Apply memory policies to top two highest zones when highest zone is ZONE_MOVABLE
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48
49 /*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61
62 static void __free_pages_ok(struct page *page, unsigned int order);
63
64 /*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 32,
84 #endif
85 32,
86 };
87
88 EXPORT_SYMBOL(totalram_pages);
89
90 static char * const zone_names[MAX_NR_ZONES] = {
91 #ifdef CONFIG_ZONE_DMA
92 "DMA",
93 #endif
94 #ifdef CONFIG_ZONE_DMA32
95 "DMA32",
96 #endif
97 "Normal",
98 #ifdef CONFIG_HIGHMEM
99 "HighMem",
100 #endif
101 "Movable",
102 };
103
104 int min_free_kbytes = 1024;
105
106 unsigned long __meminitdata nr_kernel_pages;
107 unsigned long __meminitdata nr_all_pages;
108 static unsigned long __meminitdata dma_reserve;
109
110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
111 /*
112 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113 * ranges of memory (RAM) that may be registered with add_active_range().
114 * Ranges passed to add_active_range() will be merged if possible
115 * so the number of times add_active_range() can be called is
116 * related to the number of nodes and the number of holes
117 */
118 #ifdef CONFIG_MAX_ACTIVE_REGIONS
119 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
121 #else
122 #if MAX_NUMNODES >= 32
123 /* If there can be many nodes, allow up to 50 holes per node */
124 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
125 #else
126 /* By default, allow up to 256 distinct regions */
127 #define MAX_ACTIVE_REGIONS 256
128 #endif
129 #endif
130
131 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132 static int __meminitdata nr_nodemap_entries;
133 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139 unsigned long __initdata required_kernelcore;
140 unsigned long __initdata required_movablecore;
141 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
142
143 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
144 int movable_zone;
145 EXPORT_SYMBOL(movable_zone);
146 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
147
148 #if MAX_NUMNODES > 1
149 int nr_node_ids __read_mostly = MAX_NUMNODES;
150 EXPORT_SYMBOL(nr_node_ids);
151 #endif
152
153 #ifdef CONFIG_DEBUG_VM
154 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
155 {
156 int ret = 0;
157 unsigned seq;
158 unsigned long pfn = page_to_pfn(page);
159
160 do {
161 seq = zone_span_seqbegin(zone);
162 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
163 ret = 1;
164 else if (pfn < zone->zone_start_pfn)
165 ret = 1;
166 } while (zone_span_seqretry(zone, seq));
167
168 return ret;
169 }
170
171 static int page_is_consistent(struct zone *zone, struct page *page)
172 {
173 if (!pfn_valid_within(page_to_pfn(page)))
174 return 0;
175 if (zone != page_zone(page))
176 return 0;
177
178 return 1;
179 }
180 /*
181 * Temporary debugging check for pages not lying within a given zone.
182 */
183 static int bad_range(struct zone *zone, struct page *page)
184 {
185 if (page_outside_zone_boundaries(zone, page))
186 return 1;
187 if (!page_is_consistent(zone, page))
188 return 1;
189
190 return 0;
191 }
192 #else
193 static inline int bad_range(struct zone *zone, struct page *page)
194 {
195 return 0;
196 }
197 #endif
198
199 static void bad_page(struct page *page)
200 {
201 printk(KERN_EMERG "Bad page state in process '%s'\n"
202 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
204 KERN_EMERG "Backtrace:\n",
205 current->comm, page, (int)(2*sizeof(unsigned long)),
206 (unsigned long)page->flags, page->mapping,
207 page_mapcount(page), page_count(page));
208 dump_stack();
209 page->flags &= ~(1 << PG_lru |
210 1 << PG_private |
211 1 << PG_locked |
212 1 << PG_active |
213 1 << PG_dirty |
214 1 << PG_reclaim |
215 1 << PG_slab |
216 1 << PG_swapcache |
217 1 << PG_writeback |
218 1 << PG_buddy );
219 set_page_count(page, 0);
220 reset_page_mapcount(page);
221 page->mapping = NULL;
222 add_taint(TAINT_BAD_PAGE);
223 }
224
225 /*
226 * Higher-order pages are called "compound pages". They are structured thusly:
227 *
228 * The first PAGE_SIZE page is called the "head page".
229 *
230 * The remaining PAGE_SIZE pages are called "tail pages".
231 *
232 * All pages have PG_compound set. All pages have their ->private pointing at
233 * the head page (even the head page has this).
234 *
235 * The first tail page's ->lru.next holds the address of the compound page's
236 * put_page() function. Its ->lru.prev holds the order of allocation.
237 * This usage means that zero-order pages may not be compound.
238 */
239
240 static void free_compound_page(struct page *page)
241 {
242 __free_pages_ok(page, compound_order(page));
243 }
244
245 static void prep_compound_page(struct page *page, unsigned long order)
246 {
247 int i;
248 int nr_pages = 1 << order;
249
250 set_compound_page_dtor(page, free_compound_page);
251 set_compound_order(page, order);
252 __SetPageHead(page);
253 for (i = 1; i < nr_pages; i++) {
254 struct page *p = page + i;
255
256 __SetPageTail(p);
257 p->first_page = page;
258 }
259 }
260
261 static void destroy_compound_page(struct page *page, unsigned long order)
262 {
263 int i;
264 int nr_pages = 1 << order;
265
266 if (unlikely(compound_order(page) != order))
267 bad_page(page);
268
269 if (unlikely(!PageHead(page)))
270 bad_page(page);
271 __ClearPageHead(page);
272 for (i = 1; i < nr_pages; i++) {
273 struct page *p = page + i;
274
275 if (unlikely(!PageTail(p) |
276 (p->first_page != page)))
277 bad_page(page);
278 __ClearPageTail(p);
279 }
280 }
281
282 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
283 {
284 int i;
285
286 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
287 /*
288 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289 * and __GFP_HIGHMEM from hard or soft interrupt context.
290 */
291 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
292 for (i = 0; i < (1 << order); i++)
293 clear_highpage(page + i);
294 }
295
296 /*
297 * function for dealing with page's order in buddy system.
298 * zone->lock is already acquired when we use these.
299 * So, we don't need atomic page->flags operations here.
300 */
301 static inline unsigned long page_order(struct page *page)
302 {
303 return page_private(page);
304 }
305
306 static inline void set_page_order(struct page *page, int order)
307 {
308 set_page_private(page, order);
309 __SetPageBuddy(page);
310 }
311
312 static inline void rmv_page_order(struct page *page)
313 {
314 __ClearPageBuddy(page);
315 set_page_private(page, 0);
316 }
317
318 /*
319 * Locate the struct page for both the matching buddy in our
320 * pair (buddy1) and the combined O(n+1) page they form (page).
321 *
322 * 1) Any buddy B1 will have an order O twin B2 which satisfies
323 * the following equation:
324 * B2 = B1 ^ (1 << O)
325 * For example, if the starting buddy (buddy2) is #8 its order
326 * 1 buddy is #10:
327 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
328 *
329 * 2) Any buddy B will have an order O+1 parent P which
330 * satisfies the following equation:
331 * P = B & ~(1 << O)
332 *
333 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
334 */
335 static inline struct page *
336 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
337 {
338 unsigned long buddy_idx = page_idx ^ (1 << order);
339
340 return page + (buddy_idx - page_idx);
341 }
342
343 static inline unsigned long
344 __find_combined_index(unsigned long page_idx, unsigned int order)
345 {
346 return (page_idx & ~(1 << order));
347 }
348
349 /*
350 * This function checks whether a page is free && is the buddy
351 * we can do coalesce a page and its buddy if
352 * (a) the buddy is not in a hole &&
353 * (b) the buddy is in the buddy system &&
354 * (c) a page and its buddy have the same order &&
355 * (d) a page and its buddy are in the same zone.
356 *
357 * For recording whether a page is in the buddy system, we use PG_buddy.
358 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
359 *
360 * For recording page's order, we use page_private(page).
361 */
362 static inline int page_is_buddy(struct page *page, struct page *buddy,
363 int order)
364 {
365 if (!pfn_valid_within(page_to_pfn(buddy)))
366 return 0;
367
368 if (page_zone_id(page) != page_zone_id(buddy))
369 return 0;
370
371 if (PageBuddy(buddy) && page_order(buddy) == order) {
372 BUG_ON(page_count(buddy) != 0);
373 return 1;
374 }
375 return 0;
376 }
377
378 /*
379 * Freeing function for a buddy system allocator.
380 *
381 * The concept of a buddy system is to maintain direct-mapped table
382 * (containing bit values) for memory blocks of various "orders".
383 * The bottom level table contains the map for the smallest allocatable
384 * units of memory (here, pages), and each level above it describes
385 * pairs of units from the levels below, hence, "buddies".
386 * At a high level, all that happens here is marking the table entry
387 * at the bottom level available, and propagating the changes upward
388 * as necessary, plus some accounting needed to play nicely with other
389 * parts of the VM system.
390 * At each level, we keep a list of pages, which are heads of continuous
391 * free pages of length of (1 << order) and marked with PG_buddy. Page's
392 * order is recorded in page_private(page) field.
393 * So when we are allocating or freeing one, we can derive the state of the
394 * other. That is, if we allocate a small block, and both were
395 * free, the remainder of the region must be split into blocks.
396 * If a block is freed, and its buddy is also free, then this
397 * triggers coalescing into a block of larger size.
398 *
399 * -- wli
400 */
401
402 static inline void __free_one_page(struct page *page,
403 struct zone *zone, unsigned int order)
404 {
405 unsigned long page_idx;
406 int order_size = 1 << order;
407
408 if (unlikely(PageCompound(page)))
409 destroy_compound_page(page, order);
410
411 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
412
413 VM_BUG_ON(page_idx & (order_size - 1));
414 VM_BUG_ON(bad_range(zone, page));
415
416 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
417 while (order < MAX_ORDER-1) {
418 unsigned long combined_idx;
419 struct free_area *area;
420 struct page *buddy;
421
422 buddy = __page_find_buddy(page, page_idx, order);
423 if (!page_is_buddy(page, buddy, order))
424 break; /* Move the buddy up one level. */
425
426 list_del(&buddy->lru);
427 area = zone->free_area + order;
428 area->nr_free--;
429 rmv_page_order(buddy);
430 combined_idx = __find_combined_index(page_idx, order);
431 page = page + (combined_idx - page_idx);
432 page_idx = combined_idx;
433 order++;
434 }
435 set_page_order(page, order);
436 list_add(&page->lru, &zone->free_area[order].free_list);
437 zone->free_area[order].nr_free++;
438 }
439
440 static inline int free_pages_check(struct page *page)
441 {
442 if (unlikely(page_mapcount(page) |
443 (page->mapping != NULL) |
444 (page_count(page) != 0) |
445 (page->flags & (
446 1 << PG_lru |
447 1 << PG_private |
448 1 << PG_locked |
449 1 << PG_active |
450 1 << PG_slab |
451 1 << PG_swapcache |
452 1 << PG_writeback |
453 1 << PG_reserved |
454 1 << PG_buddy ))))
455 bad_page(page);
456 if (PageDirty(page))
457 __ClearPageDirty(page);
458 /*
459 * For now, we report if PG_reserved was found set, but do not
460 * clear it, and do not free the page. But we shall soon need
461 * to do more, for when the ZERO_PAGE count wraps negative.
462 */
463 return PageReserved(page);
464 }
465
466 /*
467 * Frees a list of pages.
468 * Assumes all pages on list are in same zone, and of same order.
469 * count is the number of pages to free.
470 *
471 * If the zone was previously in an "all pages pinned" state then look to
472 * see if this freeing clears that state.
473 *
474 * And clear the zone's pages_scanned counter, to hold off the "all pages are
475 * pinned" detection logic.
476 */
477 static void free_pages_bulk(struct zone *zone, int count,
478 struct list_head *list, int order)
479 {
480 spin_lock(&zone->lock);
481 zone->all_unreclaimable = 0;
482 zone->pages_scanned = 0;
483 while (count--) {
484 struct page *page;
485
486 VM_BUG_ON(list_empty(list));
487 page = list_entry(list->prev, struct page, lru);
488 /* have to delete it as __free_one_page list manipulates */
489 list_del(&page->lru);
490 __free_one_page(page, zone, order);
491 }
492 spin_unlock(&zone->lock);
493 }
494
495 static void free_one_page(struct zone *zone, struct page *page, int order)
496 {
497 spin_lock(&zone->lock);
498 zone->all_unreclaimable = 0;
499 zone->pages_scanned = 0;
500 __free_one_page(page, zone, order);
501 spin_unlock(&zone->lock);
502 }
503
504 static void __free_pages_ok(struct page *page, unsigned int order)
505 {
506 unsigned long flags;
507 int i;
508 int reserved = 0;
509
510 for (i = 0 ; i < (1 << order) ; ++i)
511 reserved += free_pages_check(page + i);
512 if (reserved)
513 return;
514
515 if (!PageHighMem(page))
516 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
517 arch_free_page(page, order);
518 kernel_map_pages(page, 1 << order, 0);
519
520 local_irq_save(flags);
521 __count_vm_events(PGFREE, 1 << order);
522 free_one_page(page_zone(page), page, order);
523 local_irq_restore(flags);
524 }
525
526 /*
527 * permit the bootmem allocator to evade page validation on high-order frees
528 */
529 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
530 {
531 if (order == 0) {
532 __ClearPageReserved(page);
533 set_page_count(page, 0);
534 set_page_refcounted(page);
535 __free_page(page);
536 } else {
537 int loop;
538
539 prefetchw(page);
540 for (loop = 0; loop < BITS_PER_LONG; loop++) {
541 struct page *p = &page[loop];
542
543 if (loop + 1 < BITS_PER_LONG)
544 prefetchw(p + 1);
545 __ClearPageReserved(p);
546 set_page_count(p, 0);
547 }
548
549 set_page_refcounted(page);
550 __free_pages(page, order);
551 }
552 }
553
554
555 /*
556 * The order of subdivision here is critical for the IO subsystem.
557 * Please do not alter this order without good reasons and regression
558 * testing. Specifically, as large blocks of memory are subdivided,
559 * the order in which smaller blocks are delivered depends on the order
560 * they're subdivided in this function. This is the primary factor
561 * influencing the order in which pages are delivered to the IO
562 * subsystem according to empirical testing, and this is also justified
563 * by considering the behavior of a buddy system containing a single
564 * large block of memory acted on by a series of small allocations.
565 * This behavior is a critical factor in sglist merging's success.
