[PATCH] Guarantee that the uncached allocator gets pages on the correct node
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 #include "internal.h"
44
45 /*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map);
51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52 EXPORT_SYMBOL(node_possible_map);
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalreserve_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
57
58 static void __free_pages_ok(struct page *page, unsigned int order);
59
60 /*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
70 */
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
72 256,
73 #ifdef CONFIG_ZONE_DMA32
74 256,
75 #endif
76 #ifdef CONFIG_HIGHMEM
77 32
78 #endif
79 };
80
81 EXPORT_SYMBOL(totalram_pages);
82
83 /*
84 * Used by page_zone() to look up the address of the struct zone whose
85 * id is encoded in the upper bits of page->flags
86 */
87 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
88 EXPORT_SYMBOL(zone_table);
89
90 static char *zone_names[MAX_NR_ZONES] = {
91 "DMA",
92 #ifdef CONFIG_ZONE_DMA32
93 "DMA32",
94 #endif
95 "Normal",
96 #ifdef CONFIG_HIGHMEM
97 "HighMem"
98 #endif
99 };
100
101 int min_free_kbytes = 1024;
102
103 unsigned long __meminitdata nr_kernel_pages;
104 unsigned long __meminitdata nr_all_pages;
105
106 #ifdef CONFIG_DEBUG_VM
107 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
108 {
109 int ret = 0;
110 unsigned seq;
111 unsigned long pfn = page_to_pfn(page);
112
113 do {
114 seq = zone_span_seqbegin(zone);
115 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
116 ret = 1;
117 else if (pfn < zone->zone_start_pfn)
118 ret = 1;
119 } while (zone_span_seqretry(zone, seq));
120
121 return ret;
122 }
123
124 static int page_is_consistent(struct zone *zone, struct page *page)
125 {
126 #ifdef CONFIG_HOLES_IN_ZONE
127 if (!pfn_valid(page_to_pfn(page)))
128 return 0;
129 #endif
130 if (zone != page_zone(page))
131 return 0;
132
133 return 1;
134 }
135 /*
136 * Temporary debugging check for pages not lying within a given zone.
137 */
138 static int bad_range(struct zone *zone, struct page *page)
139 {
140 if (page_outside_zone_boundaries(zone, page))
141 return 1;
142 if (!page_is_consistent(zone, page))
143 return 1;
144
145 return 0;
146 }
147 #else
148 static inline int bad_range(struct zone *zone, struct page *page)
149 {
150 return 0;
151 }
152 #endif
153
154 static void bad_page(struct page *page)
155 {
156 printk(KERN_EMERG "Bad page state in process '%s'\n"
157 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
158 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
159 KERN_EMERG "Backtrace:\n",
160 current->comm, page, (int)(2*sizeof(unsigned long)),
161 (unsigned long)page->flags, page->mapping,
162 page_mapcount(page), page_count(page));
163 dump_stack();
164 page->flags &= ~(1 << PG_lru |
165 1 << PG_private |
166 1 << PG_locked |
167 1 << PG_active |
168 1 << PG_dirty |
169 1 << PG_reclaim |
170 1 << PG_slab |
171 1 << PG_swapcache |
172 1 << PG_writeback |
173 1 << PG_buddy );
174 set_page_count(page, 0);
175 reset_page_mapcount(page);
176 page->mapping = NULL;
177 add_taint(TAINT_BAD_PAGE);
178 }
179
180 /*
181 * Higher-order pages are called "compound pages". They are structured thusly:
182 *
183 * The first PAGE_SIZE page is called the "head page".
184 *
185 * The remaining PAGE_SIZE pages are called "tail pages".
186 *
187 * All pages have PG_compound set. All pages have their ->private pointing at
188 * the head page (even the head page has this).
189 *
190 * The first tail page's ->lru.next holds the address of the compound page's
191 * put_page() function. Its ->lru.prev holds the order of allocation.
192 * This usage means that zero-order pages may not be compound.
193 */
194
195 static void free_compound_page(struct page *page)
196 {
197 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
198 }
199
200 static void prep_compound_page(struct page *page, unsigned long order)
201 {
202 int i;
203 int nr_pages = 1 << order;
204
205 page[1].lru.next = (void *)free_compound_page; /* set dtor */
206 page[1].lru.prev = (void *)order;
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
209
210 __SetPageCompound(p);
211 set_page_private(p, (unsigned long)page);
212 }
213 }
214
215 static void destroy_compound_page(struct page *page, unsigned long order)
216 {
217 int i;
218 int nr_pages = 1 << order;
219
220 if (unlikely((unsigned long)page[1].lru.prev != order))
221 bad_page(page);
222
223 for (i = 0; i < nr_pages; i++) {
224 struct page *p = page + i;
225
226 if (unlikely(!PageCompound(p) |
227 (page_private(p) != (unsigned long)page)))
228 bad_page(page);
229 __ClearPageCompound(p);
230 }
231 }
232
233 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
234 {
235 int i;
236
237 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
238 /*
239 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
240 * and __GFP_HIGHMEM from hard or soft interrupt context.
