mm, page_alloc: only enforce watermarks for order-0 allocations
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 int min_free_kbytes = 1024;
233 int user_min_free_kbytes = -1;
234
235 static unsigned long __meminitdata nr_kernel_pages;
236 static unsigned long __meminitdata nr_all_pages;
237 static unsigned long __meminitdata dma_reserve;
238
239 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
240 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
241 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
242 static unsigned long __initdata required_kernelcore;
243 static unsigned long __initdata required_movablecore;
244 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
245
246 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
247 int movable_zone;
248 EXPORT_SYMBOL(movable_zone);
249 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
250
251 #if MAX_NUMNODES > 1
252 int nr_node_ids __read_mostly = MAX_NUMNODES;
253 int nr_online_nodes __read_mostly = 1;
254 EXPORT_SYMBOL(nr_node_ids);
255 EXPORT_SYMBOL(nr_online_nodes);
256 #endif
257
258 int page_group_by_mobility_disabled __read_mostly;
259
260 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
261 static inline void reset_deferred_meminit(pg_data_t *pgdat)
262 {
263 pgdat->first_deferred_pfn = ULONG_MAX;
264 }
265
266 /* Returns true if the struct page for the pfn is uninitialised */
267 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
268 {
269 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
270 return true;
271
272 return false;
273 }
274
275 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
276 {
277 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
278 return true;
279
280 return false;
281 }
282
283 /*
284 * Returns false when the remaining initialisation should be deferred until
285 * later in the boot cycle when it can be parallelised.
286 */
287 static inline bool update_defer_init(pg_data_t *pgdat,
288 unsigned long pfn, unsigned long zone_end,
289 unsigned long *nr_initialised)
290 {
291 /* Always populate low zones for address-contrained allocations */
292 if (zone_end < pgdat_end_pfn(pgdat))
293 return true;
294
295 /* Initialise at least 2G of the highest zone */
296 (*nr_initialised)++;
297 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
298 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
299 pgdat->first_deferred_pfn = pfn;
300 return false;
301 }
302
303 return true;
304 }
305 #else
306 static inline void reset_deferred_meminit(pg_data_t *pgdat)
307 {
308 }
309
310 static inline bool early_page_uninitialised(unsigned long pfn)
311 {
312 return false;
313 }
314
315 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
316 {
317 return false;
318 }
319
320 static inline bool update_defer_init(pg_data_t *pgdat,
321 unsigned long pfn, unsigned long zone_end,
322 unsigned long *nr_initialised)
323 {
324 return true;
325 }
326 #endif
327
328
329 void set_pageblock_migratetype(struct page *page, int migratetype)
330 {
331 if (unlikely(page_group_by_mobility_disabled &&
332 migratetype < MIGRATE_PCPTYPES))
333 migratetype = MIGRATE_UNMOVABLE;
334
335 set_pageblock_flags_group(page, (unsigned long)migratetype,
336 PB_migrate, PB_migrate_end);
337 }
338
339 #ifdef CONFIG_DEBUG_VM
340 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
341 {
342 int ret = 0;
343 unsigned seq;
344 unsigned long pfn = page_to_pfn(page);
345 unsigned long sp, start_pfn;
346
347 do {
348 seq = zone_span_seqbegin(zone);
349 start_pfn = zone->zone_start_pfn;
350 sp = zone->spanned_pages;
351 if (!zone_spans_pfn(zone, pfn))
352 ret = 1;
353 } while (zone_span_seqretry(zone, seq));
354
355 if (ret)
356 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
357 pfn, zone_to_nid(zone), zone->name,
358 start_pfn, start_pfn + sp);
359
360 return ret;
361 }
362
363 static int page_is_consistent(struct zone *zone, struct page *page)
364 {
365 if (!pfn_valid_within(page_to_pfn(page)))
366 return 0;
367 if (zone != page_zone(page))
368 return 0;
369
370 return 1;
371 }
372 /*
373 * Temporary debugging check for pages not lying within a given zone.
374 */
375 static int bad_range(struct zone *zone, struct page *page)
376 {
377 if (page_outside_zone_boundaries(zone, page))
378 return 1;
379 if (!page_is_consistent(zone, page))
380 return 1;
381
382 return 0;
383 }
384 #else
385 static inline int bad_range(struct zone *zone, struct page *page)
386 {
387 return 0;
388 }
389 #endif
390
391 static void bad_page(struct page *page, const char *reason,
392 unsigned long bad_flags)
393 {
394 static unsigned long resume;
395 static unsigned long nr_shown;
396 static unsigned long nr_unshown;
397
398 /* Don't complain about poisoned pages */
399 if (PageHWPoison(page)) {
400 page_mapcount_reset(page); /* remove PageBuddy */
401 return;
402 }
403
404 /*
405 * Allow a burst of 60 reports, then keep quiet for that minute;
406 * or allow a steady drip of one report per second.
407 */
408 if (nr_shown == 60) {
409 if (time_before(jiffies, resume)) {
410 nr_unshown++;
411 goto out;
412 }
413 if (nr_unshown) {
414 printk(KERN_ALERT
415 "BUG: Bad page state: %lu messages suppressed\n",
416 nr_unshown);
417 nr_unshown = 0;
418 }
419 nr_shown = 0;
420 }
421 if (nr_shown++ == 0)
422 resume = jiffies + 60 * HZ;
423
424 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
425 current->comm, page_to_pfn(page));
426 dump_page_badflags(page, reason, bad_flags);
427
428 print_modules();
429 dump_stack();
430 out:
431 /* Leave bad fields for debug, except PageBuddy could make trouble */
432 page_mapcount_reset(page); /* remove PageBuddy */
433 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
434 }
435
436 /*
437 * Higher-order pages are called "compound pages". They are structured thusly:
438 *
439 * The first PAGE_SIZE page is called the "head page".
440 *
441 * The remaining PAGE_SIZE pages are called "tail pages".
442 *
443 * All pages have PG_compound set. All tail pages have their ->first_page
444 * pointing at the head page.
445 *
446 * The first tail page's ->lru.next holds the address of the compound page's
447 * put_page() function. Its ->lru.prev holds the order of allocation.
448 * This usage means that zero-order pages may not be compound.
449 */
450
451 static void free_compound_page(struct page *page)
452 {
453 __free_pages_ok(page, compound_order(page));
454 }
455
456 void prep_compound_page(struct page *page, unsigned long order)
457 {
458 int i;
459 int nr_pages = 1 << order;
460
461 set_compound_page_dtor(page, free_compound_page);
462 set_compound_order(page, order);
463 __SetPageHead(page);
464 for (i = 1; i < nr_pages; i++) {
465 struct page *p = page + i;
466 set_page_count(p, 0);
467 p->first_page = page;
468 /* Make sure p->first_page is always valid for PageTail() */
469 smp_wmb();
470 __SetPageTail(p);
471 }
472 }
473
474 #ifdef CONFIG_DEBUG_PAGEALLOC
475 unsigned int _debug_guardpage_minorder;
476 bool _debug_pagealloc_enabled __read_mostly;
477 bool _debug_guardpage_enabled __read_mostly;
478
479 static int __init early_debug_pagealloc(char *buf)
480 {
481 if (!buf)
482 return -EINVAL;
483
484 if (strcmp(buf, "on") == 0)
485 _debug_pagealloc_enabled = true;
486
487 return 0;
488 }
489 early_param("debug_pagealloc", early_debug_pagealloc);
490
491 static bool need_debug_guardpage(void)
492 {
493 /* If we don't use debug_pagealloc, we don't need guard page */
494 if (!debug_pagealloc_enabled())
495 return false;
496
497 return true;
498 }
499
500 static void init_debug_guardpage(void)
501 {
502 if (!debug_pagealloc_enabled())
503 return;
504
505 _debug_guardpage_enabled = true;
506 }
507
508 struct page_ext_operations debug_guardpage_ops = {
509 .need = need_debug_guardpage,
510 .init = init_debug_guardpage,
511 };
512
513 static int __init debug_guardpage_minorder_setup(char *buf)
514 {
515 unsigned long res;
516
517 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
518 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
519 return 0;
520 }
521 _debug_guardpage_minorder = res;
522 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
523 return 0;
524 }
525 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
526
527 static inline void set_page_guard(struct zone *zone, struct page *page,
528 unsigned int order, int migratetype)
529 {
530 struct page_ext *page_ext;
531
532 if (!debug_guardpage_enabled())
533 return;
534
535 page_ext = lookup_page_ext(page);
536 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
537
538 INIT_LIST_HEAD(&page->lru);
539 set_page_private(page, order);
540 /* Guard pages are not available for any usage */
541 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
542 }
543
544 static inline void clear_page_guard(struct zone *zone, struct page *page,
545 unsigned int order, int migratetype)
546 {
547 struct page_ext *page_ext;
548
549 if (!debug_guardpage_enabled())
550 return;
551
552 page_ext = lookup_page_ext(page);
553 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
554
555 set_page_private(page, 0);
556 if (!is_migrate_isolate(migratetype))
557 __mod_zone_freepage_state(zone, (1 << order), migratetype);
558 }
559 #else
560 struct page_ext_operations debug_guardpage_ops = { NULL, };
561 static inline void set_page_guard(struct zone *zone, struct page *page,
562 unsigned int order, int migratetype) {}
563 static inline void clear_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype) {}
565 #endif
566
567 static inline void set_page_order(struct page *page, unsigned int order)
568 {
569 set_page_private(page, order);
570 __SetPageBuddy(page);
571 }
572
573 static inline void rmv_page_order(struct page *page)
574 {
575 __ClearPageBuddy(page);
576 set_page_private(page, 0);
577 }
578
579 /*
580 * This function checks whether a page is free && is the buddy
581 * we can do coalesce a page and its buddy if
582 * (a) the buddy is not in a hole &&
583 * (b) the buddy is in the buddy system &&
584 * (c) a page and its buddy have the same order &&
585 * (d) a page and its buddy are in the same zone.
586 *
587 * For recording whether a page is in the buddy system, we set ->_mapcount
588 * PAGE_BUDDY_MAPCOUNT_VALUE.
589 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
590 * serialized by zone->lock.
591 *
592 * For recording page's order, we use page_private(page).
593 */
594 static inline int page_is_buddy(struct page *page, struct page *buddy,
595 unsigned int order)
596 {
597 if (!pfn_valid_within(page_to_pfn(buddy)))
598 return 0;
599
600 if (page_is_guard(buddy) && page_order(buddy) == order) {
601 if (page_zone_id(page) != page_zone_id(buddy))
602 return 0;
603
604 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
605
606 return 1;
607 }
608
609 if (PageBuddy(buddy) && page_order(buddy) == order) {
610 /*
611 * zone check is done late to avoid uselessly
612 * calculating zone/node ids for pages that could
613 * never merge.
614 */
615 if (page_zone_id(page) != page_zone_id(buddy))
616 return 0;
617
618 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
619
620 return 1;
621 }
622 return 0;
623 }
624
625 /*
626 * Freeing function for a buddy system allocator.
627 *
628 * The concept of a buddy system is to maintain direct-mapped table
629 * (containing bit values) for memory blocks of various "orders".
630 * The bottom level table contains the map for the smallest allocatable
631 * units of memory (here, pages), and each level above it describes
632 * pairs of units from the levels below, hence, "buddies".
633 * At a high level, all that happens here is marking the table entry
634 * at the bottom level available, and propagating the changes upward
635 * as necessary, plus some accounting needed to play nicely with other
636 * parts of the VM system.
637 * At each level, we keep a list of pages, which are heads of continuous
638 * free pages of length of (1 << order) and marked with _mapcount
639 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
640 * field.
641 * So when we are allocating or freeing one, we can derive the state of the
642 * other. That is, if we allocate a small block, and both were
643 * free, the remainder of the region must be split into blocks.
644 * If a block is freed, and its buddy is also free, then this
645 * triggers coalescing into a block of larger size.
646 *
647 * -- nyc
648 */
649
650 static inline void __free_one_page(struct page *page,
651 unsigned long pfn,
652 struct zone *zone, unsigned int order,
653 int migratetype)
654 {
655 unsigned long page_idx;
656 unsigned long combined_idx;
657 unsigned long uninitialized_var(buddy_idx);
658 struct page *buddy;
659 int max_order = MAX_ORDER;
660
661 VM_BUG_ON(!zone_is_initialized(zone));
662 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
663
664 VM_BUG_ON(migratetype == -1);
665 if (is_migrate_isolate(migratetype)) {
666 /*
667 * We restrict max order of merging to prevent merge
668 * between freepages on isolate pageblock and normal
669 * pageblock. Without this, pageblock isolation
670 * could cause incorrect freepage accounting.
671 */
672 max_order = min(MAX_ORDER, pageblock_order + 1);
673 } else {
674 __mod_zone_freepage_state(zone, 1 << order, migratetype);
675 }
676
677 page_idx = pfn & ((1 << max_order) - 1);
678
679 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
680 VM_BUG_ON_PAGE(bad_range(zone, page), page);
681
682 while (order < max_order - 1) {
683 buddy_idx = __find_buddy_index(page_idx, order);
684 buddy = page + (buddy_idx - page_idx);
685 if (!page_is_buddy(page, buddy, order))
686 break;
687 /*
688 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
689 * merge with it and move up one order.
690 */
691 if (page_is_guard(buddy)) {
692 clear_page_guard(zone, buddy, order, migratetype);
693 } else {
694 list_del(&buddy->lru);
695 zone->free_area[order].nr_free--;
696 rmv_page_order(buddy);
697 }
698 combined_idx = buddy_idx & page_idx;
699 page = page + (combined_idx - page_idx);
700 page_idx = combined_idx;
701 order++;
702 }
703 set_page_order(page, order);
704
705 /*
706 * If this is not the largest possible page, check if the buddy
707 * of the next-highest order is free. If it is, it's possible
708 * that pages are being freed that will coalesce soon. In case,
709 * that is happening, add the free page to the tail of the list
710 * so it's less likely to be used soon and more likely to be merged
711 * as a higher order page
712 */
713 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
714 struct page *higher_page, *higher_buddy;
715 combined_idx = buddy_idx & page_idx;
716 higher_page = page + (combined_idx - page_idx);
717 buddy_idx = __find_buddy_index(combined_idx, order + 1);
718 higher_buddy = higher_page + (buddy_idx - combined_idx);
719 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
720 list_add_tail(&page->lru,
721 &zone->free_area[order].free_list[migratetype]);
722 goto out;
723 }
724 }
725
726 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
727 out:
728 zone->free_area[order].nr_free++;
729 }
730
731 static inline int free_pages_check(struct page *page)
732 {
733 const char *bad_reason = NULL;
734 unsigned long bad_flags = 0;
735
736 if (unlikely(page_mapcount(page)))
737 bad_reason = "nonzero mapcount";
738 if (unlikely(page->mapping != NULL))
739 bad_reason = "non-NULL mapping";
740 if (unlikely(atomic_read(&page->_count) != 0))
741 bad_reason = "nonzero _count";
742 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
743 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
744 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
745 }
746 #ifdef CONFIG_MEMCG
747 if (unlikely(page->mem_cgroup))
748 bad_reason = "page still charged to cgroup";
749 #endif
750 if (unlikely(bad_reason)) {
751 bad_page(page, bad_reason, bad_flags);
752 return 1;
753 }
754 page_cpupid_reset_last(page);
755 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
756 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
757 return 0;
758 }
759
760 /*
761 * Frees a number of pages from the PCP lists
762 * Assumes all pages on list are in same zone, and of same order.
763 * count is the number of pages to free.
764 *
765 * If the zone was previously in an "all pages pinned" state then look to
766 * see if this freeing clears that state.
767 *
768 * And clear the zone's pages_scanned counter, to hold off the "all pages are
769 * pinned" detection logic.
770 */
771 static void free_pcppages_bulk(struct zone *zone, int count,
772 struct per_cpu_pages *pcp)
773 {
774 int migratetype = 0;
775 int batch_free = 0;
776 int to_free = count;
777 unsigned long nr_scanned;
778
779 spin_lock(&zone->lock);
780 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
781 if (nr_scanned)
782 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
783
784 while (to_free) {
785 struct page *page;
786 struct list_head *list;
787
788 /*
789 * Remove pages from lists in a round-robin fashion. A
790 * batch_free count is maintained that is incremented when an
791 * empty list is encountered. This is so more pages are freed
792 * off fuller lists instead of spinning excessively around empty
793 * lists
794 */
795 do {
796 batch_free++;
797 if (++migratetype == MIGRATE_PCPTYPES)
798 migratetype = 0;
799 list = &pcp->lists[migratetype];
800 } while (list_empty(list));
801
802 /* This is the only non-empty list. Free them all. */
803 if (batch_free == MIGRATE_PCPTYPES)
804 batch_free = to_free;
805
806 do {
807 int mt; /* migratetype of the to-be-freed page */
808
809 page = list_entry(list->prev, struct page, lru);
810 /* must delete as __free_one_page list manipulates */
811 list_del(&page->lru);
812
813 mt = get_pcppage_migratetype(page);
814 /* MIGRATE_ISOLATE page should not go to pcplists */
815 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
816 /* Pageblock could have been isolated meanwhile */
817 if (unlikely(has_isolate_pageblock(zone)))
818 mt = get_pageblock_migratetype(page);
819
820 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
821 trace_mm_page_pcpu_drain(page, 0, mt);
822 } while (--to_free && --batch_free && !list_empty(list));
823 }
824 spin_unlock(&zone->lock);
825 }
826
827 static void free_one_page(struct zone *zone,
828 struct page *page, unsigned long pfn,
829 unsigned int order,
830 int migratetype)
831 {
832 unsigned long nr_scanned;
833 spin_lock(&zone->lock);
834 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
835 if (nr_scanned)
836 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
837
838 if (unlikely(has_isolate_pageblock(zone) ||
839 is_migrate_isolate(migratetype))) {
840 migratetype = get_pfnblock_migratetype(page, pfn);
841 }
842 __free_one_page(page, pfn, zone, order, migratetype);
843 spin_unlock(&zone->lock);
844 }
845
846 static int free_tail_pages_check(struct page *head_page, struct page *page)
847 {
848 if (!IS_ENABLED(CONFIG_DEBUG_VM))
849 return 0;
850 if (unlikely(!PageTail(page))) {
851 bad_page(page, "PageTail not set", 0);
852 return 1;
853 }
854 if (unlikely(page->first_page != head_page)) {
855 bad_page(page, "first_page not consistent", 0);
856 return 1;
857 }
858 return 0;
859 }
860
861 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
862 unsigned long zone, int nid)
863 {
864 set_page_links(page, zone, nid, pfn);
865 init_page_count(page);
866 page_mapcount_reset(page);
867 page_cpupid_reset_last(page);
868
869 INIT_LIST_HEAD(&page->lru);
870 #ifdef WANT_PAGE_VIRTUAL
871 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
872 if (!is_highmem_idx(zone))
873 set_page_address(page, __va(pfn << PAGE_SHIFT));
874 #endif
875 }
876
877 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
878 int nid)
879 {
880 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
881 }
882
883 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
884 static void init_reserved_page(unsigned long pfn)
885 {
886 pg_data_t *pgdat;
887 int nid, zid;
888
889 if (!early_page_uninitialised(pfn))
890 return;
891
892 nid = early_pfn_to_nid(pfn);
893 pgdat = NODE_DATA(nid);
894
895 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
896 struct zone *zone = &pgdat->node_zones[zid];
897
898 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
899 break;
900 }
901 __init_single_pfn(pfn, zid, nid);
902 }
903 #else
904 static inline void init_reserved_page(unsigned long pfn)
905 {
906 }
907 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
908
909 /*
910 * Initialised pages do not have PageReserved set. This function is
911 * called for each range allocated by the bootmem allocator and
912 * marks the pages PageReserved. The remaining valid pages are later
913 * sent to the buddy page allocator.
914 */
915 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
916 {
917 unsigned long start_pfn = PFN_DOWN(start);
918 unsigned long end_pfn = PFN_UP(end);
919
920 for (; start_pfn < end_pfn; start_pfn++) {
921 if (pfn_valid(start_pfn)) {
922 struct page *page = pfn_to_page(start_pfn);
923
924 init_reserved_page(start_pfn);
925 SetPageReserved(page);
926 }
927 }
928 }
929
930 static bool free_pages_prepare(struct page *page, unsigned int order)
931 {
932 bool compound = PageCompound(page);
933 int i, bad = 0;
934
935 VM_BUG_ON_PAGE(PageTail(page), page);
936 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
937
938 trace_mm_page_free(page, order);
939 kmemcheck_free_shadow(page, order);
940 kasan_free_pages(page, order);
941
942 if (PageAnon(page))
943 page->mapping = NULL;
944 bad += free_pages_check(page);
945 for (i = 1; i < (1 << order); i++) {
946 if (compound)
947 bad += free_tail_pages_check(page, page + i);
948 bad += free_pages_check(page + i);
949 }
950 if (bad)
951 return false;
952
953 reset_page_owner(page, order);
954
955 if (!PageHighMem(page)) {
956 debug_check_no_locks_freed(page_address(page),
957 PAGE_SIZE << order);
958 debug_check_no_obj_freed(page_address(page),
959 PAGE_SIZE << order);
960 }
961 arch_free_page(page, order);
962 kernel_map_pages(page, 1 << order, 0);
963
964 return true;
965 }
966
967 static void __free_pages_ok(struct page *page, unsigned int order)
968 {
969 unsigned long flags;
970 int migratetype;
971 unsigned long pfn = page_to_pfn(page);
972
973 if (!free_pages_prepare(page, order))
974 return;
975
976 migratetype = get_pfnblock_migratetype(page, pfn);
977 local_irq_save(flags);
978 __count_vm_events(PGFREE, 1 << order);
979 free_one_page(page_zone(page), page, pfn, order, migratetype);
980 local_irq_restore(flags);
981 }
982
983 static void __init __free_pages_boot_core(struct page *page,
984 unsigned long pfn, unsigned int order)
985 {
986 unsigned int nr_pages = 1 << order;
987 struct page *p = page;
988 unsigned int loop;
989
990 prefetchw(p);
991 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
992 prefetchw(p + 1);
993 __ClearPageReserved(p);
994 set_page_count(p, 0);
995 }
996 __ClearPageReserved(p);
997 set_page_count(p, 0);
998
999 page_zone(page)->managed_pages += nr_pages;
1000 set_page_refcounted(page);
1001 __free_pages(page, order);
1002 }
1003
1004 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1005 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1006
1007 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1008
1009 int __meminit early_pfn_to_nid(unsigned long pfn)
1010 {
1011 static DEFINE_SPINLOCK(early_pfn_lock);
1012 int nid;
1013
1014 spin_lock(&early_pfn_lock);
1015 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1016 if (nid < 0)
1017 nid = 0;
1018 spin_unlock(&early_pfn_lock);
1019
1020 return nid;
1021 }
1022 #endif
1023
1024 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1025 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 struct mminit_pfnnid_cache *state)
1027 {
1028 int nid;
1029
1030 nid = __early_pfn_to_nid(pfn, state);
1031 if (nid >= 0 && nid != node)
1032 return false;
1033 return true;
1034 }
1035
1036 /* Only safe to use early in boot when initialisation is single-threaded */
1037 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1038 {
1039 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1040 }
1041
1042 #else
1043
1044 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1045 {
1046 return true;
1047 }
1048 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1049 struct mminit_pfnnid_cache *state)
1050 {
1051 return true;
1052 }
1053 #endif
1054
1055
1056 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1057 unsigned int order)
1058 {
1059 if (early_page_uninitialised(pfn))
1060 return;
1061 return __free_pages_boot_core(page, pfn, order);
1062 }
1063
1064 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1065 static void __init deferred_free_range(struct page *page,
1066 unsigned long pfn, int nr_pages)
1067 {
1068 int i;
1069
1070 if (!page)
1071 return;
1072
1073 /* Free a large naturally-aligned chunk if possible */
1074 if (nr_pages == MAX_ORDER_NR_PAGES &&
1075 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1076 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1077 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1078 return;
1079 }
1080
1081 for (i = 0; i < nr_pages; i++, page++, pfn++)
1082 __free_pages_boot_core(page, pfn, 0);
1083 }
1084
1085 /* Completion tracking for deferred_init_memmap() threads */
1086 static atomic_t pgdat_init_n_undone __initdata;
1087 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1088
1089 static inline void __init pgdat_init_report_one_done(void)
1090 {
1091 if (atomic_dec_and_test(&pgdat_init_n_undone))
1092 complete(&pgdat_init_all_done_comp);
1093 }
1094
1095 /* Initialise remaining memory on a node */
1096 static int __init deferred_init_memmap(void *data)
1097 {
1098 pg_data_t *pgdat = data;
1099 int nid = pgdat->node_id;
1100 struct mminit_pfnnid_cache nid_init_state = { };
1101 unsigned long start = jiffies;
1102 unsigned long nr_pages = 0;
1103 unsigned long walk_start, walk_end;
1104 int i, zid;
1105 struct zone *zone;
1106 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1107 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1108
1109 if (first_init_pfn == ULONG_MAX) {
1110 pgdat_init_report_one_done();
1111 return 0;
1112 }
1113
1114 /* Bind memory initialisation thread to a local node if possible */
1115 if (!cpumask_empty(cpumask))
1116 set_cpus_allowed_ptr(current, cpumask);
1117
1118 /* Sanity check boundaries */
1119 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1120 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1121 pgdat->first_deferred_pfn = ULONG_MAX;
1122
1123 /* Only the highest zone is deferred so find it */
1124 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1125 zone = pgdat->node_zones + zid;
1126 if (first_init_pfn < zone_end_pfn(zone))
1127 break;
1128 }
1129
1130 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1131 unsigned long pfn, end_pfn;
1132 struct page *page = NULL;
1133 struct page *free_base_page = NULL;
1134 unsigned long free_base_pfn = 0;
1135 int nr_to_free = 0;
1136
1137 end_pfn = min(walk_end, zone_end_pfn(zone));
1138 pfn = first_init_pfn;
1139 if (pfn < walk_start)
1140 pfn = walk_start;
1141 if (pfn < zone->zone_start_pfn)
1142 pfn = zone->zone_start_pfn;
1143
1144 for (; pfn < end_pfn; pfn++) {
1145 if (!pfn_valid_within(pfn))
1146 goto free_range;
1147
1148 /*
1149 * Ensure pfn_valid is checked every
1150 * MAX_ORDER_NR_PAGES for memory holes
1151 */
1152 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1153 if (!pfn_valid(pfn)) {
1154 page = NULL;
1155 goto free_range;
1156 }
1157 }
1158
1159 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1160 page = NULL;
1161 goto free_range;
1162 }
1163
1164 /* Minimise pfn page lookups and scheduler checks */
1165 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1166 page++;
1167 } else {
1168 nr_pages += nr_to_free;
1169 deferred_free_range(free_base_page,
1170 free_base_pfn, nr_to_free);
1171 free_base_page = NULL;
1172 free_base_pfn = nr_to_free = 0;
1173
1174 page = pfn_to_page(pfn);
1175 cond_resched();
1176 }
1177
1178 if (page->flags) {
1179 VM_BUG_ON(page_zone(page) != zone);
1180 goto free_range;
1181 }
1182
1183 __init_single_page(page, pfn, zid, nid);
1184 if (!free_base_page) {
1185 free_base_page = page;
1186 free_base_pfn = pfn;
1187 nr_to_free = 0;
1188 }
1189 nr_to_free++;
1190
1191 /* Where possible, batch up pages for a single free */
1192 continue;
1193 free_range:
1194 /* Free the current block of pages to allocator */
1195 nr_pages += nr_to_free;
1196 deferred_free_range(free_base_page, free_base_pfn,
1197 nr_to_free);
1198 free_base_page = NULL;
1199 free_base_pfn = nr_to_free = 0;
1200 }
1201
1202 first_init_pfn = max(end_pfn, first_init_pfn);
1203 }
1204
1205 /* Sanity check that the next zone really is unpopulated */
1206 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1207
1208 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1209 jiffies_to_msecs(jiffies - start));
1210
1211 pgdat_init_report_one_done();
1212 return 0;
1213 }
1214
1215 void __init page_alloc_init_late(void)
1216 {
1217 int nid;
1218
1219 /* There will be num_node_state(N_MEMORY) threads */
1220 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1221 for_each_node_state(nid, N_MEMORY) {
1222 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1223 }
1224
1225 /* Block until all are initialised */
1226 wait_for_completion(&pgdat_init_all_done_comp);
1227
1228 /* Reinit limits that are based on free pages after the kernel is up */
1229 files_maxfiles_init();
1230 }
1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
1233 #ifdef CONFIG_CMA
1234 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1235 void __init init_cma_reserved_pageblock(struct page *page)
1236 {
1237 unsigned i = pageblock_nr_pages;
1238 struct page *p = page;
1239
1240 do {
1241 __ClearPageReserved(p);
1242 set_page_count(p, 0);
1243 } while (++p, --i);
1244
1245 set_pageblock_migratetype(page, MIGRATE_CMA);
1246
1247 if (pageblock_order >= MAX_ORDER) {
1248 i = pageblock_nr_pages;
1249 p = page;
1250 do {
1251 set_page_refcounted(p);
1252 __free_pages(p, MAX_ORDER - 1);
1253 p += MAX_ORDER_NR_PAGES;
1254 } while (i -= MAX_ORDER_NR_PAGES);
1255 } else {
1256 set_page_refcounted(page);
1257 __free_pages(page, pageblock_order);
1258 }
1259
1260 adjust_managed_page_count(page, pageblock_nr_pages);
1261 }
1262 #endif
1263
1264 /*
1265 * The order of subdivision here is critical for the IO subsystem.
