Page allocator: clean up pcp draining functions
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
46
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
49 #include "internal.h"
50
51 /*
52 * Array of node states.
53 */
54 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
55 [N_POSSIBLE] = NODE_MASK_ALL,
56 [N_ONLINE] = { { [0] = 1UL } },
57 #ifndef CONFIG_NUMA
58 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
59 #ifdef CONFIG_HIGHMEM
60 [N_HIGH_MEMORY] = { { [0] = 1UL } },
61 #endif
62 [N_CPU] = { { [0] = 1UL } },
63 #endif /* NUMA */
64 };
65 EXPORT_SYMBOL(node_states);
66
67 unsigned long totalram_pages __read_mostly;
68 unsigned long totalreserve_pages __read_mostly;
69 long nr_swap_pages;
70 int percpu_pagelist_fraction;
71
72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73 int pageblock_order __read_mostly;
74 #endif
75
76 static void __free_pages_ok(struct page *page, unsigned int order);
77
78 /*
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 * 1G machine -> (16M dma, 784M normal, 224M high)
82 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
85 *
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
88 */
89 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
90 #ifdef CONFIG_ZONE_DMA
91 256,
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 256,
95 #endif
96 #ifdef CONFIG_HIGHMEM
97 32,
98 #endif
99 32,
100 };
101
102 EXPORT_SYMBOL(totalram_pages);
103
104 static char * const zone_names[MAX_NR_ZONES] = {
105 #ifdef CONFIG_ZONE_DMA
106 "DMA",
107 #endif
108 #ifdef CONFIG_ZONE_DMA32
109 "DMA32",
110 #endif
111 "Normal",
112 #ifdef CONFIG_HIGHMEM
113 "HighMem",
114 #endif
115 "Movable",
116 };
117
118 int min_free_kbytes = 1024;
119
120 unsigned long __meminitdata nr_kernel_pages;
121 unsigned long __meminitdata nr_all_pages;
122 static unsigned long __meminitdata dma_reserve;
123
124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
125 /*
126 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
127 * ranges of memory (RAM) that may be registered with add_active_range().
128 * Ranges passed to add_active_range() will be merged if possible
129 * so the number of times add_active_range() can be called is
130 * related to the number of nodes and the number of holes
131 */
132 #ifdef CONFIG_MAX_ACTIVE_REGIONS
133 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
135 #else
136 #if MAX_NUMNODES >= 32
137 /* If there can be many nodes, allow up to 50 holes per node */
138 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
139 #else
140 /* By default, allow up to 256 distinct regions */
141 #define MAX_ACTIVE_REGIONS 256
142 #endif
143 #endif
144
145 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
146 static int __meminitdata nr_nodemap_entries;
147 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
148 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
151 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153 unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
162 #if MAX_NUMNODES > 1
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
165 #endif
166
167 int page_group_by_mobility_disabled __read_mostly;
168
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
170 {
171 set_pageblock_flags_group(page, (unsigned long)migratetype,
172 PB_migrate, PB_migrate_end);
173 }
174
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
177 {
178 int ret = 0;
179 unsigned seq;
180 unsigned long pfn = page_to_pfn(page);
181
182 do {
183 seq = zone_span_seqbegin(zone);
184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
185 ret = 1;
186 else if (pfn < zone->zone_start_pfn)
187 ret = 1;
188 } while (zone_span_seqretry(zone, seq));
189
190 return ret;
191 }
192
193 static int page_is_consistent(struct zone *zone, struct page *page)
194 {
195 if (!pfn_valid_within(page_to_pfn(page)))
196 return 0;
197 if (zone != page_zone(page))
198 return 0;
199
200 return 1;
201 }
202 /*
203 * Temporary debugging check for pages not lying within a given zone.
204 */
205 static int bad_range(struct zone *zone, struct page *page)
206 {
207 if (page_outside_zone_boundaries(zone, page))
208 return 1;
209 if (!page_is_consistent(zone, page))
210 return 1;
211
212 return 0;
213 }
214 #else
215 static inline int bad_range(struct zone *zone, struct page *page)
216 {
217 return 0;
218 }
219 #endif
220
221 static void bad_page(struct page *page)
222 {
223 printk(KERN_EMERG "Bad page state in process '%s'\n"
224 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
226 KERN_EMERG "Backtrace:\n",
227 current->comm, page, (int)(2*sizeof(unsigned long)),
228 (unsigned long)page->flags, page->mapping,
229 page_mapcount(page), page_count(page));
230 dump_stack();
231 page->flags &= ~(1 << PG_lru |
232 1 << PG_private |
233 1 << PG_locked |
234 1 << PG_active |
235 1 << PG_dirty |
236 1 << PG_reclaim |
237 1 << PG_slab |
238 1 << PG_swapcache |
239 1 << PG_writeback |
240 1 << PG_buddy );
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
245 }
246
247 /*
248 * Higher-order pages are called "compound pages". They are structured thusly:
249 *
250 * The first PAGE_SIZE page is called the "head page".
251 *
252 * The remaining PAGE_SIZE pages are called "tail pages".
253 *
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
256 *
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
260 */
261
262 static void free_compound_page(struct page *page)
263 {
264 __free_pages_ok(page, compound_order(page));
265 }
266
267 static void prep_compound_page(struct page *page, unsigned long order)
268 {
269 int i;
270 int nr_pages = 1 << order;
271
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
274 __SetPageHead(page);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
277
278 __SetPageTail(p);
279 p->first_page = page;
280 }
281 }
282
283 static void destroy_compound_page(struct page *page, unsigned long order)
284 {
285 int i;
286 int nr_pages = 1 << order;
287
288 if (unlikely(compound_order(page) != order))
289 bad_page(page);
290
291 if (unlikely(!PageHead(page)))
292 bad_page(page);
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
296
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
299 bad_page(page);
300 __ClearPageTail(p);
301 }
302 }
303
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
305 {
306 int i;
307
308 /*
309 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
310 * and __GFP_HIGHMEM from hard or soft interrupt context.
311 */
312 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
313 for (i = 0; i < (1 << order); i++)
314 clear_highpage(page + i);
315 }
316
317 static inline void set_page_order(struct page *page, int order)
318 {
319 set_page_private(page, order);
320 __SetPageBuddy(page);
321 }
322
323 static inline void rmv_page_order(struct page *page)
324 {
325 __ClearPageBuddy(page);
326 set_page_private(page, 0);
327 }
328
329 /*
330 * Locate the struct page for both the matching buddy in our
331 * pair (buddy1) and the combined O(n+1) page they form (page).
332 *
333 * 1) Any buddy B1 will have an order O twin B2 which satisfies
334 * the following equation:
335 * B2 = B1 ^ (1 << O)
336 * For example, if the starting buddy (buddy2) is #8 its order
337 * 1 buddy is #10:
338 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
339 *
340 * 2) Any buddy B will have an order O+1 parent P which
341 * satisfies the following equation:
342 * P = B & ~(1 << O)
343 *
344 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
345 */
346 static inline struct page *
347 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
348 {
349 unsigned long buddy_idx = page_idx ^ (1 << order);
350
351 return page + (buddy_idx - page_idx);
352 }
353
354 static inline unsigned long
355 __find_combined_index(unsigned long page_idx, unsigned int order)
356 {
357 return (page_idx & ~(1 << order));
358 }
359
360 /*
361 * This function checks whether a page is free && is the buddy
362 * we can do coalesce a page and its buddy if
363 * (a) the buddy is not in a hole &&
364 * (b) the buddy is in the buddy system &&
365 * (c) a page and its buddy have the same order &&
366 * (d) a page and its buddy are in the same zone.
367 *
368 * For recording whether a page is in the buddy system, we use PG_buddy.
369 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
370 *
371 * For recording page's order, we use page_private(page).
372 */
373 static inline int page_is_buddy(struct page *page, struct page *buddy,
374 int order)
375 {
376 if (!pfn_valid_within(page_to_pfn(buddy)))
377 return 0;
378
379 if (page_zone_id(page) != page_zone_id(buddy))
380 return 0;
381
382 if (PageBuddy(buddy) && page_order(buddy) == order) {
383 BUG_ON(page_count(buddy) != 0);
384 return 1;
385 }
386 return 0;
387 }
388
389 /*
390 * Freeing function for a buddy system allocator.
391 *
392 * The concept of a buddy system is to maintain direct-mapped table
393 * (containing bit values) for memory blocks of various "orders".
394 * The bottom level table contains the map for the smallest allocatable
395 * units of memory (here, pages), and each level above it describes
396 * pairs of units from the levels below, hence, "buddies".
397 * At a high level, all that happens here is marking the table entry
398 * at the bottom level available, and propagating the changes upward
399 * as necessary, plus some accounting needed to play nicely with other
400 * parts of the VM system.
401 * At each level, we keep a list of pages, which are heads of continuous
402 * free pages of length of (1 << order) and marked with PG_buddy. Page's
403 * order is recorded in page_private(page) field.
404 * So when we are allocating or freeing one, we can derive the state of the
405 * other. That is, if we allocate a small block, and both were
406 * free, the remainder of the region must be split into blocks.
407 * If a block is freed, and its buddy is also free, then this
408 * triggers coalescing into a block of larger size.
409 *
410 * -- wli
411 */
412
413 static inline void __free_one_page(struct page *page,
414 struct zone *zone, unsigned int order)
415 {
416 unsigned long page_idx;
417 int order_size = 1 << order;
418 int migratetype = get_pageblock_migratetype(page);
419
420 if (unlikely(PageCompound(page)))
421 destroy_compound_page(page, order);
422
423 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
424
425 VM_BUG_ON(page_idx & (order_size - 1));
426 VM_BUG_ON(bad_range(zone, page));
427
428 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
429 while (order < MAX_ORDER-1) {
430 unsigned long combined_idx;
431 struct page *buddy;
432
433 buddy = __page_find_buddy(page, page_idx, order);
434 if (!page_is_buddy(page, buddy, order))
435 break; /* Move the buddy up one level. */
436
437 list_del(&buddy->lru);
438 zone->free_area[order].nr_free--;
439 rmv_page_order(buddy);
440 combined_idx = __find_combined_index(page_idx, order);
441 page = page + (combined_idx - page_idx);
442 page_idx = combined_idx;
443 order++;
444 }
445 set_page_order(page, order);
446 list_add(&page->lru,
447 &zone->free_area[order].free_list[migratetype]);
448 zone->free_area[order].nr_free++;
449 }
450
451 static inline int free_pages_check(struct page *page)
452 {
453 if (unlikely(page_mapcount(page) |
454 (page->mapping != NULL) |
455 (page_count(page) != 0) |
456 (page->flags & (
457 1 << PG_lru |
458 1 << PG_private |
459 1 << PG_locked |
460 1 << PG_active |
461 1 << PG_slab |
462 1 << PG_swapcache |
463 1 << PG_writeback |
464 1 << PG_reserved |
465 1 << PG_buddy ))))
466 bad_page(page);
467 if (PageDirty(page))
468 __ClearPageDirty(page);
469 /*
470 * For now, we report if PG_reserved was found set, but do not
471 * clear it, and do not free the page. But we shall soon need
472 * to do more, for when the ZERO_PAGE count wraps negative.
473 */
474 return PageReserved(page);
475 }
476
477 /*
478 * Frees a list of pages.
479 * Assumes all pages on list are in same zone, and of same order.
480 * count is the number of pages to free.
481 *
482 * If the zone was previously in an "all pages pinned" state then look to
483 * see if this freeing clears that state.
484 *
485 * And clear the zone's pages_scanned counter, to hold off the "all pages are
486 * pinned" detection logic.
487 */
488 static void free_pages_bulk(struct zone *zone, int count,
489 struct list_head *list, int order)
490 {
491 spin_lock(&zone->lock);
492 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
493 zone->pages_scanned = 0;
494 while (count--) {
495 struct page *page;
496
497 VM_BUG_ON(list_empty(list));
498 page = list_entry(list->prev, struct page, lru);
499 /* have to delete it as __free_one_page list manipulates */
500 list_del(&page->lru);
501 __free_one_page(page, zone, order);
502 }
503 spin_unlock(&zone->lock);
504 }
505
506 static void free_one_page(struct zone *zone, struct page *page, int order)
507 {
508 spin_lock(&zone->lock);
509 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
510 zone->pages_scanned = 0;
511 __free_one_page(page, zone, order);
512 spin_unlock(&zone->lock);
513 }
514
515 static void __free_pages_ok(struct page *page, unsigned int order)
516 {
517 unsigned long flags;
518 int i;
519 int reserved = 0;
520
521 for (i = 0 ; i < (1 << order) ; ++i)
522 reserved += free_pages_check(page + i);
523 if (reserved)
524 return;
525
526 if (!PageHighMem(page))
527 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
528 arch_free_page(page, order);
529 kernel_map_pages(page, 1 << order, 0);
530
531 local_irq_save(flags);
532 __count_vm_events(PGFREE, 1 << order);
533 free_one_page(page_zone(page), page, order);
534 local_irq_restore(flags);
535 }
536
537 /*
538 * permit the bootmem allocator to evade page validation on high-order frees
539 */
540 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
541 {
542 if (order == 0) {
543 __ClearPageReserved(page);
544 set_page_count(page, 0);
545 set_page_refcounted(page);
546 __free_page(page);
547 } else {
548 int loop;
549
550 prefetchw(page);
551 for (loop = 0; loop < BITS_PER_LONG; loop++) {
552 struct page *p = &page[loop];
553
554 if (loop + 1 < BITS_PER_LONG)
555 prefetchw(p + 1);
556 __ClearPageReserved(p);
557 set_page_count(p, 0);
558 }
559
560 set_page_refcounted(page);
561 __free_pages(page, order);
562 }
563 }
564
565
566 /*
567 * The order of subdivision here is critical for the IO subsystem.
568 * Please do not alter this order without good reasons and regression
569 * testing. Specifically, as large blocks of memory are subdivided,
570 * the order in which smaller blocks are delivered depends on the order
571 * they're subdivided in this function. This is the primary factor
572 * influencing the order in which pages are delivered to the IO
573 * subsystem according to empirical testing, and this is also justified
574 * by considering the behavior of a buddy system containing a single
575 * large block of memory acted on by a series of small allocations.
576 * This behavior is a critical factor in sglist merging's success.
577 *
578 * -- wli
579 */
580 static inline void expand(struct zone *zone, struct page *page,
581 int low, int high, struct free_area *area,
582 int migratetype)
583 {
584 unsigned long size = 1 << high;
585
586 while (high > low) {
587 area--;
588 high--;
589 size >>= 1;
590 VM_BUG_ON(bad_range(zone, &page[size]));
591 list_add(&page[size].lru, &area->free_list[migratetype]);
592 area->nr_free++;
593 set_page_order(&page[size], high);
594 }
595 }
596
597 /*
598 * This page is about to be returned from the page allocator
599 */
600 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
601 {
602 if (unlikely(page_mapcount(page) |
603 (page->mapping != NULL) |
604 (page_count(page) != 0) |
605 (page->flags & (
606 1 << PG_lru |
607 1 << PG_private |
608 1 << PG_locked |
609 1 << PG_active |
610 1 << PG_dirty |
611 1 << PG_slab |
612 1 << PG_swapcache |
613 1 << PG_writeback |
614 1 << PG_reserved |
615 1 << PG_buddy ))))
616 bad_page(page);
617
618 /*
619 * For now, we report if PG_reserved was found set, but do not
620 * clear it, and do not allocate the page: as a safety net.
621 */
622 if (PageReserved(page))
623 return 1;
624
625 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
626 1 << PG_referenced | 1 << PG_arch_1 |
627 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
628 set_page_private(page, 0);
629 set_page_refcounted(page);
630
631 arch_alloc_page(page, order);
632 kernel_map_pages(page, 1 << order, 1);
633
634 if (gfp_flags & __GFP_ZERO)
635 prep_zero_page(page, order, gfp_flags);
636
637 if (order && (gfp_flags & __GFP_COMP))
638 prep_compound_page(page, order);
639
640 return 0;
641 }
642
643 /*
644 * Go through the free lists for the given migratetype and remove
645 * the smallest available page from the freelists
646 */
647 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
648 int migratetype)
649 {
650 unsigned int current_order;
651 struct free_area * area;
652 struct page *page;
653
654 /* Find a page of the appropriate size in the preferred list */
655 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
656 area = &(zone->free_area[current_order]);
657 if (list_empty(&area->free_list[migratetype]))
658 continue;
659
660 page = list_entry(area->free_list[migratetype].next,
661 struct page, lru);
662 list_del(&page->lru);
663 rmv_page_order(page);
664 area->nr_free--;
665 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
666 expand(zone, page, order, current_order, area, migratetype);
667 return page;
668 }
669
670 return NULL;
671 }
672
673
674 /*
675 * This array describes the order lists are fallen back to when
676 * the free lists for the desirable migrate type are depleted
677 */
678 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
679 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
680 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
681 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
682 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
683 };
684
685 /*
686 * Move the free pages in a range to the free lists of the requested type.