566 *
567 * -- wli
568 */
569 static inline void expand(struct zone *zone, struct page *page,
570 int low, int high, struct free_area *area)
571 {
572 unsigned long size = 1 << high;
573
574 while (high > low) {
575 area--;
576 high--;
577 size >>= 1;
578 VM_BUG_ON(bad_range(zone, &page[size]));
579 list_add(&page[size].lru, &area->free_list);
580 area->nr_free++;
581 set_page_order(&page[size], high);
582 }
583 }
584
585 /*
586 * This page is about to be returned from the page allocator
587 */
588 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
589 {
590 if (unlikely(page_mapcount(page) |
591 (page->mapping != NULL) |
592 (page_count(page) != 0) |
593 (page->flags & (
594 1 << PG_lru |
595 1 << PG_private |
596 1 << PG_locked |
597 1 << PG_active |
598 1 << PG_dirty |
599 1 << PG_slab |
600 1 << PG_swapcache |
601 1 << PG_writeback |
602 1 << PG_reserved |
603 1 << PG_buddy ))))
604 bad_page(page);
605
606 /*
607 * For now, we report if PG_reserved was found set, but do not
608 * clear it, and do not allocate the page: as a safety net.
609 */
610 if (PageReserved(page))
611 return 1;
612
613 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
614 1 << PG_referenced | 1 << PG_arch_1 |
615 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
616 set_page_private(page, 0);
617 set_page_refcounted(page);
618
619 arch_alloc_page(page, order);
620 kernel_map_pages(page, 1 << order, 1);
621
622 if (gfp_flags & __GFP_ZERO)
623 prep_zero_page(page, order, gfp_flags);
624
625 if (order && (gfp_flags & __GFP_COMP))
626 prep_compound_page(page, order);
627
628 return 0;
629 }
630
631 /*
632 * Do the hard work of removing an element from the buddy allocator.
633 * Call me with the zone->lock already held.
634 */
635 static struct page *__rmqueue(struct zone *zone, unsigned int order)
636 {
637 struct free_area * area;
638 unsigned int current_order;
639 struct page *page;
640
641 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
642 area = zone->free_area + current_order;
643 if (list_empty(&area->free_list))
644 continue;
645
646 page = list_entry(area->free_list.next, struct page, lru);
647 list_del(&page->lru);
648 rmv_page_order(page);
649 area->nr_free--;
650 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
651 expand(zone, page, order, current_order, area);
652 return page;
653 }
654
655 return NULL;
656 }
657
658 /*
659 * Obtain a specified number of elements from the buddy allocator, all under
660 * a single hold of the lock, for efficiency. Add them to the supplied list.
661 * Returns the number of new pages which were placed at *list.
662 */
663 static int rmqueue_bulk(struct zone *zone, unsigned int order,
664 unsigned long count, struct list_head *list)
665 {
666 int i;
667
668 spin_lock(&zone->lock);
669 for (i = 0; i < count; ++i) {
670 struct page *page = __rmqueue(zone, order);
671 if (unlikely(page == NULL))
672 break;
673 list_add_tail(&page->lru, list);
674 }
675 spin_unlock(&zone->lock);
676 return i;
677 }
678
679 #ifdef CONFIG_NUMA
680 /*
681 * Called from the vmstat counter updater to drain pagesets of this
682 * currently executing processor on remote nodes after they have
683 * expired.
684 *
685 * Note that this function must be called with the thread pinned to
686 * a single processor.
687 */
688 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
689 {
690 unsigned long flags;
691 int to_drain;
692
693 local_irq_save(flags);
694 if (pcp->count >= pcp->batch)
695 to_drain = pcp->batch;
696 else
697 to_drain = pcp->count;
698 free_pages_bulk(zone, to_drain, &pcp->list, 0);
699 pcp->count -= to_drain;
700 local_irq_restore(flags);
701 }
702 #endif
703
704 static void __drain_pages(unsigned int cpu)
705 {
706 unsigned long flags;
707 struct zone *zone;
708 int i;
709
710 for_each_zone(zone) {
711 struct per_cpu_pageset *pset;
712
713 if (!populated_zone(zone))
714 continue;
715
716 pset = zone_pcp(zone, cpu);
717 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
718 struct per_cpu_pages *pcp;
719
720 pcp = &pset->pcp[i];
721 local_irq_save(flags);
722 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
723 pcp->count = 0;
724 local_irq_restore(flags);
725 }
726 }
727 }
728
729 #ifdef CONFIG_HIBERNATION
730
731 void mark_free_pages(struct zone *zone)
732 {
733 unsigned long pfn, max_zone_pfn;
734 unsigned long flags;
735 int order;
736 struct list_head *curr;
737
738 if (!zone->spanned_pages)
739 return;
740
741 spin_lock_irqsave(&zone->lock, flags);
742
743 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
744 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
745 if (pfn_valid(pfn)) {
746 struct page *page = pfn_to_page(pfn);
747
748 if (!swsusp_page_is_forbidden(page))
749 swsusp_unset_page_free(page);
750 }
751
752 for (order = MAX_ORDER - 1; order >= 0; --order)
753 list_for_each(curr, &zone->free_area[order].free_list) {
754 unsigned long i;
755
756 pfn = page_to_pfn(list_entry(curr, struct page, lru));
757 for (i = 0; i < (1UL << order); i++)
758 swsusp_set_page_free(pfn_to_page(pfn + i));
759 }
760
761 spin_unlock_irqrestore(&zone->lock, flags);
762 }
763
764 /*
765 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
766 */
767 void drain_local_pages(void)
768 {
769 unsigned long flags;
770
771 local_irq_save(flags);
772 __drain_pages(smp_processor_id());
773 local_irq_restore(flags);
774 }
775 #endif /* CONFIG_HIBERNATION */
776
777 /*
778 * Free a 0-order page
779 */
780 static void fastcall free_hot_cold_page(struct page *page, int cold)
781 {
782 struct zone *zone = page_zone(page);
783 struct per_cpu_pages *pcp;
784 unsigned long flags;
785
786 if (PageAnon(page))
787 page->mapping = NULL;
788 if (free_pages_check(page))
789 return;
790
791 if (!PageHighMem(page))
792 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
793 arch_free_page(page, 0);
794 kernel_map_pages(page, 1, 0);
795
796 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
797 local_irq_save(flags);
798 __count_vm_event(PGFREE);
799 list_add(&page->lru, &pcp->list);
800 pcp->count++;
801 if (pcp->count >= pcp->high) {
802 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
803 pcp->count -= pcp->batch;
804 }
805 local_irq_restore(flags);
806 put_cpu();
807 }
808
809 void fastcall free_hot_page(struct page *page)
810 {
811 free_hot_cold_page(page, 0);
812 }
813
814 void fastcall free_cold_page(struct page *page)
815 {
816 free_hot_cold_page(page, 1);
817 }
818
819 /*
820 * split_page takes a non-compound higher-order page, and splits it into
821 * n (1<<order) sub-pages: page[0..n]
822 * Each sub-page must be freed individually.
823 *
824 * Note: this is probably too low level an operation for use in drivers.
825 * Please consult with lkml before using this in your driver.
826 */
827 void split_page(struct page *page, unsigned int order)
828 {
829 int i;
830
831 VM_BUG_ON(PageCompound(page));
832 VM_BUG_ON(!page_count(page));
833 for (i = 1; i < (1 << order); i++)
834 set_page_refcounted(page + i);
835 }
836
837 /*
838 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
839 * we cheat by calling it from here, in the order > 0 path. Saves a branch
840 * or two.
841 */
842 static struct page *buffered_rmqueue(struct zonelist *zonelist,
843 struct zone *zone, int order, gfp_t gfp_flags)
844 {
845 unsigned long flags;
846 struct page *page;
847 int cold = !!(gfp_flags & __GFP_COLD);
848 int cpu;
849
850 again:
851 cpu = get_cpu();
852 if (likely(order == 0)) {
853 struct per_cpu_pages *pcp;
854
855 pcp = &zone_pcp(zone, cpu)->pcp[cold];
856 local_irq_save(flags);
857 if (!pcp->count) {
858 pcp->count = rmqueue_bulk(zone, 0,
859 pcp->batch, &pcp->list);
860 if (unlikely(!pcp->count))
861 goto failed;
862 }
863 page = list_entry(pcp->list.next, struct page, lru);
864 list_del(&page->lru);
865 pcp->count--;
866 } else {
867 spin_lock_irqsave(&zone->lock, flags);
868 page = __rmqueue(zone, order);
869 spin_unlock(&zone->lock);
870 if (!page)
871 goto failed;
872 }
873
874 __count_zone_vm_events(PGALLOC, zone, 1 << order);
875 zone_statistics(zonelist, zone);
876 local_irq_restore(flags);
877 put_cpu();
878
879 VM_BUG_ON(bad_range(zone, page));
880 if (prep_new_page(page, order, gfp_flags))
881 goto again;
882 return page;
883
884 failed:
885 local_irq_restore(flags);
886 put_cpu();
887 return NULL;
888 }
889
890 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
891 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
892 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
893 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
894 #define ALLOC_HARDER 0x10 /* try to alloc harder */
895 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
896 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
897
898 #ifdef CONFIG_FAIL_PAGE_ALLOC
899
900 static struct fail_page_alloc_attr {
901 struct fault_attr attr;
902
903 u32 ignore_gfp_highmem;
904 u32 ignore_gfp_wait;
905 u32 min_order;
906
907 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
908
909 struct dentry *ignore_gfp_highmem_file;
910 struct dentry *ignore_gfp_wait_file;
911 struct dentry *min_order_file;
912
913 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
914
915 } fail_page_alloc = {
916 .attr = FAULT_ATTR_INITIALIZER,
917 .ignore_gfp_wait = 1,
918 .ignore_gfp_highmem = 1,
919 .min_order = 1,
920 };
921
922 static int __init setup_fail_page_alloc(char *str)
923 {
924 return setup_fault_attr(&fail_page_alloc.attr, str);
925 }
926 __setup("fail_page_alloc=", setup_fail_page_alloc);
927
928 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
929 {
930 if (order < fail_page_alloc.min_order)
931 return 0;
932 if (gfp_mask & __GFP_NOFAIL)
933 return 0;
934 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
935 return 0;
936 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
937 return 0;
938
939 return should_fail(&fail_page_alloc.attr, 1 << order);
940 }
941
942 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
943
944 static int __init fail_page_alloc_debugfs(void)
945 {
946 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
947 struct dentry *dir;
948 int err;
949
950 err = init_fault_attr_dentries(&fail_page_alloc.attr,
951 "fail_page_alloc");
952 if (err)
953 return err;
954 dir = fail_page_alloc.attr.dentries.dir;
955
956 fail_page_alloc.ignore_gfp_wait_file =
957 debugfs_create_bool("ignore-gfp-wait", mode, dir,
958 &fail_page_alloc.ignore_gfp_wait);
959
960 fail_page_alloc.ignore_gfp_highmem_file =
961 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
962 &fail_page_alloc.ignore_gfp_highmem);
963 fail_page_alloc.min_order_file =
964 debugfs_create_u32("min-order", mode, dir,
965 &fail_page_alloc.min_order);
966
967 if (!fail_page_alloc.ignore_gfp_wait_file ||
968 !fail_page_alloc.ignore_gfp_highmem_file ||
969 !fail_page_alloc.min_order_file) {
970 err = -ENOMEM;
971 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
972 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
973 debugfs_remove(fail_page_alloc.min_order_file);
974 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
975 }
976
977 return err;
978 }
979
980 late_initcall(fail_page_alloc_debugfs);
981
982 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
983
984 #else /* CONFIG_FAIL_PAGE_ALLOC */
985
986 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
987 {
988 return 0;
989 }
990
991 #endif /* CONFIG_FAIL_PAGE_ALLOC */
992
993 /*
994 * Return 1 if free pages are above 'mark'. This takes into account the order
995 * of the allocation.
996 */
997 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
998 int classzone_idx, int alloc_flags)
999 {
1000 /* free_pages my go negative - that's OK */
1001 long min = mark;
1002 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1003 int o;
1004
1005 if (alloc_flags & ALLOC_HIGH)
1006 min -= min / 2;
1007 if (alloc_flags & ALLOC_HARDER)
1008 min -= min / 4;
1009
1010 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1011 return 0;
1012 for (o = 0; o < order; o++) {
1013 /* At the next order, this order's pages become unavailable */
1014 free_pages -= z->free_area[o].nr_free << o;
1015
1016 /* Require fewer higher order pages to be free */
1017 min >>= 1;
1018
1019 if (free_pages <= min)
1020 return 0;
1021 }
1022 return 1;
1023 }
1024
1025 #ifdef CONFIG_NUMA
1026 /*
1027 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1028 * skip over zones that are not allowed by the cpuset, or that have
1029 * been recently (in last second) found to be nearly full. See further
1030 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1031 * that have to skip over alot of full or unallowed zones.
1032 *
1033 * If the zonelist cache is present in the passed in zonelist, then
1034 * returns a pointer to the allowed node mask (either the current
1035 * tasks mems_allowed, or node_online_map.)
1036 *
1037 * If the zonelist cache is not available for this zonelist, does
1038 * nothing and returns NULL.
1039 *
1040 * If the fullzones BITMAP in the zonelist cache is stale (more than
1041 * a second since last zap'd) then we zap it out (clear its bits.)
1042 *
1043 * We hold off even calling zlc_setup, until after we've checked the
1044 * first zone in the zonelist, on the theory that most allocations will
1045 * be satisfied from that first zone, so best to examine that zone as
1046 * quickly as we can.
1047 */
1048 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1049 {
1050 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1051 nodemask_t *allowednodes; /* zonelist_cache approximation */
1052
1053 zlc = zonelist->zlcache_ptr;
1054 if (!zlc)
1055 return NULL;
1056
1057 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1058 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1059 zlc->last_full_zap = jiffies;
1060 }
1061
1062 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1063 &cpuset_current_mems_allowed :
1064 &node_online_map;
1065 return allowednodes;
1066 }
1067
1068 /*
1069 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1070 * if it is worth looking at further for free memory:
1071 * 1) Check that the zone isn't thought to be full (doesn't have its
1072 * bit set in the zonelist_cache fullzones BITMAP).
1073 * 2) Check that the zones node (obtained from the zonelist_cache
1074 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1075 * Return true (non-zero) if zone is worth looking at further, or
1076 * else return false (zero) if it is not.
1077 *
1078 * This check -ignores- the distinction between various watermarks,
1079 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1080 * found to be full for any variation of these watermarks, it will
1081 * be considered full for up to one second by all requests, unless
1082 * we are so low on memory on all allowed nodes that we are forced
1083 * into the second scan of the zonelist.
1084 *
1085 * In the second scan we ignore this zonelist cache and exactly
1086 * apply the watermarks to all zones, even it is slower to do so.
1087 * We are low on memory in the second scan, and should leave no stone
1088 * unturned looking for a free page.
