mm: restore zone->all_unreclaimable to independence word
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <trace/events/kmem.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 #include "internal.h"
57
58 /*
59 * Array of node states.
60 */
61 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62 [N_POSSIBLE] = NODE_MASK_ALL,
63 [N_ONLINE] = { { [0] = 1UL } },
64 #ifndef CONFIG_NUMA
65 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
66 #ifdef CONFIG_HIGHMEM
67 [N_HIGH_MEMORY] = { { [0] = 1UL } },
68 #endif
69 [N_CPU] = { { [0] = 1UL } },
70 #endif /* NUMA */
71 };
72 EXPORT_SYMBOL(node_states);
73
74 unsigned long totalram_pages __read_mostly;
75 unsigned long totalreserve_pages __read_mostly;
76 int percpu_pagelist_fraction;
77 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78
79 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80 int pageblock_order __read_mostly;
81 #endif
82
83 static void __free_pages_ok(struct page *page, unsigned int order);
84
85 /*
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 *
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
95 */
96 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
97 #ifdef CONFIG_ZONE_DMA
98 256,
99 #endif
100 #ifdef CONFIG_ZONE_DMA32
101 256,
102 #endif
103 #ifdef CONFIG_HIGHMEM
104 32,
105 #endif
106 32,
107 };
108
109 EXPORT_SYMBOL(totalram_pages);
110
111 static char * const zone_names[MAX_NR_ZONES] = {
112 #ifdef CONFIG_ZONE_DMA
113 "DMA",
114 #endif
115 #ifdef CONFIG_ZONE_DMA32
116 "DMA32",
117 #endif
118 "Normal",
119 #ifdef CONFIG_HIGHMEM
120 "HighMem",
121 #endif
122 "Movable",
123 };
124
125 int min_free_kbytes = 1024;
126
127 static unsigned long __meminitdata nr_kernel_pages;
128 static unsigned long __meminitdata nr_all_pages;
129 static unsigned long __meminitdata dma_reserve;
130
131 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 /*
133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
138 */
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
151
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 int nr_online_nodes __read_mostly = 1;
168 EXPORT_SYMBOL(nr_node_ids);
169 EXPORT_SYMBOL(nr_online_nodes);
170 #endif
171
172 int page_group_by_mobility_disabled __read_mostly;
173
174 static void set_pageblock_migratetype(struct page *page, int migratetype)
175 {
176
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
179
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
182 }
183
184 bool oom_killer_disabled __read_mostly;
185
186 #ifdef CONFIG_DEBUG_VM
187 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188 {
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
192
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
200
201 return ret;
202 }
203
204 static int page_is_consistent(struct zone *zone, struct page *page)
205 {
206 if (!pfn_valid_within(page_to_pfn(page)))
207 return 0;
208 if (zone != page_zone(page))
209 return 0;
210
211 return 1;
212 }
213 /*
214 * Temporary debugging check for pages not lying within a given zone.
215 */
216 static int bad_range(struct zone *zone, struct page *page)
217 {
218 if (page_outside_zone_boundaries(zone, page))
219 return 1;
220 if (!page_is_consistent(zone, page))
221 return 1;
222
223 return 0;
224 }
225 #else
226 static inline int bad_range(struct zone *zone, struct page *page)
227 {
228 return 0;
229 }
230 #endif
231
232 static void bad_page(struct page *page)
233 {
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
237
238 /* Don't complain about poisoned pages */
239 if (PageHWPoison(page)) {
240 __ClearPageBuddy(page);
241 return;
242 }
243
244 /*
245 * Allow a burst of 60 reports, then keep quiet for that minute;
246 * or allow a steady drip of one report per second.
247 */
248 if (nr_shown == 60) {
249 if (time_before(jiffies, resume)) {
250 nr_unshown++;
251 goto out;
252 }
253 if (nr_unshown) {
254 printk(KERN_ALERT
255 "BUG: Bad page state: %lu messages suppressed\n",
256 nr_unshown);
257 nr_unshown = 0;
258 }
259 nr_shown = 0;
260 }
261 if (nr_shown++ == 0)
262 resume = jiffies + 60 * HZ;
263
264 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
265 current->comm, page_to_pfn(page));
266 printk(KERN_ALERT
267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
268 page, (void *)page->flags, page_count(page),
269 page_mapcount(page), page->mapping, page->index);
270
271 dump_stack();
272 out:
273 /* Leave bad fields for debug, except PageBuddy could make trouble */
274 __ClearPageBuddy(page);
275 add_taint(TAINT_BAD_PAGE);
276 }
277
278 /*
279 * Higher-order pages are called "compound pages". They are structured thusly:
280 *
281 * The first PAGE_SIZE page is called the "head page".
282 *
283 * The remaining PAGE_SIZE pages are called "tail pages".
284 *
285 * All pages have PG_compound set. All pages have their ->private pointing at
286 * the head page (even the head page has this).
287 *
288 * The first tail page's ->lru.next holds the address of the compound page's
289 * put_page() function. Its ->lru.prev holds the order of allocation.
290 * This usage means that zero-order pages may not be compound.
291 */
292
293 static void free_compound_page(struct page *page)
294 {
295 __free_pages_ok(page, compound_order(page));
296 }
297
298 void prep_compound_page(struct page *page, unsigned long order)
299 {
300 int i;
301 int nr_pages = 1 << order;
302
303 set_compound_page_dtor(page, free_compound_page);
304 set_compound_order(page, order);
305 __SetPageHead(page);
306 for (i = 1; i < nr_pages; i++) {
307 struct page *p = page + i;
308
309 __SetPageTail(p);
310 p->first_page = page;
311 }
312 }
313
314 static int destroy_compound_page(struct page *page, unsigned long order)
315 {
316 int i;
317 int nr_pages = 1 << order;
318 int bad = 0;
319
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
322 bad_page(page);
323 bad++;
324 }
325
326 __ClearPageHead(page);
327
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
330
331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
332 bad_page(page);
333 bad++;
334 }
335 __ClearPageTail(p);
336 }
337
338 return bad;
339 }
340
341 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342 {
343 int i;
344
345 /*
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 */
349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
352 }
353
354 static inline void set_page_order(struct page *page, int order)
355 {
356 set_page_private(page, order);
357 __SetPageBuddy(page);
358 }
359
360 static inline void rmv_page_order(struct page *page)
361 {
362 __ClearPageBuddy(page);
363 set_page_private(page, 0);
364 }
365
366 /*
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
369 *
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 *
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
380 *
381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
382 */
383 static inline struct page *
384 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
385 {
386 unsigned long buddy_idx = page_idx ^ (1 << order);
387
388 return page + (buddy_idx - page_idx);
389 }
390
391 static inline unsigned long
392 __find_combined_index(unsigned long page_idx, unsigned int order)
393 {
394 return (page_idx & ~(1 << order));
395 }
396
397 /*
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
400 * (a) the buddy is not in a hole &&
401 * (b) the buddy is in the buddy system &&
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
404 *
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
407 *
408 * For recording page's order, we use page_private(page).
409 */
410 static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
412 {
413 if (!pfn_valid_within(page_to_pfn(buddy)))
414 return 0;
415
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
418
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
420 VM_BUG_ON(page_count(buddy) != 0);
421 return 1;
422 }
423 return 0;
424 }
425
426 /*
427 * Freeing function for a buddy system allocator.
428 *
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
440 * order is recorded in page_private(page) field.
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
446 *
447 * -- wli
448 */
449
450 static inline void __free_one_page(struct page *page,
451 struct zone *zone, unsigned int order,
452 int migratetype)
453 {
454 unsigned long page_idx;
455
456 if (unlikely(PageCompound(page)))
457 if (unlikely(destroy_compound_page(page, order)))
458 return;
459
460 VM_BUG_ON(migratetype == -1);
461
462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463
464 VM_BUG_ON(page_idx & ((1 << order) - 1));
465 VM_BUG_ON(bad_range(zone, page));
466
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
469 struct page *buddy;
470
471 buddy = __page_find_buddy(page, page_idx, order);
472 if (!page_is_buddy(page, buddy, order))
473 break;
474
475 /* Our buddy is free, merge with it and move up one order. */
476 list_del(&buddy->lru);
477 zone->free_area[order].nr_free--;
478 rmv_page_order(buddy);
479 combined_idx = __find_combined_index(page_idx, order);
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
483 }
484 set_page_order(page, order);
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
487 zone->free_area[order].nr_free++;
488 }
489
490 /*
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
494 */
495 static inline void free_page_mlock(struct page *page)
496 {
497 __dec_zone_page_state(page, NR_MLOCK);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED);
499 }
500
501 static inline int free_pages_check(struct page *page)
502 {
503 if (unlikely(page_mapcount(page) |
504 (page->mapping != NULL) |
505 (atomic_read(&page->_count) != 0) |
506 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
507 bad_page(page);
508 return 1;
509 }
510 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
511 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
512 return 0;
513 }
514
515 /*
516 * Frees a number of pages from the PCP lists
517 * Assumes all pages on list are in same zone, and of same order.
518 * count is the number of pages to free.
519 *
520 * If the zone was previously in an "all pages pinned" state then look to
521 * see if this freeing clears that state.
522 *
523 * And clear the zone's pages_scanned counter, to hold off the "all pages are
524 * pinned" detection logic.
525 */
526 static void free_pcppages_bulk(struct zone *zone, int count,
527 struct per_cpu_pages *pcp)
528 {
529 int migratetype = 0;
530 int batch_free = 0;
531
532 spin_lock(&zone->lock);
533 zone->all_unreclaimable = 0;
534 zone->pages_scanned = 0;
535
536 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
537 while (count) {
538 struct page *page;
539 struct list_head *list;
540
541 /*
542 * Remove pages from lists in a round-robin fashion. A
543 * batch_free count is maintained that is incremented when an
544 * empty list is encountered. This is so more pages are freed
545 * off fuller lists instead of spinning excessively around empty
546 * lists
547 */
548 do {
549 batch_free++;
550 if (++migratetype == MIGRATE_PCPTYPES)
551 migratetype = 0;
552 list = &pcp->lists[migratetype];
553 } while (list_empty(list));
554
555 do {
556 page = list_entry(list->prev, struct page, lru);
557 /* must delete as __free_one_page list manipulates */
558 list_del(&page->lru);
559 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
560 __free_one_page(page, zone, 0, page_private(page));
561 trace_mm_page_pcpu_drain(page, 0, page_private(page));
562 } while (--count && --batch_free && !list_empty(list));
563 }
564 spin_unlock(&zone->lock);
565 }
566
567 static void free_one_page(struct zone *zone, struct page *page, int order,
568 int migratetype)
569 {
570 spin_lock(&zone->lock);
571 zone->all_unreclaimable = 0;
572 zone->pages_scanned = 0;
573
574 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
575 __free_one_page(page, zone, order, migratetype);
576 spin_unlock(&zone->lock);
577 }
578
579 static void __free_pages_ok(struct page *page, unsigned int order)
580 {
581 unsigned long flags;
582 int i;
583 int bad = 0;
584 int wasMlocked = __TestClearPageMlocked(page);
585
586 trace_mm_page_free_direct(page, order);
587 kmemcheck_free_shadow(page, order);
588
589 for (i = 0 ; i < (1 << order) ; ++i)
590 bad += free_pages_check(page + i);
591 if (bad)
592 return;
593
594 if (!PageHighMem(page)) {
595 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
596 debug_check_no_obj_freed(page_address(page),
597 PAGE_SIZE << order);
598 }
599 arch_free_page(page, order);
600 kernel_map_pages(page, 1 << order, 0);
601
602 local_irq_save(flags);
603 if (unlikely(wasMlocked))
604 free_page_mlock(page);
605 __count_vm_events(PGFREE, 1 << order);
606 free_one_page(page_zone(page), page, order,
607 get_pageblock_migratetype(page));
608 local_irq_restore(flags);
609 }
610
611 /*
612 * permit the bootmem allocator to evade page validation on high-order frees
613 */
614 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
615 {
616 if (order == 0) {
617 __ClearPageReserved(page);
618 set_page_count(page, 0);
619 set_page_refcounted(page);
620 __free_page(page);
621 } else {
622 int loop;
623
624 prefetchw(page);
625 for (loop = 0; loop < BITS_PER_LONG; loop++) {
626 struct page *p = &page[loop];
627
628 if (loop + 1 < BITS_PER_LONG)
629 prefetchw(p + 1);
630 __ClearPageReserved(p);
631 set_page_count(p, 0);
632 }
633
634 set_page_refcounted(page);
635 __free_pages(page, order);
636 }
637 }
638
639
640 /*
641 * The order of subdivision here is critical for the IO subsystem.
642 * Please do not alter this order without good reasons and regression
643 * testing. Specifically, as large blocks of memory are subdivided,
644 * the order in which smaller blocks are delivered depends on the order
645 * they're subdivided in this function. This is the primary factor
646 * influencing the order in which pages are delivered to the IO
647 * subsystem according to empirical testing, and this is also justified
648 * by considering the behavior of a buddy system containing a single
649 * large block of memory acted on by a series of small allocations.
650 * This behavior is a critical factor in sglist merging's success.
651 *
652 * -- wli
653 */
654 static inline void expand(struct zone *zone, struct page *page,
655 int low, int high, struct free_area *area,
656 int migratetype)
657 {
658 unsigned long size = 1 << high;
659
660 while (high > low) {
661 area--;
662 high--;
663 size >>= 1;
664 VM_BUG_ON(bad_range(zone, &page[size]));
665 list_add(&page[size].lru, &area->free_list[migratetype]);
666 area->nr_free++;
667 set_page_order(&page[size], high);
668 }
669 }
670
671 /*
672 * This page is about to be returned from the page allocator
673 */
674 static inline int check_new_page(struct page *page)
675 {
676 if (unlikely(page_mapcount(page) |
677 (page->mapping != NULL) |
678 (atomic_read(&page->_count) != 0) |
679 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
680 bad_page(page);
681 return 1;
682 }
683 return 0;
684 }
685
686 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
687 {
688 int i;
689
690 for (i = 0; i < (1 << order); i++) {
691 struct page *p = page + i;
692 if (unlikely(check_new_page(p)))
693 return 1;
694 }
695
696 set_page_private(page, 0);
697 set_page_refcounted(page);
698
699 arch_alloc_page(page, order);
700 kernel_map_pages(page, 1 << order, 1);
701
702 if (gfp_flags & __GFP_ZERO)
703 prep_zero_page(page, order, gfp_flags);
704
705 if (order && (gfp_flags & __GFP_COMP))
706 prep_compound_page(page, order);
707
708 return 0;
709 }
710
711 /*
712 * Go through the free lists for the given migratetype and remove
713 * the smallest available page from the freelists
714 */
715 static inline
716 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
717 int migratetype)
718 {
719 unsigned int current_order;
720 struct free_area * area;
721 struct page *page;
722
723 /* Find a page of the appropriate size in the preferred list */
724 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
725 area = &(zone->free_area[current_order]);
726 if (list_empty(&area->free_list[migratetype]))
727 continue;
728
729 page = list_entry(area->free_list[migratetype].next,
730 struct page, lru);
731 list_del(&page->lru);
732 rmv_page_order(page);
733 area->nr_free--;
734 expand(zone, page, order, current_order, area, migratetype);
735 return page;
736 }
737
738 return NULL;
739 }
740
741
742 /*
743 * This array describes the order lists are fallen back to when
744 * the free lists for the desirable migrate type are depleted
745 */
746 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
747 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
748 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
749 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
750 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
751 };
752
753 /*
754 * Move the free pages in a range to the free lists of the requested type.
755 * Note that start_page and end_pages are not aligned on a pageblock
756 * boundary. If alignment is required, use move_freepages_block()
757 */
758 static int move_freepages(struct zone *zone,
759 struct page *start_page, struct page *end_page,
760 int migratetype)
761 {
762 struct page *page;
763 unsigned long order;
764 int pages_moved = 0;
765
766 #ifndef CONFIG_HOLES_IN_ZONE
767 /*
768 * page_zone is not safe to call in this context when
769 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
770 * anyway as we check zone boundaries in move_freepages_block().
771 * Remove at a later date when no bug reports exist related to
772 * grouping pages by mobility
773 */
774 BUG_ON(page_zone(start_page) != page_zone(end_page));
775 #endif
776
777 for (page = start_page; page <= end_page;) {
778 /* Make sure we are not inadvertently changing nodes */
779 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
780
781 if (!pfn_valid_within(page_to_pfn(page))) {
782 page++;
783 continue;
784 }
785
786 if (!PageBuddy(page)) {
787 page++;
788 continue;
789 }
790
791 order = page_order(page);
792 list_del(&page->lru);
793 list_add(&page->lru,
794 &zone->free_area[order].free_list[migratetype]);
795 page += 1 << order;
796 pages_moved += 1 << order;
797 }
798
799 return pages_moved;
800 }
801
802 static int move_freepages_block(struct zone *zone, struct page *page,
803 int migratetype)
804 {
805 unsigned long start_pfn, end_pfn;
806 struct page *start_page, *end_page;
807
808 start_pfn = page_to_pfn(page);
809 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
810 start_page = pfn_to_page(start_pfn);
811 end_page = start_page + pageblock_nr_pages - 1;
812 end_pfn = start_pfn + pageblock_nr_pages - 1;
813
814 /* Do not cross zone boundaries */
815 if (start_pfn < zone->zone_start_pfn)
816 start_page = page;
817 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
818 return 0;
819
820 return move_freepages(zone, start_page, end_page, migratetype);
821 }
822
823 static void change_pageblock_range(struct page *pageblock_page,
824 int start_order, int migratetype)
825 {
826 int nr_pageblocks = 1 << (start_order - pageblock_order);
827
828 while (nr_pageblocks--) {
829 set_pageblock_migratetype(pageblock_page, migratetype);
830 pageblock_page += pageblock_nr_pages;
831 }
832 }
833
834 /* Remove an element from the buddy allocator from the fallback list */
835 static inline struct page *
836 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
837 {
838 struct free_area * area;
839 int current_order;
840 struct page *page;
841 int migratetype, i;
842
843 /* Find the largest possible block of pages in the other list */
844 for (current_order = MAX_ORDER-1; current_order >= order;
845 --current_order) {
846 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
847 migratetype = fallbacks[start_migratetype][i];
848
849 /* MIGRATE_RESERVE handled later if necessary */
850 if (migratetype == MIGRATE_RESERVE)
851 continue;
852
853 area = &(zone->free_area[current_order]);
854 if (list_empty(&area->free_list[migratetype]))
855 continue;
856
857 page = list_entry(area->free_list[migratetype].next,
858 struct page, lru);
859 area->nr_free--;
860
861 /*
862 * If breaking a large block of pages, move all free
863 * pages to the preferred allocation list. If falling
864 * back for a reclaimable kernel allocation, be more
865 * agressive about taking ownership of free pages
866 */
867 if (unlikely(current_order >= (pageblock_order >> 1)) ||
868 start_migratetype == MIGRATE_RECLAIMABLE ||
869 page_group_by_mobility_disabled) {
870 unsigned long pages;
871 pages = move_freepages_block(zone, page,
872 start_migratetype);
873
874 /* Claim the whole block if over half of it is free */
875 if (pages >= (1 << (pageblock_order-1)) ||
876 page_group_by_mobility_disabled)
877 set_pageblock_migratetype(page,
878 start_migratetype);
879
880 migratetype = start_migratetype;
881 }
882
883 /* Remove the page from the freelists */
884 list_del(&page->lru);
885 rmv_page_order(page);
886
887 /* Take ownership for orders >= pageblock_order */
888 if (current_order >= pageblock_order)
889 change_pageblock_range(page, current_order,
890 start_migratetype);
891
892 expand(zone, page, order, current_order, area, migratetype);
893
894 trace_mm_page_alloc_extfrag(page, order, current_order,
895 start_migratetype, migratetype);
896
897 return page;
898 }
899 }
900
901 return NULL;
902 }
903
904 /*
905 * Do the hard work of removing an element from the buddy allocator.