687 * Note that start_page and end_pages are not aligned on a pageblock
688 * boundary. If alignment is required, use move_freepages_block()
689 */
690 int move_freepages(struct zone *zone,
691 struct page *start_page, struct page *end_page,
692 int migratetype)
693 {
694 struct page *page;
695 unsigned long order;
696 int pages_moved = 0;
697
698 #ifndef CONFIG_HOLES_IN_ZONE
699 /*
700 * page_zone is not safe to call in this context when
701 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
702 * anyway as we check zone boundaries in move_freepages_block().
703 * Remove at a later date when no bug reports exist related to
704 * grouping pages by mobility
705 */
706 BUG_ON(page_zone(start_page) != page_zone(end_page));
707 #endif
708
709 for (page = start_page; page <= end_page;) {
710 if (!pfn_valid_within(page_to_pfn(page))) {
711 page++;
712 continue;
713 }
714
715 if (!PageBuddy(page)) {
716 page++;
717 continue;
718 }
719
720 order = page_order(page);
721 list_del(&page->lru);
722 list_add(&page->lru,
723 &zone->free_area[order].free_list[migratetype]);
724 page += 1 << order;
725 pages_moved += 1 << order;
726 }
727
728 return pages_moved;
729 }
730
731 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
732 {
733 unsigned long start_pfn, end_pfn;
734 struct page *start_page, *end_page;
735
736 start_pfn = page_to_pfn(page);
737 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
738 start_page = pfn_to_page(start_pfn);
739 end_page = start_page + pageblock_nr_pages - 1;
740 end_pfn = start_pfn + pageblock_nr_pages - 1;
741
742 /* Do not cross zone boundaries */
743 if (start_pfn < zone->zone_start_pfn)
744 start_page = page;
745 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
746 return 0;
747
748 return move_freepages(zone, start_page, end_page, migratetype);
749 }
750
751 /* Remove an element from the buddy allocator from the fallback list */
752 static struct page *__rmqueue_fallback(struct zone *zone, int order,
753 int start_migratetype)
754 {
755 struct free_area * area;
756 int current_order;
757 struct page *page;
758 int migratetype, i;
759
760 /* Find the largest possible block of pages in the other list */
761 for (current_order = MAX_ORDER-1; current_order >= order;
762 --current_order) {
763 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
764 migratetype = fallbacks[start_migratetype][i];
765
766 /* MIGRATE_RESERVE handled later if necessary */
767 if (migratetype == MIGRATE_RESERVE)
768 continue;
769
770 area = &(zone->free_area[current_order]);
771 if (list_empty(&area->free_list[migratetype]))
772 continue;
773
774 page = list_entry(area->free_list[migratetype].next,
775 struct page, lru);
776 area->nr_free--;
777
778 /*
779 * If breaking a large block of pages, move all free
780 * pages to the preferred allocation list. If falling
781 * back for a reclaimable kernel allocation, be more
782 * agressive about taking ownership of free pages
783 */
784 if (unlikely(current_order >= (pageblock_order >> 1)) ||
785 start_migratetype == MIGRATE_RECLAIMABLE) {
786 unsigned long pages;
787 pages = move_freepages_block(zone, page,
788 start_migratetype);
789
790 /* Claim the whole block if over half of it is free */
791 if (pages >= (1 << (pageblock_order-1)))
792 set_pageblock_migratetype(page,
793 start_migratetype);
794
795 migratetype = start_migratetype;
796 }
797
798 /* Remove the page from the freelists */
799 list_del(&page->lru);
800 rmv_page_order(page);
801 __mod_zone_page_state(zone, NR_FREE_PAGES,
802 -(1UL << order));
803
804 if (current_order == pageblock_order)
805 set_pageblock_migratetype(page,
806 start_migratetype);
807
808 expand(zone, page, order, current_order, area, migratetype);
809 return page;
810 }
811 }
812
813 /* Use MIGRATE_RESERVE rather than fail an allocation */
814 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
815 }
816
817 /*
818 * Do the hard work of removing an element from the buddy allocator.
819 * Call me with the zone->lock already held.
820 */
821 static struct page *__rmqueue(struct zone *zone, unsigned int order,
822 int migratetype)
823 {
824 struct page *page;
825
826 page = __rmqueue_smallest(zone, order, migratetype);
827
828 if (unlikely(!page))
829 page = __rmqueue_fallback(zone, order, migratetype);
830
831 return page;
832 }
833
834 /*
835 * Obtain a specified number of elements from the buddy allocator, all under
836 * a single hold of the lock, for efficiency. Add them to the supplied list.
837 * Returns the number of new pages which were placed at *list.
838 */
839 static int rmqueue_bulk(struct zone *zone, unsigned int order,
840 unsigned long count, struct list_head *list,
841 int migratetype)
842 {
843 int i;
844
845 spin_lock(&zone->lock);
846 for (i = 0; i < count; ++i) {
847 struct page *page = __rmqueue(zone, order, migratetype);
848 if (unlikely(page == NULL))
849 break;
850
851 /*
852 * Split buddy pages returned by expand() are received here
853 * in physical page order. The page is added to the callers and
854 * list and the list head then moves forward. From the callers
855 * perspective, the linked list is ordered by page number in
856 * some conditions. This is useful for IO devices that can
857 * merge IO requests if the physical pages are ordered
858 * properly.
859 */
860 list_add(&page->lru, list);
861 set_page_private(page, migratetype);
862 list = &page->lru;
863 }
864 spin_unlock(&zone->lock);
865 return i;
866 }
867
868 #ifdef CONFIG_NUMA
869 /*
870 * Called from the vmstat counter updater to drain pagesets of this
871 * currently executing processor on remote nodes after they have
872 * expired.
873 *
874 * Note that this function must be called with the thread pinned to
875 * a single processor.
876 */
877 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
878 {
879 unsigned long flags;
880 int to_drain;
881
882 local_irq_save(flags);
883 if (pcp->count >= pcp->batch)
884 to_drain = pcp->batch;
885 else
886 to_drain = pcp->count;
887 free_pages_bulk(zone, to_drain, &pcp->list, 0);
888 pcp->count -= to_drain;
889 local_irq_restore(flags);
890 }
891 #endif
892
893 /*
894 * Drain pages of the indicated processor.
895 *
896 * The processor must either be the current processor and the
897 * thread pinned to the current processor or a processor that
898 * is not online.
899 */
900 static void drain_pages(unsigned int cpu)
901 {
902 unsigned long flags;
903 struct zone *zone;
904 int i;
905
906 for_each_zone(zone) {
907 struct per_cpu_pageset *pset;
908
909 if (!populated_zone(zone))
910 continue;
911
912 pset = zone_pcp(zone, cpu);
913 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
914 struct per_cpu_pages *pcp;
915
916 pcp = &pset->pcp[i];
917 local_irq_save(flags);
918 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
919 pcp->count = 0;
920 local_irq_restore(flags);
921 }
922 }
923 }
924
925 /*
926 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
927 */
928 void drain_local_pages(void *arg)
929 {
930 drain_pages(smp_processor_id());
931 }
932
933 /*
934 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
935 */
936 void drain_all_pages(void)
937 {
938 on_each_cpu(drain_local_pages, NULL, 0, 1);
939 }
940
941 #ifdef CONFIG_HIBERNATION
942
943 void mark_free_pages(struct zone *zone)
944 {
945 unsigned long pfn, max_zone_pfn;
946 unsigned long flags;
947 int order, t;
948 struct list_head *curr;
949
950 if (!zone->spanned_pages)
951 return;
952
953 spin_lock_irqsave(&zone->lock, flags);
954
955 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
956 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
957 if (pfn_valid(pfn)) {
958 struct page *page = pfn_to_page(pfn);
959
960 if (!swsusp_page_is_forbidden(page))
961 swsusp_unset_page_free(page);
962 }
963
964 for_each_migratetype_order(order, t) {
965 list_for_each(curr, &zone->free_area[order].free_list[t]) {
966 unsigned long i;
967
968 pfn = page_to_pfn(list_entry(curr, struct page, lru));
969 for (i = 0; i < (1UL << order); i++)
970 swsusp_set_page_free(pfn_to_page(pfn + i));
971 }
972 }
973 spin_unlock_irqrestore(&zone->lock, flags);
974 }
975 #endif /* CONFIG_PM */
976
977 /*
978 * Free a 0-order page
979 */
980 static void fastcall free_hot_cold_page(struct page *page, int cold)
981 {
982 struct zone *zone = page_zone(page);
983 struct per_cpu_pages *pcp;
984 unsigned long flags;
985
986 if (PageAnon(page))
987 page->mapping = NULL;
988 if (free_pages_check(page))
989 return;
990
991 if (!PageHighMem(page))
992 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
993 arch_free_page(page, 0);
994 kernel_map_pages(page, 1, 0);
995
996 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
997 local_irq_save(flags);
998 __count_vm_event(PGFREE);
999 list_add(&page->lru, &pcp->list);
1000 set_page_private(page, get_pageblock_migratetype(page));
1001 pcp->count++;
1002 if (pcp->count >= pcp->high) {
1003 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1004 pcp->count -= pcp->batch;
1005 }
1006 local_irq_restore(flags);
1007 put_cpu();
1008 }
1009
1010 void fastcall free_hot_page(struct page *page)
1011 {
1012 free_hot_cold_page(page, 0);
1013 }
1014
1015 void fastcall free_cold_page(struct page *page)
1016 {
1017 free_hot_cold_page(page, 1);
1018 }
1019
1020 /*
1021 * split_page takes a non-compound higher-order page, and splits it into
1022 * n (1<<order) sub-pages: page[0..n]
1023 * Each sub-page must be freed individually.
1024 *
1025 * Note: this is probably too low level an operation for use in drivers.
1026 * Please consult with lkml before using this in your driver.
1027 */
1028 void split_page(struct page *page, unsigned int order)
1029 {
1030 int i;
1031
1032 VM_BUG_ON(PageCompound(page));
1033 VM_BUG_ON(!page_count(page));
1034 for (i = 1; i < (1 << order); i++)
1035 set_page_refcounted(page + i);
1036 }
1037
1038 /*
1039 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1040 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1041 * or two.
1042 */
1043 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1044 struct zone *zone, int order, gfp_t gfp_flags)
1045 {
1046 unsigned long flags;
1047 struct page *page;
1048 int cold = !!(gfp_flags & __GFP_COLD);
1049 int cpu;
1050 int migratetype = allocflags_to_migratetype(gfp_flags);
1051
1052 again:
1053 cpu = get_cpu();
1054 if (likely(order == 0)) {
1055 struct per_cpu_pages *pcp;
1056
1057 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1058 local_irq_save(flags);
1059 if (!pcp->count) {
1060 pcp->count = rmqueue_bulk(zone, 0,
1061 pcp->batch, &pcp->list, migratetype);
1062 if (unlikely(!pcp->count))
1063 goto failed;
1064 }
1065
1066 /* Find a page of the appropriate migrate type */
1067 list_for_each_entry(page, &pcp->list, lru)
1068 if (page_private(page) == migratetype)
1069 break;
1070
1071 /* Allocate more to the pcp list if necessary */
1072 if (unlikely(&page->lru == &pcp->list)) {
1073 pcp->count += rmqueue_bulk(zone, 0,
1074 pcp->batch, &pcp->list, migratetype);
1075 page = list_entry(pcp->list.next, struct page, lru);
1076 }
1077
1078 list_del(&page->lru);
1079 pcp->count--;
1080 } else {
1081 spin_lock_irqsave(&zone->lock, flags);
1082 page = __rmqueue(zone, order, migratetype);
1083 spin_unlock(&zone->lock);
1084 if (!page)
1085 goto failed;
1086 }
1087
1088 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1089 zone_statistics(zonelist, zone);
1090 local_irq_restore(flags);
1091 put_cpu();
1092
1093 VM_BUG_ON(bad_range(zone, page));
1094 if (prep_new_page(page, order, gfp_flags))
1095 goto again;
1096 return page;
1097
1098 failed:
1099 local_irq_restore(flags);
1100 put_cpu();
1101 return NULL;
1102 }
1103
1104 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1105 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1106 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1107 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1108 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1109 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1110 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1111
1112 #ifdef CONFIG_FAIL_PAGE_ALLOC
1113
1114 static struct fail_page_alloc_attr {
1115 struct fault_attr attr;
1116
1117 u32 ignore_gfp_highmem;
1118 u32 ignore_gfp_wait;
1119 u32 min_order;
1120
1121 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1122
1123 struct dentry *ignore_gfp_highmem_file;
1124 struct dentry *ignore_gfp_wait_file;
1125 struct dentry *min_order_file;
1126
1127 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1128
1129 } fail_page_alloc = {
1130 .attr = FAULT_ATTR_INITIALIZER,
1131 .ignore_gfp_wait = 1,
1132 .ignore_gfp_highmem = 1,
1133 .min_order = 1,
1134 };
1135
1136 static int __init setup_fail_page_alloc(char *str)
1137 {
1138 return setup_fault_attr(&fail_page_alloc.attr, str);
1139 }
1140 __setup("fail_page_alloc=", setup_fail_page_alloc);
1141
1142 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1143 {
1144 if (order < fail_page_alloc.min_order)
1145 return 0;
1146 if (gfp_mask & __GFP_NOFAIL)
1147 return 0;
1148 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1149 return 0;
1150 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1151 return 0;
1152
1153 return should_fail(&fail_page_alloc.attr, 1 << order);
1154 }
1155
1156 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1157
1158 static int __init fail_page_alloc_debugfs(void)
1159 {
1160 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1161 struct dentry *dir;
1162 int err;
1163
1164 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1165 "fail_page_alloc");
1166 if (err)
1167 return err;
1168 dir = fail_page_alloc.attr.dentries.dir;
1169
1170 fail_page_alloc.ignore_gfp_wait_file =
1171 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1172 &fail_page_alloc.ignore_gfp_wait);
1173
1174 fail_page_alloc.ignore_gfp_highmem_file =
1175 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1176 &fail_page_alloc.ignore_gfp_highmem);
1177 fail_page_alloc.min_order_file =
1178 debugfs_create_u32("min-order", mode, dir,
1179 &fail_page_alloc.min_order);
1180
1181 if (!fail_page_alloc.ignore_gfp_wait_file ||
1182 !fail_page_alloc.ignore_gfp_highmem_file ||
1183 !fail_page_alloc.min_order_file) {
1184 err = -ENOMEM;
1185 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1186 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1187 debugfs_remove(fail_page_alloc.min_order_file);
1188 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1189 }
1190
1191 return err;
1192 }
1193
1194 late_initcall(fail_page_alloc_debugfs);
1195
1196 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1197
1198 #else /* CONFIG_FAIL_PAGE_ALLOC */
1199
1200 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1201 {
1202 return 0;
1203 }
1204
1205 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1206
1207 /*
1208 * Return 1 if free pages are above 'mark'. This takes into account the order
1209 * of the allocation.
1210 */
1211 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1212 int classzone_idx, int alloc_flags)
1213 {
1214 /* free_pages my go negative - that's OK */
1215 long min = mark;
1216 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1217 int o;
1218
1219 if (alloc_flags & ALLOC_HIGH)
1220 min -= min / 2;
1221 if (alloc_flags & ALLOC_HARDER)
1222 min -= min / 4;
1223
1224 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1225 return 0;
1226 for (o = 0; o < order; o++) {
1227 /* At the next order, this order's pages become unavailable */
1228 free_pages -= z->free_area[o].nr_free << o;
1229
1230 /* Require fewer higher order pages to be free */
1231 min >>= 1;
1232
1233 if (free_pages <= min)
1234 return 0;
1235 }
1236 return 1;
1237 }
1238
1239 #ifdef CONFIG_NUMA
1240 /*
1241 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1242 * skip over zones that are not allowed by the cpuset, or that have
1243 * been recently (in last second) found to be nearly full. See further
1244 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1245 * that have to skip over a lot of full or unallowed zones.
1246 *
1247 * If the zonelist cache is present in the passed in zonelist, then
1248 * returns a pointer to the allowed node mask (either the current
1249 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1250 *
1251 * If the zonelist cache is not available for this zonelist, does
1252 * nothing and returns NULL.
1253 *
1254 * If the fullzones BITMAP in the zonelist cache is stale (more than
1255 * a second since last zap'd) then we zap it out (clear its bits.)
1256 *
1257 * We hold off even calling zlc_setup, until after we've checked the
1258 * first zone in the zonelist, on the theory that most allocations will
1259 * be satisfied from that first zone, so best to examine that zone as
1260 * quickly as we can.
1261 */
1262 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1263 {
1264 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1265 nodemask_t *allowednodes; /* zonelist_cache approximation */
1266
1267 zlc = zonelist->zlcache_ptr;
1268 if (!zlc)
1269 return NULL;
1270
1271 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1272 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1273 zlc->last_full_zap = jiffies;
1274 }
1275
1276 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1277 &cpuset_current_mems_allowed :
1278 &node_states[N_HIGH_MEMORY];
1279 return allowednodes;
1280 }
1281
1282 /*
1283 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1284 * if it is worth looking at further for free memory:
1285 * 1) Check that the zone isn't thought to be full (doesn't have its
1286 * bit set in the zonelist_cache fullzones BITMAP).