241 */
242 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
243 for (i = 0; i < (1 << order); i++)
244 clear_highpage(page + i);
245 }
246
247 /*
248 * function for dealing with page's order in buddy system.
249 * zone->lock is already acquired when we use these.
250 * So, we don't need atomic page->flags operations here.
251 */
252 static inline unsigned long page_order(struct page *page)
253 {
254 return page_private(page);
255 }
256
257 static inline void set_page_order(struct page *page, int order)
258 {
259 set_page_private(page, order);
260 __SetPageBuddy(page);
261 }
262
263 static inline void rmv_page_order(struct page *page)
264 {
265 __ClearPageBuddy(page);
266 set_page_private(page, 0);
267 }
268
269 /*
270 * Locate the struct page for both the matching buddy in our
271 * pair (buddy1) and the combined O(n+1) page they form (page).
272 *
273 * 1) Any buddy B1 will have an order O twin B2 which satisfies
274 * the following equation:
275 * B2 = B1 ^ (1 << O)
276 * For example, if the starting buddy (buddy2) is #8 its order
277 * 1 buddy is #10:
278 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
279 *
280 * 2) Any buddy B will have an order O+1 parent P which
281 * satisfies the following equation:
282 * P = B & ~(1 << O)
283 *
284 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
285 */
286 static inline struct page *
287 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
288 {
289 unsigned long buddy_idx = page_idx ^ (1 << order);
290
291 return page + (buddy_idx - page_idx);
292 }
293
294 static inline unsigned long
295 __find_combined_index(unsigned long page_idx, unsigned int order)
296 {
297 return (page_idx & ~(1 << order));
298 }
299
300 /*
301 * This function checks whether a page is free && is the buddy
302 * we can do coalesce a page and its buddy if
303 * (a) the buddy is not in a hole &&
304 * (b) the buddy is in the buddy system &&
305 * (c) a page and its buddy have the same order &&
306 * (d) a page and its buddy are in the same zone.
307 *
308 * For recording whether a page is in the buddy system, we use PG_buddy.
309 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
310 *
311 * For recording page's order, we use page_private(page).
312 */
313 static inline int page_is_buddy(struct page *page, struct page *buddy,
314 int order)
315 {
316 #ifdef CONFIG_HOLES_IN_ZONE
317 if (!pfn_valid(page_to_pfn(buddy)))
318 return 0;
319 #endif
320
321 if (page_zone_id(page) != page_zone_id(buddy))
322 return 0;
323
324 if (PageBuddy(buddy) && page_order(buddy) == order) {
325 BUG_ON(page_count(buddy) != 0);
326 return 1;
327 }
328 return 0;
329 }
330
331 /*
332 * Freeing function for a buddy system allocator.
333 *
334 * The concept of a buddy system is to maintain direct-mapped table
335 * (containing bit values) for memory blocks of various "orders".
336 * The bottom level table contains the map for the smallest allocatable
337 * units of memory (here, pages), and each level above it describes
338 * pairs of units from the levels below, hence, "buddies".
339 * At a high level, all that happens here is marking the table entry
340 * at the bottom level available, and propagating the changes upward
341 * as necessary, plus some accounting needed to play nicely with other
342 * parts of the VM system.
343 * At each level, we keep a list of pages, which are heads of continuous
344 * free pages of length of (1 << order) and marked with PG_buddy. Page's
345 * order is recorded in page_private(page) field.
346 * So when we are allocating or freeing one, we can derive the state of the
347 * other. That is, if we allocate a small block, and both were
348 * free, the remainder of the region must be split into blocks.
349 * If a block is freed, and its buddy is also free, then this
350 * triggers coalescing into a block of larger size.
351 *
352 * -- wli
353 */
354
355 static inline void __free_one_page(struct page *page,
356 struct zone *zone, unsigned int order)
357 {
358 unsigned long page_idx;
359 int order_size = 1 << order;
360
361 if (unlikely(PageCompound(page)))
362 destroy_compound_page(page, order);
363
364 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
365
366 VM_BUG_ON(page_idx & (order_size - 1));
367 VM_BUG_ON(bad_range(zone, page));
368
369 zone->free_pages += order_size;
370 while (order < MAX_ORDER-1) {
371 unsigned long combined_idx;
372 struct free_area *area;
373 struct page *buddy;
374
375 buddy = __page_find_buddy(page, page_idx, order);
376 if (!page_is_buddy(page, buddy, order))
377 break; /* Move the buddy up one level. */
378
379 list_del(&buddy->lru);
380 area = zone->free_area + order;
381 area->nr_free--;
382 rmv_page_order(buddy);
383 combined_idx = __find_combined_index(page_idx, order);
384 page = page + (combined_idx - page_idx);
385 page_idx = combined_idx;
386 order++;
387 }
388 set_page_order(page, order);
389 list_add(&page->lru, &zone->free_area[order].free_list);
390 zone->free_area[order].nr_free++;
391 }
392
393 static inline int free_pages_check(struct page *page)
394 {
395 if (unlikely(page_mapcount(page) |
396 (page->mapping != NULL) |
397 (page_count(page) != 0) |
398 (page->flags & (
399 1 << PG_lru |
400 1 << PG_private |
401 1 << PG_locked |
402 1 << PG_active |
403 1 << PG_reclaim |
404 1 << PG_slab |
405 1 << PG_swapcache |
406 1 << PG_writeback |
407 1 << PG_reserved |
408 1 << PG_buddy ))))
409 bad_page(page);
410 if (PageDirty(page))
411 __ClearPageDirty(page);
412 /*
413 * For now, we report if PG_reserved was found set, but do not
414 * clear it, and do not free the page. But we shall soon need
415 * to do more, for when the ZERO_PAGE count wraps negative.
