment
5175 * requirement (single node).
5176 */
5177 unsigned long __init node_map_pfn_alignment(void)
5178 {
5179 unsigned long accl_mask = 0, last_end = 0;
5180 unsigned long start, end, mask;
5181 int last_nid = -1;
5182 int i, nid;
5183
5184 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5185 if (!start || last_nid < 0 || last_nid == nid) {
5186 last_nid = nid;
5187 last_end = end;
5188 continue;
5189 }
5190
5191 /*
5192 * Start with a mask granular enough to pin-point to the
5193 * start pfn and tick off bits one-by-one until it becomes
5194 * too coarse to separate the current node from the last.
5195 */
5196 mask = ~((1 << __ffs(start)) - 1);
5197 while (mask && last_end <= (start & (mask << 1)))
5198 mask <<= 1;
5199
5200 /* accumulate all internode masks */
5201 accl_mask |= mask;
5202 }
5203
5204 /* convert mask to number of pages */
5205 return ~accl_mask + 1;
5206 }
5207
5208 /* Find the lowest pfn for a node */
5209 static unsigned long __init find_min_pfn_for_node(int nid)
5210 {
5211 unsigned long min_pfn = ULONG_MAX;
5212 unsigned long start_pfn;
5213 int i;
5214
5215 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5216 min_pfn = min(min_pfn, start_pfn);
5217
5218 if (min_pfn == ULONG_MAX) {
5219 printk(KERN_WARNING
5220 "Could not find start_pfn for node %d\n", nid);
5221 return 0;
5222 }
5223
5224 return min_pfn;
5225 }
5226
5227 /**
5228 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5229 *
5230 * It returns the minimum PFN based on information provided via
5231 * memblock_set_node().
5232 */
5233 unsigned long __init find_min_pfn_with_active_regions(void)
5234 {
5235 return find_min_pfn_for_node(MAX_NUMNODES);
5236 }
5237
5238 /*
5239 * early_calculate_totalpages()
5240 * Sum pages in active regions for movable zone.
5241 * Populate N_MEMORY for calculating usable_nodes.
5242 */
5243 static unsigned long __init early_calculate_totalpages(void)
5244 {
5245 unsigned long totalpages = 0;
5246 unsigned long start_pfn, end_pfn;
5247 int i, nid;
5248
5249 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5250 unsigned long pages = end_pfn - start_pfn;
5251
5252 totalpages += pages;
5253 if (pages)
5254 node_set_state(nid, N_MEMORY);
5255 }
5256 return totalpages;
5257 }
5258
5259 /*
5260 * Find the PFN the Movable zone begins in each node. Kernel memory
5261 * is spread evenly between nodes as long as the nodes have enough
5262 * memory. When they don't, some nodes will have more kernelcore than
5263 * others
5264 */
5265 static void __init find_zone_movable_pfns_for_nodes(void)
5266 {
5267 int i, nid;
5268 unsigned long usable_startpfn;
5269 unsigned long kernelcore_node, kernelcore_remaining;
5270 /* save the state before borrow the nodemask */
5271 nodemask_t saved_node_state = node_states[N_MEMORY];
5272 unsigned long totalpages = early_calculate_totalpages();
5273 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5274 struct memblock_region *r;
5275
5276 /* Need to find movable_zone earlier when movable_node is specified. */
5277 find_usable_zone_for_movable();
5278
5279 /*
5280 * If movable_node is specified, ignore kernelcore and movablecore
5281 * options.
5282 */
5283 if (movable_node_is_enabled()) {
5284 for_each_memblock(memory, r) {
5285 if (!memblock_is_hotpluggable(r))
5286 continue;
5287
5288 nid = r->nid;
5289
5290 usable_startpfn = PFN_DOWN(r->base);
5291 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5292 min(usable_startpfn, zone_movable_pfn[nid]) :
5293 usable_startpfn;
5294 }
5295
5296 goto out2;
5297 }
5298
5299 /*
5300 * If movablecore=nn[KMG] was specified, calculate what size of
5301 * kernelcore that corresponds so that memory usable for
5302 * any allocation type is evenly spread. If both kernelcore
5303 * and movablecore are specified, then the value of kernelcore
5304 * will be used for required_kernelcore if it's greater than
5305 * what movablecore would have allowed.
5306 */
5307 if (required_movablecore) {
5308 unsigned long corepages;
5309
5310 /*
5311 * Round-up so that ZONE_MOVABLE is at least as large as what
5312 * was requested by the user
5313 */
5314 required_movablecore =
5315 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5316 corepages = totalpages - required_movablecore;
5317
5318 required_kernelcore = max(required_kernelcore, corepages);
5319 }
5320
5321 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5322 if (!required_kernelcore)
5323 goto out;
5324
5325 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5326 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5327
5328 restart:
5329 /* Spread kernelcore memory as evenly as possible throughout nodes */
5330 kernelcore_node = required_kernelcore / usable_nodes;
5331 for_each_node_state(nid, N_MEMORY) {
5332 unsigned long start_pfn, end_pfn;
5333
5334 /*
5335 * Recalculate kernelcore_node if the division per node
5336 * now exceeds what is necessary to satisfy the requested
5337 * amount of memory for the kernel
5338 */
5339 if (required_kernelcore < kernelcore_node)
5340 kernelcore_node = required_kernelcore / usable_nodes;
5341
5342 /*
5343 * As the map is walked, we track how much memory is usable
5344 * by the kernel using kernelcore_remaining. When it is
5345 * 0, the rest of the node is usable by ZONE_MOVABLE
5346 */
5347 kernelcore_remaining = kernelcore_node;
5348
5349 /* Go through each range of PFNs within this node */
5350 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5351 unsigned long size_pages;
5352
5353 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5354 if (start_pfn >= end_pfn)
5355 continue;
5356
5357 /* Account for what is only usable for kernelcore */
5358 if (start_pfn < usable_startpfn) {
5359 unsigned long kernel_pages;
5360 kernel_pages = min(end_pfn, usable_startpfn)
5361 - start_pfn;
5362
5363 kernelcore_remaining -= min(kernel_pages,
5364 kernelcore_remaining);
5365 required_kernelcore -= min(kernel_pages,
5366 required_kernelcore);
5367