1266 * Please do not alter this order without good reasons and regression
1267 * testing. Specifically, as large blocks of memory are subdivided,
1268 * the order in which smaller blocks are delivered depends on the order
1269 * they're subdivided in this function. This is the primary factor
1270 * influencing the order in which pages are delivered to the IO
1271 * subsystem according to empirical testing, and this is also justified
1272 * by considering the behavior of a buddy system containing a single
1273 * large block of memory acted on by a series of small allocations.
1274 * This behavior is a critical factor in sglist merging's success.
1275 *
1276 * -- nyc
1277 */
1278 static inline void expand(struct zone *zone, struct page *page,
1279 int low, int high, struct free_area *area,
1280 int migratetype)
1281 {
1282 unsigned long size = 1 << high;
1283
1284 while (high > low) {
1285 area--;
1286 high--;
1287 size >>= 1;
1288 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1289
1290 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1291 debug_guardpage_enabled() &&
1292 high < debug_guardpage_minorder()) {
1293 /*
1294 * Mark as guard pages (or page), that will allow to
1295 * merge back to allocator when buddy will be freed.
1296 * Corresponding page table entries will not be touched,
1297 * pages will stay not present in virtual address space
1298 */
1299 set_page_guard(zone, &page[size], high, migratetype);
1300 continue;
1301 }
1302 list_add(&page[size].lru, &area->free_list[migratetype]);
1303 area->nr_free++;
1304 set_page_order(&page[size], high);
1305 }
1306 }
1307
1308 /*
1309 * This page is about to be returned from the page allocator
1310 */
1311 static inline int check_new_page(struct page *page)
1312 {
1313 const char *bad_reason = NULL;
1314 unsigned long bad_flags = 0;
1315
1316 if (unlikely(page_mapcount(page)))
1317 bad_reason = "nonzero mapcount";
1318 if (unlikely(page->mapping != NULL))
1319 bad_reason = "non-NULL mapping";
1320 if (unlikely(atomic_read(&page->_count) != 0))
1321 bad_reason = "nonzero _count";
1322 if (unlikely(page->flags & __PG_HWPOISON)) {
1323 bad_reason = "HWPoisoned (hardware-corrupted)";
1324 bad_flags = __PG_HWPOISON;
1325 }
1326 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1327 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1328 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1329 }
1330 #ifdef CONFIG_MEMCG
1331 if (unlikely(page->mem_cgroup))
1332 bad_reason = "page still charged to cgroup";
1333 #endif
1334 if (unlikely(bad_reason)) {
1335 bad_page(page, bad_reason, bad_flags);
1336 return 1;
1337 }
1338 return 0;
1339 }
1340
1341 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1342 int alloc_flags)
1343 {
1344 int i;
1345
1346 for (i = 0; i < (1 << order); i++) {
1347 struct page *p = page + i;
1348 if (unlikely(check_new_page(p)))
1349 return 1;
1350 }
1351
1352 set_page_private(page, 0);
1353 set_page_refcounted(page);
1354
1355 arch_alloc_page(page, order);
1356 kernel_map_pages(page, 1 << order, 1);
1357 kasan_alloc_pages(page, order);
1358
1359 if (gfp_flags & __GFP_ZERO)
1360 for (i = 0; i < (1 << order); i++)
1361 clear_highpage(page + i);
1362
1363 if (order && (gfp_flags & __GFP_COMP))
1364 prep_compound_page(page, order);
1365
1366 set_page_owner(page, order, gfp_flags);
1367
1368 /*
1369 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1370 * allocate the page. The expectation is that the caller is taking
1371 * steps that will free more memory. The caller should avoid the page
1372 * being used for !PFMEMALLOC purposes.
1373 */
1374 if (alloc_flags & ALLOC_NO_WATERMARKS)
1375 set_page_pfmemalloc(page);
1376 else
1377 clear_page_pfmemalloc(page);
1378
1379 return 0;
1380 }
1381
1382 /*
1383 * Go through the free lists for the given migratetype and remove
1384 * the smallest available page from the freelists
1385 */
1386 static inline
1387 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1388 int migratetype)
1389 {
1390 unsigned int current_order;
1391 struct free_area *area;
1392 struct page *page;
1393
1394 /* Find a page of the appropriate size in the preferred list */
1395 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1396 area = &(zone->free_area[current_order]);
1397 if (list_empty(&area->free_list[migratetype]))
1398 continue;
1399
1400 page = list_entry(area->free_list[migratetype].next,
1401 struct page, lru);
1402 list_del(&page->lru);
1403 rmv_page_order(page);
1404 area->nr_free--;
1405 expand(zone, page, order, current_order, area, migratetype);
1406 set_pcppage_migratetype(page, migratetype);
1407 return page;
1408 }
1409
1410 return NULL;
1411 }
1412
1413
1414 /*
1415 * This array describes the order lists are fallen back to when
1416 * the free lists for the desirable migrate type are depleted
1417 */
1418 static int fallbacks[MIGRATE_TYPES][4] = {
1419 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1420 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1421 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1422 #ifdef CONFIG_CMA
1423 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1424 #endif
1425 #ifdef CONFIG_MEMORY_ISOLATION
1426 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1427 #endif
1428 };
1429
1430 #ifdef CONFIG_CMA
1431 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1432 unsigned int order)
1433 {
1434 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1435 }
1436 #else
1437 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1438 unsigned int order) { return NULL; }
1439 #endif
1440
1441 /*
1442 * Move the free pages in a range to the free lists of the requested type.
1443 * Note that start_page and end_pages are not aligned on a pageblock
1444 * boundary. If alignment is required, use move_freepages_block()
1445 */
1446 int move_freepages(struct zone *zone,
1447 struct page *start_page, struct page *end_page,
1448 int migratetype)
1449 {
1450 struct page *page;
1451 unsigned long order;
1452 int pages_moved = 0;
1453
1454 #ifndef CONFIG_HOLES_IN_ZONE
1455 /*
1456 * page_zone is not safe to call in this context when
1457 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1458 * anyway as we check zone boundaries in move_freepages_block().
1459 * Remove at a later date when no bug reports exist related to
1460 * grouping pages by mobility
1461 */
1462 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1463 #endif
1464
1465 for (page = start_page; page <= end_page;) {
1466 /* Make sure we are not inadvertently changing nodes */
1467 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1468
1469 if (!pfn_valid_within(page_to_pfn(page))) {
1470 page++;
1471 continue;
1472 }
1473
1474 if (!PageBuddy(page)) {
1475 page++;
1476 continue;
1477 }
1478
1479 order = page_order(page);
1480 list_move(&page->lru,
1481 &zone->free_area[order].free_list[migratetype]);
1482 page += 1 << order;
1483 pages_moved += 1 << order;
1484 }
1485
1486 return pages_moved;
1487 }
1488
1489 int move_freepages_block(struct zone *zone, struct page *page,
1490 int migratetype)
1491 {
1492 unsigned long start_pfn, end_pfn;
1493 struct page *start_page, *end_page;
1494
1495 start_pfn = page_to_pfn(page);
1496 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1497 start_page = pfn_to_page(start_pfn);
1498 end_page = start_page + pageblock_nr_pages - 1;
1499 end_pfn = start_pfn + pageblock_nr_pages - 1;
1500
1501 /* Do not cross zone boundaries */
1502 if (!zone_spans_pfn(zone, start_pfn))
1503 start_page = page;
1504 if (!zone_spans_pfn(zone, end_pfn))
1505 return 0;
1506
1507 return move_freepages(zone, start_page, end_page, migratetype);
1508 }
1509
1510 static void change_pageblock_range(struct page *pageblock_page,
1511 int start_order, int migratetype)
1512 {
1513 int nr_pageblocks = 1 << (start_order - pageblock_order);
1514
1515 while (nr_pageblocks--) {
1516 set_pageblock_migratetype(pageblock_page, migratetype);
1517 pageblock_page += pageblock_nr_pages;
1518 }
1519 }
1520
1521 /*
1522 * When we are falling back to another migratetype during allocation, try to
1523 * steal extra free pages from the same pageblocks to satisfy further
1524 * allocations, instead of polluting multiple pageblocks.
1525 *
1526 * If we are stealing a relatively large buddy page, it is likely there will
1527 * be more free pages in the pageblock, so try to steal them all. For
1528 * reclaimable and unmovable allocations, we steal regardless of page size,
1529 * as fragmentation caused by those allocations polluting movable pageblocks
1530 * is worse than movable allocations stealing from unmovable and reclaimable
1531 * pageblocks.
1532 */
1533 static bool can_steal_fallback(unsigned int order, int start_mt)
1534 {
1535 /*
1536 * Leaving this order check is intended, although there is
1537 * relaxed order check in next check. The reason is that
1538 * we can actually steal whole pageblock if this condition met,
1539 * but, below check doesn't guarantee it and that is just heuristic
1540 * so could be changed anytime.
1541 */
1542 if (order >= pageblock_order)
1543 return true;
1544
1545 if (order >= pageblock_order / 2 ||
1546 start_mt == MIGRATE_RECLAIMABLE ||
1547 start_mt == MIGRATE_UNMOVABLE ||
1548 page_group_by_mobility_disabled)
1549 return true;
1550
1551 return false;
1552 }
1553
1554 /*
1555 * This function implements actual steal behaviour. If order is large enough,
1556 * we can steal whole pageblock. If not, we first move freepages in this
1557 * pageblock and check whether half of pages are moved or not. If half of
1558 * pages are moved, we can change migratetype of pageblock and permanently
1559 * use it's pages as requested migratetype in the future.
1560 */
1561 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1562 int start_type)
1563 {
1564 int current_order = page_order(page);
1565 int pages;
1566
1567 /* Take ownership for orders >= pageblock_order */
1568 if (current_order >= pageblock_order) {
1569 change_pageblock_range(page, current_order, start_type);
1570 return;
1571 }
1572
1573 pages = move_freepages_block(zone, page, start_type);
1574
1575 /* Claim the whole block if over half of it is free */
1576 if (pages >= (1 << (pageblock_order-1)) ||
1577 page_group_by_mobility_disabled)
1578 set_pageblock_migratetype(page, start_type);
1579 }
1580
1581 /*
1582 * Check whether there is a suitable fallback freepage with requested order.
1583 * If only_stealable is true, this function returns fallback_mt only if
1584 * we can steal other freepages all together. This would help to reduce
1585 * fragmentation due to mixed migratetype pages in one pageblock.
1586 */
1587 int find_suitable_fallback(struct free_area *area, unsigned int order,
1588 int migratetype, bool only_stealable, bool *can_steal)
1589 {
1590 int i;
1591 int fallback_mt;
1592
1593 if (area->nr_free == 0)
1594 return -1;
1595
1596 *can_steal = false;
1597 for (i = 0;; i++) {
1598 fallback_mt = fallbacks[migratetype][i];
1599 if (fallback_mt == MIGRATE_TYPES)
1600 break;
1601
1602 if (list_empty(&area->free_list[fallback_mt]))
1603 continue;
1604
1605 if (can_steal_fallback(order, migratetype))
1606 *can_steal = true;
1607
1608 if (!only_stealable)
1609 return fallback_mt;
1610
1611 if (*can_steal)
1612 return fallback_mt;
1613 }
1614
1615 return -1;
1616 }
1617
1618 /*
1619 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1620 * there are no empty page blocks that contain a page with a suitable order
1621 */
1622 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1623 unsigned int alloc_order)
1624 {
1625 int mt;
1626 unsigned long max_managed, flags;
1627
1628 /*
1629 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1630 * Check is race-prone but harmless.
1631 */
1632 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1633 if (zone->nr_reserved_highatomic >= max_managed)
1634 return;
1635
1636 spin_lock_irqsave(&zone->lock, flags);
1637
1638 /* Recheck the nr_reserved_highatomic limit under the lock */
1639 if (zone->nr_reserved_highatomic >= max_managed)
1640 goto out_unlock;
1641
1642 /* Yoink! */
1643 mt = get_pageblock_migratetype(page);
1644 if (mt != MIGRATE_HIGHATOMIC &&
1645 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1646 zone->nr_reserved_highatomic += pageblock_nr_pages;
1647 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1648 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1649 }
1650
1651 out_unlock:
1652 spin_unlock_irqrestore(&zone->lock, flags);
1653 }
1654
1655 /*
1656 * Used when an allocation is about to fail under memory pressure. This
1657 * potentially hurts the reliability of high-order allocations when under
1658 * intense memory pressure but failed atomic allocations should be easier
1659 * to recover from than an OOM.
1660 */
1661 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1662 {
1663 struct zonelist *zonelist = ac->zonelist;
1664 unsigned long flags;
1665 struct zoneref *z;
1666 struct zone *zone;
1667 struct page *page;
1668 int order;
1669
1670 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1671 ac->nodemask) {
1672 /* Preserve at least one pageblock */
1673 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1674 continue;
1675
1676 spin_lock_irqsave(&zone->lock, flags);
1677 for (order = 0; order < MAX_ORDER; order++) {
1678 struct free_area *area = &(zone->free_area[order]);
1679
1680 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1681 continue;
1682
1683 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1684 struct page, lru);
1685
1686 /*
1687 * It should never happen but changes to locking could
1688 * inadvertently allow a per-cpu drain to add pages
1689 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1690 * and watch for underflows.
1691 */
1692 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1693 zone->nr_reserved_highatomic);
1694
1695 /*
1696 * Convert to ac->migratetype and avoid the normal
1697 * pageblock stealing heuristics. Minimally, the caller
1698 * is doing the work and needs the pages. More
1699 * importantly, if the block was always converted to
1700 * MIGRATE_UNMOVABLE or another type then the number
1701 * of pageblocks that cannot be completely freed
1702 * may increase.
1703 */
1704 set_pageblock_migratetype(page, ac->migratetype);
1705 move_freepages_block(zone, page, ac->migratetype);
1706 spin_unlock_irqrestore(&zone->lock, flags);
1707 return;
1708 }
1709 spin_unlock_irqrestore(&zone->lock, flags);
1710 }
1711 }
1712
1713 /* Remove an element from the buddy allocator from the fallback list */
1714 static inline struct page *
1715 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1716 {
1717 struct free_area *area;
1718 unsigned int current_order;
1719 struct page *page;
1720 int fallback_mt;
1721 bool can_steal;
1722
1723 /* Find the largest possible block of pages in the other list */
1724 for (current_order = MAX_ORDER-1;
1725 current_order >= order && current_order <= MAX_ORDER-1;
1726 --current_order) {
1727 area = &(zone->free_area[current_order]);
1728 fallback_mt = find_suitable_fallback(area, current_order,
1729 start_migratetype, false, &can_steal);
1730 if (fallback_mt == -1)
1731 continue;
1732
1733 page = list_entry(area->free_list[fallback_mt].next,
1734 struct page, lru);
1735 if (can_steal)
1736 steal_suitable_fallback(zone, page, start_migratetype);
1737
1738 /* Remove the page from the freelists */
1739 area->nr_free--;
1740 list_del(&page->lru);
1741 rmv_page_order(page);
1742
1743 expand(zone, page, order, current_order, area,
1744 start_migratetype);
1745 /*
1746 * The pcppage_migratetype may differ from pageblock's
1747 * migratetype depending on the decisions in
1748 * find_suitable_fallback(). This is OK as long as it does not
1749 * differ for MIGRATE_CMA pageblocks. Those can be used as
1750 * fallback only via special __rmqueue_cma_fallback() function
1751 */
1752 set_pcppage_migratetype(page, start_migratetype);
1753
1754 trace_mm_page_alloc_extfrag(page, order, current_order,
1755 start_migratetype, fallback_mt);
1756
1757 return page;
1758 }
1759
1760 return NULL;
1761 }
1762
1763 /*
1764 * Do the hard work of removing an element from the buddy allocator.
1765 * Call me with the zone->lock already held.
1766 */
1767 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1768 int migratetype, gfp_t gfp_flags)
1769 {
1770 struct page *page;
1771
1772 page = __rmqueue_smallest(zone, order, migratetype);
1773 if (unlikely(!page)) {
1774 if (migratetype == MIGRATE_MOVABLE)
1775 page = __rmqueue_cma_fallback(zone, order);
1776
1777 if (!page)
1778 page = __rmqueue_fallback(zone, order, migratetype);
1779 }
1780
1781 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1782 return page;
1783 }
1784
1785 /*
1786 * Obtain a specified number of elements from the buddy allocator, all under
1787 * a single hold of the lock, for efficiency. Add them to the supplied list.
1788 * Returns the number of new pages which were placed at *list.
1789 */
1790 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1791 unsigned long count, struct list_head *list,
1792 int migratetype, bool cold)
1793 {
1794 int i;
1795
1796 spin_lock(&zone->lock);
1797 for (i = 0; i < count; ++i) {
1798 struct page *page = __rmqueue(zone, order, migratetype, 0);
1799 if (unlikely(page == NULL))
1800 break;
1801
1802 /*
1803 * Split buddy pages returned by expand() are received here
1804 * in physical page order. The page is added to the callers and
1805 * list and the list head then moves forward. From the callers
1806 * perspective, the linked list is ordered by page number in
1807 * some conditions. This is useful for IO devices that can
1808 * merge IO requests if the physical pages are ordered
1809 * properly.
1810 */
1811 if (likely(!cold))
1812 list_add(&page->lru, list);
1813 else
1814 list_add_tail(&page->lru, list);
1815 list = &page->lru;
1816 if (is_migrate_cma(get_pcppage_migratetype(page)))
1817 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1818 -(1 << order));
1819 }
1820 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1821 spin_unlock(&zone->lock);
1822 return i;
1823 }
1824
1825 #ifdef CONFIG_NUMA
1826 /*
1827 * Called from the vmstat counter updater to drain pagesets of this
1828 * currently executing processor on remote nodes after they have
1829 * expired.
1830 *
1831 * Note that this function must be called with the thread pinned to
1832 * a single processor.
1833 */
1834 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1835 {
1836 unsigned long flags;
1837 int to_drain, batch;
1838
1839 local_irq_save(flags);
1840 batch = READ_ONCE(pcp->batch);
1841 to_drain = min(pcp->count, batch);
1842 if (to_drain > 0) {
1843 free_pcppages_bulk(zone, to_drain, pcp);
1844 pcp->count -= to_drain;
1845 }
1846 local_irq_restore(flags);
1847 }
1848 #endif
1849
1850 /*
1851 * Drain pcplists of the indicated processor and zone.
1852 *
1853 * The processor must either be the current processor and the
1854 * thread pinned to the current processor or a processor that
1855 * is not online.
1856 */
1857 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1858 {
1859 unsigned long flags;
1860 struct per_cpu_pageset *pset;
1861 struct per_cpu_pages *pcp;
1862
1863 local_irq_save(flags);
1864 pset = per_cpu_ptr(zone->pageset, cpu);
1865
1866 pcp = &pset->pcp;
1867 if (pcp->count) {
1868 free_pcppages_bulk(zone, pcp->count, pcp);
1869 pcp->count = 0;
1870 }
1871 local_irq_restore(flags);
1872 }
1873
1874 /*
1875 * Drain pcplists of all zones on the indicated processor.
1876 *
1877 * The processor must either be the current processor and the
1878 * thread pinned to the current processor or a processor that
1879 * is not online.
1880 */
1881 static void drain_pages(unsigned int cpu)
1882 {
1883 struct zone *zone;
1884
1885 for_each_populated_zone(zone) {
1886 drain_pages_zone(cpu, zone);
1887 }
1888 }
1889
1890 /*
1891 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1892 *
1893 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1894 * the single zone's pages.
1895 */
1896 void drain_local_pages(struct zone *zone)
1897 {
1898 int cpu = smp_processor_id();
1899
1900 if (zone)
1901 drain_pages_zone(cpu, zone);
1902 else
1903 drain_pages(cpu);
1904 }
1905
1906 /*
1907 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1908 *
1909 * When zone parameter is non-NULL, spill just the single zone's pages.
1910 *
1911 * Note that this code is protected against sending an IPI to an offline
1912 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1913 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1914 * nothing keeps CPUs from showing up after we populated the cpumask and
1915 * before the call to on_each_cpu_mask().