906 * Call me with the zone->lock already held.
907 */
908 static struct page *__rmqueue(struct zone *zone, unsigned int order,
909 int migratetype)
910 {
911 struct page *page;
912
913 retry_reserve:
914 page = __rmqueue_smallest(zone, order, migratetype);
915
916 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
917 page = __rmqueue_fallback(zone, order, migratetype);
918
919 /*
920 * Use MIGRATE_RESERVE rather than fail an allocation. goto
921 * is used because __rmqueue_smallest is an inline function
922 * and we want just one call site
923 */
924 if (!page) {
925 migratetype = MIGRATE_RESERVE;
926 goto retry_reserve;
927 }
928 }
929
930 trace_mm_page_alloc_zone_locked(page, order, migratetype);
931 return page;
932 }
933
934 /*
935 * Obtain a specified number of elements from the buddy allocator, all under
936 * a single hold of the lock, for efficiency. Add them to the supplied list.
937 * Returns the number of new pages which were placed at *list.
938 */
939 static int rmqueue_bulk(struct zone *zone, unsigned int order,
940 unsigned long count, struct list_head *list,
941 int migratetype, int cold)
942 {
943 int i;
944
945 spin_lock(&zone->lock);
946 for (i = 0; i < count; ++i) {
947 struct page *page = __rmqueue(zone, order, migratetype);
948 if (unlikely(page == NULL))
949 break;
950
951 /*
952 * Split buddy pages returned by expand() are received here
953 * in physical page order. The page is added to the callers and
954 * list and the list head then moves forward. From the callers
955 * perspective, the linked list is ordered by page number in
956 * some conditions. This is useful for IO devices that can
957 * merge IO requests if the physical pages are ordered
958 * properly.
959 */
960 if (likely(cold == 0))
961 list_add(&page->lru, list);
962 else
963 list_add_tail(&page->lru, list);
964 set_page_private(page, migratetype);
965 list = &page->lru;
966 }
967 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
968 spin_unlock(&zone->lock);
969 return i;
970 }
971
972 #ifdef CONFIG_NUMA
973 /*
974 * Called from the vmstat counter updater to drain pagesets of this
975 * currently executing processor on remote nodes after they have
976 * expired.
977 *
978 * Note that this function must be called with the thread pinned to
979 * a single processor.
980 */
981 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
982 {
983 unsigned long flags;
984 int to_drain;
985
986 local_irq_save(flags);
987 if (pcp->count >= pcp->batch)
988 to_drain = pcp->batch;
989 else
990 to_drain = pcp->count;
991 free_pcppages_bulk(zone, to_drain, pcp);
992 pcp->count -= to_drain;
993 local_irq_restore(flags);
994 }
995 #endif
996
997 /*
998 * Drain pages of the indicated processor.
999 *
1000 * The processor must either be the current processor and the
1001 * thread pinned to the current processor or a processor that
1002 * is not online.
1003 */
1004 static void drain_pages(unsigned int cpu)
1005 {
1006 unsigned long flags;
1007 struct zone *zone;
1008
1009 for_each_populated_zone(zone) {
1010 struct per_cpu_pageset *pset;
1011 struct per_cpu_pages *pcp;
1012
1013 local_irq_save(flags);
1014 pset = per_cpu_ptr(zone->pageset, cpu);
1015
1016 pcp = &pset->pcp;
1017 free_pcppages_bulk(zone, pcp->count, pcp);
1018 pcp->count = 0;
1019 local_irq_restore(flags);
1020 }
1021 }
1022
1023 /*
1024 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1025 */
1026 void drain_local_pages(void *arg)
1027 {
1028 drain_pages(smp_processor_id());
1029 }
1030
1031 /*
1032 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1033 */
1034 void drain_all_pages(void)
1035 {
1036 on_each_cpu(drain_local_pages, NULL, 1);
1037 }
1038
1039 #ifdef CONFIG_HIBERNATION
1040
1041 void mark_free_pages(struct zone *zone)
1042 {
1043 unsigned long pfn, max_zone_pfn;
1044 unsigned long flags;
1045 int order, t;
1046 struct list_head *curr;
1047
1048 if (!zone->spanned_pages)
1049 return;
1050
1051 spin_lock_irqsave(&zone->lock, flags);
1052
1053 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1054 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1055 if (pfn_valid(pfn)) {
1056 struct page *page = pfn_to_page(pfn);
1057
1058 if (!swsusp_page_is_forbidden(page))
1059 swsusp_unset_page_free(page);
1060 }
1061
1062 for_each_migratetype_order(order, t) {
1063 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1064 unsigned long i;
1065
1066 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1067 for (i = 0; i < (1UL << order); i++)
1068 swsusp_set_page_free(pfn_to_page(pfn + i));
1069 }
1070 }
1071 spin_unlock_irqrestore(&zone->lock, flags);
1072 }
1073 #endif /* CONFIG_PM */
1074
1075 /*
1076 * Free a 0-order page
1077 * cold == 1 ? free a cold page : free a hot page
1078 */
1079 void free_hot_cold_page(struct page *page, int cold)
1080 {
1081 struct zone *zone = page_zone(page);
1082 struct per_cpu_pages *pcp;
1083 unsigned long flags;
1084 int migratetype;
1085 int wasMlocked = __TestClearPageMlocked(page);
1086
1087 trace_mm_page_free_direct(page, 0);
1088 kmemcheck_free_shadow(page, 0);
1089
1090 if (PageAnon(page))
1091 page->mapping = NULL;
1092 if (free_pages_check(page))
1093 return;
1094
1095 if (!PageHighMem(page)) {
1096 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1097 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1098 }
1099 arch_free_page(page, 0);
1100 kernel_map_pages(page, 1, 0);
1101
1102 migratetype = get_pageblock_migratetype(page);
1103 set_page_private(page, migratetype);
1104 local_irq_save(flags);
1105 if (unlikely(wasMlocked))
1106 free_page_mlock(page);
1107 __count_vm_event(PGFREE);
1108
1109 /*
1110 * We only track unmovable, reclaimable and movable on pcp lists.
1111 * Free ISOLATE pages back to the allocator because they are being
1112 * offlined but treat RESERVE as movable pages so we can get those
1113 * areas back if necessary. Otherwise, we may have to free
1114 * excessively into the page allocator
1115 */
1116 if (migratetype >= MIGRATE_PCPTYPES) {
1117 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1118 free_one_page(zone, page, 0, migratetype);
1119 goto out;
1120 }
1121 migratetype = MIGRATE_MOVABLE;
1122 }
1123
1124 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1125 if (cold)
1126 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1127 else
1128 list_add(&page->lru, &pcp->lists[migratetype]);
1129 pcp->count++;
1130 if (pcp->count >= pcp->high) {
1131 free_pcppages_bulk(zone, pcp->batch, pcp);
1132 pcp->count -= pcp->batch;
1133 }
1134
1135 out:
1136 local_irq_restore(flags);
1137 }
1138
1139 /*
1140 * split_page takes a non-compound higher-order page, and splits it into
1141 * n (1<<order) sub-pages: page[0..n]
1142 * Each sub-page must be freed individually.
1143 *
1144 * Note: this is probably too low level an operation for use in drivers.
1145 * Please consult with lkml before using this in your driver.
1146 */
1147 void split_page(struct page *page, unsigned int order)
1148 {
1149 int i;
1150
1151 VM_BUG_ON(PageCompound(page));
1152 VM_BUG_ON(!page_count(page));
1153
1154 #ifdef CONFIG_KMEMCHECK
1155 /*
1156 * Split shadow pages too, because free(page[0]) would
1157 * otherwise free the whole shadow.
1158 */
1159 if (kmemcheck_page_is_tracked(page))
1160 split_page(virt_to_page(page[0].shadow), order);
1161 #endif
1162
1163 for (i = 1; i < (1 << order); i++)
1164 set_page_refcounted(page + i);
1165 }
1166
1167 /*
1168 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1169 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1170 * or two.
1171 */
1172 static inline
1173 struct page *buffered_rmqueue(struct zone *preferred_zone,
1174 struct zone *zone, int order, gfp_t gfp_flags,
1175 int migratetype)
1176 {
1177 unsigned long flags;
1178 struct page *page;
1179 int cold = !!(gfp_flags & __GFP_COLD);
1180
1181 again:
1182 if (likely(order == 0)) {
1183 struct per_cpu_pages *pcp;
1184 struct list_head *list;
1185
1186 local_irq_save(flags);
1187 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1188 list = &pcp->lists[migratetype];
1189 if (list_empty(list)) {
1190 pcp->count += rmqueue_bulk(zone, 0,
1191 pcp->batch, list,
1192 migratetype, cold);
1193 if (unlikely(list_empty(list)))
1194 goto failed;
1195 }
1196
1197 if (cold)
1198 page = list_entry(list->prev, struct page, lru);
1199 else
1200 page = list_entry(list->next, struct page, lru);
1201
1202 list_del(&page->lru);
1203 pcp->count--;
1204 } else {
1205 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1206 /*
1207 * __GFP_NOFAIL is not to be used in new code.
1208 *
1209 * All __GFP_NOFAIL callers should be fixed so that they
1210 * properly detect and handle allocation failures.
1211 *
1212 * We most definitely don't want callers attempting to
1213 * allocate greater than order-1 page units with
1214 * __GFP_NOFAIL.
1215 */
1216 WARN_ON_ONCE(order > 1);
1217 }
1218 spin_lock_irqsave(&zone->lock, flags);
1219 page = __rmqueue(zone, order, migratetype);
1220 spin_unlock(&zone->lock);
1221 if (!page)
1222 goto failed;
1223 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1224 }
1225
1226 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1227 zone_statistics(preferred_zone, zone);
1228 local_irq_restore(flags);
1229
1230 VM_BUG_ON(bad_range(zone, page));
1231 if (prep_new_page(page, order, gfp_flags))
1232 goto again;
1233 return page;
1234
1235 failed:
1236 local_irq_restore(flags);
1237 return NULL;
1238 }
1239
1240 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1241 #define ALLOC_WMARK_MIN WMARK_MIN
1242 #define ALLOC_WMARK_LOW WMARK_LOW
1243 #define ALLOC_WMARK_HIGH WMARK_HIGH
1244 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1245
1246 /* Mask to get the watermark bits */
1247 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1248
1249 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1250 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1251 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1252
1253 #ifdef CONFIG_FAIL_PAGE_ALLOC
1254
1255 static struct fail_page_alloc_attr {
1256 struct fault_attr attr;
1257
1258 u32 ignore_gfp_highmem;
1259 u32 ignore_gfp_wait;
1260 u32 min_order;
1261
1262 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1263
1264 struct dentry *ignore_gfp_highmem_file;
1265 struct dentry *ignore_gfp_wait_file;
1266 struct dentry *min_order_file;
1267
1268 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1269
1270 } fail_page_alloc = {
1271 .attr = FAULT_ATTR_INITIALIZER,
1272 .ignore_gfp_wait = 1,
1273 .ignore_gfp_highmem = 1,
1274 .min_order = 1,
1275 };
1276
1277 static int __init setup_fail_page_alloc(char *str)
1278 {
1279 return setup_fault_attr(&fail_page_alloc.attr, str);
1280 }
1281 __setup("fail_page_alloc=", setup_fail_page_alloc);
1282
1283 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1284 {
1285 if (order < fail_page_alloc.min_order)
1286 return 0;
1287 if (gfp_mask & __GFP_NOFAIL)
1288 return 0;
1289 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1290 return 0;
1291 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1292 return 0;
1293
1294 return should_fail(&fail_page_alloc.attr, 1 << order);
1295 }
1296
1297 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1298
1299 static int __init fail_page_alloc_debugfs(void)
1300 {
1301 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1302 struct dentry *dir;
1303 int err;
1304
1305 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1306 "fail_page_alloc");
1307 if (err)
1308 return err;
1309 dir = fail_page_alloc.attr.dentries.dir;
1310
1311 fail_page_alloc.ignore_gfp_wait_file =
1312 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1313 &fail_page_alloc.ignore_gfp_wait);
1314
1315 fail_page_alloc.ignore_gfp_highmem_file =
1316 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1317 &fail_page_alloc.ignore_gfp_highmem);
1318 fail_page_alloc.min_order_file =
1319 debugfs_create_u32("min-order", mode, dir,
1320 &fail_page_alloc.min_order);
1321
1322 if (!fail_page_alloc.ignore_gfp_wait_file ||
1323 !fail_page_alloc.ignore_gfp_highmem_file ||
1324 !fail_page_alloc.min_order_file) {
1325 err = -ENOMEM;
1326 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1327 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1328 debugfs_remove(fail_page_alloc.min_order_file);
1329 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1330 }
1331
1332 return err;
1333 }
1334
1335 late_initcall(fail_page_alloc_debugfs);
1336
1337 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1338
1339 #else /* CONFIG_FAIL_PAGE_ALLOC */
1340
1341 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1342 {
1343 return 0;
1344 }
1345
1346 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1347
1348 /*
1349 * Return 1 if free pages are above 'mark'. This takes into account the order
1350 * of the allocation.
1351 */
1352 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1353 int classzone_idx, int alloc_flags)
1354 {
1355 /* free_pages my go negative - that's OK */
1356 long min = mark;
1357 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1358 int o;
1359
1360 if (alloc_flags & ALLOC_HIGH)
1361 min -= min / 2;
1362 if (alloc_flags & ALLOC_HARDER)
1363 min -= min / 4;
1364
1365 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1366 return 0;
1367 for (o = 0; o < order; o++) {
1368 /* At the next order, this order's pages become unavailable */
1369 free_pages -= z->free_area[o].nr_free << o;
1370
1371 /* Require fewer higher order pages to be free */
1372 min >>= 1;
1373
1374 if (free_pages <= min)
1375 return 0;
1376 }
1377 return 1;
1378 }
1379
1380 #ifdef CONFIG_NUMA
1381 /*
1382 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1383 * skip over zones that are not allowed by the cpuset, or that have
1384 * been recently (in last second) found to be nearly full. See further
1385 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1386 * that have to skip over a lot of full or unallowed zones.
1387 *
1388 * If the zonelist cache is present in the passed in zonelist, then
1389 * returns a pointer to the allowed node mask (either the current
1390 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1391 *
1392 * If the zonelist cache is not available for this zonelist, does
1393 * nothing and returns NULL.
1394 *
1395 * If the fullzones BITMAP in the zonelist cache is stale (more than
1396 * a second since last zap'd) then we zap it out (clear its bits.)
1397 *
1398 * We hold off even calling zlc_setup, until after we've checked the
1399 * first zone in the zonelist, on the theory that most allocations will
1400 * be satisfied from that first zone, so best to examine that zone as
1401 * quickly as we can.
1402 */
1403 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1404 {
1405 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1406 nodemask_t *allowednodes; /* zonelist_cache approximation */
1407
1408 zlc = zonelist->zlcache_ptr;
1409 if (!zlc)
1410 return NULL;
1411
1412 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1413 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1414 zlc->last_full_zap = jiffies;
1415 }
1416
1417 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1418 &cpuset_current_mems_allowed :
1419 &node_states[N_HIGH_MEMORY];
1420 return allowednodes;
1421 }
1422
1423 /*
1424 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1425 * if it is worth looking at further for free memory:
1426 * 1) Check that the zone isn't thought to be full (doesn't have its
1427 * bit set in the zonelist_cache fullzones BITMAP).
1428 * 2) Check that the zones node (obtained from the zonelist_cache
1429 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1430 * Return true (non-zero) if zone is worth looking at further, or
1431 * else return false (zero) if it is not.
1432 *
1433 * This check -ignores- the distinction between various watermarks,
1434 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1435 * found to be full for any variation of these watermarks, it will
1436 * be considered full for up to one second by all requests, unless
1437 * we are so low on memory on all allowed nodes that we are forced
1438 * into the second scan of the zonelist.
1439 *
1440 * In the second scan we ignore this zonelist cache and exactly
1441 * apply the watermarks to all zones, even it is slower to do so.
1442 * We are low on memory in the second scan, and should leave no stone
1443 * unturned looking for a free page.
1444 */
1445 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1446 nodemask_t *allowednodes)
1447 {
1448 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1449 int i; /* index of *z in zonelist zones */
1450 int n; /* node that zone *z is on */
1451
1452 zlc = zonelist->zlcache_ptr;
1453 if (!zlc)
1454 return 1;
1455
1456 i = z - zonelist->_zonerefs;
1457 n = zlc->z_to_n[i];
1458
1459 /* This zone is worth trying if it is allowed but not full */
1460 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1461 }
1462
1463 /*
1464 * Given 'z' scanning a zonelist, set the corresponding bit in
1465 * zlc->fullzones, so that subsequent attempts to allocate a page
1466 * from that zone don't waste time re-examining it.
1467 */
1468 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1469 {
1470 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1471 int i; /* index of *z in zonelist zones */
1472
1473 zlc = zonelist->zlcache_ptr;
1474 if (!zlc)
1475 return;
1476
1477 i = z - zonelist->_zonerefs;
1478
1479 set_bit(i, zlc->fullzones);
1480 }
1481
1482 #else /* CONFIG_NUMA */
1483
1484 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1485 {
1486 return NULL;
1487 }
1488
1489 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1490 nodemask_t *allowednodes)
1491 {
1492 return 1;
1493 }
1494
1495 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1496 {
1497 }
1498 #endif /* CONFIG_NUMA */
1499
1500 /*
1501 * get_page_from_freelist goes through the zonelist trying to allocate
1502 * a page.
1503 */
1504 static struct page *
1505 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1506 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1507 struct zone *preferred_zone, int migratetype)
1508 {
1509 struct zoneref *z;
1510 struct page *page = NULL;
1511 int classzone_idx;
1512 struct zone *zone;
1513 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1514 int zlc_active = 0; /* set if using zonelist_cache */
1515 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1516
1517 classzone_idx = zone_idx(preferred_zone);
1518 zonelist_scan:
1519 /*
1520 * Scan zonelist, looking for a zone with enough free.