5368 /* Continue if range is now fully accounted */
5369 if (end_pfn <= usable_startpfn) {
5370
5371 /*
5372 * Push zone_movable_pfn to the end so
5373 * that if we have to rebalance
5374 * kernelcore across nodes, we will
5375 * not double account here
5376 */
5377 zone_movable_pfn[nid] = end_pfn;
5378 continue;
5379 }
5380 start_pfn = usable_startpfn;
5381 }
5382
5383 /*
5384 * The usable PFN range for ZONE_MOVABLE is from
5385 * start_pfn->end_pfn. Calculate size_pages as the
5386 * number of pages used as kernelcore
5387 */
5388 size_pages = end_pfn - start_pfn;
5389 if (size_pages > kernelcore_remaining)
5390 size_pages = kernelcore_remaining;
5391 zone_movable_pfn[nid] = start_pfn + size_pages;
5392
5393 /*
5394 * Some kernelcore has been met, update counts and
5395 * break if the kernelcore for this node has been
5396 * satisfied
5397 */
5398 required_kernelcore -= min(required_kernelcore,
5399 size_pages);
5400 kernelcore_remaining -= size_pages;
5401 if (!kernelcore_remaining)
5402 break;
5403 }
5404 }
5405
5406 /*
5407 * If there is still required_kernelcore, we do another pass with one
5408 * less node in the count. This will push zone_movable_pfn[nid] further
5409 * along on the nodes that still have memory until kernelcore is
5410 * satisfied
5411 */
5412 usable_nodes--;
5413 if (usable_nodes && required_kernelcore > usable_nodes)
5414 goto restart;
5415
5416 out2:
5417 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5418 for (nid = 0; nid < MAX_NUMNODES; nid++)
5419 zone_movable_pfn[nid] =
5420 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5421
5422 out:
5423 /* restore the node_state */
5424 node_states[N_MEMORY] = saved_node_state;
5425 }
5426
5427 /* Any regular or high memory on that node ? */
5428 static void check_for_memory(pg_data_t *pgdat, int nid)
5429 {
5430 enum zone_type zone_type;
5431
5432 if (N_MEMORY == N_NORMAL_MEMORY)
5433 return;
5434
5435 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5436 struct zone *zone = &pgdat->node_zones[zone_type];
5437 if (populated_zone(zone)) {
5438 node_set_state(nid, N_HIGH_MEMORY);
5439 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5440 zone_type <= ZONE_NORMAL)
5441 node_set_state(nid, N_NORMAL_MEMORY);
5442 break;
5443 }
5444 }
5445 }
5446
5447 /**
5448 * free_area_init_nodes - Initialise all pg_data_t and zone data
5449 * @max_zone_pfn: an array of max PFNs for each zone
5450 *
5451 * This will call free_area_init_node() for each active node in the system.
5452 * Using the page ranges provided by memblock_set_node(), the size of each
5453 * zone in each node and their holes is calculated. If the maximum PFN
5454 * between two adjacent zones match, it is assumed that the zone is empty.
5455 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5456 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5457 * starts where the previous one ended. For example, ZONE_DMA32 starts
5458 * at arch_max_dma_pfn.
5459 */
5460 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5461 {
5462 unsigned long start_pfn, end_pfn;
5463 int i, nid;
5464
5465 /* Record where the zone boundaries are */
5466 memset(arch_zone_lowest_possible_pfn, 0,
5467 sizeof(arch_zone_lowest_possible_pfn));
5468 memset(arch_zone_highest_possible_pfn, 0,
5469 sizeof(arch_zone_highest_possible_pfn));
5470 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5471 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5472 for (i = 1; i < MAX_NR_ZONES; i++) {
5473 if (i == ZONE_MOVABLE)
5474 continue;
5475 arch_zone_lowest_possible_pfn[i] =
5476 arch_zone_highest_possible_pfn[i-1];
5477 arch_zone_highest_possible_pfn[i] =
5478 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5479 }
5480 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5481 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5482
5483 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5484 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5485 find_zone_movable_pfns_for_nodes();
5486
5487 /* Print out the zone ranges */
5488 pr_info("Zone ranges:\n");
5489 for (i = 0; i < MAX_NR_ZONES; i++) {
5490 if (i == ZONE_MOVABLE)
5491 continue;
5492 pr_info(" %-8s ", zone_names[i]);
5493 if (arch_zone_lowest_possible_pfn[i] ==
5494 arch_zone_highest_possible_pfn[i])
5495 pr_cont("empty\n");
5496 else
5497 pr_cont("[mem %#018Lx-%#018Lx]\n",
5498 (u64)arch_zone_lowest_possible_pfn[i]
5499 << PAGE_SHIFT,
5500 ((u64)arch_zone_highest_possible_pfn[i]
5501 << PAGE_SHIFT) - 1);
5502 }
5503
5504 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5505 pr_info("Movable zone start for each node\n");
5506 for (i = 0; i < MAX_NUMNODES; i++) {
5507 if (zone_movable_pfn[i])
5508 pr_info(" Node %d: %#018Lx\n", i,
5509 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5510 }
5511
5512 /* Print out the early node map */
5513 pr_info("Early memory node ranges\n");
5514 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5515 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5516 (u64)start_pfn << PAGE_SHIFT,
5517 ((u64)end_pfn << PAGE_SHIFT) - 1);
5518
5519 /* Initialise every node */
5520 mminit_verify_pageflags_layout();
5521 setup_nr_node_ids();
5522 for_each_online_node(nid) {
5523 pg_data_t *pgdat = NODE_DATA(nid);
5524 free_area_init_node(nid, NULL,
5525 find_min_pfn_for_node(nid), NULL);
5526
5527 /* Any memory on that node */
5528 if (pgdat->node_present_pages)
5529 node_set_state(nid, N_MEMORY);
5530 check_for_memory(pgdat, nid);
5531 }
5532 }
5533
5534 static int __init cmdline_parse_core(char *p, unsigned long *core)
5535 {
5536 unsigned long long coremem;
5537 if (!p)
5538 return -EINVAL;
5539
5540 coremem = memparse(p, &p);
5541 *core = coremem >> PAGE_SHIFT;
5542
5543 /* Paranoid check that UL is enough for the coremem value */
5544 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5545
5546 return 0;
5547 }
5548
5549 /*
5550 * kernelcore=size sets the amount of memory for use for allocations that
5551 * cannot be reclaimed or migrated.