1287 * 2) Check that the zones node (obtained from the zonelist_cache
1288 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1289 * Return true (non-zero) if zone is worth looking at further, or
1290 * else return false (zero) if it is not.
1291 *
1292 * This check -ignores- the distinction between various watermarks,
1293 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1294 * found to be full for any variation of these watermarks, it will
1295 * be considered full for up to one second by all requests, unless
1296 * we are so low on memory on all allowed nodes that we are forced
1297 * into the second scan of the zonelist.
1298 *
1299 * In the second scan we ignore this zonelist cache and exactly
1300 * apply the watermarks to all zones, even it is slower to do so.
1301 * We are low on memory in the second scan, and should leave no stone
1302 * unturned looking for a free page.
1303 */
1304 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1305 nodemask_t *allowednodes)
1306 {
1307 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1308 int i; /* index of *z in zonelist zones */
1309 int n; /* node that zone *z is on */
1310
1311 zlc = zonelist->zlcache_ptr;
1312 if (!zlc)
1313 return 1;
1314
1315 i = z - zonelist->zones;
1316 n = zlc->z_to_n[i];
1317
1318 /* This zone is worth trying if it is allowed but not full */
1319 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1320 }
1321
1322 /*
1323 * Given 'z' scanning a zonelist, set the corresponding bit in
1324 * zlc->fullzones, so that subsequent attempts to allocate a page
1325 * from that zone don't waste time re-examining it.
1326 */
1327 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1328 {
1329 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1330 int i; /* index of *z in zonelist zones */
1331
1332 zlc = zonelist->zlcache_ptr;
1333 if (!zlc)
1334 return;
1335
1336 i = z - zonelist->zones;
1337
1338 set_bit(i, zlc->fullzones);
1339 }
1340
1341 #else /* CONFIG_NUMA */
1342
1343 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1344 {
1345 return NULL;
1346 }
1347
1348 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1349 nodemask_t *allowednodes)
1350 {
1351 return 1;
1352 }
1353
1354 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1355 {
1356 }
1357 #endif /* CONFIG_NUMA */
1358
1359 /*
1360 * get_page_from_freelist goes through the zonelist trying to allocate
1361 * a page.
1362 */
1363 static struct page *
1364 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1365 struct zonelist *zonelist, int alloc_flags)
1366 {
1367 struct zone **z;
1368 struct page *page = NULL;
1369 int classzone_idx = zone_idx(zonelist->zones[0]);
1370 struct zone *zone;
1371 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1372 int zlc_active = 0; /* set if using zonelist_cache */
1373 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1374 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1375
1376 zonelist_scan:
1377 /*
1378 * Scan zonelist, looking for a zone with enough free.
1379 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1380 */
1381 z = zonelist->zones;
1382
1383 do {
1384 /*
1385 * In NUMA, this could be a policy zonelist which contains
1386 * zones that may not be allowed by the current gfp_mask.
1387 * Check the zone is allowed by the current flags
1388 */
1389 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1390 if (highest_zoneidx == -1)
1391 highest_zoneidx = gfp_zone(gfp_mask);
1392 if (zone_idx(*z) > highest_zoneidx)
1393 continue;
1394 }
1395
1396 if (NUMA_BUILD && zlc_active &&
1397 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1398 continue;
1399 zone = *z;
1400 if ((alloc_flags & ALLOC_CPUSET) &&
1401 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1402 goto try_next_zone;
1403
1404 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1405 unsigned long mark;
1406 if (alloc_flags & ALLOC_WMARK_MIN)
1407 mark = zone->pages_min;
1408 else if (alloc_flags & ALLOC_WMARK_LOW)
1409 mark = zone->pages_low;
1410 else
1411 mark = zone->pages_high;
1412 if (!zone_watermark_ok(zone, order, mark,
1413 classzone_idx, alloc_flags)) {
1414 if (!zone_reclaim_mode ||
1415 !zone_reclaim(zone, gfp_mask, order))
1416 goto this_zone_full;
1417 }
1418 }
1419
1420 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1421 if (page)
1422 break;
1423 this_zone_full:
1424 if (NUMA_BUILD)
1425 zlc_mark_zone_full(zonelist, z);
1426 try_next_zone:
1427 if (NUMA_BUILD && !did_zlc_setup) {
1428 /* we do zlc_setup after the first zone is tried */
1429 allowednodes = zlc_setup(zonelist, alloc_flags);
1430 zlc_active = 1;
1431 did_zlc_setup = 1;
1432 }
1433 } while (*(++z) != NULL);
1434
1435 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1436 /* Disable zlc cache for second zonelist scan */
1437 zlc_active = 0;
1438 goto zonelist_scan;
1439 }
1440 return page;
1441 }
1442
1443 /*
1444 * This is the 'heart' of the zoned buddy allocator.
1445 */
1446 struct page * fastcall
1447 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1448 struct zonelist *zonelist)
1449 {
1450 const gfp_t wait = gfp_mask & __GFP_WAIT;
1451 struct zone **z;
1452 struct page *page;
1453 struct reclaim_state reclaim_state;
1454 struct task_struct *p = current;
1455 int do_retry;
1456 int alloc_flags;
1457 int did_some_progress;
1458
1459 might_sleep_if(wait);
1460
1461 if (should_fail_alloc_page(gfp_mask, order))
1462 return NULL;
1463
1464 restart:
1465 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1466
1467 if (unlikely(*z == NULL)) {
1468 /*
1469 * Happens if we have an empty zonelist as a result of
1470 * GFP_THISNODE being used on a memoryless node
1471 */
1472 return NULL;
1473 }
1474
1475 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1476 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1477 if (page)
1478 goto got_pg;
1479
1480 /*
1481 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1482 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1483 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1484 * using a larger set of nodes after it has established that the
1485 * allowed per node queues are empty and that nodes are
1486 * over allocated.
1487 */
1488 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1489 goto nopage;
1490
1491 for (z = zonelist->zones; *z; z++)
1492 wakeup_kswapd(*z, order);
1493
1494 /*
1495 * OK, we're below the kswapd watermark and have kicked background
1496 * reclaim. Now things get more complex, so set up alloc_flags according
1497 * to how we want to proceed.
1498 *
1499 * The caller may dip into page reserves a bit more if the caller
1500 * cannot run direct reclaim, or if the caller has realtime scheduling
1501 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1502 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1503 */
1504 alloc_flags = ALLOC_WMARK_MIN;
1505 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1506 alloc_flags |= ALLOC_HARDER;
1507 if (gfp_mask & __GFP_HIGH)
1508 alloc_flags |= ALLOC_HIGH;
1509 if (wait)
1510 alloc_flags |= ALLOC_CPUSET;
1511
1512 /*
1513 * Go through the zonelist again. Let __GFP_HIGH and allocations
1514 * coming from realtime tasks go deeper into reserves.
1515 *
1516 * This is the last chance, in general, before the goto nopage.
1517 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1518 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1519 */
1520 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1521 if (page)
1522 goto got_pg;
1523
1524 /* This allocation should allow future memory freeing. */
1525
1526 rebalance:
1527 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1528 && !in_interrupt()) {
1529 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1530 nofail_alloc:
1531 /* go through the zonelist yet again, ignoring mins */
1532 page = get_page_from_freelist(gfp_mask, order,
1533 zonelist, ALLOC_NO_WATERMARKS);
1534 if (page)
1535 goto got_pg;
1536 if (gfp_mask & __GFP_NOFAIL) {
1537 congestion_wait(WRITE, HZ/50);
1538 goto nofail_alloc;
1539 }
1540 }
1541 goto nopage;
1542 }
1543
1544 /* Atomic allocations - we can't balance anything */
1545 if (!wait)
1546 goto nopage;
1547
1548 cond_resched();
1549
1550 /* We now go into synchronous reclaim */
1551 cpuset_memory_pressure_bump();
1552 p->flags |= PF_MEMALLOC;
1553 reclaim_state.reclaimed_slab = 0;
1554 p->reclaim_state = &reclaim_state;
1555
1556 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1557
1558 p->reclaim_state = NULL;
1559 p->flags &= ~PF_MEMALLOC;
1560
1561 cond_resched();
1562
1563 if (order != 0)
1564 drain_all_pages();
1565
1566 if (likely(did_some_progress)) {
1567 page = get_page_from_freelist(gfp_mask, order,
1568 zonelist, alloc_flags);
1569 if (page)
1570 goto got_pg;
1571 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1572 if (!try_set_zone_oom(zonelist)) {
1573 schedule_timeout_uninterruptible(1);
1574 goto restart;
1575 }
1576
1577 /*
1578 * Go through the zonelist yet one more time, keep
1579 * very high watermark here, this is only to catch
1580 * a parallel oom killing, we must fail if we're still
1581 * under heavy pressure.
1582 */
1583 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1584 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1585 if (page) {
1586 clear_zonelist_oom(zonelist);
1587 goto got_pg;
1588 }
1589
1590 /* The OOM killer will not help higher order allocs so fail */
1591 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1592 clear_zonelist_oom(zonelist);
1593 goto nopage;
1594 }
1595
1596 out_of_memory(zonelist, gfp_mask, order);
1597 clear_zonelist_oom(zonelist);
1598 goto restart;
1599 }
1600
1601 /*
1602 * Don't let big-order allocations loop unless the caller explicitly
1603 * requests that. Wait for some write requests to complete then retry.
1604 *
1605 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1606 * <= 3, but that may not be true in other implementations.
1607 */
1608 do_retry = 0;
1609 if (!(gfp_mask & __GFP_NORETRY)) {
1610 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1611 (gfp_mask & __GFP_REPEAT))
1612 do_retry = 1;
1613 if (gfp_mask & __GFP_NOFAIL)
1614 do_retry = 1;
1615 }
1616 if (do_retry) {
1617 congestion_wait(WRITE, HZ/50);
1618 goto rebalance;
1619 }
1620
1621 nopage:
1622 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1623 printk(KERN_WARNING "%s: page allocation failure."
1624 " order:%d, mode:0x%x\n",
1625 p->comm, order, gfp_mask);
1626 dump_stack();
1627 show_mem();
1628 }
1629 got_pg:
1630 return page;
1631 }
1632
1633 EXPORT_SYMBOL(__alloc_pages);
1634
1635 /*
1636 * Common helper functions.
1637 */
1638 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1639 {
1640 struct page * page;
1641 page = alloc_pages(gfp_mask, order);
1642 if (!page)
1643 return 0;
1644 return (unsigned long) page_address(page);
1645 }
1646
1647 EXPORT_SYMBOL(__get_free_pages);
1648
1649 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1650 {
1651 struct page * page;
1652
1653 /*
1654 * get_zeroed_page() returns a 32-bit address, which cannot represent
1655 * a highmem page
1656 */
1657 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1658
1659 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1660 if (page)
1661 return (unsigned long) page_address(page);
1662 return 0;
1663 }
1664
1665 EXPORT_SYMBOL(get_zeroed_page);
1666
1667 void __pagevec_free(struct pagevec *pvec)
1668 {
1669 int i = pagevec_count(pvec);
1670
1671 while (--i >= 0)
1672 free_hot_cold_page(pvec->pages[i], pvec->cold);
1673 }
1674
1675 fastcall void __free_pages(struct page *page, unsigned int order)
1676 {
1677 if (put_page_testzero(page)) {
1678 if (order == 0)
1679 free_hot_page(page);
1680 else
1681 __free_pages_ok(page, order);
1682 }
1683 }
1684
1685 EXPORT_SYMBOL(__free_pages);
1686
1687 fastcall void free_pages(unsigned long addr, unsigned int order)
1688 {
1689 if (addr != 0) {
1690 VM_BUG_ON(!virt_addr_valid((void *)addr));
1691 __free_pages(virt_to_page((void *)addr), order);
1692 }
1693 }
1694
1695 EXPORT_SYMBOL(free_pages);
1696
1697 static unsigned int nr_free_zone_pages(int offset)
1698 {
1699 /* Just pick one node, since fallback list is circular */
1700 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1701 unsigned int sum = 0;
1702
1703 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1704 struct zone **zonep = zonelist->zones;
1705 struct zone *zone;
1706
1707 for (zone = *zonep++; zone; zone = *zonep++) {
1708 unsigned long size = zone->present_pages;
1709 unsigned long high = zone->pages_high;
1710 if (size > high)
1711 sum += size - high;
1712 }
1713
1714 return sum;
1715 }
1716
1717 /*
1718 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1719 */
1720 unsigned int nr_free_buffer_pages(void)
1721 {
1722 return nr_free_zone_pages(gfp_zone(GFP_USER));
1723 }
1724 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1725
1726 /*
1727 * Amount of free RAM allocatable within all zones
1728 */
1729 unsigned int nr_free_pagecache_pages(void)
1730 {
1731 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1732 }
1733
1734 static inline void show_node(struct zone *zone)
1735 {
1736 if (NUMA_BUILD)
1737 printk("Node %d ", zone_to_nid(zone));
1738 }
1739
1740 void si_meminfo(struct sysinfo *val)
1741 {
1742 val->totalram = totalram_pages;
1743 val->sharedram = 0;
1744 val->freeram = global_page_state(NR_FREE_PAGES);
1745 val->bufferram = nr_blockdev_pages();
1746 val->totalhigh = totalhigh_pages;
1747 val->freehigh = nr_free_highpages();
1748 val->mem_unit = PAGE_SIZE;
1749 }
1750
1751 EXPORT_SYMBOL(si_meminfo);
1752
1753 #ifdef CONFIG_NUMA
1754 void si_meminfo_node(struct sysinfo *val, int nid)
1755 {
1756 pg_data_t *pgdat = NODE_DATA(nid);
1757
1758 val->totalram = pgdat->node_present_pages;
1759 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1760 #ifdef CONFIG_HIGHMEM
1761 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1762 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1763 NR_FREE_PAGES);
1764 #else
1765 val->totalhigh = 0;
1766 val->freehigh = 0;
1767 #endif
1768 val->mem_unit = PAGE_SIZE;
1769 }
1770 #endif
1771
1772 #define K(x) ((x) << (PAGE_SHIFT-10))
1773
1774 /*
1775 * Show free area list (used inside shift_scroll-lock stuff)
1776 * We also calculate the percentage fragmentation. We do this by counting the
1777 * memory on each free list with the exception of the first item on the list.
1778 */
1779 void show_free_areas(void)
1780 {
1781 int cpu;
1782 struct zone *zone;
1783
1784 for_each_zone(zone) {
1785 if (!populated_zone(zone))
1786 continue;
1787
1788 show_node(zone);
1789 printk("%s per-cpu:\n", zone->name);
1790
1791 for_each_online_cpu(cpu) {
1792 struct per_cpu_pageset *pageset;
1793
1794 pageset = zone_pcp(zone, cpu);
1795
1796 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1797 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1798 cpu, pageset->pcp[0].high,
1799 pageset->pcp[0].batch, pageset->pcp[0].count,
1800 pageset->pcp[1].high, pageset->pcp[1].batch,
1801 pageset->pcp[1].count);
1802 }
1803 }
1804
1805 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1806 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1807 global_page_state(NR_ACTIVE),
1808 global_page_state(NR_INACTIVE),
1809 global_page_state(NR_FILE_DIRTY),
1810 global_page_state(NR_WRITEBACK),
1811 global_page_state(NR_UNSTABLE_NFS),
1812 global_page_state(NR_FREE_PAGES),
1813 global_page_state(NR_SLAB_RECLAIMABLE) +
1814 global_page_state(NR_SLAB_UNRECLAIMABLE),
1815 global_page_state(NR_FILE_MAPPED),
1816 global_page_state(NR_PAGETABLE),
1817 global_page_state(NR_BOUNCE));
1818
1819 for_each_zone(zone) {
1820 int i;
1821
1822 if (!populated_zone(zone))
1823 continue;
1824
1825 show_node(zone);
1826 printk("%s"
1827 " free:%lukB"
1828 " min:%lukB"
1829 " low:%lukB"
1830 " high:%lukB"
1831 " active:%lukB"
1832 " inactive:%lukB"
1833 " present:%lukB"
1834 " pages_scanned:%lu"
1835 " all_unreclaimable? %s"
1836 "\n",
1837 zone->name,
1838 K(zone_page_state(zone, NR_FREE_PAGES)),
1839 K(zone->pages_min),
1840 K(zone->pages_low),
1841 K(zone->pages_high),
1842 K(zone_page_state(zone, NR_ACTIVE)),
1843 K(zone_page_state(zone, NR_INACTIVE)),
1844 K(zone->present_pages),
1845 zone->pages_scanned,
1846 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1847 );
1848 printk("lowmem_reserve[]:");
1849 for (i = 0; i < MAX_NR_ZONES; i++)
1850 printk(" %lu", zone->lowmem_reserve[i]);
1851 printk("\n");
1852 }
1853
1854 for_each_zone(zone) {
1855 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1856
1857 if (!populated_zone(zone))
1858 continue;
1859
1860 show_node(zone);
1861 printk("%s: ", zone->name);
1862
1863 spin_lock_irqsave(&zone->lock, flags);
1864 for (order = 0; order < MAX_ORDER; order++) {
1865 nr[order] = zone->free_area[order].nr_free;
1866 total += nr[order] << order;
1867 }
1868 spin_unlock_irqrestore(&zone->lock, flags);
1869 for (order = 0; order < MAX_ORDER; order++)
1870 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1871 printk("= %lukB\n", K(total));
1872 }
1873
1874 show_swap_cache_info();
1875 }
1876
1877 /*
1878 * Builds allocation fallback zone lists.