1089 */
1090 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1091 nodemask_t *allowednodes)
1092 {
1093 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1094 int i; /* index of *z in zonelist zones */
1095 int n; /* node that zone *z is on */
1096
1097 zlc = zonelist->zlcache_ptr;
1098 if (!zlc)
1099 return 1;
1100
1101 i = z - zonelist->zones;
1102 n = zlc->z_to_n[i];
1103
1104 /* This zone is worth trying if it is allowed but not full */
1105 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1106 }
1107
1108 /*
1109 * Given 'z' scanning a zonelist, set the corresponding bit in
1110 * zlc->fullzones, so that subsequent attempts to allocate a page
1111 * from that zone don't waste time re-examining it.
1112 */
1113 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1114 {
1115 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1116 int i; /* index of *z in zonelist zones */
1117
1118 zlc = zonelist->zlcache_ptr;
1119 if (!zlc)
1120 return;
1121
1122 i = z - zonelist->zones;
1123
1124 set_bit(i, zlc->fullzones);
1125 }
1126
1127 #else /* CONFIG_NUMA */
1128
1129 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1130 {
1131 return NULL;
1132 }
1133
1134 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1135 nodemask_t *allowednodes)
1136 {
1137 return 1;
1138 }
1139
1140 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1141 {
1142 }
1143 #endif /* CONFIG_NUMA */
1144
1145 /*
1146 * get_page_from_freelist goes through the zonelist trying to allocate
1147 * a page.
1148 */
1149 static struct page *
1150 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1151 struct zonelist *zonelist, int alloc_flags)
1152 {
1153 struct zone **z;
1154 struct page *page = NULL;
1155 int classzone_idx = zone_idx(zonelist->zones[0]);
1156 struct zone *zone;
1157 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1158 int zlc_active = 0; /* set if using zonelist_cache */
1159 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1160 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1161
1162 zonelist_scan:
1163 /*
1164 * Scan zonelist, looking for a zone with enough free.
1165 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1166 */
1167 z = zonelist->zones;
1168
1169 do {
1170 /*
1171 * In NUMA, this could be a policy zonelist which contains
1172 * zones that may not be allowed by the current gfp_mask.
1173 * Check the zone is allowed by the current flags
1174 */
1175 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1176 if (highest_zoneidx == -1)
1177 highest_zoneidx = gfp_zone(gfp_mask);
1178 if (zone_idx(*z) > highest_zoneidx)
1179 continue;
1180 }
1181
1182 if (NUMA_BUILD && zlc_active &&
1183 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1184 continue;
1185 zone = *z;
1186 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1187 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1188 break;
1189 if ((alloc_flags & ALLOC_CPUSET) &&
1190 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1191 goto try_next_zone;
1192
1193 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1194 unsigned long mark;
1195 if (alloc_flags & ALLOC_WMARK_MIN)
1196 mark = zone->pages_min;
1197 else if (alloc_flags & ALLOC_WMARK_LOW)
1198 mark = zone->pages_low;
1199 else
1200 mark = zone->pages_high;
1201 if (!zone_watermark_ok(zone, order, mark,
1202 classzone_idx, alloc_flags)) {
1203 if (!zone_reclaim_mode ||
1204 !zone_reclaim(zone, gfp_mask, order))
1205 goto this_zone_full;
1206 }
1207 }
1208
1209 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1210 if (page)
1211 break;
1212 this_zone_full:
1213 if (NUMA_BUILD)
1214 zlc_mark_zone_full(zonelist, z);
1215 try_next_zone:
1216 if (NUMA_BUILD && !did_zlc_setup) {
1217 /* we do zlc_setup after the first zone is tried */
1218 allowednodes = zlc_setup(zonelist, alloc_flags);
1219 zlc_active = 1;
1220 did_zlc_setup = 1;
1221 }
1222 } while (*(++z) != NULL);
1223
1224 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1225 /* Disable zlc cache for second zonelist scan */
1226 zlc_active = 0;
1227 goto zonelist_scan;
1228 }
1229 return page;
1230 }
1231
1232 /*
1233 * This is the 'heart' of the zoned buddy allocator.
1234 */
1235 struct page * fastcall
1236 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1237 struct zonelist *zonelist)
1238 {
1239 const gfp_t wait = gfp_mask & __GFP_WAIT;
1240 struct zone **z;
1241 struct page *page;
1242 struct reclaim_state reclaim_state;
1243 struct task_struct *p = current;
1244 int do_retry;
1245 int alloc_flags;
1246 int did_some_progress;
1247
1248 might_sleep_if(wait);
1249
1250 if (should_fail_alloc_page(gfp_mask, order))
1251 return NULL;
1252
1253 restart:
1254 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1255
1256 if (unlikely(*z == NULL)) {
1257 /* Should this ever happen?? */
1258 return NULL;
1259 }
1260
1261 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1262 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1263 if (page)
1264 goto got_pg;
1265
1266 /*
1267 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1268 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1269 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1270 * using a larger set of nodes after it has established that the
1271 * allowed per node queues are empty and that nodes are
1272 * over allocated.
1273 */
1274 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1275 goto nopage;
1276
1277 for (z = zonelist->zones; *z; z++)
1278 wakeup_kswapd(*z, order);
1279
1280 /*
1281 * OK, we're below the kswapd watermark and have kicked background
1282 * reclaim. Now things get more complex, so set up alloc_flags according
1283 * to how we want to proceed.
1284 *
1285 * The caller may dip into page reserves a bit more if the caller
1286 * cannot run direct reclaim, or if the caller has realtime scheduling
1287 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1288 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1289 */
1290 alloc_flags = ALLOC_WMARK_MIN;
1291 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1292 alloc_flags |= ALLOC_HARDER;
1293 if (gfp_mask & __GFP_HIGH)
1294 alloc_flags |= ALLOC_HIGH;
1295 if (wait)
1296 alloc_flags |= ALLOC_CPUSET;
1297
1298 /*
1299 * Go through the zonelist again. Let __GFP_HIGH and allocations
1300 * coming from realtime tasks go deeper into reserves.
1301 *
1302 * This is the last chance, in general, before the goto nopage.
1303 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1304 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1305 */
1306 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1307 if (page)
1308 goto got_pg;
1309
1310 /* This allocation should allow future memory freeing. */
1311
1312 rebalance:
1313 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1314 && !in_interrupt()) {
1315 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1316 nofail_alloc:
1317 /* go through the zonelist yet again, ignoring mins */
1318 page = get_page_from_freelist(gfp_mask, order,
1319 zonelist, ALLOC_NO_WATERMARKS);
1320 if (page)
1321 goto got_pg;
1322 if (gfp_mask & __GFP_NOFAIL) {
1323 congestion_wait(WRITE, HZ/50);
1324 goto nofail_alloc;
1325 }
1326 }
1327 goto nopage;
1328 }
1329
1330 /* Atomic allocations - we can't balance anything */
1331 if (!wait)
1332 goto nopage;
1333
1334 cond_resched();
1335
1336 /* We now go into synchronous reclaim */
1337 cpuset_memory_pressure_bump();
1338 p->flags |= PF_MEMALLOC;
1339 reclaim_state.reclaimed_slab = 0;
1340 p->reclaim_state = &reclaim_state;
1341
1342 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1343
1344 p->reclaim_state = NULL;
1345 p->flags &= ~PF_MEMALLOC;
1346
1347 cond_resched();
1348
1349 if (likely(did_some_progress)) {
1350 page = get_page_from_freelist(gfp_mask, order,
1351 zonelist, alloc_flags);
1352 if (page)
1353 goto got_pg;
1354 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1355 /*
1356 * Go through the zonelist yet one more time, keep
1357 * very high watermark here, this is only to catch
1358 * a parallel oom killing, we must fail if we're still
1359 * under heavy pressure.
1360 */
1361 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1362 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1363 if (page)
1364 goto got_pg;
1365
1366 /* The OOM killer will not help higher order allocs so fail */
1367 if (order > PAGE_ALLOC_COSTLY_ORDER)
1368 goto nopage;
1369
1370 out_of_memory(zonelist, gfp_mask, order);
1371 goto restart;
1372 }
1373
1374 /*
1375 * Don't let big-order allocations loop unless the caller explicitly
1376 * requests that. Wait for some write requests to complete then retry.
1377 *
1378 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1379 * <= 3, but that may not be true in other implementations.
1380 */
1381 do_retry = 0;
1382 if (!(gfp_mask & __GFP_NORETRY)) {
1383 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1384 (gfp_mask & __GFP_REPEAT))
1385 do_retry = 1;
1386 if (gfp_mask & __GFP_NOFAIL)
1387 do_retry = 1;
1388 }
1389 if (do_retry) {
1390 congestion_wait(WRITE, HZ/50);
1391 goto rebalance;
1392 }
1393
1394 nopage:
1395 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1396 printk(KERN_WARNING "%s: page allocation failure."
1397 " order:%d, mode:0x%x\n",
1398 p->comm, order, gfp_mask);
1399 dump_stack();
1400 show_mem();
1401 }
1402 got_pg:
1403 return page;
1404 }
1405
1406 EXPORT_SYMBOL(__alloc_pages);
1407
1408 /*
1409 * Common helper functions.
1410 */
1411 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1412 {
1413 struct page * page;
1414 page = alloc_pages(gfp_mask, order);
1415 if (!page)
1416 return 0;
1417 return (unsigned long) page_address(page);
1418 }
1419
1420 EXPORT_SYMBOL(__get_free_pages);
1421
1422 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1423 {
1424 struct page * page;
1425
1426 /*
1427 * get_zeroed_page() returns a 32-bit address, which cannot represent
1428 * a highmem page
1429 */
1430 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1431
1432 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1433 if (page)
1434 return (unsigned long) page_address(page);
1435 return 0;
1436 }
1437
1438 EXPORT_SYMBOL(get_zeroed_page);
1439
1440 void __pagevec_free(struct pagevec *pvec)
1441 {
1442 int i = pagevec_count(pvec);
1443
1444 while (--i >= 0)
1445 free_hot_cold_page(pvec->pages[i], pvec->cold);
1446 }
1447
1448 fastcall void __free_pages(struct page *page, unsigned int order)
1449 {
1450 if (put_page_testzero(page)) {
1451 if (order == 0)
1452 free_hot_page(page);
1453 else
1454 __free_pages_ok(page, order);
1455 }
1456 }
1457
1458 EXPORT_SYMBOL(__free_pages);
1459
1460 fastcall void free_pages(unsigned long addr, unsigned int order)
1461 {
1462 if (addr != 0) {
1463 VM_BUG_ON(!virt_addr_valid((void *)addr));
1464 __free_pages(virt_to_page((void *)addr), order);
1465 }
1466 }
1467
1468 EXPORT_SYMBOL(free_pages);
1469
1470 static unsigned int nr_free_zone_pages(int offset)
1471 {
1472 /* Just pick one node, since fallback list is circular */
1473 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1474 unsigned int sum = 0;
1475
1476 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1477 struct zone **zonep = zonelist->zones;
1478 struct zone *zone;
1479
1480 for (zone = *zonep++; zone; zone = *zonep++) {
1481 unsigned long size = zone->present_pages;
1482 unsigned long high = zone->pages_high;
1483 if (size > high)
1484 sum += size - high;
1485 }
1486
1487 return sum;
1488 }
1489
1490 /*
1491 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1492 */
1493 unsigned int nr_free_buffer_pages(void)
1494 {
1495 return nr_free_zone_pages(gfp_zone(GFP_USER));
1496 }
1497 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1498
1499 /*
1500 * Amount of free RAM allocatable within all zones
1501 */
1502 unsigned int nr_free_pagecache_pages(void)
1503 {
1504 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1505 }
1506
1507 static inline void show_node(struct zone *zone)
1508 {
1509 if (NUMA_BUILD)
1510 printk("Node %d ", zone_to_nid(zone));
1511 }
1512
1513 void si_meminfo(struct sysinfo *val)
1514 {
1515 val->totalram = totalram_pages;
1516 val->sharedram = 0;
1517 val->freeram = global_page_state(NR_FREE_PAGES);
1518 val->bufferram = nr_blockdev_pages();
1519 val->totalhigh = totalhigh_pages;
1520 val->freehigh = nr_free_highpages();
1521 val->mem_unit = PAGE_SIZE;
1522 }
1523
1524 EXPORT_SYMBOL(si_meminfo);
1525
1526 #ifdef CONFIG_NUMA
1527 void si_meminfo_node(struct sysinfo *val, int nid)
1528 {
1529 pg_data_t *pgdat = NODE_DATA(nid);
1530
1531 val->totalram = pgdat->node_present_pages;
1532 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1533 #ifdef CONFIG_HIGHMEM
1534 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1535 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1536 NR_FREE_PAGES);
1537 #else
1538 val->totalhigh = 0;
1539 val->freehigh = 0;
1540 #endif
1541 val->mem_unit = PAGE_SIZE;
1542 }
1543 #endif
1544
1545 #define K(x) ((x) << (PAGE_SHIFT-10))
1546
1547 /*
1548 * Show free area list (used inside shift_scroll-lock stuff)
1549 * We also calculate the percentage fragmentation. We do this by counting the
1550 * memory on each free list with the exception of the first item on the list.