1521 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1522 */
1523 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1524 high_zoneidx, nodemask) {
1525 if (NUMA_BUILD && zlc_active &&
1526 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1527 continue;
1528 if ((alloc_flags & ALLOC_CPUSET) &&
1529 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1530 goto try_next_zone;
1531
1532 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1533 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1534 unsigned long mark;
1535 int ret;
1536
1537 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1538 if (zone_watermark_ok(zone, order, mark,
1539 classzone_idx, alloc_flags))
1540 goto try_this_zone;
1541
1542 if (zone_reclaim_mode == 0)
1543 goto this_zone_full;
1544
1545 ret = zone_reclaim(zone, gfp_mask, order);
1546 switch (ret) {
1547 case ZONE_RECLAIM_NOSCAN:
1548 /* did not scan */
1549 goto try_next_zone;
1550 case ZONE_RECLAIM_FULL:
1551 /* scanned but unreclaimable */
1552 goto this_zone_full;
1553 default:
1554 /* did we reclaim enough */
1555 if (!zone_watermark_ok(zone, order, mark,
1556 classzone_idx, alloc_flags))
1557 goto this_zone_full;
1558 }
1559 }
1560
1561 try_this_zone:
1562 page = buffered_rmqueue(preferred_zone, zone, order,
1563 gfp_mask, migratetype);
1564 if (page)
1565 break;
1566 this_zone_full:
1567 if (NUMA_BUILD)
1568 zlc_mark_zone_full(zonelist, z);
1569 try_next_zone:
1570 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1571 /*
1572 * we do zlc_setup after the first zone is tried but only
1573 * if there are multiple nodes make it worthwhile
1574 */
1575 allowednodes = zlc_setup(zonelist, alloc_flags);
1576 zlc_active = 1;
1577 did_zlc_setup = 1;
1578 }
1579 }
1580
1581 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1582 /* Disable zlc cache for second zonelist scan */
1583 zlc_active = 0;
1584 goto zonelist_scan;
1585 }
1586 return page;
1587 }
1588
1589 static inline int
1590 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1591 unsigned long pages_reclaimed)
1592 {
1593 /* Do not loop if specifically requested */
1594 if (gfp_mask & __GFP_NORETRY)
1595 return 0;
1596
1597 /*
1598 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1599 * means __GFP_NOFAIL, but that may not be true in other
1600 * implementations.
1601 */
1602 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1603 return 1;
1604
1605 /*
1606 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1607 * specified, then we retry until we no longer reclaim any pages
1608 * (above), or we've reclaimed an order of pages at least as
1609 * large as the allocation's order. In both cases, if the
1610 * allocation still fails, we stop retrying.
1611 */
1612 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1613 return 1;
1614
1615 /*
1616 * Don't let big-order allocations loop unless the caller
1617 * explicitly requests that.
1618 */
1619 if (gfp_mask & __GFP_NOFAIL)
1620 return 1;
1621
1622 return 0;
1623 }
1624
1625 static inline struct page *
1626 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1627 struct zonelist *zonelist, enum zone_type high_zoneidx,
1628 nodemask_t *nodemask, struct zone *preferred_zone,
1629 int migratetype)
1630 {
1631 struct page *page;
1632
1633 /* Acquire the OOM killer lock for the zones in zonelist */
1634 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1635 schedule_timeout_uninterruptible(1);
1636 return NULL;
1637 }
1638
1639 /*
1640 * Go through the zonelist yet one more time, keep very high watermark
1641 * here, this is only to catch a parallel oom killing, we must fail if
1642 * we're still under heavy pressure.
1643 */
1644 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1645 order, zonelist, high_zoneidx,
1646 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1647 preferred_zone, migratetype);
1648 if (page)
1649 goto out;
1650
1651 if (!(gfp_mask & __GFP_NOFAIL)) {
1652 /* The OOM killer will not help higher order allocs */
1653 if (order > PAGE_ALLOC_COSTLY_ORDER)
1654 goto out;
1655 /*
1656 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1657 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1658 * The caller should handle page allocation failure by itself if
1659 * it specifies __GFP_THISNODE.
1660 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1661 */
1662 if (gfp_mask & __GFP_THISNODE)
1663 goto out;
1664 }
1665 /* Exhausted what can be done so it's blamo time */
1666 out_of_memory(zonelist, gfp_mask, order, nodemask);
1667
1668 out:
1669 clear_zonelist_oom(zonelist, gfp_mask);
1670 return page;
1671 }
1672
1673 /* The really slow allocator path where we enter direct reclaim */
1674 static inline struct page *
1675 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1676 struct zonelist *zonelist, enum zone_type high_zoneidx,
1677 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1678 int migratetype, unsigned long *did_some_progress)
1679 {
1680 struct page *page = NULL;
1681 struct reclaim_state reclaim_state;
1682 struct task_struct *p = current;
1683
1684 cond_resched();
1685
1686 /* We now go into synchronous reclaim */
1687 cpuset_memory_pressure_bump();
1688 p->flags |= PF_MEMALLOC;
1689 lockdep_set_current_reclaim_state(gfp_mask);
1690 reclaim_state.reclaimed_slab = 0;
1691 p->reclaim_state = &reclaim_state;
1692
1693 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1694
1695 p->reclaim_state = NULL;
1696 lockdep_clear_current_reclaim_state();
1697 p->flags &= ~PF_MEMALLOC;
1698
1699 cond_resched();
1700
1701 if (order != 0)
1702 drain_all_pages();
1703
1704 if (likely(*did_some_progress))
1705 page = get_page_from_freelist(gfp_mask, nodemask, order,
1706 zonelist, high_zoneidx,
1707 alloc_flags, preferred_zone,
1708 migratetype);
1709 return page;
1710 }
1711
1712 /*
1713 * This is called in the allocator slow-path if the allocation request is of
1714 * sufficient urgency to ignore watermarks and take other desperate measures
1715 */
1716 static inline struct page *
1717 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1718 struct zonelist *zonelist, enum zone_type high_zoneidx,
1719 nodemask_t *nodemask, struct zone *preferred_zone,
1720 int migratetype)
1721 {
1722 struct page *page;
1723
1724 do {
1725 page = get_page_from_freelist(gfp_mask, nodemask, order,
1726 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1727 preferred_zone, migratetype);
1728
1729 if (!page && gfp_mask & __GFP_NOFAIL)
1730 congestion_wait(BLK_RW_ASYNC, HZ/50);
1731 } while (!page && (gfp_mask & __GFP_NOFAIL));
1732
1733 return page;
1734 }
1735
1736 static inline
1737 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1738 enum zone_type high_zoneidx)
1739 {
1740 struct zoneref *z;
1741 struct zone *zone;
1742
1743 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1744 wakeup_kswapd(zone, order);
1745 }
1746
1747 static inline int
1748 gfp_to_alloc_flags(gfp_t gfp_mask)
1749 {
1750 struct task_struct *p = current;
1751 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1752 const gfp_t wait = gfp_mask & __GFP_WAIT;
1753
1754 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1755 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1756
1757 /*
1758 * The caller may dip into page reserves a bit more if the caller
1759 * cannot run direct reclaim, or if the caller has realtime scheduling
1760 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1761 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1762 */
1763 alloc_flags |= (gfp_mask & __GFP_HIGH);
1764
1765 if (!wait) {
1766 alloc_flags |= ALLOC_HARDER;
1767 /*
1768 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1769 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1770 */
1771 alloc_flags &= ~ALLOC_CPUSET;
1772 } else if (unlikely(rt_task(p)) && !in_interrupt())
1773 alloc_flags |= ALLOC_HARDER;
1774
1775 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1776 if (!in_interrupt() &&
1777 ((p->flags & PF_MEMALLOC) ||
1778 unlikely(test_thread_flag(TIF_MEMDIE))))
1779 alloc_flags |= ALLOC_NO_WATERMARKS;
1780 }
1781
1782 return alloc_flags;
1783 }
1784
1785 static inline struct page *
1786 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1787 struct zonelist *zonelist, enum zone_type high_zoneidx,
1788 nodemask_t *nodemask, struct zone *preferred_zone,
1789 int migratetype)
1790 {
1791 const gfp_t wait = gfp_mask & __GFP_WAIT;
1792 struct page *page = NULL;
1793 int alloc_flags;
1794 unsigned long pages_reclaimed = 0;
1795 unsigned long did_some_progress;
1796 struct task_struct *p = current;
1797
1798 /*
1799 * In the slowpath, we sanity check order to avoid ever trying to
1800 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1801 * be using allocators in order of preference for an area that is
1802 * too large.
1803 */
1804 if (order >= MAX_ORDER) {
1805 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1806 return NULL;
1807 }
1808
1809 /*
1810 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1811 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1812 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1813 * using a larger set of nodes after it has established that the
1814 * allowed per node queues are empty and that nodes are
1815 * over allocated.
1816 */
1817 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1818 goto nopage;
1819
1820 restart:
1821 wake_all_kswapd(order, zonelist, high_zoneidx);
1822
1823 /*
1824 * OK, we're below the kswapd watermark and have kicked background
1825 * reclaim. Now things get more complex, so set up alloc_flags according
1826 * to how we want to proceed.
1827 */
1828 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1829
1830 /* This is the last chance, in general, before the goto nopage. */
1831 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1832 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1833 preferred_zone, migratetype);
1834 if (page)
1835 goto got_pg;
1836
1837 rebalance:
1838 /* Allocate without watermarks if the context allows */
1839 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1840 page = __alloc_pages_high_priority(gfp_mask, order,
1841 zonelist, high_zoneidx, nodemask,
1842 preferred_zone, migratetype);
1843 if (page)
1844 goto got_pg;
1845 }
1846
1847 /* Atomic allocations - we can't balance anything */
1848 if (!wait)
1849 goto nopage;
1850
1851 /* Avoid recursion of direct reclaim */
1852 if (p->flags & PF_MEMALLOC)
1853 goto nopage;
1854
1855 /* Avoid allocations with no watermarks from looping endlessly */
1856 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1857 goto nopage;
1858
1859 /* Try direct reclaim and then allocating */
1860 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1861 zonelist, high_zoneidx,
1862 nodemask,
1863 alloc_flags, preferred_zone,
1864 migratetype, &did_some_progress);
1865 if (page)
1866 goto got_pg;
1867
1868 /*
1869 * If we failed to make any progress reclaiming, then we are
1870 * running out of options and have to consider going OOM
1871 */
1872 if (!did_some_progress) {
1873 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1874 if (oom_killer_disabled)
1875 goto nopage;
1876 page = __alloc_pages_may_oom(gfp_mask, order,
1877 zonelist, high_zoneidx,
1878 nodemask, preferred_zone,
1879 migratetype);
1880 if (page)
1881 goto got_pg;
1882
1883 /*
1884 * The OOM killer does not trigger for high-order
1885 * ~__GFP_NOFAIL allocations so if no progress is being
1886 * made, there are no other options and retrying is
1887 * unlikely to help.
1888 */
1889 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1890 !(gfp_mask & __GFP_NOFAIL))
1891 goto nopage;
1892
1893 goto restart;
1894 }
1895 }
1896
1897 /* Check if we should retry the allocation */
1898 pages_reclaimed += did_some_progress;
1899 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1900 /* Wait for some write requests to complete then retry */
1901 congestion_wait(BLK_RW_ASYNC, HZ/50);
1902 goto rebalance;
1903 }
1904
1905 nopage:
1906 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1907 printk(KERN_WARNING "%s: page allocation failure."
1908 " order:%d, mode:0x%x\n",
1909 p->comm, order, gfp_mask);
1910 dump_stack();
1911 show_mem();
1912 }
1913 return page;
1914 got_pg:
1915 if (kmemcheck_enabled)
1916 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1917 return page;
1918
1919 }
1920
1921 /*
1922 * This is the 'heart' of the zoned buddy allocator.
1923 */
1924 struct page *
1925 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1926 struct zonelist *zonelist, nodemask_t *nodemask)
1927 {
1928 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1929 struct zone *preferred_zone;
1930 struct page *page;
1931 int migratetype = allocflags_to_migratetype(gfp_mask);
1932
1933 gfp_mask &= gfp_allowed_mask;
1934
1935 lockdep_trace_alloc(gfp_mask);
1936
1937 might_sleep_if(gfp_mask & __GFP_WAIT);
1938
1939 if (should_fail_alloc_page(gfp_mask, order))
1940 return NULL;
1941
1942 /*
1943 * Check the zones suitable for the gfp_mask contain at least one
1944 * valid zone. It's possible to have an empty zonelist as a result
1945 * of GFP_THISNODE and a memoryless node
1946 */
1947 if (unlikely(!zonelist->_zonerefs->zone))
1948 return NULL;
1949
1950 /* The preferred zone is used for statistics later */
1951 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1952 if (!preferred_zone)
1953 return NULL;
1954
1955 /* First allocation attempt */
1956 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1957 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1958 preferred_zone, migratetype);
1959 if (unlikely(!page))
1960 page = __alloc_pages_slowpath(gfp_mask, order,
1961 zonelist, high_zoneidx, nodemask,
1962 preferred_zone, migratetype);
1963
1964 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
1965 return page;
1966 }
1967 EXPORT_SYMBOL(__alloc_pages_nodemask);
1968
1969 /*
1970 * Common helper functions.
1971 */
1972 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1973 {
1974 struct page *page;
1975
1976 /*
1977 * __get_free_pages() returns a 32-bit address, which cannot represent
1978 * a highmem page
1979 */
1980 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1981
1982 page = alloc_pages(gfp_mask, order);
1983 if (!page)
1984 return 0;
1985 return (unsigned long) page_address(page);
1986 }
1987 EXPORT_SYMBOL(__get_free_pages);
1988
1989 unsigned long get_zeroed_page(gfp_t gfp_mask)
1990 {
1991 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1992 }
1993 EXPORT_SYMBOL(get_zeroed_page);
1994
1995 void __pagevec_free(struct pagevec *pvec)
1996 {
1997 int i = pagevec_count(pvec);
1998
1999 while (--i >= 0) {
2000 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2001 free_hot_cold_page(pvec->pages[i], pvec->cold);
2002 }
2003 }
2004
2005 void __free_pages(struct page *page, unsigned int order)
2006 {
2007 if (put_page_testzero(page)) {
2008 if (order == 0)
2009 free_hot_cold_page(page, 0);
2010 else
2011 __free_pages_ok(page, order);
2012 }
2013 }
2014
2015 EXPORT_SYMBOL(__free_pages);
2016
2017 void free_pages(unsigned long addr, unsigned int order)
2018 {
2019 if (addr != 0) {
2020 VM_BUG_ON(!virt_addr_valid((void *)addr));
2021 __free_pages(virt_to_page((void *)addr), order);
2022 }
2023 }
2024
2025 EXPORT_SYMBOL(free_pages);
2026
2027 /**
2028 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2029 * @size: the number of bytes to allocate
2030 * @gfp_mask: GFP flags for the allocation
2031 *
2032 * This function is similar to alloc_pages(), except that it allocates the
2033 * minimum number of pages to satisfy the request. alloc_pages() can only
2034 * allocate memory in power-of-two pages.
2035 *
2036 * This function is also limited by MAX_ORDER.
2037 *
2038 * Memory allocated by this function must be released by free_pages_exact().
2039 */
2040 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2041 {
2042 unsigned int order = get_order(size);
2043 unsigned long addr;
2044
2045 addr = __get_free_pages(gfp_mask, order);
2046 if (addr) {
2047 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2048 unsigned long used = addr + PAGE_ALIGN(size);
2049
2050 split_page(virt_to_page((void *)addr), order);
2051 while (used < alloc_end) {
2052 free_page(used);
2053 used += PAGE_SIZE;
2054 }
2055 }
2056
2057 return (void *)addr;
2058 }
2059 EXPORT_SYMBOL(alloc_pages_exact);
2060
2061 /**
2062 * free_pages_exact - release memory allocated via alloc_pages_exact()
2063 * @virt: the value returned by alloc_pages_exact.
2064 * @size: size of allocation, same value as passed to alloc_pages_exact().
2065 *
2066 * Release the memory allocated by a previous call to alloc_pages_exact.
2067 */
2068 void free_pages_exact(void *virt, size_t size)
2069 {
2070 unsigned long addr = (unsigned long)virt;
2071 unsigned long end = addr + PAGE_ALIGN(size);
2072
2073 while (addr < end) {
2074 free_page(addr);
2075 addr += PAGE_SIZE;
2076 }
2077 }
2078 EXPORT_SYMBOL(free_pages_exact);
2079
2080 static unsigned int nr_free_zone_pages(int offset)
2081 {
2082 struct zoneref *z;
2083 struct zone *zone;
2084
2085 /* Just pick one node, since fallback list is circular */
2086 unsigned int sum = 0;
2087
2088 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2089
2090 for_each_zone_zonelist(zone, z, zonelist, offset) {
2091 unsigned long size = zone->present_pages;
2092 unsigned long high = high_wmark_pages(zone);
2093 if (size > high)
2094 sum += size - high;
2095 }
2096
2097 return sum;
2098 }
2099
2100 /*
2101 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2102 */
2103 unsigned int nr_free_buffer_pages(void)
2104 {
2105 return nr_free_zone_pages(gfp_zone(GFP_USER));
2106 }
2107 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2108
2109 /*
2110 * Amount of free RAM allocatable within all zones
2111 */
2112 unsigned int nr_free_pagecache_pages(void)
2113 {
2114 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2115 }
2116
2117 static inline void show_node(struct zone *zone)
2118 {
2119 if (NUMA_BUILD)
2120 printk("Node %d ", zone_to_nid(zone));
2121 }
2122
2123 void si_meminfo(struct sysinfo *val)
2124 {
2125 val->totalram = totalram_pages;
2126 val->sharedram = 0;
2127 val->freeram = global_page_state(NR_FREE_PAGES);
2128 val->bufferram = nr_blockdev_pages();
2129 val->totalhigh = totalhigh_pages;
2130 val->freehigh = nr_free_highpages();
2131 val->mem_unit = PAGE_SIZE;
2132 }
2133
2134 EXPORT_SYMBOL(si_meminfo);
2135
2136 #ifdef CONFIG_NUMA
2137 void si_meminfo_node(struct sysinfo *val, int nid)
2138 {
2139 pg_data_t *pgdat = NODE_DATA(nid);
2140
2141 val->totalram = pgdat->node_present_pages;
2142 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2143 #ifdef CONFIG_HIGHMEM
2144 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2145 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2146 NR_FREE_PAGES);
2147 #else
2148 val->totalhigh = 0;
2149 val->freehigh = 0;
2150 #endif
2151 val->mem_unit = PAGE_SIZE;
2152 }
2153 #endif
2154
2155 #define K(x) ((x) << (PAGE_SHIFT-10))
2156
2157 /*
2158 * Show free area list (used inside shift_scroll-lock stuff)
2159 * We also calculate the percentage fragmentation. We do this by counting the
2160 * memory on each free list with the exception of the first item on the list.
