mm: meminit: reduce number of times pageblocks are set during struct page init
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 int _node_numa_mem_[MAX_NUMNODES];
89 #endif
90
91 /*
92 * Array of node states.
93 */
94 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97 #ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99 #ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
101 #endif
102 #ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
104 #endif
105 [N_CPU] = { { [0] = 1UL } },
106 #endif /* NUMA */
107 };
108 EXPORT_SYMBOL(node_states);
109
110 /* Protect totalram_pages and zone->managed_pages */
111 static DEFINE_SPINLOCK(managed_page_count_lock);
112
113 unsigned long totalram_pages __read_mostly;
114 unsigned long totalreserve_pages __read_mostly;
115 unsigned long totalcma_pages __read_mostly;
116 /*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122 unsigned long dirty_balance_reserve __read_mostly;
123
124 int percpu_pagelist_fraction;
125 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
126
127 #ifdef CONFIG_PM_SLEEP
128 /*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
136
137 static gfp_t saved_gfp_mask;
138
139 void pm_restore_gfp_mask(void)
140 {
141 WARN_ON(!mutex_is_locked(&pm_mutex));
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
146 }
147
148 void pm_restrict_gfp_mask(void)
149 {
150 WARN_ON(!mutex_is_locked(&pm_mutex));
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
154 }
155
156 bool pm_suspended_storage(void)
157 {
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161 }
162 #endif /* CONFIG_PM_SLEEP */
163
164 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165 int pageblock_order __read_mostly;
166 #endif
167
168 static void __free_pages_ok(struct page *page, unsigned int order);
169
170 /*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
180 */
181 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
182 #ifdef CONFIG_ZONE_DMA
183 256,
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 256,
187 #endif
188 #ifdef CONFIG_HIGHMEM
189 32,
190 #endif
191 32,
192 };
193
194 EXPORT_SYMBOL(totalram_pages);
195
196 static char * const zone_names[MAX_NR_ZONES] = {
197 #ifdef CONFIG_ZONE_DMA
198 "DMA",
199 #endif
200 #ifdef CONFIG_ZONE_DMA32
201 "DMA32",
202 #endif
203 "Normal",
204 #ifdef CONFIG_HIGHMEM
205 "HighMem",
206 #endif
207 "Movable",
208 };
209
210 int min_free_kbytes = 1024;
211 int user_min_free_kbytes = -1;
212
213 static unsigned long __meminitdata nr_kernel_pages;
214 static unsigned long __meminitdata nr_all_pages;
215 static unsigned long __meminitdata dma_reserve;
216
217 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __initdata required_kernelcore;
221 static unsigned long __initdata required_movablecore;
222 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225 int movable_zone;
226 EXPORT_SYMBOL(movable_zone);
227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
228
229 #if MAX_NUMNODES > 1
230 int nr_node_ids __read_mostly = MAX_NUMNODES;
231 int nr_online_nodes __read_mostly = 1;
232 EXPORT_SYMBOL(nr_node_ids);
233 EXPORT_SYMBOL(nr_online_nodes);
234 #endif
235
236 int page_group_by_mobility_disabled __read_mostly;
237
238 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
239 static inline void reset_deferred_meminit(pg_data_t *pgdat)
240 {
241 pgdat->first_deferred_pfn = ULONG_MAX;
242 }
243
244 /* Returns true if the struct page for the pfn is uninitialised */
245 static inline bool __defermem_init early_page_uninitialised(unsigned long pfn)
246 {
247 int nid = early_pfn_to_nid(pfn);
248
249 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
250 return true;
251
252 return false;
253 }
254
255 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
256 {
257 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
258 return true;
259
260 return false;
261 }
262
263 /*
264 * Returns false when the remaining initialisation should be deferred until
265 * later in the boot cycle when it can be parallelised.
266 */
267 static inline bool update_defer_init(pg_data_t *pgdat,
268 unsigned long pfn, unsigned long zone_end,
269 unsigned long *nr_initialised)
270 {
271 /* Always populate low zones for address-contrained allocations */
272 if (zone_end < pgdat_end_pfn(pgdat))
273 return true;
274
275 /* Initialise at least 2G of the highest zone */
276 (*nr_initialised)++;
277 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
278 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
279 pgdat->first_deferred_pfn = pfn;
280 return false;
281 }
282
283 return true;
284 }
285 #else
286 static inline void reset_deferred_meminit(pg_data_t *pgdat)
287 {
288 }
289
290 static inline bool early_page_uninitialised(unsigned long pfn)
291 {
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 return false;
298 }
299
300 static inline bool update_defer_init(pg_data_t *pgdat,
301 unsigned long pfn, unsigned long zone_end,
302 unsigned long *nr_initialised)
303 {
304 return true;
305 }
306 #endif
307
308
309 void set_pageblock_migratetype(struct page *page, int migratetype)
310 {
311 if (unlikely(page_group_by_mobility_disabled &&
312 migratetype < MIGRATE_PCPTYPES))
313 migratetype = MIGRATE_UNMOVABLE;
314
315 set_pageblock_flags_group(page, (unsigned long)migratetype,
316 PB_migrate, PB_migrate_end);
317 }
318
319 #ifdef CONFIG_DEBUG_VM
320 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
321 {
322 int ret = 0;
323 unsigned seq;
324 unsigned long pfn = page_to_pfn(page);
325 unsigned long sp, start_pfn;
326
327 do {
328 seq = zone_span_seqbegin(zone);
329 start_pfn = zone->zone_start_pfn;
330 sp = zone->spanned_pages;
331 if (!zone_spans_pfn(zone, pfn))
332 ret = 1;
333 } while (zone_span_seqretry(zone, seq));
334
335 if (ret)
336 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
337 pfn, zone_to_nid(zone), zone->name,
338 start_pfn, start_pfn + sp);
339
340 return ret;
341 }
342
343 static int page_is_consistent(struct zone *zone, struct page *page)
344 {
345 if (!pfn_valid_within(page_to_pfn(page)))
346 return 0;
347 if (zone != page_zone(page))
348 return 0;
349
350 return 1;
351 }
352 /*
353 * Temporary debugging check for pages not lying within a given zone.
354 */
355 static int bad_range(struct zone *zone, struct page *page)
356 {
357 if (page_outside_zone_boundaries(zone, page))
358 return 1;
359 if (!page_is_consistent(zone, page))
360 return 1;
361
362 return 0;
363 }
364 #else
365 static inline int bad_range(struct zone *zone, struct page *page)
366 {
367 return 0;
368 }
369 #endif
370
371 static void bad_page(struct page *page, const char *reason,
372 unsigned long bad_flags)
373 {
374 static unsigned long resume;
375 static unsigned long nr_shown;
376 static unsigned long nr_unshown;
377
378 /* Don't complain about poisoned pages */
379 if (PageHWPoison(page)) {
380 page_mapcount_reset(page); /* remove PageBuddy */
381 return;
382 }
383
384 /*
385 * Allow a burst of 60 reports, then keep quiet for that minute;
386 * or allow a steady drip of one report per second.
387 */
388 if (nr_shown == 60) {
389 if (time_before(jiffies, resume)) {
390 nr_unshown++;
391 goto out;
392 }
393 if (nr_unshown) {
394 printk(KERN_ALERT
395 "BUG: Bad page state: %lu messages suppressed\n",
396 nr_unshown);
397 nr_unshown = 0;
398 }
399 nr_shown = 0;
400 }
401 if (nr_shown++ == 0)
402 resume = jiffies + 60 * HZ;
403
404 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
405 current->comm, page_to_pfn(page));
406 dump_page_badflags(page, reason, bad_flags);
407
408 print_modules();
409 dump_stack();
410 out:
411 /* Leave bad fields for debug, except PageBuddy could make trouble */
412 page_mapcount_reset(page); /* remove PageBuddy */
413 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
414 }
415
416 /*
417 * Higher-order pages are called "compound pages". They are structured thusly:
418 *
419 * The first PAGE_SIZE page is called the "head page".
420 *
421 * The remaining PAGE_SIZE pages are called "tail pages".
422 *
423 * All pages have PG_compound set. All tail pages have their ->first_page
424 * pointing at the head page.
425 *
426 * The first tail page's ->lru.next holds the address of the compound page's
427 * put_page() function. Its ->lru.prev holds the order of allocation.
428 * This usage means that zero-order pages may not be compound.
429 */
430
431 static void free_compound_page(struct page *page)
432 {
433 __free_pages_ok(page, compound_order(page));
434 }
435
436 void prep_compound_page(struct page *page, unsigned long order)
437 {
438 int i;
439 int nr_pages = 1 << order;
440
441 set_compound_page_dtor(page, free_compound_page);
442 set_compound_order(page, order);
443 __SetPageHead(page);
444 for (i = 1; i < nr_pages; i++) {
445 struct page *p = page + i;
446 set_page_count(p, 0);
447 p->first_page = page;
448 /* Make sure p->first_page is always valid for PageTail() */
449 smp_wmb();
450 __SetPageTail(p);
451 }
452 }
453
454 #ifdef CONFIG_DEBUG_PAGEALLOC
455 unsigned int _debug_guardpage_minorder;
456 bool _debug_pagealloc_enabled __read_mostly;
457 bool _debug_guardpage_enabled __read_mostly;
458
459 static int __init early_debug_pagealloc(char *buf)
460 {
461 if (!buf)
462 return -EINVAL;
463
464 if (strcmp(buf, "on") == 0)
465 _debug_pagealloc_enabled = true;
466
467 return 0;
468 }
469 early_param("debug_pagealloc", early_debug_pagealloc);
470
471 static bool need_debug_guardpage(void)
472 {
473 /* If we don't use debug_pagealloc, we don't need guard page */
474 if (!debug_pagealloc_enabled())
475 return false;
476
477 return true;
478 }
479
480 static void init_debug_guardpage(void)
481 {
482 if (!debug_pagealloc_enabled())
483 return;
484
485 _debug_guardpage_enabled = true;
486 }
487
488 struct page_ext_operations debug_guardpage_ops = {
489 .need = need_debug_guardpage,
490 .init = init_debug_guardpage,
491 };
492
493 static int __init debug_guardpage_minorder_setup(char *buf)
494 {
495 unsigned long res;
496
497 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
498 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
499 return 0;
500 }
501 _debug_guardpage_minorder = res;
502 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
503 return 0;
504 }
505 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
506
507 static inline void set_page_guard(struct zone *zone, struct page *page,
508 unsigned int order, int migratetype)
509 {
510 struct page_ext *page_ext;
511
512 if (!debug_guardpage_enabled())
513 return;
514
515 page_ext = lookup_page_ext(page);
516 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
517
518 INIT_LIST_HEAD(&page->lru);
519 set_page_private(page, order);
520 /* Guard pages are not available for any usage */
521 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
522 }
523
524 static inline void clear_page_guard(struct zone *zone, struct page *page,
525 unsigned int order, int migratetype)
526 {
527 struct page_ext *page_ext;
528
529 if (!debug_guardpage_enabled())
530 return;
531
532 page_ext = lookup_page_ext(page);
533 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
534
535 set_page_private(page, 0);
536 if (!is_migrate_isolate(migratetype))
537 __mod_zone_freepage_state(zone, (1 << order), migratetype);
538 }
539 #else
540 struct page_ext_operations debug_guardpage_ops = { NULL, };
541 static inline void set_page_guard(struct zone *zone, struct page *page,
542 unsigned int order, int migratetype) {}
543 static inline void clear_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype) {}
545 #endif
546
547 static inline void set_page_order(struct page *page, unsigned int order)
548 {
549 set_page_private(page, order);
550 __SetPageBuddy(page);
551 }
552
553 static inline void rmv_page_order(struct page *page)
554 {
555 __ClearPageBuddy(page);
556 set_page_private(page, 0);
557 }
558
559 /*
560 * This function checks whether a page is free && is the buddy
561 * we can do coalesce a page and its buddy if
562 * (a) the buddy is not in a hole &&
563 * (b) the buddy is in the buddy system &&
564 * (c) a page and its buddy have the same order &&
565 * (d) a page and its buddy are in the same zone.
566 *
567 * For recording whether a page is in the buddy system, we set ->_mapcount
568 * PAGE_BUDDY_MAPCOUNT_VALUE.
569 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
570 * serialized by zone->lock.
571 *
572 * For recording page's order, we use page_private(page).
573 */
574 static inline int page_is_buddy(struct page *page, struct page *buddy,
575 unsigned int order)
576 {
577 if (!pfn_valid_within(page_to_pfn(buddy)))
578 return 0;
579
580 if (page_is_guard(buddy) && page_order(buddy) == order) {
581 if (page_zone_id(page) != page_zone_id(buddy))
582 return 0;
583
584 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
585
586 return 1;
587 }
588
589 if (PageBuddy(buddy) && page_order(buddy) == order) {
590 /*
591 * zone check is done late to avoid uselessly
592 * calculating zone/node ids for pages that could
593 * never merge.
594 */
595 if (page_zone_id(page) != page_zone_id(buddy))
596 return 0;
597
598 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
599
600 return 1;
601 }
602 return 0;
603 }
604
605 /*
606 * Freeing function for a buddy system allocator.
607 *
608 * The concept of a buddy system is to maintain direct-mapped table
609 * (containing bit values) for memory blocks of various "orders".
610 * The bottom level table contains the map for the smallest allocatable
611 * units of memory (here, pages), and each level above it describes
612 * pairs of units from the levels below, hence, "buddies".
613 * At a high level, all that happens here is marking the table entry
614 * at the bottom level available, and propagating the changes upward
615 * as necessary, plus some accounting needed to play nicely with other
616 * parts of the VM system.
617 * At each level, we keep a list of pages, which are heads of continuous
618 * free pages of length of (1 << order) and marked with _mapcount
619 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
620 * field.
621 * So when we are allocating or freeing one, we can derive the state of the
622 * other. That is, if we allocate a small block, and both were
623 * free, the remainder of the region must be split into blocks.
624 * If a block is freed, and its buddy is also free, then this
625 * triggers coalescing into a block of larger size.
626 *
627 * -- nyc
628 */
629
630 static inline void __free_one_page(struct page *page,
631 unsigned long pfn,
632 struct zone *zone, unsigned int order,
633 int migratetype)
634 {
635 unsigned long page_idx;
636 unsigned long combined_idx;
637 unsigned long uninitialized_var(buddy_idx);
638 struct page *buddy;
639 int max_order = MAX_ORDER;
640
641 VM_BUG_ON(!zone_is_initialized(zone));
642 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
643
644 VM_BUG_ON(migratetype == -1);
645 if (is_migrate_isolate(migratetype)) {
646 /*
647 * We restrict max order of merging to prevent merge
648 * between freepages on isolate pageblock and normal
649 * pageblock. Without this, pageblock isolation
650 * could cause incorrect freepage accounting.
651 */
652 max_order = min(MAX_ORDER, pageblock_order + 1);
653 } else {
654 __mod_zone_freepage_state(zone, 1 << order, migratetype);
655 }
656
657 page_idx = pfn & ((1 << max_order) - 1);
658
659 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
661
662 while (order < max_order - 1) {
663 buddy_idx = __find_buddy_index(page_idx, order);
664 buddy = page + (buddy_idx - page_idx);
665 if (!page_is_buddy(page, buddy, order))
666 break;
667 /*
668 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
669 * merge with it and move up one order.
670 */
671 if (page_is_guard(buddy)) {
672 clear_page_guard(zone, buddy, order, migratetype);
673 } else {
674 list_del(&buddy->lru);
675 zone->free_area[order].nr_free--;
676 rmv_page_order(buddy);
677 }
678 combined_idx = buddy_idx & page_idx;
679 page = page + (combined_idx - page_idx);
680 page_idx = combined_idx;
681 order++;
682 }
683 set_page_order(page, order);
684
685 /*
686 * If this is not the largest possible page, check if the buddy
687 * of the next-highest order is free. If it is, it's possible
688 * that pages are being freed that will coalesce soon. In case,
689 * that is happening, add the free page to the tail of the list
690 * so it's less likely to be used soon and more likely to be merged
691 * as a higher order page
692 */
693 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
694 struct page *higher_page, *higher_buddy;
695 combined_idx = buddy_idx & page_idx;
696 higher_page = page + (combined_idx - page_idx);
697 buddy_idx = __find_buddy_index(combined_idx, order + 1);
698 higher_buddy = higher_page + (buddy_idx - combined_idx);
699 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
700 list_add_tail(&page->lru,
701 &zone->free_area[order].free_list[migratetype]);
702 goto out;
703 }
704 }
705
706 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
707 out:
708 zone->free_area[order].nr_free++;
709 }
710
711 static inline int free_pages_check(struct page *page)
712 {
713 const char *bad_reason = NULL;
714 unsigned long bad_flags = 0;
715
716 if (unlikely(page_mapcount(page)))
717 bad_reason = "nonzero mapcount";
718 if (unlikely(page->mapping != NULL))
719 bad_reason = "non-NULL mapping";
720 if (unlikely(atomic_read(&page->_count) != 0))
721 bad_reason = "nonzero _count";
722 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
723 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
724 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
725 }
726 #ifdef CONFIG_MEMCG
727 if (unlikely(page->mem_cgroup))
728 bad_reason = "page still charged to cgroup";
729 #endif
730 if (unlikely(bad_reason)) {
731 bad_page(page, bad_reason, bad_flags);
732 return 1;
733 }
734 page_cpupid_reset_last(page);
735 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
736 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
737 return 0;
738 }
739
740 /*
741 * Frees a number of pages from the PCP lists
742 * Assumes all pages on list are in same zone, and of same order.
743 * count is the number of pages to free.
744 *
745 * If the zone was previously in an "all pages pinned" state then look to
746 * see if this freeing clears that state.
747 *
748 * And clear the zone's pages_scanned counter, to hold off the "all pages are
749 * pinned" detection logic.
750 */
751 static void free_pcppages_bulk(struct zone *zone, int count,
752 struct per_cpu_pages *pcp)
753 {
754 int migratetype = 0;
755 int batch_free = 0;
756 int to_free = count;
757 unsigned long nr_scanned;
758
759 spin_lock(&zone->lock);
760 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
761 if (nr_scanned)
762 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
763
764 while (to_free) {
765 struct page *page;
766 struct list_head *list;
767
768 /*
769 * Remove pages from lists in a round-robin fashion. A
770 * batch_free count is maintained that is incremented when an
771 * empty list is encountered. This is so more pages are freed
772 * off fuller lists instead of spinning excessively around empty
773 * lists
774 */
775 do {
776 batch_free++;
777 if (++migratetype == MIGRATE_PCPTYPES)
778 migratetype = 0;
779 list = &pcp->lists[migratetype];
780 } while (list_empty(list));
781
782 /* This is the only non-empty list. Free them all. */
783 if (batch_free == MIGRATE_PCPTYPES)
784 batch_free = to_free;
785
786 do {
787 int mt; /* migratetype of the to-be-freed page */
788
789 page = list_entry(list->prev, struct page, lru);
790 /* must delete as __free_one_page list manipulates */
791 list_del(&page->lru);
792 mt = get_freepage_migratetype(page);
793 if (unlikely(has_isolate_pageblock(zone)))
794 mt = get_pageblock_migratetype(page);
795
796 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
797 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
798 trace_mm_page_pcpu_drain(page, 0, mt);
799 } while (--to_free && --batch_free && !list_empty(list));
800 }
801 spin_unlock(&zone->lock);
802 }
803
804 static void free_one_page(struct zone *zone,
805 struct page *page, unsigned long pfn,
806 unsigned int order,
807 int migratetype)
808 {
809 unsigned long nr_scanned;
810 spin_lock(&zone->lock);
811 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
812 if (nr_scanned)
813 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
814
815 if (unlikely(has_isolate_pageblock(zone) ||
816 is_migrate_isolate(migratetype))) {
817 migratetype = get_pfnblock_migratetype(page, pfn);
818 }
819 __free_one_page(page, pfn, zone, order, migratetype);
820 spin_unlock(&zone->lock);
821 }
822
823 static int free_tail_pages_check(struct page *head_page, struct page *page)
824 {
825 if (!IS_ENABLED(CONFIG_DEBUG_VM))
826 return 0;
827 if (unlikely(!PageTail(page))) {
828 bad_page(page, "PageTail not set", 0);
829 return 1;
830 }
831 if (unlikely(page->first_page != head_page)) {
832 bad_page(page, "first_page not consistent", 0);
833 return 1;
834 }
835 return 0;
836 }
837
838 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
839 unsigned long zone, int nid)
840 {
841 set_page_links(page, zone, nid, pfn);
842 mminit_verify_page_links(page, zone, nid, pfn);
843 init_page_count(page);
844 page_mapcount_reset(page);
845 page_cpupid_reset_last(page);
846
847 INIT_LIST_HEAD(&page->lru);
848 #ifdef WANT_PAGE_VIRTUAL
849 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
850 if (!is_highmem_idx(zone))
851 set_page_address(page, __va(pfn << PAGE_SHIFT));
852 #endif
853 }
854
855 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
856 int nid)
857 {
858 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
859 }
860
861 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
862 static void init_reserved_page(unsigned long pfn)
863 {
864 pg_data_t *pgdat;
865 int nid, zid;
866
867 if (!early_page_uninitialised(pfn))
868 return;
869
870 nid = early_pfn_to_nid(pfn);
871 pgdat = NODE_DATA(nid);
872
873 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
874 struct zone *zone = &pgdat->node_zones[zid];
875
876 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
877 break;
878 }
879 __init_single_pfn(pfn, zid, nid);
880 }
881 #else
882 static inline void init_reserved_page(unsigned long pfn)
883 {
884 }
885 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
886
887 /*
888 * Initialised pages do not have PageReserved set. This function is
889 * called for each range allocated by the bootmem allocator and
890 * marks the pages PageReserved. The remaining valid pages are later
891 * sent to the buddy page allocator.