416 */
417 return PageReserved(page);
418 }
419
420 /*
421 * Frees a list of pages.
422 * Assumes all pages on list are in same zone, and of same order.
423 * count is the number of pages to free.
424 *
425 * If the zone was previously in an "all pages pinned" state then look to
426 * see if this freeing clears that state.
427 *
428 * And clear the zone's pages_scanned counter, to hold off the "all pages are
429 * pinned" detection logic.
430 */
431 static void free_pages_bulk(struct zone *zone, int count,
432 struct list_head *list, int order)
433 {
434 spin_lock(&zone->lock);
435 zone->all_unreclaimable = 0;
436 zone->pages_scanned = 0;
437 while (count--) {
438 struct page *page;
439
440 VM_BUG_ON(list_empty(list));
441 page = list_entry(list->prev, struct page, lru);
442 /* have to delete it as __free_one_page list manipulates */
443 list_del(&page->lru);
444 __free_one_page(page, zone, order);
445 }
446 spin_unlock(&zone->lock);
447 }
448
449 static void free_one_page(struct zone *zone, struct page *page, int order)
450 {
451 LIST_HEAD(list);
452 list_add(&page->lru, &list);
453 free_pages_bulk(zone, 1, &list, order);
454 }
455
456 static void __free_pages_ok(struct page *page, unsigned int order)
457 {
458 unsigned long flags;
459 int i;
460 int reserved = 0;
461
462 arch_free_page(page, order);
463 if (!PageHighMem(page))
464 debug_check_no_locks_freed(page_address(page),
465 PAGE_SIZE<<order);
466
467 for (i = 0 ; i < (1 << order) ; ++i)
468 reserved += free_pages_check(page + i);
469 if (reserved)
470 return;
471
472 kernel_map_pages(page, 1 << order, 0);
473 local_irq_save(flags);
474 __count_vm_events(PGFREE, 1 << order);
475 free_one_page(page_zone(page), page, order);
476 local_irq_restore(flags);
477 }
478
479 /*
480 * permit the bootmem allocator to evade page validation on high-order frees
481 */
482 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
483 {
484 if (order == 0) {
485 __ClearPageReserved(page);
486 set_page_count(page, 0);
487 set_page_refcounted(page);
488 __free_page(page);
489 } else {
490 int loop;
491
492 prefetchw(page);
493 for (loop = 0; loop < BITS_PER_LONG; loop++) {
494 struct page *p = &page[loop];
495
496 if (loop + 1 < BITS_PER_LONG)
497 prefetchw(p + 1);
498 __ClearPageReserved(p);
499 set_page_count(p, 0);
500 }
501
502 set_page_refcounted(page);
503 __free_pages(page, order);
504 }
505 }
506
507
508 /*
509 * The order of subdivision here is critical for the IO subsystem.
510 * Please do not alter this order without good reasons and regression
511 * testing. Specifically, as large blocks of memory are subdivided,
512 * the order in which smaller blocks are delivered depends on the order
513 * they're subdivided in this function. This is the primary factor
514 * influencing the order in which pages are delivered to the IO
515 * subsystem according to empirical testing, and this is also justified
516 * by considering the behavior of a buddy system containing a single
517 * large block of memory acted on by a series of small allocations.
518 * This behavior is a critical factor in sglist merging's success.
519 *
520 * -- wli
521 */
522 static inline void expand(struct zone *zone, struct page *page,
523 int low, int high, struct free_area *area)
524 {
525 unsigned long size = 1 << high;
526
527 while (high > low) {
528 area--;
529 high--;
530 size >>= 1;
531 VM_BUG_ON(bad_range(zone, &page[size]));
532 list_add(&page[size].lru, &area->free_list);
533 area->nr_free++;
534 set_page_order(&page[size], high);
535 }
536 }
537
538 /*
539 * This page is about to be returned from the page allocator
540 */
541 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
542 {
543 if (unlikely(page_mapcount(page) |
544 (page->mapping != NULL) |
545 (page_count(page) != 0) |
546 (page->flags & (
547 1 << PG_lru |
548 1 << PG_private |
549 1 << PG_locked |
550 1 << PG_active |
551 1 << PG_dirty |
552 1 << PG_reclaim |
553 1 << PG_slab |
554 1 << PG_swapcache |
555 1 << PG_writeback |
556 1 << PG_reserved |
557 1 << PG_buddy ))))
558 bad_page(page);
559
560 /*
561 * For now, we report if PG_reserved was found set, but do not
562 * clear it, and do not allocate the page: as a safety net.