2161 */
2162 void show_free_areas(void)
2163 {
2164 int cpu;
2165 struct zone *zone;
2166
2167 for_each_populated_zone(zone) {
2168 show_node(zone);
2169 printk("%s per-cpu:\n", zone->name);
2170
2171 for_each_online_cpu(cpu) {
2172 struct per_cpu_pageset *pageset;
2173
2174 pageset = per_cpu_ptr(zone->pageset, cpu);
2175
2176 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2177 cpu, pageset->pcp.high,
2178 pageset->pcp.batch, pageset->pcp.count);
2179 }
2180 }
2181
2182 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2183 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2184 " unevictable:%lu"
2185 " dirty:%lu writeback:%lu unstable:%lu\n"
2186 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2187 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2188 global_page_state(NR_ACTIVE_ANON),
2189 global_page_state(NR_INACTIVE_ANON),
2190 global_page_state(NR_ISOLATED_ANON),
2191 global_page_state(NR_ACTIVE_FILE),
2192 global_page_state(NR_INACTIVE_FILE),
2193 global_page_state(NR_ISOLATED_FILE),
2194 global_page_state(NR_UNEVICTABLE),
2195 global_page_state(NR_FILE_DIRTY),
2196 global_page_state(NR_WRITEBACK),
2197 global_page_state(NR_UNSTABLE_NFS),
2198 global_page_state(NR_FREE_PAGES),
2199 global_page_state(NR_SLAB_RECLAIMABLE),
2200 global_page_state(NR_SLAB_UNRECLAIMABLE),
2201 global_page_state(NR_FILE_MAPPED),
2202 global_page_state(NR_SHMEM),
2203 global_page_state(NR_PAGETABLE),
2204 global_page_state(NR_BOUNCE));
2205
2206 for_each_populated_zone(zone) {
2207 int i;
2208
2209 show_node(zone);
2210 printk("%s"
2211 " free:%lukB"
2212 " min:%lukB"
2213 " low:%lukB"
2214 " high:%lukB"
2215 " active_anon:%lukB"
2216 " inactive_anon:%lukB"
2217 " active_file:%lukB"
2218 " inactive_file:%lukB"
2219 " unevictable:%lukB"
2220 " isolated(anon):%lukB"
2221 " isolated(file):%lukB"
2222 " present:%lukB"
2223 " mlocked:%lukB"
2224 " dirty:%lukB"
2225 " writeback:%lukB"
2226 " mapped:%lukB"
2227 " shmem:%lukB"
2228 " slab_reclaimable:%lukB"
2229 " slab_unreclaimable:%lukB"
2230 " kernel_stack:%lukB"
2231 " pagetables:%lukB"
2232 " unstable:%lukB"
2233 " bounce:%lukB"
2234 " writeback_tmp:%lukB"
2235 " pages_scanned:%lu"
2236 " all_unreclaimable? %s"
2237 "\n",
2238 zone->name,
2239 K(zone_page_state(zone, NR_FREE_PAGES)),
2240 K(min_wmark_pages(zone)),
2241 K(low_wmark_pages(zone)),
2242 K(high_wmark_pages(zone)),
2243 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2244 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2245 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2246 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2247 K(zone_page_state(zone, NR_UNEVICTABLE)),
2248 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2249 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2250 K(zone->present_pages),
2251 K(zone_page_state(zone, NR_MLOCK)),
2252 K(zone_page_state(zone, NR_FILE_DIRTY)),
2253 K(zone_page_state(zone, NR_WRITEBACK)),
2254 K(zone_page_state(zone, NR_FILE_MAPPED)),
2255 K(zone_page_state(zone, NR_SHMEM)),
2256 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2257 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2258 zone_page_state(zone, NR_KERNEL_STACK) *
2259 THREAD_SIZE / 1024,
2260 K(zone_page_state(zone, NR_PAGETABLE)),
2261 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2262 K(zone_page_state(zone, NR_BOUNCE)),
2263 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2264 zone->pages_scanned,
2265 (zone->all_unreclaimable ? "yes" : "no")
2266 );
2267 printk("lowmem_reserve[]:");
2268 for (i = 0; i < MAX_NR_ZONES; i++)
2269 printk(" %lu", zone->lowmem_reserve[i]);
2270 printk("\n");
2271 }
2272
2273 for_each_populated_zone(zone) {
2274 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2275
2276 show_node(zone);
2277 printk("%s: ", zone->name);
2278
2279 spin_lock_irqsave(&zone->lock, flags);
2280 for (order = 0; order < MAX_ORDER; order++) {
2281 nr[order] = zone->free_area[order].nr_free;
2282 total += nr[order] << order;
2283 }
2284 spin_unlock_irqrestore(&zone->lock, flags);
2285 for (order = 0; order < MAX_ORDER; order++)
2286 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2287 printk("= %lukB\n", K(total));
2288 }
2289
2290 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2291
2292 show_swap_cache_info();
2293 }
2294
2295 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2296 {
2297 zoneref->zone = zone;
2298 zoneref->zone_idx = zone_idx(zone);
2299 }
2300
2301 /*
2302 * Builds allocation fallback zone lists.
2303 *
2304 * Add all populated zones of a node to the zonelist.
2305 */
2306 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2307 int nr_zones, enum zone_type zone_type)
2308 {
2309 struct zone *zone;
2310
2311 BUG_ON(zone_type >= MAX_NR_ZONES);
2312 zone_type++;
2313
2314 do {
2315 zone_type--;
2316 zone = pgdat->node_zones + zone_type;
2317 if (populated_zone(zone)) {
2318 zoneref_set_zone(zone,
2319 &zonelist->_zonerefs[nr_zones++]);
2320 check_highest_zone(zone_type);
2321 }
2322
2323 } while (zone_type);
2324 return nr_zones;
2325 }
2326
2327
2328 /*
2329 * zonelist_order:
2330 * 0 = automatic detection of better ordering.
2331 * 1 = order by ([node] distance, -zonetype)
2332 * 2 = order by (-zonetype, [node] distance)
2333 *
2334 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2335 * the same zonelist. So only NUMA can configure this param.
2336 */
2337 #define ZONELIST_ORDER_DEFAULT 0
2338 #define ZONELIST_ORDER_NODE 1
2339 #define ZONELIST_ORDER_ZONE 2
2340
2341 /* zonelist order in the kernel.
2342 * set_zonelist_order() will set this to NODE or ZONE.
2343 */
2344 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2345 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2346
2347
2348 #ifdef CONFIG_NUMA
2349 /* The value user specified ....changed by config */
2350 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2351 /* string for sysctl */
2352 #define NUMA_ZONELIST_ORDER_LEN 16
2353 char numa_zonelist_order[16] = "default";
2354
2355 /*
2356 * interface for configure zonelist ordering.
2357 * command line option "numa_zonelist_order"
2358 * = "[dD]efault - default, automatic configuration.
2359 * = "[nN]ode - order by node locality, then by zone within node
2360 * = "[zZ]one - order by zone, then by locality within zone
2361 */
2362
2363 static int __parse_numa_zonelist_order(char *s)
2364 {
2365 if (*s == 'd' || *s == 'D') {
2366 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2367 } else if (*s == 'n' || *s == 'N') {
2368 user_zonelist_order = ZONELIST_ORDER_NODE;
2369 } else if (*s == 'z' || *s == 'Z') {
2370 user_zonelist_order = ZONELIST_ORDER_ZONE;
2371 } else {
2372 printk(KERN_WARNING
2373 "Ignoring invalid numa_zonelist_order value: "
2374 "%s\n", s);
2375 return -EINVAL;
2376 }
2377 return 0;
2378 }
2379
2380 static __init int setup_numa_zonelist_order(char *s)
2381 {
2382 if (s)
2383 return __parse_numa_zonelist_order(s);
2384 return 0;
2385 }
2386 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2387
2388 /*
2389 * sysctl handler for numa_zonelist_order
2390 */
2391 int numa_zonelist_order_handler(ctl_table *table, int write,
2392 void __user *buffer, size_t *length,
2393 loff_t *ppos)
2394 {
2395 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2396 int ret;
2397 static DEFINE_MUTEX(zl_order_mutex);
2398
2399 mutex_lock(&zl_order_mutex);
2400 if (write)
2401 strcpy(saved_string, (char*)table->data);
2402 ret = proc_dostring(table, write, buffer, length, ppos);
2403 if (ret)
2404 goto out;
2405 if (write) {
2406 int oldval = user_zonelist_order;
2407 if (__parse_numa_zonelist_order((char*)table->data)) {
2408 /*
2409 * bogus value. restore saved string
2410 */
2411 strncpy((char*)table->data, saved_string,
2412 NUMA_ZONELIST_ORDER_LEN);
2413 user_zonelist_order = oldval;
2414 } else if (oldval != user_zonelist_order)
2415 build_all_zonelists();
2416 }
2417 out:
2418 mutex_unlock(&zl_order_mutex);
2419 return ret;
2420 }
2421
2422
2423 #define MAX_NODE_LOAD (nr_online_nodes)
2424 static int node_load[MAX_NUMNODES];
2425
2426 /**
2427 * find_next_best_node - find the next node that should appear in a given node's fallback list
2428 * @node: node whose fallback list we're appending
2429 * @used_node_mask: nodemask_t of already used nodes
2430 *
2431 * We use a number of factors to determine which is the next node that should
2432 * appear on a given node's fallback list. The node should not have appeared
2433 * already in @node's fallback list, and it should be the next closest node
2434 * according to the distance array (which contains arbitrary distance values
2435 * from each node to each node in the system), and should also prefer nodes
2436 * with no CPUs, since presumably they'll have very little allocation pressure
2437 * on them otherwise.
2438 * It returns -1 if no node is found.
2439 */
2440 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2441 {
2442 int n, val;
2443 int min_val = INT_MAX;
2444 int best_node = -1;
2445 const struct cpumask *tmp = cpumask_of_node(0);
2446
2447 /* Use the local node if we haven't already */
2448 if (!node_isset(node, *used_node_mask)) {
2449 node_set(node, *used_node_mask);
2450 return node;
2451 }
2452
2453 for_each_node_state(n, N_HIGH_MEMORY) {
2454
2455 /* Don't want a node to appear more than once */
2456 if (node_isset(n, *used_node_mask))
2457 continue;
2458
2459 /* Use the distance array to find the distance */
2460 val = node_distance(node, n);
2461
2462 /* Penalize nodes under us ("prefer the next node") */
2463 val += (n < node);
2464
2465 /* Give preference to headless and unused nodes */
2466 tmp = cpumask_of_node(n);
2467 if (!cpumask_empty(tmp))
2468 val += PENALTY_FOR_NODE_WITH_CPUS;
2469
2470 /* Slight preference for less loaded node */
2471 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2472 val += node_load[n];
2473
2474 if (val < min_val) {
2475 min_val = val;
2476 best_node = n;
2477 }
2478 }
2479
2480 if (best_node >= 0)
2481 node_set(best_node, *used_node_mask);
2482
2483 return best_node;
2484 }
2485
2486
2487 /*
2488 * Build zonelists ordered by node and zones within node.
2489 * This results in maximum locality--normal zone overflows into local
2490 * DMA zone, if any--but risks exhausting DMA zone.
2491 */
2492 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2493 {
2494 int j;
2495 struct zonelist *zonelist;
2496
2497 zonelist = &pgdat->node_zonelists[0];
2498 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2499 ;
2500 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2501 MAX_NR_ZONES - 1);
2502 zonelist->_zonerefs[j].zone = NULL;
2503 zonelist->_zonerefs[j].zone_idx = 0;
2504 }
2505
2506 /*
2507 * Build gfp_thisnode zonelists
2508 */
2509 static void build_thisnode_zonelists(pg_data_t *pgdat)
2510 {
2511 int j;
2512 struct zonelist *zonelist;
2513
2514 zonelist = &pgdat->node_zonelists[1];
2515 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2516 zonelist->_zonerefs[j].zone = NULL;
2517 zonelist->_zonerefs[j].zone_idx = 0;
2518 }
2519
2520 /*
2521 * Build zonelists ordered by zone and nodes within zones.
2522 * This results in conserving DMA zone[s] until all Normal memory is
2523 * exhausted, but results in overflowing to remote node while memory
2524 * may still exist in local DMA zone.
2525 */
2526 static int node_order[MAX_NUMNODES];
2527
2528 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2529 {
2530 int pos, j, node;
2531 int zone_type; /* needs to be signed */
2532 struct zone *z;
2533 struct zonelist *zonelist;
2534
2535 zonelist = &pgdat->node_zonelists[0];
2536 pos = 0;
2537 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2538 for (j = 0; j < nr_nodes; j++) {
2539 node = node_order[j];
2540 z = &NODE_DATA(node)->node_zones[zone_type];
2541 if (populated_zone(z)) {
2542 zoneref_set_zone(z,
2543 &zonelist->_zonerefs[pos++]);
2544 check_highest_zone(zone_type);
2545 }
2546 }
2547 }
2548 zonelist->_zonerefs[pos].zone = NULL;
2549 zonelist->_zonerefs[pos].zone_idx = 0;
2550 }
2551
2552 static int default_zonelist_order(void)
2553 {
2554 int nid, zone_type;
2555 unsigned long low_kmem_size,total_size;
2556 struct zone *z;
2557 int average_size;
2558 /*
2559 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2560 * If they are really small and used heavily, the system can fall
2561 * into OOM very easily.
2562 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2563 */
2564 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2565 low_kmem_size = 0;
2566 total_size = 0;
2567 for_each_online_node(nid) {
2568 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2569 z = &NODE_DATA(nid)->node_zones[zone_type];
2570 if (populated_zone(z)) {
2571 if (zone_type < ZONE_NORMAL)
2572 low_kmem_size += z->present_pages;
2573 total_size += z->present_pages;
2574 }
2575 }
2576 }
2577 if (!low_kmem_size || /* there are no DMA area. */
2578 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2579 return ZONELIST_ORDER_NODE;
2580 /*
2581 * look into each node's config.
2582 * If there is a node whose DMA/DMA32 memory is very big area on
2583 * local memory, NODE_ORDER may be suitable.
2584 */
2585 average_size = total_size /
2586 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2587 for_each_online_node(nid) {
2588 low_kmem_size = 0;
2589 total_size = 0;
2590 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2591 z = &NODE_DATA(nid)->node_zones[zone_type];
2592 if (populated_zone(z)) {
2593 if (zone_type < ZONE_NORMAL)
2594 low_kmem_size += z->present_pages;
2595 total_size += z->present_pages;
2596 }
2597 }
2598 if (low_kmem_size &&
2599 total_size > average_size && /* ignore small node */
2600 low_kmem_size > total_size * 70/100)
2601 return ZONELIST_ORDER_NODE;
2602 }
2603 return ZONELIST_ORDER_ZONE;
2604 }
2605
2606 static void set_zonelist_order(void)
2607 {
2608 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2609 current_zonelist_order = default_zonelist_order();
2610 else
2611 current_zonelist_order = user_zonelist_order;
2612 }
2613
2614 static void build_zonelists(pg_data_t *pgdat)
2615 {
2616 int j, node, load;
2617 enum zone_type i;
2618 nodemask_t used_mask;
2619 int local_node, prev_node;
2620 struct zonelist *zonelist;
2621 int order = current_zonelist_order;
2622
2623 /* initialize zonelists */
2624 for (i = 0; i < MAX_ZONELISTS; i++) {
2625 zonelist = pgdat->node_zonelists + i;
2626 zonelist->_zonerefs[0].zone = NULL;
2627 zonelist->_zonerefs[0].zone_idx = 0;
2628 }
2629
2630 /* NUMA-aware ordering of nodes */
2631 local_node = pgdat->node_id;
2632 load = nr_online_nodes;
2633 prev_node = local_node;
2634 nodes_clear(used_mask);
2635
2636 memset(node_order, 0, sizeof(node_order));
2637 j = 0;
2638
2639 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2640 int distance = node_distance(local_node, node);
2641
2642 /*
2643 * If another node is sufficiently far away then it is better
2644 * to reclaim pages in a zone before going off node.
2645 */
2646 if (distance > RECLAIM_DISTANCE)
2647 zone_reclaim_mode = 1;
2648
2649 /*
2650 * We don't want to pressure a particular node.
2651 * So adding penalty to the first node in same
2652 * distance group to make it round-robin.
2653 */
2654 if (distance != node_distance(local_node, prev_node))
2655 node_load[node] = load;
2656
2657 prev_node = node;
2658 load--;
2659 if (order == ZONELIST_ORDER_NODE)
2660 build_zonelists_in_node_order(pgdat, node);
2661 else
2662 node_order[j++] = node; /* remember order */
2663 }
2664
2665 if (order == ZONELIST_ORDER_ZONE) {
2666 /* calculate node order -- i.e., DMA last! */
2667 build_zonelists_in_zone_order(pgdat, j);
2668 }
2669
2670 build_thisnode_zonelists(pgdat);
2671 }
2672
2673 /* Construct the zonelist performance cache - see further mmzone.h */
2674 static void build_zonelist_cache(pg_data_t *pgdat)
2675 {
2676 struct zonelist *zonelist;
2677 struct zonelist_cache *zlc;
2678 struct zoneref *z;
2679
2680 zonelist = &pgdat->node_zonelists[0];
2681 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2682 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2683 for (z = zonelist->_zonerefs; z->zone; z++)
2684 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2685 }
2686
2687
2688 #else /* CONFIG_NUMA */
2689
2690 static void set_zonelist_order(void)
2691 {
2692 current_zonelist_order = ZONELIST_ORDER_ZONE;
2693 }
2694
2695 static void build_zonelists(pg_data_t *pgdat)
2696 {
2697 int node, local_node;
2698 enum zone_type j;
2699 struct zonelist *zonelist;
2700
2701 local_node = pgdat->node_id;
2702
2703 zonelist = &pgdat->node_zonelists[0];
2704 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2705
2706 /*
2707 * Now we build the zonelist so that it contains the zones
2708 * of all the other nodes.
2709 * We don't want to pressure a particular node, so when
2710 * building the zones for node N, we make sure that the
2711 * zones coming right after the local ones are those from
2712 * node N+1 (modulo N)
2713 */
2714 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2715 if (!node_online(node))
2716 continue;
2717 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2718 MAX_NR_ZONES - 1);
2719 }
2720 for (node = 0; node < local_node; node++) {
2721 if (!node_online(node))
2722 continue;
2723 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2724 MAX_NR_ZONES - 1);
2725 }
2726
2727 zonelist->_zonerefs[j].zone = NULL;
2728 zonelist->_zonerefs[j].zone_idx = 0;
2729 }
2730
2731 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2732 static void build_zonelist_cache(pg_data_t *pgdat)
2733 {
2734 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2735 }
2736
2737 #endif /* CONFIG_NUMA */
2738
2739 /*
2740 * Boot pageset table. One per cpu which is going to be used for all
2741 * zones and all nodes. The parameters will be set in such a way
2742 * that an item put on a list will immediately be handed over to
2743 * the buddy list. This is safe since pageset manipulation is done
2744 * with interrupts disabled.
2745 *
2746 * The boot_pagesets must be kept even after bootup is complete for
2747 * unused processors and/or zones. They do play a role for bootstrapping
2748 * hotplugged processors.
2749 *
2750 * zoneinfo_show() and maybe other functions do
2751 * not check if the processor is online before following the pageset pointer.