892 */
893 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
894 {
895 unsigned long start_pfn = PFN_DOWN(start);
896 unsigned long end_pfn = PFN_UP(end);
897
898 for (; start_pfn < end_pfn; start_pfn++) {
899 if (pfn_valid(start_pfn)) {
900 struct page *page = pfn_to_page(start_pfn);
901
902 init_reserved_page(start_pfn);
903 SetPageReserved(page);
904 }
905 }
906 }
907
908 static bool free_pages_prepare(struct page *page, unsigned int order)
909 {
910 bool compound = PageCompound(page);
911 int i, bad = 0;
912
913 VM_BUG_ON_PAGE(PageTail(page), page);
914 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
915
916 trace_mm_page_free(page, order);
917 kmemcheck_free_shadow(page, order);
918 kasan_free_pages(page, order);
919
920 if (PageAnon(page))
921 page->mapping = NULL;
922 bad += free_pages_check(page);
923 for (i = 1; i < (1 << order); i++) {
924 if (compound)
925 bad += free_tail_pages_check(page, page + i);
926 bad += free_pages_check(page + i);
927 }
928 if (bad)
929 return false;
930
931 reset_page_owner(page, order);
932
933 if (!PageHighMem(page)) {
934 debug_check_no_locks_freed(page_address(page),
935 PAGE_SIZE << order);
936 debug_check_no_obj_freed(page_address(page),
937 PAGE_SIZE << order);
938 }
939 arch_free_page(page, order);
940 kernel_map_pages(page, 1 << order, 0);
941
942 return true;
943 }
944
945 static void __free_pages_ok(struct page *page, unsigned int order)
946 {
947 unsigned long flags;
948 int migratetype;
949 unsigned long pfn = page_to_pfn(page);
950
951 if (!free_pages_prepare(page, order))
952 return;
953
954 migratetype = get_pfnblock_migratetype(page, pfn);
955 local_irq_save(flags);
956 __count_vm_events(PGFREE, 1 << order);
957 set_freepage_migratetype(page, migratetype);
958 free_one_page(page_zone(page), page, pfn, order, migratetype);
959 local_irq_restore(flags);
960 }
961
962 static void __defer_init __free_pages_boot_core(struct page *page,
963 unsigned long pfn, unsigned int order)
964 {
965 unsigned int nr_pages = 1 << order;
966 struct page *p = page;
967 unsigned int loop;
968
969 prefetchw(p);
970 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
971 prefetchw(p + 1);
972 __ClearPageReserved(p);
973 set_page_count(p, 0);
974 }
975 __ClearPageReserved(p);
976 set_page_count(p, 0);
977
978 page_zone(page)->managed_pages += nr_pages;
979 set_page_refcounted(page);
980 __free_pages(page, order);
981 }
982
983 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
984 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
985 /* Only safe to use early in boot when initialisation is single-threaded */
986 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
987
988 int __meminit early_pfn_to_nid(unsigned long pfn)
989 {
990 int nid;
991
992 /* The system will behave unpredictably otherwise */
993 BUG_ON(system_state != SYSTEM_BOOTING);
994
995 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
996 if (nid >= 0)
997 return nid;
998 /* just returns 0 */
999 return 0;
1000 }
1001 #endif
1002
1003 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1004 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1005 struct mminit_pfnnid_cache *state)
1006 {
1007 int nid;
1008
1009 nid = __early_pfn_to_nid(pfn, state);
1010 if (nid >= 0 && nid != node)
1011 return false;
1012 return true;
1013 }
1014
1015 /* Only safe to use early in boot when initialisation is single-threaded */
1016 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1017 {
1018 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1019 }
1020
1021 #else
1022
1023 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1024 {
1025 return true;
1026 }
1027 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1028 struct mminit_pfnnid_cache *state)
1029 {
1030 return true;
1031 }
1032 #endif
1033
1034
1035 void __defer_init __free_pages_bootmem(struct page *page, unsigned long pfn,
1036 unsigned int order)
1037 {
1038 if (early_page_uninitialised(pfn))
1039 return;
1040 return __free_pages_boot_core(page, pfn, order);
1041 }
1042
1043 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1044 static void __defermem_init deferred_free_range(struct page *page,
1045 unsigned long pfn, int nr_pages)
1046 {
1047 int i;
1048
1049 if (!page)
1050 return;
1051
1052 /* Free a large naturally-aligned chunk if possible */
1053 if (nr_pages == MAX_ORDER_NR_PAGES &&
1054 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1055 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1056 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1057 return;
1058 }
1059
1060 for (i = 0; i < nr_pages; i++, page++, pfn++)
1061 __free_pages_boot_core(page, pfn, 0);
1062 }
1063
1064 /* Initialise remaining memory on a node */
1065 void __defermem_init deferred_init_memmap(int nid)
1066 {
1067 struct mminit_pfnnid_cache nid_init_state = { };
1068 unsigned long start = jiffies;
1069 unsigned long nr_pages = 0;
1070 unsigned long walk_start, walk_end;
1071 int i, zid;
1072 struct zone *zone;
1073 pg_data_t *pgdat = NODE_DATA(nid);
1074 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1075
1076 if (first_init_pfn == ULONG_MAX)
1077 return;
1078
1079 /* Sanity check boundaries */
1080 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1081 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1082 pgdat->first_deferred_pfn = ULONG_MAX;
1083
1084 /* Only the highest zone is deferred so find it */
1085 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1086 zone = pgdat->node_zones + zid;
1087 if (first_init_pfn < zone_end_pfn(zone))
1088 break;
1089 }
1090
1091 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1092 unsigned long pfn, end_pfn;
1093 struct page *page = NULL;
1094 struct page *free_base_page = NULL;
1095 unsigned long free_base_pfn = 0;
1096 int nr_to_free = 0;
1097
1098 end_pfn = min(walk_end, zone_end_pfn(zone));
1099 pfn = first_init_pfn;
1100 if (pfn < walk_start)
1101 pfn = walk_start;
1102 if (pfn < zone->zone_start_pfn)
1103 pfn = zone->zone_start_pfn;
1104
1105 for (; pfn < end_pfn; pfn++) {
1106 if (!pfn_valid_within(pfn))
1107 goto free_range;
1108
1109 /*
1110 * Ensure pfn_valid is checked every
1111 * MAX_ORDER_NR_PAGES for memory holes
1112 */
1113 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1114 if (!pfn_valid(pfn)) {
1115 page = NULL;
1116 goto free_range;
1117 }
1118 }
1119
1120 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1121 page = NULL;
1122 goto free_range;
1123 }
1124
1125 /* Minimise pfn page lookups and scheduler checks */
1126 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1127 page++;
1128 } else {
1129 nr_pages += nr_to_free;
1130 deferred_free_range(free_base_page,
1131 free_base_pfn, nr_to_free);
1132 free_base_page = NULL;
1133 free_base_pfn = nr_to_free = 0;
1134
1135 page = pfn_to_page(pfn);
1136 cond_resched();
1137 }
1138
1139 if (page->flags) {
1140 VM_BUG_ON(page_zone(page) != zone);
1141 goto free_range;
1142 }
1143
1144 __init_single_page(page, pfn, zid, nid);
1145 if (!free_base_page) {
1146 free_base_page = page;
1147 free_base_pfn = pfn;
1148 nr_to_free = 0;
1149 }
1150 nr_to_free++;
1151
1152 /* Where possible, batch up pages for a single free */
1153 continue;
1154 free_range:
1155 /* Free the current block of pages to allocator */
1156 nr_pages += nr_to_free;
1157 deferred_free_range(free_base_page, free_base_pfn,
1158 nr_to_free);
1159 free_base_page = NULL;
1160 free_base_pfn = nr_to_free = 0;
1161 }
1162
1163 first_init_pfn = max(end_pfn, first_init_pfn);
1164 }
1165
1166 /* Sanity check that the next zone really is unpopulated */
1167 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1168
1169 pr_info("kswapd %d initialised %lu pages in %ums\n", nid, nr_pages,
1170 jiffies_to_msecs(jiffies - start));
1171 }
1172 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1173
1174 #ifdef CONFIG_CMA
1175 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1176 void __init init_cma_reserved_pageblock(struct page *page)
1177 {
1178 unsigned i = pageblock_nr_pages;
1179 struct page *p = page;
1180
1181 do {
1182 __ClearPageReserved(p);
1183 set_page_count(p, 0);
1184 } while (++p, --i);
1185
1186 set_pageblock_migratetype(page, MIGRATE_CMA);
1187
1188 if (pageblock_order >= MAX_ORDER) {
1189 i = pageblock_nr_pages;
1190 p = page;
1191 do {
1192 set_page_refcounted(p);
1193 __free_pages(p, MAX_ORDER - 1);
1194 p += MAX_ORDER_NR_PAGES;
1195 } while (i -= MAX_ORDER_NR_PAGES);
1196 } else {
1197 set_page_refcounted(page);
1198 __free_pages(page, pageblock_order);
1199 }
1200
1201 adjust_managed_page_count(page, pageblock_nr_pages);
1202 }
1203 #endif
1204
1205 /*
1206 * The order of subdivision here is critical for the IO subsystem.
1207 * Please do not alter this order without good reasons and regression
1208 * testing. Specifically, as large blocks of memory are subdivided,
1209 * the order in which smaller blocks are delivered depends on the order
1210 * they're subdivided in this function. This is the primary factor
1211 * influencing the order in which pages are delivered to the IO
1212 * subsystem according to empirical testing, and this is also justified
1213 * by considering the behavior of a buddy system containing a single
1214 * large block of memory acted on by a series of small allocations.
1215 * This behavior is a critical factor in sglist merging's success.
1216 *
1217 * -- nyc
1218 */
1219 static inline void expand(struct zone *zone, struct page *page,
1220 int low, int high, struct free_area *area,
1221 int migratetype)
1222 {
1223 unsigned long size = 1 << high;
1224
1225 while (high > low) {
1226 area--;
1227 high--;
1228 size >>= 1;
1229 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1230
1231 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1232 debug_guardpage_enabled() &&
1233 high < debug_guardpage_minorder()) {
1234 /*
1235 * Mark as guard pages (or page), that will allow to
1236 * merge back to allocator when buddy will be freed.
1237 * Corresponding page table entries will not be touched,
1238 * pages will stay not present in virtual address space
1239 */
1240 set_page_guard(zone, &page[size], high, migratetype);
1241 continue;
1242 }
1243 list_add(&page[size].lru, &area->free_list[migratetype]);
1244 area->nr_free++;
1245 set_page_order(&page[size], high);
1246 }
1247 }
1248
1249 /*
1250 * This page is about to be returned from the page allocator
1251 */
1252 static inline int check_new_page(struct page *page)
1253 {
1254 const char *bad_reason = NULL;
1255 unsigned long bad_flags = 0;
1256
1257 if (unlikely(page_mapcount(page)))
1258 bad_reason = "nonzero mapcount";
1259 if (unlikely(page->mapping != NULL))
1260 bad_reason = "non-NULL mapping";
1261 if (unlikely(atomic_read(&page->_count) != 0))
1262 bad_reason = "nonzero _count";
1263 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1264 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1265 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1266 }
1267 #ifdef CONFIG_MEMCG
1268 if (unlikely(page->mem_cgroup))
1269 bad_reason = "page still charged to cgroup";
1270 #endif
1271 if (unlikely(bad_reason)) {
1272 bad_page(page, bad_reason, bad_flags);
1273 return 1;
1274 }
1275 return 0;
1276 }
1277
1278 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1279 int alloc_flags)
1280 {
1281 int i;
1282
1283 for (i = 0; i < (1 << order); i++) {
1284 struct page *p = page + i;
1285 if (unlikely(check_new_page(p)))
1286 return 1;
1287 }
1288
1289 set_page_private(page, 0);
1290 set_page_refcounted(page);
1291
1292 arch_alloc_page(page, order);
1293 kernel_map_pages(page, 1 << order, 1);
1294 kasan_alloc_pages(page, order);
1295
1296 if (gfp_flags & __GFP_ZERO)
1297 for (i = 0; i < (1 << order); i++)
1298 clear_highpage(page + i);
1299
1300 if (order && (gfp_flags & __GFP_COMP))
1301 prep_compound_page(page, order);
1302
1303 set_page_owner(page, order, gfp_flags);
1304
1305 /*
1306 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1307 * allocate the page. The expectation is that the caller is taking
1308 * steps that will free more memory. The caller should avoid the page
1309 * being used for !PFMEMALLOC purposes.
1310 */
1311 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1312
1313 return 0;
1314 }
1315
1316 /*
1317 * Go through the free lists for the given migratetype and remove
1318 * the smallest available page from the freelists
1319 */
1320 static inline
1321 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1322 int migratetype)
1323 {
1324 unsigned int current_order;
1325 struct free_area *area;
1326 struct page *page;
1327
1328 /* Find a page of the appropriate size in the preferred list */
1329 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1330 area = &(zone->free_area[current_order]);
1331 if (list_empty(&area->free_list[migratetype]))
1332 continue;
1333
1334 page = list_entry(area->free_list[migratetype].next,
1335 struct page, lru);
1336 list_del(&page->lru);
1337 rmv_page_order(page);
1338 area->nr_free--;
1339 expand(zone, page, order, current_order, area, migratetype);
1340 set_freepage_migratetype(page, migratetype);
1341 return page;
1342 }
1343
1344 return NULL;
1345 }
1346
1347
1348 /*
1349 * This array describes the order lists are fallen back to when
1350 * the free lists for the desirable migrate type are depleted
1351 */
1352 static int fallbacks[MIGRATE_TYPES][4] = {
1353 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1354 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1355 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1356 #ifdef CONFIG_CMA
1357 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1358 #endif
1359 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1360 #ifdef CONFIG_MEMORY_ISOLATION
1361 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1362 #endif
1363 };
1364
1365 #ifdef CONFIG_CMA
1366 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1367 unsigned int order)
1368 {
1369 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1370 }
1371 #else
1372 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1373 unsigned int order) { return NULL; }
1374 #endif
1375
1376 /*
1377 * Move the free pages in a range to the free lists of the requested type.
1378 * Note that start_page and end_pages are not aligned on a pageblock
1379 * boundary. If alignment is required, use move_freepages_block()
1380 */
1381 int move_freepages(struct zone *zone,
1382 struct page *start_page, struct page *end_page,
1383 int migratetype)
1384 {
1385 struct page *page;
1386 unsigned long order;
1387 int pages_moved = 0;
1388
1389 #ifndef CONFIG_HOLES_IN_ZONE
1390 /*
1391 * page_zone is not safe to call in this context when
1392 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1393 * anyway as we check zone boundaries in move_freepages_block().
1394 * Remove at a later date when no bug reports exist related to
1395 * grouping pages by mobility
1396 */
1397 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1398 #endif
1399
1400 for (page = start_page; page <= end_page;) {
1401 /* Make sure we are not inadvertently changing nodes */
1402 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1403
1404 if (!pfn_valid_within(page_to_pfn(page))) {
1405 page++;
1406 continue;
1407 }
1408
1409 if (!PageBuddy(page)) {
1410 page++;
1411 continue;
1412 }
1413
1414 order = page_order(page);
1415 list_move(&page->lru,
1416 &zone->free_area[order].free_list[migratetype]);
1417 set_freepage_migratetype(page, migratetype);
1418 page += 1 << order;
1419 pages_moved += 1 << order;
1420 }
1421
1422 return pages_moved;
1423 }
1424
1425 int move_freepages_block(struct zone *zone, struct page *page,
1426 int migratetype)
1427 {
1428 unsigned long start_pfn, end_pfn;
1429 struct page *start_page, *end_page;
1430
1431 start_pfn = page_to_pfn(page);
1432 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1433 start_page = pfn_to_page(start_pfn);
1434 end_page = start_page + pageblock_nr_pages - 1;
1435 end_pfn = start_pfn + pageblock_nr_pages - 1;
1436
1437 /* Do not cross zone boundaries */
1438 if (!zone_spans_pfn(zone, start_pfn))
1439 start_page = page;
1440 if (!zone_spans_pfn(zone, end_pfn))
1441 return 0;
1442
1443 return move_freepages(zone, start_page, end_page, migratetype);
1444 }
1445
1446 static void change_pageblock_range(struct page *pageblock_page,
1447 int start_order, int migratetype)
1448 {
1449 int nr_pageblocks = 1 << (start_order - pageblock_order);
1450
1451 while (nr_pageblocks--) {
1452 set_pageblock_migratetype(pageblock_page, migratetype);
1453 pageblock_page += pageblock_nr_pages;
1454 }
1455 }
1456
1457 /*
1458 * When we are falling back to another migratetype during allocation, try to
1459 * steal extra free pages from the same pageblocks to satisfy further
1460 * allocations, instead of polluting multiple pageblocks.
1461 *
1462 * If we are stealing a relatively large buddy page, it is likely there will
1463 * be more free pages in the pageblock, so try to steal them all. For
1464 * reclaimable and unmovable allocations, we steal regardless of page size,
1465 * as fragmentation caused by those allocations polluting movable pageblocks
1466 * is worse than movable allocations stealing from unmovable and reclaimable
1467 * pageblocks.
1468 */
1469 static bool can_steal_fallback(unsigned int order, int start_mt)
1470 {
1471 /*
1472 * Leaving this order check is intended, although there is
1473 * relaxed order check in next check. The reason is that
1474 * we can actually steal whole pageblock if this condition met,
1475 * but, below check doesn't guarantee it and that is just heuristic
1476 * so could be changed anytime.
1477 */
1478 if (order >= pageblock_order)
1479 return true;
1480
1481 if (order >= pageblock_order / 2 ||
1482 start_mt == MIGRATE_RECLAIMABLE ||
1483 start_mt == MIGRATE_UNMOVABLE ||
1484 page_group_by_mobility_disabled)
1485 return true;
1486
1487 return false;
1488 }
1489
1490 /*
1491 * This function implements actual steal behaviour. If order is large enough,
1492 * we can steal whole pageblock. If not, we first move freepages in this
1493 * pageblock and check whether half of pages are moved or not. If half of
1494 * pages are moved, we can change migratetype of pageblock and permanently
1495 * use it's pages as requested migratetype in the future.
1496 */
1497 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1498 int start_type)
1499 {
1500 int current_order = page_order(page);
1501 int pages;
1502
1503 /* Take ownership for orders >= pageblock_order */
1504 if (current_order >= pageblock_order) {
1505 change_pageblock_range(page, current_order, start_type);
1506 return;
1507 }
1508
1509 pages = move_freepages_block(zone, page, start_type);
1510
1511 /* Claim the whole block if over half of it is free */
1512 if (pages >= (1 << (pageblock_order-1)) ||
1513 page_group_by_mobility_disabled)
1514 set_pageblock_migratetype(page, start_type);
1515 }
1516
1517 /*
1518 * Check whether there is a suitable fallback freepage with requested order.
1519 * If only_stealable is true, this function returns fallback_mt only if
1520 * we can steal other freepages all together. This would help to reduce
1521 * fragmentation due to mixed migratetype pages in one pageblock.
1522 */
1523 int find_suitable_fallback(struct free_area *area, unsigned int order,
1524 int migratetype, bool only_stealable, bool *can_steal)
1525 {
1526 int i;
1527 int fallback_mt;
1528
1529 if (area->nr_free == 0)
1530 return -1;
1531
1532 *can_steal = false;
1533 for (i = 0;; i++) {
1534 fallback_mt = fallbacks[migratetype][i];
1535 if (fallback_mt == MIGRATE_RESERVE)
1536 break;
1537
1538 if (list_empty(&area->free_list[fallback_mt]))
1539 continue;
1540
1541 if (can_steal_fallback(order, migratetype))
1542 *can_steal = true;
1543
1544 if (!only_stealable)
1545 return fallback_mt;
1546
1547 if (*can_steal)
1548 return fallback_mt;
1549 }
1550
1551 return -1;
1552 }
1553
1554 /* Remove an element from the buddy allocator from the fallback list */
1555 static inline struct page *
1556 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1557 {
1558 struct free_area *area;
1559 unsigned int current_order;
1560 struct page *page;
1561 int fallback_mt;
1562 bool can_steal;
1563
1564 /* Find the largest possible block of pages in the other list */
1565 for (current_order = MAX_ORDER-1;
1566 current_order >= order && current_order <= MAX_ORDER-1;
1567 --current_order) {
1568 area = &(zone->free_area[current_order]);
1569 fallback_mt = find_suitable_fallback(area, current_order,
1570 start_migratetype, false, &can_steal);
1571 if (fallback_mt == -1)
1572 continue;
1573
1574 page = list_entry(area->free_list[fallback_mt].next,
1575 struct page, lru);
1576 if (can_steal)
1577 steal_suitable_fallback(zone, page, start_migratetype);
1578
1579 /* Remove the page from the freelists */
1580 area->nr_free--;
1581 list_del(&page->lru);
1582 rmv_page_order(page);
1583
1584 expand(zone, page, order, current_order, area,
1585 start_migratetype);
1586 /*
1587 * The freepage_migratetype may differ from pageblock's
1588 * migratetype depending on the decisions in
1589 * try_to_steal_freepages(). This is OK as long as it
1590 * does not differ for MIGRATE_CMA pageblocks. For CMA
1591 * we need to make sure unallocated pages flushed from
1592 * pcp lists are returned to the correct freelist.
1593 */
1594 set_freepage_migratetype(page, start_migratetype);
1595
1596 trace_mm_page_alloc_extfrag(page, order, current_order,
1597 start_migratetype, fallback_mt);
1598
1599 return page;
1600 }
1601
1602 return NULL;
1603 }
1604
1605 /*
1606 * Do the hard work of removing an element from the buddy allocator.
1607 * Call me with the zone->lock already held.
1608 */
1609 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1610 int migratetype)
1611 {
1612 struct page *page;
1613
1614 retry_reserve:
1615 page = __rmqueue_smallest(zone, order, migratetype);
1616
1617 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1618 if (migratetype == MIGRATE_MOVABLE)
1619 page = __rmqueue_cma_fallback(zone, order);
1620
1621 if (!page)
1622 page = __rmqueue_fallback(zone, order, migratetype);
1623
1624 /*
1625 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1626 * is used because __rmqueue_smallest is an inline function
1627 * and we want just one call site
1628 */
1629 if (!page) {
1630 migratetype = MIGRATE_RESERVE;
1631 goto retry_reserve;
1632 }
1633 }
1634
1635 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1636 return page;
1637 }
1638
1639 /*
1640 * Obtain a specified number of elements from the buddy allocator, all under
1641 * a single hold of the lock, for efficiency. Add them to the supplied list.
1642 * Returns the number of new pages which were placed at *list.
1643 */
1644 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1645 unsigned long count, struct list_head *list,
1646 int migratetype, bool cold)
1647 {
1648 int i;
1649
1650 spin_lock(&zone->lock);
1651 for (i = 0; i < count; ++i) {
1652 struct page *page = __rmqueue(zone, order, migratetype);
1653 if (unlikely(page == NULL))
1654 break;
1655
1656 /*
1657 * Split buddy pages returned by expand() are received here
1658 * in physical page order. The page is added to the callers and
1659 * list and the list head then moves forward. From the callers
1660 * perspective, the linked list is ordered by page number in
1661 * some conditions. This is useful for IO devices that can
1662 * merge IO requests if the physical pages are ordered
1663 * properly.
1664 */
1665 if (likely(!cold))
1666 list_add(&page->lru, list);
1667 else
1668 list_add_tail(&page->lru, list);
1669 list = &page->lru;
1670 if (is_migrate_cma(get_freepage_migratetype(page)))
1671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1672 -(1 << order));
1673 }
1674 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1675 spin_unlock(&zone->lock);
1676 return i;
1677 }
1678
1679 #ifdef CONFIG_NUMA
1680 /*
1681 * Called from the vmstat counter updater to drain pagesets of this
1682 * currently executing processor on remote nodes after they have
1683 * expired.
1684 *
1685 * Note that this function must be called with the thread pinned to
1686 * a single processor.
1687 */
1688 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1689 {
1690 unsigned long flags;
1691 int to_drain, batch;
1692
1693 local_irq_save(flags);
1694 batch = READ_ONCE(pcp->batch);
1695 to_drain = min(pcp->count, batch);
1696 if (to_drain > 0) {
1697 free_pcppages_bulk(zone, to_drain, pcp);
1698 pcp->count -= to_drain;
1699 }
1700 local_irq_restore(flags);
1701 }
1702 #endif
1703
1704 /*
1705 * Drain pcplists of the indicated processor and zone.
1706 *
1707 * The processor must either be the current processor and the
1708 * thread pinned to the current processor or a processor that
1709 * is not online.
1710 */
1711 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1712 {
1713 unsigned long flags;
1714 struct per_cpu_pageset *pset;
1715 struct per_cpu_pages *pcp;
1716
1717 local_irq_save(flags);
1718 pset = per_cpu_ptr(zone->pageset, cpu);
1719
1720 pcp = &pset->pcp;
1721 if (pcp->count) {
1722 free_pcppages_bulk(zone, pcp->count, pcp);
1723 pcp->count = 0;
1724 }
1725 local_irq_restore(flags);
1726 }
1727
1728 /*
1729 * Drain pcplists of all zones on the indicated processor.
1730 *
1731 * The processor must either be the current processor and the
1732 * thread pinned to the current processor or a processor that
1733 * is not online.
1734 */
1735 static void drain_pages(unsigned int cpu)
1736 {
1737 struct zone *zone;
1738
1739 for_each_populated_zone(zone) {
1740 drain_pages_zone(cpu, zone);
1741 }
1742 }
1743
1744 /*
1745 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1746 *
1747 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1748 * the single zone's pages.
1749 */
1750 void drain_local_pages(struct zone *zone)
1751 {
1752 int cpu = smp_processor_id();
1753
1754 if (zone)
1755 drain_pages_zone(cpu, zone);
1756 else
1757 drain_pages(cpu);
1758 }
1759
1760 /*
1761 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1762 *
1763 * When zone parameter is non-NULL, spill just the single zone's pages.
1764 *
1765 * Note that this code is protected against sending an IPI to an offline
1766 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1767 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1768 * nothing keeps CPUs from showing up after we populated the cpumask and
1769 * before the call to on_each_cpu_mask().
1770 */
1771 void drain_all_pages(struct zone *zone)
1772 {
1773 int cpu;
1774
1775 /*
1776 * Allocate in the BSS so we wont require allocation in
1777 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1778 */
1779 static cpumask_t cpus_with_pcps;
1780
1781 /*
1782 * We don't care about racing with CPU hotplug event
1783 * as offline notification will cause the notified
1784 * cpu to drain that CPU pcps and on_each_cpu_mask
1785 * disables preemption as part of its processing
1786 */
1787 for_each_online_cpu(cpu) {
1788 struct per_cpu_pageset *pcp;
1789 struct zone *z;
1790 bool has_pcps = false;
1791
1792 if (zone) {
1793 pcp = per_cpu_ptr(zone->pageset, cpu);
1794 if (pcp->pcp.count)
1795 has_pcps = true;
1796 } else {
1797 for_each_populated_zone(z) {
1798 pcp = per_cpu_ptr(z->pageset, cpu);
1799 if (pcp->pcp.count) {
1800 has_pcps = true;
1801 break;
1802 }
1803 }
1804 }
1805
1806 if (has_pcps)
1807 cpumask_set_cpu(cpu, &cpus_with_pcps);
1808 else
1809 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1810 }
1811 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1812 zone, 1);
1813 }
1814
1815 #ifdef CONFIG_HIBERNATION
1816
1817 void mark_free_pages(struct zone *zone)
1818 {
1819 unsigned long pfn, max_zone_pfn;
1820 unsigned long flags;
1821 unsigned int order, t;
1822 struct list_head *curr;
1823
1824 if (zone_is_empty(zone))
1825 return;
1826
1827 spin_lock_irqsave(&zone->lock, flags);
1828
1829 max_zone_pfn = zone_end_pfn(zone);
1830 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1831 if (pfn_valid(pfn)) {
1832 struct page *page = pfn_to_page(pfn);
1833
1834 if (!swsusp_page_is_forbidden(page))
1835 swsusp_unset_page_free(page);
1836 }
1837
1838 for_each_migratetype_order(order, t) {
1839 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1840 unsigned long i;
1841
1842 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1843 for (i = 0; i < (1UL << order); i++)
1844 swsusp_set_page_free(pfn_to_page(pfn + i));
1845 }
1846 }
1847 spin_unlock_irqrestore(&zone->lock, flags);
1848 }
1849 #endif /* CONFIG_PM */
1850
1851 /*
1852 * Free a 0-order page
1853 * cold == true ? free a cold page : free a hot page
1854 */
1855 void free_hot_cold_page(struct page *page, bool cold)
1856 {
1857 struct zone *zone = page_zone(page);
1858 struct per_cpu_pages *pcp;
1859 unsigned long flags;
1860 unsigned long pfn = page_to_pfn(page);
1861 int migratetype;
1862
1863 if (!free_pages_prepare(page, 0))
1864 return;
1865
1866 migratetype = get_pfnblock_migratetype(page, pfn);
1867 set_freepage_migratetype(page, migratetype);
1868 local_irq_save(flags);
1869 __count_vm_event(PGFREE);
1870
1871 /*
1872 * We only track unmovable, reclaimable and movable on pcp lists.
1873 * Free ISOLATE pages back to the allocator because they are being
1874 * offlined but treat RESERVE as movable pages so we can get those
1875 * areas back if necessary. Otherwise, we may have to free
1876 * excessively into the page allocator
1877 */
1878 if (migratetype >= MIGRATE_PCPTYPES) {
1879 if (unlikely(is_migrate_isolate(migratetype))) {
1880 free_one_page(zone, page, pfn, 0, migratetype);
1881 goto out;
1882 }
1883 migratetype = MIGRATE_MOVABLE;
1884 }
1885
1886 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1887 if (!cold)
1888 list_add(&page->lru, &pcp->lists[migratetype]);
1889 else
1890 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1891 pcp->count++;
1892 if (pcp->count >= pcp->high) {
1893 unsigned long batch = READ_ONCE(pcp->batch);
1894 free_pcppages_bulk(zone, batch, pcp);
1895 pcp->count -= batch;
1896 }
1897
1898 out:
1899 local_irq_restore(flags);
1900 }
1901
1902 /*
1903 * Free a list of 0-order pages
1904 */
1905 void free_hot_cold_page_list(struct list_head *list, bool cold)
1906 {
1907 struct page *page, *next;
1908
1909 list_for_each_entry_safe(page, next, list, lru) {
1910 trace_mm_page_free_batched(page, cold);
1911 free_hot_cold_page(page, cold);
1912 }
1913 }
1914
1915 /*
1916 * split_page takes a non-compound higher-order page, and splits it into
1917 * n (1<<order) sub-pages: page[0..n]
1918 * Each sub-page must be freed individually.