5552 */
5553 static int __init cmdline_parse_kernelcore(char *p)
5554 {
5555 return cmdline_parse_core(p, &required_kernelcore);
5556 }
5557
5558 /*
5559 * movablecore=size sets the amount of memory for use for allocations that
5560 * can be reclaimed or migrated.
5561 */
5562 static int __init cmdline_parse_movablecore(char *p)
5563 {
5564 return cmdline_parse_core(p, &required_movablecore);
5565 }
5566
5567 early_param("kernelcore", cmdline_parse_kernelcore);
5568 early_param("movablecore", cmdline_parse_movablecore);
5569
5570 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5571
5572 void adjust_managed_page_count(struct page *page, long count)
5573 {
5574 spin_lock(&managed_page_count_lock);
5575 page_zone(page)->managed_pages += count;
5576 totalram_pages += count;
5577 #ifdef CONFIG_HIGHMEM
5578 if (PageHighMem(page))
5579 totalhigh_pages += count;
5580 #endif
5581 spin_unlock(&managed_page_count_lock);
5582 }
5583 EXPORT_SYMBOL(adjust_managed_page_count);
5584
5585 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5586 {
5587 void *pos;
5588 unsigned long pages = 0;
5589
5590 start = (void *)PAGE_ALIGN((unsigned long)start);
5591 end = (void *)((unsigned long)end & PAGE_MASK);
5592 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5593 if ((unsigned int)poison <= 0xFF)
5594 memset(pos, poison, PAGE_SIZE);
5595 free_reserved_page(virt_to_page(pos));
5596 }
5597
5598 if (pages && s)
5599 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5600 s, pages << (PAGE_SHIFT - 10), start, end);
5601
5602 return pages;
5603 }
5604 EXPORT_SYMBOL(free_reserved_area);
5605
5606 #ifdef CONFIG_HIGHMEM
5607 void free_highmem_page(struct page *page)
5608 {
5609 __free_reserved_page(page);
5610 totalram_pages++;
5611 page_zone(page)->managed_pages++;
5612 totalhigh_pages++;
5613 }
5614 #endif
5615
5616
5617 void __init mem_init_print_info(const char *str)
5618 {
5619 unsigned long physpages, codesize, datasize, rosize, bss_size;
5620 unsigned long init_code_size, init_data_size;
5621
5622 physpages = get_num_physpages();
5623 codesize = _etext - _stext;
5624 datasize = _edata - _sdata;
5625 rosize = __end_rodata - __start_rodata;
5626 bss_size = __bss_stop - __bss_start;
5627 init_data_size = __init_end - __init_begin;
5628 init_code_size = _einittext - _sinittext;
5629
5630 /*
5631 * Detect special cases and adjust section sizes accordingly:
5632 * 1) .init.* may be embedded into .data sections
5633 * 2) .init.text.* may be out of [__init_begin, __init_end],
5634 * please refer to arch/tile/kernel/vmlinux.lds.S.
5635 * 3) .rodata.* may be embedded into .text or .data sections.
5636 */
5637 #define adj_init_size(start, end, size, pos, adj) \
5638 do { \
5639 if (start <= pos && pos < end && size > adj) \
5640 size -= adj; \
5641 } while (0)
5642
5643 adj_init_size(__init_begin, __init_end, init_data_size,
5644 _sinittext, init_code_size);
5645 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5646 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5647 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5648 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5649
5650 #undef adj_init_size
5651
5652 pr_info("Memory: %luK/%luK available "
5653 "(%luK kernel code, %luK rwdata, %luK rodata, "
5654 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5655 #ifdef CONFIG_HIGHMEM
5656 ", %luK highmem"
5657 #endif
5658 "%s%s)\n",
5659 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5660 codesize >> 10, datasize >> 10, rosize >> 10,
5661 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5662 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5663 totalcma_pages << (PAGE_SHIFT-10),
5664 #ifdef CONFIG_HIGHMEM
5665 totalhigh_pages << (PAGE_SHIFT-10),
5666 #endif
5667 str ? ", " : "", str ? str : "");
5668 }
5669
5670 /**
5671 * set_dma_reserve - set the specified number of pages reserved in the first zone
5672 * @new_dma_reserve: The number of pages to mark reserved
5673 *
5674 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5675 * In the DMA zone, a significant percentage may be consumed by kernel image
5676 * and other unfreeable allocations which can skew the watermarks badly. This
5677 * function may optionally be used to account for unfreeable pages in the
5678 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5679 * smaller per-cpu batchsize.
5680 */
5681 void __init set_dma_reserve(unsigned long new_dma_reserve)
5682 {
5683 dma_reserve = new_dma_reserve;
5684 }
5685
5686 void __init free_area_init(unsigned long *zones_size)
5687 {
5688 free_area_init_node(0, zones_size,
5689 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5690 }
5691
5692 static int page_alloc_cpu_notify(struct notifier_block *self,
5693 unsigned long action, void *hcpu)
5694 {
5695 int cpu = (unsigned long)hcpu;
5696
5697 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5698 lru_add_drain_cpu(cpu);
5699 drain_pages(cpu);
5700
5701 /*
5702 * Spill the event counters of the dead processor
5703 * into the current processors event counters.
5704 * This artificially elevates the count of the current
5705 * processor.
5706 */
5707 vm_events_fold_cpu(cpu);
5708
5709 /*
5710 * Zero the differential counters of the dead processor
5711 * so that the vm statistics are consistent.
5712 *
5713 * This is only okay since the processor is dead and cannot
5714 * race with what we are doing.
5715 */
5716 cpu_vm_stats_fold(cpu);
5717 }
5718 return NOTIFY_OK;
5719 }
5720
5721 void __init page_alloc_init(void)
5722 {
5723 hotcpu_notifier(page_alloc_cpu_notify, 0);
5724 }
5725
5726 /*
5727 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5728 * or min_free_kbytes changes.