1551 */
1552 void show_free_areas(void)
1553 {
1554 int cpu;
1555 struct zone *zone;
1556
1557 for_each_zone(zone) {
1558 if (!populated_zone(zone))
1559 continue;
1560
1561 show_node(zone);
1562 printk("%s per-cpu:\n", zone->name);
1563
1564 for_each_online_cpu(cpu) {
1565 struct per_cpu_pageset *pageset;
1566
1567 pageset = zone_pcp(zone, cpu);
1568
1569 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1570 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1571 cpu, pageset->pcp[0].high,
1572 pageset->pcp[0].batch, pageset->pcp[0].count,
1573 pageset->pcp[1].high, pageset->pcp[1].batch,
1574 pageset->pcp[1].count);
1575 }
1576 }
1577
1578 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1579 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1580 global_page_state(NR_ACTIVE),
1581 global_page_state(NR_INACTIVE),
1582 global_page_state(NR_FILE_DIRTY),
1583 global_page_state(NR_WRITEBACK),
1584 global_page_state(NR_UNSTABLE_NFS),
1585 global_page_state(NR_FREE_PAGES),
1586 global_page_state(NR_SLAB_RECLAIMABLE) +
1587 global_page_state(NR_SLAB_UNRECLAIMABLE),
1588 global_page_state(NR_FILE_MAPPED),
1589 global_page_state(NR_PAGETABLE),
1590 global_page_state(NR_BOUNCE));
1591
1592 for_each_zone(zone) {
1593 int i;
1594
1595 if (!populated_zone(zone))
1596 continue;
1597
1598 show_node(zone);
1599 printk("%s"
1600 " free:%lukB"
1601 " min:%lukB"
1602 " low:%lukB"
1603 " high:%lukB"
1604 " active:%lukB"
1605 " inactive:%lukB"
1606 " present:%lukB"
1607 " pages_scanned:%lu"
1608 " all_unreclaimable? %s"
1609 "\n",
1610 zone->name,
1611 K(zone_page_state(zone, NR_FREE_PAGES)),
1612 K(zone->pages_min),
1613 K(zone->pages_low),
1614 K(zone->pages_high),
1615 K(zone_page_state(zone, NR_ACTIVE)),
1616 K(zone_page_state(zone, NR_INACTIVE)),
1617 K(zone->present_pages),
1618 zone->pages_scanned,
1619 (zone->all_unreclaimable ? "yes" : "no")
1620 );
1621 printk("lowmem_reserve[]:");
1622 for (i = 0; i < MAX_NR_ZONES; i++)
1623 printk(" %lu", zone->lowmem_reserve[i]);
1624 printk("\n");
1625 }
1626
1627 for_each_zone(zone) {
1628 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1629
1630 if (!populated_zone(zone))
1631 continue;
1632
1633 show_node(zone);
1634 printk("%s: ", zone->name);
1635
1636 spin_lock_irqsave(&zone->lock, flags);
1637 for (order = 0; order < MAX_ORDER; order++) {
1638 nr[order] = zone->free_area[order].nr_free;
1639 total += nr[order] << order;
1640 }
1641 spin_unlock_irqrestore(&zone->lock, flags);
1642 for (order = 0; order < MAX_ORDER; order++)
1643 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1644 printk("= %lukB\n", K(total));
1645 }
1646
1647 show_swap_cache_info();
1648 }
1649
1650 /*
1651 * Builds allocation fallback zone lists.
1652 *
1653 * Add all populated zones of a node to the zonelist.
1654 */
1655 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1656 int nr_zones, enum zone_type zone_type)
1657 {
1658 struct zone *zone;
1659
1660 BUG_ON(zone_type >= MAX_NR_ZONES);
1661 zone_type++;
1662
1663 do {
1664 zone_type--;
1665 zone = pgdat->node_zones + zone_type;
1666 if (populated_zone(zone)) {
1667 zonelist->zones[nr_zones++] = zone;
1668 check_highest_zone(zone_type);
1669 }
1670
1671 } while (zone_type);
1672 return nr_zones;
1673 }
1674
1675
1676 /*
1677 * zonelist_order:
1678 * 0 = automatic detection of better ordering.
1679 * 1 = order by ([node] distance, -zonetype)
1680 * 2 = order by (-zonetype, [node] distance)
1681 *
1682 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1683 * the same zonelist. So only NUMA can configure this param.
1684 */
1685 #define ZONELIST_ORDER_DEFAULT 0
1686 #define ZONELIST_ORDER_NODE 1
1687 #define ZONELIST_ORDER_ZONE 2
1688
1689 /* zonelist order in the kernel.
1690 * set_zonelist_order() will set this to NODE or ZONE.
1691 */
1692 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1693 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1694
1695
1696 #ifdef CONFIG_NUMA
1697 /* The value user specified ....changed by config */
1698 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1699 /* string for sysctl */
1700 #define NUMA_ZONELIST_ORDER_LEN 16
1701 char numa_zonelist_order[16] = "default";
1702
1703 /*
1704 * interface for configure zonelist ordering.
1705 * command line option "numa_zonelist_order"
1706 * = "[dD]efault - default, automatic configuration.
1707 * = "[nN]ode - order by node locality, then by zone within node
1708 * = "[zZ]one - order by zone, then by locality within zone
1709 */
1710
1711 static int __parse_numa_zonelist_order(char *s)
1712 {
1713 if (*s == 'd' || *s == 'D') {
1714 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1715 } else if (*s == 'n' || *s == 'N') {
1716 user_zonelist_order = ZONELIST_ORDER_NODE;
1717 } else if (*s == 'z' || *s == 'Z') {
1718 user_zonelist_order = ZONELIST_ORDER_ZONE;
1719 } else {
1720 printk(KERN_WARNING
1721 "Ignoring invalid numa_zonelist_order value: "
1722 "%s\n", s);
1723 return -EINVAL;
1724 }
1725 return 0;
1726 }
1727
1728 static __init int setup_numa_zonelist_order(char *s)
1729 {
1730 if (s)
1731 return __parse_numa_zonelist_order(s);
1732 return 0;
1733 }
1734 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1735
1736 /*
1737 * sysctl handler for numa_zonelist_order
1738 */
1739 int numa_zonelist_order_handler(ctl_table *table, int write,
1740 struct file *file, void __user *buffer, size_t *length,
1741 loff_t *ppos)
1742 {
1743 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1744 int ret;
1745
1746 if (write)
1747 strncpy(saved_string, (char*)table->data,
1748 NUMA_ZONELIST_ORDER_LEN);
1749 ret = proc_dostring(table, write, file, buffer, length, ppos);
1750 if (ret)
1751 return ret;
1752 if (write) {
1753 int oldval = user_zonelist_order;
1754 if (__parse_numa_zonelist_order((char*)table->data)) {
1755 /*
1756 * bogus value. restore saved string
1757 */
1758 strncpy((char*)table->data, saved_string,
1759 NUMA_ZONELIST_ORDER_LEN);
1760 user_zonelist_order = oldval;
1761 } else if (oldval != user_zonelist_order)
1762 build_all_zonelists();
1763 }
1764 return 0;
1765 }
1766
1767
1768 #define MAX_NODE_LOAD (num_online_nodes())
1769 static int node_load[MAX_NUMNODES];
1770
1771 /**
1772 * find_next_best_node - find the next node that should appear in a given node's fallback list
1773 * @node: node whose fallback list we're appending
1774 * @used_node_mask: nodemask_t of already used nodes
1775 *
1776 * We use a number of factors to determine which is the next node that should
1777 * appear on a given node's fallback list. The node should not have appeared
1778 * already in @node's fallback list, and it should be the next closest node
1779 * according to the distance array (which contains arbitrary distance values
1780 * from each node to each node in the system), and should also prefer nodes
1781 * with no CPUs, since presumably they'll have very little allocation pressure
1782 * on them otherwise.
1783 * It returns -1 if no node is found.
1784 */
1785 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1786 {
1787 int n, val;
1788 int min_val = INT_MAX;
1789 int best_node = -1;
1790
1791 /* Use the local node if we haven't already */
1792 if (!node_isset(node, *used_node_mask)) {
1793 node_set(node, *used_node_mask);
1794 return node;
1795 }
1796
1797 for_each_online_node(n) {
1798 cpumask_t tmp;
1799
1800 /* Don't want a node to appear more than once */
1801 if (node_isset(n, *used_node_mask))
1802 continue;
1803
1804 /* Use the distance array to find the distance */
1805 val = node_distance(node, n);
1806
1807 /* Penalize nodes under us ("prefer the next node") */
1808 val += (n < node);
1809
1810 /* Give preference to headless and unused nodes */
1811 tmp = node_to_cpumask(n);
1812 if (!cpus_empty(tmp))
1813 val += PENALTY_FOR_NODE_WITH_CPUS;
1814
1815 /* Slight preference for less loaded node */
1816 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1817 val += node_load[n];
1818
1819 if (val < min_val) {
1820 min_val = val;
1821 best_node = n;
1822 }
1823 }
1824
1825 if (best_node >= 0)
1826 node_set(best_node, *used_node_mask);
1827
1828 return best_node;
1829 }
1830
1831
1832 /*
1833 * Build zonelists ordered by node and zones within node.
1834 * This results in maximum locality--normal zone overflows into local
1835 * DMA zone, if any--but risks exhausting DMA zone.
1836 */
1837 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1838 {
1839 enum zone_type i;
1840 int j;
1841 struct zonelist *zonelist;
1842
1843 for (i = 0; i < MAX_NR_ZONES; i++) {
1844 zonelist = pgdat->node_zonelists + i;
1845 for (j = 0; zonelist->zones[j] != NULL; j++)
1846 ;
1847 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1848 zonelist->zones[j] = NULL;
1849 }
1850 }
1851
1852 /*
1853 * Build zonelists ordered by zone and nodes within zones.
1854 * This results in conserving DMA zone[s] until all Normal memory is
1855 * exhausted, but results in overflowing to remote node while memory
1856 * may still exist in local DMA zone.
1857 */
1858 static int node_order[MAX_NUMNODES];
1859
1860 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1861 {
1862 enum zone_type i;
1863 int pos, j, node;
1864 int zone_type; /* needs to be signed */
1865 struct zone *z;
1866 struct zonelist *zonelist;
1867
1868 for (i = 0; i < MAX_NR_ZONES; i++) {
1869 zonelist = pgdat->node_zonelists + i;
1870 pos = 0;
1871 for (zone_type = i; zone_type >= 0; zone_type--) {
1872 for (j = 0; j < nr_nodes; j++) {
1873 node = node_order[j];
1874 z = &NODE_DATA(node)->node_zones[zone_type];
1875 if (populated_zone(z)) {
1876 zonelist->zones[pos++] = z;
1877 check_highest_zone(zone_type);
1878 }
1879 }
1880 }
1881 zonelist->zones[pos] = NULL;
1882 }
1883 }
1884
1885 static int default_zonelist_order(void)
1886 {
1887 int nid, zone_type;
1888 unsigned long low_kmem_size,total_size;
1889 struct zone *z;
1890 int average_size;
1891 /*
1892 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1893 * If they are really small and used heavily, the system can fall
1894 * into OOM very easily.
1895 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1896 */
1897 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1898 low_kmem_size = 0;
1899 total_size = 0;
1900 for_each_online_node(nid) {
1901 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1902 z = &NODE_DATA(nid)->node_zones[zone_type];
1903 if (populated_zone(z)) {
1904 if (zone_type < ZONE_NORMAL)
1905 low_kmem_size += z->present_pages;
1906 total_size += z->present_pages;
1907 }
1908 }
1909 }
1910 if (!low_kmem_size || /* there are no DMA area. */
1911 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1912 return ZONELIST_ORDER_NODE;
1913 /*
1914 * look into each node's config.
1915 * If there is a node whose DMA/DMA32 memory is very big area on
1916 * local memory, NODE_ORDER may be suitable.
1917 */
1918 average_size = total_size / (num_online_nodes() + 1);
1919 for_each_online_node(nid) {
1920 low_kmem_size = 0;
1921 total_size = 0;
1922 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1923 z = &NODE_DATA(nid)->node_zones[zone_type];
1924 if (populated_zone(z)) {
1925 if (zone_type < ZONE_NORMAL)
1926 low_kmem_size += z->present_pages;
1927 total_size += z->present_pages;
1928 }
1929 }
1930 if (low_kmem_size &&
1931 total_size > average_size && /* ignore small node */
1932 low_kmem_size > total_size * 70/100)
1933 return ZONELIST_ORDER_NODE;
1934 }
1935 return ZONELIST_ORDER_ZONE;
1936 }
1937
1938 static void set_zonelist_order(void)
1939 {
1940 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1941 current_zonelist_order = default_zonelist_order();
1942 else
1943 current_zonelist_order = user_zonelist_order;
1944 }
1945
1946 static void build_zonelists(pg_data_t *pgdat)
1947 {
1948 int j, node, load;
1949 enum zone_type i;
1950 nodemask_t used_mask;
1951 int local_node, prev_node;
1952 struct zonelist *zonelist;
1953 int order = current_zonelist_order;
1954
1955 /* initialize zonelists */
1956 for (i = 0; i < MAX_NR_ZONES; i++) {
1957 zonelist = pgdat->node_zonelists + i;
1958 zonelist->zones[0] = NULL;
1959 }
1960
1961 /* NUMA-aware ordering of nodes */
1962 local_node = pgdat->node_id;
1963 load = num_online_nodes();
1964 prev_node = local_node;
1965 nodes_clear(used_mask);
1966
1967 memset(node_load, 0, sizeof(node_load));
1968 memset(node_order, 0, sizeof(node_order));
1969 j = 0;
1970
1971 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1972 int distance = node_distance(local_node, node);
1973
1974 /*
1975 * If another node is sufficiently far away then it is better
1976 * to reclaim pages in a zone before going off node.
1977 */
1978 if (distance > RECLAIM_DISTANCE)
1979 zone_reclaim_mode = 1;
1980
1981 /*
1982 * We don't want to pressure a particular node.
1983 * So adding penalty to the first node in same
1984 * distance group to make it round-robin.
1985 */
1986 if (distance != node_distance(local_node, prev_node))
1987 node_load[node] = load;
1988
1989 prev_node = node;
1990 load--;
1991 if (order == ZONELIST_ORDER_NODE)
1992 build_zonelists_in_node_order(pgdat, node);
1993 else
1994 node_order[j++] = node; /* remember order */
1995 }
1996
1997 if (order == ZONELIST_ORDER_ZONE) {
1998 /* calculate node order -- i.e., DMA last! */
1999 build_zonelists_in_zone_order(pgdat, j);
2000 }
2001 }
2002
2003 /* Construct the zonelist performance cache - see further mmzone.h */
2004 static void build_zonelist_cache(pg_data_t *pgdat)
2005 {
2006 int i;
2007
2008 for (i = 0; i < MAX_NR_ZONES; i++) {
2009 struct zonelist *zonelist;
2010 struct zonelist_cache *zlc;
2011 struct zone **z;
2012
2013 zonelist = pgdat->node_zonelists + i;
2014 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2015 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2016 for (z = zonelist->zones; *z; z++)
2017 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2018 }
2019 }
2020
2021
2022 #else /* CONFIG_NUMA */
2023
2024 static void set_zonelist_order(void)
2025 {
2026 current_zonelist_order = ZONELIST_ORDER_ZONE;
2027 }
2028
2029 static void build_zonelists(pg_data_t *pgdat)
2030 {
2031 int node, local_node;
2032 enum zone_type i,j;
2033
2034 local_node = pgdat->node_id;
2035 for (i = 0; i < MAX_NR_ZONES; i++) {
2036 struct zonelist *zonelist;
2037
2038 zonelist = pgdat->node_zonelists + i;
2039
2040 j = build_zonelists_node(pgdat, zonelist, 0, i);
2041 /*
2042 * Now we build the zonelist so that it contains the zones
2043 * of all the other nodes.