1919 *
1920 * Note: this is probably too low level an operation for use in drivers.
1921 * Please consult with lkml before using this in your driver.
1922 */
1923 void split_page(struct page *page, unsigned int order)
1924 {
1925 int i;
1926
1927 VM_BUG_ON_PAGE(PageCompound(page), page);
1928 VM_BUG_ON_PAGE(!page_count(page), page);
1929
1930 #ifdef CONFIG_KMEMCHECK
1931 /*
1932 * Split shadow pages too, because free(page[0]) would
1933 * otherwise free the whole shadow.
1934 */
1935 if (kmemcheck_page_is_tracked(page))
1936 split_page(virt_to_page(page[0].shadow), order);
1937 #endif
1938
1939 set_page_owner(page, 0, 0);
1940 for (i = 1; i < (1 << order); i++) {
1941 set_page_refcounted(page + i);
1942 set_page_owner(page + i, 0, 0);
1943 }
1944 }
1945 EXPORT_SYMBOL_GPL(split_page);
1946
1947 int __isolate_free_page(struct page *page, unsigned int order)
1948 {
1949 unsigned long watermark;
1950 struct zone *zone;
1951 int mt;
1952
1953 BUG_ON(!PageBuddy(page));
1954
1955 zone = page_zone(page);
1956 mt = get_pageblock_migratetype(page);
1957
1958 if (!is_migrate_isolate(mt)) {
1959 /* Obey watermarks as if the page was being allocated */
1960 watermark = low_wmark_pages(zone) + (1 << order);
1961 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1962 return 0;
1963
1964 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1965 }
1966
1967 /* Remove page from free list */
1968 list_del(&page->lru);
1969 zone->free_area[order].nr_free--;
1970 rmv_page_order(page);
1971
1972 /* Set the pageblock if the isolated page is at least a pageblock */
1973 if (order >= pageblock_order - 1) {
1974 struct page *endpage = page + (1 << order) - 1;
1975 for (; page < endpage; page += pageblock_nr_pages) {
1976 int mt = get_pageblock_migratetype(page);
1977 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1978 set_pageblock_migratetype(page,
1979 MIGRATE_MOVABLE);
1980 }
1981 }
1982
1983 set_page_owner(page, order, 0);
1984 return 1UL << order;
1985 }
1986
1987 /*
1988 * Similar to split_page except the page is already free. As this is only
1989 * being used for migration, the migratetype of the block also changes.
1990 * As this is called with interrupts disabled, the caller is responsible
1991 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1992 * are enabled.
1993 *
1994 * Note: this is probably too low level an operation for use in drivers.
1995 * Please consult with lkml before using this in your driver.
1996 */
1997 int split_free_page(struct page *page)
1998 {
1999 unsigned int order;
2000 int nr_pages;
2001
2002 order = page_order(page);
2003
2004 nr_pages = __isolate_free_page(page, order);
2005 if (!nr_pages)
2006 return 0;
2007
2008 /* Split into individual pages */
2009 set_page_refcounted(page);
2010 split_page(page, order);
2011 return nr_pages;
2012 }
2013
2014 /*
2015 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2016 */
2017 static inline
2018 struct page *buffered_rmqueue(struct zone *preferred_zone,
2019 struct zone *zone, unsigned int order,
2020 gfp_t gfp_flags, int migratetype)
2021 {
2022 unsigned long flags;
2023 struct page *page;
2024 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2025
2026 if (likely(order == 0)) {
2027 struct per_cpu_pages *pcp;
2028 struct list_head *list;
2029
2030 local_irq_save(flags);
2031 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2032 list = &pcp->lists[migratetype];
2033 if (list_empty(list)) {
2034 pcp->count += rmqueue_bulk(zone, 0,
2035 pcp->batch, list,
2036 migratetype, cold);
2037 if (unlikely(list_empty(list)))
2038 goto failed;
2039 }
2040
2041 if (cold)
2042 page = list_entry(list->prev, struct page, lru);
2043 else
2044 page = list_entry(list->next, struct page, lru);
2045
2046 list_del(&page->lru);
2047 pcp->count--;
2048 } else {
2049 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2050 /*
2051 * __GFP_NOFAIL is not to be used in new code.
2052 *
2053 * All __GFP_NOFAIL callers should be fixed so that they
2054 * properly detect and handle allocation failures.
2055 *
2056 * We most definitely don't want callers attempting to
2057 * allocate greater than order-1 page units with
2058 * __GFP_NOFAIL.
2059 */
2060 WARN_ON_ONCE(order > 1);
2061 }
2062 spin_lock_irqsave(&zone->lock, flags);
2063 page = __rmqueue(zone, order, migratetype);
2064 spin_unlock(&zone->lock);
2065 if (!page)
2066 goto failed;
2067 __mod_zone_freepage_state(zone, -(1 << order),
2068 get_freepage_migratetype(page));
2069 }
2070
2071 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2072 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2073 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2074 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2075
2076 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2077 zone_statistics(preferred_zone, zone, gfp_flags);
2078 local_irq_restore(flags);
2079
2080 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2081 return page;
2082
2083 failed:
2084 local_irq_restore(flags);
2085 return NULL;
2086 }
2087
2088 #ifdef CONFIG_FAIL_PAGE_ALLOC
2089
2090 static struct {
2091 struct fault_attr attr;
2092
2093 u32 ignore_gfp_highmem;
2094 u32 ignore_gfp_wait;
2095 u32 min_order;
2096 } fail_page_alloc = {
2097 .attr = FAULT_ATTR_INITIALIZER,
2098 .ignore_gfp_wait = 1,
2099 .ignore_gfp_highmem = 1,
2100 .min_order = 1,
2101 };
2102
2103 static int __init setup_fail_page_alloc(char *str)
2104 {
2105 return setup_fault_attr(&fail_page_alloc.attr, str);
2106 }
2107 __setup("fail_page_alloc=", setup_fail_page_alloc);
2108
2109 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2110 {
2111 if (order < fail_page_alloc.min_order)
2112 return false;
2113 if (gfp_mask & __GFP_NOFAIL)
2114 return false;
2115 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2116 return false;
2117 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2118 return false;
2119
2120 return should_fail(&fail_page_alloc.attr, 1 << order);
2121 }
2122
2123 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2124
2125 static int __init fail_page_alloc_debugfs(void)
2126 {
2127 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2128 struct dentry *dir;
2129
2130 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2131 &fail_page_alloc.attr);
2132 if (IS_ERR(dir))
2133 return PTR_ERR(dir);
2134
2135 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2136 &fail_page_alloc.ignore_gfp_wait))
2137 goto fail;
2138 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2139 &fail_page_alloc.ignore_gfp_highmem))
2140 goto fail;
2141 if (!debugfs_create_u32("min-order", mode, dir,
2142 &fail_page_alloc.min_order))
2143 goto fail;
2144
2145 return 0;
2146 fail:
2147 debugfs_remove_recursive(dir);
2148
2149 return -ENOMEM;
2150 }
2151
2152 late_initcall(fail_page_alloc_debugfs);
2153
2154 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2155
2156 #else /* CONFIG_FAIL_PAGE_ALLOC */
2157
2158 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2159 {
2160 return false;
2161 }
2162
2163 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2164
2165 /*
2166 * Return true if free pages are above 'mark'. This takes into account the order
2167 * of the allocation.
2168 */
2169 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2170 unsigned long mark, int classzone_idx, int alloc_flags,
2171 long free_pages)
2172 {
2173 /* free_pages may go negative - that's OK */
2174 long min = mark;
2175 int o;
2176 long free_cma = 0;
2177
2178 free_pages -= (1 << order) - 1;
2179 if (alloc_flags & ALLOC_HIGH)
2180 min -= min / 2;
2181 if (alloc_flags & ALLOC_HARDER)
2182 min -= min / 4;
2183 #ifdef CONFIG_CMA
2184 /* If allocation can't use CMA areas don't use free CMA pages */
2185 if (!(alloc_flags & ALLOC_CMA))
2186 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2187 #endif
2188
2189 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2190 return false;
2191 for (o = 0; o < order; o++) {
2192 /* At the next order, this order's pages become unavailable */
2193 free_pages -= z->free_area[o].nr_free << o;
2194
2195 /* Require fewer higher order pages to be free */
2196 min >>= 1;
2197
2198 if (free_pages <= min)
2199 return false;
2200 }
2201 return true;
2202 }
2203
2204 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2205 int classzone_idx, int alloc_flags)
2206 {
2207 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2208 zone_page_state(z, NR_FREE_PAGES));
2209 }
2210
2211 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2212 unsigned long mark, int classzone_idx, int alloc_flags)
2213 {
2214 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2215
2216 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2217 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2218
2219 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2220 free_pages);
2221 }
2222
2223 #ifdef CONFIG_NUMA
2224 /*
2225 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2226 * skip over zones that are not allowed by the cpuset, or that have
2227 * been recently (in last second) found to be nearly full. See further
2228 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2229 * that have to skip over a lot of full or unallowed zones.
2230 *
2231 * If the zonelist cache is present in the passed zonelist, then
2232 * returns a pointer to the allowed node mask (either the current
2233 * tasks mems_allowed, or node_states[N_MEMORY].)
2234 *
2235 * If the zonelist cache is not available for this zonelist, does
2236 * nothing and returns NULL.
2237 *
2238 * If the fullzones BITMAP in the zonelist cache is stale (more than
2239 * a second since last zap'd) then we zap it out (clear its bits.)
2240 *
2241 * We hold off even calling zlc_setup, until after we've checked the
2242 * first zone in the zonelist, on the theory that most allocations will
2243 * be satisfied from that first zone, so best to examine that zone as
2244 * quickly as we can.
2245 */
2246 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2247 {
2248 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2249 nodemask_t *allowednodes; /* zonelist_cache approximation */
2250
2251 zlc = zonelist->zlcache_ptr;
2252 if (!zlc)
2253 return NULL;
2254
2255 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2256 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2257 zlc->last_full_zap = jiffies;
2258 }
2259
2260 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2261 &cpuset_current_mems_allowed :
2262 &node_states[N_MEMORY];
2263 return allowednodes;
2264 }
2265
2266 /*
2267 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2268 * if it is worth looking at further for free memory:
2269 * 1) Check that the zone isn't thought to be full (doesn't have its
2270 * bit set in the zonelist_cache fullzones BITMAP).
2271 * 2) Check that the zones node (obtained from the zonelist_cache
2272 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2273 * Return true (non-zero) if zone is worth looking at further, or
2274 * else return false (zero) if it is not.
2275 *
2276 * This check -ignores- the distinction between various watermarks,
2277 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2278 * found to be full for any variation of these watermarks, it will
2279 * be considered full for up to one second by all requests, unless
2280 * we are so low on memory on all allowed nodes that we are forced
2281 * into the second scan of the zonelist.
2282 *
2283 * In the second scan we ignore this zonelist cache and exactly
2284 * apply the watermarks to all zones, even it is slower to do so.
2285 * We are low on memory in the second scan, and should leave no stone
2286 * unturned looking for a free page.
2287 */
2288 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2289 nodemask_t *allowednodes)
2290 {
2291 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2292 int i; /* index of *z in zonelist zones */
2293 int n; /* node that zone *z is on */
2294
2295 zlc = zonelist->zlcache_ptr;
2296 if (!zlc)
2297 return 1;
2298
2299 i = z - zonelist->_zonerefs;
2300 n = zlc->z_to_n[i];
2301
2302 /* This zone is worth trying if it is allowed but not full */
2303 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2304 }
2305
2306 /*
2307 * Given 'z' scanning a zonelist, set the corresponding bit in
2308 * zlc->fullzones, so that subsequent attempts to allocate a page
2309 * from that zone don't waste time re-examining it.
2310 */
2311 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2312 {
2313 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2314 int i; /* index of *z in zonelist zones */
2315
2316 zlc = zonelist->zlcache_ptr;
2317 if (!zlc)
2318 return;
2319
2320 i = z - zonelist->_zonerefs;
2321
2322 set_bit(i, zlc->fullzones);
2323 }
2324
2325 /*
2326 * clear all zones full, called after direct reclaim makes progress so that
2327 * a zone that was recently full is not skipped over for up to a second
2328 */
2329 static void zlc_clear_zones_full(struct zonelist *zonelist)
2330 {
2331 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2332
2333 zlc = zonelist->zlcache_ptr;
2334 if (!zlc)
2335 return;
2336
2337 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2338 }
2339
2340 static bool zone_local(struct zone *local_zone, struct zone *zone)
2341 {
2342 return local_zone->node == zone->node;
2343 }
2344
2345 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2346 {
2347 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2348 RECLAIM_DISTANCE;
2349 }
2350
2351 #else /* CONFIG_NUMA */
2352
2353 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2354 {
2355 return NULL;
2356 }
2357
2358 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2359 nodemask_t *allowednodes)
2360 {
2361 return 1;
2362 }
2363
2364 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2365 {
2366 }
2367
2368 static void zlc_clear_zones_full(struct zonelist *zonelist)
2369 {
2370 }
2371
2372 static bool zone_local(struct zone *local_zone, struct zone *zone)
2373 {
2374 return true;
2375 }
2376
2377 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2378 {
2379 return true;
2380 }
2381
2382 #endif /* CONFIG_NUMA */
2383
2384 static void reset_alloc_batches(struct zone *preferred_zone)
2385 {
2386 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2387
2388 do {
2389 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2390 high_wmark_pages(zone) - low_wmark_pages(zone) -
2391 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2392 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2393 } while (zone++ != preferred_zone);
2394 }
2395
2396 /*
2397 * get_page_from_freelist goes through the zonelist trying to allocate
2398 * a page.
2399 */
2400 static struct page *
2401 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2402 const struct alloc_context *ac)
2403 {
2404 struct zonelist *zonelist = ac->zonelist;
2405 struct zoneref *z;
2406 struct page *page = NULL;
2407 struct zone *zone;
2408 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2409 int zlc_active = 0; /* set if using zonelist_cache */
2410 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2411 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2412 (gfp_mask & __GFP_WRITE);
2413 int nr_fair_skipped = 0;
2414 bool zonelist_rescan;
2415
2416 zonelist_scan:
2417 zonelist_rescan = false;
2418
2419 /*
2420 * Scan zonelist, looking for a zone with enough free.
2421 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2422 */
2423 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2424 ac->nodemask) {
2425 unsigned long mark;
2426
2427 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2428 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2429 continue;
2430 if (cpusets_enabled() &&
2431 (alloc_flags & ALLOC_CPUSET) &&
2432 !cpuset_zone_allowed(zone, gfp_mask))
2433 continue;
2434 /*
2435 * Distribute pages in proportion to the individual
2436 * zone size to ensure fair page aging. The zone a
2437 * page was allocated in should have no effect on the
2438 * time the page has in memory before being reclaimed.
2439 */
2440 if (alloc_flags & ALLOC_FAIR) {
2441 if (!zone_local(ac->preferred_zone, zone))
2442 break;
2443 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2444 nr_fair_skipped++;
2445 continue;
2446 }
2447 }
2448 /*
2449 * When allocating a page cache page for writing, we
2450 * want to get it from a zone that is within its dirty
2451 * limit, such that no single zone holds more than its
2452 * proportional share of globally allowed dirty pages.
2453 * The dirty limits take into account the zone's
2454 * lowmem reserves and high watermark so that kswapd
2455 * should be able to balance it without having to
2456 * write pages from its LRU list.
2457 *
2458 * This may look like it could increase pressure on
2459 * lower zones by failing allocations in higher zones
2460 * before they are full. But the pages that do spill
2461 * over are limited as the lower zones are protected
2462 * by this very same mechanism. It should not become
2463 * a practical burden to them.
2464 *
2465 * XXX: For now, allow allocations to potentially
2466 * exceed the per-zone dirty limit in the slowpath
2467 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2468 * which is important when on a NUMA setup the allowed
2469 * zones are together not big enough to reach the
2470 * global limit. The proper fix for these situations
2471 * will require awareness of zones in the
2472 * dirty-throttling and the flusher threads.
2473 */
2474 if (consider_zone_dirty && !zone_dirty_ok(zone))
2475 continue;
2476
2477 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2478 if (!zone_watermark_ok(zone, order, mark,
2479 ac->classzone_idx, alloc_flags)) {
2480 int ret;
2481
2482 /* Checked here to keep the fast path fast */
2483 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2484 if (alloc_flags & ALLOC_NO_WATERMARKS)
2485 goto try_this_zone;
2486
2487 if (IS_ENABLED(CONFIG_NUMA) &&
2488 !did_zlc_setup && nr_online_nodes > 1) {
2489 /*
2490 * we do zlc_setup if there are multiple nodes
2491 * and before considering the first zone allowed
2492 * by the cpuset.
2493 */
2494 allowednodes = zlc_setup(zonelist, alloc_flags);
2495 zlc_active = 1;
2496 did_zlc_setup = 1;
2497 }
2498
2499 if (zone_reclaim_mode == 0 ||
2500 !zone_allows_reclaim(ac->preferred_zone, zone))
2501 goto this_zone_full;
2502
2503 /*
2504 * As we may have just activated ZLC, check if the first
2505 * eligible zone has failed zone_reclaim recently.
2506 */
2507 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2508 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2509 continue;
2510
2511 ret = zone_reclaim(zone, gfp_mask, order);
2512 switch (ret) {
2513 case ZONE_RECLAIM_NOSCAN:
2514 /* did not scan */
2515 continue;
2516 case ZONE_RECLAIM_FULL:
2517 /* scanned but unreclaimable */
2518 continue;
2519 default:
2520 /* did we reclaim enough */
2521 if (zone_watermark_ok(zone, order, mark,
2522 ac->classzone_idx, alloc_flags))
2523 goto try_this_zone;
2524
2525 /*
2526 * Failed to reclaim enough to meet watermark.
2527 * Only mark the zone full if checking the min
2528 * watermark or if we failed to reclaim just
2529 * 1<<order pages or else the page allocator
2530 * fastpath will prematurely mark zones full
2531 * when the watermark is between the low and
2532 * min watermarks.
2533 */
2534 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2535 ret == ZONE_RECLAIM_SOME)
2536 goto this_zone_full;
2537
2538 continue;
2539 }
2540 }
2541
2542 try_this_zone:
2543 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2544 gfp_mask, ac->migratetype);
2545 if (page) {
2546 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2547 goto try_this_zone;
2548 return page;
2549 }
2550 this_zone_full:
2551 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2552 zlc_mark_zone_full(zonelist, z);
2553 }
2554
2555 /*
2556 * The first pass makes sure allocations are spread fairly within the
2557 * local node. However, the local node might have free pages left
2558 * after the fairness batches are exhausted, and remote zones haven't
2559 * even been considered yet. Try once more without fairness, and
2560 * include remote zones now, before entering the slowpath and waking
2561 * kswapd: prefer spilling to a remote zone over swapping locally.
2562 */
2563 if (alloc_flags & ALLOC_FAIR) {
2564 alloc_flags &= ~ALLOC_FAIR;
2565 if (nr_fair_skipped) {
2566 zonelist_rescan = true;
2567 reset_alloc_batches(ac->preferred_zone);
2568 }
2569 if (nr_online_nodes > 1)
2570 zonelist_rescan = true;
2571 }
2572
2573 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2574 /* Disable zlc cache for second zonelist scan */
2575 zlc_active = 0;
2576 zonelist_rescan = true;
2577 }
2578
2579 if (zonelist_rescan)
2580 goto zonelist_scan;
2581
2582 return NULL;
2583 }
2584
2585 /*
2586 * Large machines with many possible nodes should not always dump per-node
2587 * meminfo in irq context.
2588 */
2589 static inline bool should_suppress_show_mem(void)
2590 {
2591 bool ret = false;
2592
2593 #if NODES_SHIFT > 8
2594 ret = in_interrupt();
2595 #endif
2596 return ret;
2597 }
2598
2599 static DEFINE_RATELIMIT_STATE(nopage_rs,
2600 DEFAULT_RATELIMIT_INTERVAL,
2601 DEFAULT_RATELIMIT_BURST);
2602
2603 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2604 {
2605 unsigned int filter = SHOW_MEM_FILTER_NODES;
2606
2607 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2608 debug_guardpage_minorder() > 0)
2609 return;
2610
2611 /*
2612 * This documents exceptions given to allocations in certain
2613 * contexts that are allowed to allocate outside current's set
2614 * of allowed nodes.
2615 */
2616 if (!(gfp_mask & __GFP_NOMEMALLOC))
2617 if (test_thread_flag(TIF_MEMDIE) ||
2618 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2619 filter &= ~SHOW_MEM_FILTER_NODES;
2620 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2621 filter &= ~SHOW_MEM_FILTER_NODES;
2622
2623 if (fmt) {
2624 struct va_format vaf;
2625 va_list args;
2626
2627 va_start(args, fmt);
2628
2629 vaf.fmt = fmt;
2630 vaf.va = &args;
2631
2632 pr_warn("%pV", &vaf);
2633
2634 va_end(args);
2635 }
2636
2637 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2638 current->comm, order, gfp_mask);
2639
2640 dump_stack();
2641 if (!should_suppress_show_mem())
2642 show_mem(filter);
2643 }
2644
2645 static inline struct page *
2646 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2647 const struct alloc_context *ac, unsigned long *did_some_progress)
2648 {
2649 struct page *page;
2650
2651 *did_some_progress = 0;
2652
2653 /*
2654 * Acquire the oom lock. If that fails, somebody else is
2655 * making progress for us.
2656 */
2657 if (!mutex_trylock(&oom_lock)) {
2658 *did_some_progress = 1;
2659 schedule_timeout_uninterruptible(1);
2660 return NULL;
2661 }
2662
2663 /*
2664 * Go through the zonelist yet one more time, keep very high watermark
2665 * here, this is only to catch a parallel oom killing, we must fail if
2666 * we're still under heavy pressure.
2667 */
2668 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2669 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2670 if (page)
2671 goto out;
2672
2673 if (!(gfp_mask & __GFP_NOFAIL)) {
2674 /* Coredumps can quickly deplete all memory reserves */
2675 if (current->flags & PF_DUMPCORE)
2676 goto out;
2677 /* The OOM killer will not help higher order allocs */
2678 if (order > PAGE_ALLOC_COSTLY_ORDER)
2679 goto out;
2680 /* The OOM killer does not needlessly kill tasks for lowmem */
2681 if (ac->high_zoneidx < ZONE_NORMAL)
2682 goto out;
2683 /* The OOM killer does not compensate for IO-less reclaim */
2684 if (!(gfp_mask & __GFP_FS)) {
2685 /*
2686 * XXX: Page reclaim didn't yield anything,
2687 * and the OOM killer can't be invoked, but
2688 * keep looping as per tradition.
2689 */
2690 *did_some_progress = 1;
2691 goto out;
2692 }
2693 if (pm_suspended_storage())
2694 goto out;
2695 /* The OOM killer may not free memory on a specific node */
2696 if (gfp_mask & __GFP_THISNODE)
2697 goto out;
2698 }
2699 /* Exhausted what can be done so it's blamo time */
2700 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2701 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2702 *did_some_progress = 1;
2703 out:
2704 mutex_unlock(&oom_lock);
2705 return page;
2706 }
2707
2708 #ifdef CONFIG_COMPACTION
2709 /* Try memory compaction for high-order allocations before reclaim */
2710 static struct page *
2711 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2712 int alloc_flags, const struct alloc_context *ac,
2713 enum migrate_mode mode, int *contended_compaction,
2714 bool *deferred_compaction)
2715 {
2716 unsigned long compact_result;
2717 struct page *page;
2718
2719 if (!order)
2720 return NULL;
2721
2722 current->flags |= PF_MEMALLOC;
2723 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2724 mode, contended_compaction);
2725 current->flags &= ~PF_MEMALLOC;
2726
2727 switch (compact_result) {
2728 case COMPACT_DEFERRED:
2729 *deferred_compaction = true;
2730 /* fall-through */
2731 case COMPACT_SKIPPED:
2732 return NULL;
2733 default:
2734 break;
2735 }
2736
2737 /*
2738 * At least in one zone compaction wasn't deferred or skipped, so let's
2739 * count a compaction stall
2740 */
2741 count_vm_event(COMPACTSTALL);
2742
2743 page = get_page_from_freelist(gfp_mask, order,
2744 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2745
2746 if (page) {
2747 struct zone *zone = page_zone(page);
2748
2749 zone->compact_blockskip_flush = false;
2750 compaction_defer_reset(zone, order, true);
2751 count_vm_event(COMPACTSUCCESS);
2752 return page;
2753 }
2754
2755 /*
2756 * It's bad if compaction run occurs and fails. The most likely reason
2757 * is that pages exist, but not enough to satisfy watermarks.