5729 */
5730 static void calculate_totalreserve_pages(void)
5731 {
5732 struct pglist_data *pgdat;
5733 unsigned long reserve_pages = 0;
5734 enum zone_type i, j;
5735
5736 for_each_online_pgdat(pgdat) {
5737 for (i = 0; i < MAX_NR_ZONES; i++) {
5738 struct zone *zone = pgdat->node_zones + i;
5739 long max = 0;
5740
5741 /* Find valid and maximum lowmem_reserve in the zone */
5742 for (j = i; j < MAX_NR_ZONES; j++) {
5743 if (zone->lowmem_reserve[j] > max)
5744 max = zone->lowmem_reserve[j];
5745 }
5746
5747 /* we treat the high watermark as reserved pages. */
5748 max += high_wmark_pages(zone);
5749
5750 if (max > zone->managed_pages)
5751 max = zone->managed_pages;
5752 reserve_pages += max;
5753 /*
5754 * Lowmem reserves are not available to
5755 * GFP_HIGHUSER page cache allocations and
5756 * kswapd tries to balance zones to their high
5757 * watermark. As a result, neither should be
5758 * regarded as dirtyable memory, to prevent a
5759 * situation where reclaim has to clean pages
5760 * in order to balance the zones.
5761 */
5762 zone->dirty_balance_reserve = max;
5763 }
5764 }
5765 dirty_balance_reserve = reserve_pages;
5766 totalreserve_pages = reserve_pages;
5767 }
5768
5769 /*
5770 * setup_per_zone_lowmem_reserve - called whenever
5771 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5772 * has a correct pages reserved value, so an adequate number of
5773 * pages are left in the zone after a successful __alloc_pages().
5774 */
5775 static void setup_per_zone_lowmem_reserve(void)
5776 {
5777 struct pglist_data *pgdat;
5778 enum zone_type j, idx;
5779
5780 for_each_online_pgdat(pgdat) {
5781 for (j = 0; j < MAX_NR_ZONES; j++) {
5782 struct zone *zone = pgdat->node_zones + j;
5783 unsigned long managed_pages = zone->managed_pages;
5784
5785 zone->lowmem_reserve[j] = 0;
5786
5787 idx = j;
5788 while (idx) {
5789 struct zone *lower_zone;
5790
5791 idx--;
5792
5793 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5794 sysctl_lowmem_reserve_ratio[idx] = 1;
5795
5796 lower_zone = pgdat->node_zones + idx;
5797 lower_zone->lowmem_reserve[j] = managed_pages /
5798 sysctl_lowmem_reserve_ratio[idx];
5799 managed_pages += lower_zone->managed_pages;
5800 }
5801 }
5802 }
5803
5804 /* update totalreserve_pages */
5805 calculate_totalreserve_pages();
5806 }
5807
5808 static void __setup_per_zone_wmarks(void)
5809 {
5810 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5811 unsigned long lowmem_pages = 0;
5812 struct zone *zone;
5813 unsigned long flags;
5814
5815 /* Calculate total number of !ZONE_HIGHMEM pages */
5816 for_each_zone(zone) {
5817 if (!is_highmem(zone))
5818 lowmem_pages += zone->managed_pages;
5819 }
5820
5821 for_each_zone(zone) {
5822 u64 tmp;
5823
5824 spin_lock_irqsave(&zone->lock, flags);
5825 tmp = (u64)pages_min * zone->managed_pages;
5826 do_div(tmp, lowmem_pages);
5827 if (is_highmem(zone)) {
5828 /*
5829 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5830 * need highmem pages, so cap pages_min to a small
5831 * value here.
5832 *
5833 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5834 * deltas control asynch page reclaim, and so should
5835 * not be capped for highmem.
5836 */
5837 unsigned long min_pages;
5838
5839 min_pages = zone->managed_pages / 1024;
5840 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5841 zone->watermark[WMARK_MIN] = min_pages;
5842 } else {
5843 /*
5844 * If it's a lowmem zone, reserve a number of pages
5845 * proportionate to the zone's size.
5846 */
5847 zone->watermark[WMARK_MIN] = tmp;
5848 }
5849
5850 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5851 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5852
5853 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5854 high_wmark_pages(zone) - low_wmark_pages(zone) -
5855 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5856
5857 setup_zone_migrate_reserve(zone);
5858 spin_unlock_irqrestore(&zone->lock, flags);
5859 }
5860
5861 /* update totalreserve_pages */
5862 calculate_totalreserve_pages();
5863 }
5864
5865 /**
5866 * setup_per_zone_wmarks - called when min_free_kbytes changes
5867 * or when memory is hot-{added|removed}
5868 *
5869 * Ensures that the watermark[min,low,high] values for each zone are set
5870 * correctly with respect to min_free_kbytes.
5871 */
5872 void setup_per_zone_wmarks(void)
5873 {
5874 mutex_lock(&zonelists_mutex);
5875 __setup_per_zone_wmarks();
5876 mutex_unlock(&zonelists_mutex);
5877 }
5878
5879 /*
5880 * The inactive anon list should be small enough that the VM never has to
5881 * do too much work, but large enough that each inactive page has a chance
5882 * to be referenced again before it is swapped out.
5883 *
5884 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5885 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5886 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5887 * the anonymous pages are kept on the inactive list.
5888 *
5889 * total target max
5890 * memory ratio inactive anon
5891 * -------------------------------------
5892 * 10MB 1 5MB
5893 * 100MB 1 50MB
5894 * 1GB 3 250MB
5895 * 10GB 10 0.9GB
5896 * 100GB 31 3GB
5897 * 1TB 101 10GB
5898 * 10TB 320 32GB
5899 */
5900 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5901 {
5902 unsigned int gb, ratio;
5903
5904 /* Zone size in gigabytes */
5905 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5906 if (gb)
5907 ratio = int_sqrt(10 * gb);
5908 else
5909 ratio = 1;
5910
5911 zone->inactive_ratio = ratio;
5912 }
5913
5914 static void __meminit setup_per_zone_inactive_ratio(void)
5915 {
5916 struct zone *zone;
5917
5918 for_each_zone(zone)
5919 calculate_zone_inactive_ratio(zone);
5920 }
5921
5922 /*
5923 * Initialise min_free_kbytes.