1916 */
1917 void drain_all_pages(struct zone *zone)
1918 {
1919 int cpu;
1920
1921 /*
1922 * Allocate in the BSS so we wont require allocation in
1923 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1924 */
1925 static cpumask_t cpus_with_pcps;
1926
1927 /*
1928 * We don't care about racing with CPU hotplug event
1929 * as offline notification will cause the notified
1930 * cpu to drain that CPU pcps and on_each_cpu_mask
1931 * disables preemption as part of its processing
1932 */
1933 for_each_online_cpu(cpu) {
1934 struct per_cpu_pageset *pcp;
1935 struct zone *z;
1936 bool has_pcps = false;
1937
1938 if (zone) {
1939 pcp = per_cpu_ptr(zone->pageset, cpu);
1940 if (pcp->pcp.count)
1941 has_pcps = true;
1942 } else {
1943 for_each_populated_zone(z) {
1944 pcp = per_cpu_ptr(z->pageset, cpu);
1945 if (pcp->pcp.count) {
1946 has_pcps = true;
1947 break;
1948 }
1949 }
1950 }
1951
1952 if (has_pcps)
1953 cpumask_set_cpu(cpu, &cpus_with_pcps);
1954 else
1955 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1956 }
1957 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1958 zone, 1);
1959 }
1960
1961 #ifdef CONFIG_HIBERNATION
1962
1963 void mark_free_pages(struct zone *zone)
1964 {
1965 unsigned long pfn, max_zone_pfn;
1966 unsigned long flags;
1967 unsigned int order, t;
1968 struct list_head *curr;
1969
1970 if (zone_is_empty(zone))
1971 return;
1972
1973 spin_lock_irqsave(&zone->lock, flags);
1974
1975 max_zone_pfn = zone_end_pfn(zone);
1976 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1977 if (pfn_valid(pfn)) {
1978 struct page *page = pfn_to_page(pfn);
1979
1980 if (!swsusp_page_is_forbidden(page))
1981 swsusp_unset_page_free(page);
1982 }
1983
1984 for_each_migratetype_order(order, t) {
1985 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1986 unsigned long i;
1987
1988 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1989 for (i = 0; i < (1UL << order); i++)
1990 swsusp_set_page_free(pfn_to_page(pfn + i));
1991 }
1992 }
1993 spin_unlock_irqrestore(&zone->lock, flags);
1994 }
1995 #endif /* CONFIG_PM */
1996
1997 /*
1998 * Free a 0-order page
1999 * cold == true ? free a cold page : free a hot page
2000 */
2001 void free_hot_cold_page(struct page *page, bool cold)
2002 {
2003 struct zone *zone = page_zone(page);
2004 struct per_cpu_pages *pcp;
2005 unsigned long flags;
2006 unsigned long pfn = page_to_pfn(page);
2007 int migratetype;
2008
2009 if (!free_pages_prepare(page, 0))
2010 return;
2011
2012 migratetype = get_pfnblock_migratetype(page, pfn);
2013 set_pcppage_migratetype(page, migratetype);
2014 local_irq_save(flags);
2015 __count_vm_event(PGFREE);
2016
2017 /*
2018 * We only track unmovable, reclaimable and movable on pcp lists.
2019 * Free ISOLATE pages back to the allocator because they are being
2020 * offlined but treat RESERVE as movable pages so we can get those
2021 * areas back if necessary. Otherwise, we may have to free
2022 * excessively into the page allocator
2023 */
2024 if (migratetype >= MIGRATE_PCPTYPES) {
2025 if (unlikely(is_migrate_isolate(migratetype))) {
2026 free_one_page(zone, page, pfn, 0, migratetype);
2027 goto out;
2028 }
2029 migratetype = MIGRATE_MOVABLE;
2030 }
2031
2032 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2033 if (!cold)
2034 list_add(&page->lru, &pcp->lists[migratetype]);
2035 else
2036 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2037 pcp->count++;
2038 if (pcp->count >= pcp->high) {
2039 unsigned long batch = READ_ONCE(pcp->batch);
2040 free_pcppages_bulk(zone, batch, pcp);
2041 pcp->count -= batch;
2042 }
2043
2044 out:
2045 local_irq_restore(flags);
2046 }
2047
2048 /*
2049 * Free a list of 0-order pages
2050 */
2051 void free_hot_cold_page_list(struct list_head *list, bool cold)
2052 {
2053 struct page *page, *next;
2054
2055 list_for_each_entry_safe(page, next, list, lru) {
2056 trace_mm_page_free_batched(page, cold);
2057 free_hot_cold_page(page, cold);
2058 }
2059 }
2060
2061 /*
2062 * split_page takes a non-compound higher-order page, and splits it into
2063 * n (1<<order) sub-pages: page[0..n]
2064 * Each sub-page must be freed individually.
2065 *
2066 * Note: this is probably too low level an operation for use in drivers.
2067 * Please consult with lkml before using this in your driver.
2068 */
2069 void split_page(struct page *page, unsigned int order)
2070 {
2071 int i;
2072 gfp_t gfp_mask;
2073
2074 VM_BUG_ON_PAGE(PageCompound(page), page);
2075 VM_BUG_ON_PAGE(!page_count(page), page);
2076
2077 #ifdef CONFIG_KMEMCHECK
2078 /*
2079 * Split shadow pages too, because free(page[0]) would
2080 * otherwise free the whole shadow.
2081 */
2082 if (kmemcheck_page_is_tracked(page))
2083 split_page(virt_to_page(page[0].shadow), order);
2084 #endif
2085
2086 gfp_mask = get_page_owner_gfp(page);
2087 set_page_owner(page, 0, gfp_mask);
2088 for (i = 1; i < (1 << order); i++) {
2089 set_page_refcounted(page + i);
2090 set_page_owner(page + i, 0, gfp_mask);
2091 }
2092 }
2093 EXPORT_SYMBOL_GPL(split_page);
2094
2095 int __isolate_free_page(struct page *page, unsigned int order)
2096 {
2097 unsigned long watermark;
2098 struct zone *zone;
2099 int mt;
2100
2101 BUG_ON(!PageBuddy(page));
2102
2103 zone = page_zone(page);
2104 mt = get_pageblock_migratetype(page);
2105
2106 if (!is_migrate_isolate(mt)) {
2107 /* Obey watermarks as if the page was being allocated */
2108 watermark = low_wmark_pages(zone) + (1 << order);
2109 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2110 return 0;
2111
2112 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2113 }
2114
2115 /* Remove page from free list */
2116 list_del(&page->lru);
2117 zone->free_area[order].nr_free--;
2118 rmv_page_order(page);
2119
2120 set_page_owner(page, order, __GFP_MOVABLE);
2121
2122 /* Set the pageblock if the isolated page is at least a pageblock */
2123 if (order >= pageblock_order - 1) {
2124 struct page *endpage = page + (1 << order) - 1;
2125 for (; page < endpage; page += pageblock_nr_pages) {
2126 int mt = get_pageblock_migratetype(page);
2127 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2128 set_pageblock_migratetype(page,
2129 MIGRATE_MOVABLE);
2130 }
2131 }
2132
2133
2134 return 1UL << order;
2135 }
2136
2137 /*
2138 * Similar to split_page except the page is already free. As this is only
2139 * being used for migration, the migratetype of the block also changes.
2140 * As this is called with interrupts disabled, the caller is responsible
2141 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2142 * are enabled.
2143 *
2144 * Note: this is probably too low level an operation for use in drivers.
2145 * Please consult with lkml before using this in your driver.
2146 */
2147 int split_free_page(struct page *page)
2148 {
2149 unsigned int order;
2150 int nr_pages;
2151
2152 order = page_order(page);
2153
2154 nr_pages = __isolate_free_page(page, order);
2155 if (!nr_pages)
2156 return 0;
2157
2158 /* Split into individual pages */
2159 set_page_refcounted(page);
2160 split_page(page, order);
2161 return nr_pages;
2162 }
2163
2164 /*
2165 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2166 */
2167 static inline
2168 struct page *buffered_rmqueue(struct zone *preferred_zone,
2169 struct zone *zone, unsigned int order,
2170 gfp_t gfp_flags, int alloc_flags, int migratetype)
2171 {
2172 unsigned long flags;
2173 struct page *page;
2174 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2175
2176 if (likely(order == 0)) {
2177 struct per_cpu_pages *pcp;
2178 struct list_head *list;
2179
2180 local_irq_save(flags);
2181 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2182 list = &pcp->lists[migratetype];
2183 if (list_empty(list)) {
2184 pcp->count += rmqueue_bulk(zone, 0,
2185 pcp->batch, list,
2186 migratetype, cold);
2187 if (unlikely(list_empty(list)))
2188 goto failed;
2189 }
2190
2191 if (cold)
2192 page = list_entry(list->prev, struct page, lru);
2193 else
2194 page = list_entry(list->next, struct page, lru);
2195
2196 list_del(&page->lru);
2197 pcp->count--;
2198 } else {
2199 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2200 /*
2201 * __GFP_NOFAIL is not to be used in new code.
2202 *
2203 * All __GFP_NOFAIL callers should be fixed so that they
2204 * properly detect and handle allocation failures.
2205 *
2206 * We most definitely don't want callers attempting to
2207 * allocate greater than order-1 page units with
2208 * __GFP_NOFAIL.
2209 */
2210 WARN_ON_ONCE(order > 1);
2211 }
2212 spin_lock_irqsave(&zone->lock, flags);
2213
2214 page = NULL;
2215 if (alloc_flags & ALLOC_HARDER) {
2216 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2217 if (page)
2218 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2219 }
2220 if (!page)
2221 page = __rmqueue(zone, order, migratetype, gfp_flags);
2222 spin_unlock(&zone->lock);
2223 if (!page)
2224 goto failed;
2225 __mod_zone_freepage_state(zone, -(1 << order),
2226 get_pcppage_migratetype(page));
2227 }
2228
2229 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2230 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2231 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2232 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2233
2234 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2235 zone_statistics(preferred_zone, zone, gfp_flags);
2236 local_irq_restore(flags);
2237
2238 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2239 return page;
2240
2241 failed:
2242 local_irq_restore(flags);
2243 return NULL;
2244 }
2245
2246 #ifdef CONFIG_FAIL_PAGE_ALLOC
2247
2248 static struct {
2249 struct fault_attr attr;
2250
2251 bool ignore_gfp_highmem;
2252 bool ignore_gfp_reclaim;
2253 u32 min_order;
2254 } fail_page_alloc = {
2255 .attr = FAULT_ATTR_INITIALIZER,
2256 .ignore_gfp_reclaim = true,
2257 .ignore_gfp_highmem = true,
2258 .min_order = 1,
2259 };
2260
2261 static int __init setup_fail_page_alloc(char *str)
2262 {
2263 return setup_fault_attr(&fail_page_alloc.attr, str);
2264 }
2265 __setup("fail_page_alloc=", setup_fail_page_alloc);
2266
2267 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2268 {
2269 if (order < fail_page_alloc.min_order)
2270 return false;
2271 if (gfp_mask & __GFP_NOFAIL)
2272 return false;
2273 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2274 return false;
2275 if (fail_page_alloc.ignore_gfp_reclaim &&
2276 (gfp_mask & __GFP_DIRECT_RECLAIM))
2277 return false;
2278
2279 return should_fail(&fail_page_alloc.attr, 1 << order);
2280 }
2281
2282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2283
2284 static int __init fail_page_alloc_debugfs(void)
2285 {
2286 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2287 struct dentry *dir;
2288
2289 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2290 &fail_page_alloc.attr);
2291 if (IS_ERR(dir))
2292 return PTR_ERR(dir);
2293
2294 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2295 &fail_page_alloc.ignore_gfp_reclaim))
2296 goto fail;
2297 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2298 &fail_page_alloc.ignore_gfp_highmem))
2299 goto fail;
2300 if (!debugfs_create_u32("min-order", mode, dir,
2301 &fail_page_alloc.min_order))
2302 goto fail;
2303
2304 return 0;
2305 fail:
2306 debugfs_remove_recursive(dir);
2307
2308 return -ENOMEM;
2309 }
2310
2311 late_initcall(fail_page_alloc_debugfs);
2312
2313 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2314
2315 #else /* CONFIG_FAIL_PAGE_ALLOC */
2316
2317 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2318 {
2319 return false;
2320 }
2321
2322 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2323
2324 /*
2325 * Return true if free base pages are above 'mark'. For high-order checks it
2326 * will return true of the order-0 watermark is reached and there is at least
2327 * one free page of a suitable size. Checking now avoids taking the zone lock
2328 * to check in the allocation paths if no pages are free.
2329 */
2330 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2331 unsigned long mark, int classzone_idx, int alloc_flags,
2332 long free_pages)
2333 {
2334 long min = mark;
2335 int o;
2336 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2337
2338 /* free_pages may go negative - that's OK */
2339 free_pages -= (1 << order) - 1;
2340
2341 if (alloc_flags & ALLOC_HIGH)
2342 min -= min / 2;
2343
2344 /*
2345 * If the caller does not have rights to ALLOC_HARDER then subtract
2346 * the high-atomic reserves. This will over-estimate the size of the
2347 * atomic reserve but it avoids a search.
2348 */
2349 if (likely(!alloc_harder))
2350 free_pages -= z->nr_reserved_highatomic;
2351 else
2352 min -= min / 4;
2353
2354 #ifdef CONFIG_CMA
2355 /* If allocation can't use CMA areas don't use free CMA pages */
2356 if (!(alloc_flags & ALLOC_CMA))
2357 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2358 #endif
2359
2360 /*
2361 * Check watermarks for an order-0 allocation request. If these
2362 * are not met, then a high-order request also cannot go ahead
2363 * even if a suitable page happened to be free.
2364 */
2365 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2366 return false;
2367
2368 /* If this is an order-0 request then the watermark is fine */
2369 if (!order)
2370 return true;
2371
2372 /* For a high-order request, check at least one suitable page is free */
2373 for (o = order; o < MAX_ORDER; o++) {
2374 struct free_area *area = &z->free_area[o];
2375 int mt;
2376
2377 if (!area->nr_free)
2378 continue;
2379
2380 if (alloc_harder)
2381 return true;
2382
2383 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2384 if (!list_empty(&area->free_list[mt]))
2385 return true;
2386 }
2387
2388 #ifdef CONFIG_CMA
2389 if ((alloc_flags & ALLOC_CMA) &&
2390 !list_empty(&area->free_list[MIGRATE_CMA])) {
2391 return true;
2392 }
2393 #endif
2394 }
2395 return false;
2396 }
2397
2398 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2399 int classzone_idx, int alloc_flags)
2400 {
2401 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2402 zone_page_state(z, NR_FREE_PAGES));
2403 }
2404
2405 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2406 unsigned long mark, int classzone_idx)
2407 {
2408 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2409
2410 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2411 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2412
2413 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2414 free_pages);
2415 }
2416
2417 #ifdef CONFIG_NUMA
2418 static bool zone_local(struct zone *local_zone, struct zone *zone)
2419 {
2420 return local_zone->node == zone->node;
2421 }
2422
2423 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2424 {
2425 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2426 RECLAIM_DISTANCE;
2427 }
2428 #else /* CONFIG_NUMA */
2429 static bool zone_local(struct zone *local_zone, struct zone *zone)
2430 {
2431 return true;
2432 }
2433
2434 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2435 {
2436 return true;
2437 }
2438 #endif /* CONFIG_NUMA */
2439
2440 static void reset_alloc_batches(struct zone *preferred_zone)
2441 {
2442 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2443
2444 do {
2445 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2446 high_wmark_pages(zone) - low_wmark_pages(zone) -
2447 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2448 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2449 } while (zone++ != preferred_zone);
2450 }
2451
2452 /*
2453 * get_page_from_freelist goes through the zonelist trying to allocate
2454 * a page.
2455 */
2456 static struct page *
2457 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2458 const struct alloc_context *ac)
2459 {
2460 struct zonelist *zonelist = ac->zonelist;
2461 struct zoneref *z;
2462 struct page *page = NULL;
2463 struct zone *zone;
2464 int nr_fair_skipped = 0;
2465 bool zonelist_rescan;
2466
2467 zonelist_scan:
2468 zonelist_rescan = false;
2469
2470 /*
2471 * Scan zonelist, looking for a zone with enough free.
2472 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2473 */
2474 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2475 ac->nodemask) {
2476 unsigned long mark;
2477
2478 if (cpusets_enabled() &&
2479 (alloc_flags & ALLOC_CPUSET) &&
2480 !cpuset_zone_allowed(zone, gfp_mask))
2481 continue;
2482 /*
2483 * Distribute pages in proportion to the individual
2484 * zone size to ensure fair page aging. The zone a
2485 * page was allocated in should have no effect on the
2486 * time the page has in memory before being reclaimed.
2487 */
2488 if (alloc_flags & ALLOC_FAIR) {
2489 if (!zone_local(ac->preferred_zone, zone))
2490 break;
2491 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2492 nr_fair_skipped++;
2493 continue;
2494 }
2495 }
2496 /*
2497 * When allocating a page cache page for writing, we
2498 * want to get it from a zone that is within its dirty
2499 * limit, such that no single zone holds more than its
2500 * proportional share of globally allowed dirty pages.
2501 * The dirty limits take into account the zone's
2502 * lowmem reserves and high watermark so that kswapd
2503 * should be able to balance it without having to
2504 * write pages from its LRU list.
2505 *
2506 * This may look like it could increase pressure on
2507 * lower zones by failing allocations in higher zones
2508 * before they are full. But the pages that do spill
2509 * over are limited as the lower zones are protected
2510 * by this very same mechanism. It should not become
2511 * a practical burden to them.
2512 *
2513 * XXX: For now, allow allocations to potentially
2514 * exceed the per-zone dirty limit in the slowpath
2515 * (spread_dirty_pages unset) before going into reclaim,
2516 * which is important when on a NUMA setup the allowed
2517 * zones are together not big enough to reach the
2518 * global limit. The proper fix for these situations
2519 * will require awareness of zones in the
2520 * dirty-throttling and the flusher threads.
2521 */
2522 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2523 continue;
2524
2525 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2526 if (!zone_watermark_ok(zone, order, mark,
2527 ac->classzone_idx, alloc_flags)) {
2528 int ret;
2529
2530 /* Checked here to keep the fast path fast */
2531 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2532 if (alloc_flags & ALLOC_NO_WATERMARKS)
2533 goto try_this_zone;
2534
2535 if (zone_reclaim_mode == 0 ||
2536 !zone_allows_reclaim(ac->preferred_zone, zone))
2537 continue;
2538
2539 ret = zone_reclaim(zone, gfp_mask, order);
2540 switch (ret) {
2541 case ZONE_RECLAIM_NOSCAN:
2542 /* did not scan */
2543 continue;
2544 case ZONE_RECLAIM_FULL:
2545 /* scanned but unreclaimable */
2546 continue;
2547 default:
2548 /* did we reclaim enough */
2549 if (zone_watermark_ok(zone, order, mark,
2550 ac->classzone_idx, alloc_flags))
2551 goto try_this_zone;
2552
2553 continue;
2554 }
2555 }
2556
2557 try_this_zone:
2558 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2559 gfp_mask, alloc_flags, ac->migratetype);
2560 if (page) {
2561 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2562 goto try_this_zone;
2563
2564 /*
2565 * If this is a high-order atomic allocation then check
2566 * if the pageblock should be reserved for the future
2567 */
2568 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2569 reserve_highatomic_pageblock(page, zone, order);
2570
2571 return page;
2572 }
2573 }
2574
2575 /*
2576 * The first pass makes sure allocations are spread fairly within the
2577 * local node. However, the local node might have free pages left
2578 * after the fairness batches are exhausted, and remote zones haven't
2579 * even been considered yet. Try once more without fairness, and
2580 * include remote zones now, before entering the slowpath and waking
2581 * kswapd: prefer spilling to a remote zone over swapping locally.
2582 */
2583 if (alloc_flags & ALLOC_FAIR) {
2584 alloc_flags &= ~ALLOC_FAIR;
2585 if (nr_fair_skipped) {
2586 zonelist_rescan = true;
2587 reset_alloc_batches(ac->preferred_zone);
2588 }
2589 if (nr_online_nodes > 1)
2590 zonelist_rescan = true;
2591 }
2592
2593 if (zonelist_rescan)
2594 goto zonelist_scan;
2595
2596 return NULL;
2597 }
2598
2599 /*
2600 * Large machines with many possible nodes should not always dump per-node
2601 * meminfo in irq context.
2602 */
2603 static inline bool should_suppress_show_mem(void)
2604 {
2605 bool ret = false;
2606
2607 #if NODES_SHIFT > 8
2608 ret = in_interrupt();
2609 #endif
2610 return ret;
2611 }
2612
2613 static DEFINE_RATELIMIT_STATE(nopage_rs,
2614 DEFAULT_RATELIMIT_INTERVAL,
2615 DEFAULT_RATELIMIT_BURST);
2616
2617 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2618 {
2619 unsigned int filter = SHOW_MEM_FILTER_NODES;
2620
2621 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2622 debug_guardpage_minorder() > 0)
2623 return;
2624
2625 /*
2626 * This documents exceptions given to allocations in certain
2627 * contexts that are allowed to allocate outside current's set
2628 * of allowed nodes.
2629 */
2630 if (!(gfp_mask & __GFP_NOMEMALLOC))
2631 if (test_thread_flag(TIF_MEMDIE) ||
2632 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2633 filter &= ~SHOW_MEM_FILTER_NODES;
2634 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2635 filter &= ~SHOW_MEM_FILTER_NODES;
2636
2637 if (fmt) {
2638 struct va_format vaf;
2639 va_list args;
2640
2641 va_start(args, fmt);
2642
2643 vaf.fmt = fmt;
2644 vaf.va = &args;
2645
2646 pr_warn("%pV", &vaf);
2647
2648 va_end(args);
2649 }
2650
2651 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2652 current->comm, order, gfp_mask);
2653
2654 dump_stack();
2655 if (!should_suppress_show_mem())
2656 show_mem(filter);
2657 }
2658
2659 static inline struct page *
2660 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2661 const struct alloc_context *ac, unsigned long *did_some_progress)
2662 {
2663 struct oom_control oc = {
2664 .zonelist = ac->zonelist,
2665 .nodemask = ac->nodemask,
2666 .gfp_mask = gfp_mask,
2667 .order = order,
2668 };
2669 struct page *page;
2670
2671 *did_some_progress = 0;
2672
2673 /*
2674 * Acquire the oom lock. If that fails, somebody else is
2675 * making progress for us.
2676 */
2677 if (!mutex_trylock(&oom_lock)) {
2678 *did_some_progress = 1;
2679 schedule_timeout_uninterruptible(1);
2680 return NULL;
2681 }
2682
2683 /*
2684 * Go through the zonelist yet one more time, keep very high watermark
2685 * here, this is only to catch a parallel oom killing, we must fail if
2686 * we're still under heavy pressure.
2687 */
2688 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2689 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2690 if (page)
2691 goto out;
2692
2693 if (!(gfp_mask & __GFP_NOFAIL)) {
2694 /* Coredumps can quickly deplete all memory reserves */
2695 if (current->flags & PF_DUMPCORE)
2696 goto out;
2697 /* The OOM killer will not help higher order allocs */
2698 if (order > PAGE_ALLOC_COSTLY_ORDER)
2699 goto out;
2700 /* The OOM killer does not needlessly kill tasks for lowmem */
2701 if (ac->high_zoneidx < ZONE_NORMAL)
2702 goto out;
2703 /* The OOM killer does not compensate for IO-less reclaim */
2704 if (!(gfp_mask & __GFP_FS)) {
2705 /*
2706 * XXX: Page reclaim didn't yield anything,
2707 * and the OOM killer can't be invoked, but
2708 * keep looping as per tradition.
2709 */
2710 *did_some_progress = 1;
2711 goto out;
2712 }
2713 if (pm_suspended_storage())
2714 goto out;
2715 /* The OOM killer may not free memory on a specific node */
2716 if (gfp_mask & __GFP_THISNODE)
2717 goto out;
2718 }
2719 /* Exhausted what can be done so it's blamo time */
2720 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2721 *did_some_progress = 1;
2722 out:
2723 mutex_unlock(&oom_lock);
2724 return page;
2725 }
2726
2727 #ifdef CONFIG_COMPACTION
2728 /* Try memory compaction for high-order allocations before reclaim */
2729 static struct page *
2730 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2731 int alloc_flags, const struct alloc_context *ac,
2732 enum migrate_mode mode, int *contended_compaction,
2733 bool *deferred_compaction)
2734 {
2735 unsigned long compact_result;
2736 struct page *page;
2737
2738 if (!order)
2739 return NULL;
2740
2741 current->flags |= PF_MEMALLOC;
2742 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2743 mode, contended_compaction);
2744 current->flags &= ~PF_MEMALLOC;
2745
2746 switch (compact_result) {
2747 case COMPACT_DEFERRED:
2748 *deferred_compaction = true;
2749 /* fall-through */
2750 case COMPACT_SKIPPED:
2751 return NULL;
2752 default:
2753 break;
2754 }
2755
2756 /*
2757 * At least in one zone compaction wasn't deferred or skipped, so let's
2758 * count a compaction stall
2759 */
2760 count_vm_event(COMPACTSTALL);
2761
2762 page = get_page_from_freelist(gfp_mask, order,
2763 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2764
2765 if (page) {
2766 struct zone *zone = page_zone(page);
2767
2768 zone->compact_blockskip_flush = false;
2769 compaction_defer_reset(zone, order, true);
2770 count_vm_event(COMPACTSUCCESS);
2771 return page;
2772 }
2773
2774 /*
2775 * It's bad if compaction run occurs and fails. The most likely reason
2776 * is that pages exist, but not enough to satisfy watermarks.