2758 */
2759 count_vm_event(COMPACTFAIL);
2760
2761 cond_resched();
2762
2763 return NULL;
2764 }
2765 #else
2766 static inline struct page *
2767 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2768 int alloc_flags, const struct alloc_context *ac,
2769 enum migrate_mode mode, int *contended_compaction,
2770 bool *deferred_compaction)
2771 {
2772 return NULL;
2773 }
2774 #endif /* CONFIG_COMPACTION */
2775
2776 /* Perform direct synchronous page reclaim */
2777 static int
2778 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2779 const struct alloc_context *ac)
2780 {
2781 struct reclaim_state reclaim_state;
2782 int progress;
2783
2784 cond_resched();
2785
2786 /* We now go into synchronous reclaim */
2787 cpuset_memory_pressure_bump();
2788 current->flags |= PF_MEMALLOC;
2789 lockdep_set_current_reclaim_state(gfp_mask);
2790 reclaim_state.reclaimed_slab = 0;
2791 current->reclaim_state = &reclaim_state;
2792
2793 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2794 ac->nodemask);
2795
2796 current->reclaim_state = NULL;
2797 lockdep_clear_current_reclaim_state();
2798 current->flags &= ~PF_MEMALLOC;
2799
2800 cond_resched();
2801
2802 return progress;
2803 }
2804
2805 /* The really slow allocator path where we enter direct reclaim */
2806 static inline struct page *
2807 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2808 int alloc_flags, const struct alloc_context *ac,
2809 unsigned long *did_some_progress)
2810 {
2811 struct page *page = NULL;
2812 bool drained = false;
2813
2814 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2815 if (unlikely(!(*did_some_progress)))
2816 return NULL;
2817
2818 /* After successful reclaim, reconsider all zones for allocation */
2819 if (IS_ENABLED(CONFIG_NUMA))
2820 zlc_clear_zones_full(ac->zonelist);
2821
2822 retry:
2823 page = get_page_from_freelist(gfp_mask, order,
2824 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2825
2826 /*
2827 * If an allocation failed after direct reclaim, it could be because
2828 * pages are pinned on the per-cpu lists. Drain them and try again
2829 */
2830 if (!page && !drained) {
2831 drain_all_pages(NULL);
2832 drained = true;
2833 goto retry;
2834 }
2835
2836 return page;
2837 }
2838
2839 /*
2840 * This is called in the allocator slow-path if the allocation request is of
2841 * sufficient urgency to ignore watermarks and take other desperate measures
2842 */
2843 static inline struct page *
2844 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2845 const struct alloc_context *ac)
2846 {
2847 struct page *page;
2848
2849 do {
2850 page = get_page_from_freelist(gfp_mask, order,
2851 ALLOC_NO_WATERMARKS, ac);
2852
2853 if (!page && gfp_mask & __GFP_NOFAIL)
2854 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2855 HZ/50);
2856 } while (!page && (gfp_mask & __GFP_NOFAIL));
2857
2858 return page;
2859 }
2860
2861 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2862 {
2863 struct zoneref *z;
2864 struct zone *zone;
2865
2866 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2867 ac->high_zoneidx, ac->nodemask)
2868 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2869 }
2870
2871 static inline int
2872 gfp_to_alloc_flags(gfp_t gfp_mask)
2873 {
2874 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2875 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2876
2877 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2878 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2879
2880 /*
2881 * The caller may dip into page reserves a bit more if the caller
2882 * cannot run direct reclaim, or if the caller has realtime scheduling
2883 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2884 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2885 */
2886 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2887
2888 if (atomic) {
2889 /*
2890 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2891 * if it can't schedule.
2892 */
2893 if (!(gfp_mask & __GFP_NOMEMALLOC))
2894 alloc_flags |= ALLOC_HARDER;
2895 /*
2896 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2897 * comment for __cpuset_node_allowed().
2898 */
2899 alloc_flags &= ~ALLOC_CPUSET;
2900 } else if (unlikely(rt_task(current)) && !in_interrupt())
2901 alloc_flags |= ALLOC_HARDER;
2902
2903 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2904 if (gfp_mask & __GFP_MEMALLOC)
2905 alloc_flags |= ALLOC_NO_WATERMARKS;
2906 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2907 alloc_flags |= ALLOC_NO_WATERMARKS;
2908 else if (!in_interrupt() &&
2909 ((current->flags & PF_MEMALLOC) ||
2910 unlikely(test_thread_flag(TIF_MEMDIE))))
2911 alloc_flags |= ALLOC_NO_WATERMARKS;
2912 }
2913 #ifdef CONFIG_CMA
2914 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2915 alloc_flags |= ALLOC_CMA;
2916 #endif
2917 return alloc_flags;
2918 }
2919
2920 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2921 {
2922 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2923 }
2924
2925 static inline struct page *
2926 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2927 struct alloc_context *ac)
2928 {
2929 const gfp_t wait = gfp_mask & __GFP_WAIT;
2930 struct page *page = NULL;
2931 int alloc_flags;
2932 unsigned long pages_reclaimed = 0;
2933 unsigned long did_some_progress;
2934 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2935 bool deferred_compaction = false;
2936 int contended_compaction = COMPACT_CONTENDED_NONE;
2937
2938 /*
2939 * In the slowpath, we sanity check order to avoid ever trying to
2940 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2941 * be using allocators in order of preference for an area that is
2942 * too large.
2943 */
2944 if (order >= MAX_ORDER) {
2945 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2946 return NULL;
2947 }
2948
2949 /*
2950 * If this allocation cannot block and it is for a specific node, then
2951 * fail early. There's no need to wakeup kswapd or retry for a
2952 * speculative node-specific allocation.
2953 */
2954 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2955 goto nopage;
2956
2957 retry:
2958 if (!(gfp_mask & __GFP_NO_KSWAPD))
2959 wake_all_kswapds(order, ac);
2960
2961 /*
2962 * OK, we're below the kswapd watermark and have kicked background
2963 * reclaim. Now things get more complex, so set up alloc_flags according
2964 * to how we want to proceed.
2965 */
2966 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2967
2968 /*
2969 * Find the true preferred zone if the allocation is unconstrained by
2970 * cpusets.
2971 */
2972 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2973 struct zoneref *preferred_zoneref;
2974 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2975 ac->high_zoneidx, NULL, &ac->preferred_zone);
2976 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2977 }
2978
2979 /* This is the last chance, in general, before the goto nopage. */
2980 page = get_page_from_freelist(gfp_mask, order,
2981 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2982 if (page)
2983 goto got_pg;
2984
2985 /* Allocate without watermarks if the context allows */
2986 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2987 /*
2988 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2989 * the allocation is high priority and these type of
2990 * allocations are system rather than user orientated
2991 */
2992 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2993
2994 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2995
2996 if (page) {
2997 goto got_pg;
2998 }
2999 }
3000
3001 /* Atomic allocations - we can't balance anything */
3002 if (!wait) {
3003 /*
3004 * All existing users of the deprecated __GFP_NOFAIL are
3005 * blockable, so warn of any new users that actually allow this
3006 * type of allocation to fail.
3007 */
3008 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3009 goto nopage;
3010 }
3011
3012 /* Avoid recursion of direct reclaim */
3013 if (current->flags & PF_MEMALLOC)
3014 goto nopage;
3015
3016 /* Avoid allocations with no watermarks from looping endlessly */
3017 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3018 goto nopage;
3019
3020 /*
3021 * Try direct compaction. The first pass is asynchronous. Subsequent
3022 * attempts after direct reclaim are synchronous
3023 */
3024 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3025 migration_mode,
3026 &contended_compaction,
3027 &deferred_compaction);
3028 if (page)
3029 goto got_pg;
3030
3031 /* Checks for THP-specific high-order allocations */
3032 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3033 /*
3034 * If compaction is deferred for high-order allocations, it is
3035 * because sync compaction recently failed. If this is the case
3036 * and the caller requested a THP allocation, we do not want
3037 * to heavily disrupt the system, so we fail the allocation
3038 * instead of entering direct reclaim.
3039 */
3040 if (deferred_compaction)
3041 goto nopage;
3042
3043 /*
3044 * In all zones where compaction was attempted (and not
3045 * deferred or skipped), lock contention has been detected.
3046 * For THP allocation we do not want to disrupt the others
3047 * so we fallback to base pages instead.
3048 */
3049 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3050 goto nopage;
3051
3052 /*
3053 * If compaction was aborted due to need_resched(), we do not
3054 * want to further increase allocation latency, unless it is
3055 * khugepaged trying to collapse.
3056 */
3057 if (contended_compaction == COMPACT_CONTENDED_SCHED
3058 && !(current->flags & PF_KTHREAD))
3059 goto nopage;
3060 }
3061
3062 /*
3063 * It can become very expensive to allocate transparent hugepages at
3064 * fault, so use asynchronous memory compaction for THP unless it is
3065 * khugepaged trying to collapse.
3066 */
3067 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3068 (current->flags & PF_KTHREAD))
3069 migration_mode = MIGRATE_SYNC_LIGHT;
3070
3071 /* Try direct reclaim and then allocating */
3072 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3073 &did_some_progress);
3074 if (page)
3075 goto got_pg;
3076
3077 /* Do not loop if specifically requested */
3078 if (gfp_mask & __GFP_NORETRY)
3079 goto noretry;
3080
3081 /* Keep reclaiming pages as long as there is reasonable progress */
3082 pages_reclaimed += did_some_progress;
3083 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3084 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3085 /* Wait for some write requests to complete then retry */
3086 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3087 goto retry;
3088 }
3089
3090 /* Reclaim has failed us, start killing things */
3091 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3092 if (page)
3093 goto got_pg;
3094
3095 /* Retry as long as the OOM killer is making progress */
3096 if (did_some_progress)
3097 goto retry;
3098
3099 noretry:
3100 /*
3101 * High-order allocations do not necessarily loop after
3102 * direct reclaim and reclaim/compaction depends on compaction
3103 * being called after reclaim so call directly if necessary
3104 */
3105 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3106 ac, migration_mode,
3107 &contended_compaction,
3108 &deferred_compaction);
3109 if (page)
3110 goto got_pg;
3111 nopage:
3112 warn_alloc_failed(gfp_mask, order, NULL);
3113 got_pg:
3114 return page;
3115 }
3116
3117 /*
3118 * This is the 'heart' of the zoned buddy allocator.
3119 */
3120 struct page *
3121 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3122 struct zonelist *zonelist, nodemask_t *nodemask)
3123 {
3124 struct zoneref *preferred_zoneref;
3125 struct page *page = NULL;
3126 unsigned int cpuset_mems_cookie;
3127 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3128 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3129 struct alloc_context ac = {
3130 .high_zoneidx = gfp_zone(gfp_mask),
3131 .nodemask = nodemask,
3132 .migratetype = gfpflags_to_migratetype(gfp_mask),
3133 };
3134
3135 gfp_mask &= gfp_allowed_mask;
3136
3137 lockdep_trace_alloc(gfp_mask);
3138
3139 might_sleep_if(gfp_mask & __GFP_WAIT);
3140
3141 if (should_fail_alloc_page(gfp_mask, order))
3142 return NULL;
3143
3144 /*
3145 * Check the zones suitable for the gfp_mask contain at least one
3146 * valid zone. It's possible to have an empty zonelist as a result
3147 * of __GFP_THISNODE and a memoryless node
3148 */
3149 if (unlikely(!zonelist->_zonerefs->zone))
3150 return NULL;
3151
3152 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3153 alloc_flags |= ALLOC_CMA;
3154
3155 retry_cpuset:
3156 cpuset_mems_cookie = read_mems_allowed_begin();
3157
3158 /* We set it here, as __alloc_pages_slowpath might have changed it */
3159 ac.zonelist = zonelist;
3160 /* The preferred zone is used for statistics later */
3161 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3162 ac.nodemask ? : &cpuset_current_mems_allowed,
3163 &ac.preferred_zone);
3164 if (!ac.preferred_zone)
3165 goto out;
3166 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3167
3168 /* First allocation attempt */
3169 alloc_mask = gfp_mask|__GFP_HARDWALL;
3170 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3171 if (unlikely(!page)) {
3172 /*
3173 * Runtime PM, block IO and its error handling path
3174 * can deadlock because I/O on the device might not
3175 * complete.
3176 */
3177 alloc_mask = memalloc_noio_flags(gfp_mask);
3178
3179 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3180 }
3181
3182 if (kmemcheck_enabled && page)
3183 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3184
3185 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3186
3187 out:
3188 /*
3189 * When updating a task's mems_allowed, it is possible to race with
3190 * parallel threads in such a way that an allocation can fail while
3191 * the mask is being updated. If a page allocation is about to fail,
3192 * check if the cpuset changed during allocation and if so, retry.
3193 */
3194 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3195 goto retry_cpuset;
3196
3197 return page;
3198 }
3199 EXPORT_SYMBOL(__alloc_pages_nodemask);
3200
3201 /*
3202 * Common helper functions.
3203 */
3204 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3205 {
3206 struct page *page;
3207
3208 /*
3209 * __get_free_pages() returns a 32-bit address, which cannot represent
3210 * a highmem page
3211 */
3212 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3213
3214 page = alloc_pages(gfp_mask, order);
3215 if (!page)
3216 return 0;
3217 return (unsigned long) page_address(page);
3218 }
3219 EXPORT_SYMBOL(__get_free_pages);
3220
3221 unsigned long get_zeroed_page(gfp_t gfp_mask)
3222 {
3223 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3224 }
3225 EXPORT_SYMBOL(get_zeroed_page);
3226
3227 void __free_pages(struct page *page, unsigned int order)
3228 {
3229 if (put_page_testzero(page)) {
3230 if (order == 0)
3231 free_hot_cold_page(page, false);
3232 else
3233 __free_pages_ok(page, order);
3234 }
3235 }
3236
3237 EXPORT_SYMBOL(__free_pages);
3238
3239 void free_pages(unsigned long addr, unsigned int order)
3240 {
3241 if (addr != 0) {
3242 VM_BUG_ON(!virt_addr_valid((void *)addr));
3243 __free_pages(virt_to_page((void *)addr), order);
3244 }
3245 }
3246
3247 EXPORT_SYMBOL(free_pages);
3248
3249 /*
3250 * Page Fragment:
3251 * An arbitrary-length arbitrary-offset area of memory which resides
3252 * within a 0 or higher order page. Multiple fragments within that page
3253 * are individually refcounted, in the page's reference counter.
3254 *
3255 * The page_frag functions below provide a simple allocation framework for
3256 * page fragments. This is used by the network stack and network device
3257 * drivers to provide a backing region of memory for use as either an
3258 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3259 */
3260 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3261 gfp_t gfp_mask)
3262 {
3263 struct page *page = NULL;
3264 gfp_t gfp = gfp_mask;
3265
3266 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3267 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3268 __GFP_NOMEMALLOC;
3269 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3270 PAGE_FRAG_CACHE_MAX_ORDER);
3271 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3272 #endif
3273 if (unlikely(!page))
3274 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3275
3276 nc->va = page ? page_address(page) : NULL;
3277
3278 return page;
3279 }
3280
3281 void *__alloc_page_frag(struct page_frag_cache *nc,
3282 unsigned int fragsz, gfp_t gfp_mask)
3283 {
3284 unsigned int size = PAGE_SIZE;
3285 struct page *page;
3286 int offset;
3287
3288 if (unlikely(!nc->va)) {
3289 refill:
3290 page = __page_frag_refill(nc, gfp_mask);
3291 if (!page)
3292 return NULL;
3293
3294 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3295 /* if size can vary use size else just use PAGE_SIZE */
3296 size = nc->size;
3297 #endif
3298 /* Even if we own the page, we do not use atomic_set().
3299 * This would break get_page_unless_zero() users.
3300 */
3301 atomic_add(size - 1, &page->_count);
3302
3303 /* reset page count bias and offset to start of new frag */
3304 nc->pfmemalloc = page->pfmemalloc;
3305 nc->pagecnt_bias = size;
3306 nc->offset = size;
3307 }
3308
3309 offset = nc->offset - fragsz;
3310 if (unlikely(offset < 0)) {
3311 page = virt_to_page(nc->va);
3312
3313 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3314 goto refill;
3315
3316 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3317 /* if size can vary use size else just use PAGE_SIZE */
3318 size = nc->size;
3319 #endif
3320 /* OK, page count is 0, we can safely set it */
3321 atomic_set(&page->_count, size);
3322
3323 /* reset page count bias and offset to start of new frag */
3324 nc->pagecnt_bias = size;
3325 offset = size - fragsz;
3326 }
3327
3328 nc->pagecnt_bias--;
3329 nc->offset = offset;
3330
3331 return nc->va + offset;
3332 }
3333 EXPORT_SYMBOL(__alloc_page_frag);
3334
3335 /*
3336 * Frees a page fragment allocated out of either a compound or order 0 page.
3337 */
3338 void __free_page_frag(void *addr)
3339 {
3340 struct page *page = virt_to_head_page(addr);
3341
3342 if (unlikely(put_page_testzero(page)))
3343 __free_pages_ok(page, compound_order(page));
3344 }
3345 EXPORT_SYMBOL(__free_page_frag);
3346
3347 /*
3348 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3349 * of the current memory cgroup.
3350 *
3351 * It should be used when the caller would like to use kmalloc, but since the
3352 * allocation is large, it has to fall back to the page allocator.
3353 */
3354 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3355 {
3356 struct page *page;
3357 struct mem_cgroup *memcg = NULL;
3358
3359 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3360 return NULL;
3361 page = alloc_pages(gfp_mask, order);
3362 memcg_kmem_commit_charge(page, memcg, order);
3363 return page;
3364 }
3365
3366 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3367 {
3368 struct page *page;
3369 struct mem_cgroup *memcg = NULL;
3370
3371 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3372 return NULL;
3373 page = alloc_pages_node(nid, gfp_mask, order);
3374 memcg_kmem_commit_charge(page, memcg, order);
3375 return page;
3376 }
3377
3378 /*
3379 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3380 * alloc_kmem_pages.
3381 */
3382 void __free_kmem_pages(struct page *page, unsigned int order)
3383 {
3384 memcg_kmem_uncharge_pages(page, order);
3385 __free_pages(page, order);
3386 }
3387
3388 void free_kmem_pages(unsigned long addr, unsigned int order)
3389 {
3390 if (addr != 0) {
3391 VM_BUG_ON(!virt_addr_valid((void *)addr));
3392 __free_kmem_pages(virt_to_page((void *)addr), order);
3393 }
3394 }
3395
3396 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3397 {
3398 if (addr) {
3399 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3400 unsigned long used = addr + PAGE_ALIGN(size);
3401
3402 split_page(virt_to_page((void *)addr), order);
3403 while (used < alloc_end) {
3404 free_page(used);
3405 used += PAGE_SIZE;
3406 }
3407 }
3408 return (void *)addr;
3409 }
3410
3411 /**
3412 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3413 * @size: the number of bytes to allocate
3414 * @gfp_mask: GFP flags for the allocation
3415 *
3416 * This function is similar to alloc_pages(), except that it allocates the
3417 * minimum number of pages to satisfy the request. alloc_pages() can only
3418 * allocate memory in power-of-two pages.
3419 *
3420 * This function is also limited by MAX_ORDER.
3421 *
3422 * Memory allocated by this function must be released by free_pages_exact().
3423 */
3424 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3425 {
3426 unsigned int order = get_order(size);
3427 unsigned long addr;
3428
3429 addr = __get_free_pages(gfp_mask, order);
3430 return make_alloc_exact(addr, order, size);
3431 }
3432 EXPORT_SYMBOL(alloc_pages_exact);
3433
3434 /**
3435 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3436 * pages on a node.
3437 * @nid: the preferred node ID where memory should be allocated
3438 * @size: the number of bytes to allocate
3439 * @gfp_mask: GFP flags for the allocation
3440 *
3441 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3442 * back.
3443 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3444 * but is not exact.
3445 */
3446 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3447 {
3448 unsigned order = get_order(size);
3449 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3450 if (!p)
3451 return NULL;
3452 return make_alloc_exact((unsigned long)page_address(p), order, size);
3453 }
3454
3455 /**
3456 * free_pages_exact - release memory allocated via alloc_pages_exact()
3457 * @virt: the value returned by alloc_pages_exact.
3458 * @size: size of allocation, same value as passed to alloc_pages_exact().
3459 *
3460 * Release the memory allocated by a previous call to alloc_pages_exact.
3461 */
3462 void free_pages_exact(void *virt, size_t size)
3463 {
3464 unsigned long addr = (unsigned long)virt;
3465 unsigned long end = addr + PAGE_ALIGN(size);
3466
3467 while (addr < end) {
3468 free_page(addr);
3469 addr += PAGE_SIZE;
3470 }
3471 }
3472 EXPORT_SYMBOL(free_pages_exact);
3473
3474 /**
3475 * nr_free_zone_pages - count number of pages beyond high watermark
3476 * @offset: The zone index of the highest zone
3477 *
3478 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3479 * high watermark within all zones at or below a given zone index. For each
3480 * zone, the number of pages is calculated as:
3481 * managed_pages - high_pages
3482 */
3483 static unsigned long nr_free_zone_pages(int offset)
3484 {
3485 struct zoneref *z;
3486 struct zone *zone;
3487
3488 /* Just pick one node, since fallback list is circular */
3489 unsigned long sum = 0;
3490
3491 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3492
3493 for_each_zone_zonelist(zone, z, zonelist, offset) {
3494 unsigned long size = zone->managed_pages;
3495 unsigned long high = high_wmark_pages(zone);
3496 if (size > high)
3497 sum += size - high;
3498 }
3499
3500 return sum;
3501 }
3502
3503 /**
3504 * nr_free_buffer_pages - count number of pages beyond high watermark
3505 *
3506 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3507 * watermark within ZONE_DMA and ZONE_NORMAL.
3508 */
3509 unsigned long nr_free_buffer_pages(void)
3510 {
3511 return nr_free_zone_pages(gfp_zone(GFP_USER));
3512 }
3513 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3514
3515 /**
3516 * nr_free_pagecache_pages - count number of pages beyond high watermark
3517 *
3518 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3519 * high watermark within all zones.
3520 */
3521 unsigned long nr_free_pagecache_pages(void)
3522 {
3523 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3524 }
3525
3526 static inline void show_node(struct zone *zone)
3527 {
3528 if (IS_ENABLED(CONFIG_NUMA))
3529 printk("Node %d ", zone_to_nid(zone));
3530 }
3531
3532 void si_meminfo(struct sysinfo *val)
3533 {
3534 val->totalram = totalram_pages;
3535 val->sharedram = global_page_state(NR_SHMEM);
3536 val->freeram = global_page_state(NR_FREE_PAGES);
3537 val->bufferram = nr_blockdev_pages();
3538 val->totalhigh = totalhigh_pages;
3539 val->freehigh = nr_free_highpages();
3540 val->mem_unit = PAGE_SIZE;
3541 }
3542
3543 EXPORT_SYMBOL(si_meminfo);
3544
3545 #ifdef CONFIG_NUMA
3546 void si_meminfo_node(struct sysinfo *val, int nid)
3547 {
3548 int zone_type; /* needs to be signed */
3549 unsigned long managed_pages = 0;
3550 pg_data_t *pgdat = NODE_DATA(nid);
3551
3552 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3553 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3554 val->totalram = managed_pages;
3555 val->sharedram = node_page_state(nid, NR_SHMEM);
3556 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3557 #ifdef CONFIG_HIGHMEM
3558 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3559 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3560 NR_FREE_PAGES);
3561 #else
3562 val->totalhigh = 0;
3563 val->freehigh = 0;
3564 #endif
3565 val->mem_unit = PAGE_SIZE;
3566 }
3567 #endif
3568
3569 /*
3570 * Determine whether the node should be displayed or not, depending on whether
3571 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3572 */
3573 bool skip_free_areas_node(unsigned int flags, int nid)
3574 {
3575 bool ret = false;
3576 unsigned int cpuset_mems_cookie;
3577
3578 if (!(flags & SHOW_MEM_FILTER_NODES))
3579 goto out;
3580
3581 do {
3582 cpuset_mems_cookie = read_mems_allowed_begin();
3583 ret = !node_isset(nid, cpuset_current_mems_allowed);
3584 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3585 out:
3586 return ret;
3587 }
3588
3589 #define K(x) ((x) << (PAGE_SHIFT-10))
3590
3591 static void show_migration_types(unsigned char type)
3592 {
3593 static const char types[MIGRATE_TYPES] = {
3594 [MIGRATE_UNMOVABLE] = 'U',
3595 [MIGRATE_RECLAIMABLE] = 'E',
3596 [MIGRATE_MOVABLE] = 'M',
3597 [MIGRATE_RESERVE] = 'R',
3598 #ifdef CONFIG_CMA
3599 [MIGRATE_CMA] = 'C',
3600 #endif
3601 #ifdef CONFIG_MEMORY_ISOLATION
3602 [MIGRATE_ISOLATE] = 'I',
3603 #endif
3604 };
3605 char tmp[MIGRATE_TYPES + 1];
3606 char *p = tmp;
3607 int i;
3608
3609 for (i = 0; i < MIGRATE_TYPES; i++) {
3610 if (type & (1 << i))
3611 *p++ = types[i];
3612 }
3613
3614 *p = '\0';
3615 printk("(%s) ", tmp);
3616 }
3617
3618 /*
3619 * Show free area list (used inside shift_scroll-lock stuff)
3620 * We also calculate the percentage fragmentation. We do this by counting the
3621 * memory on each free list with the exception of the first item on the list.
3622 *
3623 * Bits in @filter:
3624 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3625 * cpuset.