1879 *
1880 * Add all populated zones of a node to the zonelist.
1881 */
1882 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1883 int nr_zones, enum zone_type zone_type)
1884 {
1885 struct zone *zone;
1886
1887 BUG_ON(zone_type >= MAX_NR_ZONES);
1888 zone_type++;
1889
1890 do {
1891 zone_type--;
1892 zone = pgdat->node_zones + zone_type;
1893 if (populated_zone(zone)) {
1894 zonelist->zones[nr_zones++] = zone;
1895 check_highest_zone(zone_type);
1896 }
1897
1898 } while (zone_type);
1899 return nr_zones;
1900 }
1901
1902
1903 /*
1904 * zonelist_order:
1905 * 0 = automatic detection of better ordering.
1906 * 1 = order by ([node] distance, -zonetype)
1907 * 2 = order by (-zonetype, [node] distance)
1908 *
1909 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1910 * the same zonelist. So only NUMA can configure this param.
1911 */
1912 #define ZONELIST_ORDER_DEFAULT 0
1913 #define ZONELIST_ORDER_NODE 1
1914 #define ZONELIST_ORDER_ZONE 2
1915
1916 /* zonelist order in the kernel.
1917 * set_zonelist_order() will set this to NODE or ZONE.
1918 */
1919 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1920 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1921
1922
1923 #ifdef CONFIG_NUMA
1924 /* The value user specified ....changed by config */
1925 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1926 /* string for sysctl */
1927 #define NUMA_ZONELIST_ORDER_LEN 16
1928 char numa_zonelist_order[16] = "default";
1929
1930 /*
1931 * interface for configure zonelist ordering.
1932 * command line option "numa_zonelist_order"
1933 * = "[dD]efault - default, automatic configuration.
1934 * = "[nN]ode - order by node locality, then by zone within node
1935 * = "[zZ]one - order by zone, then by locality within zone
1936 */
1937
1938 static int __parse_numa_zonelist_order(char *s)
1939 {
1940 if (*s == 'd' || *s == 'D') {
1941 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1942 } else if (*s == 'n' || *s == 'N') {
1943 user_zonelist_order = ZONELIST_ORDER_NODE;
1944 } else if (*s == 'z' || *s == 'Z') {
1945 user_zonelist_order = ZONELIST_ORDER_ZONE;
1946 } else {
1947 printk(KERN_WARNING
1948 "Ignoring invalid numa_zonelist_order value: "
1949 "%s\n", s);
1950 return -EINVAL;
1951 }
1952 return 0;
1953 }
1954
1955 static __init int setup_numa_zonelist_order(char *s)
1956 {
1957 if (s)
1958 return __parse_numa_zonelist_order(s);
1959 return 0;
1960 }
1961 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1962
1963 /*
1964 * sysctl handler for numa_zonelist_order
1965 */
1966 int numa_zonelist_order_handler(ctl_table *table, int write,
1967 struct file *file, void __user *buffer, size_t *length,
1968 loff_t *ppos)
1969 {
1970 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1971 int ret;
1972
1973 if (write)
1974 strncpy(saved_string, (char*)table->data,
1975 NUMA_ZONELIST_ORDER_LEN);
1976 ret = proc_dostring(table, write, file, buffer, length, ppos);
1977 if (ret)
1978 return ret;
1979 if (write) {
1980 int oldval = user_zonelist_order;
1981 if (__parse_numa_zonelist_order((char*)table->data)) {
1982 /*
1983 * bogus value. restore saved string
1984 */
1985 strncpy((char*)table->data, saved_string,
1986 NUMA_ZONELIST_ORDER_LEN);
1987 user_zonelist_order = oldval;
1988 } else if (oldval != user_zonelist_order)
1989 build_all_zonelists();
1990 }
1991 return 0;
1992 }
1993
1994
1995 #define MAX_NODE_LOAD (num_online_nodes())
1996 static int node_load[MAX_NUMNODES];
1997
1998 /**
1999 * find_next_best_node - find the next node that should appear in a given node's fallback list
2000 * @node: node whose fallback list we're appending
2001 * @used_node_mask: nodemask_t of already used nodes
2002 *
2003 * We use a number of factors to determine which is the next node that should
2004 * appear on a given node's fallback list. The node should not have appeared
2005 * already in @node's fallback list, and it should be the next closest node
2006 * according to the distance array (which contains arbitrary distance values
2007 * from each node to each node in the system), and should also prefer nodes
2008 * with no CPUs, since presumably they'll have very little allocation pressure
2009 * on them otherwise.
2010 * It returns -1 if no node is found.
2011 */
2012 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2013 {
2014 int n, val;
2015 int min_val = INT_MAX;
2016 int best_node = -1;
2017
2018 /* Use the local node if we haven't already */
2019 if (!node_isset(node, *used_node_mask)) {
2020 node_set(node, *used_node_mask);
2021 return node;
2022 }
2023
2024 for_each_node_state(n, N_HIGH_MEMORY) {
2025 cpumask_t tmp;
2026
2027 /* Don't want a node to appear more than once */
2028 if (node_isset(n, *used_node_mask))
2029 continue;
2030
2031 /* Use the distance array to find the distance */
2032 val = node_distance(node, n);
2033
2034 /* Penalize nodes under us ("prefer the next node") */
2035 val += (n < node);
2036
2037 /* Give preference to headless and unused nodes */
2038 tmp = node_to_cpumask(n);
2039 if (!cpus_empty(tmp))
2040 val += PENALTY_FOR_NODE_WITH_CPUS;
2041
2042 /* Slight preference for less loaded node */
2043 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2044 val += node_load[n];
2045
2046 if (val < min_val) {
2047 min_val = val;
2048 best_node = n;
2049 }
2050 }
2051
2052 if (best_node >= 0)
2053 node_set(best_node, *used_node_mask);
2054
2055 return best_node;
2056 }
2057
2058
2059 /*
2060 * Build zonelists ordered by node and zones within node.
2061 * This results in maximum locality--normal zone overflows into local
2062 * DMA zone, if any--but risks exhausting DMA zone.
2063 */
2064 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2065 {
2066 enum zone_type i;
2067 int j;
2068 struct zonelist *zonelist;
2069
2070 for (i = 0; i < MAX_NR_ZONES; i++) {
2071 zonelist = pgdat->node_zonelists + i;
2072 for (j = 0; zonelist->zones[j] != NULL; j++)
2073 ;
2074 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2075 zonelist->zones[j] = NULL;
2076 }
2077 }
2078
2079 /*
2080 * Build gfp_thisnode zonelists
2081 */
2082 static void build_thisnode_zonelists(pg_data_t *pgdat)
2083 {
2084 enum zone_type i;
2085 int j;
2086 struct zonelist *zonelist;
2087
2088 for (i = 0; i < MAX_NR_ZONES; i++) {
2089 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2090 j = build_zonelists_node(pgdat, zonelist, 0, i);
2091 zonelist->zones[j] = NULL;
2092 }
2093 }
2094
2095 /*
2096 * Build zonelists ordered by zone and nodes within zones.
2097 * This results in conserving DMA zone[s] until all Normal memory is
2098 * exhausted, but results in overflowing to remote node while memory
2099 * may still exist in local DMA zone.
2100 */
2101 static int node_order[MAX_NUMNODES];
2102
2103 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2104 {
2105 enum zone_type i;
2106 int pos, j, node;
2107 int zone_type; /* needs to be signed */
2108 struct zone *z;
2109 struct zonelist *zonelist;
2110
2111 for (i = 0; i < MAX_NR_ZONES; i++) {
2112 zonelist = pgdat->node_zonelists + i;
2113 pos = 0;
2114 for (zone_type = i; zone_type >= 0; zone_type--) {
2115 for (j = 0; j < nr_nodes; j++) {
2116 node = node_order[j];
2117 z = &NODE_DATA(node)->node_zones[zone_type];
2118 if (populated_zone(z)) {
2119 zonelist->zones[pos++] = z;
2120 check_highest_zone(zone_type);
2121 }
2122 }
2123 }
2124 zonelist->zones[pos] = NULL;
2125 }
2126 }
2127
2128 static int default_zonelist_order(void)
2129 {
2130 int nid, zone_type;
2131 unsigned long low_kmem_size,total_size;
2132 struct zone *z;
2133 int average_size;
2134 /*
2135 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2136 * If they are really small and used heavily, the system can fall
2137 * into OOM very easily.
2138 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2139 */
2140 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2141 low_kmem_size = 0;
2142 total_size = 0;
2143 for_each_online_node(nid) {
2144 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2145 z = &NODE_DATA(nid)->node_zones[zone_type];
2146 if (populated_zone(z)) {
2147 if (zone_type < ZONE_NORMAL)
2148 low_kmem_size += z->present_pages;
2149 total_size += z->present_pages;
2150 }
2151 }
2152 }
2153 if (!low_kmem_size || /* there are no DMA area. */
2154 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2155 return ZONELIST_ORDER_NODE;
2156 /*
2157 * look into each node's config.
2158 * If there is a node whose DMA/DMA32 memory is very big area on
2159 * local memory, NODE_ORDER may be suitable.
2160 */
2161 average_size = total_size /
2162 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2163 for_each_online_node(nid) {
2164 low_kmem_size = 0;
2165 total_size = 0;
2166 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2167 z = &NODE_DATA(nid)->node_zones[zone_type];
2168 if (populated_zone(z)) {
2169 if (zone_type < ZONE_NORMAL)
2170 low_kmem_size += z->present_pages;
2171 total_size += z->present_pages;
2172 }
2173 }
2174 if (low_kmem_size &&
2175 total_size > average_size && /* ignore small node */
2176 low_kmem_size > total_size * 70/100)
2177 return ZONELIST_ORDER_NODE;
2178 }
2179 return ZONELIST_ORDER_ZONE;
2180 }
2181
2182 static void set_zonelist_order(void)
2183 {
2184 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2185 current_zonelist_order = default_zonelist_order();
2186 else
2187 current_zonelist_order = user_zonelist_order;
2188 }
2189
2190 static void build_zonelists(pg_data_t *pgdat)
2191 {
2192 int j, node, load;
2193 enum zone_type i;
2194 nodemask_t used_mask;
2195 int local_node, prev_node;
2196 struct zonelist *zonelist;
2197 int order = current_zonelist_order;
2198
2199 /* initialize zonelists */
2200 for (i = 0; i < MAX_ZONELISTS; i++) {
2201 zonelist = pgdat->node_zonelists + i;
2202 zonelist->zones[0] = NULL;
2203 }
2204
2205 /* NUMA-aware ordering of nodes */
2206 local_node = pgdat->node_id;
2207 load = num_online_nodes();
2208 prev_node = local_node;
2209 nodes_clear(used_mask);
2210
2211 memset(node_load, 0, sizeof(node_load));
2212 memset(node_order, 0, sizeof(node_order));
2213 j = 0;
2214
2215 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2216 int distance = node_distance(local_node, node);
2217
2218 /*
2219 * If another node is sufficiently far away then it is better
2220 * to reclaim pages in a zone before going off node.
2221 */
2222 if (distance > RECLAIM_DISTANCE)
2223 zone_reclaim_mode = 1;
2224
2225 /*
2226 * We don't want to pressure a particular node.
2227 * So adding penalty to the first node in same
2228 * distance group to make it round-robin.
2229 */
2230 if (distance != node_distance(local_node, prev_node))
2231 node_load[node] = load;
2232
2233 prev_node = node;
2234 load--;
2235 if (order == ZONELIST_ORDER_NODE)
2236 build_zonelists_in_node_order(pgdat, node);
2237 else
2238 node_order[j++] = node; /* remember order */
2239 }
2240
2241 if (order == ZONELIST_ORDER_ZONE) {
2242 /* calculate node order -- i.e., DMA last! */
2243 build_zonelists_in_zone_order(pgdat, j);
2244 }
2245
2246 build_thisnode_zonelists(pgdat);
2247 }
2248
2249 /* Construct the zonelist performance cache - see further mmzone.h */
2250 static void build_zonelist_cache(pg_data_t *pgdat)
2251 {
2252 int i;
2253
2254 for (i = 0; i < MAX_NR_ZONES; i++) {
2255 struct zonelist *zonelist;
2256 struct zonelist_cache *zlc;
2257 struct zone **z;
2258
2259 zonelist = pgdat->node_zonelists + i;
2260 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2261 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2262 for (z = zonelist->zones; *z; z++)
2263 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2264 }
2265 }
2266
2267
2268 #else /* CONFIG_NUMA */
2269
2270 static void set_zonelist_order(void)
2271 {
2272 current_zonelist_order = ZONELIST_ORDER_ZONE;
2273 }
2274
2275 static void build_zonelists(pg_data_t *pgdat)
2276 {
2277 int node, local_node;
2278 enum zone_type i,j;
2279
2280 local_node = pgdat->node_id;
2281 for (i = 0; i < MAX_NR_ZONES; i++) {
2282 struct zonelist *zonelist;
2283
2284 zonelist = pgdat->node_zonelists + i;
2285
2286 j = build_zonelists_node(pgdat, zonelist, 0, i);
2287 /*
2288 * Now we build the zonelist so that it contains the zones
2289 * of all the other nodes.
2290 * We don't want to pressure a particular node, so when
2291 * building the zones for node N, we make sure that the
2292 * zones coming right after the local ones are those from
2293 * node N+1 (modulo N)
2294 */
2295 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2296 if (!node_online(node))
2297 continue;
2298 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2299 }
2300 for (node = 0; node < local_node; node++) {
2301 if (!node_online(node))
2302 continue;
2303 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2304 }
2305
2306 zonelist->zones[j] = NULL;
2307 }
2308 }
2309
2310 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2311 static void build_zonelist_cache(pg_data_t *pgdat)
2312 {
2313 int i;
2314
2315 for (i = 0; i < MAX_NR_ZONES; i++)
2316 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2317 }
2318
2319 #endif /* CONFIG_NUMA */
2320
2321 /* return values int ....just for stop_machine_run() */
2322 static int __build_all_zonelists(void *dummy)
2323 {
2324 int nid;
2325
2326 for_each_online_node(nid) {
2327 pg_data_t *pgdat = NODE_DATA(nid);
2328
2329 build_zonelists(pgdat);
2330 build_zonelist_cache(pgdat);
2331 }
2332 return 0;
2333 }
2334
2335 void build_all_zonelists(void)
2336 {
2337 set_zonelist_order();
2338
2339 if (system_state == SYSTEM_BOOTING) {
2340 __build_all_zonelists(NULL);
2341 cpuset_init_current_mems_allowed();
2342 } else {
2343 /* we have to stop all cpus to guarantee there is no user
2344 of zonelist */
2345 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2346 /* cpuset refresh routine should be here */
2347 }
2348 vm_total_pages = nr_free_pagecache_pages();
2349 /*
2350 * Disable grouping by mobility if the number of pages in the
2351 * system is too low to allow the mechanism to work. It would be
2352 * more accurate, but expensive to check per-zone. This check is
2353 * made on memory-hotadd so a system can start with mobility
2354 * disabled and enable it later
2355 */
2356 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2357 page_group_by_mobility_disabled = 1;
2358 else
2359 page_group_by_mobility_disabled = 0;
2360
2361 printk("Built %i zonelists in %s order, mobility grouping %s. "
2362 "Total pages: %ld\n",
2363 num_online_nodes(),
2364 zonelist_order_name[current_zonelist_order],
2365 page_group_by_mobility_disabled ? "off" : "on",
2366 vm_total_pages);
2367 #ifdef CONFIG_NUMA
2368 printk("Policy zone: %s\n", zone_names[policy_zone]);
2369 #endif
2370 }
2371
2372 /*
2373 * Helper functions to size the waitqueue hash table.
2374 * Essentially these want to choose hash table sizes sufficiently
2375 * large so that collisions trying to wait on pages are rare.
2376 * But in fact, the number of active page waitqueues on typical
2377 * systems is ridiculously low, less than 200. So this is even
2378 * conservative, even though it seems large.
2379 *
2380 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2381 * waitqueues, i.e. the size of the waitq table given the number of pages.