2752 * Other parts of the kernel may not check if the zone is available.
2753 */
2754 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2755 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2756
2757 /* return values int ....just for stop_machine() */
2758 static int __build_all_zonelists(void *dummy)
2759 {
2760 int nid;
2761 int cpu;
2762
2763 #ifdef CONFIG_NUMA
2764 memset(node_load, 0, sizeof(node_load));
2765 #endif
2766 for_each_online_node(nid) {
2767 pg_data_t *pgdat = NODE_DATA(nid);
2768
2769 build_zonelists(pgdat);
2770 build_zonelist_cache(pgdat);
2771 }
2772
2773 /*
2774 * Initialize the boot_pagesets that are going to be used
2775 * for bootstrapping processors. The real pagesets for
2776 * each zone will be allocated later when the per cpu
2777 * allocator is available.
2778 *
2779 * boot_pagesets are used also for bootstrapping offline
2780 * cpus if the system is already booted because the pagesets
2781 * are needed to initialize allocators on a specific cpu too.
2782 * F.e. the percpu allocator needs the page allocator which
2783 * needs the percpu allocator in order to allocate its pagesets
2784 * (a chicken-egg dilemma).
2785 */
2786 for_each_possible_cpu(cpu)
2787 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2788
2789 return 0;
2790 }
2791
2792 void build_all_zonelists(void)
2793 {
2794 set_zonelist_order();
2795
2796 if (system_state == SYSTEM_BOOTING) {
2797 __build_all_zonelists(NULL);
2798 mminit_verify_zonelist();
2799 cpuset_init_current_mems_allowed();
2800 } else {
2801 /* we have to stop all cpus to guarantee there is no user
2802 of zonelist */
2803 stop_machine(__build_all_zonelists, NULL, NULL);
2804 /* cpuset refresh routine should be here */
2805 }
2806 vm_total_pages = nr_free_pagecache_pages();
2807 /*
2808 * Disable grouping by mobility if the number of pages in the
2809 * system is too low to allow the mechanism to work. It would be
2810 * more accurate, but expensive to check per-zone. This check is
2811 * made on memory-hotadd so a system can start with mobility
2812 * disabled and enable it later
2813 */
2814 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2815 page_group_by_mobility_disabled = 1;
2816 else
2817 page_group_by_mobility_disabled = 0;
2818
2819 printk("Built %i zonelists in %s order, mobility grouping %s. "
2820 "Total pages: %ld\n",
2821 nr_online_nodes,
2822 zonelist_order_name[current_zonelist_order],
2823 page_group_by_mobility_disabled ? "off" : "on",
2824 vm_total_pages);
2825 #ifdef CONFIG_NUMA
2826 printk("Policy zone: %s\n", zone_names[policy_zone]);
2827 #endif
2828 }
2829
2830 /*
2831 * Helper functions to size the waitqueue hash table.
2832 * Essentially these want to choose hash table sizes sufficiently
2833 * large so that collisions trying to wait on pages are rare.
2834 * But in fact, the number of active page waitqueues on typical
2835 * systems is ridiculously low, less than 200. So this is even
2836 * conservative, even though it seems large.
2837 *
2838 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2839 * waitqueues, i.e. the size of the waitq table given the number of pages.
2840 */
2841 #define PAGES_PER_WAITQUEUE 256
2842
2843 #ifndef CONFIG_MEMORY_HOTPLUG
2844 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2845 {
2846 unsigned long size = 1;
2847
2848 pages /= PAGES_PER_WAITQUEUE;
2849
2850 while (size < pages)
2851 size <<= 1;
2852
2853 /*
2854 * Once we have dozens or even hundreds of threads sleeping
2855 * on IO we've got bigger problems than wait queue collision.
2856 * Limit the size of the wait table to a reasonable size.
2857 */
2858 size = min(size, 4096UL);
2859
2860 return max(size, 4UL);
2861 }
2862 #else
2863 /*
2864 * A zone's size might be changed by hot-add, so it is not possible to determine
2865 * a suitable size for its wait_table. So we use the maximum size now.
2866 *
2867 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2868 *
2869 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2870 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2871 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2872 *
2873 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2874 * or more by the traditional way. (See above). It equals:
2875 *
2876 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2877 * ia64(16K page size) : = ( 8G + 4M)byte.
2878 * powerpc (64K page size) : = (32G +16M)byte.
2879 */
2880 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2881 {
2882 return 4096UL;
2883 }
2884 #endif
2885
2886 /*
2887 * This is an integer logarithm so that shifts can be used later
2888 * to extract the more random high bits from the multiplicative
2889 * hash function before the remainder is taken.
2890 */
2891 static inline unsigned long wait_table_bits(unsigned long size)
2892 {
2893 return ffz(~size);
2894 }
2895
2896 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2897
2898 /*
2899 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2900 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2901 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2902 * higher will lead to a bigger reserve which will get freed as contiguous
2903 * blocks as reclaim kicks in
2904 */
2905 static void setup_zone_migrate_reserve(struct zone *zone)
2906 {
2907 unsigned long start_pfn, pfn, end_pfn;
2908 struct page *page;
2909 unsigned long block_migratetype;
2910 int reserve;
2911
2912 /* Get the start pfn, end pfn and the number of blocks to reserve */
2913 start_pfn = zone->zone_start_pfn;
2914 end_pfn = start_pfn + zone->spanned_pages;
2915 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2916 pageblock_order;
2917
2918 /*
2919 * Reserve blocks are generally in place to help high-order atomic
2920 * allocations that are short-lived. A min_free_kbytes value that
2921 * would result in more than 2 reserve blocks for atomic allocations
2922 * is assumed to be in place to help anti-fragmentation for the
2923 * future allocation of hugepages at runtime.
2924 */
2925 reserve = min(2, reserve);
2926
2927 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2928 if (!pfn_valid(pfn))
2929 continue;
2930 page = pfn_to_page(pfn);
2931
2932 /* Watch out for overlapping nodes */
2933 if (page_to_nid(page) != zone_to_nid(zone))
2934 continue;
2935
2936 /* Blocks with reserved pages will never free, skip them. */
2937 if (PageReserved(page))
2938 continue;
2939
2940 block_migratetype = get_pageblock_migratetype(page);
2941
2942 /* If this block is reserved, account for it */
2943 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2944 reserve--;
2945 continue;
2946 }
2947
2948 /* Suitable for reserving if this block is movable */
2949 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2950 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2951 move_freepages_block(zone, page, MIGRATE_RESERVE);
2952 reserve--;
2953 continue;
2954 }
2955
2956 /*
2957 * If the reserve is met and this is a previous reserved block,
2958 * take it back
2959 */
2960 if (block_migratetype == MIGRATE_RESERVE) {
2961 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2962 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2963 }
2964 }
2965 }
2966
2967 /*
2968 * Initially all pages are reserved - free ones are freed
2969 * up by free_all_bootmem() once the early boot process is
2970 * done. Non-atomic initialization, single-pass.
2971 */
2972 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2973 unsigned long start_pfn, enum memmap_context context)
2974 {
2975 struct page *page;
2976 unsigned long end_pfn = start_pfn + size;
2977 unsigned long pfn;
2978 struct zone *z;
2979
2980 if (highest_memmap_pfn < end_pfn - 1)
2981 highest_memmap_pfn = end_pfn - 1;
2982
2983 z = &NODE_DATA(nid)->node_zones[zone];
2984 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2985 /*
2986 * There can be holes in boot-time mem_map[]s
2987 * handed to this function. They do not
2988 * exist on hotplugged memory.
2989 */
2990 if (context == MEMMAP_EARLY) {
2991 if (!early_pfn_valid(pfn))
2992 continue;
2993 if (!early_pfn_in_nid(pfn, nid))
2994 continue;
2995 }
2996 page = pfn_to_page(pfn);
2997 set_page_links(page, zone, nid, pfn);
2998 mminit_verify_page_links(page, zone, nid, pfn);
2999 init_page_count(page);
3000 reset_page_mapcount(page);
3001 SetPageReserved(page);
3002 /*
3003 * Mark the block movable so that blocks are reserved for
3004 * movable at startup. This will force kernel allocations
3005 * to reserve their blocks rather than leaking throughout
3006 * the address space during boot when many long-lived
3007 * kernel allocations are made. Later some blocks near
3008 * the start are marked MIGRATE_RESERVE by
3009 * setup_zone_migrate_reserve()
3010 *
3011 * bitmap is created for zone's valid pfn range. but memmap
3012 * can be created for invalid pages (for alignment)
3013 * check here not to call set_pageblock_migratetype() against
3014 * pfn out of zone.
3015 */
3016 if ((z->zone_start_pfn <= pfn)
3017 && (pfn < z->zone_start_pfn + z->spanned_pages)
3018 && !(pfn & (pageblock_nr_pages - 1)))
3019 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3020
3021 INIT_LIST_HEAD(&page->lru);
3022 #ifdef WANT_PAGE_VIRTUAL
3023 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3024 if (!is_highmem_idx(zone))
3025 set_page_address(page, __va(pfn << PAGE_SHIFT));
3026 #endif
3027 }
3028 }
3029
3030 static void __meminit zone_init_free_lists(struct zone *zone)
3031 {
3032 int order, t;
3033 for_each_migratetype_order(order, t) {
3034 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3035 zone->free_area[order].nr_free = 0;
3036 }
3037 }
3038
3039 #ifndef __HAVE_ARCH_MEMMAP_INIT
3040 #define memmap_init(size, nid, zone, start_pfn) \
3041 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3042 #endif
3043
3044 static int zone_batchsize(struct zone *zone)
3045 {
3046 #ifdef CONFIG_MMU
3047 int batch;
3048
3049 /*
3050 * The per-cpu-pages pools are set to around 1000th of the
3051 * size of the zone. But no more than 1/2 of a meg.
3052 *
3053 * OK, so we don't know how big the cache is. So guess.
3054 */
3055 batch = zone->present_pages / 1024;
3056 if (batch * PAGE_SIZE > 512 * 1024)
3057 batch = (512 * 1024) / PAGE_SIZE;
3058 batch /= 4; /* We effectively *= 4 below */
3059 if (batch < 1)
3060 batch = 1;
3061
3062 /*
3063 * Clamp the batch to a 2^n - 1 value. Having a power
3064 * of 2 value was found to be more likely to have
3065 * suboptimal cache aliasing properties in some cases.
3066 *
3067 * For example if 2 tasks are alternately allocating
3068 * batches of pages, one task can end up with a lot
3069 * of pages of one half of the possible page colors
3070 * and the other with pages of the other colors.
3071 */
3072 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3073
3074 return batch;
3075
3076 #else
3077 /* The deferral and batching of frees should be suppressed under NOMMU
3078 * conditions.
3079 *
3080 * The problem is that NOMMU needs to be able to allocate large chunks
3081 * of contiguous memory as there's no hardware page translation to
3082 * assemble apparent contiguous memory from discontiguous pages.
3083 *
3084 * Queueing large contiguous runs of pages for batching, however,
3085 * causes the pages to actually be freed in smaller chunks. As there
3086 * can be a significant delay between the individual batches being
3087 * recycled, this leads to the once large chunks of space being
3088 * fragmented and becoming unavailable for high-order allocations.
3089 */
3090 return 0;
3091 #endif
3092 }
3093
3094 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3095 {
3096 struct per_cpu_pages *pcp;
3097 int migratetype;
3098
3099 memset(p, 0, sizeof(*p));
3100
3101 pcp = &p->pcp;
3102 pcp->count = 0;
3103 pcp->high = 6 * batch;
3104 pcp->batch = max(1UL, 1 * batch);
3105 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3106 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3107 }
3108
3109 /*
3110 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3111 * to the value high for the pageset p.
3112 */
3113
3114 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3115 unsigned long high)
3116 {
3117 struct per_cpu_pages *pcp;
3118
3119 pcp = &p->pcp;
3120 pcp->high = high;
3121 pcp->batch = max(1UL, high/4);
3122 if ((high/4) > (PAGE_SHIFT * 8))
3123 pcp->batch = PAGE_SHIFT * 8;
3124 }
3125
3126 /*
3127 * Allocate per cpu pagesets and initialize them.
3128 * Before this call only boot pagesets were available.
3129 * Boot pagesets will no longer be used by this processorr
3130 * after setup_per_cpu_pageset().
3131 */
3132 void __init setup_per_cpu_pageset(void)
3133 {
3134 struct zone *zone;
3135 int cpu;
3136
3137 for_each_populated_zone(zone) {
3138 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3139
3140 for_each_possible_cpu(cpu) {
3141 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3142
3143 setup_pageset(pcp, zone_batchsize(zone));
3144
3145 if (percpu_pagelist_fraction)
3146 setup_pagelist_highmark(pcp,
3147 (zone->present_pages /
3148 percpu_pagelist_fraction));
3149 }
3150 }
3151 }
3152
3153 static noinline __init_refok
3154 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3155 {
3156 int i;
3157 struct pglist_data *pgdat = zone->zone_pgdat;
3158 size_t alloc_size;
3159
3160 /*
3161 * The per-page waitqueue mechanism uses hashed waitqueues
3162 * per zone.
3163 */
3164 zone->wait_table_hash_nr_entries =
3165 wait_table_hash_nr_entries(zone_size_pages);
3166 zone->wait_table_bits =
3167 wait_table_bits(zone->wait_table_hash_nr_entries);
3168 alloc_size = zone->wait_table_hash_nr_entries
3169 * sizeof(wait_queue_head_t);
3170
3171 if (!slab_is_available()) {
3172 zone->wait_table = (wait_queue_head_t *)
3173 alloc_bootmem_node(pgdat, alloc_size);
3174 } else {
3175 /*
3176 * This case means that a zone whose size was 0 gets new memory
3177 * via memory hot-add.
3178 * But it may be the case that a new node was hot-added. In
3179 * this case vmalloc() will not be able to use this new node's
3180 * memory - this wait_table must be initialized to use this new
3181 * node itself as well.
3182 * To use this new node's memory, further consideration will be
3183 * necessary.
3184 */
3185 zone->wait_table = vmalloc(alloc_size);
3186 }
3187 if (!zone->wait_table)
3188 return -ENOMEM;
3189
3190 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3191 init_waitqueue_head(zone->wait_table + i);
3192
3193 return 0;
3194 }
3195
3196 static int __zone_pcp_update(void *data)
3197 {
3198 struct zone *zone = data;
3199 int cpu;
3200 unsigned long batch = zone_batchsize(zone), flags;
3201
3202 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3203 struct per_cpu_pageset *pset;
3204 struct per_cpu_pages *pcp;
3205
3206 pset = per_cpu_ptr(zone->pageset, cpu);
3207 pcp = &pset->pcp;
3208
3209 local_irq_save(flags);
3210 free_pcppages_bulk(zone, pcp->count, pcp);
3211 setup_pageset(pset, batch);
3212 local_irq_restore(flags);
3213 }
3214 return 0;
3215 }
3216
3217 void zone_pcp_update(struct zone *zone)
3218 {
3219 stop_machine(__zone_pcp_update, zone, NULL);
3220 }
3221
3222 static __meminit void zone_pcp_init(struct zone *zone)
3223 {
3224 /*
3225 * per cpu subsystem is not up at this point. The following code
3226 * relies on the ability of the linker to provide the
3227 * offset of a (static) per cpu variable into the per cpu area.
3228 */
3229 zone->pageset = &boot_pageset;
3230
3231 if (zone->present_pages)
3232 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3233 zone->name, zone->present_pages,
3234 zone_batchsize(zone));
3235 }
3236
3237 __meminit int init_currently_empty_zone(struct zone *zone,
3238 unsigned long zone_start_pfn,
3239 unsigned long size,
3240 enum memmap_context context)
3241 {
3242 struct pglist_data *pgdat = zone->zone_pgdat;
3243 int ret;
3244 ret = zone_wait_table_init(zone, size);
3245 if (ret)
3246 return ret;
3247 pgdat->nr_zones = zone_idx(zone) + 1;
3248
3249 zone->zone_start_pfn = zone_start_pfn;
3250
3251 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3252 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3253 pgdat->node_id,
3254 (unsigned long)zone_idx(zone),
3255 zone_start_pfn, (zone_start_pfn + size));
3256
3257 zone_init_free_lists(zone);
3258
3259 return 0;
3260 }
3261
3262 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3263 /*
3264 * Basic iterator support. Return the first range of PFNs for a node
3265 * Note: nid == MAX_NUMNODES returns first region regardless of node
3266 */
3267 static int __meminit first_active_region_index_in_nid(int nid)
3268 {
3269 int i;
3270
3271 for (i = 0; i < nr_nodemap_entries; i++)
3272 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3273 return i;
3274
3275 return -1;
3276 }
3277
3278 /*
3279 * Basic iterator support. Return the next active range of PFNs for a node
3280 * Note: nid == MAX_NUMNODES returns next region regardless of node
3281 */
3282 static int __meminit next_active_region_index_in_nid(int index, int nid)
3283 {
3284 for (index = index + 1; index < nr_nodemap_entries; index++)
3285 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3286 return index;
3287
3288 return -1;
3289 }
3290
3291 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3292 /*
3293 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3294 * Architectures may implement their own version but if add_active_range()
3295 * was used and there are no special requirements, this is a convenient
3296 * alternative
3297 */
3298 int __meminit __early_pfn_to_nid(unsigned long pfn)
3299 {
3300 int i;
3301
3302 for (i = 0; i < nr_nodemap_entries; i++) {
3303 unsigned long start_pfn = early_node_map[i].start_pfn;
3304 unsigned long end_pfn = early_node_map[i].end_pfn;
3305
3306 if (start_pfn <= pfn && pfn < end_pfn)
3307 return early_node_map[i].nid;
3308 }
3309 /* This is a memory hole */
3310 return -1;
3311 }
3312 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3313
3314 int __meminit early_pfn_to_nid(unsigned long pfn)
3315 {
3316 int nid;
3317
3318 nid = __early_pfn_to_nid(pfn);
3319 if (nid >= 0)
3320 return nid;
3321 /* just returns 0 */
3322 return 0;
3323 }
3324
3325 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3326 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3327 {
3328 int nid;
3329
3330 nid = __early_pfn_to_nid(pfn);
3331 if (nid >= 0 && nid != node)
3332 return false;
3333 return true;
3334 }
3335 #endif
3336
3337 /* Basic iterator support to walk early_node_map[] */
3338 #define for_each_active_range_index_in_nid(i, nid) \
3339 for (i = first_active_region_index_in_nid(nid); i != -1; \
3340 i = next_active_region_index_in_nid(i, nid))
3341
3342 /**
3343 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3344 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3345 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3346 *
3347 * If an architecture guarantees that all ranges registered with
3348 * add_active_ranges() contain no holes and may be freed, this
3349 * this function may be used instead of calling free_bootmem() manually.