5924 *
5925 * For small machines we want it small (128k min). For large machines
5926 * we want it large (64MB max). But it is not linear, because network
5927 * bandwidth does not increase linearly with machine size. We use
5928 *
5929 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5930 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5931 *
5932 * which yields
5933 *
5934 * 16MB: 512k
5935 * 32MB: 724k
5936 * 64MB: 1024k
5937 * 128MB: 1448k
5938 * 256MB: 2048k
5939 * 512MB: 2896k
5940 * 1024MB: 4096k
5941 * 2048MB: 5792k
5942 * 4096MB: 8192k
5943 * 8192MB: 11584k
5944 * 16384MB: 16384k
5945 */
5946 int __meminit init_per_zone_wmark_min(void)
5947 {
5948 unsigned long lowmem_kbytes;
5949 int new_min_free_kbytes;
5950
5951 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5952 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5953
5954 if (new_min_free_kbytes > user_min_free_kbytes) {
5955 min_free_kbytes = new_min_free_kbytes;
5956 if (min_free_kbytes < 128)
5957 min_free_kbytes = 128;
5958 if (min_free_kbytes > 65536)
5959 min_free_kbytes = 65536;
5960 } else {
5961 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5962 new_min_free_kbytes, user_min_free_kbytes);
5963 }
5964 setup_per_zone_wmarks();
5965 refresh_zone_stat_thresholds();
5966 setup_per_zone_lowmem_reserve();
5967 setup_per_zone_inactive_ratio();
5968 return 0;
5969 }
5970 module_init(init_per_zone_wmark_min)
5971
5972 /*
5973 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5974 * that we can call two helper functions whenever min_free_kbytes
5975 * changes.
5976 */
5977 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5978 void __user *buffer, size_t *length, loff_t *ppos)
5979 {
5980 int rc;
5981
5982 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5983 if (rc)
5984 return rc;
5985
5986 if (write) {
5987 user_min_free_kbytes = min_free_kbytes;
5988 setup_per_zone_wmarks();
5989 }
5990 return 0;
5991 }
5992
5993 #ifdef CONFIG_NUMA
5994 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5995 void __user *buffer, size_t *length, loff_t *ppos)
5996 {
5997 struct zone *zone;
5998 int rc;
5999
6000 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6001 if (rc)
6002 return rc;
6003
6004 for_each_zone(zone)
6005 zone->min_unmapped_pages = (zone->managed_pages *
6006 sysctl_min_unmapped_ratio) / 100;
6007 return 0;
6008 }
6009
6010 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6011 void __user *buffer, size_t *length, loff_t *ppos)
6012 {
6013 struct zone *zone;
6014 int rc;
6015
6016 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6017 if (rc)
6018 return rc;
6019
6020 for_each_zone(zone)
6021 zone->min_slab_pages = (zone->managed_pages *
6022 sysctl_min_slab_ratio) / 100;
6023 return 0;
6024 }
6025 #endif
6026
6027 /*
6028 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6029 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6030 * whenever sysctl_lowmem_reserve_ratio changes.
6031 *
6032 * The reserve ratio obviously has absolutely no relation with the
6033 * minimum watermarks. The lowmem reserve ratio can only make sense
6034 * if in function of the boot time zone sizes.
6035 */
6036 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6037 void __user *buffer, size_t *length, loff_t *ppos)
6038 {
6039 proc_dointvec_minmax(table, write, buffer, length, ppos);
6040 setup_per_zone_lowmem_reserve();
6041 return 0;
6042 }
6043
6044 /*
6045 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6046 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6047 * pagelist can have before it gets flushed back to buddy allocator.
6048 */
6049 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6050 void __user *buffer, size_t *length, loff_t *ppos)
6051 {
6052 struct zone *zone;
6053 int old_percpu_pagelist_fraction;
6054 int ret;
6055
6056 mutex_lock(&pcp_batch_high_lock);
6057 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6058
6059 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6060 if (!write || ret < 0)
6061 goto out;
6062
6063 /* Sanity checking to avoid pcp imbalance */
6064 if (percpu_pagelist_fraction &&
6065 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6066 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6067 ret = -EINVAL;
6068 goto out;
6069 }
6070
6071 /* No change? */
6072 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6073 goto out;
6074
6075 for_each_populated_zone(zone) {
6076 unsigned int cpu;
6077
6078 for_each_possible_cpu(cpu)
6079 pageset_set_high_and_batch(zone,
6080 per_cpu_ptr(zone->pageset, cpu));
6081 }
6082 out:
6083 mutex_unlock(&pcp_batch_high_lock);
6084 return ret;
6085 }
6086
6087 #ifdef CONFIG_NUMA
6088 int hashdist = HASHDIST_DEFAULT;
6089
6090 static int __init set_hashdist(char *str)
6091 {
6092 if (!str)
6093 return 0;
6094 hashdist = simple_strtoul(str, &str, 0);
6095 return 1;
6096 }
6097 __setup("hashdist=", set_hashdist);
6098 #endif
6099
6100 /*
6101 * allocate a large system hash table from bootmem
6102 * - it is assumed that the hash table must contain an exact power-of-2
6103 * quantity of entries
6104 * - limit is the number of hash buckets, not the total allocation size
6105 */
6106 void *__init alloc_large_system_hash(const char *tablename,
6107 unsigned long bucketsize,
6108 unsigned long numentries,
6109 int scale,
6110 int flags,
6111 unsigned int *_hash_shift,
6112 unsigned int *_hash_mask,
6113 unsigned long low_limit,
6114 unsigned long high_limit)
6115 {
6116 unsigned long long max = high_limit;
6117 unsigned long log2qty, size;
6118 void *table = NULL;
6119
6120 /* allow the kernel cmdline to have a say */
6121 if (!numentries) {
6122 /* round applicable memory size up to nearest megabyte */
6123 numentries = nr_kernel_pages;
6124
6125 /* It isn't necessary when PAGE_SIZE >= 1MB */
6126 if (PAGE_SHIFT < 20)
6127 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6128
6129 /* limit to 1 bucket per 2^scale bytes of low memory */
6130 if (scale > PAGE_SHIFT)