3626 */
3627 void show_free_areas(unsigned int filter)
3628 {
3629 unsigned long free_pcp = 0;
3630 int cpu;
3631 struct zone *zone;
3632
3633 for_each_populated_zone(zone) {
3634 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3635 continue;
3636
3637 for_each_online_cpu(cpu)
3638 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3639 }
3640
3641 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3642 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3643 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3644 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3645 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3646 " free:%lu free_pcp:%lu free_cma:%lu\n",
3647 global_page_state(NR_ACTIVE_ANON),
3648 global_page_state(NR_INACTIVE_ANON),
3649 global_page_state(NR_ISOLATED_ANON),
3650 global_page_state(NR_ACTIVE_FILE),
3651 global_page_state(NR_INACTIVE_FILE),
3652 global_page_state(NR_ISOLATED_FILE),
3653 global_page_state(NR_UNEVICTABLE),
3654 global_page_state(NR_FILE_DIRTY),
3655 global_page_state(NR_WRITEBACK),
3656 global_page_state(NR_UNSTABLE_NFS),
3657 global_page_state(NR_SLAB_RECLAIMABLE),
3658 global_page_state(NR_SLAB_UNRECLAIMABLE),
3659 global_page_state(NR_FILE_MAPPED),
3660 global_page_state(NR_SHMEM),
3661 global_page_state(NR_PAGETABLE),
3662 global_page_state(NR_BOUNCE),
3663 global_page_state(NR_FREE_PAGES),
3664 free_pcp,
3665 global_page_state(NR_FREE_CMA_PAGES));
3666
3667 for_each_populated_zone(zone) {
3668 int i;
3669
3670 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3671 continue;
3672
3673 free_pcp = 0;
3674 for_each_online_cpu(cpu)
3675 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3676
3677 show_node(zone);
3678 printk("%s"
3679 " free:%lukB"
3680 " min:%lukB"
3681 " low:%lukB"
3682 " high:%lukB"
3683 " active_anon:%lukB"
3684 " inactive_anon:%lukB"
3685 " active_file:%lukB"
3686 " inactive_file:%lukB"
3687 " unevictable:%lukB"
3688 " isolated(anon):%lukB"
3689 " isolated(file):%lukB"
3690 " present:%lukB"
3691 " managed:%lukB"
3692 " mlocked:%lukB"
3693 " dirty:%lukB"
3694 " writeback:%lukB"
3695 " mapped:%lukB"
3696 " shmem:%lukB"
3697 " slab_reclaimable:%lukB"
3698 " slab_unreclaimable:%lukB"
3699 " kernel_stack:%lukB"
3700 " pagetables:%lukB"
3701 " unstable:%lukB"
3702 " bounce:%lukB"
3703 " free_pcp:%lukB"
3704 " local_pcp:%ukB"
3705 " free_cma:%lukB"
3706 " writeback_tmp:%lukB"
3707 " pages_scanned:%lu"
3708 " all_unreclaimable? %s"
3709 "\n",
3710 zone->name,
3711 K(zone_page_state(zone, NR_FREE_PAGES)),
3712 K(min_wmark_pages(zone)),
3713 K(low_wmark_pages(zone)),
3714 K(high_wmark_pages(zone)),
3715 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3716 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3717 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3718 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3719 K(zone_page_state(zone, NR_UNEVICTABLE)),
3720 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3721 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3722 K(zone->present_pages),
3723 K(zone->managed_pages),
3724 K(zone_page_state(zone, NR_MLOCK)),
3725 K(zone_page_state(zone, NR_FILE_DIRTY)),
3726 K(zone_page_state(zone, NR_WRITEBACK)),
3727 K(zone_page_state(zone, NR_FILE_MAPPED)),
3728 K(zone_page_state(zone, NR_SHMEM)),
3729 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3730 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3731 zone_page_state(zone, NR_KERNEL_STACK) *
3732 THREAD_SIZE / 1024,
3733 K(zone_page_state(zone, NR_PAGETABLE)),
3734 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3735 K(zone_page_state(zone, NR_BOUNCE)),
3736 K(free_pcp),
3737 K(this_cpu_read(zone->pageset->pcp.count)),
3738 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3739 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3740 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3741 (!zone_reclaimable(zone) ? "yes" : "no")
3742 );
3743 printk("lowmem_reserve[]:");
3744 for (i = 0; i < MAX_NR_ZONES; i++)
3745 printk(" %ld", zone->lowmem_reserve[i]);
3746 printk("\n");
3747 }
3748
3749 for_each_populated_zone(zone) {
3750 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3751 unsigned char types[MAX_ORDER];
3752
3753 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3754 continue;
3755 show_node(zone);
3756 printk("%s: ", zone->name);
3757
3758 spin_lock_irqsave(&zone->lock, flags);
3759 for (order = 0; order < MAX_ORDER; order++) {
3760 struct free_area *area = &zone->free_area[order];
3761 int type;
3762
3763 nr[order] = area->nr_free;
3764 total += nr[order] << order;
3765
3766 types[order] = 0;
3767 for (type = 0; type < MIGRATE_TYPES; type++) {
3768 if (!list_empty(&area->free_list[type]))
3769 types[order] |= 1 << type;
3770 }
3771 }
3772 spin_unlock_irqrestore(&zone->lock, flags);
3773 for (order = 0; order < MAX_ORDER; order++) {
3774 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3775 if (nr[order])
3776 show_migration_types(types[order]);
3777 }
3778 printk("= %lukB\n", K(total));
3779 }
3780
3781 hugetlb_show_meminfo();
3782
3783 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3784
3785 show_swap_cache_info();
3786 }
3787
3788 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3789 {
3790 zoneref->zone = zone;
3791 zoneref->zone_idx = zone_idx(zone);
3792 }
3793
3794 /*
3795 * Builds allocation fallback zone lists.
3796 *
3797 * Add all populated zones of a node to the zonelist.
3798 */
3799 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3800 int nr_zones)
3801 {
3802 struct zone *zone;
3803 enum zone_type zone_type = MAX_NR_ZONES;
3804
3805 do {
3806 zone_type--;
3807 zone = pgdat->node_zones + zone_type;
3808 if (populated_zone(zone)) {
3809 zoneref_set_zone(zone,
3810 &zonelist->_zonerefs[nr_zones++]);
3811 check_highest_zone(zone_type);
3812 }
3813 } while (zone_type);
3814
3815 return nr_zones;
3816 }
3817
3818
3819 /*
3820 * zonelist_order:
3821 * 0 = automatic detection of better ordering.
3822 * 1 = order by ([node] distance, -zonetype)
3823 * 2 = order by (-zonetype, [node] distance)
3824 *
3825 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3826 * the same zonelist. So only NUMA can configure this param.
3827 */
3828 #define ZONELIST_ORDER_DEFAULT 0
3829 #define ZONELIST_ORDER_NODE 1
3830 #define ZONELIST_ORDER_ZONE 2
3831
3832 /* zonelist order in the kernel.
3833 * set_zonelist_order() will set this to NODE or ZONE.
3834 */
3835 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3836 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3837
3838
3839 #ifdef CONFIG_NUMA
3840 /* The value user specified ....changed by config */
3841 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3842 /* string for sysctl */
3843 #define NUMA_ZONELIST_ORDER_LEN 16
3844 char numa_zonelist_order[16] = "default";
3845
3846 /*
3847 * interface for configure zonelist ordering.
3848 * command line option "numa_zonelist_order"
3849 * = "[dD]efault - default, automatic configuration.
3850 * = "[nN]ode - order by node locality, then by zone within node
3851 * = "[zZ]one - order by zone, then by locality within zone
3852 */
3853
3854 static int __parse_numa_zonelist_order(char *s)
3855 {
3856 if (*s == 'd' || *s == 'D') {
3857 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3858 } else if (*s == 'n' || *s == 'N') {
3859 user_zonelist_order = ZONELIST_ORDER_NODE;
3860 } else if (*s == 'z' || *s == 'Z') {
3861 user_zonelist_order = ZONELIST_ORDER_ZONE;
3862 } else {
3863 printk(KERN_WARNING
3864 "Ignoring invalid numa_zonelist_order value: "
3865 "%s\n", s);
3866 return -EINVAL;
3867 }
3868 return 0;
3869 }
3870
3871 static __init int setup_numa_zonelist_order(char *s)
3872 {
3873 int ret;
3874
3875 if (!s)
3876 return 0;
3877
3878 ret = __parse_numa_zonelist_order(s);
3879 if (ret == 0)
3880 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3881
3882 return ret;
3883 }
3884 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3885
3886 /*
3887 * sysctl handler for numa_zonelist_order
3888 */
3889 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3890 void __user *buffer, size_t *length,
3891 loff_t *ppos)
3892 {
3893 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3894 int ret;
3895 static DEFINE_MUTEX(zl_order_mutex);
3896
3897 mutex_lock(&zl_order_mutex);
3898 if (write) {
3899 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3900 ret = -EINVAL;
3901 goto out;
3902 }
3903 strcpy(saved_string, (char *)table->data);
3904 }
3905 ret = proc_dostring(table, write, buffer, length, ppos);
3906 if (ret)
3907 goto out;
3908 if (write) {
3909 int oldval = user_zonelist_order;
3910
3911 ret = __parse_numa_zonelist_order((char *)table->data);
3912 if (ret) {
3913 /*
3914 * bogus value. restore saved string
3915 */
3916 strncpy((char *)table->data, saved_string,
3917 NUMA_ZONELIST_ORDER_LEN);
3918 user_zonelist_order = oldval;
3919 } else if (oldval != user_zonelist_order) {
3920 mutex_lock(&zonelists_mutex);
3921 build_all_zonelists(NULL, NULL);
3922 mutex_unlock(&zonelists_mutex);
3923 }
3924 }
3925 out:
3926 mutex_unlock(&zl_order_mutex);
3927 return ret;
3928 }
3929
3930
3931 #define MAX_NODE_LOAD (nr_online_nodes)
3932 static int node_load[MAX_NUMNODES];
3933
3934 /**
3935 * find_next_best_node - find the next node that should appear in a given node's fallback list
3936 * @node: node whose fallback list we're appending
3937 * @used_node_mask: nodemask_t of already used nodes
3938 *
3939 * We use a number of factors to determine which is the next node that should
3940 * appear on a given node's fallback list. The node should not have appeared
3941 * already in @node's fallback list, and it should be the next closest node
3942 * according to the distance array (which contains arbitrary distance values
3943 * from each node to each node in the system), and should also prefer nodes
3944 * with no CPUs, since presumably they'll have very little allocation pressure
3945 * on them otherwise.
3946 * It returns -1 if no node is found.
3947 */
3948 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3949 {
3950 int n, val;
3951 int min_val = INT_MAX;
3952 int best_node = NUMA_NO_NODE;
3953 const struct cpumask *tmp = cpumask_of_node(0);
3954
3955 /* Use the local node if we haven't already */
3956 if (!node_isset(node, *used_node_mask)) {
3957 node_set(node, *used_node_mask);
3958 return node;
3959 }
3960
3961 for_each_node_state(n, N_MEMORY) {
3962
3963 /* Don't want a node to appear more than once */
3964 if (node_isset(n, *used_node_mask))
3965 continue;
3966
3967 /* Use the distance array to find the distance */
3968 val = node_distance(node, n);
3969
3970 /* Penalize nodes under us ("prefer the next node") */
3971 val += (n < node);
3972
3973 /* Give preference to headless and unused nodes */
3974 tmp = cpumask_of_node(n);
3975 if (!cpumask_empty(tmp))
3976 val += PENALTY_FOR_NODE_WITH_CPUS;
3977
3978 /* Slight preference for less loaded node */
3979 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3980 val += node_load[n];
3981
3982 if (val < min_val) {
3983 min_val = val;
3984 best_node = n;
3985 }
3986 }
3987
3988 if (best_node >= 0)
3989 node_set(best_node, *used_node_mask);
3990
3991 return best_node;
3992 }
3993
3994
3995 /*
3996 * Build zonelists ordered by node and zones within node.
3997 * This results in maximum locality--normal zone overflows into local
3998 * DMA zone, if any--but risks exhausting DMA zone.
3999 */
4000 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4001 {
4002 int j;
4003 struct zonelist *zonelist;
4004
4005 zonelist = &pgdat->node_zonelists[0];
4006 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4007 ;
4008 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4009 zonelist->_zonerefs[j].zone = NULL;
4010 zonelist->_zonerefs[j].zone_idx = 0;
4011 }
4012
4013 /*
4014 * Build gfp_thisnode zonelists
4015 */
4016 static void build_thisnode_zonelists(pg_data_t *pgdat)
4017 {
4018 int j;
4019 struct zonelist *zonelist;
4020
4021 zonelist = &pgdat->node_zonelists[1];
4022 j = build_zonelists_node(pgdat, zonelist, 0);
4023 zonelist->_zonerefs[j].zone = NULL;
4024 zonelist->_zonerefs[j].zone_idx = 0;
4025 }
4026
4027 /*
4028 * Build zonelists ordered by zone and nodes within zones.
4029 * This results in conserving DMA zone[s] until all Normal memory is
4030 * exhausted, but results in overflowing to remote node while memory
4031 * may still exist in local DMA zone.
4032 */
4033 static int node_order[MAX_NUMNODES];
4034
4035 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4036 {
4037 int pos, j, node;
4038 int zone_type; /* needs to be signed */
4039 struct zone *z;
4040 struct zonelist *zonelist;
4041
4042 zonelist = &pgdat->node_zonelists[0];
4043 pos = 0;
4044 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4045 for (j = 0; j < nr_nodes; j++) {
4046 node = node_order[j];
4047 z = &NODE_DATA(node)->node_zones[zone_type];
4048 if (populated_zone(z)) {
4049 zoneref_set_zone(z,
4050 &zonelist->_zonerefs[pos++]);
4051 check_highest_zone(zone_type);
4052 }
4053 }
4054 }
4055 zonelist->_zonerefs[pos].zone = NULL;
4056 zonelist->_zonerefs[pos].zone_idx = 0;
4057 }
4058
4059 #if defined(CONFIG_64BIT)
4060 /*
4061 * Devices that require DMA32/DMA are relatively rare and do not justify a
4062 * penalty to every machine in case the specialised case applies. Default
4063 * to Node-ordering on 64-bit NUMA machines
4064 */
4065 static int default_zonelist_order(void)
4066 {
4067 return ZONELIST_ORDER_NODE;
4068 }
4069 #else
4070 /*
4071 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4072 * by the kernel. If processes running on node 0 deplete the low memory zone
4073 * then reclaim will occur more frequency increasing stalls and potentially
4074 * be easier to OOM if a large percentage of the zone is under writeback or
4075 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4076 * Hence, default to zone ordering on 32-bit.
4077 */
4078 static int default_zonelist_order(void)
4079 {
4080 return ZONELIST_ORDER_ZONE;
4081 }
4082 #endif /* CONFIG_64BIT */
4083
4084 static void set_zonelist_order(void)
4085 {
4086 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4087 current_zonelist_order = default_zonelist_order();
4088 else
4089 current_zonelist_order = user_zonelist_order;
4090 }
4091
4092 static void build_zonelists(pg_data_t *pgdat)
4093 {
4094 int j, node, load;
4095 enum zone_type i;
4096 nodemask_t used_mask;
4097 int local_node, prev_node;
4098 struct zonelist *zonelist;
4099 int order = current_zonelist_order;
4100
4101 /* initialize zonelists */
4102 for (i = 0; i < MAX_ZONELISTS; i++) {
4103 zonelist = pgdat->node_zonelists + i;
4104 zonelist->_zonerefs[0].zone = NULL;
4105 zonelist->_zonerefs[0].zone_idx = 0;
4106 }
4107
4108 /* NUMA-aware ordering of nodes */
4109 local_node = pgdat->node_id;
4110 load = nr_online_nodes;
4111 prev_node = local_node;
4112 nodes_clear(used_mask);
4113
4114 memset(node_order, 0, sizeof(node_order));
4115 j = 0;
4116
4117 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4118 /*
4119 * We don't want to pressure a particular node.
4120 * So adding penalty to the first node in same
4121 * distance group to make it round-robin.
4122 */
4123 if (node_distance(local_node, node) !=
4124 node_distance(local_node, prev_node))
4125 node_load[node] = load;
4126
4127 prev_node = node;
4128 load--;
4129 if (order == ZONELIST_ORDER_NODE)
4130 build_zonelists_in_node_order(pgdat, node);
4131 else
4132 node_order[j++] = node; /* remember order */
4133 }
4134
4135 if (order == ZONELIST_ORDER_ZONE) {
4136 /* calculate node order -- i.e., DMA last! */
4137 build_zonelists_in_zone_order(pgdat, j);
4138 }
4139
4140 build_thisnode_zonelists(pgdat);
4141 }
4142
4143 /* Construct the zonelist performance cache - see further mmzone.h */
4144 static void build_zonelist_cache(pg_data_t *pgdat)
4145 {
4146 struct zonelist *zonelist;
4147 struct zonelist_cache *zlc;
4148 struct zoneref *z;
4149
4150 zonelist = &pgdat->node_zonelists[0];
4151 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4152 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4153 for (z = zonelist->_zonerefs; z->zone; z++)
4154 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4155 }
4156
4157 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4158 /*
4159 * Return node id of node used for "local" allocations.
4160 * I.e., first node id of first zone in arg node's generic zonelist.
4161 * Used for initializing percpu 'numa_mem', which is used primarily
4162 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4163 */
4164 int local_memory_node(int node)
4165 {
4166 struct zone *zone;
4167
4168 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4169 gfp_zone(GFP_KERNEL),
4170 NULL,
4171 &zone);
4172 return zone->node;
4173 }
4174 #endif
4175
4176 #else /* CONFIG_NUMA */
4177
4178 static void set_zonelist_order(void)
4179 {
4180 current_zonelist_order = ZONELIST_ORDER_ZONE;
4181 }
4182
4183 static void build_zonelists(pg_data_t *pgdat)
4184 {
4185 int node, local_node;
4186 enum zone_type j;
4187 struct zonelist *zonelist;
4188
4189 local_node = pgdat->node_id;
4190
4191 zonelist = &pgdat->node_zonelists[0];
4192 j = build_zonelists_node(pgdat, zonelist, 0);
4193
4194 /*
4195 * Now we build the zonelist so that it contains the zones
4196 * of all the other nodes.
4197 * We don't want to pressure a particular node, so when
4198 * building the zones for node N, we make sure that the
4199 * zones coming right after the local ones are those from
4200 * node N+1 (modulo N)
4201 */
4202 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4203 if (!node_online(node))
4204 continue;
4205 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4206 }
4207 for (node = 0; node < local_node; node++) {
4208 if (!node_online(node))
4209 continue;
4210 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4211 }
4212
4213 zonelist->_zonerefs[j].zone = NULL;
4214 zonelist->_zonerefs[j].zone_idx = 0;
4215 }
4216
4217 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4218 static void build_zonelist_cache(pg_data_t *pgdat)
4219 {
4220 pgdat->node_zonelists[0].zlcache_ptr = NULL;
4221 }
4222
4223 #endif /* CONFIG_NUMA */
4224
4225 /*
4226 * Boot pageset table. One per cpu which is going to be used for all
4227 * zones and all nodes. The parameters will be set in such a way
4228 * that an item put on a list will immediately be handed over to
4229 * the buddy list. This is safe since pageset manipulation is done
4230 * with interrupts disabled.
4231 *
4232 * The boot_pagesets must be kept even after bootup is complete for
4233 * unused processors and/or zones. They do play a role for bootstrapping
4234 * hotplugged processors.
4235 *
4236 * zoneinfo_show() and maybe other functions do
4237 * not check if the processor is online before following the pageset pointer.
4238 * Other parts of the kernel may not check if the zone is available.
4239 */
4240 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4241 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4242 static void setup_zone_pageset(struct zone *zone);
4243
4244 /*
4245 * Global mutex to protect against size modification of zonelists
4246 * as well as to serialize pageset setup for the new populated zone.
4247 */
4248 DEFINE_MUTEX(zonelists_mutex);
4249
4250 /* return values int ....just for stop_machine() */
4251 static int __build_all_zonelists(void *data)
4252 {
4253 int nid;
4254 int cpu;
4255 pg_data_t *self = data;
4256
4257 #ifdef CONFIG_NUMA
4258 memset(node_load, 0, sizeof(node_load));
4259 #endif
4260
4261 if (self && !node_online(self->node_id)) {
4262 build_zonelists(self);
4263 build_zonelist_cache(self);
4264 }
4265
4266 for_each_online_node(nid) {
4267 pg_data_t *pgdat = NODE_DATA(nid);
4268
4269 build_zonelists(pgdat);
4270 build_zonelist_cache(pgdat);
4271 }
4272
4273 /*
4274 * Initialize the boot_pagesets that are going to be used
4275 * for bootstrapping processors. The real pagesets for
4276 * each zone will be allocated later when the per cpu
4277 * allocator is available.
4278 *
4279 * boot_pagesets are used also for bootstrapping offline
4280 * cpus if the system is already booted because the pagesets
4281 * are needed to initialize allocators on a specific cpu too.
4282 * F.e. the percpu allocator needs the page allocator which
4283 * needs the percpu allocator in order to allocate its pagesets
4284 * (a chicken-egg dilemma).
4285 */
4286 for_each_possible_cpu(cpu) {
4287 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4288
4289 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4290 /*
4291 * We now know the "local memory node" for each node--
4292 * i.e., the node of the first zone in the generic zonelist.
4293 * Set up numa_mem percpu variable for on-line cpus. During
4294 * boot, only the boot cpu should be on-line; we'll init the
4295 * secondary cpus' numa_mem as they come on-line. During
4296 * node/memory hotplug, we'll fixup all on-line cpus.
4297 */
4298 if (cpu_online(cpu))
4299 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4300 #endif
4301 }
4302
4303 return 0;
4304 }
4305
4306 static noinline void __init
4307 build_all_zonelists_init(void)
4308 {
4309 __build_all_zonelists(NULL);
4310 mminit_verify_zonelist();
4311 cpuset_init_current_mems_allowed();
4312 }
4313
4314 /*
4315 * Called with zonelists_mutex held always
4316 * unless system_state == SYSTEM_BOOTING.
4317 *
4318 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4319 * [we're only called with non-NULL zone through __meminit paths] and
4320 * (2) call of __init annotated helper build_all_zonelists_init
4321 * [protected by SYSTEM_BOOTING].
4322 */
4323 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4324 {
4325 set_zonelist_order();
4326
4327 if (system_state == SYSTEM_BOOTING) {
4328 build_all_zonelists_init();
4329 } else {
4330 #ifdef CONFIG_MEMORY_HOTPLUG
4331 if (zone)
4332 setup_zone_pageset(zone);
4333 #endif
4334 /* we have to stop all cpus to guarantee there is no user
4335 of zonelist */
4336 stop_machine(__build_all_zonelists, pgdat, NULL);
4337 /* cpuset refresh routine should be here */
4338 }
4339 vm_total_pages = nr_free_pagecache_pages();
4340 /*
4341 * Disable grouping by mobility if the number of pages in the
4342 * system is too low to allow the mechanism to work. It would be
4343 * more accurate, but expensive to check per-zone. This check is
4344 * made on memory-hotadd so a system can start with mobility
4345 * disabled and enable it later
4346 */
4347 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4348 page_group_by_mobility_disabled = 1;
4349 else
4350 page_group_by_mobility_disabled = 0;
4351
4352 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4353 "Total pages: %ld\n",
4354 nr_online_nodes,
4355 zonelist_order_name[current_zonelist_order],
4356 page_group_by_mobility_disabled ? "off" : "on",
4357 vm_total_pages);
4358 #ifdef CONFIG_NUMA
4359 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4360 #endif
4361 }
4362
4363 /*
4364 * Helper functions to size the waitqueue hash table.
4365 * Essentially these want to choose hash table sizes sufficiently
4366 * large so that collisions trying to wait on pages are rare.
4367 * But in fact, the number of active page waitqueues on typical
4368 * systems is ridiculously low, less than 200. So this is even
4369 * conservative, even though it seems large.
4370 *
4371 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4372 * waitqueues, i.e. the size of the waitq table given the number of pages.
4373 */
4374 #define PAGES_PER_WAITQUEUE 256
4375
4376 #ifndef CONFIG_MEMORY_HOTPLUG
4377 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4378 {
4379 unsigned long size = 1;
4380
4381 pages /= PAGES_PER_WAITQUEUE;
4382
4383 while (size < pages)
4384 size <<= 1;
4385
4386 /*
4387 * Once we have dozens or even hundreds of threads sleeping
4388 * on IO we've got bigger problems than wait queue collision.
4389 * Limit the size of the wait table to a reasonable size.
4390 */
4391 size = min(size, 4096UL);
4392
4393 return max(size, 4UL);
4394 }
4395 #else
4396 /*
4397 * A zone's size might be changed by hot-add, so it is not possible to determine
4398 * a suitable size for its wait_table. So we use the maximum size now.
4399 *
4400 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4401 *
4402 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4403 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4404 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4405 *
4406 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4407 * or more by the traditional way. (See above). It equals:
4408 *
4409 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4410 * ia64(16K page size) : = ( 8G + 4M)byte.
4411 * powerpc (64K page size) : = (32G +16M)byte.
4412 */
4413 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4414 {
4415 return 4096UL;
4416 }
4417 #endif
4418
4419 /*
4420 * This is an integer logarithm so that shifts can be used later
4421 * to extract the more random high bits from the multiplicative
4422 * hash function before the remainder is taken.
4423 */
4424 static inline unsigned long wait_table_bits(unsigned long size)
4425 {
4426 return ffz(~size);
4427 }
4428
4429 /*
4430 * Check if a pageblock contains reserved pages
4431 */
4432 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4433 {
4434 unsigned long pfn;
4435
4436 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4437 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4438 return 1;
4439 }
4440 return 0;
4441 }
4442
4443 /*
4444 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4445 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4446 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4447 * higher will lead to a bigger reserve which will get freed as contiguous
4448 * blocks as reclaim kicks in
4449 */
4450 static void setup_zone_migrate_reserve(struct zone *zone)
4451 {
4452 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4453 struct page *page;
4454 unsigned long block_migratetype;
4455 int reserve;
4456 int old_reserve;
4457
4458 /*
4459 * Get the start pfn, end pfn and the number of blocks to reserve
4460 * We have to be careful to be aligned to pageblock_nr_pages to
4461 * make sure that we always check pfn_valid for the first page in
4462 * the block.
4463 */
4464 start_pfn = zone->zone_start_pfn;
4465 end_pfn = zone_end_pfn(zone);
4466 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4467 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4468 pageblock_order;
4469
4470 /*
4471 * Reserve blocks are generally in place to help high-order atomic
4472 * allocations that are short-lived. A min_free_kbytes value that
4473 * would result in more than 2 reserve blocks for atomic allocations
4474 * is assumed to be in place to help anti-fragmentation for the
4475 * future allocation of hugepages at runtime.