2382 */
2383 #define PAGES_PER_WAITQUEUE 256
2384
2385 #ifndef CONFIG_MEMORY_HOTPLUG
2386 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2387 {
2388 unsigned long size = 1;
2389
2390 pages /= PAGES_PER_WAITQUEUE;
2391
2392 while (size < pages)
2393 size <<= 1;
2394
2395 /*
2396 * Once we have dozens or even hundreds of threads sleeping
2397 * on IO we've got bigger problems than wait queue collision.
2398 * Limit the size of the wait table to a reasonable size.
2399 */
2400 size = min(size, 4096UL);
2401
2402 return max(size, 4UL);
2403 }
2404 #else
2405 /*
2406 * A zone's size might be changed by hot-add, so it is not possible to determine
2407 * a suitable size for its wait_table. So we use the maximum size now.
2408 *
2409 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2410 *
2411 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2412 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2413 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2414 *
2415 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2416 * or more by the traditional way. (See above). It equals:
2417 *
2418 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2419 * ia64(16K page size) : = ( 8G + 4M)byte.
2420 * powerpc (64K page size) : = (32G +16M)byte.
2421 */
2422 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2423 {
2424 return 4096UL;
2425 }
2426 #endif
2427
2428 /*
2429 * This is an integer logarithm so that shifts can be used later
2430 * to extract the more random high bits from the multiplicative
2431 * hash function before the remainder is taken.
2432 */
2433 static inline unsigned long wait_table_bits(unsigned long size)
2434 {
2435 return ffz(~size);
2436 }
2437
2438 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2439
2440 /*
2441 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2442 * of blocks reserved is based on zone->pages_min. The memory within the
2443 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2444 * higher will lead to a bigger reserve which will get freed as contiguous
2445 * blocks as reclaim kicks in
2446 */
2447 static void setup_zone_migrate_reserve(struct zone *zone)
2448 {
2449 unsigned long start_pfn, pfn, end_pfn;
2450 struct page *page;
2451 unsigned long reserve, block_migratetype;
2452
2453 /* Get the start pfn, end pfn and the number of blocks to reserve */
2454 start_pfn = zone->zone_start_pfn;
2455 end_pfn = start_pfn + zone->spanned_pages;
2456 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2457 pageblock_order;
2458
2459 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2460 if (!pfn_valid(pfn))
2461 continue;
2462 page = pfn_to_page(pfn);
2463
2464 /* Blocks with reserved pages will never free, skip them. */
2465 if (PageReserved(page))
2466 continue;
2467
2468 block_migratetype = get_pageblock_migratetype(page);
2469
2470 /* If this block is reserved, account for it */
2471 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2472 reserve--;
2473 continue;
2474 }
2475
2476 /* Suitable for reserving if this block is movable */
2477 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2478 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2479 move_freepages_block(zone, page, MIGRATE_RESERVE);
2480 reserve--;
2481 continue;
2482 }
2483
2484 /*
2485 * If the reserve is met and this is a previous reserved block,
2486 * take it back
2487 */
2488 if (block_migratetype == MIGRATE_RESERVE) {
2489 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2490 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2491 }
2492 }
2493 }
2494
2495 /*
2496 * Initially all pages are reserved - free ones are freed
2497 * up by free_all_bootmem() once the early boot process is
2498 * done. Non-atomic initialization, single-pass.
2499 */
2500 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2501 unsigned long start_pfn, enum memmap_context context)
2502 {
2503 struct page *page;
2504 unsigned long end_pfn = start_pfn + size;
2505 unsigned long pfn;
2506
2507 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2508 /*
2509 * There can be holes in boot-time mem_map[]s
2510 * handed to this function. They do not
2511 * exist on hotplugged memory.
2512 */
2513 if (context == MEMMAP_EARLY) {
2514 if (!early_pfn_valid(pfn))
2515 continue;
2516 if (!early_pfn_in_nid(pfn, nid))
2517 continue;
2518 }
2519 page = pfn_to_page(pfn);
2520 set_page_links(page, zone, nid, pfn);
2521 init_page_count(page);
2522 reset_page_mapcount(page);
2523 SetPageReserved(page);
2524
2525 /*
2526 * Mark the block movable so that blocks are reserved for
2527 * movable at startup. This will force kernel allocations
2528 * to reserve their blocks rather than leaking throughout
2529 * the address space during boot when many long-lived
2530 * kernel allocations are made. Later some blocks near
2531 * the start are marked MIGRATE_RESERVE by
2532 * setup_zone_migrate_reserve()
2533 */
2534 if ((pfn & (pageblock_nr_pages-1)))
2535 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2536
2537 INIT_LIST_HEAD(&page->lru);
2538 #ifdef WANT_PAGE_VIRTUAL
2539 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2540 if (!is_highmem_idx(zone))
2541 set_page_address(page, __va(pfn << PAGE_SHIFT));
2542 #endif
2543 }
2544 }
2545
2546 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2547 struct zone *zone, unsigned long size)
2548 {
2549 int order, t;
2550 for_each_migratetype_order(order, t) {
2551 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2552 zone->free_area[order].nr_free = 0;
2553 }
2554 }
2555
2556 #ifndef __HAVE_ARCH_MEMMAP_INIT
2557 #define memmap_init(size, nid, zone, start_pfn) \
2558 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2559 #endif
2560
2561 static int zone_batchsize(struct zone *zone)
2562 {
2563 int batch;
2564
2565 /*
2566 * The per-cpu-pages pools are set to around 1000th of the
2567 * size of the zone. But no more than 1/2 of a meg.
2568 *
2569 * OK, so we don't know how big the cache is. So guess.
2570 */
2571 batch = zone->present_pages / 1024;
2572 if (batch * PAGE_SIZE > 512 * 1024)
2573 batch = (512 * 1024) / PAGE_SIZE;
2574 batch /= 4; /* We effectively *= 4 below */
2575 if (batch < 1)
2576 batch = 1;
2577
2578 /*
2579 * Clamp the batch to a 2^n - 1 value. Having a power
2580 * of 2 value was found to be more likely to have
2581 * suboptimal cache aliasing properties in some cases.
2582 *
2583 * For example if 2 tasks are alternately allocating
2584 * batches of pages, one task can end up with a lot
2585 * of pages of one half of the possible page colors
2586 * and the other with pages of the other colors.
2587 */
2588 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2589
2590 return batch;
2591 }
2592
2593 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2594 {
2595 struct per_cpu_pages *pcp;
2596
2597 memset(p, 0, sizeof(*p));
2598
2599 pcp = &p->pcp[0]; /* hot */
2600 pcp->count = 0;
2601 pcp->high = 6 * batch;
2602 pcp->batch = max(1UL, 1 * batch);
2603 INIT_LIST_HEAD(&pcp->list);
2604
2605 pcp = &p->pcp[1]; /* cold*/
2606 pcp->count = 0;
2607 pcp->high = 2 * batch;
2608 pcp->batch = max(1UL, batch/2);
2609 INIT_LIST_HEAD(&pcp->list);
2610 }
2611
2612 /*
2613 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2614 * to the value high for the pageset p.
2615 */
2616
2617 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2618 unsigned long high)
2619 {
2620 struct per_cpu_pages *pcp;
2621
2622 pcp = &p->pcp[0]; /* hot list */
2623 pcp->high = high;
2624 pcp->batch = max(1UL, high/4);
2625 if ((high/4) > (PAGE_SHIFT * 8))
2626 pcp->batch = PAGE_SHIFT * 8;
2627 }
2628
2629
2630 #ifdef CONFIG_NUMA
2631 /*
2632 * Boot pageset table. One per cpu which is going to be used for all
2633 * zones and all nodes. The parameters will be set in such a way
2634 * that an item put on a list will immediately be handed over to
2635 * the buddy list. This is safe since pageset manipulation is done
2636 * with interrupts disabled.
2637 *
2638 * Some NUMA counter updates may also be caught by the boot pagesets.
2639 *
2640 * The boot_pagesets must be kept even after bootup is complete for
2641 * unused processors and/or zones. They do play a role for bootstrapping
2642 * hotplugged processors.
2643 *
2644 * zoneinfo_show() and maybe other functions do
2645 * not check if the processor is online before following the pageset pointer.
2646 * Other parts of the kernel may not check if the zone is available.
2647 */
2648 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2649
2650 /*
2651 * Dynamically allocate memory for the
2652 * per cpu pageset array in struct zone.
2653 */
2654 static int __cpuinit process_zones(int cpu)
2655 {
2656 struct zone *zone, *dzone;
2657 int node = cpu_to_node(cpu);
2658
2659 node_set_state(node, N_CPU); /* this node has a cpu */
2660
2661 for_each_zone(zone) {
2662
2663 if (!populated_zone(zone))
2664 continue;
2665
2666 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2667 GFP_KERNEL, node);
2668 if (!zone_pcp(zone, cpu))
2669 goto bad;
2670
2671 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2672
2673 if (percpu_pagelist_fraction)
2674 setup_pagelist_highmark(zone_pcp(zone, cpu),
2675 (zone->present_pages / percpu_pagelist_fraction));
2676 }
2677
2678 return 0;
2679 bad:
2680 for_each_zone(dzone) {
2681 if (!populated_zone(dzone))
2682 continue;
2683 if (dzone == zone)
2684 break;
2685 kfree(zone_pcp(dzone, cpu));
2686 zone_pcp(dzone, cpu) = NULL;
2687 }
2688 return -ENOMEM;
2689 }
2690
2691 static inline void free_zone_pagesets(int cpu)
2692 {
2693 struct zone *zone;
2694
2695 for_each_zone(zone) {
2696 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2697
2698 /* Free per_cpu_pageset if it is slab allocated */
2699 if (pset != &boot_pageset[cpu])
2700 kfree(pset);
2701 zone_pcp(zone, cpu) = NULL;
2702 }
2703 }
2704
2705 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2706 unsigned long action,
2707 void *hcpu)
2708 {
2709 int cpu = (long)hcpu;
2710 int ret = NOTIFY_OK;
2711
2712 switch (action) {
2713 case CPU_UP_PREPARE:
2714 case CPU_UP_PREPARE_FROZEN:
2715 if (process_zones(cpu))
2716 ret = NOTIFY_BAD;
2717 break;
2718 case CPU_UP_CANCELED:
2719 case CPU_UP_CANCELED_FROZEN:
2720 case CPU_DEAD:
2721 case CPU_DEAD_FROZEN:
2722 free_zone_pagesets(cpu);
2723 break;
2724 default:
2725 break;
2726 }
2727 return ret;
2728 }
2729
2730 static struct notifier_block __cpuinitdata pageset_notifier =
2731 { &pageset_cpuup_callback, NULL, 0 };
2732
2733 void __init setup_per_cpu_pageset(void)
2734 {
2735 int err;
2736
2737 /* Initialize per_cpu_pageset for cpu 0.
2738 * A cpuup callback will do this for every cpu
2739 * as it comes online
2740 */
2741 err = process_zones(smp_processor_id());
2742 BUG_ON(err);
2743 register_cpu_notifier(&pageset_notifier);
2744 }
2745
2746 #endif
2747
2748 static noinline __init_refok
2749 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2750 {
2751 int i;
2752 struct pglist_data *pgdat = zone->zone_pgdat;
2753 size_t alloc_size;
2754
2755 /*
2756 * The per-page waitqueue mechanism uses hashed waitqueues
2757 * per zone.
2758 */
2759 zone->wait_table_hash_nr_entries =
2760 wait_table_hash_nr_entries(zone_size_pages);
2761 zone->wait_table_bits =
2762 wait_table_bits(zone->wait_table_hash_nr_entries);
2763 alloc_size = zone->wait_table_hash_nr_entries
2764 * sizeof(wait_queue_head_t);
2765
2766 if (system_state == SYSTEM_BOOTING) {
2767 zone->wait_table = (wait_queue_head_t *)
2768 alloc_bootmem_node(pgdat, alloc_size);
2769 } else {
2770 /*
2771 * This case means that a zone whose size was 0 gets new memory
2772 * via memory hot-add.
2773 * But it may be the case that a new node was hot-added. In
2774 * this case vmalloc() will not be able to use this new node's
2775 * memory - this wait_table must be initialized to use this new
2776 * node itself as well.
2777 * To use this new node's memory, further consideration will be
2778 * necessary.
2779 */
2780 zone->wait_table = vmalloc(alloc_size);
2781 }
2782 if (!zone->wait_table)
2783 return -ENOMEM;
2784
2785 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2786 init_waitqueue_head(zone->wait_table + i);
2787
2788 return 0;
2789 }
2790
2791 static __meminit void zone_pcp_init(struct zone *zone)
2792 {
2793 int cpu;
2794 unsigned long batch = zone_batchsize(zone);
2795
2796 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2797 #ifdef CONFIG_NUMA
2798 /* Early boot. Slab allocator not functional yet */
2799 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2800 setup_pageset(&boot_pageset[cpu],0);
2801 #else
2802 setup_pageset(zone_pcp(zone,cpu), batch);
2803 #endif
2804 }
2805 if (zone->present_pages)
2806 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2807 zone->name, zone->present_pages, batch);
2808 }
2809
2810 __meminit int init_currently_empty_zone(struct zone *zone,
2811 unsigned long zone_start_pfn,
2812 unsigned long size,
2813 enum memmap_context context)
2814 {
2815 struct pglist_data *pgdat = zone->zone_pgdat;
2816 int ret;
2817 ret = zone_wait_table_init(zone, size);
2818 if (ret)
2819 return ret;
2820 pgdat->nr_zones = zone_idx(zone) + 1;
2821
2822 zone->zone_start_pfn = zone_start_pfn;
2823
2824 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2825
2826 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2827
2828 return 0;
2829 }
2830
2831 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2832 /*
2833 * Basic iterator support. Return the first range of PFNs for a node
2834 * Note: nid == MAX_NUMNODES returns first region regardless of node
2835 */
2836 static int __meminit first_active_region_index_in_nid(int nid)
2837 {
2838 int i;
2839
2840 for (i = 0; i < nr_nodemap_entries; i++)
2841 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2842 return i;
2843
2844 return -1;
2845 }
2846
2847 /*
2848 * Basic iterator support. Return the next active range of PFNs for a node
2849 * Note: nid == MAX_NUMNODES returns next region regardless of node
2850 */
2851 static int __meminit next_active_region_index_in_nid(int index, int nid)
2852 {
2853 for (index = index + 1; index < nr_nodemap_entries; index++)
2854 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2855 return index;
2856
2857 return -1;
2858 }
2859
2860 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2861 /*
2862 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2863 * Architectures may implement their own version but if add_active_range()
2864 * was used and there are no special requirements, this is a convenient
2865 * alternative
2866 */
2867 int __meminit early_pfn_to_nid(unsigned long pfn)
2868 {
2869 int i;
2870
2871 for (i = 0; i < nr_nodemap_entries; i++) {
2872 unsigned long start_pfn = early_node_map[i].start_pfn;
2873 unsigned long end_pfn = early_node_map[i].end_pfn;
2874
2875 if (start_pfn <= pfn && pfn < end_pfn)
2876 return early_node_map[i].nid;
2877 }
2878
2879 return 0;
2880 }
2881 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2882
2883 /* Basic iterator support to walk early_node_map[] */
2884 #define for_each_active_range_index_in_nid(i, nid) \
2885 for (i = first_active_region_index_in_nid(nid); i != -1; \
2886 i = next_active_region_index_in_nid(i, nid))
2887
2888 /**
2889 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2890 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2891 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2892 *
2893 * If an architecture guarantees that all ranges registered with
2894 * add_active_ranges() contain no holes and may be freed, this
2895 * this function may be used instead of calling free_bootmem() manually.
2896 */
2897 void __init free_bootmem_with_active_regions(int nid,
2898 unsigned long max_low_pfn)
2899 {
2900 int i;
2901
2902 for_each_active_range_index_in_nid(i, nid) {
2903 unsigned long size_pages = 0;
2904 unsigned long end_pfn = early_node_map[i].end_pfn;
2905
2906 if (early_node_map[i].start_pfn >= max_low_pfn)
2907 continue;
2908
2909 if (end_pfn > max_low_pfn)
2910 end_pfn = max_low_pfn;
2911
2912 size_pages = end_pfn - early_node_map[i].start_pfn;
2913 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2914 PFN_PHYS(early_node_map[i].start_pfn),
2915 size_pages << PAGE_SHIFT);
2916 }
2917 }
2918
2919 /**
2920 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2921 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2922 *
2923 * If an architecture guarantees that all ranges registered with
2924 * add_active_ranges() contain no holes and may be freed, this
2925 * function may be used instead of calling memory_present() manually.