6131 numentries >>= (scale - PAGE_SHIFT);
6132 else
6133 numentries <<= (PAGE_SHIFT - scale);
6134
6135 /* Make sure we've got at least a 0-order allocation.. */
6136 if (unlikely(flags & HASH_SMALL)) {
6137 /* Makes no sense without HASH_EARLY */
6138 WARN_ON(!(flags & HASH_EARLY));
6139 if (!(numentries >> *_hash_shift)) {
6140 numentries = 1UL << *_hash_shift;
6141 BUG_ON(!numentries);
6142 }
6143 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6144 numentries = PAGE_SIZE / bucketsize;
6145 }
6146 numentries = roundup_pow_of_two(numentries);
6147
6148 /* limit allocation size to 1/16 total memory by default */
6149 if (max == 0) {
6150 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6151 do_div(max, bucketsize);
6152 }
6153 max = min(max, 0x80000000ULL);
6154
6155 if (numentries < low_limit)
6156 numentries = low_limit;
6157 if (numentries > max)
6158 numentries = max;
6159
6160 log2qty = ilog2(numentries);
6161
6162 do {
6163 size = bucketsize << log2qty;
6164 if (flags & HASH_EARLY)
6165 table = memblock_virt_alloc_nopanic(size, 0);
6166 else if (hashdist)
6167 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6168 else {
6169 /*
6170 * If bucketsize is not a power-of-two, we may free
6171 * some pages at the end of hash table which
6172 * alloc_pages_exact() automatically does
6173 */
6174 if (get_order(size) < MAX_ORDER) {
6175 table = alloc_pages_exact(size, GFP_ATOMIC);
6176 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6177 }
6178 }
6179 } while (!table && size > PAGE_SIZE && --log2qty);
6180
6181 if (!table)
6182 panic("Failed to allocate %s hash table\n", tablename);
6183
6184 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6185 tablename,
6186 (1UL << log2qty),
6187 ilog2(size) - PAGE_SHIFT,
6188 size);
6189
6190 if (_hash_shift)
6191 *_hash_shift = log2qty;
6192 if (_hash_mask)
6193 *_hash_mask = (1 << log2qty) - 1;
6194
6195 return table;
6196 }
6197
6198 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6199 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6200 unsigned long pfn)
6201 {
6202 #ifdef CONFIG_SPARSEMEM
6203 return __pfn_to_section(pfn)->pageblock_flags;
6204 #else
6205 return zone->pageblock_flags;
6206 #endif /* CONFIG_SPARSEMEM */
6207 }
6208
6209 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6210 {
6211 #ifdef CONFIG_SPARSEMEM
6212 pfn &= (PAGES_PER_SECTION-1);
6213 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6214 #else
6215 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6216 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6217 #endif /* CONFIG_SPARSEMEM */
6218 }
6219
6220 /**
6221 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6222 * @page: The page within the block of interest
6223 * @pfn: The target page frame number
6224 * @end_bitidx: The last bit of interest to retrieve
6225 * @mask: mask of bits that the caller is interested in
6226 *
6227 * Return: pageblock_bits flags
6228 */
6229 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6230 unsigned long end_bitidx,
6231 unsigned long mask)
6232 {
6233 struct zone *zone;
6234 unsigned long *bitmap;
6235 unsigned long bitidx, word_bitidx;
6236 unsigned long word;
6237
6238 zone = page_zone(page);
6239 bitmap = get_pageblock_bitmap(zone, pfn);
6240 bitidx = pfn_to_bitidx(zone, pfn);
6241 word_bitidx = bitidx / BITS_PER_LONG;
6242 bitidx &= (BITS_PER_LONG-1);
6243
6244 word = bitmap[word_bitidx];
6245 bitidx += end_bitidx;
6246 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6247 }
6248
6249 /**
6250 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6251 * @page: The page within the block of interest
6252 * @flags: The flags to set
6253 * @pfn: The target page frame number
6254 * @end_bitidx: The last bit of interest
6255 * @mask: mask of bits that the caller is interested in
6256 */
6257 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6258 unsigned long pfn,
6259 unsigned long end_bitidx,
6260 unsigned long mask)
6261 {
6262 struct zone *zone;
6263 unsigned long *bitmap;
6264 unsigned long bitidx, word_bitidx;
6265 unsigned long old_word, word;
6266
6267 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6268
6269 zone = page_zone(page);
6270 bitmap = get_pageblock_bitmap(zone, pfn);
6271 bitidx = pfn_to_bitidx(zone, pfn);
6272 word_bitidx = bitidx / BITS_PER_LONG;
6273 bitidx &= (BITS_PER_LONG-1);
6274
6275 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6276
6277 bitidx += end_bitidx;
6278 mask <<= (BITS_PER_LONG - bitidx - 1);
6279 flags <<= (BITS_PER_LONG - bitidx - 1);
6280
6281 word = READ_ONCE(bitmap[word_bitidx]);
6282 for (;;) {
6283 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6284 if (word == old_word)
6285 break;
6286 word = old_word;
6287 }
6288 }
6289
6290 /*
6291 * This function checks whether pageblock includes unmovable pages or not.
6292 * If @count is not zero, it is okay to include less @count unmovable pages
6293 *
6294 * PageLRU check without isolation or lru_lock could race so that
6295 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6296 * expect this function should be exact.
6297 */
6298 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6299 bool skip_hwpoisoned_pages)
6300 {
6301 unsigned long pfn, iter, found;
6302 int mt;
6303
6304 /*
6305 * For avoiding noise data, lru_add_drain_all() should be called
6306 * If ZONE_MOVABLE, the zone never contains unmovable pages
6307 */
6308 if (zone_idx(zone) == ZONE_MOVABLE)
6309 return false;
6310 mt = get_pageblock_migratetype(page);
6311 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6312 return false;
6313
6314 pfn = page_to_pfn(page);
6315 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6316 unsigned long check = pfn + iter;
6317
6318 if (!pfn_valid_within(check))
6319 continue;
6320
6321 page = pfn_to_page(check);
6322
6323 /*
6324 * Hugepages are not in LRU lists, but they're movable.
6325 * We need not scan over tail pages bacause we don't
6326 * handle each tail page individually in migration.