2044 * We don't want to pressure a particular node, so when
2045 * building the zones for node N, we make sure that the
2046 * zones coming right after the local ones are those from
2047 * node N+1 (modulo N)
2048 */
2049 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2050 if (!node_online(node))
2051 continue;
2052 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2053 }
2054 for (node = 0; node < local_node; node++) {
2055 if (!node_online(node))
2056 continue;
2057 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2058 }
2059
2060 zonelist->zones[j] = NULL;
2061 }
2062 }
2063
2064 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2065 static void build_zonelist_cache(pg_data_t *pgdat)
2066 {
2067 int i;
2068
2069 for (i = 0; i < MAX_NR_ZONES; i++)
2070 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2071 }
2072
2073 #endif /* CONFIG_NUMA */
2074
2075 /* return values int ....just for stop_machine_run() */
2076 static int __build_all_zonelists(void *dummy)
2077 {
2078 int nid;
2079
2080 for_each_online_node(nid) {
2081 build_zonelists(NODE_DATA(nid));
2082 build_zonelist_cache(NODE_DATA(nid));
2083 }
2084 return 0;
2085 }
2086
2087 void build_all_zonelists(void)
2088 {
2089 set_zonelist_order();
2090
2091 if (system_state == SYSTEM_BOOTING) {
2092 __build_all_zonelists(NULL);
2093 cpuset_init_current_mems_allowed();
2094 } else {
2095 /* we have to stop all cpus to guaranntee there is no user
2096 of zonelist */
2097 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2098 /* cpuset refresh routine should be here */
2099 }
2100 vm_total_pages = nr_free_pagecache_pages();
2101 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2102 num_online_nodes(),
2103 zonelist_order_name[current_zonelist_order],
2104 vm_total_pages);
2105 #ifdef CONFIG_NUMA
2106 printk("Policy zone: %s\n", zone_names[policy_zone]);
2107 #endif
2108 }
2109
2110 /*
2111 * Helper functions to size the waitqueue hash table.
2112 * Essentially these want to choose hash table sizes sufficiently
2113 * large so that collisions trying to wait on pages are rare.
2114 * But in fact, the number of active page waitqueues on typical
2115 * systems is ridiculously low, less than 200. So this is even
2116 * conservative, even though it seems large.
2117 *
2118 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2119 * waitqueues, i.e. the size of the waitq table given the number of pages.
2120 */
2121 #define PAGES_PER_WAITQUEUE 256
2122
2123 #ifndef CONFIG_MEMORY_HOTPLUG
2124 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2125 {
2126 unsigned long size = 1;
2127
2128 pages /= PAGES_PER_WAITQUEUE;
2129
2130 while (size < pages)
2131 size <<= 1;
2132
2133 /*
2134 * Once we have dozens or even hundreds of threads sleeping
2135 * on IO we've got bigger problems than wait queue collision.
2136 * Limit the size of the wait table to a reasonable size.
2137 */
2138 size = min(size, 4096UL);
2139
2140 return max(size, 4UL);
2141 }
2142 #else
2143 /*
2144 * A zone's size might be changed by hot-add, so it is not possible to determine
2145 * a suitable size for its wait_table. So we use the maximum size now.
2146 *
2147 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2148 *
2149 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2150 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2151 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2152 *
2153 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2154 * or more by the traditional way. (See above). It equals:
2155 *
2156 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2157 * ia64(16K page size) : = ( 8G + 4M)byte.
2158 * powerpc (64K page size) : = (32G +16M)byte.
2159 */
2160 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2161 {
2162 return 4096UL;
2163 }
2164 #endif
2165
2166 /*
2167 * This is an integer logarithm so that shifts can be used later
2168 * to extract the more random high bits from the multiplicative
2169 * hash function before the remainder is taken.
2170 */
2171 static inline unsigned long wait_table_bits(unsigned long size)
2172 {
2173 return ffz(~size);
2174 }
2175
2176 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2177
2178 /*
2179 * Initially all pages are reserved - free ones are freed
2180 * up by free_all_bootmem() once the early boot process is
2181 * done. Non-atomic initialization, single-pass.
2182 */
2183 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2184 unsigned long start_pfn, enum memmap_context context)
2185 {
2186 struct page *page;
2187 unsigned long end_pfn = start_pfn + size;
2188 unsigned long pfn;
2189
2190 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2191 /*
2192 * There can be holes in boot-time mem_map[]s
2193 * handed to this function. They do not
2194 * exist on hotplugged memory.
2195 */
2196 if (context == MEMMAP_EARLY) {
2197 if (!early_pfn_valid(pfn))
2198 continue;
2199 if (!early_pfn_in_nid(pfn, nid))
2200 continue;
2201 }
2202 page = pfn_to_page(pfn);
2203 set_page_links(page, zone, nid, pfn);
2204 init_page_count(page);
2205 reset_page_mapcount(page);
2206 SetPageReserved(page);
2207 INIT_LIST_HEAD(&page->lru);
2208 #ifdef WANT_PAGE_VIRTUAL
2209 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2210 if (!is_highmem_idx(zone))
2211 set_page_address(page, __va(pfn << PAGE_SHIFT));
2212 #endif
2213 }
2214 }
2215
2216 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2217 struct zone *zone, unsigned long size)
2218 {
2219 int order;
2220 for (order = 0; order < MAX_ORDER ; order++) {
2221 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2222 zone->free_area[order].nr_free = 0;
2223 }
2224 }
2225
2226 #ifndef __HAVE_ARCH_MEMMAP_INIT
2227 #define memmap_init(size, nid, zone, start_pfn) \
2228 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2229 #endif
2230
2231 static int __devinit zone_batchsize(struct zone *zone)
2232 {
2233 int batch;
2234
2235 /*
2236 * The per-cpu-pages pools are set to around 1000th of the
2237 * size of the zone. But no more than 1/2 of a meg.
2238 *
2239 * OK, so we don't know how big the cache is. So guess.
2240 */
2241 batch = zone->present_pages / 1024;
2242 if (batch * PAGE_SIZE > 512 * 1024)
2243 batch = (512 * 1024) / PAGE_SIZE;
2244 batch /= 4; /* We effectively *= 4 below */
2245 if (batch < 1)
2246 batch = 1;
2247
2248 /*
2249 * Clamp the batch to a 2^n - 1 value. Having a power
2250 * of 2 value was found to be more likely to have
2251 * suboptimal cache aliasing properties in some cases.
2252 *
2253 * For example if 2 tasks are alternately allocating
2254 * batches of pages, one task can end up with a lot
2255 * of pages of one half of the possible page colors
2256 * and the other with pages of the other colors.
2257 */
2258 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2259
2260 return batch;
2261 }
2262
2263 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2264 {
2265 struct per_cpu_pages *pcp;
2266
2267 memset(p, 0, sizeof(*p));
2268
2269 pcp = &p->pcp[0]; /* hot */
2270 pcp->count = 0;
2271 pcp->high = 6 * batch;
2272 pcp->batch = max(1UL, 1 * batch);
2273 INIT_LIST_HEAD(&pcp->list);
2274
2275 pcp = &p->pcp[1]; /* cold*/
2276 pcp->count = 0;
2277 pcp->high = 2 * batch;
2278 pcp->batch = max(1UL, batch/2);
2279 INIT_LIST_HEAD(&pcp->list);
2280 }
2281
2282 /*
2283 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2284 * to the value high for the pageset p.
2285 */
2286
2287 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2288 unsigned long high)
2289 {
2290 struct per_cpu_pages *pcp;
2291
2292 pcp = &p->pcp[0]; /* hot list */
2293 pcp->high = high;
2294 pcp->batch = max(1UL, high/4);
2295 if ((high/4) > (PAGE_SHIFT * 8))
2296 pcp->batch = PAGE_SHIFT * 8;
2297 }
2298
2299
2300 #ifdef CONFIG_NUMA
2301 /*
2302 * Boot pageset table. One per cpu which is going to be used for all
2303 * zones and all nodes. The parameters will be set in such a way
2304 * that an item put on a list will immediately be handed over to
2305 * the buddy list. This is safe since pageset manipulation is done
2306 * with interrupts disabled.
2307 *
2308 * Some NUMA counter updates may also be caught by the boot pagesets.
2309 *
2310 * The boot_pagesets must be kept even after bootup is complete for
2311 * unused processors and/or zones. They do play a role for bootstrapping
2312 * hotplugged processors.
2313 *
2314 * zoneinfo_show() and maybe other functions do
2315 * not check if the processor is online before following the pageset pointer.
2316 * Other parts of the kernel may not check if the zone is available.
2317 */
2318 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2319
2320 /*
2321 * Dynamically allocate memory for the
2322 * per cpu pageset array in struct zone.
2323 */
2324 static int __cpuinit process_zones(int cpu)
2325 {
2326 struct zone *zone, *dzone;
2327
2328 for_each_zone(zone) {
2329
2330 if (!populated_zone(zone))
2331 continue;
2332
2333 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2334 GFP_KERNEL, cpu_to_node(cpu));
2335 if (!zone_pcp(zone, cpu))
2336 goto bad;
2337
2338 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2339
2340 if (percpu_pagelist_fraction)
2341 setup_pagelist_highmark(zone_pcp(zone, cpu),
2342 (zone->present_pages / percpu_pagelist_fraction));
2343 }
2344
2345 return 0;
2346 bad:
2347 for_each_zone(dzone) {
2348 if (dzone == zone)
2349 break;
2350 kfree(zone_pcp(dzone, cpu));
2351 zone_pcp(dzone, cpu) = NULL;
2352 }
2353 return -ENOMEM;
2354 }
2355
2356 static inline void free_zone_pagesets(int cpu)
2357 {
2358 struct zone *zone;
2359
2360 for_each_zone(zone) {
2361 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2362
2363 /* Free per_cpu_pageset if it is slab allocated */
2364 if (pset != &boot_pageset[cpu])
2365 kfree(pset);
2366 zone_pcp(zone, cpu) = NULL;
2367 }
2368 }
2369
2370 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2371 unsigned long action,
2372 void *hcpu)
2373 {
2374 int cpu = (long)hcpu;
2375 int ret = NOTIFY_OK;
2376
2377 switch (action) {
2378 case CPU_UP_PREPARE:
2379 case CPU_UP_PREPARE_FROZEN:
2380 if (process_zones(cpu))
2381 ret = NOTIFY_BAD;
2382 break;
2383 case CPU_UP_CANCELED:
2384 case CPU_UP_CANCELED_FROZEN:
2385 case CPU_DEAD:
2386 case CPU_DEAD_FROZEN:
2387 free_zone_pagesets(cpu);
2388 break;
2389 default:
2390 break;
2391 }
2392 return ret;
2393 }
2394
2395 static struct notifier_block __cpuinitdata pageset_notifier =
2396 { &pageset_cpuup_callback, NULL, 0 };
2397
2398 void __init setup_per_cpu_pageset(void)
2399 {
2400 int err;
2401
2402 /* Initialize per_cpu_pageset for cpu 0.
2403 * A cpuup callback will do this for every cpu
2404 * as it comes online
2405 */
2406 err = process_zones(smp_processor_id());
2407 BUG_ON(err);
2408 register_cpu_notifier(&pageset_notifier);
2409 }
2410
2411 #endif
2412
2413 static noinline __init_refok
2414 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2415 {
2416 int i;
2417 struct pglist_data *pgdat = zone->zone_pgdat;
2418 size_t alloc_size;
2419
2420 /*
2421 * The per-page waitqueue mechanism uses hashed waitqueues
2422 * per zone.
2423 */
2424 zone->wait_table_hash_nr_entries =
2425 wait_table_hash_nr_entries(zone_size_pages);
2426 zone->wait_table_bits =
2427 wait_table_bits(zone->wait_table_hash_nr_entries);
2428 alloc_size = zone->wait_table_hash_nr_entries
2429 * sizeof(wait_queue_head_t);
2430
2431 if (system_state == SYSTEM_BOOTING) {
2432 zone->wait_table = (wait_queue_head_t *)
2433 alloc_bootmem_node(pgdat, alloc_size);
2434 } else {
2435 /*
2436 * This case means that a zone whose size was 0 gets new memory
2437 * via memory hot-add.
2438 * But it may be the case that a new node was hot-added. In
2439 * this case vmalloc() will not be able to use this new node's
2440 * memory - this wait_table must be initialized to use this new
2441 * node itself as well.
2442 * To use this new node's memory, further consideration will be
2443 * necessary.
2444 */
2445 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2446 }
2447 if (!zone->wait_table)
2448 return -ENOMEM;
2449
2450 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2451 init_waitqueue_head(zone->wait_table + i);
2452
2453 return 0;
2454 }
2455
2456 static __meminit void zone_pcp_init(struct zone *zone)
2457 {
2458 int cpu;
2459 unsigned long batch = zone_batchsize(zone);
2460
2461 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2462 #ifdef CONFIG_NUMA
2463 /* Early boot. Slab allocator not functional yet */
2464 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2465 setup_pageset(&boot_pageset[cpu],0);
2466 #else
2467 setup_pageset(zone_pcp(zone,cpu), batch);
2468 #endif
2469 }
2470 if (zone->present_pages)
2471 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2472 zone->name, zone->present_pages, batch);
2473 }
2474
2475 __meminit int init_currently_empty_zone(struct zone *zone,
2476 unsigned long zone_start_pfn,
2477 unsigned long size,
2478 enum memmap_context context)
2479 {
2480 struct pglist_data *pgdat = zone->zone_pgdat;
2481 int ret;
2482 ret = zone_wait_table_init(zone, size);
2483 if (ret)
2484 return ret;
2485 pgdat->nr_zones = zone_idx(zone) + 1;
2486
2487 zone->zone_start_pfn = zone_start_pfn;
2488
2489 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2490
2491 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2492
2493 return 0;
2494 }
2495
2496 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2497 /*
2498 * Basic iterator support. Return the first range of PFNs for a node
2499 * Note: nid == MAX_NUMNODES returns first region regardless of node
2500 */
2501 static int __meminit first_active_region_index_in_nid(int nid)
2502 {
2503 int i;
2504
2505 for (i = 0; i < nr_nodemap_entries; i++)
2506 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2507 return i;
2508
2509 return -1;
2510 }
2511
2512 /*
2513 * Basic iterator support. Return the next active range of PFNs for a node
2514 * Note: nid == MAX_NUMNODES returns next region regardles of node
2515 */
2516 static int __meminit next_active_region_index_in_nid(int index, int nid)
2517 {
2518 for (index = index + 1; index < nr_nodemap_entries; index++)
2519 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2520 return index;
2521
2522 return -1;
2523 }
2524
2525 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2526 /*
2527 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2528 * Architectures may implement their own version but if add_active_range()
2529 * was used and there are no special requirements, this is a convenient
2530 * alternative
2531 */
2532 int __meminit early_pfn_to_nid(unsigned long pfn)
2533 {
2534 int i;
2535
2536 for (i = 0; i < nr_nodemap_entries; i++) {
2537 unsigned long start_pfn = early_node_map[i].start_pfn;
2538 unsigned long end_pfn = early_node_map[i].end_pfn;
2539
2540 if (start_pfn <= pfn && pfn < end_pfn)
2541 return early_node_map[i].nid;
2542 }
2543
2544 return 0;
2545 }
2546 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2547
2548 /* Basic iterator support to walk early_node_map[] */
2549 #define for_each_active_range_index_in_nid(i, nid) \
2550 for (i = first_active_region_index_in_nid(nid); i != -1; \
2551 i = next_active_region_index_in_nid(i, nid))
2552
2553 /**
2554 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2555 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2556 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2557 *
2558 * If an architecture guarantees that all ranges registered with
2559 * add_active_ranges() contain no holes and may be freed, this
2560 * this function may be used instead of calling free_bootmem() manually.