2926 */
2927 void __init sparse_memory_present_with_active_regions(int nid)
2928 {
2929 int i;
2930
2931 for_each_active_range_index_in_nid(i, nid)
2932 memory_present(early_node_map[i].nid,
2933 early_node_map[i].start_pfn,
2934 early_node_map[i].end_pfn);
2935 }
2936
2937 /**
2938 * push_node_boundaries - Push node boundaries to at least the requested boundary
2939 * @nid: The nid of the node to push the boundary for
2940 * @start_pfn: The start pfn of the node
2941 * @end_pfn: The end pfn of the node
2942 *
2943 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2944 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2945 * be hotplugged even though no physical memory exists. This function allows
2946 * an arch to push out the node boundaries so mem_map is allocated that can
2947 * be used later.
2948 */
2949 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2950 void __init push_node_boundaries(unsigned int nid,
2951 unsigned long start_pfn, unsigned long end_pfn)
2952 {
2953 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2954 nid, start_pfn, end_pfn);
2955
2956 /* Initialise the boundary for this node if necessary */
2957 if (node_boundary_end_pfn[nid] == 0)
2958 node_boundary_start_pfn[nid] = -1UL;
2959
2960 /* Update the boundaries */
2961 if (node_boundary_start_pfn[nid] > start_pfn)
2962 node_boundary_start_pfn[nid] = start_pfn;
2963 if (node_boundary_end_pfn[nid] < end_pfn)
2964 node_boundary_end_pfn[nid] = end_pfn;
2965 }
2966
2967 /* If necessary, push the node boundary out for reserve hotadd */
2968 static void __meminit account_node_boundary(unsigned int nid,
2969 unsigned long *start_pfn, unsigned long *end_pfn)
2970 {
2971 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2972 nid, *start_pfn, *end_pfn);
2973
2974 /* Return if boundary information has not been provided */
2975 if (node_boundary_end_pfn[nid] == 0)
2976 return;
2977
2978 /* Check the boundaries and update if necessary */
2979 if (node_boundary_start_pfn[nid] < *start_pfn)
2980 *start_pfn = node_boundary_start_pfn[nid];
2981 if (node_boundary_end_pfn[nid] > *end_pfn)
2982 *end_pfn = node_boundary_end_pfn[nid];
2983 }
2984 #else
2985 void __init push_node_boundaries(unsigned int nid,
2986 unsigned long start_pfn, unsigned long end_pfn) {}
2987
2988 static void __meminit account_node_boundary(unsigned int nid,
2989 unsigned long *start_pfn, unsigned long *end_pfn) {}
2990 #endif
2991
2992
2993 /**
2994 * get_pfn_range_for_nid - Return the start and end page frames for a node
2995 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2996 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2997 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2998 *
2999 * It returns the start and end page frame of a node based on information
3000 * provided by an arch calling add_active_range(). If called for a node
3001 * with no available memory, a warning is printed and the start and end
3002 * PFNs will be 0.
3003 */
3004 void __meminit get_pfn_range_for_nid(unsigned int nid,
3005 unsigned long *start_pfn, unsigned long *end_pfn)
3006 {
3007 int i;
3008 *start_pfn = -1UL;
3009 *end_pfn = 0;
3010
3011 for_each_active_range_index_in_nid(i, nid) {
3012 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3013 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3014 }
3015
3016 if (*start_pfn == -1UL)
3017 *start_pfn = 0;
3018
3019 /* Push the node boundaries out if requested */
3020 account_node_boundary(nid, start_pfn, end_pfn);
3021 }
3022
3023 /*
3024 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3025 * assumption is made that zones within a node are ordered in monotonic
3026 * increasing memory addresses so that the "highest" populated zone is used
3027 */
3028 void __init find_usable_zone_for_movable(void)
3029 {
3030 int zone_index;
3031 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3032 if (zone_index == ZONE_MOVABLE)
3033 continue;
3034
3035 if (arch_zone_highest_possible_pfn[zone_index] >
3036 arch_zone_lowest_possible_pfn[zone_index])
3037 break;
3038 }
3039
3040 VM_BUG_ON(zone_index == -1);
3041 movable_zone = zone_index;
3042 }
3043
3044 /*
3045 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3046 * because it is sized independant of architecture. Unlike the other zones,
3047 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3048 * in each node depending on the size of each node and how evenly kernelcore
3049 * is distributed. This helper function adjusts the zone ranges
3050 * provided by the architecture for a given node by using the end of the
3051 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3052 * zones within a node are in order of monotonic increases memory addresses
3053 */
3054 void __meminit adjust_zone_range_for_zone_movable(int nid,
3055 unsigned long zone_type,
3056 unsigned long node_start_pfn,
3057 unsigned long node_end_pfn,
3058 unsigned long *zone_start_pfn,
3059 unsigned long *zone_end_pfn)
3060 {
3061 /* Only adjust if ZONE_MOVABLE is on this node */
3062 if (zone_movable_pfn[nid]) {
3063 /* Size ZONE_MOVABLE */
3064 if (zone_type == ZONE_MOVABLE) {
3065 *zone_start_pfn = zone_movable_pfn[nid];
3066 *zone_end_pfn = min(node_end_pfn,
3067 arch_zone_highest_possible_pfn[movable_zone]);
3068
3069 /* Adjust for ZONE_MOVABLE starting within this range */
3070 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3071 *zone_end_pfn > zone_movable_pfn[nid]) {
3072 *zone_end_pfn = zone_movable_pfn[nid];
3073
3074 /* Check if this whole range is within ZONE_MOVABLE */
3075 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3076 *zone_start_pfn = *zone_end_pfn;
3077 }
3078 }
3079
3080 /*
3081 * Return the number of pages a zone spans in a node, including holes
3082 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3083 */
3084 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3085 unsigned long zone_type,
3086 unsigned long *ignored)
3087 {
3088 unsigned long node_start_pfn, node_end_pfn;
3089 unsigned long zone_start_pfn, zone_end_pfn;
3090
3091 /* Get the start and end of the node and zone */
3092 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3093 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3094 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3095 adjust_zone_range_for_zone_movable(nid, zone_type,
3096 node_start_pfn, node_end_pfn,
3097 &zone_start_pfn, &zone_end_pfn);
3098
3099 /* Check that this node has pages within the zone's required range */
3100 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3101 return 0;
3102
3103 /* Move the zone boundaries inside the node if necessary */
3104 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3105 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3106
3107 /* Return the spanned pages */
3108 return zone_end_pfn - zone_start_pfn;
3109 }
3110
3111 /*
3112 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3113 * then all holes in the requested range will be accounted for.
3114 */
3115 unsigned long __meminit __absent_pages_in_range(int nid,
3116 unsigned long range_start_pfn,
3117 unsigned long range_end_pfn)
3118 {
3119 int i = 0;
3120 unsigned long prev_end_pfn = 0, hole_pages = 0;
3121 unsigned long start_pfn;
3122
3123 /* Find the end_pfn of the first active range of pfns in the node */
3124 i = first_active_region_index_in_nid(nid);
3125 if (i == -1)
3126 return 0;
3127
3128 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3129
3130 /* Account for ranges before physical memory on this node */
3131 if (early_node_map[i].start_pfn > range_start_pfn)
3132 hole_pages = prev_end_pfn - range_start_pfn;
3133
3134 /* Find all holes for the zone within the node */
3135 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3136
3137 /* No need to continue if prev_end_pfn is outside the zone */
3138 if (prev_end_pfn >= range_end_pfn)
3139 break;
3140
3141 /* Make sure the end of the zone is not within the hole */
3142 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3143 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3144
3145 /* Update the hole size cound and move on */
3146 if (start_pfn > range_start_pfn) {
3147 BUG_ON(prev_end_pfn > start_pfn);
3148 hole_pages += start_pfn - prev_end_pfn;
3149 }
3150 prev_end_pfn = early_node_map[i].end_pfn;
3151 }
3152
3153 /* Account for ranges past physical memory on this node */
3154 if (range_end_pfn > prev_end_pfn)
3155 hole_pages += range_end_pfn -
3156 max(range_start_pfn, prev_end_pfn);
3157
3158 return hole_pages;
3159 }
3160
3161 /**
3162 * absent_pages_in_range - Return number of page frames in holes within a range
3163 * @start_pfn: The start PFN to start searching for holes
3164 * @end_pfn: The end PFN to stop searching for holes
3165 *
3166 * It returns the number of pages frames in memory holes within a range.
3167 */
3168 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3169 unsigned long end_pfn)
3170 {
3171 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3172 }
3173
3174 /* Return the number of page frames in holes in a zone on a node */
3175 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3176 unsigned long zone_type,
3177 unsigned long *ignored)
3178 {
3179 unsigned long node_start_pfn, node_end_pfn;
3180 unsigned long zone_start_pfn, zone_end_pfn;
3181
3182 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3183 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3184 node_start_pfn);
3185 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3186 node_end_pfn);
3187
3188 adjust_zone_range_for_zone_movable(nid, zone_type,
3189 node_start_pfn, node_end_pfn,
3190 &zone_start_pfn, &zone_end_pfn);
3191 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3192 }
3193
3194 #else
3195 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3196 unsigned long zone_type,
3197 unsigned long *zones_size)
3198 {
3199 return zones_size[zone_type];
3200 }
3201
3202 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3203 unsigned long zone_type,
3204 unsigned long *zholes_size)
3205 {
3206 if (!zholes_size)
3207 return 0;
3208
3209 return zholes_size[zone_type];
3210 }
3211
3212 #endif
3213
3214 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3215 unsigned long *zones_size, unsigned long *zholes_size)
3216 {
3217 unsigned long realtotalpages, totalpages = 0;
3218 enum zone_type i;
3219
3220 for (i = 0; i < MAX_NR_ZONES; i++)
3221 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3222 zones_size);
3223 pgdat->node_spanned_pages = totalpages;
3224
3225 realtotalpages = totalpages;
3226 for (i = 0; i < MAX_NR_ZONES; i++)
3227 realtotalpages -=
3228 zone_absent_pages_in_node(pgdat->node_id, i,
3229 zholes_size);
3230 pgdat->node_present_pages = realtotalpages;
3231 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3232 realtotalpages);
3233 }
3234
3235 #ifndef CONFIG_SPARSEMEM
3236 /*
3237 * Calculate the size of the zone->blockflags rounded to an unsigned long
3238 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3239 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3240 * round what is now in bits to nearest long in bits, then return it in
3241 * bytes.
3242 */
3243 static unsigned long __init usemap_size(unsigned long zonesize)
3244 {
3245 unsigned long usemapsize;
3246
3247 usemapsize = roundup(zonesize, pageblock_nr_pages);
3248 usemapsize = usemapsize >> pageblock_order;
3249 usemapsize *= NR_PAGEBLOCK_BITS;
3250 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3251
3252 return usemapsize / 8;
3253 }
3254
3255 static void __init setup_usemap(struct pglist_data *pgdat,
3256 struct zone *zone, unsigned long zonesize)
3257 {
3258 unsigned long usemapsize = usemap_size(zonesize);
3259 zone->pageblock_flags = NULL;
3260 if (usemapsize) {
3261 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3262 memset(zone->pageblock_flags, 0, usemapsize);
3263 }
3264 }
3265 #else
3266 static void inline setup_usemap(struct pglist_data *pgdat,
3267 struct zone *zone, unsigned long zonesize) {}
3268 #endif /* CONFIG_SPARSEMEM */
3269
3270 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3271
3272 /* Return a sensible default order for the pageblock size. */
3273 static inline int pageblock_default_order(void)
3274 {
3275 if (HPAGE_SHIFT > PAGE_SHIFT)
3276 return HUGETLB_PAGE_ORDER;
3277
3278 return MAX_ORDER-1;
3279 }
3280
3281 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3282 static inline void __init set_pageblock_order(unsigned int order)
3283 {
3284 /* Check that pageblock_nr_pages has not already been setup */
3285 if (pageblock_order)
3286 return;
3287
3288 /*
3289 * Assume the largest contiguous order of interest is a huge page.
3290 * This value may be variable depending on boot parameters on IA64
3291 */
3292 pageblock_order = order;
3293 }
3294 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3295
3296 /*
3297 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3298 * and pageblock_default_order() are unused as pageblock_order is set
3299 * at compile-time. See include/linux/pageblock-flags.h for the values of
3300 * pageblock_order based on the kernel config
3301 */
3302 static inline int pageblock_default_order(unsigned int order)
3303 {
3304 return MAX_ORDER-1;
3305 }
3306 #define set_pageblock_order(x) do {} while (0)
3307
3308 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3309
3310 /*
3311 * Set up the zone data structures:
3312 * - mark all pages reserved
3313 * - mark all memory queues empty
3314 * - clear the memory bitmaps
3315 */
3316 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3317 unsigned long *zones_size, unsigned long *zholes_size)
3318 {
3319 enum zone_type j;
3320 int nid = pgdat->node_id;
3321 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3322 int ret;
3323
3324 pgdat_resize_init(pgdat);
3325 pgdat->nr_zones = 0;
3326 init_waitqueue_head(&pgdat->kswapd_wait);
3327 pgdat->kswapd_max_order = 0;
3328
3329 for (j = 0; j < MAX_NR_ZONES; j++) {
3330 struct zone *zone = pgdat->node_zones + j;
3331 unsigned long size, realsize, memmap_pages;
3332
3333 size = zone_spanned_pages_in_node(nid, j, zones_size);
3334 realsize = size - zone_absent_pages_in_node(nid, j,
3335 zholes_size);
3336
3337 /*
3338 * Adjust realsize so that it accounts for how much memory
3339 * is used by this zone for memmap. This affects the watermark
3340 * and per-cpu initialisations
3341 */
3342 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3343 if (realsize >= memmap_pages) {
3344 realsize -= memmap_pages;
3345 printk(KERN_DEBUG
3346 " %s zone: %lu pages used for memmap\n",
3347 zone_names[j], memmap_pages);
3348 } else
3349 printk(KERN_WARNING
3350 " %s zone: %lu pages exceeds realsize %lu\n",
3351 zone_names[j], memmap_pages, realsize);
3352
3353 /* Account for reserved pages */
3354 if (j == 0 && realsize > dma_reserve) {
3355 realsize -= dma_reserve;
3356 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3357 zone_names[0], dma_reserve);
3358 }
3359
3360 if (!is_highmem_idx(j))
3361 nr_kernel_pages += realsize;
3362 nr_all_pages += realsize;
3363
3364 zone->spanned_pages = size;
3365 zone->present_pages = realsize;
3366 #ifdef CONFIG_NUMA
3367 zone->node = nid;
3368 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3369 / 100;
3370 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3371 #endif
3372 zone->name = zone_names[j];
3373 spin_lock_init(&zone->lock);
3374 spin_lock_init(&zone->lru_lock);
3375 zone_seqlock_init(zone);
3376 zone->zone_pgdat = pgdat;
3377
3378 zone->prev_priority = DEF_PRIORITY;
3379
3380 zone_pcp_init(zone);
3381 INIT_LIST_HEAD(&zone->active_list);
3382 INIT_LIST_HEAD(&zone->inactive_list);
3383 zone->nr_scan_active = 0;
3384 zone->nr_scan_inactive = 0;
3385 zap_zone_vm_stats(zone);
3386 zone->flags = 0;
3387 if (!size)
3388 continue;
3389
3390 set_pageblock_order(pageblock_default_order());
3391 setup_usemap(pgdat, zone, size);
3392 ret = init_currently_empty_zone(zone, zone_start_pfn,
3393 size, MEMMAP_EARLY);
3394 BUG_ON(ret);
3395 zone_start_pfn += size;
3396 }
3397 }
3398
3399 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3400 {
3401 /* Skip empty nodes */
3402 if (!pgdat->node_spanned_pages)
3403 return;
3404
3405 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3406 /* ia64 gets its own node_mem_map, before this, without bootmem */
3407 if (!pgdat->node_mem_map) {
3408 unsigned long size, start, end;
3409 struct page *map;
3410
3411 /*
3412 * The zone's endpoints aren't required to be MAX_ORDER
3413 * aligned but the node_mem_map endpoints must be in order
3414 * for the buddy allocator to function correctly.
3415 */
3416 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3417 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3418 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3419 size = (end - start) * sizeof(struct page);
3420 map = alloc_remap(pgdat->node_id, size);
3421 if (!map)
3422 map = alloc_bootmem_node(pgdat, size);
3423 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3424 }
3425 #ifndef CONFIG_NEED_MULTIPLE_NODES
3426 /*
3427 * With no DISCONTIG, the global mem_map is just set as node 0's
3428 */
3429 if (pgdat == NODE_DATA(0)) {
3430 mem_map = NODE_DATA(0)->node_mem_map;
3431 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3432 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3433 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3434 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3435 }
3436 #endif
3437 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3438 }
3439
3440 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3441 unsigned long *zones_size, unsigned long node_start_pfn,
3442 unsigned long *zholes_size)
3443 {
3444 pgdat->node_id = nid;
3445 pgdat->node_start_pfn = node_start_pfn;
3446 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3447
3448 alloc_node_mem_map(pgdat);
3449
3450 free_area_init_core(pgdat, zones_size, zholes_size);
3451 }
3452
3453 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3454
3455 #if MAX_NUMNODES > 1
3456 /*
3457 * Figure out the number of possible node ids.