563 */
564 if (PageReserved(page))
565 return 1;
566
567 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
568 1 << PG_referenced | 1 << PG_arch_1 |
569 1 << PG_checked | 1 << PG_mappedtodisk);
570 set_page_private(page, 0);
571 set_page_refcounted(page);
572 kernel_map_pages(page, 1 << order, 1);
573
574 if (gfp_flags & __GFP_ZERO)
575 prep_zero_page(page, order, gfp_flags);
576
577 if (order && (gfp_flags & __GFP_COMP))
578 prep_compound_page(page, order);
579
580 return 0;
581 }
582
583 /*
584 * Do the hard work of removing an element from the buddy allocator.
585 * Call me with the zone->lock already held.
586 */
587 static struct page *__rmqueue(struct zone *zone, unsigned int order)
588 {
589 struct free_area * area;
590 unsigned int current_order;
591 struct page *page;
592
593 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
594 area = zone->free_area + current_order;
595 if (list_empty(&area->free_list))
596 continue;
597
598 page = list_entry(area->free_list.next, struct page, lru);
599 list_del(&page->lru);
600 rmv_page_order(page);
601 area->nr_free--;
602 zone->free_pages -= 1UL << order;
603 expand(zone, page, order, current_order, area);
604 return page;
605 }
606
607 return NULL;
608 }
609
610 /*
611 * Obtain a specified number of elements from the buddy allocator, all under
612 * a single hold of the lock, for efficiency. Add them to the supplied list.
613 * Returns the number of new pages which were placed at *list.
614 */
615 static int rmqueue_bulk(struct zone *zone, unsigned int order,
616 unsigned long count, struct list_head *list)
617 {
618 int i;
619
620 spin_lock(&zone->lock);
621 for (i = 0; i < count; ++i) {
622 struct page *page = __rmqueue(zone, order);
623 if (unlikely(page == NULL))
624 break;
625 list_add_tail(&page->lru, list);
626 }
627 spin_unlock(&zone->lock);
628 return i;
629 }
630
631 #ifdef CONFIG_NUMA
632 /*
633 * Called from the slab reaper to drain pagesets on a particular node that
634 * belong to the currently executing processor.
635 * Note that this function must be called with the thread pinned to
636 * a single processor.
637 */
638 void drain_node_pages(int nodeid)
639 {
640 int i;
641 enum zone_type z;
642 unsigned long flags;
643
644 for (z = 0; z < MAX_NR_ZONES; z++) {
645 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
646 struct per_cpu_pageset *pset;
647
648 pset = zone_pcp(zone, smp_processor_id());
649 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
650 struct per_cpu_pages *pcp;
651
652 pcp = &pset->pcp[i];
653 if (pcp->count) {
654 local_irq_save(flags);
655 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
656 pcp->count = 0;
657 local_irq_restore(flags);
658 }
659 }
660 }
661 }
662 #endif
663
664 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
665 static void __drain_pages(unsigned int cpu)
666 {
667 unsigned long flags;
668 struct zone *zone;
669 int i;
670
671 for_each_zone(zone) {
672 struct per_cpu_pageset *pset;
673
674 pset = zone_pcp(zone, cpu);
675 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
676 struct per_cpu_pages *pcp;
677
678 pcp = &pset->pcp[i];
679 local_irq_save(flags);
680 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
681 pcp->count = 0;
682 local_irq_restore(flags);
683 }
684 }
685 }
686 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
687
688 #ifdef CONFIG_PM
689
690 void mark_free_pages(struct zone *zone)
691 {
692 unsigned long zone_pfn, flags;
693 int order;
694 struct list_head *curr;
695
696 if (!zone->spanned_pages)
697 return;
698
699 spin_lock_irqsave(&zone->lock, flags);
700 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
701 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
702
703 for (order = MAX_ORDER - 1; order >= 0; --order)
704 list_for_each(curr, &zone->free_area[order].free_list) {
705 unsigned long start_pfn, i;
706
707 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
708
709 for (i=0; i < (1<<order); i++)
710 SetPageNosaveFree(pfn_to_page(start_pfn+i));
711 }
712 spin_unlock_irqrestore(&zone->lock, flags);
713 }
714
715 /*
716 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
717 */
718 void drain_local_pages(void)
719 {
720 unsigned long flags;
721
722 local_irq_save(flags);
723 __drain_pages(smp_processor_id());
724 local_irq_restore(flags);
725 }
726 #endif /* CONFIG_PM */
727
728 /*
729 * Free a 0-order page
730 */
731 static void fastcall free_hot_cold_page(struct page *page, int cold)
732 {
733 struct zone *zone = page_zone(page);
734 struct per_cpu_pages *pcp;
735 unsigned long flags;
736
737 arch_free_page(page, 0);
738
739 if (PageAnon(page))
740 page->mapping = NULL;
741 if (free_pages_check(page))
742 return;
743
744 kernel_map_pages(page, 1, 0);
745
746 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
747 local_irq_save(flags);
748 __count_vm_event(PGFREE);
749 list_add(&page->lru, &pcp->list);
750 pcp->count++;
751 if (pcp->count >= pcp->high) {
752 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
753 pcp->count -= pcp->batch;
754 }
755 local_irq_restore(flags);
756 put_cpu();
757 }
758
759 void fastcall free_hot_page(struct page *page)
760 {
761 free_hot_cold_page(page, 0);
762 }
763
764 void fastcall free_cold_page(struct page *page)
765 {
766 free_hot_cold_page(page, 1);
767 }
768
769 /*
770 * split_page takes a non-compound higher-order page, and splits it into
771 * n (1<<order) sub-pages: page[0..n]
772 * Each sub-page must be freed individually.