2777 */
2778 count_vm_event(COMPACTFAIL);
2779
2780 cond_resched();
2781
2782 return NULL;
2783 }
2784 #else
2785 static inline struct page *
2786 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2787 int alloc_flags, const struct alloc_context *ac,
2788 enum migrate_mode mode, int *contended_compaction,
2789 bool *deferred_compaction)
2790 {
2791 return NULL;
2792 }
2793 #endif /* CONFIG_COMPACTION */
2794
2795 /* Perform direct synchronous page reclaim */
2796 static int
2797 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2798 const struct alloc_context *ac)
2799 {
2800 struct reclaim_state reclaim_state;
2801 int progress;
2802
2803 cond_resched();
2804
2805 /* We now go into synchronous reclaim */
2806 cpuset_memory_pressure_bump();
2807 current->flags |= PF_MEMALLOC;
2808 lockdep_set_current_reclaim_state(gfp_mask);
2809 reclaim_state.reclaimed_slab = 0;
2810 current->reclaim_state = &reclaim_state;
2811
2812 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2813 ac->nodemask);
2814
2815 current->reclaim_state = NULL;
2816 lockdep_clear_current_reclaim_state();
2817 current->flags &= ~PF_MEMALLOC;
2818
2819 cond_resched();
2820
2821 return progress;
2822 }
2823
2824 /* The really slow allocator path where we enter direct reclaim */
2825 static inline struct page *
2826 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2827 int alloc_flags, const struct alloc_context *ac,
2828 unsigned long *did_some_progress)
2829 {
2830 struct page *page = NULL;
2831 bool drained = false;
2832
2833 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2834 if (unlikely(!(*did_some_progress)))
2835 return NULL;
2836
2837 retry:
2838 page = get_page_from_freelist(gfp_mask, order,
2839 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2840
2841 /*
2842 * If an allocation failed after direct reclaim, it could be because
2843 * pages are pinned on the per-cpu lists or in high alloc reserves.
2844 * Shrink them them and try again
2845 */
2846 if (!page && !drained) {
2847 unreserve_highatomic_pageblock(ac);
2848 drain_all_pages(NULL);
2849 drained = true;
2850 goto retry;
2851 }
2852
2853 return page;
2854 }
2855
2856 /*
2857 * This is called in the allocator slow-path if the allocation request is of
2858 * sufficient urgency to ignore watermarks and take other desperate measures
2859 */
2860 static inline struct page *
2861 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2862 const struct alloc_context *ac)
2863 {
2864 struct page *page;
2865
2866 do {
2867 page = get_page_from_freelist(gfp_mask, order,
2868 ALLOC_NO_WATERMARKS, ac);
2869
2870 if (!page && gfp_mask & __GFP_NOFAIL)
2871 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2872 HZ/50);
2873 } while (!page && (gfp_mask & __GFP_NOFAIL));
2874
2875 return page;
2876 }
2877
2878 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2879 {
2880 struct zoneref *z;
2881 struct zone *zone;
2882
2883 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2884 ac->high_zoneidx, ac->nodemask)
2885 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2886 }
2887
2888 static inline int
2889 gfp_to_alloc_flags(gfp_t gfp_mask)
2890 {
2891 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2892
2893 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2894 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2895
2896 /*
2897 * The caller may dip into page reserves a bit more if the caller
2898 * cannot run direct reclaim, or if the caller has realtime scheduling
2899 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2900 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2901 */
2902 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2903
2904 if (gfp_mask & __GFP_ATOMIC) {
2905 /*
2906 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2907 * if it can't schedule.
2908 */
2909 if (!(gfp_mask & __GFP_NOMEMALLOC))
2910 alloc_flags |= ALLOC_HARDER;
2911 /*
2912 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2913 * comment for __cpuset_node_allowed().
2914 */
2915 alloc_flags &= ~ALLOC_CPUSET;
2916 } else if (unlikely(rt_task(current)) && !in_interrupt())
2917 alloc_flags |= ALLOC_HARDER;
2918
2919 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2920 if (gfp_mask & __GFP_MEMALLOC)
2921 alloc_flags |= ALLOC_NO_WATERMARKS;
2922 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2923 alloc_flags |= ALLOC_NO_WATERMARKS;
2924 else if (!in_interrupt() &&
2925 ((current->flags & PF_MEMALLOC) ||
2926 unlikely(test_thread_flag(TIF_MEMDIE))))
2927 alloc_flags |= ALLOC_NO_WATERMARKS;
2928 }
2929 #ifdef CONFIG_CMA
2930 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2931 alloc_flags |= ALLOC_CMA;
2932 #endif
2933 return alloc_flags;
2934 }
2935
2936 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2937 {
2938 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2939 }
2940
2941 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2942 {
2943 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2944 }
2945
2946 static inline struct page *
2947 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2948 struct alloc_context *ac)
2949 {
2950 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2951 struct page *page = NULL;
2952 int alloc_flags;
2953 unsigned long pages_reclaimed = 0;
2954 unsigned long did_some_progress;
2955 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2956 bool deferred_compaction = false;
2957 int contended_compaction = COMPACT_CONTENDED_NONE;
2958
2959 /*
2960 * In the slowpath, we sanity check order to avoid ever trying to
2961 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2962 * be using allocators in order of preference for an area that is
2963 * too large.
2964 */
2965 if (order >= MAX_ORDER) {
2966 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2967 return NULL;
2968 }
2969
2970 /*
2971 * We also sanity check to catch abuse of atomic reserves being used by
2972 * callers that are not in atomic context.
2973 */
2974 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2975 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2976 gfp_mask &= ~__GFP_ATOMIC;
2977
2978 /*
2979 * If this allocation cannot block and it is for a specific node, then
2980 * fail early. There's no need to wakeup kswapd or retry for a
2981 * speculative node-specific allocation.
2982 */
2983 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
2984 goto nopage;
2985
2986 retry:
2987 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
2988 wake_all_kswapds(order, ac);
2989
2990 /*
2991 * OK, we're below the kswapd watermark and have kicked background
2992 * reclaim. Now things get more complex, so set up alloc_flags according
2993 * to how we want to proceed.
2994 */
2995 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2996
2997 /*
2998 * Find the true preferred zone if the allocation is unconstrained by
2999 * cpusets.
3000 */
3001 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3002 struct zoneref *preferred_zoneref;
3003 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3004 ac->high_zoneidx, NULL, &ac->preferred_zone);
3005 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3006 }
3007
3008 /* This is the last chance, in general, before the goto nopage. */
3009 page = get_page_from_freelist(gfp_mask, order,
3010 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3011 if (page)
3012 goto got_pg;
3013
3014 /* Allocate without watermarks if the context allows */
3015 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3016 /*
3017 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3018 * the allocation is high priority and these type of
3019 * allocations are system rather than user orientated
3020 */
3021 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3022
3023 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3024
3025 if (page) {
3026 goto got_pg;
3027 }
3028 }
3029
3030 /* Caller is not willing to reclaim, we can't balance anything */
3031 if (!can_direct_reclaim) {
3032 /*
3033 * All existing users of the deprecated __GFP_NOFAIL are
3034 * blockable, so warn of any new users that actually allow this
3035 * type of allocation to fail.
3036 */
3037 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3038 goto nopage;
3039 }
3040
3041 /* Avoid recursion of direct reclaim */
3042 if (current->flags & PF_MEMALLOC)
3043 goto nopage;
3044
3045 /* Avoid allocations with no watermarks from looping endlessly */
3046 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3047 goto nopage;
3048
3049 /*
3050 * Try direct compaction. The first pass is asynchronous. Subsequent
3051 * attempts after direct reclaim are synchronous
3052 */
3053 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3054 migration_mode,
3055 &contended_compaction,
3056 &deferred_compaction);
3057 if (page)
3058 goto got_pg;
3059
3060 /* Checks for THP-specific high-order allocations */
3061 if (is_thp_gfp_mask(gfp_mask)) {
3062 /*
3063 * If compaction is deferred for high-order allocations, it is
3064 * because sync compaction recently failed. If this is the case
3065 * and the caller requested a THP allocation, we do not want
3066 * to heavily disrupt the system, so we fail the allocation
3067 * instead of entering direct reclaim.
3068 */
3069 if (deferred_compaction)
3070 goto nopage;
3071
3072 /*
3073 * In all zones where compaction was attempted (and not
3074 * deferred or skipped), lock contention has been detected.
3075 * For THP allocation we do not want to disrupt the others
3076 * so we fallback to base pages instead.
3077 */
3078 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3079 goto nopage;
3080
3081 /*
3082 * If compaction was aborted due to need_resched(), we do not
3083 * want to further increase allocation latency, unless it is
3084 * khugepaged trying to collapse.
3085 */
3086 if (contended_compaction == COMPACT_CONTENDED_SCHED
3087 && !(current->flags & PF_KTHREAD))
3088 goto nopage;
3089 }
3090
3091 /*
3092 * It can become very expensive to allocate transparent hugepages at
3093 * fault, so use asynchronous memory compaction for THP unless it is
3094 * khugepaged trying to collapse.
3095 */
3096 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3097 migration_mode = MIGRATE_SYNC_LIGHT;
3098
3099 /* Try direct reclaim and then allocating */
3100 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3101 &did_some_progress);
3102 if (page)
3103 goto got_pg;
3104
3105 /* Do not loop if specifically requested */
3106 if (gfp_mask & __GFP_NORETRY)
3107 goto noretry;
3108
3109 /* Keep reclaiming pages as long as there is reasonable progress */
3110 pages_reclaimed += did_some_progress;
3111 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3112 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3113 /* Wait for some write requests to complete then retry */
3114 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3115 goto retry;
3116 }
3117
3118 /* Reclaim has failed us, start killing things */
3119 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3120 if (page)
3121 goto got_pg;
3122
3123 /* Retry as long as the OOM killer is making progress */
3124 if (did_some_progress)
3125 goto retry;
3126
3127 noretry:
3128 /*
3129 * High-order allocations do not necessarily loop after
3130 * direct reclaim and reclaim/compaction depends on compaction
3131 * being called after reclaim so call directly if necessary
3132 */
3133 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3134 ac, migration_mode,
3135 &contended_compaction,
3136 &deferred_compaction);
3137 if (page)
3138 goto got_pg;
3139 nopage:
3140 warn_alloc_failed(gfp_mask, order, NULL);
3141 got_pg:
3142 return page;
3143 }
3144
3145 /*
3146 * This is the 'heart' of the zoned buddy allocator.
3147 */
3148 struct page *
3149 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3150 struct zonelist *zonelist, nodemask_t *nodemask)
3151 {
3152 struct zoneref *preferred_zoneref;
3153 struct page *page = NULL;
3154 unsigned int cpuset_mems_cookie;
3155 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3156 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3157 struct alloc_context ac = {
3158 .high_zoneidx = gfp_zone(gfp_mask),
3159 .nodemask = nodemask,
3160 .migratetype = gfpflags_to_migratetype(gfp_mask),
3161 };
3162
3163 gfp_mask &= gfp_allowed_mask;
3164
3165 lockdep_trace_alloc(gfp_mask);
3166
3167 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3168
3169 if (should_fail_alloc_page(gfp_mask, order))
3170 return NULL;
3171
3172 /*
3173 * Check the zones suitable for the gfp_mask contain at least one
3174 * valid zone. It's possible to have an empty zonelist as a result
3175 * of __GFP_THISNODE and a memoryless node
3176 */
3177 if (unlikely(!zonelist->_zonerefs->zone))
3178 return NULL;
3179
3180 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3181 alloc_flags |= ALLOC_CMA;
3182
3183 retry_cpuset:
3184 cpuset_mems_cookie = read_mems_allowed_begin();
3185
3186 /* We set it here, as __alloc_pages_slowpath might have changed it */
3187 ac.zonelist = zonelist;
3188
3189 /* Dirty zone balancing only done in the fast path */
3190 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3191
3192 /* The preferred zone is used for statistics later */
3193 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3194 ac.nodemask ? : &cpuset_current_mems_allowed,
3195 &ac.preferred_zone);
3196 if (!ac.preferred_zone)
3197 goto out;
3198 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3199
3200 /* First allocation attempt */
3201 alloc_mask = gfp_mask|__GFP_HARDWALL;
3202 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3203 if (unlikely(!page)) {
3204 /*
3205 * Runtime PM, block IO and its error handling path
3206 * can deadlock because I/O on the device might not
3207 * complete.
3208 */
3209 alloc_mask = memalloc_noio_flags(gfp_mask);
3210 ac.spread_dirty_pages = false;
3211
3212 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3213 }
3214
3215 if (kmemcheck_enabled && page)
3216 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3217
3218 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3219
3220 out:
3221 /*
3222 * When updating a task's mems_allowed, it is possible to race with
3223 * parallel threads in such a way that an allocation can fail while
3224 * the mask is being updated. If a page allocation is about to fail,
3225 * check if the cpuset changed during allocation and if so, retry.
3226 */
3227 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3228 goto retry_cpuset;
3229
3230 return page;
3231 }
3232 EXPORT_SYMBOL(__alloc_pages_nodemask);
3233
3234 /*
3235 * Common helper functions.
3236 */
3237 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3238 {
3239 struct page *page;
3240
3241 /*
3242 * __get_free_pages() returns a 32-bit address, which cannot represent
3243 * a highmem page
3244 */
3245 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3246
3247 page = alloc_pages(gfp_mask, order);
3248 if (!page)
3249 return 0;
3250 return (unsigned long) page_address(page);
3251 }
3252 EXPORT_SYMBOL(__get_free_pages);
3253
3254 unsigned long get_zeroed_page(gfp_t gfp_mask)
3255 {
3256 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3257 }
3258 EXPORT_SYMBOL(get_zeroed_page);
3259
3260 void __free_pages(struct page *page, unsigned int order)
3261 {
3262 if (put_page_testzero(page)) {
3263 if (order == 0)
3264 free_hot_cold_page(page, false);
3265 else
3266 __free_pages_ok(page, order);
3267 }
3268 }
3269
3270 EXPORT_SYMBOL(__free_pages);
3271
3272 void free_pages(unsigned long addr, unsigned int order)
3273 {
3274 if (addr != 0) {
3275 VM_BUG_ON(!virt_addr_valid((void *)addr));
3276 __free_pages(virt_to_page((void *)addr), order);
3277 }
3278 }
3279
3280 EXPORT_SYMBOL(free_pages);
3281
3282 /*
3283 * Page Fragment:
3284 * An arbitrary-length arbitrary-offset area of memory which resides
3285 * within a 0 or higher order page. Multiple fragments within that page
3286 * are individually refcounted, in the page's reference counter.
3287 *
3288 * The page_frag functions below provide a simple allocation framework for
3289 * page fragments. This is used by the network stack and network device
3290 * drivers to provide a backing region of memory for use as either an
3291 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3292 */
3293 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3294 gfp_t gfp_mask)
3295 {
3296 struct page *page = NULL;
3297 gfp_t gfp = gfp_mask;
3298
3299 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3300 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3301 __GFP_NOMEMALLOC;
3302 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3303 PAGE_FRAG_CACHE_MAX_ORDER);
3304 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3305 #endif
3306 if (unlikely(!page))
3307 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3308
3309 nc->va = page ? page_address(page) : NULL;
3310
3311 return page;
3312 }
3313
3314 void *__alloc_page_frag(struct page_frag_cache *nc,
3315 unsigned int fragsz, gfp_t gfp_mask)
3316 {
3317 unsigned int size = PAGE_SIZE;
3318 struct page *page;
3319 int offset;
3320
3321 if (unlikely(!nc->va)) {
3322 refill:
3323 page = __page_frag_refill(nc, gfp_mask);
3324 if (!page)
3325 return NULL;
3326
3327 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3328 /* if size can vary use size else just use PAGE_SIZE */
3329 size = nc->size;
3330 #endif
3331 /* Even if we own the page, we do not use atomic_set().
3332 * This would break get_page_unless_zero() users.
3333 */
3334 atomic_add(size - 1, &page->_count);
3335
3336 /* reset page count bias and offset to start of new frag */
3337 nc->pfmemalloc = page_is_pfmemalloc(page);
3338 nc->pagecnt_bias = size;
3339 nc->offset = size;
3340 }
3341
3342 offset = nc->offset - fragsz;
3343 if (unlikely(offset < 0)) {
3344 page = virt_to_page(nc->va);
3345
3346 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3347 goto refill;
3348
3349 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3350 /* if size can vary use size else just use PAGE_SIZE */
3351 size = nc->size;
3352 #endif
3353 /* OK, page count is 0, we can safely set it */
3354 atomic_set(&page->_count, size);
3355
3356 /* reset page count bias and offset to start of new frag */
3357 nc->pagecnt_bias = size;
3358 offset = size - fragsz;
3359 }
3360
3361 nc->pagecnt_bias--;
3362 nc->offset = offset;
3363
3364 return nc->va + offset;
3365 }
3366 EXPORT_SYMBOL(__alloc_page_frag);
3367
3368 /*
3369 * Frees a page fragment allocated out of either a compound or order 0 page.
3370 */
3371 void __free_page_frag(void *addr)
3372 {
3373 struct page *page = virt_to_head_page(addr);
3374
3375 if (unlikely(put_page_testzero(page)))
3376 __free_pages_ok(page, compound_order(page));
3377 }
3378 EXPORT_SYMBOL(__free_page_frag);
3379
3380 /*
3381 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3382 * of the current memory cgroup.
3383 *
3384 * It should be used when the caller would like to use kmalloc, but since the
3385 * allocation is large, it has to fall back to the page allocator.
3386 */
3387 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3388 {
3389 struct page *page;
3390
3391 page = alloc_pages(gfp_mask, order);
3392 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3393 __free_pages(page, order);
3394 page = NULL;
3395 }
3396 return page;
3397 }
3398
3399 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3400 {
3401 struct page *page;
3402
3403 page = alloc_pages_node(nid, gfp_mask, order);
3404 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3405 __free_pages(page, order);
3406 page = NULL;
3407 }
3408 return page;
3409 }
3410
3411 /*
3412 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3413 * alloc_kmem_pages.
3414 */
3415 void __free_kmem_pages(struct page *page, unsigned int order)
3416 {
3417 memcg_kmem_uncharge(page, order);
3418 __free_pages(page, order);
3419 }
3420
3421 void free_kmem_pages(unsigned long addr, unsigned int order)
3422 {
3423 if (addr != 0) {
3424 VM_BUG_ON(!virt_addr_valid((void *)addr));
3425 __free_kmem_pages(virt_to_page((void *)addr), order);
3426 }
3427 }
3428
3429 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3430 {
3431 if (addr) {
3432 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3433 unsigned long used = addr + PAGE_ALIGN(size);
3434
3435 split_page(virt_to_page((void *)addr), order);
3436 while (used < alloc_end) {
3437 free_page(used);
3438 used += PAGE_SIZE;
3439 }
3440 }
3441 return (void *)addr;
3442 }
3443
3444 /**
3445 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3446 * @size: the number of bytes to allocate
3447 * @gfp_mask: GFP flags for the allocation
3448 *
3449 * This function is similar to alloc_pages(), except that it allocates the
3450 * minimum number of pages to satisfy the request. alloc_pages() can only
3451 * allocate memory in power-of-two pages.
3452 *
3453 * This function is also limited by MAX_ORDER.
3454 *
3455 * Memory allocated by this function must be released by free_pages_exact().
3456 */
3457 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3458 {
3459 unsigned int order = get_order(size);
3460 unsigned long addr;
3461
3462 addr = __get_free_pages(gfp_mask, order);
3463 return make_alloc_exact(addr, order, size);
3464 }
3465 EXPORT_SYMBOL(alloc_pages_exact);
3466
3467 /**
3468 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3469 * pages on a node.
3470 * @nid: the preferred node ID where memory should be allocated
3471 * @size: the number of bytes to allocate
3472 * @gfp_mask: GFP flags for the allocation
3473 *
3474 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3475 * back.
3476 */
3477 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3478 {
3479 unsigned order = get_order(size);
3480 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3481 if (!p)
3482 return NULL;
3483 return make_alloc_exact((unsigned long)page_address(p), order, size);
3484 }
3485
3486 /**
3487 * free_pages_exact - release memory allocated via alloc_pages_exact()
3488 * @virt: the value returned by alloc_pages_exact.
3489 * @size: size of allocation, same value as passed to alloc_pages_exact().
3490 *
3491 * Release the memory allocated by a previous call to alloc_pages_exact.
3492 */
3493 void free_pages_exact(void *virt, size_t size)
3494 {
3495 unsigned long addr = (unsigned long)virt;
3496 unsigned long end = addr + PAGE_ALIGN(size);
3497
3498 while (addr < end) {
3499 free_page(addr);
3500 addr += PAGE_SIZE;
3501 }
3502 }
3503 EXPORT_SYMBOL(free_pages_exact);
3504
3505 /**
3506 * nr_free_zone_pages - count number of pages beyond high watermark
3507 * @offset: The zone index of the highest zone
3508 *
3509 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3510 * high watermark within all zones at or below a given zone index. For each
3511 * zone, the number of pages is calculated as:
3512 * managed_pages - high_pages
3513 */
3514 static unsigned long nr_free_zone_pages(int offset)
3515 {
3516 struct zoneref *z;
3517 struct zone *zone;
3518
3519 /* Just pick one node, since fallback list is circular */
3520 unsigned long sum = 0;
3521
3522 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3523
3524 for_each_zone_zonelist(zone, z, zonelist, offset) {
3525 unsigned long size = zone->managed_pages;
3526 unsigned long high = high_wmark_pages(zone);
3527 if (size > high)
3528 sum += size - high;
3529 }
3530
3531 return sum;
3532 }
3533
3534 /**
3535 * nr_free_buffer_pages - count number of pages beyond high watermark
3536 *
3537 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3538 * watermark within ZONE_DMA and ZONE_NORMAL.
3539 */
3540 unsigned long nr_free_buffer_pages(void)
3541 {
3542 return nr_free_zone_pages(gfp_zone(GFP_USER));
3543 }
3544 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3545
3546 /**
3547 * nr_free_pagecache_pages - count number of pages beyond high watermark
3548 *
3549 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3550 * high watermark within all zones.
3551 */
3552 unsigned long nr_free_pagecache_pages(void)
3553 {
3554 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3555 }
3556
3557 static inline void show_node(struct zone *zone)
3558 {
3559 if (IS_ENABLED(CONFIG_NUMA))
3560 printk("Node %d ", zone_to_nid(zone));
3561 }
3562
3563 void si_meminfo(struct sysinfo *val)
3564 {
3565 val->totalram = totalram_pages;
3566 val->sharedram = global_page_state(NR_SHMEM);
3567 val->freeram = global_page_state(NR_FREE_PAGES);
3568 val->bufferram = nr_blockdev_pages();
3569 val->totalhigh = totalhigh_pages;
3570 val->freehigh = nr_free_highpages();
3571 val->mem_unit = PAGE_SIZE;
3572 }
3573
3574 EXPORT_SYMBOL(si_meminfo);
3575
3576 #ifdef CONFIG_NUMA
3577 void si_meminfo_node(struct sysinfo *val, int nid)
3578 {
3579 int zone_type; /* needs to be signed */
3580 unsigned long managed_pages = 0;
3581 pg_data_t *pgdat = NODE_DATA(nid);
3582
3583 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3584 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3585 val->totalram = managed_pages;
3586 val->sharedram = node_page_state(nid, NR_SHMEM);
3587 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3588 #ifdef CONFIG_HIGHMEM
3589 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3590 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3591 NR_FREE_PAGES);
3592 #else
3593 val->totalhigh = 0;
3594 val->freehigh = 0;
3595 #endif
3596 val->mem_unit = PAGE_SIZE;
3597 }
3598 #endif
3599
3600 /*
3601 * Determine whether the node should be displayed or not, depending on whether
3602 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3603 */
3604 bool skip_free_areas_node(unsigned int flags, int nid)
3605 {
3606 bool ret = false;
3607 unsigned int cpuset_mems_cookie;
3608
3609 if (!(flags & SHOW_MEM_FILTER_NODES))
3610 goto out;
3611
3612 do {
3613 cpuset_mems_cookie = read_mems_allowed_begin();
3614 ret = !node_isset(nid, cpuset_current_mems_allowed);
3615 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3616 out:
3617 return ret;
3618 }
3619
3620 #define K(x) ((x) << (PAGE_SHIFT-10))
3621
3622 static void show_migration_types(unsigned char type)
3623 {
3624 static const char types[MIGRATE_TYPES] = {
3625 [MIGRATE_UNMOVABLE] = 'U',
3626 [MIGRATE_RECLAIMABLE] = 'E',
3627 [MIGRATE_MOVABLE] = 'M',
3628 #ifdef CONFIG_CMA
3629 [MIGRATE_CMA] = 'C',
3630 #endif
3631 #ifdef CONFIG_MEMORY_ISOLATION
3632 [MIGRATE_ISOLATE] = 'I',
3633 #endif
3634 };
3635 char tmp[MIGRATE_TYPES + 1];
3636 char *p = tmp;
3637 int i;
3638
3639 for (i = 0; i < MIGRATE_TYPES; i++) {
3640 if (type & (1 << i))
3641 *p++ = types[i];
3642 }
3643
3644 *p = '\0';
3645 printk("(%s) ", tmp);
3646 }
3647
3648 /*
3649 * Show free area list (used inside shift_scroll-lock stuff)
3650 * We also calculate the percentage fragmentation. We do this by counting the
3651 * memory on each free list with the exception of the first item on the list.
3652 *
3653 * Bits in @filter:
3654 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3655 * cpuset.