3458 */
3459 static void __init setup_nr_node_ids(void)
3460 {
3461 unsigned int node;
3462 unsigned int highest = 0;
3463
3464 for_each_node_mask(node, node_possible_map)
3465 highest = node;
3466 nr_node_ids = highest + 1;
3467 }
3468 #else
3469 static inline void setup_nr_node_ids(void)
3470 {
3471 }
3472 #endif
3473
3474 /**
3475 * add_active_range - Register a range of PFNs backed by physical memory
3476 * @nid: The node ID the range resides on
3477 * @start_pfn: The start PFN of the available physical memory
3478 * @end_pfn: The end PFN of the available physical memory
3479 *
3480 * These ranges are stored in an early_node_map[] and later used by
3481 * free_area_init_nodes() to calculate zone sizes and holes. If the
3482 * range spans a memory hole, it is up to the architecture to ensure
3483 * the memory is not freed by the bootmem allocator. If possible
3484 * the range being registered will be merged with existing ranges.
3485 */
3486 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3487 unsigned long end_pfn)
3488 {
3489 int i;
3490
3491 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3492 "%d entries of %d used\n",
3493 nid, start_pfn, end_pfn,
3494 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3495
3496 /* Merge with existing active regions if possible */
3497 for (i = 0; i < nr_nodemap_entries; i++) {
3498 if (early_node_map[i].nid != nid)
3499 continue;
3500
3501 /* Skip if an existing region covers this new one */
3502 if (start_pfn >= early_node_map[i].start_pfn &&
3503 end_pfn <= early_node_map[i].end_pfn)
3504 return;
3505
3506 /* Merge forward if suitable */
3507 if (start_pfn <= early_node_map[i].end_pfn &&
3508 end_pfn > early_node_map[i].end_pfn) {
3509 early_node_map[i].end_pfn = end_pfn;
3510 return;
3511 }
3512
3513 /* Merge backward if suitable */
3514 if (start_pfn < early_node_map[i].end_pfn &&
3515 end_pfn >= early_node_map[i].start_pfn) {
3516 early_node_map[i].start_pfn = start_pfn;
3517 return;
3518 }
3519 }
3520
3521 /* Check that early_node_map is large enough */
3522 if (i >= MAX_ACTIVE_REGIONS) {
3523 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3524 MAX_ACTIVE_REGIONS);
3525 return;
3526 }
3527
3528 early_node_map[i].nid = nid;
3529 early_node_map[i].start_pfn = start_pfn;
3530 early_node_map[i].end_pfn = end_pfn;
3531 nr_nodemap_entries = i + 1;
3532 }
3533
3534 /**
3535 * shrink_active_range - Shrink an existing registered range of PFNs
3536 * @nid: The node id the range is on that should be shrunk
3537 * @old_end_pfn: The old end PFN of the range
3538 * @new_end_pfn: The new PFN of the range
3539 *
3540 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3541 * The map is kept at the end physical page range that has already been
3542 * registered with add_active_range(). This function allows an arch to shrink
3543 * an existing registered range.
3544 */
3545 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3546 unsigned long new_end_pfn)
3547 {
3548 int i;
3549
3550 /* Find the old active region end and shrink */
3551 for_each_active_range_index_in_nid(i, nid)
3552 if (early_node_map[i].end_pfn == old_end_pfn) {
3553 early_node_map[i].end_pfn = new_end_pfn;
3554 break;
3555 }
3556 }
3557
3558 /**
3559 * remove_all_active_ranges - Remove all currently registered regions
3560 *
3561 * During discovery, it may be found that a table like SRAT is invalid
3562 * and an alternative discovery method must be used. This function removes
3563 * all currently registered regions.
3564 */
3565 void __init remove_all_active_ranges(void)
3566 {
3567 memset(early_node_map, 0, sizeof(early_node_map));
3568 nr_nodemap_entries = 0;
3569 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3570 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3571 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3572 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3573 }
3574
3575 /* Compare two active node_active_regions */
3576 static int __init cmp_node_active_region(const void *a, const void *b)
3577 {
3578 struct node_active_region *arange = (struct node_active_region *)a;
3579 struct node_active_region *brange = (struct node_active_region *)b;
3580
3581 /* Done this way to avoid overflows */
3582 if (arange->start_pfn > brange->start_pfn)
3583 return 1;
3584 if (arange->start_pfn < brange->start_pfn)
3585 return -1;
3586
3587 return 0;
3588 }
3589
3590 /* sort the node_map by start_pfn */
3591 static void __init sort_node_map(void)
3592 {
3593 sort(early_node_map, (size_t)nr_nodemap_entries,
3594 sizeof(struct node_active_region),
3595 cmp_node_active_region, NULL);
3596 }
3597
3598 /* Find the lowest pfn for a node */
3599 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3600 {
3601 int i;
3602 unsigned long min_pfn = ULONG_MAX;
3603
3604 /* Assuming a sorted map, the first range found has the starting pfn */
3605 for_each_active_range_index_in_nid(i, nid)
3606 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3607
3608 if (min_pfn == ULONG_MAX) {
3609 printk(KERN_WARNING
3610 "Could not find start_pfn for node %lu\n", nid);
3611 return 0;
3612 }
3613
3614 return min_pfn;
3615 }
3616
3617 /**
3618 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3619 *
3620 * It returns the minimum PFN based on information provided via
3621 * add_active_range().
3622 */
3623 unsigned long __init find_min_pfn_with_active_regions(void)
3624 {
3625 return find_min_pfn_for_node(MAX_NUMNODES);
3626 }
3627
3628 /**
3629 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3630 *
3631 * It returns the maximum PFN based on information provided via
3632 * add_active_range().
3633 */
3634 unsigned long __init find_max_pfn_with_active_regions(void)
3635 {
3636 int i;
3637 unsigned long max_pfn = 0;
3638
3639 for (i = 0; i < nr_nodemap_entries; i++)
3640 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3641
3642 return max_pfn;
3643 }
3644
3645 /*
3646 * early_calculate_totalpages()
3647 * Sum pages in active regions for movable zone.
3648 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3649 */
3650 static unsigned long __init early_calculate_totalpages(void)
3651 {
3652 int i;
3653 unsigned long totalpages = 0;
3654
3655 for (i = 0; i < nr_nodemap_entries; i++) {
3656 unsigned long pages = early_node_map[i].end_pfn -
3657 early_node_map[i].start_pfn;
3658 totalpages += pages;
3659 if (pages)
3660 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3661 }
3662 return totalpages;
3663 }
3664
3665 /*
3666 * Find the PFN the Movable zone begins in each node. Kernel memory
3667 * is spread evenly between nodes as long as the nodes have enough
3668 * memory. When they don't, some nodes will have more kernelcore than
3669 * others
3670 */
3671 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3672 {
3673 int i, nid;
3674 unsigned long usable_startpfn;
3675 unsigned long kernelcore_node, kernelcore_remaining;
3676 unsigned long totalpages = early_calculate_totalpages();
3677 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3678
3679 /*
3680 * If movablecore was specified, calculate what size of
3681 * kernelcore that corresponds so that memory usable for
3682 * any allocation type is evenly spread. If both kernelcore
3683 * and movablecore are specified, then the value of kernelcore
3684 * will be used for required_kernelcore if it's greater than
3685 * what movablecore would have allowed.
3686 */
3687 if (required_movablecore) {
3688 unsigned long corepages;
3689
3690 /*
3691 * Round-up so that ZONE_MOVABLE is at least as large as what
3692 * was requested by the user
3693 */
3694 required_movablecore =
3695 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3696 corepages = totalpages - required_movablecore;
3697
3698 required_kernelcore = max(required_kernelcore, corepages);
3699 }
3700
3701 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3702 if (!required_kernelcore)
3703 return;
3704
3705 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3706 find_usable_zone_for_movable();
3707 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3708
3709 restart:
3710 /* Spread kernelcore memory as evenly as possible throughout nodes */
3711 kernelcore_node = required_kernelcore / usable_nodes;
3712 for_each_node_state(nid, N_HIGH_MEMORY) {
3713 /*
3714 * Recalculate kernelcore_node if the division per node
3715 * now exceeds what is necessary to satisfy the requested
3716 * amount of memory for the kernel
3717 */
3718 if (required_kernelcore < kernelcore_node)
3719 kernelcore_node = required_kernelcore / usable_nodes;
3720
3721 /*
3722 * As the map is walked, we track how much memory is usable
3723 * by the kernel using kernelcore_remaining. When it is
3724 * 0, the rest of the node is usable by ZONE_MOVABLE
3725 */
3726 kernelcore_remaining = kernelcore_node;
3727
3728 /* Go through each range of PFNs within this node */
3729 for_each_active_range_index_in_nid(i, nid) {
3730 unsigned long start_pfn, end_pfn;
3731 unsigned long size_pages;
3732
3733 start_pfn = max(early_node_map[i].start_pfn,
3734 zone_movable_pfn[nid]);
3735 end_pfn = early_node_map[i].end_pfn;
3736 if (start_pfn >= end_pfn)
3737 continue;
3738
3739 /* Account for what is only usable for kernelcore */
3740 if (start_pfn < usable_startpfn) {
3741 unsigned long kernel_pages;
3742 kernel_pages = min(end_pfn, usable_startpfn)
3743 - start_pfn;
3744
3745 kernelcore_remaining -= min(kernel_pages,
3746 kernelcore_remaining);
3747 required_kernelcore -= min(kernel_pages,
3748 required_kernelcore);
3749
3750 /* Continue if range is now fully accounted */
3751 if (end_pfn <= usable_startpfn) {
3752
3753 /*
3754 * Push zone_movable_pfn to the end so
3755 * that if we have to rebalance
3756 * kernelcore across nodes, we will
3757 * not double account here
3758 */
3759 zone_movable_pfn[nid] = end_pfn;
3760 continue;
3761 }
3762 start_pfn = usable_startpfn;
3763 }
3764
3765 /*
3766 * The usable PFN range for ZONE_MOVABLE is from
3767 * start_pfn->end_pfn. Calculate size_pages as the
3768 * number of pages used as kernelcore
3769 */
3770 size_pages = end_pfn - start_pfn;
3771 if (size_pages > kernelcore_remaining)
3772 size_pages = kernelcore_remaining;
3773 zone_movable_pfn[nid] = start_pfn + size_pages;
3774
3775 /*
3776 * Some kernelcore has been met, update counts and
3777 * break if the kernelcore for this node has been
3778 * satisified
3779 */
3780 required_kernelcore -= min(required_kernelcore,
3781 size_pages);
3782 kernelcore_remaining -= size_pages;
3783 if (!kernelcore_remaining)
3784 break;
3785 }
3786 }
3787
3788 /*
3789 * If there is still required_kernelcore, we do another pass with one
3790 * less node in the count. This will push zone_movable_pfn[nid] further
3791 * along on the nodes that still have memory until kernelcore is
3792 * satisified
3793 */
3794 usable_nodes--;
3795 if (usable_nodes && required_kernelcore > usable_nodes)
3796 goto restart;
3797
3798 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3799 for (nid = 0; nid < MAX_NUMNODES; nid++)
3800 zone_movable_pfn[nid] =
3801 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3802 }
3803
3804 /* Any regular memory on that node ? */
3805 static void check_for_regular_memory(pg_data_t *pgdat)
3806 {
3807 #ifdef CONFIG_HIGHMEM
3808 enum zone_type zone_type;
3809
3810 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3811 struct zone *zone = &pgdat->node_zones[zone_type];
3812 if (zone->present_pages)
3813 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3814 }
3815 #endif
3816 }
3817
3818 /**
3819 * free_area_init_nodes - Initialise all pg_data_t and zone data
3820 * @max_zone_pfn: an array of max PFNs for each zone
3821 *
3822 * This will call free_area_init_node() for each active node in the system.
3823 * Using the page ranges provided by add_active_range(), the size of each
3824 * zone in each node and their holes is calculated. If the maximum PFN
3825 * between two adjacent zones match, it is assumed that the zone is empty.
3826 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3827 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3828 * starts where the previous one ended. For example, ZONE_DMA32 starts
3829 * at arch_max_dma_pfn.
3830 */
3831 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3832 {
3833 unsigned long nid;
3834 enum zone_type i;
3835
3836 /* Sort early_node_map as initialisation assumes it is sorted */
3837 sort_node_map();
3838
3839 /* Record where the zone boundaries are */
3840 memset(arch_zone_lowest_possible_pfn, 0,
3841 sizeof(arch_zone_lowest_possible_pfn));
3842 memset(arch_zone_highest_possible_pfn, 0,
3843 sizeof(arch_zone_highest_possible_pfn));
3844 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3845 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3846 for (i = 1; i < MAX_NR_ZONES; i++) {
3847 if (i == ZONE_MOVABLE)
3848 continue;
3849 arch_zone_lowest_possible_pfn[i] =
3850 arch_zone_highest_possible_pfn[i-1];
3851 arch_zone_highest_possible_pfn[i] =
3852 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3853 }
3854 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3855 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3856
3857 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3858 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3859 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3860
3861 /* Print out the zone ranges */
3862 printk("Zone PFN ranges:\n");
3863 for (i = 0; i < MAX_NR_ZONES; i++) {
3864 if (i == ZONE_MOVABLE)
3865 continue;
3866 printk(" %-8s %8lu -> %8lu\n",
3867 zone_names[i],
3868 arch_zone_lowest_possible_pfn[i],
3869 arch_zone_highest_possible_pfn[i]);
3870 }
3871
3872 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3873 printk("Movable zone start PFN for each node\n");
3874 for (i = 0; i < MAX_NUMNODES; i++) {
3875 if (zone_movable_pfn[i])
3876 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3877 }
3878
3879 /* Print out the early_node_map[] */
3880 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3881 for (i = 0; i < nr_nodemap_entries; i++)
3882 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3883 early_node_map[i].start_pfn,
3884 early_node_map[i].end_pfn);
3885
3886 /* Initialise every node */
3887 setup_nr_node_ids();
3888 for_each_online_node(nid) {
3889 pg_data_t *pgdat = NODE_DATA(nid);
3890 free_area_init_node(nid, pgdat, NULL,
3891 find_min_pfn_for_node(nid), NULL);
3892
3893 /* Any memory on that node */
3894 if (pgdat->node_present_pages)
3895 node_set_state(nid, N_HIGH_MEMORY);
3896 check_for_regular_memory(pgdat);
3897 }
3898 }
3899
3900 static int __init cmdline_parse_core(char *p, unsigned long *core)
3901 {
3902 unsigned long long coremem;
3903 if (!p)
3904 return -EINVAL;
3905
3906 coremem = memparse(p, &p);
3907 *core = coremem >> PAGE_SHIFT;
3908
3909 /* Paranoid check that UL is enough for the coremem value */
3910 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3911
3912 return 0;
3913 }
3914
3915 /*
3916 * kernelcore=size sets the amount of memory for use for allocations that
3917 * cannot be reclaimed or migrated.
3918 */
3919 static int __init cmdline_parse_kernelcore(char *p)
3920 {
3921 return cmdline_parse_core(p, &required_kernelcore);
3922 }
3923
3924 /*
3925 * movablecore=size sets the amount of memory for use for allocations that
3926 * can be reclaimed or migrated.
3927 */
3928 static int __init cmdline_parse_movablecore(char *p)
3929 {
3930 return cmdline_parse_core(p, &required_movablecore);
3931 }
3932
3933 early_param("kernelcore", cmdline_parse_kernelcore);
3934 early_param("movablecore", cmdline_parse_movablecore);
3935
3936 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3937
3938 /**
3939 * set_dma_reserve - set the specified number of pages reserved in the first zone
3940 * @new_dma_reserve: The number of pages to mark reserved
3941 *
3942 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3943 * In the DMA zone, a significant percentage may be consumed by kernel image
3944 * and other unfreeable allocations which can skew the watermarks badly. This
3945 * function may optionally be used to account for unfreeable pages in the
3946 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3947 * smaller per-cpu batchsize.
3948 */
3949 void __init set_dma_reserve(unsigned long new_dma_reserve)
3950 {
3951 dma_reserve = new_dma_reserve;
3952 }
3953
3954 #ifndef CONFIG_NEED_MULTIPLE_NODES
3955 static bootmem_data_t contig_bootmem_data;
3956 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3957
3958 EXPORT_SYMBOL(contig_page_data);
3959 #endif
3960
3961 void __init free_area_init(unsigned long *zones_size)
3962 {
3963 free_area_init_node(0, NODE_DATA(0), zones_size,
3964 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3965 }
3966
3967 static int page_alloc_cpu_notify(struct notifier_block *self,
3968 unsigned long action, void *hcpu)
3969 {
3970 int cpu = (unsigned long)hcpu;
3971
3972 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3973 drain_pages(cpu);
3974
3975 /*
3976 * Spill the event counters of the dead processor
3977 * into the current processors event counters.
3978 * This artificially elevates the count of the current
3979 * processor.