773 *
774 * Note: this is probably too low level an operation for use in drivers.
775 * Please consult with lkml before using this in your driver.
776 */
777 void split_page(struct page *page, unsigned int order)
778 {
779 int i;
780
781 VM_BUG_ON(PageCompound(page));
782 VM_BUG_ON(!page_count(page));
783 for (i = 1; i < (1 << order); i++)
784 set_page_refcounted(page + i);
785 }
786
787 /*
788 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
789 * we cheat by calling it from here, in the order > 0 path. Saves a branch
790 * or two.
791 */
792 static struct page *buffered_rmqueue(struct zonelist *zonelist,
793 struct zone *zone, int order, gfp_t gfp_flags)
794 {
795 unsigned long flags;
796 struct page *page;
797 int cold = !!(gfp_flags & __GFP_COLD);
798 int cpu;
799
800 again:
801 cpu = get_cpu();
802 if (likely(order == 0)) {
803 struct per_cpu_pages *pcp;
804
805 pcp = &zone_pcp(zone, cpu)->pcp[cold];
806 local_irq_save(flags);
807 if (!pcp->count) {
808 pcp->count += rmqueue_bulk(zone, 0,
809 pcp->batch, &pcp->list);
810 if (unlikely(!pcp->count))
811 goto failed;
812 }
813 page = list_entry(pcp->list.next, struct page, lru);
814 list_del(&page->lru);
815 pcp->count--;
816 } else {
817 spin_lock_irqsave(&zone->lock, flags);
818 page = __rmqueue(zone, order);
819 spin_unlock(&zone->lock);
820 if (!page)
821 goto failed;
822 }
823
824 __count_zone_vm_events(PGALLOC, zone, 1 << order);
825 zone_statistics(zonelist, zone);
826 local_irq_restore(flags);
827 put_cpu();
828
829 VM_BUG_ON(bad_range(zone, page));
830 if (prep_new_page(page, order, gfp_flags))
831 goto again;
832 return page;
833
834 failed:
835 local_irq_restore(flags);
836 put_cpu();
837 return NULL;
838 }
839
840 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
841 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
842 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
843 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
844 #define ALLOC_HARDER 0x10 /* try to alloc harder */
845 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
846 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
847
848 /*
849 * Return 1 if free pages are above 'mark'. This takes into account the order
850 * of the allocation.
851 */
852 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
853 int classzone_idx, int alloc_flags)
854 {
855 /* free_pages my go negative - that's OK */
856 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
857 int o;
858
859 if (alloc_flags & ALLOC_HIGH)
860 min -= min / 2;
861 if (alloc_flags & ALLOC_HARDER)
862 min -= min / 4;
863
864 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
865 return 0;
866 for (o = 0; o < order; o++) {
867 /* At the next order, this order's pages become unavailable */
868 free_pages -= z->free_area[o].nr_free << o;
869
870 /* Require fewer higher order pages to be free */
871 min >>= 1;
872
873 if (free_pages <= min)
874 return 0;
875 }
876 return 1;
877 }
878
879 /*
880 * get_page_from_freeliest goes through the zonelist trying to allocate
881 * a page.
882 */
883 static struct page *
884 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
885 struct zonelist *zonelist, int alloc_flags)
886 {
887 struct zone **z = zonelist->zones;
888 struct page *page = NULL;
889 int classzone_idx = zone_idx(*z);
890
891 /*
892 * Go through the zonelist once, looking for a zone with enough free.
893 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
894 */
895 do {
896 if (unlikely((gfp_mask & __GFP_THISNODE) &&
897 (*z)->zone_pgdat != zonelist->zones[0]->zone_pgdat))
898 break;
899 if ((alloc_flags & ALLOC_CPUSET) &&
900 !cpuset_zone_allowed(*z, gfp_mask))
901 continue;
902
903 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
904 unsigned long mark;
905 if (alloc_flags & ALLOC_WMARK_MIN)
906 mark = (*z)->pages_min;
907 else if (alloc_flags & ALLOC_WMARK_LOW)
908 mark = (*z)->pages_low;
909 else
910 mark = (*z)->pages_high;
911 if (!zone_watermark_ok(*z, order, mark,
912 classzone_idx, alloc_flags))
913 if (!zone_reclaim_mode ||
914 !zone_reclaim(*z, gfp_mask, order))
915 continue;
916 }
917
918 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
919 if (page) {
920 break;
921 }
922 } while (*(++z) != NULL);
923 return page;
924 }
925
926 /*
927 * This is the 'heart' of the zoned buddy allocator.