3656 */
3657 void show_free_areas(unsigned int filter)
3658 {
3659 unsigned long free_pcp = 0;
3660 int cpu;
3661 struct zone *zone;
3662
3663 for_each_populated_zone(zone) {
3664 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3665 continue;
3666
3667 for_each_online_cpu(cpu)
3668 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3669 }
3670
3671 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3672 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3673 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3674 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3675 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3676 " free:%lu free_pcp:%lu free_cma:%lu\n",
3677 global_page_state(NR_ACTIVE_ANON),
3678 global_page_state(NR_INACTIVE_ANON),
3679 global_page_state(NR_ISOLATED_ANON),
3680 global_page_state(NR_ACTIVE_FILE),
3681 global_page_state(NR_INACTIVE_FILE),
3682 global_page_state(NR_ISOLATED_FILE),
3683 global_page_state(NR_UNEVICTABLE),
3684 global_page_state(NR_FILE_DIRTY),
3685 global_page_state(NR_WRITEBACK),
3686 global_page_state(NR_UNSTABLE_NFS),
3687 global_page_state(NR_SLAB_RECLAIMABLE),
3688 global_page_state(NR_SLAB_UNRECLAIMABLE),
3689 global_page_state(NR_FILE_MAPPED),
3690 global_page_state(NR_SHMEM),
3691 global_page_state(NR_PAGETABLE),
3692 global_page_state(NR_BOUNCE),
3693 global_page_state(NR_FREE_PAGES),
3694 free_pcp,
3695 global_page_state(NR_FREE_CMA_PAGES));
3696
3697 for_each_populated_zone(zone) {
3698 int i;
3699
3700 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3701 continue;
3702
3703 free_pcp = 0;
3704 for_each_online_cpu(cpu)
3705 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3706
3707 show_node(zone);
3708 printk("%s"
3709 " free:%lukB"
3710 " min:%lukB"
3711 " low:%lukB"
3712 " high:%lukB"
3713 " active_anon:%lukB"
3714 " inactive_anon:%lukB"
3715 " active_file:%lukB"
3716 " inactive_file:%lukB"
3717 " unevictable:%lukB"
3718 " isolated(anon):%lukB"
3719 " isolated(file):%lukB"
3720 " present:%lukB"
3721 " managed:%lukB"
3722 " mlocked:%lukB"
3723 " dirty:%lukB"
3724 " writeback:%lukB"
3725 " mapped:%lukB"
3726 " shmem:%lukB"
3727 " slab_reclaimable:%lukB"
3728 " slab_unreclaimable:%lukB"
3729 " kernel_stack:%lukB"
3730 " pagetables:%lukB"
3731 " unstable:%lukB"
3732 " bounce:%lukB"
3733 " free_pcp:%lukB"
3734 " local_pcp:%ukB"
3735 " free_cma:%lukB"
3736 " writeback_tmp:%lukB"
3737 " pages_scanned:%lu"
3738 " all_unreclaimable? %s"
3739 "\n",
3740 zone->name,
3741 K(zone_page_state(zone, NR_FREE_PAGES)),
3742 K(min_wmark_pages(zone)),
3743 K(low_wmark_pages(zone)),
3744 K(high_wmark_pages(zone)),
3745 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3746 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3747 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3748 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3749 K(zone_page_state(zone, NR_UNEVICTABLE)),
3750 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3751 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3752 K(zone->present_pages),
3753 K(zone->managed_pages),
3754 K(zone_page_state(zone, NR_MLOCK)),
3755 K(zone_page_state(zone, NR_FILE_DIRTY)),
3756 K(zone_page_state(zone, NR_WRITEBACK)),
3757 K(zone_page_state(zone, NR_FILE_MAPPED)),
3758 K(zone_page_state(zone, NR_SHMEM)),
3759 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3760 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3761 zone_page_state(zone, NR_KERNEL_STACK) *
3762 THREAD_SIZE / 1024,
3763 K(zone_page_state(zone, NR_PAGETABLE)),
3764 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3765 K(zone_page_state(zone, NR_BOUNCE)),
3766 K(free_pcp),
3767 K(this_cpu_read(zone->pageset->pcp.count)),
3768 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3769 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3770 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3771 (!zone_reclaimable(zone) ? "yes" : "no")
3772 );
3773 printk("lowmem_reserve[]:");
3774 for (i = 0; i < MAX_NR_ZONES; i++)
3775 printk(" %ld", zone->lowmem_reserve[i]);
3776 printk("\n");
3777 }
3778
3779 for_each_populated_zone(zone) {
3780 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3781 unsigned char types[MAX_ORDER];
3782
3783 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3784 continue;
3785 show_node(zone);
3786 printk("%s: ", zone->name);
3787
3788 spin_lock_irqsave(&zone->lock, flags);
3789 for (order = 0; order < MAX_ORDER; order++) {
3790 struct free_area *area = &zone->free_area[order];
3791 int type;
3792
3793 nr[order] = area->nr_free;
3794 total += nr[order] << order;
3795
3796 types[order] = 0;
3797 for (type = 0; type < MIGRATE_TYPES; type++) {
3798 if (!list_empty(&area->free_list[type]))
3799 types[order] |= 1 << type;
3800 }
3801 }
3802 spin_unlock_irqrestore(&zone->lock, flags);
3803 for (order = 0; order < MAX_ORDER; order++) {
3804 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3805 if (nr[order])
3806 show_migration_types(types[order]);
3807 }
3808 printk("= %lukB\n", K(total));
3809 }
3810
3811 hugetlb_show_meminfo();
3812
3813 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3814
3815 show_swap_cache_info();
3816 }
3817
3818 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3819 {
3820 zoneref->zone = zone;
3821 zoneref->zone_idx = zone_idx(zone);
3822 }
3823
3824 /*
3825 * Builds allocation fallback zone lists.
3826 *
3827 * Add all populated zones of a node to the zonelist.
3828 */
3829 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3830 int nr_zones)
3831 {
3832 struct zone *zone;
3833 enum zone_type zone_type = MAX_NR_ZONES;
3834
3835 do {
3836 zone_type--;
3837 zone = pgdat->node_zones + zone_type;
3838 if (populated_zone(zone)) {
3839 zoneref_set_zone(zone,
3840 &zonelist->_zonerefs[nr_zones++]);
3841 check_highest_zone(zone_type);
3842 }
3843 } while (zone_type);
3844
3845 return nr_zones;
3846 }
3847
3848
3849 /*
3850 * zonelist_order:
3851 * 0 = automatic detection of better ordering.
3852 * 1 = order by ([node] distance, -zonetype)
3853 * 2 = order by (-zonetype, [node] distance)
3854 *
3855 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3856 * the same zonelist. So only NUMA can configure this param.
3857 */
3858 #define ZONELIST_ORDER_DEFAULT 0
3859 #define ZONELIST_ORDER_NODE 1
3860 #define ZONELIST_ORDER_ZONE 2
3861
3862 /* zonelist order in the kernel.
3863 * set_zonelist_order() will set this to NODE or ZONE.
3864 */
3865 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3866 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3867
3868
3869 #ifdef CONFIG_NUMA
3870 /* The value user specified ....changed by config */
3871 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3872 /* string for sysctl */
3873 #define NUMA_ZONELIST_ORDER_LEN 16
3874 char numa_zonelist_order[16] = "default";
3875
3876 /*
3877 * interface for configure zonelist ordering.
3878 * command line option "numa_zonelist_order"
3879 * = "[dD]efault - default, automatic configuration.
3880 * = "[nN]ode - order by node locality, then by zone within node
3881 * = "[zZ]one - order by zone, then by locality within zone
3882 */
3883
3884 static int __parse_numa_zonelist_order(char *s)
3885 {
3886 if (*s == 'd' || *s == 'D') {
3887 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3888 } else if (*s == 'n' || *s == 'N') {
3889 user_zonelist_order = ZONELIST_ORDER_NODE;
3890 } else if (*s == 'z' || *s == 'Z') {
3891 user_zonelist_order = ZONELIST_ORDER_ZONE;
3892 } else {
3893 printk(KERN_WARNING
3894 "Ignoring invalid numa_zonelist_order value: "
3895 "%s\n", s);
3896 return -EINVAL;
3897 }
3898 return 0;
3899 }
3900
3901 static __init int setup_numa_zonelist_order(char *s)
3902 {
3903 int ret;
3904
3905 if (!s)
3906 return 0;
3907
3908 ret = __parse_numa_zonelist_order(s);
3909 if (ret == 0)
3910 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3911
3912 return ret;
3913 }
3914 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3915
3916 /*
3917 * sysctl handler for numa_zonelist_order
3918 */
3919 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3920 void __user *buffer, size_t *length,
3921 loff_t *ppos)
3922 {
3923 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3924 int ret;
3925 static DEFINE_MUTEX(zl_order_mutex);
3926
3927 mutex_lock(&zl_order_mutex);
3928 if (write) {
3929 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3930 ret = -EINVAL;
3931 goto out;
3932 }
3933 strcpy(saved_string, (char *)table->data);
3934 }
3935 ret = proc_dostring(table, write, buffer, length, ppos);
3936 if (ret)
3937 goto out;
3938 if (write) {
3939 int oldval = user_zonelist_order;
3940
3941 ret = __parse_numa_zonelist_order((char *)table->data);
3942 if (ret) {
3943 /*
3944 * bogus value. restore saved string
3945 */
3946 strncpy((char *)table->data, saved_string,
3947 NUMA_ZONELIST_ORDER_LEN);
3948 user_zonelist_order = oldval;
3949 } else if (oldval != user_zonelist_order) {
3950 mutex_lock(&zonelists_mutex);
3951 build_all_zonelists(NULL, NULL);
3952 mutex_unlock(&zonelists_mutex);
3953 }
3954 }
3955 out:
3956 mutex_unlock(&zl_order_mutex);
3957 return ret;
3958 }
3959
3960
3961 #define MAX_NODE_LOAD (nr_online_nodes)
3962 static int node_load[MAX_NUMNODES];
3963
3964 /**
3965 * find_next_best_node - find the next node that should appear in a given node's fallback list
3966 * @node: node whose fallback list we're appending
3967 * @used_node_mask: nodemask_t of already used nodes
3968 *
3969 * We use a number of factors to determine which is the next node that should
3970 * appear on a given node's fallback list. The node should not have appeared
3971 * already in @node's fallback list, and it should be the next closest node
3972 * according to the distance array (which contains arbitrary distance values
3973 * from each node to each node in the system), and should also prefer nodes
3974 * with no CPUs, since presumably they'll have very little allocation pressure
3975 * on them otherwise.
3976 * It returns -1 if no node is found.
3977 */
3978 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3979 {
3980 int n, val;
3981 int min_val = INT_MAX;
3982 int best_node = NUMA_NO_NODE;
3983 const struct cpumask *tmp = cpumask_of_node(0);
3984
3985 /* Use the local node if we haven't already */
3986 if (!node_isset(node, *used_node_mask)) {
3987 node_set(node, *used_node_mask);
3988 return node;
3989 }
3990
3991 for_each_node_state(n, N_MEMORY) {
3992
3993 /* Don't want a node to appear more than once */
3994 if (node_isset(n, *used_node_mask))
3995 continue;
3996
3997 /* Use the distance array to find the distance */
3998 val = node_distance(node, n);
3999
4000 /* Penalize nodes under us ("prefer the next node") */
4001 val += (n < node);
4002
4003 /* Give preference to headless and unused nodes */
4004 tmp = cpumask_of_node(n);
4005 if (!cpumask_empty(tmp))
4006 val += PENALTY_FOR_NODE_WITH_CPUS;
4007
4008 /* Slight preference for less loaded node */
4009 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4010 val += node_load[n];
4011
4012 if (val < min_val) {
4013 min_val = val;
4014 best_node = n;
4015 }
4016 }
4017
4018 if (best_node >= 0)
4019 node_set(best_node, *used_node_mask);
4020
4021 return best_node;
4022 }
4023
4024
4025 /*
4026 * Build zonelists ordered by node and zones within node.
4027 * This results in maximum locality--normal zone overflows into local
4028 * DMA zone, if any--but risks exhausting DMA zone.
4029 */
4030 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4031 {
4032 int j;
4033 struct zonelist *zonelist;
4034
4035 zonelist = &pgdat->node_zonelists[0];
4036 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4037 ;
4038 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4039 zonelist->_zonerefs[j].zone = NULL;
4040 zonelist->_zonerefs[j].zone_idx = 0;
4041 }
4042
4043 /*
4044 * Build gfp_thisnode zonelists
4045 */
4046 static void build_thisnode_zonelists(pg_data_t *pgdat)
4047 {
4048 int j;
4049 struct zonelist *zonelist;
4050
4051 zonelist = &pgdat->node_zonelists[1];
4052 j = build_zonelists_node(pgdat, zonelist, 0);
4053 zonelist->_zonerefs[j].zone = NULL;
4054 zonelist->_zonerefs[j].zone_idx = 0;
4055 }
4056
4057 /*
4058 * Build zonelists ordered by zone and nodes within zones.
4059 * This results in conserving DMA zone[s] until all Normal memory is
4060 * exhausted, but results in overflowing to remote node while memory
4061 * may still exist in local DMA zone.
4062 */
4063 static int node_order[MAX_NUMNODES];
4064
4065 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4066 {
4067 int pos, j, node;
4068 int zone_type; /* needs to be signed */
4069 struct zone *z;
4070 struct zonelist *zonelist;
4071
4072 zonelist = &pgdat->node_zonelists[0];
4073 pos = 0;
4074 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4075 for (j = 0; j < nr_nodes; j++) {
4076 node = node_order[j];
4077 z = &NODE_DATA(node)->node_zones[zone_type];
4078 if (populated_zone(z)) {
4079 zoneref_set_zone(z,
4080 &zonelist->_zonerefs[pos++]);
4081 check_highest_zone(zone_type);
4082 }
4083 }
4084 }
4085 zonelist->_zonerefs[pos].zone = NULL;
4086 zonelist->_zonerefs[pos].zone_idx = 0;
4087 }
4088
4089 #if defined(CONFIG_64BIT)
4090 /*
4091 * Devices that require DMA32/DMA are relatively rare and do not justify a
4092 * penalty to every machine in case the specialised case applies. Default
4093 * to Node-ordering on 64-bit NUMA machines
4094 */
4095 static int default_zonelist_order(void)
4096 {
4097 return ZONELIST_ORDER_NODE;
4098 }
4099 #else
4100 /*
4101 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4102 * by the kernel. If processes running on node 0 deplete the low memory zone
4103 * then reclaim will occur more frequency increasing stalls and potentially
4104 * be easier to OOM if a large percentage of the zone is under writeback or
4105 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4106 * Hence, default to zone ordering on 32-bit.
4107 */
4108 static int default_zonelist_order(void)
4109 {
4110 return ZONELIST_ORDER_ZONE;
4111 }
4112 #endif /* CONFIG_64BIT */
4113
4114 static void set_zonelist_order(void)
4115 {
4116 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4117 current_zonelist_order = default_zonelist_order();
4118 else
4119 current_zonelist_order = user_zonelist_order;
4120 }
4121
4122 static void build_zonelists(pg_data_t *pgdat)
4123 {
4124 int j, node, load;
4125 enum zone_type i;
4126 nodemask_t used_mask;
4127 int local_node, prev_node;
4128 struct zonelist *zonelist;
4129 int order = current_zonelist_order;
4130
4131 /* initialize zonelists */
4132 for (i = 0; i < MAX_ZONELISTS; i++) {
4133 zonelist = pgdat->node_zonelists + i;
4134 zonelist->_zonerefs[0].zone = NULL;
4135 zonelist->_zonerefs[0].zone_idx = 0;
4136 }
4137
4138 /* NUMA-aware ordering of nodes */
4139 local_node = pgdat->node_id;
4140 load = nr_online_nodes;
4141 prev_node = local_node;
4142 nodes_clear(used_mask);
4143
4144 memset(node_order, 0, sizeof(node_order));
4145 j = 0;
4146
4147 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4148 /*
4149 * We don't want to pressure a particular node.
4150 * So adding penalty to the first node in same
4151 * distance group to make it round-robin.
4152 */
4153 if (node_distance(local_node, node) !=
4154 node_distance(local_node, prev_node))
4155 node_load[node] = load;
4156
4157 prev_node = node;
4158 load--;
4159 if (order == ZONELIST_ORDER_NODE)
4160 build_zonelists_in_node_order(pgdat, node);
4161 else
4162 node_order[j++] = node; /* remember order */
4163 }
4164
4165 if (order == ZONELIST_ORDER_ZONE) {
4166 /* calculate node order -- i.e., DMA last! */
4167 build_zonelists_in_zone_order(pgdat, j);
4168 }
4169
4170 build_thisnode_zonelists(pgdat);
4171 }
4172
4173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4174 /*
4175 * Return node id of node used for "local" allocations.
4176 * I.e., first node id of first zone in arg node's generic zonelist.
4177 * Used for initializing percpu 'numa_mem', which is used primarily
4178 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4179 */
4180 int local_memory_node(int node)
4181 {
4182 struct zone *zone;
4183
4184 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4185 gfp_zone(GFP_KERNEL),
4186 NULL,
4187 &zone);
4188 return zone->node;
4189 }
4190 #endif
4191
4192 #else /* CONFIG_NUMA */
4193
4194 static void set_zonelist_order(void)
4195 {
4196 current_zonelist_order = ZONELIST_ORDER_ZONE;
4197 }
4198
4199 static void build_zonelists(pg_data_t *pgdat)
4200 {
4201 int node, local_node;
4202 enum zone_type j;
4203 struct zonelist *zonelist;
4204
4205 local_node = pgdat->node_id;
4206
4207 zonelist = &pgdat->node_zonelists[0];
4208 j = build_zonelists_node(pgdat, zonelist, 0);
4209
4210 /*
4211 * Now we build the zonelist so that it contains the zones
4212 * of all the other nodes.
4213 * We don't want to pressure a particular node, so when
4214 * building the zones for node N, we make sure that the
4215 * zones coming right after the local ones are those from
4216 * node N+1 (modulo N)
4217 */
4218 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4219 if (!node_online(node))
4220 continue;
4221 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4222 }
4223 for (node = 0; node < local_node; node++) {
4224 if (!node_online(node))
4225 continue;
4226 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4227 }
4228
4229 zonelist->_zonerefs[j].zone = NULL;
4230 zonelist->_zonerefs[j].zone_idx = 0;
4231 }
4232
4233 #endif /* CONFIG_NUMA */
4234
4235 /*
4236 * Boot pageset table. One per cpu which is going to be used for all
4237 * zones and all nodes. The parameters will be set in such a way
4238 * that an item put on a list will immediately be handed over to
4239 * the buddy list. This is safe since pageset manipulation is done
4240 * with interrupts disabled.
4241 *
4242 * The boot_pagesets must be kept even after bootup is complete for
4243 * unused processors and/or zones. They do play a role for bootstrapping
4244 * hotplugged processors.
4245 *
4246 * zoneinfo_show() and maybe other functions do
4247 * not check if the processor is online before following the pageset pointer.
4248 * Other parts of the kernel may not check if the zone is available.
4249 */
4250 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4251 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4252 static void setup_zone_pageset(struct zone *zone);
4253
4254 /*
4255 * Global mutex to protect against size modification of zonelists
4256 * as well as to serialize pageset setup for the new populated zone.
4257 */
4258 DEFINE_MUTEX(zonelists_mutex);
4259
4260 /* return values int ....just for stop_machine() */
4261 static int __build_all_zonelists(void *data)
4262 {
4263 int nid;
4264 int cpu;
4265 pg_data_t *self = data;
4266
4267 #ifdef CONFIG_NUMA
4268 memset(node_load, 0, sizeof(node_load));
4269 #endif
4270
4271 if (self && !node_online(self->node_id)) {
4272 build_zonelists(self);
4273 }
4274
4275 for_each_online_node(nid) {
4276 pg_data_t *pgdat = NODE_DATA(nid);
4277
4278 build_zonelists(pgdat);
4279 }
4280
4281 /*
4282 * Initialize the boot_pagesets that are going to be used
4283 * for bootstrapping processors. The real pagesets for
4284 * each zone will be allocated later when the per cpu
4285 * allocator is available.
4286 *
4287 * boot_pagesets are used also for bootstrapping offline
4288 * cpus if the system is already booted because the pagesets
4289 * are needed to initialize allocators on a specific cpu too.
4290 * F.e. the percpu allocator needs the page allocator which
4291 * needs the percpu allocator in order to allocate its pagesets
4292 * (a chicken-egg dilemma).
4293 */
4294 for_each_possible_cpu(cpu) {
4295 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4296
4297 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4298 /*
4299 * We now know the "local memory node" for each node--
4300 * i.e., the node of the first zone in the generic zonelist.
4301 * Set up numa_mem percpu variable for on-line cpus. During
4302 * boot, only the boot cpu should be on-line; we'll init the
4303 * secondary cpus' numa_mem as they come on-line. During
4304 * node/memory hotplug, we'll fixup all on-line cpus.
4305 */
4306 if (cpu_online(cpu))
4307 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4308 #endif
4309 }
4310
4311 return 0;
4312 }
4313
4314 static noinline void __init
4315 build_all_zonelists_init(void)
4316 {
4317 __build_all_zonelists(NULL);
4318 mminit_verify_zonelist();
4319 cpuset_init_current_mems_allowed();
4320 }
4321
4322 /*
4323 * Called with zonelists_mutex held always
4324 * unless system_state == SYSTEM_BOOTING.
4325 *
4326 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4327 * [we're only called with non-NULL zone through __meminit paths] and
4328 * (2) call of __init annotated helper build_all_zonelists_init
4329 * [protected by SYSTEM_BOOTING].
4330 */
4331 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4332 {
4333 set_zonelist_order();
4334
4335 if (system_state == SYSTEM_BOOTING) {
4336 build_all_zonelists_init();
4337 } else {
4338 #ifdef CONFIG_MEMORY_HOTPLUG
4339 if (zone)
4340 setup_zone_pageset(zone);
4341 #endif
4342 /* we have to stop all cpus to guarantee there is no user
4343 of zonelist */
4344 stop_machine(__build_all_zonelists, pgdat, NULL);
4345 /* cpuset refresh routine should be here */
4346 }
4347 vm_total_pages = nr_free_pagecache_pages();
4348 /*
4349 * Disable grouping by mobility if the number of pages in the
4350 * system is too low to allow the mechanism to work. It would be
4351 * more accurate, but expensive to check per-zone. This check is
4352 * made on memory-hotadd so a system can start with mobility
4353 * disabled and enable it later
4354 */
4355 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4356 page_group_by_mobility_disabled = 1;
4357 else
4358 page_group_by_mobility_disabled = 0;
4359
4360 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4361 "Total pages: %ld\n",
4362 nr_online_nodes,
4363 zonelist_order_name[current_zonelist_order],
4364 page_group_by_mobility_disabled ? "off" : "on",
4365 vm_total_pages);
4366 #ifdef CONFIG_NUMA
4367 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4368 #endif
4369 }
4370
4371 /*
4372 * Helper functions to size the waitqueue hash table.
4373 * Essentially these want to choose hash table sizes sufficiently
4374 * large so that collisions trying to wait on pages are rare.
4375 * But in fact, the number of active page waitqueues on typical
4376 * systems is ridiculously low, less than 200. So this is even
4377 * conservative, even though it seems large.
4378 *
4379 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4380 * waitqueues, i.e. the size of the waitq table given the number of pages.
4381 */
4382 #define PAGES_PER_WAITQUEUE 256
4383
4384 #ifndef CONFIG_MEMORY_HOTPLUG
4385 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4386 {
4387 unsigned long size = 1;
4388
4389 pages /= PAGES_PER_WAITQUEUE;
4390
4391 while (size < pages)
4392 size <<= 1;
4393
4394 /*
4395 * Once we have dozens or even hundreds of threads sleeping
4396 * on IO we've got bigger problems than wait queue collision.
4397 * Limit the size of the wait table to a reasonable size.
4398 */
4399 size = min(size, 4096UL);
4400
4401 return max(size, 4UL);
4402 }
4403 #else
4404 /*
4405 * A zone's size might be changed by hot-add, so it is not possible to determine
4406 * a suitable size for its wait_table. So we use the maximum size now.
4407 *
4408 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4409 *
4410 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4411 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4412 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4413 *
4414 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4415 * or more by the traditional way. (See above). It equals:
4416 *
4417 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4418 * ia64(16K page size) : = ( 8G + 4M)byte.
4419 * powerpc (64K page size) : = (32G +16M)byte.
4420 */
4421 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4422 {
4423 return 4096UL;
4424 }
4425 #endif
4426
4427 /*
4428 * This is an integer logarithm so that shifts can be used later
4429 * to extract the more random high bits from the multiplicative
4430 * hash function before the remainder is taken.
4431 */
4432 static inline unsigned long wait_table_bits(unsigned long size)
4433 {
4434 return ffz(~size);
4435 }
4436
4437 /*
4438 * Initially all pages are reserved - free ones are freed
4439 * up by free_all_bootmem() once the early boot process is
4440 * done. Non-atomic initialization, single-pass.