2561 */
2562 void __init free_bootmem_with_active_regions(int nid,
2563 unsigned long max_low_pfn)
2564 {
2565 int i;
2566
2567 for_each_active_range_index_in_nid(i, nid) {
2568 unsigned long size_pages = 0;
2569 unsigned long end_pfn = early_node_map[i].end_pfn;
2570
2571 if (early_node_map[i].start_pfn >= max_low_pfn)
2572 continue;
2573
2574 if (end_pfn > max_low_pfn)
2575 end_pfn = max_low_pfn;
2576
2577 size_pages = end_pfn - early_node_map[i].start_pfn;
2578 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2579 PFN_PHYS(early_node_map[i].start_pfn),
2580 size_pages << PAGE_SHIFT);
2581 }
2582 }
2583
2584 /**
2585 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2586 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2587 *
2588 * If an architecture guarantees that all ranges registered with
2589 * add_active_ranges() contain no holes and may be freed, this
2590 * function may be used instead of calling memory_present() manually.
2591 */
2592 void __init sparse_memory_present_with_active_regions(int nid)
2593 {
2594 int i;
2595
2596 for_each_active_range_index_in_nid(i, nid)
2597 memory_present(early_node_map[i].nid,
2598 early_node_map[i].start_pfn,
2599 early_node_map[i].end_pfn);
2600 }
2601
2602 /**
2603 * push_node_boundaries - Push node boundaries to at least the requested boundary
2604 * @nid: The nid of the node to push the boundary for
2605 * @start_pfn: The start pfn of the node
2606 * @end_pfn: The end pfn of the node
2607 *
2608 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2609 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2610 * be hotplugged even though no physical memory exists. This function allows
2611 * an arch to push out the node boundaries so mem_map is allocated that can
2612 * be used later.
2613 */
2614 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2615 void __init push_node_boundaries(unsigned int nid,
2616 unsigned long start_pfn, unsigned long end_pfn)
2617 {
2618 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2619 nid, start_pfn, end_pfn);
2620
2621 /* Initialise the boundary for this node if necessary */
2622 if (node_boundary_end_pfn[nid] == 0)
2623 node_boundary_start_pfn[nid] = -1UL;
2624
2625 /* Update the boundaries */
2626 if (node_boundary_start_pfn[nid] > start_pfn)
2627 node_boundary_start_pfn[nid] = start_pfn;
2628 if (node_boundary_end_pfn[nid] < end_pfn)
2629 node_boundary_end_pfn[nid] = end_pfn;
2630 }
2631
2632 /* If necessary, push the node boundary out for reserve hotadd */
2633 static void __meminit account_node_boundary(unsigned int nid,
2634 unsigned long *start_pfn, unsigned long *end_pfn)
2635 {
2636 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2637 nid, *start_pfn, *end_pfn);
2638
2639 /* Return if boundary information has not been provided */
2640 if (node_boundary_end_pfn[nid] == 0)
2641 return;
2642
2643 /* Check the boundaries and update if necessary */
2644 if (node_boundary_start_pfn[nid] < *start_pfn)
2645 *start_pfn = node_boundary_start_pfn[nid];
2646 if (node_boundary_end_pfn[nid] > *end_pfn)
2647 *end_pfn = node_boundary_end_pfn[nid];
2648 }
2649 #else
2650 void __init push_node_boundaries(unsigned int nid,
2651 unsigned long start_pfn, unsigned long end_pfn) {}
2652
2653 static void __meminit account_node_boundary(unsigned int nid,
2654 unsigned long *start_pfn, unsigned long *end_pfn) {}
2655 #endif
2656
2657
2658 /**
2659 * get_pfn_range_for_nid - Return the start and end page frames for a node
2660 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2661 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2662 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2663 *
2664 * It returns the start and end page frame of a node based on information
2665 * provided by an arch calling add_active_range(). If called for a node
2666 * with no available memory, a warning is printed and the start and end
2667 * PFNs will be 0.
2668 */
2669 void __meminit get_pfn_range_for_nid(unsigned int nid,
2670 unsigned long *start_pfn, unsigned long *end_pfn)
2671 {
2672 int i;
2673 *start_pfn = -1UL;
2674 *end_pfn = 0;
2675
2676 for_each_active_range_index_in_nid(i, nid) {
2677 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2678 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2679 }
2680
2681 if (*start_pfn == -1UL) {
2682 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2683 *start_pfn = 0;
2684 }
2685
2686 /* Push the node boundaries out if requested */
2687 account_node_boundary(nid, start_pfn, end_pfn);
2688 }
2689
2690 /*
2691 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2692 * assumption is made that zones within a node are ordered in monotonic
2693 * increasing memory addresses so that the "highest" populated zone is used
2694 */
2695 void __init find_usable_zone_for_movable(void)
2696 {
2697 int zone_index;
2698 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2699 if (zone_index == ZONE_MOVABLE)
2700 continue;
2701
2702 if (arch_zone_highest_possible_pfn[zone_index] >
2703 arch_zone_lowest_possible_pfn[zone_index])
2704 break;
2705 }
2706
2707 VM_BUG_ON(zone_index == -1);
2708 movable_zone = zone_index;
2709 }
2710
2711 /*
2712 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2713 * because it is sized independant of architecture. Unlike the other zones,
2714 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2715 * in each node depending on the size of each node and how evenly kernelcore
2716 * is distributed. This helper function adjusts the zone ranges
2717 * provided by the architecture for a given node by using the end of the
2718 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2719 * zones within a node are in order of monotonic increases memory addresses
2720 */
2721 void __meminit adjust_zone_range_for_zone_movable(int nid,
2722 unsigned long zone_type,
2723 unsigned long node_start_pfn,
2724 unsigned long node_end_pfn,
2725 unsigned long *zone_start_pfn,
2726 unsigned long *zone_end_pfn)
2727 {
2728 /* Only adjust if ZONE_MOVABLE is on this node */
2729 if (zone_movable_pfn[nid]) {
2730 /* Size ZONE_MOVABLE */
2731 if (zone_type == ZONE_MOVABLE) {
2732 *zone_start_pfn = zone_movable_pfn[nid];
2733 *zone_end_pfn = min(node_end_pfn,
2734 arch_zone_highest_possible_pfn[movable_zone]);
2735
2736 /* Adjust for ZONE_MOVABLE starting within this range */
2737 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2738 *zone_end_pfn > zone_movable_pfn[nid]) {
2739 *zone_end_pfn = zone_movable_pfn[nid];
2740
2741 /* Check if this whole range is within ZONE_MOVABLE */
2742 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2743 *zone_start_pfn = *zone_end_pfn;
2744 }
2745 }
2746
2747 /*
2748 * Return the number of pages a zone spans in a node, including holes
2749 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2750 */
2751 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2752 unsigned long zone_type,
2753 unsigned long *ignored)
2754 {
2755 unsigned long node_start_pfn, node_end_pfn;
2756 unsigned long zone_start_pfn, zone_end_pfn;
2757
2758 /* Get the start and end of the node and zone */
2759 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2760 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2761 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2762 adjust_zone_range_for_zone_movable(nid, zone_type,
2763 node_start_pfn, node_end_pfn,
2764 &zone_start_pfn, &zone_end_pfn);
2765
2766 /* Check that this node has pages within the zone's required range */
2767 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2768 return 0;
2769
2770 /* Move the zone boundaries inside the node if necessary */
2771 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2772 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2773
2774 /* Return the spanned pages */
2775 return zone_end_pfn - zone_start_pfn;
2776 }
2777
2778 /*
2779 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2780 * then all holes in the requested range will be accounted for.
2781 */
2782 unsigned long __meminit __absent_pages_in_range(int nid,
2783 unsigned long range_start_pfn,
2784 unsigned long range_end_pfn)
2785 {
2786 int i = 0;
2787 unsigned long prev_end_pfn = 0, hole_pages = 0;
2788 unsigned long start_pfn;
2789
2790 /* Find the end_pfn of the first active range of pfns in the node */
2791 i = first_active_region_index_in_nid(nid);
2792 if (i == -1)
2793 return 0;
2794
2795 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2796
2797 /* Account for ranges before physical memory on this node */
2798 if (early_node_map[i].start_pfn > range_start_pfn)
2799 hole_pages = prev_end_pfn - range_start_pfn;
2800
2801 /* Find all holes for the zone within the node */
2802 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2803
2804 /* No need to continue if prev_end_pfn is outside the zone */
2805 if (prev_end_pfn >= range_end_pfn)
2806 break;
2807
2808 /* Make sure the end of the zone is not within the hole */
2809 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2810 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2811
2812 /* Update the hole size cound and move on */
2813 if (start_pfn > range_start_pfn) {
2814 BUG_ON(prev_end_pfn > start_pfn);
2815 hole_pages += start_pfn - prev_end_pfn;
2816 }
2817 prev_end_pfn = early_node_map[i].end_pfn;
2818 }
2819
2820 /* Account for ranges past physical memory on this node */
2821 if (range_end_pfn > prev_end_pfn)
2822 hole_pages += range_end_pfn -
2823 max(range_start_pfn, prev_end_pfn);
2824
2825 return hole_pages;
2826 }
2827
2828 /**
2829 * absent_pages_in_range - Return number of page frames in holes within a range
2830 * @start_pfn: The start PFN to start searching for holes
2831 * @end_pfn: The end PFN to stop searching for holes
2832 *
2833 * It returns the number of pages frames in memory holes within a range.
2834 */
2835 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2836 unsigned long end_pfn)
2837 {
2838 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2839 }
2840
2841 /* Return the number of page frames in holes in a zone on a node */
2842 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2843 unsigned long zone_type,
2844 unsigned long *ignored)
2845 {
2846 unsigned long node_start_pfn, node_end_pfn;
2847 unsigned long zone_start_pfn, zone_end_pfn;
2848
2849 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2850 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2851 node_start_pfn);
2852 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2853 node_end_pfn);
2854
2855 adjust_zone_range_for_zone_movable(nid, zone_type,
2856 node_start_pfn, node_end_pfn,
2857 &zone_start_pfn, &zone_end_pfn);
2858 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2859 }
2860
2861 #else
2862 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2863 unsigned long zone_type,
2864 unsigned long *zones_size)
2865 {
2866 return zones_size[zone_type];
2867 }
2868
2869 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2870 unsigned long zone_type,
2871 unsigned long *zholes_size)
2872 {
2873 if (!zholes_size)
2874 return 0;
2875
2876 return zholes_size[zone_type];
2877 }
2878
2879 #endif
2880
2881 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2882 unsigned long *zones_size, unsigned long *zholes_size)
2883 {
2884 unsigned long realtotalpages, totalpages = 0;
2885 enum zone_type i;
2886
2887 for (i = 0; i < MAX_NR_ZONES; i++)
2888 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2889 zones_size);
2890 pgdat->node_spanned_pages = totalpages;
2891
2892 realtotalpages = totalpages;
2893 for (i = 0; i < MAX_NR_ZONES; i++)
2894 realtotalpages -=
2895 zone_absent_pages_in_node(pgdat->node_id, i,
2896 zholes_size);
2897 pgdat->node_present_pages = realtotalpages;
2898 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2899 realtotalpages);
2900 }
2901
2902 /*
2903 * Set up the zone data structures:
2904 * - mark all pages reserved
2905 * - mark all memory queues empty
2906 * - clear the memory bitmaps
2907 */
2908 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2909 unsigned long *zones_size, unsigned long *zholes_size)
2910 {
2911 enum zone_type j;
2912 int nid = pgdat->node_id;
2913 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2914 int ret;
2915
2916 pgdat_resize_init(pgdat);
2917 pgdat->nr_zones = 0;
2918 init_waitqueue_head(&pgdat->kswapd_wait);
2919 pgdat->kswapd_max_order = 0;
2920
2921 for (j = 0; j < MAX_NR_ZONES; j++) {
2922 struct zone *zone = pgdat->node_zones + j;
2923 unsigned long size, realsize, memmap_pages;
2924
2925 size = zone_spanned_pages_in_node(nid, j, zones_size);
2926 realsize = size - zone_absent_pages_in_node(nid, j,
2927 zholes_size);
2928
2929 /*
2930 * Adjust realsize so that it accounts for how much memory
2931 * is used by this zone for memmap. This affects the watermark
2932 * and per-cpu initialisations
2933 */
2934 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2935 if (realsize >= memmap_pages) {
2936 realsize -= memmap_pages;
2937 printk(KERN_DEBUG
2938 " %s zone: %lu pages used for memmap\n",
2939 zone_names[j], memmap_pages);
2940 } else
2941 printk(KERN_WARNING
2942 " %s zone: %lu pages exceeds realsize %lu\n",
2943 zone_names[j], memmap_pages, realsize);
2944
2945 /* Account for reserved pages */
2946 if (j == 0 && realsize > dma_reserve) {
2947 realsize -= dma_reserve;
2948 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2949 zone_names[0], dma_reserve);
2950 }
2951
2952 if (!is_highmem_idx(j))
2953 nr_kernel_pages += realsize;
2954 nr_all_pages += realsize;
2955
2956 zone->spanned_pages = size;
2957 zone->present_pages = realsize;
2958 #ifdef CONFIG_NUMA
2959 zone->node = nid;
2960 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2961 / 100;
2962 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2963 #endif
2964 zone->name = zone_names[j];
2965 spin_lock_init(&zone->lock);
2966 spin_lock_init(&zone->lru_lock);
2967 zone_seqlock_init(zone);
2968 zone->zone_pgdat = pgdat;
2969
2970 zone->prev_priority = DEF_PRIORITY;
2971
2972 zone_pcp_init(zone);
2973 INIT_LIST_HEAD(&zone->active_list);
2974 INIT_LIST_HEAD(&zone->inactive_list);
2975 zone->nr_scan_active = 0;
2976 zone->nr_scan_inactive = 0;
2977 zap_zone_vm_stats(zone);
2978 atomic_set(&zone->reclaim_in_progress, 0);
2979 if (!size)
2980 continue;
2981
2982 ret = init_currently_empty_zone(zone, zone_start_pfn,
2983 size, MEMMAP_EARLY);
2984 BUG_ON(ret);
2985 zone_start_pfn += size;
2986 }
2987 }
2988
2989 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2990 {
2991 /* Skip empty nodes */
2992 if (!pgdat->node_spanned_pages)
2993 return;
2994
2995 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2996 /* ia64 gets its own node_mem_map, before this, without bootmem */
2997 if (!pgdat->node_mem_map) {
2998 unsigned long size, start, end;
2999 struct page *map;
3000
3001 /*
3002 * The zone's endpoints aren't required to be MAX_ORDER
3003 * aligned but the node_mem_map endpoints must be in order
3004 * for the buddy allocator to function correctly.