928 */
929 struct page * fastcall
930 __alloc_pages(gfp_t gfp_mask, unsigned int order,
931 struct zonelist *zonelist)
932 {
933 const gfp_t wait = gfp_mask & __GFP_WAIT;
934 struct zone **z;
935 struct page *page;
936 struct reclaim_state reclaim_state;
937 struct task_struct *p = current;
938 int do_retry;
939 int alloc_flags;
940 int did_some_progress;
941
942 might_sleep_if(wait);
943
944 restart:
945 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
946
947 if (unlikely(*z == NULL)) {
948 /* Should this ever happen?? */
949 return NULL;
950 }
951
952 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
953 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
954 if (page)
955 goto got_pg;
956
957 do {
958 wakeup_kswapd(*z, order);
959 } while (*(++z));
960
961 /*
962 * OK, we're below the kswapd watermark and have kicked background
963 * reclaim. Now things get more complex, so set up alloc_flags according
964 * to how we want to proceed.
965 *
966 * The caller may dip into page reserves a bit more if the caller
967 * cannot run direct reclaim, or if the caller has realtime scheduling
968 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
969 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
970 */
971 alloc_flags = ALLOC_WMARK_MIN;
972 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
973 alloc_flags |= ALLOC_HARDER;
974 if (gfp_mask & __GFP_HIGH)
975 alloc_flags |= ALLOC_HIGH;
976 if (wait)
977 alloc_flags |= ALLOC_CPUSET;
978
979 /*
980 * Go through the zonelist again. Let __GFP_HIGH and allocations
981 * coming from realtime tasks go deeper into reserves.
982 *
983 * This is the last chance, in general, before the goto nopage.
984 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
985 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
986 */
987 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
988 if (page)
989 goto got_pg;
990
991 /* This allocation should allow future memory freeing. */
992
993 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
994 && !in_interrupt()) {
995 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
996 nofail_alloc:
997 /* go through the zonelist yet again, ignoring mins */
998 page = get_page_from_freelist(gfp_mask, order,
999 zonelist, ALLOC_NO_WATERMARKS);
1000 if (page)
1001 goto got_pg;
1002 if (gfp_mask & __GFP_NOFAIL) {
1003 blk_congestion_wait(WRITE, HZ/50);
1004 goto nofail_alloc;
1005 }
1006 }
1007 goto nopage;
1008 }
1009
1010 /* Atomic allocations - we can't balance anything */
1011 if (!wait)
1012 goto nopage;
1013
1014 rebalance:
1015 cond_resched();
1016
1017 /* We now go into synchronous reclaim */
1018 cpuset_memory_pressure_bump();
1019 p->flags |= PF_MEMALLOC;
1020 reclaim_state.reclaimed_slab = 0;
1021 p->reclaim_state = &reclaim_state;
1022
1023 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1024
1025 p->reclaim_state = NULL;
1026 p->flags &= ~PF_MEMALLOC;
1027
1028 cond_resched();
1029
1030 if (likely(did_some_progress)) {
1031 page = get_page_from_freelist(gfp_mask, order,
1032 zonelist, alloc_flags);
1033 if (page)
1034 goto got_pg;
1035 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1036 /*
1037 * Go through the zonelist yet one more time, keep
1038 * very high watermark here, this is only to catch
1039 * a parallel oom killing, we must fail if we're still
1040 * under heavy pressure.
1041 */
1042 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1043 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1044 if (page)
1045 goto got_pg;
1046
1047 out_of_memory(zonelist, gfp_mask, order);
1048 goto restart;
1049 }
1050
1051 /*
1052 * Don't let big-order allocations loop unless the caller explicitly
1053 * requests that. Wait for some write requests to complete then retry.
1054 *
1055 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1056 * <= 3, but that may not be true in other implementations.
1057 */
1058 do_retry = 0;
1059 if (!(gfp_mask & __GFP_NORETRY)) {
1060 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1061 do_retry = 1;
1062 if (gfp_mask & __GFP_NOFAIL)
1063 do_retry = 1;
1064 }
1065 if (do_retry) {
1066 blk_congestion_wait(WRITE, HZ/50);
1067 goto rebalance;
1068 }
1069
1070 nopage:
1071 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1072 printk(KERN_WARNING "%s: page allocation failure."
1073 " order:%d, mode:0x%x\n",
1074 p->comm, order, gfp_mask);
1075 dump_stack();
1076 show_mem();
1077 }
1078 got_pg:
1079 return page;
1080 }
1081
1082 EXPORT_SYMBOL(__alloc_pages);
1083
1084 /*
1085 * Common helper functions.