3980 */
3981 vm_events_fold_cpu(cpu);
3982
3983 /*
3984 * Zero the differential counters of the dead processor
3985 * so that the vm statistics are consistent.
3986 *
3987 * This is only okay since the processor is dead and cannot
3988 * race with what we are doing.
3989 */
3990 refresh_cpu_vm_stats(cpu);
3991 }
3992 return NOTIFY_OK;
3993 }
3994
3995 void __init page_alloc_init(void)
3996 {
3997 hotcpu_notifier(page_alloc_cpu_notify, 0);
3998 }
3999
4000 /*
4001 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4002 * or min_free_kbytes changes.
4003 */
4004 static void calculate_totalreserve_pages(void)
4005 {
4006 struct pglist_data *pgdat;
4007 unsigned long reserve_pages = 0;
4008 enum zone_type i, j;
4009
4010 for_each_online_pgdat(pgdat) {
4011 for (i = 0; i < MAX_NR_ZONES; i++) {
4012 struct zone *zone = pgdat->node_zones + i;
4013 unsigned long max = 0;
4014
4015 /* Find valid and maximum lowmem_reserve in the zone */
4016 for (j = i; j < MAX_NR_ZONES; j++) {
4017 if (zone->lowmem_reserve[j] > max)
4018 max = zone->lowmem_reserve[j];
4019 }
4020
4021 /* we treat pages_high as reserved pages. */
4022 max += zone->pages_high;
4023
4024 if (max > zone->present_pages)
4025 max = zone->present_pages;
4026 reserve_pages += max;
4027 }
4028 }
4029 totalreserve_pages = reserve_pages;
4030 }
4031
4032 /*
4033 * setup_per_zone_lowmem_reserve - called whenever
4034 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4035 * has a correct pages reserved value, so an adequate number of
4036 * pages are left in the zone after a successful __alloc_pages().
4037 */
4038 static void setup_per_zone_lowmem_reserve(void)
4039 {
4040 struct pglist_data *pgdat;
4041 enum zone_type j, idx;
4042
4043 for_each_online_pgdat(pgdat) {
4044 for (j = 0; j < MAX_NR_ZONES; j++) {
4045 struct zone *zone = pgdat->node_zones + j;
4046 unsigned long present_pages = zone->present_pages;
4047
4048 zone->lowmem_reserve[j] = 0;
4049
4050 idx = j;
4051 while (idx) {
4052 struct zone *lower_zone;
4053
4054 idx--;
4055
4056 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4057 sysctl_lowmem_reserve_ratio[idx] = 1;
4058
4059 lower_zone = pgdat->node_zones + idx;
4060 lower_zone->lowmem_reserve[j] = present_pages /
4061 sysctl_lowmem_reserve_ratio[idx];
4062 present_pages += lower_zone->present_pages;
4063 }
4064 }
4065 }
4066
4067 /* update totalreserve_pages */
4068 calculate_totalreserve_pages();
4069 }
4070
4071 /**
4072 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4073 *
4074 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4075 * with respect to min_free_kbytes.
4076 */
4077 void setup_per_zone_pages_min(void)
4078 {
4079 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4080 unsigned long lowmem_pages = 0;
4081 struct zone *zone;
4082 unsigned long flags;
4083
4084 /* Calculate total number of !ZONE_HIGHMEM pages */
4085 for_each_zone(zone) {
4086 if (!is_highmem(zone))
4087 lowmem_pages += zone->present_pages;
4088 }
4089
4090 for_each_zone(zone) {
4091 u64 tmp;
4092
4093 spin_lock_irqsave(&zone->lru_lock, flags);
4094 tmp = (u64)pages_min * zone->present_pages;
4095 do_div(tmp, lowmem_pages);
4096 if (is_highmem(zone)) {
4097 /*
4098 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4099 * need highmem pages, so cap pages_min to a small
4100 * value here.
4101 *
4102 * The (pages_high-pages_low) and (pages_low-pages_min)
4103 * deltas controls asynch page reclaim, and so should
4104 * not be capped for highmem.
4105 */
4106 int min_pages;
4107
4108 min_pages = zone->present_pages / 1024;
4109 if (min_pages < SWAP_CLUSTER_MAX)
4110 min_pages = SWAP_CLUSTER_MAX;
4111 if (min_pages > 128)
4112 min_pages = 128;
4113 zone->pages_min = min_pages;
4114 } else {
4115 /*
4116 * If it's a lowmem zone, reserve a number of pages
4117 * proportionate to the zone's size.
4118 */
4119 zone->pages_min = tmp;
4120 }
4121
4122 zone->pages_low = zone->pages_min + (tmp >> 2);
4123 zone->pages_high = zone->pages_min + (tmp >> 1);
4124 setup_zone_migrate_reserve(zone);
4125 spin_unlock_irqrestore(&zone->lru_lock, flags);
4126 }
4127
4128 /* update totalreserve_pages */
4129 calculate_totalreserve_pages();
4130 }
4131
4132 /*
4133 * Initialise min_free_kbytes.
4134 *
4135 * For small machines we want it small (128k min). For large machines
4136 * we want it large (64MB max). But it is not linear, because network
4137 * bandwidth does not increase linearly with machine size. We use
4138 *
4139 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4140 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4141 *
4142 * which yields
4143 *
4144 * 16MB: 512k
4145 * 32MB: 724k
4146 * 64MB: 1024k
4147 * 128MB: 1448k
4148 * 256MB: 2048k
4149 * 512MB: 2896k
4150 * 1024MB: 4096k
4151 * 2048MB: 5792k
4152 * 4096MB: 8192k
4153 * 8192MB: 11584k
4154 * 16384MB: 16384k
4155 */
4156 static int __init init_per_zone_pages_min(void)
4157 {
4158 unsigned long lowmem_kbytes;
4159
4160 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4161
4162 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4163 if (min_free_kbytes < 128)
4164 min_free_kbytes = 128;
4165 if (min_free_kbytes > 65536)
4166 min_free_kbytes = 65536;
4167 setup_per_zone_pages_min();
4168 setup_per_zone_lowmem_reserve();
4169 return 0;
4170 }
4171 module_init(init_per_zone_pages_min)
4172
4173 /*
4174 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4175 * that we can call two helper functions whenever min_free_kbytes
4176 * changes.
4177 */
4178 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4179 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4180 {
4181 proc_dointvec(table, write, file, buffer, length, ppos);
4182 if (write)
4183 setup_per_zone_pages_min();
4184 return 0;
4185 }
4186
4187 #ifdef CONFIG_NUMA
4188 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4189 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4190 {
4191 struct zone *zone;
4192 int rc;
4193
4194 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4195 if (rc)
4196 return rc;
4197
4198 for_each_zone(zone)
4199 zone->min_unmapped_pages = (zone->present_pages *
4200 sysctl_min_unmapped_ratio) / 100;
4201 return 0;
4202 }
4203
4204 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4205 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4206 {
4207 struct zone *zone;
4208 int rc;
4209
4210 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4211 if (rc)
4212 return rc;
4213
4214 for_each_zone(zone)
4215 zone->min_slab_pages = (zone->present_pages *
4216 sysctl_min_slab_ratio) / 100;
4217 return 0;
4218 }
4219 #endif
4220
4221 /*
4222 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4223 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4224 * whenever sysctl_lowmem_reserve_ratio changes.
4225 *
4226 * The reserve ratio obviously has absolutely no relation with the
4227 * pages_min watermarks. The lowmem reserve ratio can only make sense
4228 * if in function of the boot time zone sizes.
4229 */
4230 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4231 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4232 {
4233 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4234 setup_per_zone_lowmem_reserve();
4235 return 0;
4236 }
4237
4238 /*
4239 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4240 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4241 * can have before it gets flushed back to buddy allocator.
4242 */
4243
4244 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4245 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4246 {
4247 struct zone *zone;
4248 unsigned int cpu;
4249 int ret;
4250
4251 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4252 if (!write || (ret == -EINVAL))
4253 return ret;
4254 for_each_zone(zone) {
4255 for_each_online_cpu(cpu) {
4256 unsigned long high;
4257 high = zone->present_pages / percpu_pagelist_fraction;
4258 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4259 }
4260 }
4261 return 0;
4262 }
4263
4264 int hashdist = HASHDIST_DEFAULT;
4265
4266 #ifdef CONFIG_NUMA
4267 static int __init set_hashdist(char *str)
4268 {
4269 if (!str)
4270 return 0;
4271 hashdist = simple_strtoul(str, &str, 0);
4272 return 1;
4273 }
4274 __setup("hashdist=", set_hashdist);
4275 #endif
4276
4277 /*
4278 * allocate a large system hash table from bootmem
4279 * - it is assumed that the hash table must contain an exact power-of-2
4280 * quantity of entries
4281 * - limit is the number of hash buckets, not the total allocation size
4282 */
4283 void *__init alloc_large_system_hash(const char *tablename,
4284 unsigned long bucketsize,
4285 unsigned long numentries,
4286 int scale,
4287 int flags,
4288 unsigned int *_hash_shift,
4289 unsigned int *_hash_mask,
4290 unsigned long limit)
4291 {
4292 unsigned long long max = limit;
4293 unsigned long log2qty, size;
4294 void *table = NULL;
4295
4296 /* allow the kernel cmdline to have a say */
4297 if (!numentries) {
4298 /* round applicable memory size up to nearest megabyte */
4299 numentries = nr_kernel_pages;
4300 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4301 numentries >>= 20 - PAGE_SHIFT;
4302 numentries <<= 20 - PAGE_SHIFT;
4303
4304 /* limit to 1 bucket per 2^scale bytes of low memory */
4305 if (scale > PAGE_SHIFT)
4306 numentries >>= (scale - PAGE_SHIFT);
4307 else
4308 numentries <<= (PAGE_SHIFT - scale);
4309
4310 /* Make sure we've got at least a 0-order allocation.. */
4311 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4312 numentries = PAGE_SIZE / bucketsize;
4313 }
4314 numentries = roundup_pow_of_two(numentries);
4315
4316 /* limit allocation size to 1/16 total memory by default */
4317 if (max == 0) {
4318 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4319 do_div(max, bucketsize);
4320 }
4321
4322 if (numentries > max)
4323 numentries = max;
4324
4325 log2qty = ilog2(numentries);
4326
4327 do {
4328 size = bucketsize << log2qty;
4329 if (flags & HASH_EARLY)
4330 table = alloc_bootmem(size);
4331 else if (hashdist)
4332 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4333 else {
4334 unsigned long order;
4335 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4336 ;
4337 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4338 /*
4339 * If bucketsize is not a power-of-two, we may free
4340 * some pages at the end of hash table.
4341 */
4342 if (table) {
4343 unsigned long alloc_end = (unsigned long)table +
4344 (PAGE_SIZE << order);
4345 unsigned long used = (unsigned long)table +
4346 PAGE_ALIGN(size);
4347 split_page(virt_to_page(table), order);
4348 while (used < alloc_end) {
4349 free_page(used);
4350 used += PAGE_SIZE;
4351 }
4352 }
4353 }
4354 } while (!table && size > PAGE_SIZE && --log2qty);
4355
4356 if (!table)
4357 panic("Failed to allocate %s hash table\n", tablename);
4358
4359 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4360 tablename,
4361 (1U << log2qty),
4362 ilog2(size) - PAGE_SHIFT,
4363 size);
4364
4365 if (_hash_shift)
4366 *_hash_shift = log2qty;
4367 if (_hash_mask)
4368 *_hash_mask = (1 << log2qty) - 1;
4369
4370 return table;
4371 }
4372
4373 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4374 struct page *pfn_to_page(unsigned long pfn)
4375 {
4376 return __pfn_to_page(pfn);
4377 }
4378 unsigned long page_to_pfn(struct page *page)
4379 {
4380 return __page_to_pfn(page);
4381 }
4382 EXPORT_SYMBOL(pfn_to_page);
4383 EXPORT_SYMBOL(page_to_pfn);
4384 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4385
4386 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4387 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4388 unsigned long pfn)
4389 {
4390 #ifdef CONFIG_SPARSEMEM
4391 return __pfn_to_section(pfn)->pageblock_flags;
4392 #else
4393 return zone->pageblock_flags;
4394 #endif /* CONFIG_SPARSEMEM */
4395 }
4396
4397 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4398 {
4399 #ifdef CONFIG_SPARSEMEM
4400 pfn &= (PAGES_PER_SECTION-1);
4401 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4402 #else
4403 pfn = pfn - zone->zone_start_pfn;
4404 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4405 #endif /* CONFIG_SPARSEMEM */
4406 }
4407
4408 /**
4409 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4410 * @page: The page within the block of interest
4411 * @start_bitidx: The first bit of interest to retrieve
4412 * @end_bitidx: The last bit of interest
4413 * returns pageblock_bits flags
4414 */
4415 unsigned long get_pageblock_flags_group(struct page *page,
4416 int start_bitidx, int end_bitidx)
4417 {
4418 struct zone *zone;
4419 unsigned long *bitmap;
4420 unsigned long pfn, bitidx;
4421 unsigned long flags = 0;
4422 unsigned long value = 1;
4423
4424 zone = page_zone(page);
4425 pfn = page_to_pfn(page);
4426 bitmap = get_pageblock_bitmap(zone, pfn);
4427 bitidx = pfn_to_bitidx(zone, pfn);
4428
4429 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4430 if (test_bit(bitidx + start_bitidx, bitmap))
4431 flags |= value;
4432
4433 return flags;
4434 }
4435
4436 /**
4437 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4438 * @page: The page within the block of interest
4439 * @start_bitidx: The first bit of interest
4440 * @end_bitidx: The last bit of interest
4441 * @flags: The flags to set
4442 */
4443 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4444 int start_bitidx, int end_bitidx)
4445 {
4446 struct zone *zone;
4447 unsigned long *bitmap;
4448 unsigned long pfn, bitidx;
4449 unsigned long value = 1;
4450
4451 zone = page_zone(page);
4452 pfn = page_to_pfn(page);
4453 bitmap = get_pageblock_bitmap(zone, pfn);
4454 bitidx = pfn_to_bitidx(zone, pfn);
4455
4456 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4457 if (flags & value)
4458 __set_bit(bitidx + start_bitidx, bitmap);
4459 else
4460 __clear_bit(bitidx + start_bitidx, bitmap);
4461 }
4462
4463 /*
4464 * This is designed as sub function...plz see page_isolation.c also.
4465 * set/clear page block's type to be ISOLATE.
4466 * page allocater never alloc memory from ISOLATE block.
4467 */
4468
4469 int set_migratetype_isolate(struct page *page)
4470 {
4471 struct zone *zone;
4472 unsigned long flags;
4473 int ret = -EBUSY;
4474
4475 zone = page_zone(page);
4476 spin_lock_irqsave(&zone->lock, flags);
4477 /*
4478 * In future, more migrate types will be able to be isolation target.
4479 */
4480 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4481 goto out;
4482 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4483 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4484 ret = 0;
4485 out:
4486 spin_unlock_irqrestore(&zone->lock, flags);
4487 if (!ret)
4488 drain_all_pages();
4489 return ret;
4490 }
4491
4492 void unset_migratetype_isolate(struct page *page)
4493 {
4494 struct zone *zone;
4495 unsigned long flags;
4496 zone = page_zone(page);
4497 spin_lock_irqsave(&zone->lock, flags);
4498 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4499 goto out;
4500 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4501 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4502 out:
4503 spin_unlock_irqrestore(&zone->lock, flags);
4504 }
4505
4506 #ifdef CONFIG_MEMORY_HOTREMOVE
4507 /*
4508 * All pages in the range must be isolated before calling this.
4509 */
4510 void
4511 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4512 {
4513 struct page *page;
4514 struct zone *zone;
4515 int order, i;
4516 unsigned long pfn;
4517 unsigned long flags;
4518 /* find the first valid pfn */
4519 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4520 if (pfn_valid(pfn))
4521 break;
4522 if (pfn == end_pfn)
4523 return;
4524 zone = page_zone(pfn_to_page(pfn));
4525 spin_lock_irqsave(&zone->lock, flags);
4526 pfn = start_pfn;
4527 while (pfn < end_pfn) {
4528 if (!pfn_valid(pfn)) {
4529 pfn++;
4530 continue;
4531 }
4532 page = pfn_to_page(pfn);
4533 BUG_ON(page_count(page));
4534 BUG_ON(!PageBuddy(page));
4535 order = page_order(page);
4536 #ifdef CONFIG_DEBUG_VM
4537 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4538 pfn, 1 << order, end_pfn);
4539 #endif
4540 list_del(&page->lru);
4541 rmv_page_order(page);
4542 zone->free_area[order].nr_free--;
4543 __mod_zone_page_state(zone, NR_FREE_PAGES,
4544 - (1UL << order));
4545 for (i = 0; i < (1 << order); i++)
4546 SetPageReserved((page+i));
4547 pfn += (1 << order);
4548 }
4549 spin_unlock_irqrestore(&zone->lock, flags);
4550 }
4551 #endif
This page took 0.124851 seconds and 6 git commands to generate.