3350 */
3351 void __init free_bootmem_with_active_regions(int nid,
3352 unsigned long max_low_pfn)
3353 {
3354 int i;
3355
3356 for_each_active_range_index_in_nid(i, nid) {
3357 unsigned long size_pages = 0;
3358 unsigned long end_pfn = early_node_map[i].end_pfn;
3359
3360 if (early_node_map[i].start_pfn >= max_low_pfn)
3361 continue;
3362
3363 if (end_pfn > max_low_pfn)
3364 end_pfn = max_low_pfn;
3365
3366 size_pages = end_pfn - early_node_map[i].start_pfn;
3367 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3368 PFN_PHYS(early_node_map[i].start_pfn),
3369 size_pages << PAGE_SHIFT);
3370 }
3371 }
3372
3373 int __init add_from_early_node_map(struct range *range, int az,
3374 int nr_range, int nid)
3375 {
3376 int i;
3377 u64 start, end;
3378
3379 /* need to go over early_node_map to find out good range for node */
3380 for_each_active_range_index_in_nid(i, nid) {
3381 start = early_node_map[i].start_pfn;
3382 end = early_node_map[i].end_pfn;
3383 nr_range = add_range(range, az, nr_range, start, end);
3384 }
3385 return nr_range;
3386 }
3387
3388 #ifdef CONFIG_NO_BOOTMEM
3389 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3390 u64 goal, u64 limit)
3391 {
3392 int i;
3393 void *ptr;
3394
3395 /* need to go over early_node_map to find out good range for node */
3396 for_each_active_range_index_in_nid(i, nid) {
3397 u64 addr;
3398 u64 ei_start, ei_last;
3399
3400 ei_last = early_node_map[i].end_pfn;
3401 ei_last <<= PAGE_SHIFT;
3402 ei_start = early_node_map[i].start_pfn;
3403 ei_start <<= PAGE_SHIFT;
3404 addr = find_early_area(ei_start, ei_last,
3405 goal, limit, size, align);
3406
3407 if (addr == -1ULL)
3408 continue;
3409
3410 #if 0
3411 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3412 nid,
3413 ei_start, ei_last, goal, limit, size,
3414 align, addr);
3415 #endif
3416
3417 ptr = phys_to_virt(addr);
3418 memset(ptr, 0, size);
3419 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3420 return ptr;
3421 }
3422
3423 return NULL;
3424 }
3425 #endif
3426
3427
3428 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3429 {
3430 int i;
3431 int ret;
3432
3433 for_each_active_range_index_in_nid(i, nid) {
3434 ret = work_fn(early_node_map[i].start_pfn,
3435 early_node_map[i].end_pfn, data);
3436 if (ret)
3437 break;
3438 }
3439 }
3440 /**
3441 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3442 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3443 *
3444 * If an architecture guarantees that all ranges registered with
3445 * add_active_ranges() contain no holes and may be freed, this
3446 * function may be used instead of calling memory_present() manually.
3447 */
3448 void __init sparse_memory_present_with_active_regions(int nid)
3449 {
3450 int i;
3451
3452 for_each_active_range_index_in_nid(i, nid)
3453 memory_present(early_node_map[i].nid,
3454 early_node_map[i].start_pfn,
3455 early_node_map[i].end_pfn);
3456 }
3457
3458 /**
3459 * get_pfn_range_for_nid - Return the start and end page frames for a node
3460 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3461 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3462 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3463 *
3464 * It returns the start and end page frame of a node based on information
3465 * provided by an arch calling add_active_range(). If called for a node
3466 * with no available memory, a warning is printed and the start and end
3467 * PFNs will be 0.
3468 */
3469 void __meminit get_pfn_range_for_nid(unsigned int nid,
3470 unsigned long *start_pfn, unsigned long *end_pfn)
3471 {
3472 int i;
3473 *start_pfn = -1UL;
3474 *end_pfn = 0;
3475
3476 for_each_active_range_index_in_nid(i, nid) {
3477 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3478 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3479 }
3480
3481 if (*start_pfn == -1UL)
3482 *start_pfn = 0;
3483 }
3484
3485 /*
3486 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3487 * assumption is made that zones within a node are ordered in monotonic
3488 * increasing memory addresses so that the "highest" populated zone is used
3489 */
3490 static void __init find_usable_zone_for_movable(void)
3491 {
3492 int zone_index;
3493 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3494 if (zone_index == ZONE_MOVABLE)
3495 continue;
3496
3497 if (arch_zone_highest_possible_pfn[zone_index] >
3498 arch_zone_lowest_possible_pfn[zone_index])
3499 break;
3500 }
3501
3502 VM_BUG_ON(zone_index == -1);
3503 movable_zone = zone_index;
3504 }
3505
3506 /*
3507 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3508 * because it is sized independant of architecture. Unlike the other zones,
3509 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3510 * in each node depending on the size of each node and how evenly kernelcore
3511 * is distributed. This helper function adjusts the zone ranges
3512 * provided by the architecture for a given node by using the end of the
3513 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3514 * zones within a node are in order of monotonic increases memory addresses
3515 */
3516 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3517 unsigned long zone_type,
3518 unsigned long node_start_pfn,
3519 unsigned long node_end_pfn,
3520 unsigned long *zone_start_pfn,
3521 unsigned long *zone_end_pfn)
3522 {
3523 /* Only adjust if ZONE_MOVABLE is on this node */
3524 if (zone_movable_pfn[nid]) {
3525 /* Size ZONE_MOVABLE */
3526 if (zone_type == ZONE_MOVABLE) {
3527 *zone_start_pfn = zone_movable_pfn[nid];
3528 *zone_end_pfn = min(node_end_pfn,
3529 arch_zone_highest_possible_pfn[movable_zone]);
3530
3531 /* Adjust for ZONE_MOVABLE starting within this range */
3532 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3533 *zone_end_pfn > zone_movable_pfn[nid]) {
3534 *zone_end_pfn = zone_movable_pfn[nid];
3535
3536 /* Check if this whole range is within ZONE_MOVABLE */
3537 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3538 *zone_start_pfn = *zone_end_pfn;
3539 }
3540 }
3541
3542 /*
3543 * Return the number of pages a zone spans in a node, including holes
3544 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3545 */
3546 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3547 unsigned long zone_type,
3548 unsigned long *ignored)
3549 {
3550 unsigned long node_start_pfn, node_end_pfn;
3551 unsigned long zone_start_pfn, zone_end_pfn;
3552
3553 /* Get the start and end of the node and zone */
3554 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3555 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3556 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3557 adjust_zone_range_for_zone_movable(nid, zone_type,
3558 node_start_pfn, node_end_pfn,
3559 &zone_start_pfn, &zone_end_pfn);
3560
3561 /* Check that this node has pages within the zone's required range */
3562 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3563 return 0;
3564
3565 /* Move the zone boundaries inside the node if necessary */
3566 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3567 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3568
3569 /* Return the spanned pages */
3570 return zone_end_pfn - zone_start_pfn;
3571 }
3572
3573 /*
3574 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3575 * then all holes in the requested range will be accounted for.
3576 */
3577 unsigned long __meminit __absent_pages_in_range(int nid,
3578 unsigned long range_start_pfn,
3579 unsigned long range_end_pfn)
3580 {
3581 int i = 0;
3582 unsigned long prev_end_pfn = 0, hole_pages = 0;
3583 unsigned long start_pfn;
3584
3585 /* Find the end_pfn of the first active range of pfns in the node */
3586 i = first_active_region_index_in_nid(nid);
3587 if (i == -1)
3588 return 0;
3589
3590 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3591
3592 /* Account for ranges before physical memory on this node */
3593 if (early_node_map[i].start_pfn > range_start_pfn)
3594 hole_pages = prev_end_pfn - range_start_pfn;
3595
3596 /* Find all holes for the zone within the node */
3597 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3598
3599 /* No need to continue if prev_end_pfn is outside the zone */
3600 if (prev_end_pfn >= range_end_pfn)
3601 break;
3602
3603 /* Make sure the end of the zone is not within the hole */
3604 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3605 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3606
3607 /* Update the hole size cound and move on */
3608 if (start_pfn > range_start_pfn) {
3609 BUG_ON(prev_end_pfn > start_pfn);
3610 hole_pages += start_pfn - prev_end_pfn;
3611 }
3612 prev_end_pfn = early_node_map[i].end_pfn;
3613 }
3614
3615 /* Account for ranges past physical memory on this node */
3616 if (range_end_pfn > prev_end_pfn)
3617 hole_pages += range_end_pfn -
3618 max(range_start_pfn, prev_end_pfn);
3619
3620 return hole_pages;
3621 }
3622
3623 /**
3624 * absent_pages_in_range - Return number of page frames in holes within a range
3625 * @start_pfn: The start PFN to start searching for holes
3626 * @end_pfn: The end PFN to stop searching for holes
3627 *
3628 * It returns the number of pages frames in memory holes within a range.
3629 */
3630 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3631 unsigned long end_pfn)
3632 {
3633 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3634 }
3635
3636 /* Return the number of page frames in holes in a zone on a node */
3637 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3638 unsigned long zone_type,
3639 unsigned long *ignored)
3640 {
3641 unsigned long node_start_pfn, node_end_pfn;
3642 unsigned long zone_start_pfn, zone_end_pfn;
3643
3644 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3645 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3646 node_start_pfn);
3647 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3648 node_end_pfn);
3649
3650 adjust_zone_range_for_zone_movable(nid, zone_type,
3651 node_start_pfn, node_end_pfn,
3652 &zone_start_pfn, &zone_end_pfn);
3653 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3654 }
3655
3656 #else
3657 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3658 unsigned long zone_type,
3659 unsigned long *zones_size)
3660 {
3661 return zones_size[zone_type];
3662 }
3663
3664 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3665 unsigned long zone_type,
3666 unsigned long *zholes_size)
3667 {
3668 if (!zholes_size)
3669 return 0;
3670
3671 return zholes_size[zone_type];
3672 }
3673
3674 #endif
3675
3676 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3677 unsigned long *zones_size, unsigned long *zholes_size)
3678 {
3679 unsigned long realtotalpages, totalpages = 0;
3680 enum zone_type i;
3681
3682 for (i = 0; i < MAX_NR_ZONES; i++)
3683 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3684 zones_size);
3685 pgdat->node_spanned_pages = totalpages;
3686
3687 realtotalpages = totalpages;
3688 for (i = 0; i < MAX_NR_ZONES; i++)
3689 realtotalpages -=
3690 zone_absent_pages_in_node(pgdat->node_id, i,
3691 zholes_size);
3692 pgdat->node_present_pages = realtotalpages;
3693 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3694 realtotalpages);
3695 }
3696
3697 #ifndef CONFIG_SPARSEMEM
3698 /*
3699 * Calculate the size of the zone->blockflags rounded to an unsigned long
3700 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3701 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3702 * round what is now in bits to nearest long in bits, then return it in
3703 * bytes.
3704 */
3705 static unsigned long __init usemap_size(unsigned long zonesize)
3706 {
3707 unsigned long usemapsize;
3708
3709 usemapsize = roundup(zonesize, pageblock_nr_pages);
3710 usemapsize = usemapsize >> pageblock_order;
3711 usemapsize *= NR_PAGEBLOCK_BITS;
3712 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3713
3714 return usemapsize / 8;
3715 }
3716
3717 static void __init setup_usemap(struct pglist_data *pgdat,
3718 struct zone *zone, unsigned long zonesize)
3719 {
3720 unsigned long usemapsize = usemap_size(zonesize);
3721 zone->pageblock_flags = NULL;
3722 if (usemapsize)
3723 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3724 }
3725 #else
3726 static void inline setup_usemap(struct pglist_data *pgdat,
3727 struct zone *zone, unsigned long zonesize) {}
3728 #endif /* CONFIG_SPARSEMEM */
3729
3730 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3731
3732 /* Return a sensible default order for the pageblock size. */
3733 static inline int pageblock_default_order(void)
3734 {
3735 if (HPAGE_SHIFT > PAGE_SHIFT)
3736 return HUGETLB_PAGE_ORDER;
3737
3738 return MAX_ORDER-1;
3739 }
3740
3741 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3742 static inline void __init set_pageblock_order(unsigned int order)
3743 {
3744 /* Check that pageblock_nr_pages has not already been setup */
3745 if (pageblock_order)
3746 return;
3747
3748 /*
3749 * Assume the largest contiguous order of interest is a huge page.
3750 * This value may be variable depending on boot parameters on IA64
3751 */
3752 pageblock_order = order;
3753 }
3754 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3755
3756 /*
3757 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3758 * and pageblock_default_order() are unused as pageblock_order is set
3759 * at compile-time. See include/linux/pageblock-flags.h for the values of
3760 * pageblock_order based on the kernel config
3761 */
3762 static inline int pageblock_default_order(unsigned int order)
3763 {
3764 return MAX_ORDER-1;
3765 }
3766 #define set_pageblock_order(x) do {} while (0)
3767
3768 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3769
3770 /*
3771 * Set up the zone data structures:
3772 * - mark all pages reserved
3773 * - mark all memory queues empty
3774 * - clear the memory bitmaps
3775 */
3776 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3777 unsigned long *zones_size, unsigned long *zholes_size)
3778 {
3779 enum zone_type j;
3780 int nid = pgdat->node_id;
3781 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3782 int ret;
3783
3784 pgdat_resize_init(pgdat);
3785 pgdat->nr_zones = 0;
3786 init_waitqueue_head(&pgdat->kswapd_wait);
3787 pgdat->kswapd_max_order = 0;
3788 pgdat_page_cgroup_init(pgdat);
3789
3790 for (j = 0; j < MAX_NR_ZONES; j++) {
3791 struct zone *zone = pgdat->node_zones + j;
3792 unsigned long size, realsize, memmap_pages;
3793 enum lru_list l;
3794
3795 size = zone_spanned_pages_in_node(nid, j, zones_size);
3796 realsize = size - zone_absent_pages_in_node(nid, j,
3797 zholes_size);
3798
3799 /*
3800 * Adjust realsize so that it accounts for how much memory
3801 * is used by this zone for memmap. This affects the watermark
3802 * and per-cpu initialisations
3803 */
3804 memmap_pages =
3805 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3806 if (realsize >= memmap_pages) {
3807 realsize -= memmap_pages;
3808 if (memmap_pages)
3809 printk(KERN_DEBUG
3810 " %s zone: %lu pages used for memmap\n",
3811 zone_names[j], memmap_pages);
3812 } else
3813 printk(KERN_WARNING
3814 " %s zone: %lu pages exceeds realsize %lu\n",
3815 zone_names[j], memmap_pages, realsize);
3816
3817 /* Account for reserved pages */
3818 if (j == 0 && realsize > dma_reserve) {
3819 realsize -= dma_reserve;
3820 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3821 zone_names[0], dma_reserve);
3822 }
3823
3824 if (!is_highmem_idx(j))
3825 nr_kernel_pages += realsize;
3826 nr_all_pages += realsize;
3827
3828 zone->spanned_pages = size;
3829 zone->present_pages = realsize;
3830 #ifdef CONFIG_NUMA
3831 zone->node = nid;
3832 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3833 / 100;
3834 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3835 #endif
3836 zone->name = zone_names[j];
3837 spin_lock_init(&zone->lock);
3838 spin_lock_init(&zone->lru_lock);
3839 zone_seqlock_init(zone);
3840 zone->zone_pgdat = pgdat;
3841
3842 zone->prev_priority = DEF_PRIORITY;
3843
3844 zone_pcp_init(zone);
3845 for_each_lru(l) {
3846 INIT_LIST_HEAD(&zone->lru[l].list);
3847 zone->reclaim_stat.nr_saved_scan[l] = 0;
3848 }
3849 zone->reclaim_stat.recent_rotated[0] = 0;
3850 zone->reclaim_stat.recent_rotated[1] = 0;
3851 zone->reclaim_stat.recent_scanned[0] = 0;
3852 zone->reclaim_stat.recent_scanned[1] = 0;
3853 zap_zone_vm_stats(zone);
3854 zone->flags = 0;
3855 if (!size)
3856 continue;
3857
3858 set_pageblock_order(pageblock_default_order());
3859 setup_usemap(pgdat, zone, size);
3860 ret = init_currently_empty_zone(zone, zone_start_pfn,
3861 size, MEMMAP_EARLY);
3862 BUG_ON(ret);
3863 memmap_init(size, nid, j, zone_start_pfn);
3864 zone_start_pfn += size;
3865 }
3866 }
3867
3868 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3869 {
3870 /* Skip empty nodes */
3871 if (!pgdat->node_spanned_pages)
3872 return;
3873
3874 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3875 /* ia64 gets its own node_mem_map, before this, without bootmem */
3876 if (!pgdat->node_mem_map) {
3877 unsigned long size, start, end;
3878 struct page *map;
3879
3880 /*
3881 * The zone's endpoints aren't required to be MAX_ORDER
3882 * aligned but the node_mem_map endpoints must be in order
3883 * for the buddy allocator to function correctly.
3884 */
3885 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3886 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3887 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3888 size = (end - start) * sizeof(struct page);
3889 map = alloc_remap(pgdat->node_id, size);
3890 if (!map)
3891 map = alloc_bootmem_node(pgdat, size);
3892 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3893 }
3894 #ifndef CONFIG_NEED_MULTIPLE_NODES
3895 /*
3896 * With no DISCONTIG, the global mem_map is just set as node 0's
3897 */
3898 if (pgdat == NODE_DATA(0)) {
3899 mem_map = NODE_DATA(0)->node_mem_map;
3900 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3901 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3902 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3903 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3904 }
3905 #endif
3906 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3907 }
3908
3909 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3910 unsigned long node_start_pfn, unsigned long *zholes_size)
3911 {
3912 pg_data_t *pgdat = NODE_DATA(nid);
3913
3914 pgdat->node_id = nid;
3915 pgdat->node_start_pfn = node_start_pfn;
3916 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3917
3918 alloc_node_mem_map(pgdat);
3919 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3920 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3921 nid, (unsigned long)pgdat,
3922 (unsigned long)pgdat->node_mem_map);
3923 #endif
3924
3925 free_area_init_core(pgdat, zones_size, zholes_size);
3926 }
3927
3928 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3929
3930 #if MAX_NUMNODES > 1
3931 /*
3932 * Figure out the number of possible node ids.
3933 */
3934 static void __init setup_nr_node_ids(void)
3935 {
3936 unsigned int node;
3937 unsigned int highest = 0;
3938
3939 for_each_node_mask(node, node_possible_map)
3940 highest = node;
3941 nr_node_ids = highest + 1;
3942 }
3943 #else
3944 static inline void setup_nr_node_ids(void)
3945 {
3946 }
3947 #endif
3948
3949 /**
3950 * add_active_range - Register a range of PFNs backed by physical memory
3951 * @nid: The node ID the range resides on
3952 * @start_pfn: The start PFN of the available physical memory
3953 * @end_pfn: The end PFN of the available physical memory
3954 *
3955 * These ranges are stored in an early_node_map[] and later used by
3956 * free_area_init_nodes() to calculate zone sizes and holes. If the
3957 * range spans a memory hole, it is up to the architecture to ensure
3958 * the memory is not freed by the bootmem allocator. If possible
3959 * the range being registered will be merged with existing ranges.