6327 */
6328 if (PageHuge(page)) {
6329 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6330 continue;
6331 }
6332
6333 /*
6334 * We can't use page_count without pin a page
6335 * because another CPU can free compound page.
6336 * This check already skips compound tails of THP
6337 * because their page->_count is zero at all time.
6338 */
6339 if (!atomic_read(&page->_count)) {
6340 if (PageBuddy(page))
6341 iter += (1 << page_order(page)) - 1;
6342 continue;
6343 }
6344
6345 /*
6346 * The HWPoisoned page may be not in buddy system, and
6347 * page_count() is not 0.
6348 */
6349 if (skip_hwpoisoned_pages && PageHWPoison(page))
6350 continue;
6351
6352 if (!PageLRU(page))
6353 found++;
6354 /*
6355 * If there are RECLAIMABLE pages, we need to check
6356 * it. But now, memory offline itself doesn't call
6357 * shrink_node_slabs() and it still to be fixed.
6358 */
6359 /*
6360 * If the page is not RAM, page_count()should be 0.
6361 * we don't need more check. This is an _used_ not-movable page.
6362 *
6363 * The problematic thing here is PG_reserved pages. PG_reserved
6364 * is set to both of a memory hole page and a _used_ kernel
6365 * page at boot.
6366 */
6367 if (found > count)
6368 return true;
6369 }
6370 return false;
6371 }
6372
6373 bool is_pageblock_removable_nolock(struct page *page)
6374 {
6375 struct zone *zone;
6376 unsigned long pfn;
6377
6378 /*
6379 * We have to be careful here because we are iterating over memory
6380 * sections which are not zone aware so we might end up outside of
6381 * the zone but still within the section.
6382 * We have to take care about the node as well. If the node is offline
6383 * its NODE_DATA will be NULL - see page_zone.
6384 */
6385 if (!node_online(page_to_nid(page)))
6386 return false;
6387
6388 zone = page_zone(page);
6389 pfn = page_to_pfn(page);
6390 if (!zone_spans_pfn(zone, pfn))
6391 return false;
6392
6393 return !has_unmovable_pages(zone, page, 0, true);
6394 }
6395
6396 #ifdef CONFIG_CMA
6397
6398 static unsigned long pfn_max_align_down(unsigned long pfn)
6399 {
6400 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6401 pageblock_nr_pages) - 1);
6402 }
6403
6404 static unsigned long pfn_max_align_up(unsigned long pfn)
6405 {
6406 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6407 pageblock_nr_pages));
6408 }
6409
6410 /* [start, end) must belong to a single zone. */
6411 static int __alloc_contig_migrate_range(struct compact_control *cc,
6412 unsigned long start, unsigned long end)
6413 {
6414 /* This function is based on compact_zone() from compaction.c. */
6415 unsigned long nr_reclaimed;
6416 unsigned long pfn = start;
6417 unsigned int tries = 0;
6418 int ret = 0;
6419
6420 migrate_prep();
6421
6422 while (pfn < end || !list_empty(&cc->migratepages)) {
6423 if (fatal_signal_pending(current)) {
6424 ret = -EINTR;
6425 break;
6426 }
6427
6428 if (list_empty(&cc->migratepages)) {
6429 cc->nr_migratepages = 0;
6430 pfn = isolate_migratepages_range(cc, pfn, end);
6431 if (!pfn) {
6432 ret = -EINTR;
6433 break;
6434 }
6435 tries = 0;
6436 } else if (++tries == 5) {
6437 ret = ret < 0 ? ret : -EBUSY;
6438 break;
6439 }
6440
6441 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6442 &cc->migratepages);
6443 cc->nr_migratepages -= nr_reclaimed;
6444
6445 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6446 NULL, 0, cc->mode, MR_CMA);
6447 }
6448 if (ret < 0) {
6449 putback_movable_pages(&cc->migratepages);
6450 return ret;
6451 }
6452 return 0;
6453 }
6454
6455 /**
6456 * alloc_contig_range() -- tries to allocate given range of pages
6457 * @start: start PFN to allocate
6458 * @end: one-past-the-last PFN to allocate
6459 * @migratetype: migratetype of the underlaying pageblocks (either
6460 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6461 * in range must have the same migratetype and it must
6462 * be either of the two.
6463 *
6464 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6465 * aligned, however it's the caller's responsibility to guarantee that
6466 * we are the only thread that changes migrate type of pageblocks the
6467 * pages fall in.
6468 *
6469 * The PFN range must belong to a single zone.
6470 *
6471 * Returns zero on success or negative error code. On success all
6472 * pages which PFN is in [start, end) are allocated for the caller and
6473 * need to be freed with free_contig_range().
6474 */
6475 int alloc_contig_range(unsigned long start, unsigned long end,
6476 unsigned migratetype)
6477 {
6478 unsigned long outer_start, outer_end;
6479 int ret = 0, order;
6480
6481 struct compact_control cc = {
6482 .nr_migratepages = 0,
6483 .order = -1,
6484 .zone = page_zone(pfn_to_page(start)),
6485 .mode = MIGRATE_SYNC,
6486 .ignore_skip_hint = true,
6487 };
6488 INIT_LIST_HEAD(&cc.migratepages);
6489
6490 /*
6491 * What we do here is we mark all pageblocks in range as
6492 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6493 * have different sizes, and due to the way page allocator
6494 * work, we align the range to biggest of the two pages so
6495 * that page allocator won't try to merge buddies from
6496 * different pageblocks and change MIGRATE_ISOLATE to some
6497 * other migration type.
6498 *
6499 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6500 * migrate the pages from an unaligned range (ie. pages that
6501 * we are interested in). This will put all the pages in
6502 * range back to page allocator as MIGRATE_ISOLATE.
6503 *
6504 * When this is done, we take the pages in range from page
6505 * allocator removing them from the buddy system. This way
6506 * page allocator will never consider using them.
6507 *
6508 * This lets us mark the pageblocks back as
6509 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6510 * aligned range but not in the unaligned, original range are
6511 * put back to page allocator so that buddy can use them.