4476 */
4477 reserve = min(2, reserve);
4478 old_reserve = zone->nr_migrate_reserve_block;
4479
4480 /* When memory hot-add, we almost always need to do nothing */
4481 if (reserve == old_reserve)
4482 return;
4483 zone->nr_migrate_reserve_block = reserve;
4484
4485 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4486 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4487 return;
4488
4489 if (!pfn_valid(pfn))
4490 continue;
4491 page = pfn_to_page(pfn);
4492
4493 /* Watch out for overlapping nodes */
4494 if (page_to_nid(page) != zone_to_nid(zone))
4495 continue;
4496
4497 block_migratetype = get_pageblock_migratetype(page);
4498
4499 /* Only test what is necessary when the reserves are not met */
4500 if (reserve > 0) {
4501 /*
4502 * Blocks with reserved pages will never free, skip
4503 * them.
4504 */
4505 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4506 if (pageblock_is_reserved(pfn, block_end_pfn))
4507 continue;
4508
4509 /* If this block is reserved, account for it */
4510 if (block_migratetype == MIGRATE_RESERVE) {
4511 reserve--;
4512 continue;
4513 }
4514
4515 /* Suitable for reserving if this block is movable */
4516 if (block_migratetype == MIGRATE_MOVABLE) {
4517 set_pageblock_migratetype(page,
4518 MIGRATE_RESERVE);
4519 move_freepages_block(zone, page,
4520 MIGRATE_RESERVE);
4521 reserve--;
4522 continue;
4523 }
4524 } else if (!old_reserve) {
4525 /*
4526 * At boot time we don't need to scan the whole zone
4527 * for turning off MIGRATE_RESERVE.
4528 */
4529 break;
4530 }
4531
4532 /*
4533 * If the reserve is met and this is a previous reserved block,
4534 * take it back
4535 */
4536 if (block_migratetype == MIGRATE_RESERVE) {
4537 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4538 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4539 }
4540 }
4541 }
4542
4543 /*
4544 * Initially all pages are reserved - free ones are freed
4545 * up by free_all_bootmem() once the early boot process is
4546 * done. Non-atomic initialization, single-pass.
4547 */
4548 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4549 unsigned long start_pfn, enum memmap_context context)
4550 {
4551 pg_data_t *pgdat = NODE_DATA(nid);
4552 unsigned long end_pfn = start_pfn + size;
4553 unsigned long pfn;
4554 struct zone *z;
4555 unsigned long nr_initialised = 0;
4556
4557 if (highest_memmap_pfn < end_pfn - 1)
4558 highest_memmap_pfn = end_pfn - 1;
4559
4560 z = &pgdat->node_zones[zone];
4561 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4562 /*
4563 * There can be holes in boot-time mem_map[]s
4564 * handed to this function. They do not
4565 * exist on hotplugged memory.
4566 */
4567 if (context == MEMMAP_EARLY) {
4568 if (!early_pfn_valid(pfn))
4569 continue;
4570 if (!early_pfn_in_nid(pfn, nid))
4571 continue;
4572 if (!update_defer_init(pgdat, pfn, end_pfn,
4573 &nr_initialised))
4574 break;
4575 }
4576
4577 /*
4578 * Mark the block movable so that blocks are reserved for
4579 * movable at startup. This will force kernel allocations
4580 * to reserve their blocks rather than leaking throughout
4581 * the address space during boot when many long-lived
4582 * kernel allocations are made. Later some blocks near
4583 * the start are marked MIGRATE_RESERVE by
4584 * setup_zone_migrate_reserve()
4585 *
4586 * bitmap is created for zone's valid pfn range. but memmap
4587 * can be created for invalid pages (for alignment)
4588 * check here not to call set_pageblock_migratetype() against
4589 * pfn out of zone.
4590 */
4591 if (!(pfn & (pageblock_nr_pages - 1))) {
4592 struct page *page = pfn_to_page(pfn);
4593
4594 __init_single_page(page, pfn, zone, nid);
4595 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4596 } else {
4597 __init_single_pfn(pfn, zone, nid);
4598 }
4599 }
4600 }
4601
4602 static void __meminit zone_init_free_lists(struct zone *zone)
4603 {
4604 unsigned int order, t;
4605 for_each_migratetype_order(order, t) {
4606 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4607 zone->free_area[order].nr_free = 0;
4608 }
4609 }
4610
4611 #ifndef __HAVE_ARCH_MEMMAP_INIT
4612 #define memmap_init(size, nid, zone, start_pfn) \
4613 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4614 #endif
4615
4616 static int zone_batchsize(struct zone *zone)
4617 {
4618 #ifdef CONFIG_MMU
4619 int batch;
4620
4621 /*
4622 * The per-cpu-pages pools are set to around 1000th of the
4623 * size of the zone. But no more than 1/2 of a meg.
4624 *
4625 * OK, so we don't know how big the cache is. So guess.
4626 */
4627 batch = zone->managed_pages / 1024;
4628 if (batch * PAGE_SIZE > 512 * 1024)
4629 batch = (512 * 1024) / PAGE_SIZE;
4630 batch /= 4; /* We effectively *= 4 below */
4631 if (batch < 1)
4632 batch = 1;
4633
4634 /*
4635 * Clamp the batch to a 2^n - 1 value. Having a power
4636 * of 2 value was found to be more likely to have
4637 * suboptimal cache aliasing properties in some cases.
4638 *
4639 * For example if 2 tasks are alternately allocating
4640 * batches of pages, one task can end up with a lot
4641 * of pages of one half of the possible page colors
4642 * and the other with pages of the other colors.
4643 */
4644 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4645
4646 return batch;
4647
4648 #else
4649 /* The deferral and batching of frees should be suppressed under NOMMU
4650 * conditions.
4651 *
4652 * The problem is that NOMMU needs to be able to allocate large chunks
4653 * of contiguous memory as there's no hardware page translation to
4654 * assemble apparent contiguous memory from discontiguous pages.
4655 *
4656 * Queueing large contiguous runs of pages for batching, however,
4657 * causes the pages to actually be freed in smaller chunks. As there
4658 * can be a significant delay between the individual batches being
4659 * recycled, this leads to the once large chunks of space being
4660 * fragmented and becoming unavailable for high-order allocations.
4661 */
4662 return 0;
4663 #endif
4664 }
4665
4666 /*
4667 * pcp->high and pcp->batch values are related and dependent on one another:
4668 * ->batch must never be higher then ->high.
4669 * The following function updates them in a safe manner without read side
4670 * locking.
4671 *
4672 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4673 * those fields changing asynchronously (acording the the above rule).
4674 *
4675 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4676 * outside of boot time (or some other assurance that no concurrent updaters
4677 * exist).
4678 */
4679 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4680 unsigned long batch)
4681 {
4682 /* start with a fail safe value for batch */
4683 pcp->batch = 1;
4684 smp_wmb();
4685
4686 /* Update high, then batch, in order */
4687 pcp->high = high;
4688 smp_wmb();
4689
4690 pcp->batch = batch;
4691 }
4692
4693 /* a companion to pageset_set_high() */
4694 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4695 {
4696 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4697 }
4698
4699 static void pageset_init(struct per_cpu_pageset *p)
4700 {
4701 struct per_cpu_pages *pcp;
4702 int migratetype;
4703
4704 memset(p, 0, sizeof(*p));
4705
4706 pcp = &p->pcp;
4707 pcp->count = 0;
4708 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4709 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4710 }
4711
4712 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4713 {
4714 pageset_init(p);
4715 pageset_set_batch(p, batch);
4716 }
4717
4718 /*
4719 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4720 * to the value high for the pageset p.
4721 */
4722 static void pageset_set_high(struct per_cpu_pageset *p,
4723 unsigned long high)
4724 {
4725 unsigned long batch = max(1UL, high / 4);
4726 if ((high / 4) > (PAGE_SHIFT * 8))
4727 batch = PAGE_SHIFT * 8;
4728
4729 pageset_update(&p->pcp, high, batch);
4730 }
4731
4732 static void pageset_set_high_and_batch(struct zone *zone,
4733 struct per_cpu_pageset *pcp)
4734 {
4735 if (percpu_pagelist_fraction)
4736 pageset_set_high(pcp,
4737 (zone->managed_pages /
4738 percpu_pagelist_fraction));
4739 else
4740 pageset_set_batch(pcp, zone_batchsize(zone));
4741 }
4742
4743 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4744 {
4745 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4746
4747 pageset_init(pcp);
4748 pageset_set_high_and_batch(zone, pcp);
4749 }
4750
4751 static void __meminit setup_zone_pageset(struct zone *zone)
4752 {
4753 int cpu;
4754 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4755 for_each_possible_cpu(cpu)
4756 zone_pageset_init(zone, cpu);
4757 }
4758
4759 /*
4760 * Allocate per cpu pagesets and initialize them.
4761 * Before this call only boot pagesets were available.
4762 */
4763 void __init setup_per_cpu_pageset(void)
4764 {
4765 struct zone *zone;
4766
4767 for_each_populated_zone(zone)
4768 setup_zone_pageset(zone);
4769 }
4770
4771 static noinline __init_refok
4772 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4773 {
4774 int i;
4775 size_t alloc_size;
4776
4777 /*
4778 * The per-page waitqueue mechanism uses hashed waitqueues
4779 * per zone.
4780 */
4781 zone->wait_table_hash_nr_entries =
4782 wait_table_hash_nr_entries(zone_size_pages);
4783 zone->wait_table_bits =
4784 wait_table_bits(zone->wait_table_hash_nr_entries);
4785 alloc_size = zone->wait_table_hash_nr_entries
4786 * sizeof(wait_queue_head_t);
4787
4788 if (!slab_is_available()) {
4789 zone->wait_table = (wait_queue_head_t *)
4790 memblock_virt_alloc_node_nopanic(
4791 alloc_size, zone->zone_pgdat->node_id);
4792 } else {
4793 /*
4794 * This case means that a zone whose size was 0 gets new memory
4795 * via memory hot-add.
4796 * But it may be the case that a new node was hot-added. In
4797 * this case vmalloc() will not be able to use this new node's
4798 * memory - this wait_table must be initialized to use this new
4799 * node itself as well.
4800 * To use this new node's memory, further consideration will be
4801 * necessary.
4802 */
4803 zone->wait_table = vmalloc(alloc_size);
4804 }
4805 if (!zone->wait_table)
4806 return -ENOMEM;
4807
4808 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4809 init_waitqueue_head(zone->wait_table + i);
4810
4811 return 0;
4812 }
4813
4814 static __meminit void zone_pcp_init(struct zone *zone)
4815 {
4816 /*
4817 * per cpu subsystem is not up at this point. The following code
4818 * relies on the ability of the linker to provide the
4819 * offset of a (static) per cpu variable into the per cpu area.
4820 */
4821 zone->pageset = &boot_pageset;
4822
4823 if (populated_zone(zone))
4824 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4825 zone->name, zone->present_pages,
4826 zone_batchsize(zone));
4827 }
4828
4829 int __meminit init_currently_empty_zone(struct zone *zone,
4830 unsigned long zone_start_pfn,
4831 unsigned long size,
4832 enum memmap_context context)
4833 {
4834 struct pglist_data *pgdat = zone->zone_pgdat;
4835 int ret;
4836 ret = zone_wait_table_init(zone, size);
4837 if (ret)
4838 return ret;
4839 pgdat->nr_zones = zone_idx(zone) + 1;
4840
4841 zone->zone_start_pfn = zone_start_pfn;
4842
4843 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4844 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4845 pgdat->node_id,
4846 (unsigned long)zone_idx(zone),
4847 zone_start_pfn, (zone_start_pfn + size));
4848
4849 zone_init_free_lists(zone);
4850
4851 return 0;
4852 }
4853
4854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4855 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4856
4857 /*
4858 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4859 */
4860 int __meminit __early_pfn_to_nid(unsigned long pfn,
4861 struct mminit_pfnnid_cache *state)
4862 {
4863 unsigned long start_pfn, end_pfn;
4864 int nid;
4865
4866 if (state->last_start <= pfn && pfn < state->last_end)
4867 return state->last_nid;
4868
4869 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4870 if (nid != -1) {
4871 state->last_start = start_pfn;
4872 state->last_end = end_pfn;
4873 state->last_nid = nid;
4874 }
4875
4876 return nid;
4877 }
4878 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4879
4880 /**
4881 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4882 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4883 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4884 *
4885 * If an architecture guarantees that all ranges registered contain no holes
4886 * and may be freed, this this function may be used instead of calling
4887 * memblock_free_early_nid() manually.
4888 */
4889 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4890 {
4891 unsigned long start_pfn, end_pfn;
4892 int i, this_nid;
4893
4894 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4895 start_pfn = min(start_pfn, max_low_pfn);
4896 end_pfn = min(end_pfn, max_low_pfn);
4897
4898 if (start_pfn < end_pfn)
4899 memblock_free_early_nid(PFN_PHYS(start_pfn),
4900 (end_pfn - start_pfn) << PAGE_SHIFT,
4901 this_nid);
4902 }
4903 }
4904
4905 /**
4906 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4907 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4908 *
4909 * If an architecture guarantees that all ranges registered contain no holes and may
4910 * be freed, this function may be used instead of calling memory_present() manually.
4911 */
4912 void __init sparse_memory_present_with_active_regions(int nid)
4913 {
4914 unsigned long start_pfn, end_pfn;
4915 int i, this_nid;
4916
4917 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4918 memory_present(this_nid, start_pfn, end_pfn);
4919 }
4920
4921 /**
4922 * get_pfn_range_for_nid - Return the start and end page frames for a node
4923 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4924 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4925 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4926 *
4927 * It returns the start and end page frame of a node based on information
4928 * provided by memblock_set_node(). If called for a node
4929 * with no available memory, a warning is printed and the start and end
4930 * PFNs will be 0.
4931 */
4932 void __meminit get_pfn_range_for_nid(unsigned int nid,
4933 unsigned long *start_pfn, unsigned long *end_pfn)
4934 {
4935 unsigned long this_start_pfn, this_end_pfn;
4936 int i;
4937
4938 *start_pfn = -1UL;
4939 *end_pfn = 0;
4940
4941 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4942 *start_pfn = min(*start_pfn, this_start_pfn);
4943 *end_pfn = max(*end_pfn, this_end_pfn);
4944 }
4945
4946 if (*start_pfn == -1UL)
4947 *start_pfn = 0;
4948 }
4949
4950 /*
4951 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4952 * assumption is made that zones within a node are ordered in monotonic
4953 * increasing memory addresses so that the "highest" populated zone is used
4954 */
4955 static void __init find_usable_zone_for_movable(void)
4956 {
4957 int zone_index;
4958 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4959 if (zone_index == ZONE_MOVABLE)
4960 continue;
4961
4962 if (arch_zone_highest_possible_pfn[zone_index] >
4963 arch_zone_lowest_possible_pfn[zone_index])
4964 break;
4965 }
4966
4967 VM_BUG_ON(zone_index == -1);
4968 movable_zone = zone_index;
4969 }
4970
4971 /*
4972 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4973 * because it is sized independent of architecture. Unlike the other zones,
4974 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4975 * in each node depending on the size of each node and how evenly kernelcore
4976 * is distributed. This helper function adjusts the zone ranges
4977 * provided by the architecture for a given node by using the end of the
4978 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4979 * zones within a node are in order of monotonic increases memory addresses
4980 */
4981 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4982 unsigned long zone_type,
4983 unsigned long node_start_pfn,
4984 unsigned long node_end_pfn,
4985 unsigned long *zone_start_pfn,
4986 unsigned long *zone_end_pfn)
4987 {
4988 /* Only adjust if ZONE_MOVABLE is on this node */
4989 if (zone_movable_pfn[nid]) {
4990 /* Size ZONE_MOVABLE */
4991 if (zone_type == ZONE_MOVABLE) {
4992 *zone_start_pfn = zone_movable_pfn[nid];
4993 *zone_end_pfn = min(node_end_pfn,
4994 arch_zone_highest_possible_pfn[movable_zone]);
4995
4996 /* Adjust for ZONE_MOVABLE starting within this range */
4997 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4998 *zone_end_pfn > zone_movable_pfn[nid]) {
4999 *zone_end_pfn = zone_movable_pfn[nid];
5000
5001 /* Check if this whole range is within ZONE_MOVABLE */
5002 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5003 *zone_start_pfn = *zone_end_pfn;
5004 }
5005 }
5006
5007 /*
5008 * Return the number of pages a zone spans in a node, including holes
5009 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5010 */
5011 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5012 unsigned long zone_type,
5013 unsigned long node_start_pfn,
5014 unsigned long node_end_pfn,
5015 unsigned long *ignored)
5016 {
5017 unsigned long zone_start_pfn, zone_end_pfn;
5018
5019 /* Get the start and end of the zone */
5020 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5021 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5022 adjust_zone_range_for_zone_movable(nid, zone_type,
5023 node_start_pfn, node_end_pfn,
5024 &zone_start_pfn, &zone_end_pfn);
5025
5026 /* Check that this node has pages within the zone's required range */
5027 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5028 return 0;
5029
5030 /* Move the zone boundaries inside the node if necessary */
5031 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5032 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5033
5034 /* Return the spanned pages */
5035 return zone_end_pfn - zone_start_pfn;
5036 }
5037
5038 /*
5039 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5040 * then all holes in the requested range will be accounted for.
5041 */
5042 unsigned long __meminit __absent_pages_in_range(int nid,
5043 unsigned long range_start_pfn,
5044 unsigned long range_end_pfn)
5045 {
5046 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5047 unsigned long start_pfn, end_pfn;
5048 int i;
5049
5050 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5051 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5052 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5053 nr_absent -= end_pfn - start_pfn;
5054 }
5055 return nr_absent;
5056 }
5057
5058 /**
5059 * absent_pages_in_range - Return number of page frames in holes within a range
5060 * @start_pfn: The start PFN to start searching for holes
5061 * @end_pfn: The end PFN to stop searching for holes
5062 *
5063 * It returns the number of pages frames in memory holes within a range.
5064 */
5065 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5066 unsigned long end_pfn)
5067 {
5068 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5069 }
5070
5071 /* Return the number of page frames in holes in a zone on a node */
5072 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5073 unsigned long zone_type,
5074 unsigned long node_start_pfn,
5075 unsigned long node_end_pfn,
5076 unsigned long *ignored)
5077 {
5078 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5079 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5080 unsigned long zone_start_pfn, zone_end_pfn;
5081
5082 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5083 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5084
5085 adjust_zone_range_for_zone_movable(nid, zone_type,
5086 node_start_pfn, node_end_pfn,
5087 &zone_start_pfn, &zone_end_pfn);
5088 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5089 }
5090
5091 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5092 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5093 unsigned long zone_type,
5094 unsigned long node_start_pfn,
5095 unsigned long node_end_pfn,
5096 unsigned long *zones_size)
5097 {
5098 return zones_size[zone_type];
5099 }
5100
5101 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5102 unsigned long zone_type,
5103 unsigned long node_start_pfn,
5104 unsigned long node_end_pfn,
5105 unsigned long *zholes_size)
5106 {
5107 if (!zholes_size)
5108 return 0;
5109
5110 return zholes_size[zone_type];
5111 }
5112
5113 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5114
5115 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5116 unsigned long node_start_pfn,
5117 unsigned long node_end_pfn,
5118 unsigned long *zones_size,
5119 unsigned long *zholes_size)
5120 {
5121 unsigned long realtotalpages = 0, totalpages = 0;
5122 enum zone_type i;
5123
5124 for (i = 0; i < MAX_NR_ZONES; i++) {
5125 struct zone *zone = pgdat->node_zones + i;
5126 unsigned long size, real_size;
5127
5128 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5129 node_start_pfn,
5130 node_end_pfn,
5131 zones_size);
5132 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5133 node_start_pfn, node_end_pfn,
5134 zholes_size);
5135 zone->spanned_pages = size;
5136 zone->present_pages = real_size;
5137
5138 totalpages += size;
5139 realtotalpages += real_size;
5140 }
5141
5142 pgdat->node_spanned_pages = totalpages;
5143 pgdat->node_present_pages = realtotalpages;
5144 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5145 realtotalpages);
5146 }
5147
5148 #ifndef CONFIG_SPARSEMEM
5149 /*
5150 * Calculate the size of the zone->blockflags rounded to an unsigned long
5151 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5152 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5153 * round what is now in bits to nearest long in bits, then return it in
5154 * bytes.
5155 */
5156 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5157 {
5158 unsigned long usemapsize;
5159
5160 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5161 usemapsize = roundup(zonesize, pageblock_nr_pages);
5162 usemapsize = usemapsize >> pageblock_order;
5163 usemapsize *= NR_PAGEBLOCK_BITS;
5164 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5165
5166 return usemapsize / 8;
5167 }
5168
5169 static void __init setup_usemap(struct pglist_data *pgdat,
5170 struct zone *zone,
5171 unsigned long zone_start_pfn,
5172 unsigned long zonesize)
5173 {
5174 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5175 zone->pageblock_flags = NULL;
5176 if (usemapsize)
5177 zone->pageblock_flags =
5178 memblock_virt_alloc_node_nopanic(usemapsize,
5179 pgdat->node_id);
5180 }
5181 #else
5182 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5183 unsigned long zone_start_pfn, unsigned long zonesize) {}
5184 #endif /* CONFIG_SPARSEMEM */
5185
5186 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5187
5188 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5189 void __paginginit set_pageblock_order(void)
5190 {
5191 unsigned int order;
5192
5193 /* Check that pageblock_nr_pages has not already been setup */
5194 if (pageblock_order)
5195 return;
5196
5197 if (HPAGE_SHIFT > PAGE_SHIFT)
5198 order = HUGETLB_PAGE_ORDER;
5199 else
5200 order = MAX_ORDER - 1;
5201
5202 /*
5203 * Assume the largest contiguous order of interest is a huge page.
5204 * This value may be variable depending on boot parameters on IA64 and
5205 * powerpc.
5206 */
5207 pageblock_order = order;
5208 }
5209 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5210
5211 /*
5212 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5213 * is unused as pageblock_order is set at compile-time. See
5214 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5215 * the kernel config
5216 */
5217 void __paginginit set_pageblock_order(void)
5218 {
5219 }
5220
5221 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5222
5223 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5224 unsigned long present_pages)
5225 {
5226 unsigned long pages = spanned_pages;
5227
5228 /*
5229 * Provide a more accurate estimation if there are holes within
5230 * the zone and SPARSEMEM is in use. If there are holes within the
5231 * zone, each populated memory region may cost us one or two extra
5232 * memmap pages due to alignment because memmap pages for each
5233 * populated regions may not naturally algined on page boundary.
5234 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5235 */
5236 if (spanned_pages > present_pages + (present_pages >> 4) &&
5237 IS_ENABLED(CONFIG_SPARSEMEM))
5238 pages = present_pages;
5239
5240 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5241 }
5242
5243 /*
5244 * Set up the zone data structures:
5245 * - mark all pages reserved
5246 * - mark all memory queues empty
5247 * - clear the memory bitmaps
5248 *
5249 * NOTE: pgdat should get zeroed by caller.
5250 */
5251 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
5252 unsigned long node_start_pfn, unsigned long node_end_pfn)
5253 {
5254 enum zone_type j;
5255 int nid = pgdat->node_id;
5256 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5257 int ret;
5258
5259 pgdat_resize_init(pgdat);
5260 #ifdef CONFIG_NUMA_BALANCING
5261 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5262 pgdat->numabalancing_migrate_nr_pages = 0;
5263 pgdat->numabalancing_migrate_next_window = jiffies;
5264 #endif
5265 init_waitqueue_head(&pgdat->kswapd_wait);
5266 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5267 pgdat_page_ext_init(pgdat);
5268
5269 for (j = 0; j < MAX_NR_ZONES; j++) {
5270 struct zone *zone = pgdat->node_zones + j;
5271 unsigned long size, realsize, freesize, memmap_pages;
5272
5273 size = zone->spanned_pages;
5274 realsize = freesize = zone->present_pages;
5275
5276 /*
5277 * Adjust freesize so that it accounts for how much memory
5278 * is used by this zone for memmap. This affects the watermark
5279 * and per-cpu initialisations
5280 */
5281 memmap_pages = calc_memmap_size(size, realsize);
5282 if (!is_highmem_idx(j)) {
5283 if (freesize >= memmap_pages) {
5284 freesize -= memmap_pages;
5285 if (memmap_pages)
5286 printk(KERN_DEBUG
5287 " %s zone: %lu pages used for memmap\n",
5288 zone_names[j], memmap_pages);
5289 } else
5290 printk(KERN_WARNING
5291 " %s zone: %lu pages exceeds freesize %lu\n",
5292 zone_names[j], memmap_pages, freesize);
5293 }
5294
5295 /* Account for reserved pages */
5296 if (j == 0 && freesize > dma_reserve) {
5297 freesize -= dma_reserve;
5298 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5299 zone_names[0], dma_reserve);
5300 }
5301
5302 if (!is_highmem_idx(j))
5303 nr_kernel_pages += freesize;
5304 /* Charge for highmem memmap if there are enough kernel pages */
5305 else if (nr_kernel_pages > memmap_pages * 2)
5306 nr_kernel_pages -= memmap_pages;
5307 nr_all_pages += freesize;
5308
5309 /*
5310 * Set an approximate value for lowmem here, it will be adjusted
5311 * when the bootmem allocator frees pages into the buddy system.
5312 * And all highmem pages will be managed by the buddy system.