3005 */
3006 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3007 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3008 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3009 size = (end - start) * sizeof(struct page);
3010 map = alloc_remap(pgdat->node_id, size);
3011 if (!map)
3012 map = alloc_bootmem_node(pgdat, size);
3013 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3014 }
3015 #ifndef CONFIG_NEED_MULTIPLE_NODES
3016 /*
3017 * With no DISCONTIG, the global mem_map is just set as node 0's
3018 */
3019 if (pgdat == NODE_DATA(0)) {
3020 mem_map = NODE_DATA(0)->node_mem_map;
3021 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3022 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3023 mem_map -= pgdat->node_start_pfn;
3024 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3025 }
3026 #endif
3027 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3028 }
3029
3030 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3031 unsigned long *zones_size, unsigned long node_start_pfn,
3032 unsigned long *zholes_size)
3033 {
3034 pgdat->node_id = nid;
3035 pgdat->node_start_pfn = node_start_pfn;
3036 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3037
3038 alloc_node_mem_map(pgdat);
3039
3040 free_area_init_core(pgdat, zones_size, zholes_size);
3041 }
3042
3043 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3044
3045 #if MAX_NUMNODES > 1
3046 /*
3047 * Figure out the number of possible node ids.
3048 */
3049 static void __init setup_nr_node_ids(void)
3050 {
3051 unsigned int node;
3052 unsigned int highest = 0;
3053
3054 for_each_node_mask(node, node_possible_map)
3055 highest = node;
3056 nr_node_ids = highest + 1;
3057 }
3058 #else
3059 static inline void setup_nr_node_ids(void)
3060 {
3061 }
3062 #endif
3063
3064 /**
3065 * add_active_range - Register a range of PFNs backed by physical memory
3066 * @nid: The node ID the range resides on
3067 * @start_pfn: The start PFN of the available physical memory
3068 * @end_pfn: The end PFN of the available physical memory
3069 *
3070 * These ranges are stored in an early_node_map[] and later used by
3071 * free_area_init_nodes() to calculate zone sizes and holes. If the
3072 * range spans a memory hole, it is up to the architecture to ensure
3073 * the memory is not freed by the bootmem allocator. If possible
3074 * the range being registered will be merged with existing ranges.
3075 */
3076 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3077 unsigned long end_pfn)
3078 {
3079 int i;
3080
3081 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3082 "%d entries of %d used\n",
3083 nid, start_pfn, end_pfn,
3084 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3085
3086 /* Merge with existing active regions if possible */
3087 for (i = 0; i < nr_nodemap_entries; i++) {
3088 if (early_node_map[i].nid != nid)
3089 continue;
3090
3091 /* Skip if an existing region covers this new one */
3092 if (start_pfn >= early_node_map[i].start_pfn &&
3093 end_pfn <= early_node_map[i].end_pfn)
3094 return;
3095
3096 /* Merge forward if suitable */
3097 if (start_pfn <= early_node_map[i].end_pfn &&
3098 end_pfn > early_node_map[i].end_pfn) {
3099 early_node_map[i].end_pfn = end_pfn;
3100 return;
3101 }
3102
3103 /* Merge backward if suitable */
3104 if (start_pfn < early_node_map[i].end_pfn &&
3105 end_pfn >= early_node_map[i].start_pfn) {
3106 early_node_map[i].start_pfn = start_pfn;
3107 return;
3108 }
3109 }
3110
3111 /* Check that early_node_map is large enough */
3112 if (i >= MAX_ACTIVE_REGIONS) {
3113 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3114 MAX_ACTIVE_REGIONS);
3115 return;
3116 }
3117
3118 early_node_map[i].nid = nid;
3119 early_node_map[i].start_pfn = start_pfn;
3120 early_node_map[i].end_pfn = end_pfn;
3121 nr_nodemap_entries = i + 1;
3122 }
3123
3124 /**
3125 * shrink_active_range - Shrink an existing registered range of PFNs
3126 * @nid: The node id the range is on that should be shrunk
3127 * @old_end_pfn: The old end PFN of the range
3128 * @new_end_pfn: The new PFN of the range
3129 *
3130 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3131 * The map is kept at the end physical page range that has already been
3132 * registered with add_active_range(). This function allows an arch to shrink
3133 * an existing registered range.
3134 */
3135 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3136 unsigned long new_end_pfn)
3137 {
3138 int i;
3139
3140 /* Find the old active region end and shrink */
3141 for_each_active_range_index_in_nid(i, nid)
3142 if (early_node_map[i].end_pfn == old_end_pfn) {
3143 early_node_map[i].end_pfn = new_end_pfn;
3144 break;
3145 }
3146 }
3147
3148 /**
3149 * remove_all_active_ranges - Remove all currently registered regions
3150 *
3151 * During discovery, it may be found that a table like SRAT is invalid
3152 * and an alternative discovery method must be used. This function removes
3153 * all currently registered regions.
3154 */
3155 void __init remove_all_active_ranges(void)
3156 {
3157 memset(early_node_map, 0, sizeof(early_node_map));
3158 nr_nodemap_entries = 0;
3159 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3160 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3161 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3162 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3163 }
3164
3165 /* Compare two active node_active_regions */
3166 static int __init cmp_node_active_region(const void *a, const void *b)
3167 {
3168 struct node_active_region *arange = (struct node_active_region *)a;
3169 struct node_active_region *brange = (struct node_active_region *)b;
3170
3171 /* Done this way to avoid overflows */
3172 if (arange->start_pfn > brange->start_pfn)
3173 return 1;
3174 if (arange->start_pfn < brange->start_pfn)
3175 return -1;
3176
3177 return 0;
3178 }
3179
3180 /* sort the node_map by start_pfn */
3181 static void __init sort_node_map(void)
3182 {
3183 sort(early_node_map, (size_t)nr_nodemap_entries,
3184 sizeof(struct node_active_region),
3185 cmp_node_active_region, NULL);
3186 }
3187
3188 /* Find the lowest pfn for a node */
3189 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3190 {
3191 int i;
3192 unsigned long min_pfn = ULONG_MAX;
3193
3194 /* Assuming a sorted map, the first range found has the starting pfn */
3195 for_each_active_range_index_in_nid(i, nid)
3196 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3197
3198 if (min_pfn == ULONG_MAX) {
3199 printk(KERN_WARNING
3200 "Could not find start_pfn for node %lu\n", nid);
3201 return 0;
3202 }
3203
3204 return min_pfn;
3205 }
3206
3207 /**
3208 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3209 *
3210 * It returns the minimum PFN based on information provided via
3211 * add_active_range().
3212 */
3213 unsigned long __init find_min_pfn_with_active_regions(void)
3214 {
3215 return find_min_pfn_for_node(MAX_NUMNODES);
3216 }
3217
3218 /**
3219 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3220 *
3221 * It returns the maximum PFN based on information provided via
3222 * add_active_range().
3223 */
3224 unsigned long __init find_max_pfn_with_active_regions(void)
3225 {
3226 int i;
3227 unsigned long max_pfn = 0;
3228
3229 for (i = 0; i < nr_nodemap_entries; i++)
3230 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3231
3232 return max_pfn;
3233 }
3234
3235 unsigned long __init early_calculate_totalpages(void)
3236 {
3237 int i;
3238 unsigned long totalpages = 0;
3239
3240 for (i = 0; i < nr_nodemap_entries; i++)
3241 totalpages += early_node_map[i].end_pfn -
3242 early_node_map[i].start_pfn;
3243
3244 return totalpages;
3245 }
3246
3247 /*
3248 * Find the PFN the Movable zone begins in each node. Kernel memory
3249 * is spread evenly between nodes as long as the nodes have enough
3250 * memory. When they don't, some nodes will have more kernelcore than
3251 * others
3252 */
3253 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3254 {
3255 int i, nid;
3256 unsigned long usable_startpfn;
3257 unsigned long kernelcore_node, kernelcore_remaining;
3258 int usable_nodes = num_online_nodes();
3259
3260 /*
3261 * If movablecore was specified, calculate what size of
3262 * kernelcore that corresponds so that memory usable for
3263 * any allocation type is evenly spread. If both kernelcore
3264 * and movablecore are specified, then the value of kernelcore
3265 * will be used for required_kernelcore if it's greater than
3266 * what movablecore would have allowed.
3267 */
3268 if (required_movablecore) {
3269 unsigned long totalpages = early_calculate_totalpages();
3270 unsigned long corepages;
3271
3272 /*
3273 * Round-up so that ZONE_MOVABLE is at least as large as what
3274 * was requested by the user
3275 */
3276 required_movablecore =
3277 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3278 corepages = totalpages - required_movablecore;
3279
3280 required_kernelcore = max(required_kernelcore, corepages);
3281 }
3282
3283 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3284 if (!required_kernelcore)
3285 return;
3286
3287 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3288 find_usable_zone_for_movable();
3289 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3290
3291 restart:
3292 /* Spread kernelcore memory as evenly as possible throughout nodes */
3293 kernelcore_node = required_kernelcore / usable_nodes;
3294 for_each_online_node(nid) {
3295 /*
3296 * Recalculate kernelcore_node if the division per node
3297 * now exceeds what is necessary to satisfy the requested
3298 * amount of memory for the kernel
3299 */
3300 if (required_kernelcore < kernelcore_node)
3301 kernelcore_node = required_kernelcore / usable_nodes;
3302
3303 /*
3304 * As the map is walked, we track how much memory is usable
3305 * by the kernel using kernelcore_remaining. When it is
3306 * 0, the rest of the node is usable by ZONE_MOVABLE
3307 */
3308 kernelcore_remaining = kernelcore_node;
3309
3310 /* Go through each range of PFNs within this node */
3311 for_each_active_range_index_in_nid(i, nid) {
3312 unsigned long start_pfn, end_pfn;
3313 unsigned long size_pages;
3314
3315 start_pfn = max(early_node_map[i].start_pfn,
3316 zone_movable_pfn[nid]);
3317 end_pfn = early_node_map[i].end_pfn;
3318 if (start_pfn >= end_pfn)
3319 continue;
3320
3321 /* Account for what is only usable for kernelcore */
3322 if (start_pfn < usable_startpfn) {
3323 unsigned long kernel_pages;
3324 kernel_pages = min(end_pfn, usable_startpfn)
3325 - start_pfn;
3326
3327 kernelcore_remaining -= min(kernel_pages,
3328 kernelcore_remaining);
3329 required_kernelcore -= min(kernel_pages,
3330 required_kernelcore);
3331
3332 /* Continue if range is now fully accounted */
3333 if (end_pfn <= usable_startpfn) {
3334
3335 /*
3336 * Push zone_movable_pfn to the end so
3337 * that if we have to rebalance
3338 * kernelcore across nodes, we will
3339 * not double account here
3340 */
3341 zone_movable_pfn[nid] = end_pfn;
3342 continue;
3343 }
3344 start_pfn = usable_startpfn;
3345 }
3346
3347 /*
3348 * The usable PFN range for ZONE_MOVABLE is from
3349 * start_pfn->end_pfn. Calculate size_pages as the
3350 * number of pages used as kernelcore
3351 */
3352 size_pages = end_pfn - start_pfn;
3353 if (size_pages > kernelcore_remaining)
3354 size_pages = kernelcore_remaining;
3355 zone_movable_pfn[nid] = start_pfn + size_pages;
3356
3357 /*
3358 * Some kernelcore has been met, update counts and
3359 * break if the kernelcore for this node has been
3360 * satisified
3361 */
3362 required_kernelcore -= min(required_kernelcore,
3363 size_pages);
3364 kernelcore_remaining -= size_pages;
3365 if (!kernelcore_remaining)
3366 break;
3367 }
3368 }
3369
3370 /*
3371 * If there is still required_kernelcore, we do another pass with one
3372 * less node in the count. This will push zone_movable_pfn[nid] further
3373 * along on the nodes that still have memory until kernelcore is
3374 * satisified
3375 */
3376 usable_nodes--;
3377 if (usable_nodes && required_kernelcore > usable_nodes)
3378 goto restart;
3379
3380 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3381 for (nid = 0; nid < MAX_NUMNODES; nid++)
3382 zone_movable_pfn[nid] =
3383 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3384 }
3385
3386 /**
3387 * free_area_init_nodes - Initialise all pg_data_t and zone data
3388 * @max_zone_pfn: an array of max PFNs for each zone
3389 *
3390 * This will call free_area_init_node() for each active node in the system.
3391 * Using the page ranges provided by add_active_range(), the size of each
3392 * zone in each node and their holes is calculated. If the maximum PFN
3393 * between two adjacent zones match, it is assumed that the zone is empty.
3394 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3395 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3396 * starts where the previous one ended. For example, ZONE_DMA32 starts
3397 * at arch_max_dma_pfn.
3398 */
3399 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3400 {
3401 unsigned long nid;
3402 enum zone_type i;
3403
3404 /* Sort early_node_map as initialisation assumes it is sorted */
3405 sort_node_map();
3406
3407 /* Record where the zone boundaries are */
3408 memset(arch_zone_lowest_possible_pfn, 0,
3409 sizeof(arch_zone_lowest_possible_pfn));
3410 memset(arch_zone_highest_possible_pfn, 0,
3411 sizeof(arch_zone_highest_possible_pfn));
3412 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3413 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3414 for (i = 1; i < MAX_NR_ZONES; i++) {
3415 if (i == ZONE_MOVABLE)
3416 continue;
3417 arch_zone_lowest_possible_pfn[i] =
3418 arch_zone_highest_possible_pfn[i-1];
3419 arch_zone_highest_possible_pfn[i] =
3420 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3421 }
3422 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3423 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3424
3425 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3426 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3427 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3428
3429 /* Print out the zone ranges */
3430 printk("Zone PFN ranges:\n");
3431 for (i = 0; i < MAX_NR_ZONES; i++) {
3432 if (i == ZONE_MOVABLE)
3433 continue;
3434 printk(" %-8s %8lu -> %8lu\n",
3435 zone_names[i],
3436 arch_zone_lowest_possible_pfn[i],
3437 arch_zone_highest_possible_pfn[i]);
3438 }
3439
3440 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3441 printk("Movable zone start PFN for each node\n");
3442 for (i = 0; i < MAX_NUMNODES; i++) {
3443 if (zone_movable_pfn[i])
3444 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3445 }
3446
3447 /* Print out the early_node_map[] */
3448 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3449 for (i = 0; i < nr_nodemap_entries; i++)
3450 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3451 early_node_map[i].start_pfn,
3452 early_node_map[i].end_pfn);
3453
3454 /* Initialise every node */
3455 setup_nr_node_ids();
3456 for_each_online_node(nid) {
3457 pg_data_t *pgdat = NODE_DATA(nid);
3458 free_area_init_node(nid, pgdat, NULL,
3459 find_min_pfn_for_node(nid), NULL);
3460 }
3461 }
3462
3463 static int __init cmdline_parse_core(char *p, unsigned long *core)
3464 {
3465 unsigned long long coremem;
3466 if (!p)
3467 return -EINVAL;
3468
3469 coremem = memparse(p, &p);
3470 *core = coremem >> PAGE_SHIFT;
3471
3472 /* Paranoid check that UL is enough for the coremem value */
3473 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3474
3475 return 0;
3476 }
3477
3478 /*
3479 * kernelcore=size sets the amount of memory for use for allocations that
3480 * cannot be reclaimed or migrated.