4441 */
4442 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4443 unsigned long start_pfn, enum memmap_context context)
4444 {
4445 pg_data_t *pgdat = NODE_DATA(nid);
4446 unsigned long end_pfn = start_pfn + size;
4447 unsigned long pfn;
4448 struct zone *z;
4449 unsigned long nr_initialised = 0;
4450
4451 if (highest_memmap_pfn < end_pfn - 1)
4452 highest_memmap_pfn = end_pfn - 1;
4453
4454 z = &pgdat->node_zones[zone];
4455 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4456 /*
4457 * There can be holes in boot-time mem_map[]s
4458 * handed to this function. They do not
4459 * exist on hotplugged memory.
4460 */
4461 if (context == MEMMAP_EARLY) {
4462 if (!early_pfn_valid(pfn))
4463 continue;
4464 if (!early_pfn_in_nid(pfn, nid))
4465 continue;
4466 if (!update_defer_init(pgdat, pfn, end_pfn,
4467 &nr_initialised))
4468 break;
4469 }
4470
4471 /*
4472 * Mark the block movable so that blocks are reserved for
4473 * movable at startup. This will force kernel allocations
4474 * to reserve their blocks rather than leaking throughout
4475 * the address space during boot when many long-lived
4476 * kernel allocations are made.
4477 *
4478 * bitmap is created for zone's valid pfn range. but memmap
4479 * can be created for invalid pages (for alignment)
4480 * check here not to call set_pageblock_migratetype() against
4481 * pfn out of zone.
4482 */
4483 if (!(pfn & (pageblock_nr_pages - 1))) {
4484 struct page *page = pfn_to_page(pfn);
4485
4486 __init_single_page(page, pfn, zone, nid);
4487 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4488 } else {
4489 __init_single_pfn(pfn, zone, nid);
4490 }
4491 }
4492 }
4493
4494 static void __meminit zone_init_free_lists(struct zone *zone)
4495 {
4496 unsigned int order, t;
4497 for_each_migratetype_order(order, t) {
4498 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4499 zone->free_area[order].nr_free = 0;
4500 }
4501 }
4502
4503 #ifndef __HAVE_ARCH_MEMMAP_INIT
4504 #define memmap_init(size, nid, zone, start_pfn) \
4505 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4506 #endif
4507
4508 static int zone_batchsize(struct zone *zone)
4509 {
4510 #ifdef CONFIG_MMU
4511 int batch;
4512
4513 /*
4514 * The per-cpu-pages pools are set to around 1000th of the
4515 * size of the zone. But no more than 1/2 of a meg.
4516 *
4517 * OK, so we don't know how big the cache is. So guess.
4518 */
4519 batch = zone->managed_pages / 1024;
4520 if (batch * PAGE_SIZE > 512 * 1024)
4521 batch = (512 * 1024) / PAGE_SIZE;
4522 batch /= 4; /* We effectively *= 4 below */
4523 if (batch < 1)
4524 batch = 1;
4525
4526 /*
4527 * Clamp the batch to a 2^n - 1 value. Having a power
4528 * of 2 value was found to be more likely to have
4529 * suboptimal cache aliasing properties in some cases.
4530 *
4531 * For example if 2 tasks are alternately allocating
4532 * batches of pages, one task can end up with a lot
4533 * of pages of one half of the possible page colors
4534 * and the other with pages of the other colors.
4535 */
4536 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4537
4538 return batch;
4539
4540 #else
4541 /* The deferral and batching of frees should be suppressed under NOMMU
4542 * conditions.
4543 *
4544 * The problem is that NOMMU needs to be able to allocate large chunks
4545 * of contiguous memory as there's no hardware page translation to
4546 * assemble apparent contiguous memory from discontiguous pages.
4547 *
4548 * Queueing large contiguous runs of pages for batching, however,
4549 * causes the pages to actually be freed in smaller chunks. As there
4550 * can be a significant delay between the individual batches being
4551 * recycled, this leads to the once large chunks of space being
4552 * fragmented and becoming unavailable for high-order allocations.
4553 */
4554 return 0;
4555 #endif
4556 }
4557
4558 /*
4559 * pcp->high and pcp->batch values are related and dependent on one another:
4560 * ->batch must never be higher then ->high.
4561 * The following function updates them in a safe manner without read side
4562 * locking.
4563 *
4564 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4565 * those fields changing asynchronously (acording the the above rule).
4566 *
4567 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4568 * outside of boot time (or some other assurance that no concurrent updaters
4569 * exist).
4570 */
4571 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4572 unsigned long batch)
4573 {
4574 /* start with a fail safe value for batch */
4575 pcp->batch = 1;
4576 smp_wmb();
4577
4578 /* Update high, then batch, in order */
4579 pcp->high = high;
4580 smp_wmb();
4581
4582 pcp->batch = batch;
4583 }
4584
4585 /* a companion to pageset_set_high() */
4586 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4587 {
4588 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4589 }
4590
4591 static void pageset_init(struct per_cpu_pageset *p)
4592 {
4593 struct per_cpu_pages *pcp;
4594 int migratetype;
4595
4596 memset(p, 0, sizeof(*p));
4597
4598 pcp = &p->pcp;
4599 pcp->count = 0;
4600 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4601 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4602 }
4603
4604 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4605 {
4606 pageset_init(p);
4607 pageset_set_batch(p, batch);
4608 }
4609
4610 /*
4611 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4612 * to the value high for the pageset p.
4613 */
4614 static void pageset_set_high(struct per_cpu_pageset *p,
4615 unsigned long high)
4616 {
4617 unsigned long batch = max(1UL, high / 4);
4618 if ((high / 4) > (PAGE_SHIFT * 8))
4619 batch = PAGE_SHIFT * 8;
4620
4621 pageset_update(&p->pcp, high, batch);
4622 }
4623
4624 static void pageset_set_high_and_batch(struct zone *zone,
4625 struct per_cpu_pageset *pcp)
4626 {
4627 if (percpu_pagelist_fraction)
4628 pageset_set_high(pcp,
4629 (zone->managed_pages /
4630 percpu_pagelist_fraction));
4631 else
4632 pageset_set_batch(pcp, zone_batchsize(zone));
4633 }
4634
4635 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4636 {
4637 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4638
4639 pageset_init(pcp);
4640 pageset_set_high_and_batch(zone, pcp);
4641 }
4642
4643 static void __meminit setup_zone_pageset(struct zone *zone)
4644 {
4645 int cpu;
4646 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4647 for_each_possible_cpu(cpu)
4648 zone_pageset_init(zone, cpu);
4649 }
4650
4651 /*
4652 * Allocate per cpu pagesets and initialize them.
4653 * Before this call only boot pagesets were available.
4654 */
4655 void __init setup_per_cpu_pageset(void)
4656 {
4657 struct zone *zone;
4658
4659 for_each_populated_zone(zone)
4660 setup_zone_pageset(zone);
4661 }
4662
4663 static noinline __init_refok
4664 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4665 {
4666 int i;
4667 size_t alloc_size;
4668
4669 /*
4670 * The per-page waitqueue mechanism uses hashed waitqueues
4671 * per zone.
4672 */
4673 zone->wait_table_hash_nr_entries =
4674 wait_table_hash_nr_entries(zone_size_pages);
4675 zone->wait_table_bits =
4676 wait_table_bits(zone->wait_table_hash_nr_entries);
4677 alloc_size = zone->wait_table_hash_nr_entries
4678 * sizeof(wait_queue_head_t);
4679
4680 if (!slab_is_available()) {
4681 zone->wait_table = (wait_queue_head_t *)
4682 memblock_virt_alloc_node_nopanic(
4683 alloc_size, zone->zone_pgdat->node_id);
4684 } else {
4685 /*
4686 * This case means that a zone whose size was 0 gets new memory
4687 * via memory hot-add.
4688 * But it may be the case that a new node was hot-added. In
4689 * this case vmalloc() will not be able to use this new node's
4690 * memory - this wait_table must be initialized to use this new
4691 * node itself as well.
4692 * To use this new node's memory, further consideration will be
4693 * necessary.
4694 */
4695 zone->wait_table = vmalloc(alloc_size);
4696 }
4697 if (!zone->wait_table)
4698 return -ENOMEM;
4699
4700 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4701 init_waitqueue_head(zone->wait_table + i);
4702
4703 return 0;
4704 }
4705
4706 static __meminit void zone_pcp_init(struct zone *zone)
4707 {
4708 /*
4709 * per cpu subsystem is not up at this point. The following code
4710 * relies on the ability of the linker to provide the
4711 * offset of a (static) per cpu variable into the per cpu area.
4712 */
4713 zone->pageset = &boot_pageset;
4714
4715 if (populated_zone(zone))
4716 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4717 zone->name, zone->present_pages,
4718 zone_batchsize(zone));
4719 }
4720
4721 int __meminit init_currently_empty_zone(struct zone *zone,
4722 unsigned long zone_start_pfn,
4723 unsigned long size)
4724 {
4725 struct pglist_data *pgdat = zone->zone_pgdat;
4726 int ret;
4727 ret = zone_wait_table_init(zone, size);
4728 if (ret)
4729 return ret;
4730 pgdat->nr_zones = zone_idx(zone) + 1;
4731
4732 zone->zone_start_pfn = zone_start_pfn;
4733
4734 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4735 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4736 pgdat->node_id,
4737 (unsigned long)zone_idx(zone),
4738 zone_start_pfn, (zone_start_pfn + size));
4739
4740 zone_init_free_lists(zone);
4741
4742 return 0;
4743 }
4744
4745 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4746 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4747
4748 /*
4749 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4750 */
4751 int __meminit __early_pfn_to_nid(unsigned long pfn,
4752 struct mminit_pfnnid_cache *state)
4753 {
4754 unsigned long start_pfn, end_pfn;
4755 int nid;
4756
4757 if (state->last_start <= pfn && pfn < state->last_end)
4758 return state->last_nid;
4759
4760 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4761 if (nid != -1) {
4762 state->last_start = start_pfn;
4763 state->last_end = end_pfn;
4764 state->last_nid = nid;
4765 }
4766
4767 return nid;
4768 }
4769 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4770
4771 /**
4772 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4773 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4774 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4775 *
4776 * If an architecture guarantees that all ranges registered contain no holes
4777 * and may be freed, this this function may be used instead of calling
4778 * memblock_free_early_nid() manually.
4779 */
4780 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4781 {
4782 unsigned long start_pfn, end_pfn;
4783 int i, this_nid;
4784
4785 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4786 start_pfn = min(start_pfn, max_low_pfn);
4787 end_pfn = min(end_pfn, max_low_pfn);
4788
4789 if (start_pfn < end_pfn)
4790 memblock_free_early_nid(PFN_PHYS(start_pfn),
4791 (end_pfn - start_pfn) << PAGE_SHIFT,
4792 this_nid);
4793 }
4794 }
4795
4796 /**
4797 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4798 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4799 *
4800 * If an architecture guarantees that all ranges registered contain no holes and may
4801 * be freed, this function may be used instead of calling memory_present() manually.
4802 */
4803 void __init sparse_memory_present_with_active_regions(int nid)
4804 {
4805 unsigned long start_pfn, end_pfn;
4806 int i, this_nid;
4807
4808 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4809 memory_present(this_nid, start_pfn, end_pfn);
4810 }
4811
4812 /**
4813 * get_pfn_range_for_nid - Return the start and end page frames for a node
4814 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4815 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4816 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4817 *
4818 * It returns the start and end page frame of a node based on information
4819 * provided by memblock_set_node(). If called for a node
4820 * with no available memory, a warning is printed and the start and end
4821 * PFNs will be 0.
4822 */
4823 void __meminit get_pfn_range_for_nid(unsigned int nid,
4824 unsigned long *start_pfn, unsigned long *end_pfn)
4825 {
4826 unsigned long this_start_pfn, this_end_pfn;
4827 int i;
4828
4829 *start_pfn = -1UL;
4830 *end_pfn = 0;
4831
4832 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4833 *start_pfn = min(*start_pfn, this_start_pfn);
4834 *end_pfn = max(*end_pfn, this_end_pfn);
4835 }
4836
4837 if (*start_pfn == -1UL)
4838 *start_pfn = 0;
4839 }
4840
4841 /*
4842 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4843 * assumption is made that zones within a node are ordered in monotonic
4844 * increasing memory addresses so that the "highest" populated zone is used
4845 */
4846 static void __init find_usable_zone_for_movable(void)
4847 {
4848 int zone_index;
4849 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4850 if (zone_index == ZONE_MOVABLE)
4851 continue;
4852
4853 if (arch_zone_highest_possible_pfn[zone_index] >
4854 arch_zone_lowest_possible_pfn[zone_index])
4855 break;
4856 }
4857
4858 VM_BUG_ON(zone_index == -1);
4859 movable_zone = zone_index;
4860 }
4861
4862 /*
4863 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4864 * because it is sized independent of architecture. Unlike the other zones,
4865 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4866 * in each node depending on the size of each node and how evenly kernelcore
4867 * is distributed. This helper function adjusts the zone ranges
4868 * provided by the architecture for a given node by using the end of the
4869 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4870 * zones within a node are in order of monotonic increases memory addresses
4871 */
4872 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4873 unsigned long zone_type,
4874 unsigned long node_start_pfn,
4875 unsigned long node_end_pfn,
4876 unsigned long *zone_start_pfn,
4877 unsigned long *zone_end_pfn)
4878 {
4879 /* Only adjust if ZONE_MOVABLE is on this node */
4880 if (zone_movable_pfn[nid]) {
4881 /* Size ZONE_MOVABLE */
4882 if (zone_type == ZONE_MOVABLE) {
4883 *zone_start_pfn = zone_movable_pfn[nid];
4884 *zone_end_pfn = min(node_end_pfn,
4885 arch_zone_highest_possible_pfn[movable_zone]);
4886
4887 /* Adjust for ZONE_MOVABLE starting within this range */
4888 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4889 *zone_end_pfn > zone_movable_pfn[nid]) {
4890 *zone_end_pfn = zone_movable_pfn[nid];
4891
4892 /* Check if this whole range is within ZONE_MOVABLE */
4893 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4894 *zone_start_pfn = *zone_end_pfn;
4895 }
4896 }
4897
4898 /*
4899 * Return the number of pages a zone spans in a node, including holes
4900 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4901 */
4902 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4903 unsigned long zone_type,
4904 unsigned long node_start_pfn,
4905 unsigned long node_end_pfn,
4906 unsigned long *ignored)
4907 {
4908 unsigned long zone_start_pfn, zone_end_pfn;
4909
4910 /* When hotadd a new node from cpu_up(), the node should be empty */
4911 if (!node_start_pfn && !node_end_pfn)
4912 return 0;
4913
4914 /* Get the start and end of the zone */
4915 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4916 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4917 adjust_zone_range_for_zone_movable(nid, zone_type,
4918 node_start_pfn, node_end_pfn,
4919 &zone_start_pfn, &zone_end_pfn);
4920
4921 /* Check that this node has pages within the zone's required range */
4922 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4923 return 0;
4924
4925 /* Move the zone boundaries inside the node if necessary */
4926 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4927 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4928
4929 /* Return the spanned pages */
4930 return zone_end_pfn - zone_start_pfn;
4931 }
4932
4933 /*
4934 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4935 * then all holes in the requested range will be accounted for.
4936 */
4937 unsigned long __meminit __absent_pages_in_range(int nid,
4938 unsigned long range_start_pfn,
4939 unsigned long range_end_pfn)
4940 {
4941 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4942 unsigned long start_pfn, end_pfn;
4943 int i;
4944
4945 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4946 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4947 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4948 nr_absent -= end_pfn - start_pfn;
4949 }
4950 return nr_absent;
4951 }
4952
4953 /**
4954 * absent_pages_in_range - Return number of page frames in holes within a range
4955 * @start_pfn: The start PFN to start searching for holes
4956 * @end_pfn: The end PFN to stop searching for holes
4957 *
4958 * It returns the number of pages frames in memory holes within a range.
4959 */
4960 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4961 unsigned long end_pfn)
4962 {
4963 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4964 }
4965
4966 /* Return the number of page frames in holes in a zone on a node */
4967 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4968 unsigned long zone_type,
4969 unsigned long node_start_pfn,
4970 unsigned long node_end_pfn,
4971 unsigned long *ignored)
4972 {
4973 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4974 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4975 unsigned long zone_start_pfn, zone_end_pfn;
4976
4977 /* When hotadd a new node from cpu_up(), the node should be empty */
4978 if (!node_start_pfn && !node_end_pfn)
4979 return 0;
4980
4981 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4982 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4983
4984 adjust_zone_range_for_zone_movable(nid, zone_type,
4985 node_start_pfn, node_end_pfn,
4986 &zone_start_pfn, &zone_end_pfn);
4987 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4988 }
4989
4990 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4991 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4992 unsigned long zone_type,
4993 unsigned long node_start_pfn,
4994 unsigned long node_end_pfn,
4995 unsigned long *zones_size)
4996 {
4997 return zones_size[zone_type];
4998 }
4999
5000 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5001 unsigned long zone_type,
5002 unsigned long node_start_pfn,
5003 unsigned long node_end_pfn,
5004 unsigned long *zholes_size)
5005 {
5006 if (!zholes_size)
5007 return 0;
5008
5009 return zholes_size[zone_type];
5010 }
5011
5012 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5013
5014 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5015 unsigned long node_start_pfn,
5016 unsigned long node_end_pfn,
5017 unsigned long *zones_size,
5018 unsigned long *zholes_size)
5019 {
5020 unsigned long realtotalpages = 0, totalpages = 0;
5021 enum zone_type i;
5022
5023 for (i = 0; i < MAX_NR_ZONES; i++) {
5024 struct zone *zone = pgdat->node_zones + i;
5025 unsigned long size, real_size;
5026
5027 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5028 node_start_pfn,
5029 node_end_pfn,
5030 zones_size);
5031 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5032 node_start_pfn, node_end_pfn,
5033 zholes_size);
5034 zone->spanned_pages = size;
5035 zone->present_pages = real_size;
5036
5037 totalpages += size;
5038 realtotalpages += real_size;
5039 }
5040
5041 pgdat->node_spanned_pages = totalpages;
5042 pgdat->node_present_pages = realtotalpages;
5043 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5044 realtotalpages);
5045 }
5046
5047 #ifndef CONFIG_SPARSEMEM
5048 /*
5049 * Calculate the size of the zone->blockflags rounded to an unsigned long
5050 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5051 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5052 * round what is now in bits to nearest long in bits, then return it in
5053 * bytes.
5054 */
5055 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5056 {
5057 unsigned long usemapsize;
5058
5059 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5060 usemapsize = roundup(zonesize, pageblock_nr_pages);
5061 usemapsize = usemapsize >> pageblock_order;
5062 usemapsize *= NR_PAGEBLOCK_BITS;
5063 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5064
5065 return usemapsize / 8;
5066 }
5067
5068 static void __init setup_usemap(struct pglist_data *pgdat,
5069 struct zone *zone,
5070 unsigned long zone_start_pfn,
5071 unsigned long zonesize)
5072 {
5073 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5074 zone->pageblock_flags = NULL;
5075 if (usemapsize)
5076 zone->pageblock_flags =
5077 memblock_virt_alloc_node_nopanic(usemapsize,
5078 pgdat->node_id);
5079 }
5080 #else
5081 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5082 unsigned long zone_start_pfn, unsigned long zonesize) {}
5083 #endif /* CONFIG_SPARSEMEM */
5084
5085 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5086
5087 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5088 void __paginginit set_pageblock_order(void)
5089 {
5090 unsigned int order;
5091
5092 /* Check that pageblock_nr_pages has not already been setup */
5093 if (pageblock_order)
5094 return;
5095
5096 if (HPAGE_SHIFT > PAGE_SHIFT)
5097 order = HUGETLB_PAGE_ORDER;
5098 else
5099 order = MAX_ORDER - 1;
5100
5101 /*
5102 * Assume the largest contiguous order of interest is a huge page.
5103 * This value may be variable depending on boot parameters on IA64 and
5104 * powerpc.
5105 */
5106 pageblock_order = order;
5107 }
5108 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5109
5110 /*
5111 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5112 * is unused as pageblock_order is set at compile-time. See
5113 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5114 * the kernel config
5115 */
5116 void __paginginit set_pageblock_order(void)
5117 {
5118 }
5119
5120 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5121
5122 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5123 unsigned long present_pages)
5124 {
5125 unsigned long pages = spanned_pages;
5126
5127 /*
5128 * Provide a more accurate estimation if there are holes within
5129 * the zone and SPARSEMEM is in use. If there are holes within the
5130 * zone, each populated memory region may cost us one or two extra
5131 * memmap pages due to alignment because memmap pages for each
5132 * populated regions may not naturally algined on page boundary.
5133 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5134 */
5135 if (spanned_pages > present_pages + (present_pages >> 4) &&
5136 IS_ENABLED(CONFIG_SPARSEMEM))
5137 pages = present_pages;
5138
5139 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5140 }
5141
5142 /*
5143 * Set up the zone data structures:
5144 * - mark all pages reserved
5145 * - mark all memory queues empty
5146 * - clear the memory bitmaps
5147 *
5148 * NOTE: pgdat should get zeroed by caller.
5149 */
5150 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5151 {
5152 enum zone_type j;
5153 int nid = pgdat->node_id;
5154 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5155 int ret;
5156
5157 pgdat_resize_init(pgdat);
5158 #ifdef CONFIG_NUMA_BALANCING
5159 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5160 pgdat->numabalancing_migrate_nr_pages = 0;
5161 pgdat->numabalancing_migrate_next_window = jiffies;
5162 #endif
5163 init_waitqueue_head(&pgdat->kswapd_wait);
5164 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5165 pgdat_page_ext_init(pgdat);
5166
5167 for (j = 0; j < MAX_NR_ZONES; j++) {
5168 struct zone *zone = pgdat->node_zones + j;
5169 unsigned long size, realsize, freesize, memmap_pages;
5170
5171 size = zone->spanned_pages;
5172 realsize = freesize = zone->present_pages;
5173
5174 /*
5175 * Adjust freesize so that it accounts for how much memory
5176 * is used by this zone for memmap. This affects the watermark
5177 * and per-cpu initialisations
5178 */
5179 memmap_pages = calc_memmap_size(size, realsize);
5180 if (!is_highmem_idx(j)) {
5181 if (freesize >= memmap_pages) {
5182 freesize -= memmap_pages;
5183 if (memmap_pages)
5184 printk(KERN_DEBUG
5185 " %s zone: %lu pages used for memmap\n",
5186 zone_names[j], memmap_pages);
5187 } else
5188 printk(KERN_WARNING
5189 " %s zone: %lu pages exceeds freesize %lu\n",
5190 zone_names[j], memmap_pages, freesize);
5191 }
5192
5193 /* Account for reserved pages */
5194 if (j == 0 && freesize > dma_reserve) {
5195 freesize -= dma_reserve;
5196 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5197 zone_names[0], dma_reserve);
5198 }
5199
5200 if (!is_highmem_idx(j))
5201 nr_kernel_pages += freesize;
5202 /* Charge for highmem memmap if there are enough kernel pages */
5203 else if (nr_kernel_pages > memmap_pages * 2)
5204 nr_kernel_pages -= memmap_pages;
5205 nr_all_pages += freesize;
5206
5207 /*
5208 * Set an approximate value for lowmem here, it will be adjusted
5209 * when the bootmem allocator frees pages into the buddy system.
5210 * And all highmem pages will be managed by the buddy system.
5211 */
5212 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5213 #ifdef CONFIG_NUMA
5214 zone->node = nid;
5215 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5216 / 100;
5217 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5218 #endif
5219 zone->name = zone_names[j];
5220 spin_lock_init(&zone->lock);
5221 spin_lock_init(&zone->lru_lock);
5222 zone_seqlock_init(zone);
5223 zone->zone_pgdat = pgdat;
5224 zone_pcp_init(zone);
5225
5226 /* For bootup, initialized properly in watermark setup */
5227 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5228
5229 lruvec_init(&zone->lruvec);
5230 if (!size)
5231 continue;
5232
5233 set_pageblock_order();
5234 setup_usemap(pgdat, zone, zone_start_pfn, size);
5235 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5236 BUG_ON(ret);
5237 memmap_init(size, nid, j, zone_start_pfn);
5238 zone_start_pfn += size;
5239 }
5240 }
5241
5242 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5243 {
5244 unsigned long __maybe_unused offset = 0;
5245
5246 /* Skip empty nodes */
5247 if (!pgdat->node_spanned_pages)
5248 return;
5249
5250 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5251 /* ia64 gets its own node_mem_map, before this, without bootmem */
5252 if (!pgdat->node_mem_map) {
5253 unsigned long size, start, end;
5254 struct page *map;
5255
5256 /*
5257 * The zone's endpoints aren't required to be MAX_ORDER
5258 * aligned but the node_mem_map endpoints must be in order
5259 * for the buddy allocator to function correctly.