5313 */
5314 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5315 #ifdef CONFIG_NUMA
5316 zone->node = nid;
5317 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5318 / 100;
5319 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5320 #endif
5321 zone->name = zone_names[j];
5322 spin_lock_init(&zone->lock);
5323 spin_lock_init(&zone->lru_lock);
5324 zone_seqlock_init(zone);
5325 zone->zone_pgdat = pgdat;
5326 zone_pcp_init(zone);
5327
5328 /* For bootup, initialized properly in watermark setup */
5329 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5330
5331 lruvec_init(&zone->lruvec);
5332 if (!size)
5333 continue;
5334
5335 set_pageblock_order();
5336 setup_usemap(pgdat, zone, zone_start_pfn, size);
5337 ret = init_currently_empty_zone(zone, zone_start_pfn,
5338 size, MEMMAP_EARLY);
5339 BUG_ON(ret);
5340 memmap_init(size, nid, j, zone_start_pfn);
5341 zone_start_pfn += size;
5342 }
5343 }
5344
5345 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5346 {
5347 /* Skip empty nodes */
5348 if (!pgdat->node_spanned_pages)
5349 return;
5350
5351 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5352 /* ia64 gets its own node_mem_map, before this, without bootmem */
5353 if (!pgdat->node_mem_map) {
5354 unsigned long size, start, end;
5355 struct page *map;
5356
5357 /*
5358 * The zone's endpoints aren't required to be MAX_ORDER
5359 * aligned but the node_mem_map endpoints must be in order
5360 * for the buddy allocator to function correctly.
5361 */
5362 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5363 end = pgdat_end_pfn(pgdat);
5364 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5365 size = (end - start) * sizeof(struct page);
5366 map = alloc_remap(pgdat->node_id, size);
5367 if (!map)
5368 map = memblock_virt_alloc_node_nopanic(size,
5369 pgdat->node_id);
5370 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5371 }
5372 #ifndef CONFIG_NEED_MULTIPLE_NODES
5373 /*
5374 * With no DISCONTIG, the global mem_map is just set as node 0's
5375 */
5376 if (pgdat == NODE_DATA(0)) {
5377 mem_map = NODE_DATA(0)->node_mem_map;
5378 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5379 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5380 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5381 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5382 }
5383 #endif
5384 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5385 }
5386
5387 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5388 unsigned long node_start_pfn, unsigned long *zholes_size)
5389 {
5390 pg_data_t *pgdat = NODE_DATA(nid);
5391 unsigned long start_pfn = 0;
5392 unsigned long end_pfn = 0;
5393
5394 /* pg_data_t should be reset to zero when it's allocated */
5395 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5396
5397 reset_deferred_meminit(pgdat);
5398 pgdat->node_id = nid;
5399 pgdat->node_start_pfn = node_start_pfn;
5400 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5401 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5402 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5403 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5404 #endif
5405 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5406 zones_size, zholes_size);
5407
5408 alloc_node_mem_map(pgdat);
5409 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5410 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5411 nid, (unsigned long)pgdat,
5412 (unsigned long)pgdat->node_mem_map);
5413 #endif
5414
5415 free_area_init_core(pgdat, start_pfn, end_pfn);
5416 }
5417
5418 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5419
5420 #if MAX_NUMNODES > 1
5421 /*
5422 * Figure out the number of possible node ids.
5423 */
5424 void __init setup_nr_node_ids(void)
5425 {
5426 unsigned int node;
5427 unsigned int highest = 0;
5428
5429 for_each_node_mask(node, node_possible_map)
5430 highest = node;
5431 nr_node_ids = highest + 1;
5432 }
5433 #endif
5434
5435 /**
5436 * node_map_pfn_alignment - determine the maximum internode alignment
5437 *
5438 * This function should be called after node map is populated and sorted.
5439 * It calculates the maximum power of two alignment which can distinguish
5440 * all the nodes.
5441 *
5442 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5443 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5444 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5445 * shifted, 1GiB is enough and this function will indicate so.
5446 *
5447 * This is used to test whether pfn -> nid mapping of the chosen memory
5448 * model has fine enough granularity to avoid incorrect mapping for the
5449 * populated node map.
5450 *
5451 * Returns the determined alignment in pfn's. 0 if there is no alignment
5452 * requirement (single node).
5453 */
5454 unsigned long __init node_map_pfn_alignment(void)
5455 {
5456 unsigned long accl_mask = 0, last_end = 0;
5457 unsigned long start, end, mask;
5458 int last_nid = -1;
5459 int i, nid;
5460
5461 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5462 if (!start || last_nid < 0 || last_nid == nid) {
5463 last_nid = nid;
5464 last_end = end;
5465 continue;
5466 }
5467
5468 /*
5469 * Start with a mask granular enough to pin-point to the
5470 * start pfn and tick off bits one-by-one until it becomes
5471 * too coarse to separate the current node from the last.
5472 */
5473 mask = ~((1 << __ffs(start)) - 1);
5474 while (mask && last_end <= (start & (mask << 1)))
5475 mask <<= 1;
5476
5477 /* accumulate all internode masks */
5478 accl_mask |= mask;
5479 }
5480
5481 /* convert mask to number of pages */
5482 return ~accl_mask + 1;
5483 }
5484
5485 /* Find the lowest pfn for a node */
5486 static unsigned long __init find_min_pfn_for_node(int nid)
5487 {
5488 unsigned long min_pfn = ULONG_MAX;
5489 unsigned long start_pfn;
5490 int i;
5491
5492 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5493 min_pfn = min(min_pfn, start_pfn);
5494
5495 if (min_pfn == ULONG_MAX) {
5496 printk(KERN_WARNING
5497 "Could not find start_pfn for node %d\n", nid);
5498 return 0;
5499 }
5500
5501 return min_pfn;
5502 }
5503
5504 /**
5505 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5506 *
5507 * It returns the minimum PFN based on information provided via
5508 * memblock_set_node().
5509 */
5510 unsigned long __init find_min_pfn_with_active_regions(void)
5511 {
5512 return find_min_pfn_for_node(MAX_NUMNODES);
5513 }
5514
5515 /*
5516 * early_calculate_totalpages()
5517 * Sum pages in active regions for movable zone.
5518 * Populate N_MEMORY for calculating usable_nodes.
5519 */
5520 static unsigned long __init early_calculate_totalpages(void)
5521 {
5522 unsigned long totalpages = 0;
5523 unsigned long start_pfn, end_pfn;
5524 int i, nid;
5525
5526 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5527 unsigned long pages = end_pfn - start_pfn;
5528
5529 totalpages += pages;
5530 if (pages)
5531 node_set_state(nid, N_MEMORY);
5532 }
5533 return totalpages;
5534 }
5535
5536 /*
5537 * Find the PFN the Movable zone begins in each node. Kernel memory
5538 * is spread evenly between nodes as long as the nodes have enough
5539 * memory. When they don't, some nodes will have more kernelcore than
5540 * others
5541 */
5542 static void __init find_zone_movable_pfns_for_nodes(void)
5543 {
5544 int i, nid;
5545 unsigned long usable_startpfn;
5546 unsigned long kernelcore_node, kernelcore_remaining;
5547 /* save the state before borrow the nodemask */
5548 nodemask_t saved_node_state = node_states[N_MEMORY];
5549 unsigned long totalpages = early_calculate_totalpages();
5550 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5551 struct memblock_region *r;
5552
5553 /* Need to find movable_zone earlier when movable_node is specified. */
5554 find_usable_zone_for_movable();
5555
5556 /*
5557 * If movable_node is specified, ignore kernelcore and movablecore
5558 * options.
5559 */
5560 if (movable_node_is_enabled()) {
5561 for_each_memblock(memory, r) {
5562 if (!memblock_is_hotpluggable(r))
5563 continue;
5564
5565 nid = r->nid;
5566
5567 usable_startpfn = PFN_DOWN(r->base);
5568 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5569 min(usable_startpfn, zone_movable_pfn[nid]) :
5570 usable_startpfn;
5571 }
5572
5573 goto out2;
5574 }
5575
5576 /*
5577 * If movablecore=nn[KMG] was specified, calculate what size of
5578 * kernelcore that corresponds so that memory usable for
5579 * any allocation type is evenly spread. If both kernelcore
5580 * and movablecore are specified, then the value of kernelcore
5581 * will be used for required_kernelcore if it's greater than
5582 * what movablecore would have allowed.
5583 */
5584 if (required_movablecore) {
5585 unsigned long corepages;
5586
5587 /*
5588 * Round-up so that ZONE_MOVABLE is at least as large as what
5589 * was requested by the user
5590 */
5591 required_movablecore =
5592 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5593 corepages = totalpages - required_movablecore;
5594
5595 required_kernelcore = max(required_kernelcore, corepages);
5596 }
5597
5598 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5599 if (!required_kernelcore)
5600 goto out;
5601
5602 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5603 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5604
5605 restart:
5606 /* Spread kernelcore memory as evenly as possible throughout nodes */
5607 kernelcore_node = required_kernelcore / usable_nodes;
5608 for_each_node_state(nid, N_MEMORY) {
5609 unsigned long start_pfn, end_pfn;
5610
5611 /*
5612 * Recalculate kernelcore_node if the division per node
5613 * now exceeds what is necessary to satisfy the requested
5614 * amount of memory for the kernel
5615 */
5616 if (required_kernelcore < kernelcore_node)
5617 kernelcore_node = required_kernelcore / usable_nodes;
5618
5619 /*
5620 * As the map is walked, we track how much memory is usable
5621 * by the kernel using kernelcore_remaining. When it is
5622 * 0, the rest of the node is usable by ZONE_MOVABLE
5623 */
5624 kernelcore_remaining = kernelcore_node;
5625
5626 /* Go through each range of PFNs within this node */
5627 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5628 unsigned long size_pages;
5629
5630 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5631 if (start_pfn >= end_pfn)
5632 continue;
5633
5634 /* Account for what is only usable for kernelcore */
5635 if (start_pfn < usable_startpfn) {
5636 unsigned long kernel_pages;
5637 kernel_pages = min(end_pfn, usable_startpfn)
5638 - start_pfn;
5639
5640 kernelcore_remaining -= min(kernel_pages,
5641 kernelcore_remaining);
5642 required_kernelcore -= min(kernel_pages,
5643 required_kernelcore);
5644
5645 /* Continue if range is now fully accounted */
5646 if (end_pfn <= usable_startpfn) {
5647
5648 /*
5649 * Push zone_movable_pfn to the end so
5650 * that if we have to rebalance
5651 * kernelcore across nodes, we will
5652 * not double account here
5653 */
5654 zone_movable_pfn[nid] = end_pfn;
5655 continue;
5656 }
5657 start_pfn = usable_startpfn;
5658 }
5659
5660 /*
5661 * The usable PFN range for ZONE_MOVABLE is from
5662 * start_pfn->end_pfn. Calculate size_pages as the
5663 * number of pages used as kernelcore
5664 */
5665 size_pages = end_pfn - start_pfn;
5666 if (size_pages > kernelcore_remaining)
5667 size_pages = kernelcore_remaining;
5668 zone_movable_pfn[nid] = start_pfn + size_pages;
5669
5670 /*
5671 * Some kernelcore has been met, update counts and
5672 * break if the kernelcore for this node has been
5673 * satisfied
5674 */
5675 required_kernelcore -= min(required_kernelcore,
5676 size_pages);
5677 kernelcore_remaining -= size_pages;
5678 if (!kernelcore_remaining)
5679 break;
5680 }
5681 }
5682
5683 /*
5684 * If there is still required_kernelcore, we do another pass with one
5685 * less node in the count. This will push zone_movable_pfn[nid] further
5686 * along on the nodes that still have memory until kernelcore is
5687 * satisfied
5688 */
5689 usable_nodes--;
5690 if (usable_nodes && required_kernelcore > usable_nodes)
5691 goto restart;
5692
5693 out2:
5694 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5695 for (nid = 0; nid < MAX_NUMNODES; nid++)
5696 zone_movable_pfn[nid] =
5697 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5698
5699 out:
5700 /* restore the node_state */
5701 node_states[N_MEMORY] = saved_node_state;
5702 }
5703
5704 /* Any regular or high memory on that node ? */
5705 static void check_for_memory(pg_data_t *pgdat, int nid)
5706 {
5707 enum zone_type zone_type;
5708
5709 if (N_MEMORY == N_NORMAL_MEMORY)
5710 return;
5711
5712 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5713 struct zone *zone = &pgdat->node_zones[zone_type];
5714 if (populated_zone(zone)) {
5715 node_set_state(nid, N_HIGH_MEMORY);
5716 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5717 zone_type <= ZONE_NORMAL)
5718 node_set_state(nid, N_NORMAL_MEMORY);
5719 break;
5720 }
5721 }
5722 }
5723
5724 /**
5725 * free_area_init_nodes - Initialise all pg_data_t and zone data
5726 * @max_zone_pfn: an array of max PFNs for each zone
5727 *
5728 * This will call free_area_init_node() for each active node in the system.
5729 * Using the page ranges provided by memblock_set_node(), the size of each
5730 * zone in each node and their holes is calculated. If the maximum PFN
5731 * between two adjacent zones match, it is assumed that the zone is empty.
5732 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5733 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5734 * starts where the previous one ended. For example, ZONE_DMA32 starts
5735 * at arch_max_dma_pfn.
5736 */
5737 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5738 {
5739 unsigned long start_pfn, end_pfn;
5740 int i, nid;
5741
5742 /* Record where the zone boundaries are */
5743 memset(arch_zone_lowest_possible_pfn, 0,
5744 sizeof(arch_zone_lowest_possible_pfn));
5745 memset(arch_zone_highest_possible_pfn, 0,
5746 sizeof(arch_zone_highest_possible_pfn));
5747 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5748 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5749 for (i = 1; i < MAX_NR_ZONES; i++) {
5750 if (i == ZONE_MOVABLE)
5751 continue;
5752 arch_zone_lowest_possible_pfn[i] =
5753 arch_zone_highest_possible_pfn[i-1];
5754 arch_zone_highest_possible_pfn[i] =
5755 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5756 }
5757 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5758 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5759
5760 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5761 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5762 find_zone_movable_pfns_for_nodes();
5763
5764 /* Print out the zone ranges */
5765 pr_info("Zone ranges:\n");
5766 for (i = 0; i < MAX_NR_ZONES; i++) {
5767 if (i == ZONE_MOVABLE)
5768 continue;
5769 pr_info(" %-8s ", zone_names[i]);
5770 if (arch_zone_lowest_possible_pfn[i] ==
5771 arch_zone_highest_possible_pfn[i])
5772 pr_cont("empty\n");
5773 else
5774 pr_cont("[mem %#018Lx-%#018Lx]\n",
5775 (u64)arch_zone_lowest_possible_pfn[i]
5776 << PAGE_SHIFT,
5777 ((u64)arch_zone_highest_possible_pfn[i]
5778 << PAGE_SHIFT) - 1);
5779 }
5780
5781 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5782 pr_info("Movable zone start for each node\n");
5783 for (i = 0; i < MAX_NUMNODES; i++) {
5784 if (zone_movable_pfn[i])
5785 pr_info(" Node %d: %#018Lx\n", i,
5786 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5787 }
5788
5789 /* Print out the early node map */
5790 pr_info("Early memory node ranges\n");
5791 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5792 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5793 (u64)start_pfn << PAGE_SHIFT,
5794 ((u64)end_pfn << PAGE_SHIFT) - 1);
5795
5796 /* Initialise every node */
5797 mminit_verify_pageflags_layout();
5798 setup_nr_node_ids();
5799 for_each_online_node(nid) {
5800 pg_data_t *pgdat = NODE_DATA(nid);
5801 free_area_init_node(nid, NULL,
5802 find_min_pfn_for_node(nid), NULL);
5803
5804 /* Any memory on that node */
5805 if (pgdat->node_present_pages)
5806 node_set_state(nid, N_MEMORY);
5807 check_for_memory(pgdat, nid);
5808 }
5809 }
5810
5811 static int __init cmdline_parse_core(char *p, unsigned long *core)
5812 {
5813 unsigned long long coremem;
5814 if (!p)
5815 return -EINVAL;
5816
5817 coremem = memparse(p, &p);
5818 *core = coremem >> PAGE_SHIFT;
5819
5820 /* Paranoid check that UL is enough for the coremem value */
5821 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5822
5823 return 0;
5824 }
5825
5826 /*
5827 * kernelcore=size sets the amount of memory for use for allocations that
5828 * cannot be reclaimed or migrated.
5829 */
5830 static int __init cmdline_parse_kernelcore(char *p)
5831 {
5832 return cmdline_parse_core(p, &required_kernelcore);
5833 }
5834
5835 /*
5836 * movablecore=size sets the amount of memory for use for allocations that
5837 * can be reclaimed or migrated.
5838 */
5839 static int __init cmdline_parse_movablecore(char *p)
5840 {
5841 return cmdline_parse_core(p, &required_movablecore);
5842 }
5843
5844 early_param("kernelcore", cmdline_parse_kernelcore);
5845 early_param("movablecore", cmdline_parse_movablecore);
5846
5847 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5848
5849 void adjust_managed_page_count(struct page *page, long count)
5850 {
5851 spin_lock(&managed_page_count_lock);
5852 page_zone(page)->managed_pages += count;
5853 totalram_pages += count;
5854 #ifdef CONFIG_HIGHMEM
5855 if (PageHighMem(page))
5856 totalhigh_pages += count;
5857 #endif
5858 spin_unlock(&managed_page_count_lock);
5859 }
5860 EXPORT_SYMBOL(adjust_managed_page_count);
5861
5862 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5863 {
5864 void *pos;
5865 unsigned long pages = 0;
5866
5867 start = (void *)PAGE_ALIGN((unsigned long)start);
5868 end = (void *)((unsigned long)end & PAGE_MASK);
5869 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5870 if ((unsigned int)poison <= 0xFF)
5871 memset(pos, poison, PAGE_SIZE);
5872 free_reserved_page(virt_to_page(pos));
5873 }
5874
5875 if (pages && s)
5876 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5877 s, pages << (PAGE_SHIFT - 10), start, end);
5878
5879 return pages;
5880 }
5881 EXPORT_SYMBOL(free_reserved_area);
5882
5883 #ifdef CONFIG_HIGHMEM
5884 void free_highmem_page(struct page *page)
5885 {
5886 __free_reserved_page(page);
5887 totalram_pages++;
5888 page_zone(page)->managed_pages++;
5889 totalhigh_pages++;
5890 }
5891 #endif
5892
5893
5894 void __init mem_init_print_info(const char *str)
5895 {
5896 unsigned long physpages, codesize, datasize, rosize, bss_size;
5897 unsigned long init_code_size, init_data_size;
5898
5899 physpages = get_num_physpages();
5900 codesize = _etext - _stext;
5901 datasize = _edata - _sdata;
5902 rosize = __end_rodata - __start_rodata;
5903 bss_size = __bss_stop - __bss_start;
5904 init_data_size = __init_end - __init_begin;
5905 init_code_size = _einittext - _sinittext;
5906
5907 /*
5908 * Detect special cases and adjust section sizes accordingly:
5909 * 1) .init.* may be embedded into .data sections
5910 * 2) .init.text.* may be out of [__init_begin, __init_end],
5911 * please refer to arch/tile/kernel/vmlinux.lds.S.
5912 * 3) .rodata.* may be embedded into .text or .data sections.
5913 */
5914 #define adj_init_size(start, end, size, pos, adj) \
5915 do { \
5916 if (start <= pos && pos < end && size > adj) \
5917 size -= adj; \
5918 } while (0)
5919
5920 adj_init_size(__init_begin, __init_end, init_data_size,
5921 _sinittext, init_code_size);
5922 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5923 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5924 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5925 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5926
5927 #undef adj_init_size
5928
5929 pr_info("Memory: %luK/%luK available "
5930 "(%luK kernel code, %luK rwdata, %luK rodata, "
5931 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5932 #ifdef CONFIG_HIGHMEM
5933 ", %luK highmem"
5934 #endif
5935 "%s%s)\n",
5936 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5937 codesize >> 10, datasize >> 10, rosize >> 10,
5938 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5939 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5940 totalcma_pages << (PAGE_SHIFT-10),
5941 #ifdef CONFIG_HIGHMEM
5942 totalhigh_pages << (PAGE_SHIFT-10),
5943 #endif
5944 str ? ", " : "", str ? str : "");
5945 }
5946
5947 /**
5948 * set_dma_reserve - set the specified number of pages reserved in the first zone
5949 * @new_dma_reserve: The number of pages to mark reserved
5950 *
5951 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5952 * In the DMA zone, a significant percentage may be consumed by kernel image
5953 * and other unfreeable allocations which can skew the watermarks badly. This
5954 * function may optionally be used to account for unfreeable pages in the
5955 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5956 * smaller per-cpu batchsize.
5957 */
5958 void __init set_dma_reserve(unsigned long new_dma_reserve)
5959 {
5960 dma_reserve = new_dma_reserve;
5961 }
5962
5963 void __init free_area_init(unsigned long *zones_size)
5964 {
5965 free_area_init_node(0, zones_size,
5966 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5967 }
5968
5969 static int page_alloc_cpu_notify(struct notifier_block *self,
5970 unsigned long action, void *hcpu)
5971 {
5972 int cpu = (unsigned long)hcpu;
5973
5974 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5975 lru_add_drain_cpu(cpu);
5976 drain_pages(cpu);
5977
5978 /*
5979 * Spill the event counters of the dead processor
5980 * into the current processors event counters.
5981 * This artificially elevates the count of the current
5982 * processor.
5983 */
5984 vm_events_fold_cpu(cpu);
5985
5986 /*
5987 * Zero the differential counters of the dead processor
5988 * so that the vm statistics are consistent.
5989 *
5990 * This is only okay since the processor is dead and cannot
5991 * race with what we are doing.
5992 */
5993 cpu_vm_stats_fold(cpu);
5994 }
5995 return NOTIFY_OK;
5996 }
5997
5998 void __init page_alloc_init(void)
5999 {
6000 hotcpu_notifier(page_alloc_cpu_notify, 0);
6001 }
6002
6003 /*
6004 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6005 * or min_free_kbytes changes.
6006 */
6007 static void calculate_totalreserve_pages(void)
6008 {
6009 struct pglist_data *pgdat;
6010 unsigned long reserve_pages = 0;
6011 enum zone_type i, j;
6012
6013 for_each_online_pgdat(pgdat) {
6014 for (i = 0; i < MAX_NR_ZONES; i++) {
6015 struct zone *zone = pgdat->node_zones + i;
6016 long max = 0;
6017
6018 /* Find valid and maximum lowmem_reserve in the zone */
6019 for (j = i; j < MAX_NR_ZONES; j++) {
6020 if (zone->lowmem_reserve[j] > max)
6021 max = zone->lowmem_reserve[j];
6022 }
6023
6024 /* we treat the high watermark as reserved pages. */
6025 max += high_wmark_pages(zone);
6026
6027 if (max > zone->managed_pages)
6028 max = zone->managed_pages;
6029 reserve_pages += max;
6030 /*
6031 * Lowmem reserves are not available to
6032 * GFP_HIGHUSER page cache allocations and
6033 * kswapd tries to balance zones to their high
6034 * watermark. As a result, neither should be
6035 * regarded as dirtyable memory, to prevent a
6036 * situation where reclaim has to clean pages
6037 * in order to balance the zones.
6038 */
6039 zone->dirty_balance_reserve = max;
6040 }
6041 }
6042 dirty_balance_reserve = reserve_pages;
6043 totalreserve_pages = reserve_pages;
6044 }
6045
6046 /*
6047 * setup_per_zone_lowmem_reserve - called whenever
6048 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6049 * has a correct pages reserved value, so an adequate number of
6050 * pages are left in the zone after a successful __alloc_pages().
6051 */
6052 static void setup_per_zone_lowmem_reserve(void)
6053 {
6054 struct pglist_data *pgdat;
6055 enum zone_type j, idx;
6056
6057 for_each_online_pgdat(pgdat) {
6058 for (j = 0; j < MAX_NR_ZONES; j++) {
6059 struct zone *zone = pgdat->node_zones + j;
6060 unsigned long managed_pages = zone->managed_pages;
6061
6062 zone->lowmem_reserve[j] = 0;
6063
6064 idx = j;
6065 while (idx) {
6066 struct zone *lower_zone;
6067
6068 idx--;
6069
6070 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6071 sysctl_lowmem_reserve_ratio[idx] = 1;
6072
6073 lower_zone = pgdat->node_zones + idx;
6074 lower_zone->lowmem_reserve[j] = managed_pages /
6075 sysctl_lowmem_reserve_ratio[idx];
6076 managed_pages += lower_zone->managed_pages;
6077 }
6078 }
6079 }
6080
6081 /* update totalreserve_pages */
6082 calculate_totalreserve_pages();
6083 }
6084
6085 static void __setup_per_zone_wmarks(void)
6086 {
6087 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6088 unsigned long lowmem_pages = 0;
6089 struct zone *zone;
6090 unsigned long flags;
6091
6092 /* Calculate total number of !ZONE_HIGHMEM pages */
6093 for_each_zone(zone) {
6094 if (!is_highmem(zone))
6095 lowmem_pages += zone->managed_pages;
6096 }
6097
6098 for_each_zone(zone) {
6099 u64 tmp;
6100
6101 spin_lock_irqsave(&zone->lock, flags);
6102 tmp = (u64)pages_min * zone->managed_pages;
6103 do_div(tmp, lowmem_pages);
6104 if (is_highmem(zone)) {
6105 /*
6106 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6107 * need highmem pages, so cap pages_min to a small
6108 * value here.
6109 *
6110 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6111 * deltas control asynch page reclaim, and so should
6112 * not be capped for highmem.
6113 */
6114 unsigned long min_pages;
6115
6116 min_pages = zone->managed_pages / 1024;
6117 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6118 zone->watermark[WMARK_MIN] = min_pages;
6119 } else {
6120 /*
6121 * If it's a lowmem zone, reserve a number of pages
6122 * proportionate to the zone's size.