1086 */
1087 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1088 {
1089 struct page * page;
1090 page = alloc_pages(gfp_mask, order);
1091 if (!page)
1092 return 0;
1093 return (unsigned long) page_address(page);
1094 }
1095
1096 EXPORT_SYMBOL(__get_free_pages);
1097
1098 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1099 {
1100 struct page * page;
1101
1102 /*
1103 * get_zeroed_page() returns a 32-bit address, which cannot represent
1104 * a highmem page
1105 */
1106 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1107
1108 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1109 if (page)
1110 return (unsigned long) page_address(page);
1111 return 0;
1112 }
1113
1114 EXPORT_SYMBOL(get_zeroed_page);
1115
1116 void __pagevec_free(struct pagevec *pvec)
1117 {
1118 int i = pagevec_count(pvec);
1119
1120 while (--i >= 0)
1121 free_hot_cold_page(pvec->pages[i], pvec->cold);
1122 }
1123
1124 fastcall void __free_pages(struct page *page, unsigned int order)
1125 {
1126 if (put_page_testzero(page)) {
1127 if (order == 0)
1128 free_hot_page(page);
1129 else
1130 __free_pages_ok(page, order);
1131 }
1132 }
1133
1134 EXPORT_SYMBOL(__free_pages);
1135
1136 fastcall void free_pages(unsigned long addr, unsigned int order)
1137 {
1138 if (addr != 0) {
1139 VM_BUG_ON(!virt_addr_valid((void *)addr));
1140 __free_pages(virt_to_page((void *)addr), order);
1141 }
1142 }
1143
1144 EXPORT_SYMBOL(free_pages);
1145
1146 /*
1147 * Total amount of free (allocatable) RAM:
1148 */
1149 unsigned int nr_free_pages(void)
1150 {
1151 unsigned int sum = 0;
1152 struct zone *zone;
1153
1154 for_each_zone(zone)
1155 sum += zone->free_pages;
1156
1157 return sum;
1158 }
1159
1160 EXPORT_SYMBOL(nr_free_pages);
1161
1162 #ifdef CONFIG_NUMA
1163 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1164 {
1165 unsigned int sum = 0;
1166 enum zone_type i;
1167
1168 for (i = 0; i < MAX_NR_ZONES; i++)
1169 sum += pgdat->node_zones[i].free_pages;
1170
1171 return sum;
1172 }
1173 #endif
1174
1175 static unsigned int nr_free_zone_pages(int offset)
1176 {
1177 /* Just pick one node, since fallback list is circular */
1178 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1179 unsigned int sum = 0;
1180
1181 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1182 struct zone **zonep = zonelist->zones;
1183 struct zone *zone;
1184
1185 for (zone = *zonep++; zone; zone = *zonep++) {
1186 unsigned long size = zone->present_pages;
1187 unsigned long high = zone->pages_high;
1188 if (size > high)
1189 sum += size - high;
1190 }
1191
1192 return sum;
1193 }
1194
1195 /*
1196 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1197 */
1198 unsigned int nr_free_buffer_pages(void)
1199 {
1200 return nr_free_zone_pages(gfp_zone(GFP_USER));
1201 }
1202
1203 /*
1204 * Amount of free RAM allocatable within all zones
1205 */
1206 unsigned int nr_free_pagecache_pages(void)
1207 {
1208 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1209 }
1210 #ifdef CONFIG_NUMA
1211 static void show_node(struct zone *zone)
1212 {
1213 printk("Node %d ", zone->zone_pgdat->node_id);
1214 }
1215 #else
1216 #define show_node(zone) do { } while (0)
1217 #endif
1218
1219 void si_meminfo(struct sysinfo *val)
1220 {
1221 val->totalram = totalram_pages;
1222 val->sharedram = 0;
1223 val->freeram = nr_free_pages();
1224 val->bufferram = nr_blockdev_pages();
1225 val->totalhigh = totalhigh_pages;
1226 val->freehigh = nr_free_highpages();
1227 val->mem_unit = PAGE_SIZE;
1228 }
1229
1230 EXPORT_SYMBOL(si_meminfo);
1231
1232 #ifdef CONFIG_NUMA
1233 void si_meminfo_node(struct sysinfo *val, int nid)
1234 {
1235 pg_data_t *pgdat = NODE_DATA(nid);
1236
1237 val->totalram = pgdat->node_present_pages;
1238 val->freeram = nr_free_pages_pgdat(pgdat);
1239 #ifdef CONFIG_HIGHMEM
1240 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1241 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1242 #else
1243 val->totalhigh = 0;
1244 val->freehigh = 0;
1245 #endif
1246 val->mem_unit = PAGE_SIZE;
1247 }
1248 #endif
1249
1250 #define K(x) ((x) << (PAGE_SHIFT-10))
1251
1252 /*
1253 * Show free area list (used inside shift_scroll-lock stuff)
1254 * We also calculate the percentage fragmentation. We do this by counting the
1255 * memory on each free list with the exception of the first item on the list.