3960 */
3961 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3962 unsigned long end_pfn)
3963 {
3964 int i;
3965
3966 mminit_dprintk(MMINIT_TRACE, "memory_register",
3967 "Entering add_active_range(%d, %#lx, %#lx) "
3968 "%d entries of %d used\n",
3969 nid, start_pfn, end_pfn,
3970 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3971
3972 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3973
3974 /* Merge with existing active regions if possible */
3975 for (i = 0; i < nr_nodemap_entries; i++) {
3976 if (early_node_map[i].nid != nid)
3977 continue;
3978
3979 /* Skip if an existing region covers this new one */
3980 if (start_pfn >= early_node_map[i].start_pfn &&
3981 end_pfn <= early_node_map[i].end_pfn)
3982 return;
3983
3984 /* Merge forward if suitable */
3985 if (start_pfn <= early_node_map[i].end_pfn &&
3986 end_pfn > early_node_map[i].end_pfn) {
3987 early_node_map[i].end_pfn = end_pfn;
3988 return;
3989 }
3990
3991 /* Merge backward if suitable */
3992 if (start_pfn < early_node_map[i].start_pfn &&
3993 end_pfn >= early_node_map[i].start_pfn) {
3994 early_node_map[i].start_pfn = start_pfn;
3995 return;
3996 }
3997 }
3998
3999 /* Check that early_node_map is large enough */
4000 if (i >= MAX_ACTIVE_REGIONS) {
4001 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4002 MAX_ACTIVE_REGIONS);
4003 return;
4004 }
4005
4006 early_node_map[i].nid = nid;
4007 early_node_map[i].start_pfn = start_pfn;
4008 early_node_map[i].end_pfn = end_pfn;
4009 nr_nodemap_entries = i + 1;
4010 }
4011
4012 /**
4013 * remove_active_range - Shrink an existing registered range of PFNs
4014 * @nid: The node id the range is on that should be shrunk
4015 * @start_pfn: The new PFN of the range
4016 * @end_pfn: The new PFN of the range
4017 *
4018 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4019 * The map is kept near the end physical page range that has already been
4020 * registered. This function allows an arch to shrink an existing registered
4021 * range.
4022 */
4023 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4024 unsigned long end_pfn)
4025 {
4026 int i, j;
4027 int removed = 0;
4028
4029 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4030 nid, start_pfn, end_pfn);
4031
4032 /* Find the old active region end and shrink */
4033 for_each_active_range_index_in_nid(i, nid) {
4034 if (early_node_map[i].start_pfn >= start_pfn &&
4035 early_node_map[i].end_pfn <= end_pfn) {
4036 /* clear it */
4037 early_node_map[i].start_pfn = 0;
4038 early_node_map[i].end_pfn = 0;
4039 removed = 1;
4040 continue;
4041 }
4042 if (early_node_map[i].start_pfn < start_pfn &&
4043 early_node_map[i].end_pfn > start_pfn) {
4044 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4045 early_node_map[i].end_pfn = start_pfn;
4046 if (temp_end_pfn > end_pfn)
4047 add_active_range(nid, end_pfn, temp_end_pfn);
4048 continue;
4049 }
4050 if (early_node_map[i].start_pfn >= start_pfn &&
4051 early_node_map[i].end_pfn > end_pfn &&
4052 early_node_map[i].start_pfn < end_pfn) {
4053 early_node_map[i].start_pfn = end_pfn;
4054 continue;
4055 }
4056 }
4057
4058 if (!removed)
4059 return;
4060
4061 /* remove the blank ones */
4062 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4063 if (early_node_map[i].nid != nid)
4064 continue;
4065 if (early_node_map[i].end_pfn)
4066 continue;
4067 /* we found it, get rid of it */
4068 for (j = i; j < nr_nodemap_entries - 1; j++)
4069 memcpy(&early_node_map[j], &early_node_map[j+1],
4070 sizeof(early_node_map[j]));
4071 j = nr_nodemap_entries - 1;
4072 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4073 nr_nodemap_entries--;
4074 }
4075 }
4076
4077 /**
4078 * remove_all_active_ranges - Remove all currently registered regions
4079 *
4080 * During discovery, it may be found that a table like SRAT is invalid
4081 * and an alternative discovery method must be used. This function removes
4082 * all currently registered regions.
4083 */
4084 void __init remove_all_active_ranges(void)
4085 {
4086 memset(early_node_map, 0, sizeof(early_node_map));
4087 nr_nodemap_entries = 0;
4088 }
4089
4090 /* Compare two active node_active_regions */
4091 static int __init cmp_node_active_region(const void *a, const void *b)
4092 {
4093 struct node_active_region *arange = (struct node_active_region *)a;
4094 struct node_active_region *brange = (struct node_active_region *)b;
4095
4096 /* Done this way to avoid overflows */
4097 if (arange->start_pfn > brange->start_pfn)
4098 return 1;
4099 if (arange->start_pfn < brange->start_pfn)
4100 return -1;
4101
4102 return 0;
4103 }
4104
4105 /* sort the node_map by start_pfn */
4106 void __init sort_node_map(void)
4107 {
4108 sort(early_node_map, (size_t)nr_nodemap_entries,
4109 sizeof(struct node_active_region),
4110 cmp_node_active_region, NULL);
4111 }
4112
4113 /* Find the lowest pfn for a node */
4114 static unsigned long __init find_min_pfn_for_node(int nid)
4115 {
4116 int i;
4117 unsigned long min_pfn = ULONG_MAX;
4118
4119 /* Assuming a sorted map, the first range found has the starting pfn */
4120 for_each_active_range_index_in_nid(i, nid)
4121 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4122
4123 if (min_pfn == ULONG_MAX) {
4124 printk(KERN_WARNING
4125 "Could not find start_pfn for node %d\n", nid);
4126 return 0;
4127 }
4128
4129 return min_pfn;
4130 }
4131
4132 /**
4133 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4134 *
4135 * It returns the minimum PFN based on information provided via
4136 * add_active_range().
4137 */
4138 unsigned long __init find_min_pfn_with_active_regions(void)
4139 {
4140 return find_min_pfn_for_node(MAX_NUMNODES);
4141 }
4142
4143 /*
4144 * early_calculate_totalpages()
4145 * Sum pages in active regions for movable zone.
4146 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4147 */
4148 static unsigned long __init early_calculate_totalpages(void)
4149 {
4150 int i;
4151 unsigned long totalpages = 0;
4152
4153 for (i = 0; i < nr_nodemap_entries; i++) {
4154 unsigned long pages = early_node_map[i].end_pfn -
4155 early_node_map[i].start_pfn;
4156 totalpages += pages;
4157 if (pages)
4158 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4159 }
4160 return totalpages;
4161 }
4162
4163 /*
4164 * Find the PFN the Movable zone begins in each node. Kernel memory
4165 * is spread evenly between nodes as long as the nodes have enough
4166 * memory. When they don't, some nodes will have more kernelcore than
4167 * others
4168 */
4169 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4170 {
4171 int i, nid;
4172 unsigned long usable_startpfn;
4173 unsigned long kernelcore_node, kernelcore_remaining;
4174 /* save the state before borrow the nodemask */
4175 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4176 unsigned long totalpages = early_calculate_totalpages();
4177 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4178
4179 /*
4180 * If movablecore was specified, calculate what size of
4181 * kernelcore that corresponds so that memory usable for
4182 * any allocation type is evenly spread. If both kernelcore
4183 * and movablecore are specified, then the value of kernelcore
4184 * will be used for required_kernelcore if it's greater than
4185 * what movablecore would have allowed.
4186 */
4187 if (required_movablecore) {
4188 unsigned long corepages;
4189
4190 /*
4191 * Round-up so that ZONE_MOVABLE is at least as large as what
4192 * was requested by the user
4193 */
4194 required_movablecore =
4195 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4196 corepages = totalpages - required_movablecore;
4197
4198 required_kernelcore = max(required_kernelcore, corepages);
4199 }
4200
4201 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4202 if (!required_kernelcore)
4203 goto out;
4204
4205 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4206 find_usable_zone_for_movable();
4207 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4208
4209 restart:
4210 /* Spread kernelcore memory as evenly as possible throughout nodes */
4211 kernelcore_node = required_kernelcore / usable_nodes;
4212 for_each_node_state(nid, N_HIGH_MEMORY) {
4213 /*
4214 * Recalculate kernelcore_node if the division per node
4215 * now exceeds what is necessary to satisfy the requested
4216 * amount of memory for the kernel
4217 */
4218 if (required_kernelcore < kernelcore_node)
4219 kernelcore_node = required_kernelcore / usable_nodes;
4220
4221 /*
4222 * As the map is walked, we track how much memory is usable
4223 * by the kernel using kernelcore_remaining. When it is
4224 * 0, the rest of the node is usable by ZONE_MOVABLE
4225 */
4226 kernelcore_remaining = kernelcore_node;
4227
4228 /* Go through each range of PFNs within this node */
4229 for_each_active_range_index_in_nid(i, nid) {
4230 unsigned long start_pfn, end_pfn;
4231 unsigned long size_pages;
4232
4233 start_pfn = max(early_node_map[i].start_pfn,
4234 zone_movable_pfn[nid]);
4235 end_pfn = early_node_map[i].end_pfn;
4236 if (start_pfn >= end_pfn)
4237 continue;
4238
4239 /* Account for what is only usable for kernelcore */
4240 if (start_pfn < usable_startpfn) {
4241 unsigned long kernel_pages;
4242 kernel_pages = min(end_pfn, usable_startpfn)
4243 - start_pfn;
4244
4245 kernelcore_remaining -= min(kernel_pages,
4246 kernelcore_remaining);
4247 required_kernelcore -= min(kernel_pages,
4248 required_kernelcore);
4249
4250 /* Continue if range is now fully accounted */
4251 if (end_pfn <= usable_startpfn) {
4252
4253 /*
4254 * Push zone_movable_pfn to the end so
4255 * that if we have to rebalance
4256 * kernelcore across nodes, we will
4257 * not double account here
4258 */
4259 zone_movable_pfn[nid] = end_pfn;
4260 continue;
4261 }
4262 start_pfn = usable_startpfn;
4263 }
4264
4265 /*
4266 * The usable PFN range for ZONE_MOVABLE is from
4267 * start_pfn->end_pfn. Calculate size_pages as the
4268 * number of pages used as kernelcore
4269 */
4270 size_pages = end_pfn - start_pfn;
4271 if (size_pages > kernelcore_remaining)
4272 size_pages = kernelcore_remaining;
4273 zone_movable_pfn[nid] = start_pfn + size_pages;
4274
4275 /*
4276 * Some kernelcore has been met, update counts and
4277 * break if the kernelcore for this node has been
4278 * satisified
4279 */
4280 required_kernelcore -= min(required_kernelcore,
4281 size_pages);
4282 kernelcore_remaining -= size_pages;
4283 if (!kernelcore_remaining)
4284 break;
4285 }
4286 }
4287
4288 /*
4289 * If there is still required_kernelcore, we do another pass with one
4290 * less node in the count. This will push zone_movable_pfn[nid] further
4291 * along on the nodes that still have memory until kernelcore is
4292 * satisified
4293 */
4294 usable_nodes--;
4295 if (usable_nodes && required_kernelcore > usable_nodes)
4296 goto restart;
4297
4298 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4299 for (nid = 0; nid < MAX_NUMNODES; nid++)
4300 zone_movable_pfn[nid] =
4301 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4302
4303 out:
4304 /* restore the node_state */
4305 node_states[N_HIGH_MEMORY] = saved_node_state;
4306 }
4307
4308 /* Any regular memory on that node ? */
4309 static void check_for_regular_memory(pg_data_t *pgdat)
4310 {
4311 #ifdef CONFIG_HIGHMEM
4312 enum zone_type zone_type;
4313
4314 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4315 struct zone *zone = &pgdat->node_zones[zone_type];
4316 if (zone->present_pages)
4317 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4318 }
4319 #endif
4320 }
4321
4322 /**
4323 * free_area_init_nodes - Initialise all pg_data_t and zone data
4324 * @max_zone_pfn: an array of max PFNs for each zone
4325 *
4326 * This will call free_area_init_node() for each active node in the system.
4327 * Using the page ranges provided by add_active_range(), the size of each
4328 * zone in each node and their holes is calculated. If the maximum PFN
4329 * between two adjacent zones match, it is assumed that the zone is empty.
4330 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4331 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4332 * starts where the previous one ended. For example, ZONE_DMA32 starts
4333 * at arch_max_dma_pfn.
4334 */
4335 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4336 {
4337 unsigned long nid;
4338 int i;
4339
4340 /* Sort early_node_map as initialisation assumes it is sorted */
4341 sort_node_map();
4342
4343 /* Record where the zone boundaries are */
4344 memset(arch_zone_lowest_possible_pfn, 0,
4345 sizeof(arch_zone_lowest_possible_pfn));
4346 memset(arch_zone_highest_possible_pfn, 0,
4347 sizeof(arch_zone_highest_possible_pfn));
4348 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4349 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4350 for (i = 1; i < MAX_NR_ZONES; i++) {
4351 if (i == ZONE_MOVABLE)
4352 continue;
4353 arch_zone_lowest_possible_pfn[i] =
4354 arch_zone_highest_possible_pfn[i-1];
4355 arch_zone_highest_possible_pfn[i] =
4356 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4357 }
4358 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4359 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4360
4361 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4362 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4363 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4364
4365 /* Print out the zone ranges */
4366 printk("Zone PFN ranges:\n");
4367 for (i = 0; i < MAX_NR_ZONES; i++) {
4368 if (i == ZONE_MOVABLE)
4369 continue;
4370 printk(" %-8s %0#10lx -> %0#10lx\n",
4371 zone_names[i],
4372 arch_zone_lowest_possible_pfn[i],
4373 arch_zone_highest_possible_pfn[i]);
4374 }
4375
4376 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4377 printk("Movable zone start PFN for each node\n");
4378 for (i = 0; i < MAX_NUMNODES; i++) {
4379 if (zone_movable_pfn[i])
4380 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4381 }
4382
4383 /* Print out the early_node_map[] */
4384 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4385 for (i = 0; i < nr_nodemap_entries; i++)
4386 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4387 early_node_map[i].start_pfn,
4388 early_node_map[i].end_pfn);
4389
4390 /* Initialise every node */
4391 mminit_verify_pageflags_layout();
4392 setup_nr_node_ids();
4393 for_each_online_node(nid) {
4394 pg_data_t *pgdat = NODE_DATA(nid);
4395 free_area_init_node(nid, NULL,
4396 find_min_pfn_for_node(nid), NULL);
4397
4398 /* Any memory on that node */
4399 if (pgdat->node_present_pages)
4400 node_set_state(nid, N_HIGH_MEMORY);
4401 check_for_regular_memory(pgdat);
4402 }
4403 }
4404
4405 static int __init cmdline_parse_core(char *p, unsigned long *core)
4406 {
4407 unsigned long long coremem;
4408 if (!p)
4409 return -EINVAL;
4410
4411 coremem = memparse(p, &p);
4412 *core = coremem >> PAGE_SHIFT;
4413
4414 /* Paranoid check that UL is enough for the coremem value */
4415 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4416
4417 return 0;
4418 }
4419
4420 /*
4421 * kernelcore=size sets the amount of memory for use for allocations that
4422 * cannot be reclaimed or migrated.
4423 */
4424 static int __init cmdline_parse_kernelcore(char *p)
4425 {
4426 return cmdline_parse_core(p, &required_kernelcore);
4427 }
4428
4429 /*
4430 * movablecore=size sets the amount of memory for use for allocations that
4431 * can be reclaimed or migrated.
4432 */
4433 static int __init cmdline_parse_movablecore(char *p)
4434 {
4435 return cmdline_parse_core(p, &required_movablecore);
4436 }
4437
4438 early_param("kernelcore", cmdline_parse_kernelcore);
4439 early_param("movablecore", cmdline_parse_movablecore);
4440
4441 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4442
4443 /**
4444 * set_dma_reserve - set the specified number of pages reserved in the first zone
4445 * @new_dma_reserve: The number of pages to mark reserved
4446 *
4447 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4448 * In the DMA zone, a significant percentage may be consumed by kernel image
4449 * and other unfreeable allocations which can skew the watermarks badly. This
4450 * function may optionally be used to account for unfreeable pages in the
4451 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4452 * smaller per-cpu batchsize.
4453 */
4454 void __init set_dma_reserve(unsigned long new_dma_reserve)
4455 {
4456 dma_reserve = new_dma_reserve;
4457 }
4458
4459 #ifndef CONFIG_NEED_MULTIPLE_NODES
4460 struct pglist_data __refdata contig_page_data = {
4461 #ifndef CONFIG_NO_BOOTMEM
4462 .bdata = &bootmem_node_data[0]
4463 #endif
4464 };
4465 EXPORT_SYMBOL(contig_page_data);
4466 #endif
4467
4468 void __init free_area_init(unsigned long *zones_size)
4469 {
4470 free_area_init_node(0, zones_size,
4471 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4472 }
4473
4474 static int page_alloc_cpu_notify(struct notifier_block *self,
4475 unsigned long action, void *hcpu)
4476 {
4477 int cpu = (unsigned long)hcpu;
4478
4479 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4480 drain_pages(cpu);
4481
4482 /*
4483 * Spill the event counters of the dead processor
4484 * into the current processors event counters.
4485 * This artificially elevates the count of the current
4486 * processor.
4487 */
4488 vm_events_fold_cpu(cpu);
4489
4490 /*
4491 * Zero the differential counters of the dead processor
4492 * so that the vm statistics are consistent.
4493 *
4494 * This is only okay since the processor is dead and cannot
4495 * race with what we are doing.
4496 */
4497 refresh_cpu_vm_stats(cpu);
4498 }
4499 return NOTIFY_OK;
4500 }
4501
4502 void __init page_alloc_init(void)
4503 {
4504 hotcpu_notifier(page_alloc_cpu_notify, 0);
4505 }
4506
4507 /*
4508 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4509 * or min_free_kbytes changes.
4510 */
4511 static void calculate_totalreserve_pages(void)
4512 {
4513 struct pglist_data *pgdat;
4514 unsigned long reserve_pages = 0;
4515 enum zone_type i, j;
4516
4517 for_each_online_pgdat(pgdat) {
4518 for (i = 0; i < MAX_NR_ZONES; i++) {
4519 struct zone *zone = pgdat->node_zones + i;
4520 unsigned long max = 0;
4521
4522 /* Find valid and maximum lowmem_reserve in the zone */
4523 for (j = i; j < MAX_NR_ZONES; j++) {
4524 if (zone->lowmem_reserve[j] > max)
4525 max = zone->lowmem_reserve[j];
4526 }
4527
4528 /* we treat the high watermark as reserved pages. */
4529 max += high_wmark_pages(zone);
4530
4531 if (max > zone->present_pages)
4532 max = zone->present_pages;
4533 reserve_pages += max;
4534 }
4535 }
4536 totalreserve_pages = reserve_pages;
4537 }
4538
4539 /*
4540 * setup_per_zone_lowmem_reserve - called whenever
4541 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4542 * has a correct pages reserved value, so an adequate number of
4543 * pages are left in the zone after a successful __alloc_pages().