6123 */
6124 zone->watermark[WMARK_MIN] = tmp;
6125 }
6126
6127 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6128 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6129
6130 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6131 high_wmark_pages(zone) - low_wmark_pages(zone) -
6132 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6133
6134 setup_zone_migrate_reserve(zone);
6135 spin_unlock_irqrestore(&zone->lock, flags);
6136 }
6137
6138 /* update totalreserve_pages */
6139 calculate_totalreserve_pages();
6140 }
6141
6142 /**
6143 * setup_per_zone_wmarks - called when min_free_kbytes changes
6144 * or when memory is hot-{added|removed}
6145 *
6146 * Ensures that the watermark[min,low,high] values for each zone are set
6147 * correctly with respect to min_free_kbytes.
6148 */
6149 void setup_per_zone_wmarks(void)
6150 {
6151 mutex_lock(&zonelists_mutex);
6152 __setup_per_zone_wmarks();
6153 mutex_unlock(&zonelists_mutex);
6154 }
6155
6156 /*
6157 * The inactive anon list should be small enough that the VM never has to
6158 * do too much work, but large enough that each inactive page has a chance
6159 * to be referenced again before it is swapped out.
6160 *
6161 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6162 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6163 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6164 * the anonymous pages are kept on the inactive list.
6165 *
6166 * total target max
6167 * memory ratio inactive anon
6168 * -------------------------------------
6169 * 10MB 1 5MB
6170 * 100MB 1 50MB
6171 * 1GB 3 250MB
6172 * 10GB 10 0.9GB
6173 * 100GB 31 3GB
6174 * 1TB 101 10GB
6175 * 10TB 320 32GB
6176 */
6177 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6178 {
6179 unsigned int gb, ratio;
6180
6181 /* Zone size in gigabytes */
6182 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6183 if (gb)
6184 ratio = int_sqrt(10 * gb);
6185 else
6186 ratio = 1;
6187
6188 zone->inactive_ratio = ratio;
6189 }
6190
6191 static void __meminit setup_per_zone_inactive_ratio(void)
6192 {
6193 struct zone *zone;
6194
6195 for_each_zone(zone)
6196 calculate_zone_inactive_ratio(zone);
6197 }
6198
6199 /*
6200 * Initialise min_free_kbytes.
6201 *
6202 * For small machines we want it small (128k min). For large machines
6203 * we want it large (64MB max). But it is not linear, because network
6204 * bandwidth does not increase linearly with machine size. We use
6205 *
6206 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6207 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6208 *
6209 * which yields
6210 *
6211 * 16MB: 512k
6212 * 32MB: 724k
6213 * 64MB: 1024k
6214 * 128MB: 1448k
6215 * 256MB: 2048k
6216 * 512MB: 2896k
6217 * 1024MB: 4096k
6218 * 2048MB: 5792k
6219 * 4096MB: 8192k
6220 * 8192MB: 11584k
6221 * 16384MB: 16384k
6222 */
6223 int __meminit init_per_zone_wmark_min(void)
6224 {
6225 unsigned long lowmem_kbytes;
6226 int new_min_free_kbytes;
6227
6228 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6229 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6230
6231 if (new_min_free_kbytes > user_min_free_kbytes) {
6232 min_free_kbytes = new_min_free_kbytes;
6233 if (min_free_kbytes < 128)
6234 min_free_kbytes = 128;
6235 if (min_free_kbytes > 65536)
6236 min_free_kbytes = 65536;
6237 } else {
6238 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6239 new_min_free_kbytes, user_min_free_kbytes);
6240 }
6241 setup_per_zone_wmarks();
6242 refresh_zone_stat_thresholds();
6243 setup_per_zone_lowmem_reserve();
6244 setup_per_zone_inactive_ratio();
6245 return 0;
6246 }
6247 module_init(init_per_zone_wmark_min)
6248
6249 /*
6250 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6251 * that we can call two helper functions whenever min_free_kbytes
6252 * changes.
6253 */
6254 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6255 void __user *buffer, size_t *length, loff_t *ppos)
6256 {
6257 int rc;
6258
6259 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6260 if (rc)
6261 return rc;
6262
6263 if (write) {
6264 user_min_free_kbytes = min_free_kbytes;
6265 setup_per_zone_wmarks();
6266 }
6267 return 0;
6268 }
6269
6270 #ifdef CONFIG_NUMA
6271 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6272 void __user *buffer, size_t *length, loff_t *ppos)
6273 {
6274 struct zone *zone;
6275 int rc;
6276
6277 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6278 if (rc)
6279 return rc;
6280
6281 for_each_zone(zone)
6282 zone->min_unmapped_pages = (zone->managed_pages *
6283 sysctl_min_unmapped_ratio) / 100;
6284 return 0;
6285 }
6286
6287 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6288 void __user *buffer, size_t *length, loff_t *ppos)
6289 {
6290 struct zone *zone;
6291 int rc;
6292
6293 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6294 if (rc)
6295 return rc;
6296
6297 for_each_zone(zone)
6298 zone->min_slab_pages = (zone->managed_pages *
6299 sysctl_min_slab_ratio) / 100;
6300 return 0;
6301 }
6302 #endif
6303
6304 /*
6305 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6306 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6307 * whenever sysctl_lowmem_reserve_ratio changes.
6308 *
6309 * The reserve ratio obviously has absolutely no relation with the
6310 * minimum watermarks. The lowmem reserve ratio can only make sense
6311 * if in function of the boot time zone sizes.
6312 */
6313 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6314 void __user *buffer, size_t *length, loff_t *ppos)
6315 {
6316 proc_dointvec_minmax(table, write, buffer, length, ppos);
6317 setup_per_zone_lowmem_reserve();
6318 return 0;
6319 }
6320
6321 /*
6322 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6323 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6324 * pagelist can have before it gets flushed back to buddy allocator.
6325 */
6326 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6327 void __user *buffer, size_t *length, loff_t *ppos)
6328 {
6329 struct zone *zone;
6330 int old_percpu_pagelist_fraction;
6331 int ret;
6332
6333 mutex_lock(&pcp_batch_high_lock);
6334 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6335
6336 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6337 if (!write || ret < 0)
6338 goto out;
6339
6340 /* Sanity checking to avoid pcp imbalance */
6341 if (percpu_pagelist_fraction &&
6342 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6343 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6344 ret = -EINVAL;
6345 goto out;
6346 }
6347
6348 /* No change? */
6349 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6350 goto out;
6351
6352 for_each_populated_zone(zone) {
6353 unsigned int cpu;
6354
6355 for_each_possible_cpu(cpu)
6356 pageset_set_high_and_batch(zone,
6357 per_cpu_ptr(zone->pageset, cpu));
6358 }
6359 out:
6360 mutex_unlock(&pcp_batch_high_lock);
6361 return ret;
6362 }
6363
6364 #ifdef CONFIG_NUMA
6365 int hashdist = HASHDIST_DEFAULT;
6366
6367 static int __init set_hashdist(char *str)
6368 {
6369 if (!str)
6370 return 0;
6371 hashdist = simple_strtoul(str, &str, 0);
6372 return 1;
6373 }
6374 __setup("hashdist=", set_hashdist);
6375 #endif
6376
6377 /*
6378 * allocate a large system hash table from bootmem
6379 * - it is assumed that the hash table must contain an exact power-of-2
6380 * quantity of entries
6381 * - limit is the number of hash buckets, not the total allocation size
6382 */
6383 void *__init alloc_large_system_hash(const char *tablename,
6384 unsigned long bucketsize,
6385 unsigned long numentries,
6386 int scale,
6387 int flags,
6388 unsigned int *_hash_shift,
6389 unsigned int *_hash_mask,
6390 unsigned long low_limit,
6391 unsigned long high_limit)
6392 {
6393 unsigned long long max = high_limit;
6394 unsigned long log2qty, size;
6395 void *table = NULL;
6396
6397 /* allow the kernel cmdline to have a say */
6398 if (!numentries) {
6399 /* round applicable memory size up to nearest megabyte */
6400 numentries = nr_kernel_pages;
6401
6402 /* It isn't necessary when PAGE_SIZE >= 1MB */
6403 if (PAGE_SHIFT < 20)
6404 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6405
6406 /* limit to 1 bucket per 2^scale bytes of low memory */
6407 if (scale > PAGE_SHIFT)
6408 numentries >>= (scale - PAGE_SHIFT);
6409 else
6410 numentries <<= (PAGE_SHIFT - scale);
6411
6412 /* Make sure we've got at least a 0-order allocation.. */
6413 if (unlikely(flags & HASH_SMALL)) {
6414 /* Makes no sense without HASH_EARLY */
6415 WARN_ON(!(flags & HASH_EARLY));
6416 if (!(numentries >> *_hash_shift)) {
6417 numentries = 1UL << *_hash_shift;
6418 BUG_ON(!numentries);
6419 }
6420 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6421 numentries = PAGE_SIZE / bucketsize;
6422 }
6423 numentries = roundup_pow_of_two(numentries);
6424
6425 /* limit allocation size to 1/16 total memory by default */
6426 if (max == 0) {
6427 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6428 do_div(max, bucketsize);
6429 }
6430 max = min(max, 0x80000000ULL);
6431
6432 if (numentries < low_limit)
6433 numentries = low_limit;
6434 if (numentries > max)
6435 numentries = max;
6436
6437 log2qty = ilog2(numentries);
6438
6439 do {
6440 size = bucketsize << log2qty;
6441 if (flags & HASH_EARLY)
6442 table = memblock_virt_alloc_nopanic(size, 0);
6443 else if (hashdist)
6444 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6445 else {
6446 /*
6447 * If bucketsize is not a power-of-two, we may free
6448 * some pages at the end of hash table which
6449 * alloc_pages_exact() automatically does
6450 */
6451 if (get_order(size) < MAX_ORDER) {
6452 table = alloc_pages_exact(size, GFP_ATOMIC);
6453 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6454 }
6455 }
6456 } while (!table && size > PAGE_SIZE && --log2qty);
6457
6458 if (!table)
6459 panic("Failed to allocate %s hash table\n", tablename);
6460
6461 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6462 tablename,
6463 (1UL << log2qty),
6464 ilog2(size) - PAGE_SHIFT,
6465 size);
6466
6467 if (_hash_shift)
6468 *_hash_shift = log2qty;
6469 if (_hash_mask)
6470 *_hash_mask = (1 << log2qty) - 1;
6471
6472 return table;
6473 }
6474
6475 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6476 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6477 unsigned long pfn)
6478 {
6479 #ifdef CONFIG_SPARSEMEM
6480 return __pfn_to_section(pfn)->pageblock_flags;
6481 #else
6482 return zone->pageblock_flags;
6483 #endif /* CONFIG_SPARSEMEM */
6484 }
6485
6486 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6487 {
6488 #ifdef CONFIG_SPARSEMEM
6489 pfn &= (PAGES_PER_SECTION-1);
6490 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6491 #else
6492 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6493 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6494 #endif /* CONFIG_SPARSEMEM */
6495 }
6496
6497 /**
6498 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6499 * @page: The page within the block of interest
6500 * @pfn: The target page frame number
6501 * @end_bitidx: The last bit of interest to retrieve
6502 * @mask: mask of bits that the caller is interested in
6503 *
6504 * Return: pageblock_bits flags
6505 */
6506 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6507 unsigned long end_bitidx,
6508 unsigned long mask)
6509 {
6510 struct zone *zone;
6511 unsigned long *bitmap;
6512 unsigned long bitidx, word_bitidx;
6513 unsigned long word;
6514
6515 zone = page_zone(page);
6516 bitmap = get_pageblock_bitmap(zone, pfn);
6517 bitidx = pfn_to_bitidx(zone, pfn);
6518 word_bitidx = bitidx / BITS_PER_LONG;
6519 bitidx &= (BITS_PER_LONG-1);
6520
6521 word = bitmap[word_bitidx];
6522 bitidx += end_bitidx;
6523 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6524 }
6525
6526 /**
6527 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6528 * @page: The page within the block of interest
6529 * @flags: The flags to set
6530 * @pfn: The target page frame number
6531 * @end_bitidx: The last bit of interest
6532 * @mask: mask of bits that the caller is interested in
6533 */
6534 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6535 unsigned long pfn,
6536 unsigned long end_bitidx,
6537 unsigned long mask)
6538 {
6539 struct zone *zone;
6540 unsigned long *bitmap;
6541 unsigned long bitidx, word_bitidx;
6542 unsigned long old_word, word;
6543
6544 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6545
6546 zone = page_zone(page);
6547 bitmap = get_pageblock_bitmap(zone, pfn);
6548 bitidx = pfn_to_bitidx(zone, pfn);
6549 word_bitidx = bitidx / BITS_PER_LONG;
6550 bitidx &= (BITS_PER_LONG-1);
6551
6552 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6553
6554 bitidx += end_bitidx;
6555 mask <<= (BITS_PER_LONG - bitidx - 1);
6556 flags <<= (BITS_PER_LONG - bitidx - 1);
6557
6558 word = READ_ONCE(bitmap[word_bitidx]);
6559 for (;;) {
6560 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6561 if (word == old_word)
6562 break;
6563 word = old_word;
6564 }
6565 }
6566
6567 /*
6568 * This function checks whether pageblock includes unmovable pages or not.
6569 * If @count is not zero, it is okay to include less @count unmovable pages
6570 *
6571 * PageLRU check without isolation or lru_lock could race so that
6572 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6573 * expect this function should be exact.
6574 */
6575 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6576 bool skip_hwpoisoned_pages)
6577 {
6578 unsigned long pfn, iter, found;
6579 int mt;
6580
6581 /*
6582 * For avoiding noise data, lru_add_drain_all() should be called
6583 * If ZONE_MOVABLE, the zone never contains unmovable pages
6584 */
6585 if (zone_idx(zone) == ZONE_MOVABLE)
6586 return false;
6587 mt = get_pageblock_migratetype(page);
6588 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6589 return false;
6590
6591 pfn = page_to_pfn(page);
6592 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6593 unsigned long check = pfn + iter;
6594
6595 if (!pfn_valid_within(check))
6596 continue;
6597
6598 page = pfn_to_page(check);
6599
6600 /*
6601 * Hugepages are not in LRU lists, but they're movable.
6602 * We need not scan over tail pages bacause we don't
6603 * handle each tail page individually in migration.
6604 */
6605 if (PageHuge(page)) {
6606 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6607 continue;
6608 }
6609
6610 /*
6611 * We can't use page_count without pin a page
6612 * because another CPU can free compound page.
6613 * This check already skips compound tails of THP
6614 * because their page->_count is zero at all time.
6615 */
6616 if (!atomic_read(&page->_count)) {
6617 if (PageBuddy(page))
6618 iter += (1 << page_order(page)) - 1;
6619 continue;
6620 }
6621
6622 /*
6623 * The HWPoisoned page may be not in buddy system, and
6624 * page_count() is not 0.
6625 */
6626 if (skip_hwpoisoned_pages && PageHWPoison(page))
6627 continue;
6628
6629 if (!PageLRU(page))
6630 found++;
6631 /*
6632 * If there are RECLAIMABLE pages, we need to check
6633 * it. But now, memory offline itself doesn't call
6634 * shrink_node_slabs() and it still to be fixed.
6635 */
6636 /*
6637 * If the page is not RAM, page_count()should be 0.
6638 * we don't need more check. This is an _used_ not-movable page.
6639 *
6640 * The problematic thing here is PG_reserved pages. PG_reserved
6641 * is set to both of a memory hole page and a _used_ kernel
6642 * page at boot.
6643 */
6644 if (found > count)
6645 return true;
6646 }
6647 return false;
6648 }
6649
6650 bool is_pageblock_removable_nolock(struct page *page)
6651 {
6652 struct zone *zone;
6653 unsigned long pfn;
6654
6655 /*
6656 * We have to be careful here because we are iterating over memory
6657 * sections which are not zone aware so we might end up outside of
6658 * the zone but still within the section.
6659 * We have to take care about the node as well. If the node is offline
6660 * its NODE_DATA will be NULL - see page_zone.
6661 */
6662 if (!node_online(page_to_nid(page)))
6663 return false;
6664
6665 zone = page_zone(page);
6666 pfn = page_to_pfn(page);
6667 if (!zone_spans_pfn(zone, pfn))
6668 return false;
6669
6670 return !has_unmovable_pages(zone, page, 0, true);
6671 }
6672
6673 #ifdef CONFIG_CMA
6674
6675 static unsigned long pfn_max_align_down(unsigned long pfn)
6676 {
6677 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6678 pageblock_nr_pages) - 1);
6679 }
6680
6681 static unsigned long pfn_max_align_up(unsigned long pfn)
6682 {
6683 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6684 pageblock_nr_pages));
6685 }
6686
6687 /* [start, end) must belong to a single zone. */
6688 static int __alloc_contig_migrate_range(struct compact_control *cc,
6689 unsigned long start, unsigned long end)
6690 {
6691 /* This function is based on compact_zone() from compaction.c. */
6692 unsigned long nr_reclaimed;
6693 unsigned long pfn = start;
6694 unsigned int tries = 0;
6695 int ret = 0;
6696
6697 migrate_prep();
6698
6699 while (pfn < end || !list_empty(&cc->migratepages)) {
6700 if (fatal_signal_pending(current)) {
6701 ret = -EINTR;
6702 break;
6703 }
6704
6705 if (list_empty(&cc->migratepages)) {
6706 cc->nr_migratepages = 0;
6707 pfn = isolate_migratepages_range(cc, pfn, end);
6708 if (!pfn) {
6709 ret = -EINTR;
6710 break;
6711 }
6712 tries = 0;
6713 } else if (++tries == 5) {
6714 ret = ret < 0 ? ret : -EBUSY;
6715 break;
6716 }
6717
6718 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6719 &cc->migratepages);
6720 cc->nr_migratepages -= nr_reclaimed;
6721
6722 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6723 NULL, 0, cc->mode, MR_CMA);
6724 }
6725 if (ret < 0) {
6726 putback_movable_pages(&cc->migratepages);
6727 return ret;
6728 }
6729 return 0;
6730 }
6731
6732 /**
6733 * alloc_contig_range() -- tries to allocate given range of pages
6734 * @start: start PFN to allocate
6735 * @end: one-past-the-last PFN to allocate
6736 * @migratetype: migratetype of the underlaying pageblocks (either
6737 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6738 * in range must have the same migratetype and it must
6739 * be either of the two.
6740 *
6741 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6742 * aligned, however it's the caller's responsibility to guarantee that
6743 * we are the only thread that changes migrate type of pageblocks the
6744 * pages fall in.
6745 *
6746 * The PFN range must belong to a single zone.
6747 *
6748 * Returns zero on success or negative error code. On success all
6749 * pages which PFN is in [start, end) are allocated for the caller and
6750 * need to be freed with free_contig_range().
6751 */
6752 int alloc_contig_range(unsigned long start, unsigned long end,
6753 unsigned migratetype)
6754 {
6755 unsigned long outer_start, outer_end;
6756 int ret = 0, order;
6757
6758 struct compact_control cc = {
6759 .nr_migratepages = 0,
6760 .order = -1,
6761 .zone = page_zone(pfn_to_page(start)),
6762 .mode = MIGRATE_SYNC,
6763 .ignore_skip_hint = true,
6764 };
6765 INIT_LIST_HEAD(&cc.migratepages);
6766
6767 /*
6768 * What we do here is we mark all pageblocks in range as
6769 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6770 * have different sizes, and due to the way page allocator
6771 * work, we align the range to biggest of the two pages so
6772 * that page allocator won't try to merge buddies from
6773 * different pageblocks and change MIGRATE_ISOLATE to some
6774 * other migration type.
6775 *
6776 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6777 * migrate the pages from an unaligned range (ie. pages that
6778 * we are interested in). This will put all the pages in
6779 * range back to page allocator as MIGRATE_ISOLATE.
6780 *
6781 * When this is done, we take the pages in range from page
6782 * allocator removing them from the buddy system. This way
6783 * page allocator will never consider using them.
6784 *
6785 * This lets us mark the pageblocks back as
6786 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6787 * aligned range but not in the unaligned, original range are
6788 * put back to page allocator so that buddy can use them.
6789 */
6790
6791 ret = start_isolate_page_range(pfn_max_align_down(start),
6792 pfn_max_align_up(end), migratetype,
6793 false);
6794 if (ret)
6795 return ret;
6796
6797 ret = __alloc_contig_migrate_range(&cc, start, end);
6798 if (ret)
6799 goto done;
6800
6801 /*
6802 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6803 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6804 * more, all pages in [start, end) are free in page allocator.
6805 * What we are going to do is to allocate all pages from
6806 * [start, end) (that is remove them from page allocator).
6807 *
6808 * The only problem is that pages at the beginning and at the
6809 * end of interesting range may be not aligned with pages that
6810 * page allocator holds, ie. they can be part of higher order
6811 * pages. Because of this, we reserve the bigger range and
6812 * once this is done free the pages we are not interested in.
6813 *
6814 * We don't have to hold zone->lock here because the pages are
6815 * isolated thus they won't get removed from buddy.
6816 */
6817
6818 lru_add_drain_all();
6819 drain_all_pages(cc.zone);
6820
6821 order = 0;
6822 outer_start = start;
6823 while (!PageBuddy(pfn_to_page(outer_start))) {
6824 if (++order >= MAX_ORDER) {
6825 ret = -EBUSY;
6826 goto done;
6827 }
6828 outer_start &= ~0UL << order;
6829 }
6830
6831 /* Make sure the range is really isolated. */
6832 if (test_pages_isolated(outer_start, end, false)) {
6833 pr_info("%s: [%lx, %lx) PFNs busy\n",
6834 __func__, outer_start, end);
6835 ret = -EBUSY;
6836 goto done;
6837 }
6838
6839 /* Grab isolated pages from freelists. */
6840 outer_end = isolate_freepages_range(&cc, outer_start, end);
6841 if (!outer_end) {
6842 ret = -EBUSY;
6843 goto done;
6844 }
6845
6846 /* Free head and tail (if any) */
6847 if (start != outer_start)
6848 free_contig_range(outer_start, start - outer_start);
6849 if (end != outer_end)
6850 free_contig_range(end, outer_end - end);
6851
6852 done:
6853 undo_isolate_page_range(pfn_max_align_down(start),
6854 pfn_max_align_up(end), migratetype);
6855 return ret;
6856 }
6857
6858 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6859 {
6860 unsigned int count = 0;
6861
6862 for (; nr_pages--; pfn++) {
6863 struct page *page = pfn_to_page(pfn);
6864
6865 count += page_count(page) != 1;
6866 __free_page(page);
6867 }
6868 WARN(count != 0, "%d pages are still in use!\n", count);
6869 }
6870 #endif
6871
6872 #ifdef CONFIG_MEMORY_HOTPLUG
6873 /*
6874 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6875 * page high values need to be recalulated.
6876 */
6877 void __meminit zone_pcp_update(struct zone *zone)
6878 {
6879 unsigned cpu;
6880 mutex_lock(&pcp_batch_high_lock);
6881 for_each_possible_cpu(cpu)
6882 pageset_set_high_and_batch(zone,
6883 per_cpu_ptr(zone->pageset, cpu));
6884 mutex_unlock(&pcp_batch_high_lock);
6885 }
6886 #endif
6887
6888 void zone_pcp_reset(struct zone *zone)
6889 {
6890 unsigned long flags;
6891 int cpu;
6892 struct per_cpu_pageset *pset;
6893
6894 /* avoid races with drain_pages() */
6895 local_irq_save(flags);
6896 if (zone->pageset != &boot_pageset) {
6897 for_each_online_cpu(cpu) {
6898 pset = per_cpu_ptr(zone->pageset, cpu);
6899 drain_zonestat(zone, pset);
6900 }
6901 free_percpu(zone->pageset);
6902 zone->pageset = &boot_pageset;
6903 }
6904 local_irq_restore(flags);
6905 }
6906
6907 #ifdef CONFIG_MEMORY_HOTREMOVE
6908 /*
6909 * All pages in the range must be isolated before calling this.
6910 */
6911 void
6912 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6913 {
6914 struct page *page;
6915 struct zone *zone;
6916 unsigned int order, i;
6917 unsigned long pfn;
6918 unsigned long flags;
6919 /* find the first valid pfn */
6920 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6921 if (pfn_valid(pfn))
6922 break;
6923 if (pfn == end_pfn)
6924 return;
6925 zone = page_zone(pfn_to_page(pfn));
6926 spin_lock_irqsave(&zone->lock, flags);
6927 pfn = start_pfn;
6928 while (pfn < end_pfn) {
6929 if (!pfn_valid(pfn)) {
6930 pfn++;
6931 continue;
6932 }
6933 page = pfn_to_page(pfn);
6934 /*
6935 * The HWPoisoned page may be not in buddy system, and
6936 * page_count() is not 0.
6937 */
6938 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6939 pfn++;
6940 SetPageReserved(page);
6941 continue;
6942 }
6943
6944 BUG_ON(page_count(page));
6945 BUG_ON(!PageBuddy(page));
6946 order = page_order(page);
6947 #ifdef CONFIG_DEBUG_VM
6948 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6949 pfn, 1 << order, end_pfn);
6950 #endif
6951 list_del(&page->lru);
6952 rmv_page_order(page);
6953 zone->free_area[order].nr_free--;
6954 for (i = 0; i < (1 << order); i++)
6955 SetPageReserved((page+i));
6956 pfn += (1 << order);
6957 }
6958 spin_unlock_irqrestore(&zone->lock, flags);
6959 }
6960 #endif
6961
6962 #ifdef CONFIG_MEMORY_FAILURE
6963 bool is_free_buddy_page(struct page *page)
6964 {
6965 struct zone *zone = page_zone(page);
6966 unsigned long pfn = page_to_pfn(page);
6967 unsigned long flags;
6968 unsigned int order;
6969
6970 spin_lock_irqsave(&zone->lock, flags);
6971 for (order = 0; order < MAX_ORDER; order++) {
6972 struct page *page_head = page - (pfn & ((1 << order) - 1));
6973
6974 if (PageBuddy(page_head) && page_order(page_head) >= order)
6975 break;
6976 }
6977 spin_unlock_irqrestore(&zone->lock, flags);
6978
6979 return order < MAX_ORDER;
6980 }
6981 #endif
This page took 0.232288 seconds and 6 git commands to generate.