6512 */
6513
6514 ret = start_isolate_page_range(pfn_max_align_down(start),
6515 pfn_max_align_up(end), migratetype,
6516 false);
6517 if (ret)
6518 return ret;
6519
6520 ret = __alloc_contig_migrate_range(&cc, start, end);
6521 if (ret)
6522 goto done;
6523
6524 /*
6525 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6526 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6527 * more, all pages in [start, end) are free in page allocator.
6528 * What we are going to do is to allocate all pages from
6529 * [start, end) (that is remove them from page allocator).
6530 *
6531 * The only problem is that pages at the beginning and at the
6532 * end of interesting range may be not aligned with pages that
6533 * page allocator holds, ie. they can be part of higher order
6534 * pages. Because of this, we reserve the bigger range and
6535 * once this is done free the pages we are not interested in.
6536 *
6537 * We don't have to hold zone->lock here because the pages are
6538 * isolated thus they won't get removed from buddy.
6539 */
6540
6541 lru_add_drain_all();
6542 drain_all_pages(cc.zone);
6543
6544 order = 0;
6545 outer_start = start;
6546 while (!PageBuddy(pfn_to_page(outer_start))) {
6547 if (++order >= MAX_ORDER) {
6548 ret = -EBUSY;
6549 goto done;
6550 }
6551 outer_start &= ~0UL << order;
6552 }
6553
6554 /* Make sure the range is really isolated. */
6555 if (test_pages_isolated(outer_start, end, false)) {
6556 pr_info("%s: [%lx, %lx) PFNs busy\n",
6557 __func__, outer_start, end);
6558 ret = -EBUSY;
6559 goto done;
6560 }
6561
6562 /* Grab isolated pages from freelists. */
6563 outer_end = isolate_freepages_range(&cc, outer_start, end);
6564 if (!outer_end) {
6565 ret = -EBUSY;
6566 goto done;
6567 }
6568
6569 /* Free head and tail (if any) */
6570 if (start != outer_start)
6571 free_contig_range(outer_start, start - outer_start);
6572 if (end != outer_end)
6573 free_contig_range(end, outer_end - end);
6574
6575 done:
6576 undo_isolate_page_range(pfn_max_align_down(start),
6577 pfn_max_align_up(end), migratetype);
6578 return ret;
6579 }
6580
6581 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6582 {
6583 unsigned int count = 0;
6584
6585 for (; nr_pages--; pfn++) {
6586 struct page *page = pfn_to_page(pfn);
6587
6588 count += page_count(page) != 1;
6589 __free_page(page);
6590 }
6591 WARN(count != 0, "%d pages are still in use!\n", count);
6592 }
6593 #endif
6594
6595 #ifdef CONFIG_MEMORY_HOTPLUG
6596 /*
6597 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6598 * page high values need to be recalulated.
6599 */
6600 void __meminit zone_pcp_update(struct zone *zone)
6601 {
6602 unsigned cpu;
6603 mutex_lock(&pcp_batch_high_lock);
6604 for_each_possible_cpu(cpu)
6605 pageset_set_high_and_batch(zone,
6606 per_cpu_ptr(zone->pageset, cpu));
6607 mutex_unlock(&pcp_batch_high_lock);
6608 }
6609 #endif
6610
6611 void zone_pcp_reset(struct zone *zone)
6612 {
6613 unsigned long flags;
6614 int cpu;
6615 struct per_cpu_pageset *pset;
6616
6617 /* avoid races with drain_pages() */
6618 local_irq_save(flags);
6619 if (zone->pageset != &boot_pageset) {
6620 for_each_online_cpu(cpu) {
6621 pset = per_cpu_ptr(zone->pageset, cpu);
6622 drain_zonestat(zone, pset);
6623 }
6624 free_percpu(zone->pageset);
6625 zone->pageset = &boot_pageset;
6626 }
6627 local_irq_restore(flags);
6628 }
6629
6630 #ifdef CONFIG_MEMORY_HOTREMOVE
6631 /*
6632 * All pages in the range must be isolated before calling this.
6633 */
6634 void
6635 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6636 {
6637 struct page *page;
6638 struct zone *zone;
6639 unsigned int order, i;
6640 unsigned long pfn;
6641 unsigned long flags;
6642 /* find the first valid pfn */
6643 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6644 if (pfn_valid(pfn))
6645 break;
6646 if (pfn == end_pfn)
6647 return;
6648 zone = page_zone(pfn_to_page(pfn));
6649 spin_lock_irqsave(&zone->lock, flags);
6650 pfn = start_pfn;
6651 while (pfn < end_pfn) {
6652 if (!pfn_valid(pfn)) {
6653 pfn++;
6654 continue;
6655 }
6656 page = pfn_to_page(pfn);
6657 /*
6658 * The HWPoisoned page may be not in buddy system, and
6659 * page_count() is not 0.
6660 */
6661 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6662 pfn++;
6663 SetPageReserved(page);
6664 continue;
6665 }
6666
6667 BUG_ON(page_count(page));
6668 BUG_ON(!PageBuddy(page));
6669 order = page_order(page);
6670 #ifdef CONFIG_DEBUG_VM
6671 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6672 pfn, 1 << order, end_pfn);
6673 #endif
6674 list_del(&page->lru);
6675 rmv_page_order(page);
6676 zone->free_area[order].nr_free--;
6677 for (i = 0; i < (1 << order); i++)
6678 SetPageReserved((page+i));
6679 pfn += (1 << order);
6680 }
6681 spin_unlock_irqrestore(&zone->lock, flags);
6682 }
6683 #endif
6684
6685 #ifdef CONFIG_MEMORY_FAILURE
6686 bool is_free_buddy_page(struct page *page)
6687 {
6688 struct zone *zone = page_zone(page);
6689 unsigned long pfn = page_to_pfn(page);
6690 unsigned long flags;
6691 unsigned int order;
6692
6693 spin_lock_irqsave(&zone->lock, flags);
6694 for (order = 0; order < MAX_ORDER; order++) {
6695 struct page *page_head = page - (pfn & ((1 << order) - 1));
6696
6697 if (PageBuddy(page_head) && page_order(page_head) >= order)
6698 break;
6699 }
6700 spin_unlock_irqrestore(&zone->lock, flags);
6701
6702 return order < MAX_ORDER;
6703 }
6704 #endif
This page took 0.161034 seconds and 6 git commands to generate.