5260 */
5261 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5262 offset = pgdat->node_start_pfn - start;
5263 end = pgdat_end_pfn(pgdat);
5264 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5265 size = (end - start) * sizeof(struct page);
5266 map = alloc_remap(pgdat->node_id, size);
5267 if (!map)
5268 map = memblock_virt_alloc_node_nopanic(size,
5269 pgdat->node_id);
5270 pgdat->node_mem_map = map + offset;
5271 }
5272 #ifndef CONFIG_NEED_MULTIPLE_NODES
5273 /*
5274 * With no DISCONTIG, the global mem_map is just set as node 0's
5275 */
5276 if (pgdat == NODE_DATA(0)) {
5277 mem_map = NODE_DATA(0)->node_mem_map;
5278 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5279 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5280 mem_map -= offset;
5281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5282 }
5283 #endif
5284 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5285 }
5286
5287 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5288 unsigned long node_start_pfn, unsigned long *zholes_size)
5289 {
5290 pg_data_t *pgdat = NODE_DATA(nid);
5291 unsigned long start_pfn = 0;
5292 unsigned long end_pfn = 0;
5293
5294 /* pg_data_t should be reset to zero when it's allocated */
5295 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5296
5297 reset_deferred_meminit(pgdat);
5298 pgdat->node_id = nid;
5299 pgdat->node_start_pfn = node_start_pfn;
5300 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5301 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5302 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5303 (u64)start_pfn << PAGE_SHIFT,
5304 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5305 #endif
5306 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5307 zones_size, zholes_size);
5308
5309 alloc_node_mem_map(pgdat);
5310 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5311 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5312 nid, (unsigned long)pgdat,
5313 (unsigned long)pgdat->node_mem_map);
5314 #endif
5315
5316 free_area_init_core(pgdat);
5317 }
5318
5319 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5320
5321 #if MAX_NUMNODES > 1
5322 /*
5323 * Figure out the number of possible node ids.
5324 */
5325 void __init setup_nr_node_ids(void)
5326 {
5327 unsigned int highest;
5328
5329 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5330 nr_node_ids = highest + 1;
5331 }
5332 #endif
5333
5334 /**
5335 * node_map_pfn_alignment - determine the maximum internode alignment
5336 *
5337 * This function should be called after node map is populated and sorted.
5338 * It calculates the maximum power of two alignment which can distinguish
5339 * all the nodes.
5340 *
5341 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5342 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5343 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5344 * shifted, 1GiB is enough and this function will indicate so.
5345 *
5346 * This is used to test whether pfn -> nid mapping of the chosen memory
5347 * model has fine enough granularity to avoid incorrect mapping for the
5348 * populated node map.
5349 *
5350 * Returns the determined alignment in pfn's. 0 if there is no alignment
5351 * requirement (single node).
5352 */
5353 unsigned long __init node_map_pfn_alignment(void)
5354 {
5355 unsigned long accl_mask = 0, last_end = 0;
5356 unsigned long start, end, mask;
5357 int last_nid = -1;
5358 int i, nid;
5359
5360 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5361 if (!start || last_nid < 0 || last_nid == nid) {
5362 last_nid = nid;
5363 last_end = end;
5364 continue;
5365 }
5366
5367 /*
5368 * Start with a mask granular enough to pin-point to the
5369 * start pfn and tick off bits one-by-one until it becomes
5370 * too coarse to separate the current node from the last.
5371 */
5372 mask = ~((1 << __ffs(start)) - 1);
5373 while (mask && last_end <= (start & (mask << 1)))
5374 mask <<= 1;
5375
5376 /* accumulate all internode masks */
5377 accl_mask |= mask;
5378 }
5379
5380 /* convert mask to number of pages */
5381 return ~accl_mask + 1;
5382 }
5383
5384 /* Find the lowest pfn for a node */
5385 static unsigned long __init find_min_pfn_for_node(int nid)
5386 {
5387 unsigned long min_pfn = ULONG_MAX;
5388 unsigned long start_pfn;
5389 int i;
5390
5391 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5392 min_pfn = min(min_pfn, start_pfn);
5393
5394 if (min_pfn == ULONG_MAX) {
5395 printk(KERN_WARNING
5396 "Could not find start_pfn for node %d\n", nid);
5397 return 0;
5398 }
5399
5400 return min_pfn;
5401 }
5402
5403 /**
5404 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5405 *
5406 * It returns the minimum PFN based on information provided via
5407 * memblock_set_node().
5408 */
5409 unsigned long __init find_min_pfn_with_active_regions(void)
5410 {
5411 return find_min_pfn_for_node(MAX_NUMNODES);
5412 }
5413
5414 /*
5415 * early_calculate_totalpages()
5416 * Sum pages in active regions for movable zone.
5417 * Populate N_MEMORY for calculating usable_nodes.
5418 */
5419 static unsigned long __init early_calculate_totalpages(void)
5420 {
5421 unsigned long totalpages = 0;
5422 unsigned long start_pfn, end_pfn;
5423 int i, nid;
5424
5425 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5426 unsigned long pages = end_pfn - start_pfn;
5427
5428 totalpages += pages;
5429 if (pages)
5430 node_set_state(nid, N_MEMORY);
5431 }
5432 return totalpages;
5433 }
5434
5435 /*
5436 * Find the PFN the Movable zone begins in each node. Kernel memory
5437 * is spread evenly between nodes as long as the nodes have enough
5438 * memory. When they don't, some nodes will have more kernelcore than
5439 * others
5440 */
5441 static void __init find_zone_movable_pfns_for_nodes(void)
5442 {
5443 int i, nid;
5444 unsigned long usable_startpfn;
5445 unsigned long kernelcore_node, kernelcore_remaining;
5446 /* save the state before borrow the nodemask */
5447 nodemask_t saved_node_state = node_states[N_MEMORY];
5448 unsigned long totalpages = early_calculate_totalpages();
5449 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5450 struct memblock_region *r;
5451
5452 /* Need to find movable_zone earlier when movable_node is specified. */
5453 find_usable_zone_for_movable();
5454
5455 /*
5456 * If movable_node is specified, ignore kernelcore and movablecore
5457 * options.
5458 */
5459 if (movable_node_is_enabled()) {
5460 for_each_memblock(memory, r) {
5461 if (!memblock_is_hotpluggable(r))
5462 continue;
5463
5464 nid = r->nid;
5465
5466 usable_startpfn = PFN_DOWN(r->base);
5467 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5468 min(usable_startpfn, zone_movable_pfn[nid]) :
5469 usable_startpfn;
5470 }
5471
5472 goto out2;
5473 }
5474
5475 /*
5476 * If movablecore=nn[KMG] was specified, calculate what size of
5477 * kernelcore that corresponds so that memory usable for
5478 * any allocation type is evenly spread. If both kernelcore
5479 * and movablecore are specified, then the value of kernelcore
5480 * will be used for required_kernelcore if it's greater than
5481 * what movablecore would have allowed.
5482 */
5483 if (required_movablecore) {
5484 unsigned long corepages;
5485
5486 /*
5487 * Round-up so that ZONE_MOVABLE is at least as large as what
5488 * was requested by the user
5489 */
5490 required_movablecore =
5491 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5492 required_movablecore = min(totalpages, required_movablecore);
5493 corepages = totalpages - required_movablecore;
5494
5495 required_kernelcore = max(required_kernelcore, corepages);
5496 }
5497
5498 /*
5499 * If kernelcore was not specified or kernelcore size is larger
5500 * than totalpages, there is no ZONE_MOVABLE.
5501 */
5502 if (!required_kernelcore || required_kernelcore >= totalpages)
5503 goto out;
5504
5505 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5506 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5507
5508 restart:
5509 /* Spread kernelcore memory as evenly as possible throughout nodes */
5510 kernelcore_node = required_kernelcore / usable_nodes;
5511 for_each_node_state(nid, N_MEMORY) {
5512 unsigned long start_pfn, end_pfn;
5513
5514 /*
5515 * Recalculate kernelcore_node if the division per node
5516 * now exceeds what is necessary to satisfy the requested
5517 * amount of memory for the kernel
5518 */
5519 if (required_kernelcore < kernelcore_node)
5520 kernelcore_node = required_kernelcore / usable_nodes;
5521
5522 /*
5523 * As the map is walked, we track how much memory is usable
5524 * by the kernel using kernelcore_remaining. When it is
5525 * 0, the rest of the node is usable by ZONE_MOVABLE
5526 */
5527 kernelcore_remaining = kernelcore_node;
5528
5529 /* Go through each range of PFNs within this node */
5530 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5531 unsigned long size_pages;
5532
5533 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5534 if (start_pfn >= end_pfn)
5535 continue;
5536
5537 /* Account for what is only usable for kernelcore */
5538 if (start_pfn < usable_startpfn) {
5539 unsigned long kernel_pages;
5540 kernel_pages = min(end_pfn, usable_startpfn)
5541 - start_pfn;
5542
5543 kernelcore_remaining -= min(kernel_pages,
5544 kernelcore_remaining);
5545 required_kernelcore -= min(kernel_pages,
5546 required_kernelcore);
5547
5548 /* Continue if range is now fully accounted */
5549 if (end_pfn <= usable_startpfn) {
5550
5551 /*
5552 * Push zone_movable_pfn to the end so
5553 * that if we have to rebalance
5554 * kernelcore across nodes, we will
5555 * not double account here
5556 */
5557 zone_movable_pfn[nid] = end_pfn;
5558 continue;
5559 }
5560 start_pfn = usable_startpfn;
5561 }
5562
5563 /*
5564 * The usable PFN range for ZONE_MOVABLE is from
5565 * start_pfn->end_pfn. Calculate size_pages as the
5566 * number of pages used as kernelcore
5567 */
5568 size_pages = end_pfn - start_pfn;
5569 if (size_pages > kernelcore_remaining)
5570 size_pages = kernelcore_remaining;
5571 zone_movable_pfn[nid] = start_pfn + size_pages;
5572
5573 /*
5574 * Some kernelcore has been met, update counts and
5575 * break if the kernelcore for this node has been
5576 * satisfied
5577 */
5578 required_kernelcore -= min(required_kernelcore,
5579 size_pages);
5580 kernelcore_remaining -= size_pages;
5581 if (!kernelcore_remaining)
5582 break;
5583 }
5584 }
5585
5586 /*
5587 * If there is still required_kernelcore, we do another pass with one
5588 * less node in the count. This will push zone_movable_pfn[nid] further
5589 * along on the nodes that still have memory until kernelcore is
5590 * satisfied
5591 */
5592 usable_nodes--;
5593 if (usable_nodes && required_kernelcore > usable_nodes)
5594 goto restart;
5595
5596 out2:
5597 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5598 for (nid = 0; nid < MAX_NUMNODES; nid++)
5599 zone_movable_pfn[nid] =
5600 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5601
5602 out:
5603 /* restore the node_state */
5604 node_states[N_MEMORY] = saved_node_state;
5605 }
5606
5607 /* Any regular or high memory on that node ? */
5608 static void check_for_memory(pg_data_t *pgdat, int nid)
5609 {
5610 enum zone_type zone_type;
5611
5612 if (N_MEMORY == N_NORMAL_MEMORY)
5613 return;
5614
5615 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5616 struct zone *zone = &pgdat->node_zones[zone_type];
5617 if (populated_zone(zone)) {
5618 node_set_state(nid, N_HIGH_MEMORY);
5619 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5620 zone_type <= ZONE_NORMAL)
5621 node_set_state(nid, N_NORMAL_MEMORY);
5622 break;
5623 }
5624 }
5625 }
5626
5627 /**
5628 * free_area_init_nodes - Initialise all pg_data_t and zone data
5629 * @max_zone_pfn: an array of max PFNs for each zone
5630 *
5631 * This will call free_area_init_node() for each active node in the system.
5632 * Using the page ranges provided by memblock_set_node(), the size of each
5633 * zone in each node and their holes is calculated. If the maximum PFN
5634 * between two adjacent zones match, it is assumed that the zone is empty.
5635 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5636 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5637 * starts where the previous one ended. For example, ZONE_DMA32 starts
5638 * at arch_max_dma_pfn.
5639 */
5640 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5641 {
5642 unsigned long start_pfn, end_pfn;
5643 int i, nid;
5644
5645 /* Record where the zone boundaries are */
5646 memset(arch_zone_lowest_possible_pfn, 0,
5647 sizeof(arch_zone_lowest_possible_pfn));
5648 memset(arch_zone_highest_possible_pfn, 0,
5649 sizeof(arch_zone_highest_possible_pfn));
5650 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5651 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5652 for (i = 1; i < MAX_NR_ZONES; i++) {
5653 if (i == ZONE_MOVABLE)
5654 continue;
5655 arch_zone_lowest_possible_pfn[i] =
5656 arch_zone_highest_possible_pfn[i-1];
5657 arch_zone_highest_possible_pfn[i] =
5658 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5659 }
5660 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5661 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5662
5663 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5664 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5665 find_zone_movable_pfns_for_nodes();
5666
5667 /* Print out the zone ranges */
5668 pr_info("Zone ranges:\n");
5669 for (i = 0; i < MAX_NR_ZONES; i++) {
5670 if (i == ZONE_MOVABLE)
5671 continue;
5672 pr_info(" %-8s ", zone_names[i]);
5673 if (arch_zone_lowest_possible_pfn[i] ==
5674 arch_zone_highest_possible_pfn[i])
5675 pr_cont("empty\n");
5676 else
5677 pr_cont("[mem %#018Lx-%#018Lx]\n",
5678 (u64)arch_zone_lowest_possible_pfn[i]
5679 << PAGE_SHIFT,
5680 ((u64)arch_zone_highest_possible_pfn[i]
5681 << PAGE_SHIFT) - 1);
5682 }
5683
5684 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5685 pr_info("Movable zone start for each node\n");
5686 for (i = 0; i < MAX_NUMNODES; i++) {
5687 if (zone_movable_pfn[i])
5688 pr_info(" Node %d: %#018Lx\n", i,
5689 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5690 }
5691
5692 /* Print out the early node map */
5693 pr_info("Early memory node ranges\n");
5694 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5695 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5696 (u64)start_pfn << PAGE_SHIFT,
5697 ((u64)end_pfn << PAGE_SHIFT) - 1);
5698
5699 /* Initialise every node */
5700 mminit_verify_pageflags_layout();
5701 setup_nr_node_ids();
5702 for_each_online_node(nid) {
5703 pg_data_t *pgdat = NODE_DATA(nid);
5704 free_area_init_node(nid, NULL,
5705 find_min_pfn_for_node(nid), NULL);
5706
5707 /* Any memory on that node */
5708 if (pgdat->node_present_pages)
5709 node_set_state(nid, N_MEMORY);
5710 check_for_memory(pgdat, nid);
5711 }
5712 }
5713
5714 static int __init cmdline_parse_core(char *p, unsigned long *core)
5715 {
5716 unsigned long long coremem;
5717 if (!p)
5718 return -EINVAL;
5719
5720 coremem = memparse(p, &p);
5721 *core = coremem >> PAGE_SHIFT;
5722
5723 /* Paranoid check that UL is enough for the coremem value */
5724 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5725
5726 return 0;
5727 }
5728
5729 /*
5730 * kernelcore=size sets the amount of memory for use for allocations that
5731 * cannot be reclaimed or migrated.
5732 */
5733 static int __init cmdline_parse_kernelcore(char *p)
5734 {
5735 return cmdline_parse_core(p, &required_kernelcore);
5736 }
5737
5738 /*
5739 * movablecore=size sets the amount of memory for use for allocations that
5740 * can be reclaimed or migrated.
5741 */
5742 static int __init cmdline_parse_movablecore(char *p)
5743 {
5744 return cmdline_parse_core(p, &required_movablecore);
5745 }
5746
5747 early_param("kernelcore", cmdline_parse_kernelcore);
5748 early_param("movablecore", cmdline_parse_movablecore);
5749
5750 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5751
5752 void adjust_managed_page_count(struct page *page, long count)
5753 {
5754 spin_lock(&managed_page_count_lock);
5755 page_zone(page)->managed_pages += count;
5756 totalram_pages += count;
5757 #ifdef CONFIG_HIGHMEM
5758 if (PageHighMem(page))
5759 totalhigh_pages += count;
5760 #endif
5761 spin_unlock(&managed_page_count_lock);
5762 }
5763 EXPORT_SYMBOL(adjust_managed_page_count);
5764
5765 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5766 {
5767 void *pos;
5768 unsigned long pages = 0;
5769
5770 start = (void *)PAGE_ALIGN((unsigned long)start);
5771 end = (void *)((unsigned long)end & PAGE_MASK);
5772 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5773 if ((unsigned int)poison <= 0xFF)
5774 memset(pos, poison, PAGE_SIZE);
5775 free_reserved_page(virt_to_page(pos));
5776 }
5777
5778 if (pages && s)
5779 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5780 s, pages << (PAGE_SHIFT - 10), start, end);
5781
5782 return pages;
5783 }
5784 EXPORT_SYMBOL(free_reserved_area);
5785
5786 #ifdef CONFIG_HIGHMEM
5787 void free_highmem_page(struct page *page)
5788 {
5789 __free_reserved_page(page);
5790 totalram_pages++;
5791 page_zone(page)->managed_pages++;
5792 totalhigh_pages++;
5793 }
5794 #endif
5795
5796
5797 void __init mem_init_print_info(const char *str)
5798 {
5799 unsigned long physpages, codesize, datasize, rosize, bss_size;
5800 unsigned long init_code_size, init_data_size;
5801
5802 physpages = get_num_physpages();
5803 codesize = _etext - _stext;
5804 datasize = _edata - _sdata;
5805 rosize = __end_rodata - __start_rodata;
5806 bss_size = __bss_stop - __bss_start;
5807 init_data_size = __init_end - __init_begin;
5808 init_code_size = _einittext - _sinittext;
5809
5810 /*
5811 * Detect special cases and adjust section sizes accordingly:
5812 * 1) .init.* may be embedded into .data sections
5813 * 2) .init.text.* may be out of [__init_begin, __init_end],
5814 * please refer to arch/tile/kernel/vmlinux.lds.S.
5815 * 3) .rodata.* may be embedded into .text or .data sections.
5816 */
5817 #define adj_init_size(start, end, size, pos, adj) \
5818 do { \
5819 if (start <= pos && pos < end && size > adj) \
5820 size -= adj; \
5821 } while (0)
5822
5823 adj_init_size(__init_begin, __init_end, init_data_size,
5824 _sinittext, init_code_size);
5825 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5826 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5827 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5828 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5829
5830 #undef adj_init_size
5831
5832 pr_info("Memory: %luK/%luK available "
5833 "(%luK kernel code, %luK rwdata, %luK rodata, "
5834 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5835 #ifdef CONFIG_HIGHMEM
5836 ", %luK highmem"
5837 #endif
5838 "%s%s)\n",
5839 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5840 codesize >> 10, datasize >> 10, rosize >> 10,
5841 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5842 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5843 totalcma_pages << (PAGE_SHIFT-10),
5844 #ifdef CONFIG_HIGHMEM
5845 totalhigh_pages << (PAGE_SHIFT-10),
5846 #endif
5847 str ? ", " : "", str ? str : "");
5848 }
5849
5850 /**
5851 * set_dma_reserve - set the specified number of pages reserved in the first zone
5852 * @new_dma_reserve: The number of pages to mark reserved
5853 *
5854 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5855 * In the DMA zone, a significant percentage may be consumed by kernel image
5856 * and other unfreeable allocations which can skew the watermarks badly. This
5857 * function may optionally be used to account for unfreeable pages in the
5858 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5859 * smaller per-cpu batchsize.
5860 */
5861 void __init set_dma_reserve(unsigned long new_dma_reserve)
5862 {
5863 dma_reserve = new_dma_reserve;
5864 }
5865
5866 void __init free_area_init(unsigned long *zones_size)
5867 {
5868 free_area_init_node(0, zones_size,
5869 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5870 }
5871
5872 static int page_alloc_cpu_notify(struct notifier_block *self,
5873 unsigned long action, void *hcpu)
5874 {
5875 int cpu = (unsigned long)hcpu;
5876
5877 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5878 lru_add_drain_cpu(cpu);
5879 drain_pages(cpu);
5880
5881 /*
5882 * Spill the event counters of the dead processor
5883 * into the current processors event counters.
5884 * This artificially elevates the count of the current
5885 * processor.
5886 */
5887 vm_events_fold_cpu(cpu);
5888
5889 /*
5890 * Zero the differential counters of the dead processor
5891 * so that the vm statistics are consistent.
5892 *
5893 * This is only okay since the processor is dead and cannot
5894 * race with what we are doing.
5895 */
5896 cpu_vm_stats_fold(cpu);
5897 }
5898 return NOTIFY_OK;
5899 }
5900
5901 void __init page_alloc_init(void)
5902 {
5903 hotcpu_notifier(page_alloc_cpu_notify, 0);
5904 }
5905
5906 /*
5907 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5908 * or min_free_kbytes changes.
5909 */
5910 static void calculate_totalreserve_pages(void)
5911 {
5912 struct pglist_data *pgdat;
5913 unsigned long reserve_pages = 0;
5914 enum zone_type i, j;
5915
5916 for_each_online_pgdat(pgdat) {
5917 for (i = 0; i < MAX_NR_ZONES; i++) {
5918 struct zone *zone = pgdat->node_zones + i;
5919 long max = 0;
5920
5921 /* Find valid and maximum lowmem_reserve in the zone */
5922 for (j = i; j < MAX_NR_ZONES; j++) {
5923 if (zone->lowmem_reserve[j] > max)
5924 max = zone->lowmem_reserve[j];
5925 }
5926
5927 /* we treat the high watermark as reserved pages. */
5928 max += high_wmark_pages(zone);
5929
5930 if (max > zone->managed_pages)
5931 max = zone->managed_pages;
5932 reserve_pages += max;
5933 /*
5934 * Lowmem reserves are not available to
5935 * GFP_HIGHUSER page cache allocations and
5936 * kswapd tries to balance zones to their high
5937 * watermark. As a result, neither should be
5938 * regarded as dirtyable memory, to prevent a
5939 * situation where reclaim has to clean pages
5940 * in order to balance the zones.
5941 */
5942 zone->dirty_balance_reserve = max;
5943 }
5944 }
5945 dirty_balance_reserve = reserve_pages;
5946 totalreserve_pages = reserve_pages;
5947 }
5948
5949 /*
5950 * setup_per_zone_lowmem_reserve - called whenever
5951 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5952 * has a correct pages reserved value, so an adequate number of
5953 * pages are left in the zone after a successful __alloc_pages().
5954 */
5955 static void setup_per_zone_lowmem_reserve(void)
5956 {
5957 struct pglist_data *pgdat;
5958 enum zone_type j, idx;
5959
5960 for_each_online_pgdat(pgdat) {
5961 for (j = 0; j < MAX_NR_ZONES; j++) {
5962 struct zone *zone = pgdat->node_zones + j;
5963 unsigned long managed_pages = zone->managed_pages;
5964
5965 zone->lowmem_reserve[j] = 0;
5966
5967 idx = j;
5968 while (idx) {
5969 struct zone *lower_zone;
5970
5971 idx--;
5972
5973 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5974 sysctl_lowmem_reserve_ratio[idx] = 1;
5975
5976 lower_zone = pgdat->node_zones + idx;
5977 lower_zone->lowmem_reserve[j] = managed_pages /
5978 sysctl_lowmem_reserve_ratio[idx];
5979 managed_pages += lower_zone->managed_pages;
5980 }
5981 }
5982 }
5983
5984 /* update totalreserve_pages */
5985 calculate_totalreserve_pages();
5986 }
5987
5988 static void __setup_per_zone_wmarks(void)
5989 {
5990 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5991 unsigned long lowmem_pages = 0;
5992 struct zone *zone;
5993 unsigned long flags;
5994
5995 /* Calculate total number of !ZONE_HIGHMEM pages */
5996 for_each_zone(zone) {
5997 if (!is_highmem(zone))
5998 lowmem_pages += zone->managed_pages;
5999 }
6000
6001 for_each_zone(zone) {
6002 u64 tmp;
6003
6004 spin_lock_irqsave(&zone->lock, flags);
6005 tmp = (u64)pages_min * zone->managed_pages;
6006 do_div(tmp, lowmem_pages);
6007 if (is_highmem(zone)) {
6008 /*
6009 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6010 * need highmem pages, so cap pages_min to a small
6011 * value here.
6012 *
6013 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6014 * deltas control asynch page reclaim, and so should
6015 * not be capped for highmem.
6016 */
6017 unsigned long min_pages;
6018
6019 min_pages = zone->managed_pages / 1024;
6020 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6021 zone->watermark[WMARK_MIN] = min_pages;
6022 } else {
6023 /*
6024 * If it's a lowmem zone, reserve a number of pages
6025 * proportionate to the zone's size.
6026 */
6027 zone->watermark[WMARK_MIN] = tmp;
6028 }
6029
6030 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6031 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6032
6033 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6034 high_wmark_pages(zone) - low_wmark_pages(zone) -
6035 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6036
6037 spin_unlock_irqrestore(&zone->lock, flags);
6038 }
6039
6040 /* update totalreserve_pages */
6041 calculate_totalreserve_pages();
6042 }
6043
6044 /**
6045 * setup_per_zone_wmarks - called when min_free_kbytes changes
6046 * or when memory is hot-{added|removed}
6047 *
6048 * Ensures that the watermark[min,low,high] values for each zone are set
6049 * correctly with respect to min_free_kbytes.
6050 */
6051 void setup_per_zone_wmarks(void)
6052 {
6053 mutex_lock(&zonelists_mutex);
6054 __setup_per_zone_wmarks();
6055 mutex_unlock(&zonelists_mutex);
6056 }
6057
6058 /*
6059 * The inactive anon list should be small enough that the VM never has to
6060 * do too much work, but large enough that each inactive page has a chance
6061 * to be referenced again before it is swapped out.