4544 */
4545 static void setup_per_zone_lowmem_reserve(void)
4546 {
4547 struct pglist_data *pgdat;
4548 enum zone_type j, idx;
4549
4550 for_each_online_pgdat(pgdat) {
4551 for (j = 0; j < MAX_NR_ZONES; j++) {
4552 struct zone *zone = pgdat->node_zones + j;
4553 unsigned long present_pages = zone->present_pages;
4554
4555 zone->lowmem_reserve[j] = 0;
4556
4557 idx = j;
4558 while (idx) {
4559 struct zone *lower_zone;
4560
4561 idx--;
4562
4563 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4564 sysctl_lowmem_reserve_ratio[idx] = 1;
4565
4566 lower_zone = pgdat->node_zones + idx;
4567 lower_zone->lowmem_reserve[j] = present_pages /
4568 sysctl_lowmem_reserve_ratio[idx];
4569 present_pages += lower_zone->present_pages;
4570 }
4571 }
4572 }
4573
4574 /* update totalreserve_pages */
4575 calculate_totalreserve_pages();
4576 }
4577
4578 /**
4579 * setup_per_zone_wmarks - called when min_free_kbytes changes
4580 * or when memory is hot-{added|removed}
4581 *
4582 * Ensures that the watermark[min,low,high] values for each zone are set
4583 * correctly with respect to min_free_kbytes.
4584 */
4585 void setup_per_zone_wmarks(void)
4586 {
4587 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4588 unsigned long lowmem_pages = 0;
4589 struct zone *zone;
4590 unsigned long flags;
4591
4592 /* Calculate total number of !ZONE_HIGHMEM pages */
4593 for_each_zone(zone) {
4594 if (!is_highmem(zone))
4595 lowmem_pages += zone->present_pages;
4596 }
4597
4598 for_each_zone(zone) {
4599 u64 tmp;
4600
4601 spin_lock_irqsave(&zone->lock, flags);
4602 tmp = (u64)pages_min * zone->present_pages;
4603 do_div(tmp, lowmem_pages);
4604 if (is_highmem(zone)) {
4605 /*
4606 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4607 * need highmem pages, so cap pages_min to a small
4608 * value here.
4609 *
4610 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4611 * deltas controls asynch page reclaim, and so should
4612 * not be capped for highmem.
4613 */
4614 int min_pages;
4615
4616 min_pages = zone->present_pages / 1024;
4617 if (min_pages < SWAP_CLUSTER_MAX)
4618 min_pages = SWAP_CLUSTER_MAX;
4619 if (min_pages > 128)
4620 min_pages = 128;
4621 zone->watermark[WMARK_MIN] = min_pages;
4622 } else {
4623 /*
4624 * If it's a lowmem zone, reserve a number of pages
4625 * proportionate to the zone's size.
4626 */
4627 zone->watermark[WMARK_MIN] = tmp;
4628 }
4629
4630 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4631 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4632 setup_zone_migrate_reserve(zone);
4633 spin_unlock_irqrestore(&zone->lock, flags);
4634 }
4635
4636 /* update totalreserve_pages */
4637 calculate_totalreserve_pages();
4638 }
4639
4640 /*
4641 * The inactive anon list should be small enough that the VM never has to
4642 * do too much work, but large enough that each inactive page has a chance
4643 * to be referenced again before it is swapped out.
4644 *
4645 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4646 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4647 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4648 * the anonymous pages are kept on the inactive list.
4649 *
4650 * total target max
4651 * memory ratio inactive anon
4652 * -------------------------------------
4653 * 10MB 1 5MB
4654 * 100MB 1 50MB
4655 * 1GB 3 250MB
4656 * 10GB 10 0.9GB
4657 * 100GB 31 3GB
4658 * 1TB 101 10GB
4659 * 10TB 320 32GB
4660 */
4661 void calculate_zone_inactive_ratio(struct zone *zone)
4662 {
4663 unsigned int gb, ratio;
4664
4665 /* Zone size in gigabytes */
4666 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4667 if (gb)
4668 ratio = int_sqrt(10 * gb);
4669 else
4670 ratio = 1;
4671
4672 zone->inactive_ratio = ratio;
4673 }
4674
4675 static void __init setup_per_zone_inactive_ratio(void)
4676 {
4677 struct zone *zone;
4678
4679 for_each_zone(zone)
4680 calculate_zone_inactive_ratio(zone);
4681 }
4682
4683 /*
4684 * Initialise min_free_kbytes.
4685 *
4686 * For small machines we want it small (128k min). For large machines
4687 * we want it large (64MB max). But it is not linear, because network
4688 * bandwidth does not increase linearly with machine size. We use
4689 *
4690 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4691 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4692 *
4693 * which yields
4694 *
4695 * 16MB: 512k
4696 * 32MB: 724k
4697 * 64MB: 1024k
4698 * 128MB: 1448k
4699 * 256MB: 2048k
4700 * 512MB: 2896k
4701 * 1024MB: 4096k
4702 * 2048MB: 5792k
4703 * 4096MB: 8192k
4704 * 8192MB: 11584k
4705 * 16384MB: 16384k
4706 */
4707 static int __init init_per_zone_wmark_min(void)
4708 {
4709 unsigned long lowmem_kbytes;
4710
4711 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4712
4713 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4714 if (min_free_kbytes < 128)
4715 min_free_kbytes = 128;
4716 if (min_free_kbytes > 65536)
4717 min_free_kbytes = 65536;
4718 setup_per_zone_wmarks();
4719 setup_per_zone_lowmem_reserve();
4720 setup_per_zone_inactive_ratio();
4721 return 0;
4722 }
4723 module_init(init_per_zone_wmark_min)
4724
4725 /*
4726 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4727 * that we can call two helper functions whenever min_free_kbytes
4728 * changes.
4729 */
4730 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4731 void __user *buffer, size_t *length, loff_t *ppos)
4732 {
4733 proc_dointvec(table, write, buffer, length, ppos);
4734 if (write)
4735 setup_per_zone_wmarks();
4736 return 0;
4737 }
4738
4739 #ifdef CONFIG_NUMA
4740 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4741 void __user *buffer, size_t *length, loff_t *ppos)
4742 {
4743 struct zone *zone;
4744 int rc;
4745
4746 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4747 if (rc)
4748 return rc;
4749
4750 for_each_zone(zone)
4751 zone->min_unmapped_pages = (zone->present_pages *
4752 sysctl_min_unmapped_ratio) / 100;
4753 return 0;
4754 }
4755
4756 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4757 void __user *buffer, size_t *length, loff_t *ppos)
4758 {
4759 struct zone *zone;
4760 int rc;
4761
4762 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4763 if (rc)
4764 return rc;
4765
4766 for_each_zone(zone)
4767 zone->min_slab_pages = (zone->present_pages *
4768 sysctl_min_slab_ratio) / 100;
4769 return 0;
4770 }
4771 #endif
4772
4773 /*
4774 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4775 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4776 * whenever sysctl_lowmem_reserve_ratio changes.
4777 *
4778 * The reserve ratio obviously has absolutely no relation with the
4779 * minimum watermarks. The lowmem reserve ratio can only make sense
4780 * if in function of the boot time zone sizes.
4781 */
4782 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4783 void __user *buffer, size_t *length, loff_t *ppos)
4784 {
4785 proc_dointvec_minmax(table, write, buffer, length, ppos);
4786 setup_per_zone_lowmem_reserve();
4787 return 0;
4788 }
4789
4790 /*
4791 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4792 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4793 * can have before it gets flushed back to buddy allocator.
4794 */
4795
4796 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4797 void __user *buffer, size_t *length, loff_t *ppos)
4798 {
4799 struct zone *zone;
4800 unsigned int cpu;
4801 int ret;
4802
4803 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
4804 if (!write || (ret == -EINVAL))
4805 return ret;
4806 for_each_populated_zone(zone) {
4807 for_each_possible_cpu(cpu) {
4808 unsigned long high;
4809 high = zone->present_pages / percpu_pagelist_fraction;
4810 setup_pagelist_highmark(
4811 per_cpu_ptr(zone->pageset, cpu), high);
4812 }
4813 }
4814 return 0;
4815 }
4816
4817 int hashdist = HASHDIST_DEFAULT;
4818
4819 #ifdef CONFIG_NUMA
4820 static int __init set_hashdist(char *str)
4821 {
4822 if (!str)
4823 return 0;
4824 hashdist = simple_strtoul(str, &str, 0);
4825 return 1;
4826 }
4827 __setup("hashdist=", set_hashdist);
4828 #endif
4829
4830 /*
4831 * allocate a large system hash table from bootmem
4832 * - it is assumed that the hash table must contain an exact power-of-2
4833 * quantity of entries
4834 * - limit is the number of hash buckets, not the total allocation size
4835 */
4836 void *__init alloc_large_system_hash(const char *tablename,
4837 unsigned long bucketsize,
4838 unsigned long numentries,
4839 int scale,
4840 int flags,
4841 unsigned int *_hash_shift,
4842 unsigned int *_hash_mask,
4843 unsigned long limit)
4844 {
4845 unsigned long long max = limit;
4846 unsigned long log2qty, size;
4847 void *table = NULL;
4848
4849 /* allow the kernel cmdline to have a say */
4850 if (!numentries) {
4851 /* round applicable memory size up to nearest megabyte */
4852 numentries = nr_kernel_pages;
4853 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4854 numentries >>= 20 - PAGE_SHIFT;
4855 numentries <<= 20 - PAGE_SHIFT;
4856
4857 /* limit to 1 bucket per 2^scale bytes of low memory */
4858 if (scale > PAGE_SHIFT)
4859 numentries >>= (scale - PAGE_SHIFT);
4860 else
4861 numentries <<= (PAGE_SHIFT - scale);
4862
4863 /* Make sure we've got at least a 0-order allocation.. */
4864 if (unlikely(flags & HASH_SMALL)) {
4865 /* Makes no sense without HASH_EARLY */
4866 WARN_ON(!(flags & HASH_EARLY));
4867 if (!(numentries >> *_hash_shift)) {
4868 numentries = 1UL << *_hash_shift;
4869 BUG_ON(!numentries);
4870 }
4871 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4872 numentries = PAGE_SIZE / bucketsize;
4873 }
4874 numentries = roundup_pow_of_two(numentries);
4875
4876 /* limit allocation size to 1/16 total memory by default */
4877 if (max == 0) {
4878 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4879 do_div(max, bucketsize);
4880 }
4881
4882 if (numentries > max)
4883 numentries = max;
4884
4885 log2qty = ilog2(numentries);
4886
4887 do {
4888 size = bucketsize << log2qty;
4889 if (flags & HASH_EARLY)
4890 table = alloc_bootmem_nopanic(size);
4891 else if (hashdist)
4892 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4893 else {
4894 /*
4895 * If bucketsize is not a power-of-two, we may free
4896 * some pages at the end of hash table which
4897 * alloc_pages_exact() automatically does
4898 */
4899 if (get_order(size) < MAX_ORDER) {
4900 table = alloc_pages_exact(size, GFP_ATOMIC);
4901 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4902 }
4903 }
4904 } while (!table && size > PAGE_SIZE && --log2qty);
4905
4906 if (!table)
4907 panic("Failed to allocate %s hash table\n", tablename);
4908
4909 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4910 tablename,
4911 (1U << log2qty),
4912 ilog2(size) - PAGE_SHIFT,
4913 size);
4914
4915 if (_hash_shift)
4916 *_hash_shift = log2qty;
4917 if (_hash_mask)
4918 *_hash_mask = (1 << log2qty) - 1;
4919
4920 return table;
4921 }
4922
4923 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4924 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4925 unsigned long pfn)
4926 {
4927 #ifdef CONFIG_SPARSEMEM
4928 return __pfn_to_section(pfn)->pageblock_flags;
4929 #else
4930 return zone->pageblock_flags;
4931 #endif /* CONFIG_SPARSEMEM */
4932 }
4933
4934 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4935 {
4936 #ifdef CONFIG_SPARSEMEM
4937 pfn &= (PAGES_PER_SECTION-1);
4938 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4939 #else
4940 pfn = pfn - zone->zone_start_pfn;
4941 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4942 #endif /* CONFIG_SPARSEMEM */
4943 }
4944
4945 /**
4946 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4947 * @page: The page within the block of interest
4948 * @start_bitidx: The first bit of interest to retrieve
4949 * @end_bitidx: The last bit of interest
4950 * returns pageblock_bits flags
4951 */
4952 unsigned long get_pageblock_flags_group(struct page *page,
4953 int start_bitidx, int end_bitidx)
4954 {
4955 struct zone *zone;
4956 unsigned long *bitmap;
4957 unsigned long pfn, bitidx;
4958 unsigned long flags = 0;
4959 unsigned long value = 1;
4960
4961 zone = page_zone(page);
4962 pfn = page_to_pfn(page);
4963 bitmap = get_pageblock_bitmap(zone, pfn);
4964 bitidx = pfn_to_bitidx(zone, pfn);
4965
4966 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4967 if (test_bit(bitidx + start_bitidx, bitmap))
4968 flags |= value;
4969
4970 return flags;
4971 }
4972
4973 /**
4974 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4975 * @page: The page within the block of interest
4976 * @start_bitidx: The first bit of interest
4977 * @end_bitidx: The last bit of interest
4978 * @flags: The flags to set
4979 */
4980 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4981 int start_bitidx, int end_bitidx)
4982 {
4983 struct zone *zone;
4984 unsigned long *bitmap;
4985 unsigned long pfn, bitidx;
4986 unsigned long value = 1;
4987
4988 zone = page_zone(page);
4989 pfn = page_to_pfn(page);
4990 bitmap = get_pageblock_bitmap(zone, pfn);
4991 bitidx = pfn_to_bitidx(zone, pfn);
4992 VM_BUG_ON(pfn < zone->zone_start_pfn);
4993 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4994
4995 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4996 if (flags & value)
4997 __set_bit(bitidx + start_bitidx, bitmap);
4998 else
4999 __clear_bit(bitidx + start_bitidx, bitmap);
5000 }
5001
5002 /*
5003 * This is designed as sub function...plz see page_isolation.c also.
5004 * set/clear page block's type to be ISOLATE.
5005 * page allocater never alloc memory from ISOLATE block.
5006 */
5007
5008 int set_migratetype_isolate(struct page *page)
5009 {
5010 struct zone *zone;
5011 struct page *curr_page;
5012 unsigned long flags, pfn, iter;
5013 unsigned long immobile = 0;
5014 struct memory_isolate_notify arg;
5015 int notifier_ret;
5016 int ret = -EBUSY;
5017 int zone_idx;
5018
5019 zone = page_zone(page);
5020 zone_idx = zone_idx(zone);
5021
5022 spin_lock_irqsave(&zone->lock, flags);
5023 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5024 zone_idx == ZONE_MOVABLE) {
5025 ret = 0;
5026 goto out;
5027 }
5028
5029 pfn = page_to_pfn(page);
5030 arg.start_pfn = pfn;
5031 arg.nr_pages = pageblock_nr_pages;
5032 arg.pages_found = 0;
5033
5034 /*
5035 * It may be possible to isolate a pageblock even if the
5036 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5037 * notifier chain is used by balloon drivers to return the
5038 * number of pages in a range that are held by the balloon
5039 * driver to shrink memory. If all the pages are accounted for
5040 * by balloons, are free, or on the LRU, isolation can continue.
5041 * Later, for example, when memory hotplug notifier runs, these
5042 * pages reported as "can be isolated" should be isolated(freed)
5043 * by the balloon driver through the memory notifier chain.
5044 */
5045 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5046 notifier_ret = notifier_to_errno(notifier_ret);
5047 if (notifier_ret || !arg.pages_found)
5048 goto out;
5049
5050 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5051 if (!pfn_valid_within(pfn))
5052 continue;
5053
5054 curr_page = pfn_to_page(iter);
5055 if (!page_count(curr_page) || PageLRU(curr_page))
5056 continue;
5057
5058 immobile++;
5059 }
5060
5061 if (arg.pages_found == immobile)
5062 ret = 0;
5063
5064 out:
5065 if (!ret) {
5066 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5067 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5068 }
5069
5070 spin_unlock_irqrestore(&zone->lock, flags);
5071 if (!ret)
5072 drain_all_pages();
5073 return ret;
5074 }
5075
5076 void unset_migratetype_isolate(struct page *page)
5077 {
5078 struct zone *zone;
5079 unsigned long flags;
5080 zone = page_zone(page);
5081 spin_lock_irqsave(&zone->lock, flags);
5082 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5083 goto out;
5084 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5085 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5086 out:
5087 spin_unlock_irqrestore(&zone->lock, flags);
5088 }
5089
5090 #ifdef CONFIG_MEMORY_HOTREMOVE
5091 /*
5092 * All pages in the range must be isolated before calling this.
5093 */
5094 void
5095 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5096 {
5097 struct page *page;
5098 struct zone *zone;
5099 int order, i;
5100 unsigned long pfn;
5101 unsigned long flags;
5102 /* find the first valid pfn */
5103 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5104 if (pfn_valid(pfn))
5105 break;
5106 if (pfn == end_pfn)
5107 return;
5108 zone = page_zone(pfn_to_page(pfn));
5109 spin_lock_irqsave(&zone->lock, flags);
5110 pfn = start_pfn;
5111 while (pfn < end_pfn) {
5112 if (!pfn_valid(pfn)) {
5113 pfn++;
5114 continue;
5115 }
5116 page = pfn_to_page(pfn);
5117 BUG_ON(page_count(page));
5118 BUG_ON(!PageBuddy(page));
5119 order = page_order(page);
5120 #ifdef CONFIG_DEBUG_VM
5121 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5122 pfn, 1 << order, end_pfn);
5123 #endif
5124 list_del(&page->lru);
5125 rmv_page_order(page);
5126 zone->free_area[order].nr_free--;
5127 __mod_zone_page_state(zone, NR_FREE_PAGES,
5128 - (1UL << order));
5129 for (i = 0; i < (1 << order); i++)
5130 SetPageReserved((page+i));
5131 pfn += (1 << order);
5132 }
5133 spin_unlock_irqrestore(&zone->lock, flags);
5134 }
5135 #endif
5136
5137 #ifdef CONFIG_MEMORY_FAILURE
5138 bool is_free_buddy_page(struct page *page)
5139 {
5140 struct zone *zone = page_zone(page);
5141 unsigned long pfn = page_to_pfn(page);
5142 unsigned long flags;
5143 int order;
5144
5145 spin_lock_irqsave(&zone->lock, flags);
5146 for (order = 0; order < MAX_ORDER; order++) {
5147 struct page *page_head = page - (pfn & ((1 << order) - 1));
5148
5149 if (PageBuddy(page_head) && page_order(page_head) >= order)
5150 break;
5151 }
5152 spin_unlock_irqrestore(&zone->lock, flags);
5153
5154 return order < MAX_ORDER;
5155 }
5156 #endif
This page took 0.131523 seconds and 6 git commands to generate.