3481 */
3482 static int __init cmdline_parse_kernelcore(char *p)
3483 {
3484 return cmdline_parse_core(p, &required_kernelcore);
3485 }
3486
3487 /*
3488 * movablecore=size sets the amount of memory for use for allocations that
3489 * can be reclaimed or migrated.
3490 */
3491 static int __init cmdline_parse_movablecore(char *p)
3492 {
3493 return cmdline_parse_core(p, &required_movablecore);
3494 }
3495
3496 early_param("kernelcore", cmdline_parse_kernelcore);
3497 early_param("movablecore", cmdline_parse_movablecore);
3498
3499 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3500
3501 /**
3502 * set_dma_reserve - set the specified number of pages reserved in the first zone
3503 * @new_dma_reserve: The number of pages to mark reserved
3504 *
3505 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3506 * In the DMA zone, a significant percentage may be consumed by kernel image
3507 * and other unfreeable allocations which can skew the watermarks badly. This
3508 * function may optionally be used to account for unfreeable pages in the
3509 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3510 * smaller per-cpu batchsize.
3511 */
3512 void __init set_dma_reserve(unsigned long new_dma_reserve)
3513 {
3514 dma_reserve = new_dma_reserve;
3515 }
3516
3517 #ifndef CONFIG_NEED_MULTIPLE_NODES
3518 static bootmem_data_t contig_bootmem_data;
3519 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3520
3521 EXPORT_SYMBOL(contig_page_data);
3522 #endif
3523
3524 void __init free_area_init(unsigned long *zones_size)
3525 {
3526 free_area_init_node(0, NODE_DATA(0), zones_size,
3527 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3528 }
3529
3530 static int page_alloc_cpu_notify(struct notifier_block *self,
3531 unsigned long action, void *hcpu)
3532 {
3533 int cpu = (unsigned long)hcpu;
3534
3535 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3536 local_irq_disable();
3537 __drain_pages(cpu);
3538 vm_events_fold_cpu(cpu);
3539 local_irq_enable();
3540 refresh_cpu_vm_stats(cpu);
3541 }
3542 return NOTIFY_OK;
3543 }
3544
3545 void __init page_alloc_init(void)
3546 {
3547 hotcpu_notifier(page_alloc_cpu_notify, 0);
3548 }
3549
3550 /*
3551 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3552 * or min_free_kbytes changes.
3553 */
3554 static void calculate_totalreserve_pages(void)
3555 {
3556 struct pglist_data *pgdat;
3557 unsigned long reserve_pages = 0;
3558 enum zone_type i, j;
3559
3560 for_each_online_pgdat(pgdat) {
3561 for (i = 0; i < MAX_NR_ZONES; i++) {
3562 struct zone *zone = pgdat->node_zones + i;
3563 unsigned long max = 0;
3564
3565 /* Find valid and maximum lowmem_reserve in the zone */
3566 for (j = i; j < MAX_NR_ZONES; j++) {
3567 if (zone->lowmem_reserve[j] > max)
3568 max = zone->lowmem_reserve[j];
3569 }
3570
3571 /* we treat pages_high as reserved pages. */
3572 max += zone->pages_high;
3573
3574 if (max > zone->present_pages)
3575 max = zone->present_pages;
3576 reserve_pages += max;
3577 }
3578 }
3579 totalreserve_pages = reserve_pages;
3580 }
3581
3582 /*
3583 * setup_per_zone_lowmem_reserve - called whenever
3584 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3585 * has a correct pages reserved value, so an adequate number of
3586 * pages are left in the zone after a successful __alloc_pages().
3587 */
3588 static void setup_per_zone_lowmem_reserve(void)
3589 {
3590 struct pglist_data *pgdat;
3591 enum zone_type j, idx;
3592
3593 for_each_online_pgdat(pgdat) {
3594 for (j = 0; j < MAX_NR_ZONES; j++) {
3595 struct zone *zone = pgdat->node_zones + j;
3596 unsigned long present_pages = zone->present_pages;
3597
3598 zone->lowmem_reserve[j] = 0;
3599
3600 idx = j;
3601 while (idx) {
3602 struct zone *lower_zone;
3603
3604 idx--;
3605
3606 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3607 sysctl_lowmem_reserve_ratio[idx] = 1;
3608
3609 lower_zone = pgdat->node_zones + idx;
3610 lower_zone->lowmem_reserve[j] = present_pages /
3611 sysctl_lowmem_reserve_ratio[idx];
3612 present_pages += lower_zone->present_pages;
3613 }
3614 }
3615 }
3616
3617 /* update totalreserve_pages */
3618 calculate_totalreserve_pages();
3619 }
3620
3621 /**
3622 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3623 *
3624 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3625 * with respect to min_free_kbytes.
3626 */
3627 void setup_per_zone_pages_min(void)
3628 {
3629 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3630 unsigned long lowmem_pages = 0;
3631 struct zone *zone;
3632 unsigned long flags;
3633
3634 /* Calculate total number of !ZONE_HIGHMEM pages */
3635 for_each_zone(zone) {
3636 if (!is_highmem(zone))
3637 lowmem_pages += zone->present_pages;
3638 }
3639
3640 for_each_zone(zone) {
3641 u64 tmp;
3642
3643 spin_lock_irqsave(&zone->lru_lock, flags);
3644 tmp = (u64)pages_min * zone->present_pages;
3645 do_div(tmp, lowmem_pages);
3646 if (is_highmem(zone)) {
3647 /*
3648 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3649 * need highmem pages, so cap pages_min to a small
3650 * value here.
3651 *
3652 * The (pages_high-pages_low) and (pages_low-pages_min)
3653 * deltas controls asynch page reclaim, and so should
3654 * not be capped for highmem.
3655 */
3656 int min_pages;
3657
3658 min_pages = zone->present_pages / 1024;
3659 if (min_pages < SWAP_CLUSTER_MAX)
3660 min_pages = SWAP_CLUSTER_MAX;
3661 if (min_pages > 128)
3662 min_pages = 128;
3663 zone->pages_min = min_pages;
3664 } else {
3665 /*
3666 * If it's a lowmem zone, reserve a number of pages
3667 * proportionate to the zone's size.
3668 */
3669 zone->pages_min = tmp;
3670 }
3671
3672 zone->pages_low = zone->pages_min + (tmp >> 2);
3673 zone->pages_high = zone->pages_min + (tmp >> 1);
3674 spin_unlock_irqrestore(&zone->lru_lock, flags);
3675 }
3676
3677 /* update totalreserve_pages */
3678 calculate_totalreserve_pages();
3679 }
3680
3681 /*
3682 * Initialise min_free_kbytes.
3683 *
3684 * For small machines we want it small (128k min). For large machines
3685 * we want it large (64MB max). But it is not linear, because network
3686 * bandwidth does not increase linearly with machine size. We use
3687 *
3688 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3689 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3690 *
3691 * which yields
3692 *
3693 * 16MB: 512k
3694 * 32MB: 724k
3695 * 64MB: 1024k
3696 * 128MB: 1448k
3697 * 256MB: 2048k
3698 * 512MB: 2896k
3699 * 1024MB: 4096k
3700 * 2048MB: 5792k
3701 * 4096MB: 8192k
3702 * 8192MB: 11584k
3703 * 16384MB: 16384k
3704 */
3705 static int __init init_per_zone_pages_min(void)
3706 {
3707 unsigned long lowmem_kbytes;
3708
3709 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3710
3711 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3712 if (min_free_kbytes < 128)
3713 min_free_kbytes = 128;
3714 if (min_free_kbytes > 65536)
3715 min_free_kbytes = 65536;
3716 setup_per_zone_pages_min();
3717 setup_per_zone_lowmem_reserve();
3718 return 0;
3719 }
3720 module_init(init_per_zone_pages_min)
3721
3722 /*
3723 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3724 * that we can call two helper functions whenever min_free_kbytes
3725 * changes.
3726 */
3727 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3728 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3729 {
3730 proc_dointvec(table, write, file, buffer, length, ppos);
3731 if (write)
3732 setup_per_zone_pages_min();
3733 return 0;
3734 }
3735
3736 #ifdef CONFIG_NUMA
3737 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3738 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3739 {
3740 struct zone *zone;
3741 int rc;
3742
3743 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3744 if (rc)
3745 return rc;
3746
3747 for_each_zone(zone)
3748 zone->min_unmapped_pages = (zone->present_pages *
3749 sysctl_min_unmapped_ratio) / 100;
3750 return 0;
3751 }
3752
3753 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3754 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3755 {
3756 struct zone *zone;
3757 int rc;
3758
3759 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3760 if (rc)
3761 return rc;
3762
3763 for_each_zone(zone)
3764 zone->min_slab_pages = (zone->present_pages *
3765 sysctl_min_slab_ratio) / 100;
3766 return 0;
3767 }
3768 #endif
3769
3770 /*
3771 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3772 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3773 * whenever sysctl_lowmem_reserve_ratio changes.
3774 *
3775 * The reserve ratio obviously has absolutely no relation with the
3776 * pages_min watermarks. The lowmem reserve ratio can only make sense
3777 * if in function of the boot time zone sizes.
3778 */
3779 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3780 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3781 {
3782 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3783 setup_per_zone_lowmem_reserve();
3784 return 0;
3785 }
3786
3787 /*
3788 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3789 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3790 * can have before it gets flushed back to buddy allocator.
3791 */
3792
3793 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3794 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3795 {
3796 struct zone *zone;
3797 unsigned int cpu;
3798 int ret;
3799
3800 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3801 if (!write || (ret == -EINVAL))
3802 return ret;
3803 for_each_zone(zone) {
3804 for_each_online_cpu(cpu) {
3805 unsigned long high;
3806 high = zone->present_pages / percpu_pagelist_fraction;
3807 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3808 }
3809 }
3810 return 0;
3811 }
3812
3813 int hashdist = HASHDIST_DEFAULT;
3814
3815 #ifdef CONFIG_NUMA
3816 static int __init set_hashdist(char *str)
3817 {
3818 if (!str)
3819 return 0;
3820 hashdist = simple_strtoul(str, &str, 0);
3821 return 1;
3822 }
3823 __setup("hashdist=", set_hashdist);
3824 #endif
3825
3826 /*
3827 * allocate a large system hash table from bootmem
3828 * - it is assumed that the hash table must contain an exact power-of-2
3829 * quantity of entries
3830 * - limit is the number of hash buckets, not the total allocation size
3831 */
3832 void *__init alloc_large_system_hash(const char *tablename,
3833 unsigned long bucketsize,
3834 unsigned long numentries,
3835 int scale,
3836 int flags,
3837 unsigned int *_hash_shift,
3838 unsigned int *_hash_mask,
3839 unsigned long limit)
3840 {
3841 unsigned long long max = limit;
3842 unsigned long log2qty, size;
3843 void *table = NULL;
3844
3845 /* allow the kernel cmdline to have a say */
3846 if (!numentries) {
3847 /* round applicable memory size up to nearest megabyte */
3848 numentries = nr_kernel_pages;
3849 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3850 numentries >>= 20 - PAGE_SHIFT;
3851 numentries <<= 20 - PAGE_SHIFT;
3852
3853 /* limit to 1 bucket per 2^scale bytes of low memory */
3854 if (scale > PAGE_SHIFT)
3855 numentries >>= (scale - PAGE_SHIFT);
3856 else
3857 numentries <<= (PAGE_SHIFT - scale);
3858
3859 /* Make sure we've got at least a 0-order allocation.. */
3860 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3861 numentries = PAGE_SIZE / bucketsize;
3862 }
3863 numentries = roundup_pow_of_two(numentries);
3864
3865 /* limit allocation size to 1/16 total memory by default */
3866 if (max == 0) {
3867 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3868 do_div(max, bucketsize);
3869 }
3870
3871 if (numentries > max)
3872 numentries = max;
3873
3874 log2qty = ilog2(numentries);
3875
3876 do {
3877 size = bucketsize << log2qty;
3878 if (flags & HASH_EARLY)
3879 table = alloc_bootmem(size);
3880 else if (hashdist)
3881 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3882 else {
3883 unsigned long order;
3884 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3885 ;
3886 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3887 /*
3888 * If bucketsize is not a power-of-two, we may free
3889 * some pages at the end of hash table.
3890 */
3891 if (table) {
3892 unsigned long alloc_end = (unsigned long)table +
3893 (PAGE_SIZE << order);
3894 unsigned long used = (unsigned long)table +
3895 PAGE_ALIGN(size);
3896 split_page(virt_to_page(table), order);
3897 while (used < alloc_end) {
3898 free_page(used);
3899 used += PAGE_SIZE;
3900 }
3901 }
3902 }
3903 } while (!table && size > PAGE_SIZE && --log2qty);
3904
3905 if (!table)
3906 panic("Failed to allocate %s hash table\n", tablename);
3907
3908 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3909 tablename,
3910 (1U << log2qty),
3911 ilog2(size) - PAGE_SHIFT,
3912 size);
3913
3914 if (_hash_shift)
3915 *_hash_shift = log2qty;
3916 if (_hash_mask)
3917 *_hash_mask = (1 << log2qty) - 1;
3918
3919 return table;
3920 }
3921
3922 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3923 struct page *pfn_to_page(unsigned long pfn)
3924 {
3925 return __pfn_to_page(pfn);
3926 }
3927 unsigned long page_to_pfn(struct page *page)
3928 {
3929 return __page_to_pfn(page);
3930 }
3931 EXPORT_SYMBOL(pfn_to_page);
3932 EXPORT_SYMBOL(page_to_pfn);
3933 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3934
3935
This page took 0.13798 seconds and 6 git commands to generate.