6062 *
6063 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6064 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6065 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6066 * the anonymous pages are kept on the inactive list.
6067 *
6068 * total target max
6069 * memory ratio inactive anon
6070 * -------------------------------------
6071 * 10MB 1 5MB
6072 * 100MB 1 50MB
6073 * 1GB 3 250MB
6074 * 10GB 10 0.9GB
6075 * 100GB 31 3GB
6076 * 1TB 101 10GB
6077 * 10TB 320 32GB
6078 */
6079 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6080 {
6081 unsigned int gb, ratio;
6082
6083 /* Zone size in gigabytes */
6084 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6085 if (gb)
6086 ratio = int_sqrt(10 * gb);
6087 else
6088 ratio = 1;
6089
6090 zone->inactive_ratio = ratio;
6091 }
6092
6093 static void __meminit setup_per_zone_inactive_ratio(void)
6094 {
6095 struct zone *zone;
6096
6097 for_each_zone(zone)
6098 calculate_zone_inactive_ratio(zone);
6099 }
6100
6101 /*
6102 * Initialise min_free_kbytes.
6103 *
6104 * For small machines we want it small (128k min). For large machines
6105 * we want it large (64MB max). But it is not linear, because network
6106 * bandwidth does not increase linearly with machine size. We use
6107 *
6108 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6109 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6110 *
6111 * which yields
6112 *
6113 * 16MB: 512k
6114 * 32MB: 724k
6115 * 64MB: 1024k
6116 * 128MB: 1448k
6117 * 256MB: 2048k
6118 * 512MB: 2896k
6119 * 1024MB: 4096k
6120 * 2048MB: 5792k
6121 * 4096MB: 8192k
6122 * 8192MB: 11584k
6123 * 16384MB: 16384k
6124 */
6125 int __meminit init_per_zone_wmark_min(void)
6126 {
6127 unsigned long lowmem_kbytes;
6128 int new_min_free_kbytes;
6129
6130 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6131 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6132
6133 if (new_min_free_kbytes > user_min_free_kbytes) {
6134 min_free_kbytes = new_min_free_kbytes;
6135 if (min_free_kbytes < 128)
6136 min_free_kbytes = 128;
6137 if (min_free_kbytes > 65536)
6138 min_free_kbytes = 65536;
6139 } else {
6140 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6141 new_min_free_kbytes, user_min_free_kbytes);
6142 }
6143 setup_per_zone_wmarks();
6144 refresh_zone_stat_thresholds();
6145 setup_per_zone_lowmem_reserve();
6146 setup_per_zone_inactive_ratio();
6147 return 0;
6148 }
6149 module_init(init_per_zone_wmark_min)
6150
6151 /*
6152 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6153 * that we can call two helper functions whenever min_free_kbytes
6154 * changes.
6155 */
6156 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6157 void __user *buffer, size_t *length, loff_t *ppos)
6158 {
6159 int rc;
6160
6161 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6162 if (rc)
6163 return rc;
6164
6165 if (write) {
6166 user_min_free_kbytes = min_free_kbytes;
6167 setup_per_zone_wmarks();
6168 }
6169 return 0;
6170 }
6171
6172 #ifdef CONFIG_NUMA
6173 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6174 void __user *buffer, size_t *length, loff_t *ppos)
6175 {
6176 struct zone *zone;
6177 int rc;
6178
6179 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6180 if (rc)
6181 return rc;
6182
6183 for_each_zone(zone)
6184 zone->min_unmapped_pages = (zone->managed_pages *
6185 sysctl_min_unmapped_ratio) / 100;
6186 return 0;
6187 }
6188
6189 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6190 void __user *buffer, size_t *length, loff_t *ppos)
6191 {
6192 struct zone *zone;
6193 int rc;
6194
6195 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6196 if (rc)
6197 return rc;
6198
6199 for_each_zone(zone)
6200 zone->min_slab_pages = (zone->managed_pages *
6201 sysctl_min_slab_ratio) / 100;
6202 return 0;
6203 }
6204 #endif
6205
6206 /*
6207 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6208 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6209 * whenever sysctl_lowmem_reserve_ratio changes.
6210 *
6211 * The reserve ratio obviously has absolutely no relation with the
6212 * minimum watermarks. The lowmem reserve ratio can only make sense
6213 * if in function of the boot time zone sizes.
6214 */
6215 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6216 void __user *buffer, size_t *length, loff_t *ppos)
6217 {
6218 proc_dointvec_minmax(table, write, buffer, length, ppos);
6219 setup_per_zone_lowmem_reserve();
6220 return 0;
6221 }
6222
6223 /*
6224 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6225 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6226 * pagelist can have before it gets flushed back to buddy allocator.
6227 */
6228 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6229 void __user *buffer, size_t *length, loff_t *ppos)
6230 {
6231 struct zone *zone;
6232 int old_percpu_pagelist_fraction;
6233 int ret;
6234
6235 mutex_lock(&pcp_batch_high_lock);
6236 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6237
6238 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6239 if (!write || ret < 0)
6240 goto out;
6241
6242 /* Sanity checking to avoid pcp imbalance */
6243 if (percpu_pagelist_fraction &&
6244 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6245 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6246 ret = -EINVAL;
6247 goto out;
6248 }
6249
6250 /* No change? */
6251 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6252 goto out;
6253
6254 for_each_populated_zone(zone) {
6255 unsigned int cpu;
6256
6257 for_each_possible_cpu(cpu)
6258 pageset_set_high_and_batch(zone,
6259 per_cpu_ptr(zone->pageset, cpu));
6260 }
6261 out:
6262 mutex_unlock(&pcp_batch_high_lock);
6263 return ret;
6264 }
6265
6266 #ifdef CONFIG_NUMA
6267 int hashdist = HASHDIST_DEFAULT;
6268
6269 static int __init set_hashdist(char *str)
6270 {
6271 if (!str)
6272 return 0;
6273 hashdist = simple_strtoul(str, &str, 0);
6274 return 1;
6275 }
6276 __setup("hashdist=", set_hashdist);
6277 #endif
6278
6279 /*
6280 * allocate a large system hash table from bootmem
6281 * - it is assumed that the hash table must contain an exact power-of-2
6282 * quantity of entries
6283 * - limit is the number of hash buckets, not the total allocation size
6284 */
6285 void *__init alloc_large_system_hash(const char *tablename,
6286 unsigned long bucketsize,
6287 unsigned long numentries,
6288 int scale,
6289 int flags,
6290 unsigned int *_hash_shift,
6291 unsigned int *_hash_mask,
6292 unsigned long low_limit,
6293 unsigned long high_limit)
6294 {
6295 unsigned long long max = high_limit;
6296 unsigned long log2qty, size;
6297 void *table = NULL;
6298
6299 /* allow the kernel cmdline to have a say */
6300 if (!numentries) {
6301 /* round applicable memory size up to nearest megabyte */
6302 numentries = nr_kernel_pages;
6303
6304 /* It isn't necessary when PAGE_SIZE >= 1MB */
6305 if (PAGE_SHIFT < 20)
6306 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6307
6308 /* limit to 1 bucket per 2^scale bytes of low memory */
6309 if (scale > PAGE_SHIFT)
6310 numentries >>= (scale - PAGE_SHIFT);
6311 else
6312 numentries <<= (PAGE_SHIFT - scale);
6313
6314 /* Make sure we've got at least a 0-order allocation.. */
6315 if (unlikely(flags & HASH_SMALL)) {
6316 /* Makes no sense without HASH_EARLY */
6317 WARN_ON(!(flags & HASH_EARLY));
6318 if (!(numentries >> *_hash_shift)) {
6319 numentries = 1UL << *_hash_shift;
6320 BUG_ON(!numentries);
6321 }
6322 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6323 numentries = PAGE_SIZE / bucketsize;
6324 }
6325 numentries = roundup_pow_of_two(numentries);
6326
6327 /* limit allocation size to 1/16 total memory by default */
6328 if (max == 0) {
6329 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6330 do_div(max, bucketsize);
6331 }
6332 max = min(max, 0x80000000ULL);
6333
6334 if (numentries < low_limit)
6335 numentries = low_limit;
6336 if (numentries > max)
6337 numentries = max;
6338
6339 log2qty = ilog2(numentries);
6340
6341 do {
6342 size = bucketsize << log2qty;
6343 if (flags & HASH_EARLY)
6344 table = memblock_virt_alloc_nopanic(size, 0);
6345 else if (hashdist)
6346 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6347 else {
6348 /*
6349 * If bucketsize is not a power-of-two, we may free
6350 * some pages at the end of hash table which
6351 * alloc_pages_exact() automatically does
6352 */
6353 if (get_order(size) < MAX_ORDER) {
6354 table = alloc_pages_exact(size, GFP_ATOMIC);
6355 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6356 }
6357 }
6358 } while (!table && size > PAGE_SIZE && --log2qty);
6359
6360 if (!table)
6361 panic("Failed to allocate %s hash table\n", tablename);
6362
6363 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6364 tablename,
6365 (1UL << log2qty),
6366 ilog2(size) - PAGE_SHIFT,
6367 size);
6368
6369 if (_hash_shift)
6370 *_hash_shift = log2qty;
6371 if (_hash_mask)
6372 *_hash_mask = (1 << log2qty) - 1;
6373
6374 return table;
6375 }
6376
6377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6378 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6379 unsigned long pfn)
6380 {
6381 #ifdef CONFIG_SPARSEMEM
6382 return __pfn_to_section(pfn)->pageblock_flags;
6383 #else
6384 return zone->pageblock_flags;
6385 #endif /* CONFIG_SPARSEMEM */
6386 }
6387
6388 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6389 {
6390 #ifdef CONFIG_SPARSEMEM
6391 pfn &= (PAGES_PER_SECTION-1);
6392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6393 #else
6394 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6396 #endif /* CONFIG_SPARSEMEM */
6397 }
6398
6399 /**
6400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6401 * @page: The page within the block of interest
6402 * @pfn: The target page frame number
6403 * @end_bitidx: The last bit of interest to retrieve
6404 * @mask: mask of bits that the caller is interested in
6405 *
6406 * Return: pageblock_bits flags
6407 */
6408 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6409 unsigned long end_bitidx,
6410 unsigned long mask)
6411 {
6412 struct zone *zone;
6413 unsigned long *bitmap;
6414 unsigned long bitidx, word_bitidx;
6415 unsigned long word;
6416
6417 zone = page_zone(page);
6418 bitmap = get_pageblock_bitmap(zone, pfn);
6419 bitidx = pfn_to_bitidx(zone, pfn);
6420 word_bitidx = bitidx / BITS_PER_LONG;
6421 bitidx &= (BITS_PER_LONG-1);
6422
6423 word = bitmap[word_bitidx];
6424 bitidx += end_bitidx;
6425 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6426 }
6427
6428 /**
6429 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6430 * @page: The page within the block of interest
6431 * @flags: The flags to set
6432 * @pfn: The target page frame number
6433 * @end_bitidx: The last bit of interest
6434 * @mask: mask of bits that the caller is interested in
6435 */
6436 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6437 unsigned long pfn,
6438 unsigned long end_bitidx,
6439 unsigned long mask)
6440 {
6441 struct zone *zone;
6442 unsigned long *bitmap;
6443 unsigned long bitidx, word_bitidx;
6444 unsigned long old_word, word;
6445
6446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6447
6448 zone = page_zone(page);
6449 bitmap = get_pageblock_bitmap(zone, pfn);
6450 bitidx = pfn_to_bitidx(zone, pfn);
6451 word_bitidx = bitidx / BITS_PER_LONG;
6452 bitidx &= (BITS_PER_LONG-1);
6453
6454 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6455
6456 bitidx += end_bitidx;
6457 mask <<= (BITS_PER_LONG - bitidx - 1);
6458 flags <<= (BITS_PER_LONG - bitidx - 1);
6459
6460 word = READ_ONCE(bitmap[word_bitidx]);
6461 for (;;) {
6462 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6463 if (word == old_word)
6464 break;
6465 word = old_word;
6466 }
6467 }
6468
6469 /*
6470 * This function checks whether pageblock includes unmovable pages or not.
6471 * If @count is not zero, it is okay to include less @count unmovable pages
6472 *
6473 * PageLRU check without isolation or lru_lock could race so that
6474 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6475 * expect this function should be exact.
6476 */
6477 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6478 bool skip_hwpoisoned_pages)
6479 {
6480 unsigned long pfn, iter, found;
6481 int mt;
6482
6483 /*
6484 * For avoiding noise data, lru_add_drain_all() should be called
6485 * If ZONE_MOVABLE, the zone never contains unmovable pages
6486 */
6487 if (zone_idx(zone) == ZONE_MOVABLE)
6488 return false;
6489 mt = get_pageblock_migratetype(page);
6490 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6491 return false;
6492
6493 pfn = page_to_pfn(page);
6494 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6495 unsigned long check = pfn + iter;
6496
6497 if (!pfn_valid_within(check))
6498 continue;
6499
6500 page = pfn_to_page(check);
6501
6502 /*
6503 * Hugepages are not in LRU lists, but they're movable.
6504 * We need not scan over tail pages bacause we don't
6505 * handle each tail page individually in migration.
6506 */
6507 if (PageHuge(page)) {
6508 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6509 continue;
6510 }
6511
6512 /*
6513 * We can't use page_count without pin a page
6514 * because another CPU can free compound page.
6515 * This check already skips compound tails of THP
6516 * because their page->_count is zero at all time.
6517 */
6518 if (!atomic_read(&page->_count)) {
6519 if (PageBuddy(page))
6520 iter += (1 << page_order(page)) - 1;
6521 continue;
6522 }
6523
6524 /*
6525 * The HWPoisoned page may be not in buddy system, and
6526 * page_count() is not 0.
6527 */
6528 if (skip_hwpoisoned_pages && PageHWPoison(page))
6529 continue;
6530
6531 if (!PageLRU(page))
6532 found++;
6533 /*
6534 * If there are RECLAIMABLE pages, we need to check
6535 * it. But now, memory offline itself doesn't call
6536 * shrink_node_slabs() and it still to be fixed.
6537 */
6538 /*
6539 * If the page is not RAM, page_count()should be 0.
6540 * we don't need more check. This is an _used_ not-movable page.
6541 *
6542 * The problematic thing here is PG_reserved pages. PG_reserved
6543 * is set to both of a memory hole page and a _used_ kernel
6544 * page at boot.
6545 */
6546 if (found > count)
6547 return true;
6548 }
6549 return false;
6550 }
6551
6552 bool is_pageblock_removable_nolock(struct page *page)
6553 {
6554 struct zone *zone;
6555 unsigned long pfn;
6556
6557 /*
6558 * We have to be careful here because we are iterating over memory
6559 * sections which are not zone aware so we might end up outside of
6560 * the zone but still within the section.
6561 * We have to take care about the node as well. If the node is offline
6562 * its NODE_DATA will be NULL - see page_zone.
6563 */
6564 if (!node_online(page_to_nid(page)))
6565 return false;
6566
6567 zone = page_zone(page);
6568 pfn = page_to_pfn(page);
6569 if (!zone_spans_pfn(zone, pfn))
6570 return false;
6571
6572 return !has_unmovable_pages(zone, page, 0, true);
6573 }
6574
6575 #ifdef CONFIG_CMA
6576
6577 static unsigned long pfn_max_align_down(unsigned long pfn)
6578 {
6579 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6580 pageblock_nr_pages) - 1);
6581 }
6582
6583 static unsigned long pfn_max_align_up(unsigned long pfn)
6584 {
6585 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6586 pageblock_nr_pages));
6587 }
6588
6589 /* [start, end) must belong to a single zone. */
6590 static int __alloc_contig_migrate_range(struct compact_control *cc,
6591 unsigned long start, unsigned long end)
6592 {
6593 /* This function is based on compact_zone() from compaction.c. */
6594 unsigned long nr_reclaimed;
6595 unsigned long pfn = start;
6596 unsigned int tries = 0;
6597 int ret = 0;
6598
6599 migrate_prep();
6600
6601 while (pfn < end || !list_empty(&cc->migratepages)) {
6602 if (fatal_signal_pending(current)) {
6603 ret = -EINTR;
6604 break;
6605 }
6606
6607 if (list_empty(&cc->migratepages)) {
6608 cc->nr_migratepages = 0;
6609 pfn = isolate_migratepages_range(cc, pfn, end);
6610 if (!pfn) {
6611 ret = -EINTR;
6612 break;
6613 }
6614 tries = 0;
6615 } else if (++tries == 5) {
6616 ret = ret < 0 ? ret : -EBUSY;
6617 break;
6618 }
6619
6620 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6621 &cc->migratepages);
6622 cc->nr_migratepages -= nr_reclaimed;
6623
6624 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6625 NULL, 0, cc->mode, MR_CMA);
6626 }
6627 if (ret < 0) {
6628 putback_movable_pages(&cc->migratepages);
6629 return ret;
6630 }
6631 return 0;
6632 }
6633
6634 /**
6635 * alloc_contig_range() -- tries to allocate given range of pages
6636 * @start: start PFN to allocate
6637 * @end: one-past-the-last PFN to allocate
6638 * @migratetype: migratetype of the underlaying pageblocks (either
6639 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6640 * in range must have the same migratetype and it must
6641 * be either of the two.
6642 *
6643 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6644 * aligned, however it's the caller's responsibility to guarantee that
6645 * we are the only thread that changes migrate type of pageblocks the
6646 * pages fall in.
6647 *
6648 * The PFN range must belong to a single zone.
6649 *
6650 * Returns zero on success or negative error code. On success all
6651 * pages which PFN is in [start, end) are allocated for the caller and
6652 * need to be freed with free_contig_range().
6653 */
6654 int alloc_contig_range(unsigned long start, unsigned long end,
6655 unsigned migratetype)
6656 {
6657 unsigned long outer_start, outer_end;
6658 int ret = 0, order;
6659
6660 struct compact_control cc = {
6661 .nr_migratepages = 0,
6662 .order = -1,
6663 .zone = page_zone(pfn_to_page(start)),
6664 .mode = MIGRATE_SYNC,
6665 .ignore_skip_hint = true,
6666 };
6667 INIT_LIST_HEAD(&cc.migratepages);
6668
6669 /*
6670 * What we do here is we mark all pageblocks in range as
6671 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6672 * have different sizes, and due to the way page allocator
6673 * work, we align the range to biggest of the two pages so
6674 * that page allocator won't try to merge buddies from
6675 * different pageblocks and change MIGRATE_ISOLATE to some
6676 * other migration type.
6677 *
6678 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6679 * migrate the pages from an unaligned range (ie. pages that
6680 * we are interested in). This will put all the pages in
6681 * range back to page allocator as MIGRATE_ISOLATE.
6682 *
6683 * When this is done, we take the pages in range from page
6684 * allocator removing them from the buddy system. This way
6685 * page allocator will never consider using them.
6686 *
6687 * This lets us mark the pageblocks back as
6688 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6689 * aligned range but not in the unaligned, original range are
6690 * put back to page allocator so that buddy can use them.
6691 */
6692
6693 ret = start_isolate_page_range(pfn_max_align_down(start),
6694 pfn_max_align_up(end), migratetype,
6695 false);
6696 if (ret)
6697 return ret;
6698
6699 ret = __alloc_contig_migrate_range(&cc, start, end);
6700 if (ret)
6701 goto done;
6702
6703 /*
6704 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6705 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6706 * more, all pages in [start, end) are free in page allocator.
6707 * What we are going to do is to allocate all pages from
6708 * [start, end) (that is remove them from page allocator).
6709 *
6710 * The only problem is that pages at the beginning and at the
6711 * end of interesting range may be not aligned with pages that
6712 * page allocator holds, ie. they can be part of higher order
6713 * pages. Because of this, we reserve the bigger range and
6714 * once this is done free the pages we are not interested in.
6715 *
6716 * We don't have to hold zone->lock here because the pages are
6717 * isolated thus they won't get removed from buddy.
6718 */
6719
6720 lru_add_drain_all();
6721 drain_all_pages(cc.zone);
6722
6723 order = 0;
6724 outer_start = start;
6725 while (!PageBuddy(pfn_to_page(outer_start))) {
6726 if (++order >= MAX_ORDER) {
6727 ret = -EBUSY;
6728 goto done;
6729 }
6730 outer_start &= ~0UL << order;
6731 }
6732
6733 /* Make sure the range is really isolated. */
6734 if (test_pages_isolated(outer_start, end, false)) {
6735 pr_info("%s: [%lx, %lx) PFNs busy\n",
6736 __func__, outer_start, end);
6737 ret = -EBUSY;
6738 goto done;
6739 }
6740
6741 /* Grab isolated pages from freelists. */
6742 outer_end = isolate_freepages_range(&cc, outer_start, end);
6743 if (!outer_end) {
6744 ret = -EBUSY;
6745 goto done;
6746 }
6747
6748 /* Free head and tail (if any) */
6749 if (start != outer_start)
6750 free_contig_range(outer_start, start - outer_start);
6751 if (end != outer_end)
6752 free_contig_range(end, outer_end - end);
6753
6754 done:
6755 undo_isolate_page_range(pfn_max_align_down(start),
6756 pfn_max_align_up(end), migratetype);
6757 return ret;
6758 }
6759
6760 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6761 {
6762 unsigned int count = 0;
6763
6764 for (; nr_pages--; pfn++) {
6765 struct page *page = pfn_to_page(pfn);
6766
6767 count += page_count(page) != 1;
6768 __free_page(page);
6769 }
6770 WARN(count != 0, "%d pages are still in use!\n", count);
6771 }
6772 #endif
6773
6774 #ifdef CONFIG_MEMORY_HOTPLUG
6775 /*
6776 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6777 * page high values need to be recalulated.
6778 */
6779 void __meminit zone_pcp_update(struct zone *zone)
6780 {
6781 unsigned cpu;
6782 mutex_lock(&pcp_batch_high_lock);
6783 for_each_possible_cpu(cpu)
6784 pageset_set_high_and_batch(zone,
6785 per_cpu_ptr(zone->pageset, cpu));
6786 mutex_unlock(&pcp_batch_high_lock);
6787 }
6788 #endif
6789
6790 void zone_pcp_reset(struct zone *zone)
6791 {
6792 unsigned long flags;
6793 int cpu;
6794 struct per_cpu_pageset *pset;
6795
6796 /* avoid races with drain_pages() */
6797 local_irq_save(flags);
6798 if (zone->pageset != &boot_pageset) {
6799 for_each_online_cpu(cpu) {
6800 pset = per_cpu_ptr(zone->pageset, cpu);
6801 drain_zonestat(zone, pset);
6802 }
6803 free_percpu(zone->pageset);
6804 zone->pageset = &boot_pageset;
6805 }
6806 local_irq_restore(flags);
6807 }
6808
6809 #ifdef CONFIG_MEMORY_HOTREMOVE
6810 /*
6811 * All pages in the range must be isolated before calling this.
6812 */
6813 void
6814 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6815 {
6816 struct page *page;
6817 struct zone *zone;
6818 unsigned int order, i;
6819 unsigned long pfn;
6820 unsigned long flags;
6821 /* find the first valid pfn */
6822 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6823 if (pfn_valid(pfn))
6824 break;
6825 if (pfn == end_pfn)
6826 return;
6827 zone = page_zone(pfn_to_page(pfn));
6828 spin_lock_irqsave(&zone->lock, flags);
6829 pfn = start_pfn;
6830 while (pfn < end_pfn) {
6831 if (!pfn_valid(pfn)) {
6832 pfn++;
6833 continue;
6834 }
6835 page = pfn_to_page(pfn);
6836 /*
6837 * The HWPoisoned page may be not in buddy system, and
6838 * page_count() is not 0.
6839 */
6840 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6841 pfn++;
6842 SetPageReserved(page);
6843 continue;
6844 }
6845
6846 BUG_ON(page_count(page));
6847 BUG_ON(!PageBuddy(page));
6848 order = page_order(page);
6849 #ifdef CONFIG_DEBUG_VM
6850 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6851 pfn, 1 << order, end_pfn);
6852 #endif
6853 list_del(&page->lru);
6854 rmv_page_order(page);
6855 zone->free_area[order].nr_free--;
6856 for (i = 0; i < (1 << order); i++)
6857 SetPageReserved((page+i));
6858 pfn += (1 << order);
6859 }
6860 spin_unlock_irqrestore(&zone->lock, flags);
6861 }
6862 #endif
6863
6864 #ifdef CONFIG_MEMORY_FAILURE
6865 bool is_free_buddy_page(struct page *page)
6866 {
6867 struct zone *zone = page_zone(page);
6868 unsigned long pfn = page_to_pfn(page);
6869 unsigned long flags;
6870 unsigned int order;
6871
6872 spin_lock_irqsave(&zone->lock, flags);
6873 for (order = 0; order < MAX_ORDER; order++) {
6874 struct page *page_head = page - (pfn & ((1 << order) - 1));
6875
6876 if (PageBuddy(page_head) && page_order(page_head) >= order)
6877 break;
6878 }
6879 spin_unlock_irqrestore(&zone->lock, flags);
6880
6881 return order < MAX_ORDER;
6882 }
6883 #endif
This page took 0.300703 seconds and 6 git commands to generate.