1256 */
1257 void show_free_areas(void)
1258 {
1259 int cpu, temperature;
1260 unsigned long active;
1261 unsigned long inactive;
1262 unsigned long free;
1263 struct zone *zone;
1264
1265 for_each_zone(zone) {
1266 show_node(zone);
1267 printk("%s per-cpu:", zone->name);
1268
1269 if (!populated_zone(zone)) {
1270 printk(" empty\n");
1271 continue;
1272 } else
1273 printk("\n");
1274
1275 for_each_online_cpu(cpu) {
1276 struct per_cpu_pageset *pageset;
1277
1278 pageset = zone_pcp(zone, cpu);
1279
1280 for (temperature = 0; temperature < 2; temperature++)
1281 printk("cpu %d %s: high %d, batch %d used:%d\n",
1282 cpu,
1283 temperature ? "cold" : "hot",
1284 pageset->pcp[temperature].high,
1285 pageset->pcp[temperature].batch,
1286 pageset->pcp[temperature].count);
1287 }
1288 }
1289
1290 get_zone_counts(&active, &inactive, &free);
1291
1292 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1293 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1294 active,
1295 inactive,
1296 global_page_state(NR_FILE_DIRTY),
1297 global_page_state(NR_WRITEBACK),
1298 global_page_state(NR_UNSTABLE_NFS),
1299 nr_free_pages(),
1300 global_page_state(NR_SLAB),
1301 global_page_state(NR_FILE_MAPPED),
1302 global_page_state(NR_PAGETABLE));
1303
1304 for_each_zone(zone) {
1305 int i;
1306
1307 show_node(zone);
1308 printk("%s"
1309 " free:%lukB"
1310 " min:%lukB"
1311 " low:%lukB"
1312 " high:%lukB"
1313 " active:%lukB"
1314 " inactive:%lukB"
1315 " present:%lukB"
1316 " pages_scanned:%lu"
1317 " all_unreclaimable? %s"
1318 "\n",
1319 zone->name,
1320 K(zone->free_pages),
1321 K(zone->pages_min),
1322 K(zone->pages_low),
1323 K(zone->pages_high),
1324 K(zone->nr_active),
1325 K(zone->nr_inactive),
1326 K(zone->present_pages),
1327 zone->pages_scanned,
1328 (zone->all_unreclaimable ? "yes" : "no")
1329 );
1330 printk("lowmem_reserve[]:");
1331 for (i = 0; i < MAX_NR_ZONES; i++)
1332 printk(" %lu", zone->lowmem_reserve[i]);
1333 printk("\n");
1334 }
1335
1336 for_each_zone(zone) {
1337 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1338
1339 show_node(zone);
1340 printk("%s: ", zone->name);
1341 if (!populated_zone(zone)) {
1342 printk("empty\n");
1343 continue;
1344 }
1345
1346 spin_lock_irqsave(&zone->lock, flags);
1347 for (order = 0; order < MAX_ORDER; order++) {
1348 nr[order] = zone->free_area[order].nr_free;
1349 total += nr[order] << order;
1350 }
1351 spin_unlock_irqrestore(&zone->lock, flags);
1352 for (order = 0; order < MAX_ORDER; order++)
1353 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1354 printk("= %lukB\n", K(total));
1355 }
1356
1357 show_swap_cache_info();
1358 }
1359
1360 /*
1361 * Builds allocation fallback zone lists.
1362 *
1363 * Add all populated zones of a node to the zonelist.
1364 */
1365 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1366 struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1367 {
1368 struct zone *zone;
1369
1370 BUG_ON(zone_type >= MAX_NR_ZONES);
1371 zone_type++;
1372
1373 do {
1374 zone_type--;
1375 zone = pgdat->node_zones + zone_type;
1376 if (populated_zone(zone)) {
1377 zonelist->zones[nr_zones++] = zone;
1378 check_highest_zone(zone_type);
1379 }
1380
1381 } while (zone_type);
1382 return nr_zones;
1383 }
1384
1385 #ifdef CONFIG_NUMA
1386 #define MAX_NODE_LOAD (num_online_nodes())
1387 static int __meminitdata node_load[MAX_NUMNODES];
1388 /**
1389 * find_next_best_node - find the next node that should appear in a given node's fallback list
1390 * @node: node whose fallback list we're appending
1391 * @used_node_mask: nodemask_t of already used nodes
1392 *
1393 * We use a number of factors to determine which is the next node that should
1394 * appear on a given node's fallback list. The node should not have appeared
1395 * already in @node's fallback list, and it should be the next closest node
1396 * according to the distance array (which contains arbitrary distance values
1397 * from each node to each node in the system), and should also prefer nodes
1398 * with no CPUs, since presumably they'll have very little allocation pressure
1399 * on them otherwise.
1400 * It returns -1 if no node is found.
1401 */
1402 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1403 {
1404 int n, val;
1405 int min_val = INT_MAX;
1406 int best_node = -1;
1407
1408 /* Use the local node if we haven't already */
1409 if (!node_isset(node, *used_node_mask)) {
1410 node_set(node, *used_node_mask);
1411 return node;
1412 }
1413
1414 for_each_online_node(n) {
1415 cpumask_t tmp;
1416
1417 /* Don't want a node to appear more than once */
1418 if (node_isset(n, *used_node_mask))
1419 continue;
1420
1421 /* Use the distance array to find the distance */
1422 val = node_distance(node, n);
1423
1424 /* Penalize nodes under us ("prefer the next node") */
1425 val += (n < node);
1426
1427 /* Give preference to headless and unused nodes */
1428 tmp = node_to_cpumask(n);
1429 if (!cpus_empty(tmp))
1430 val += PENALTY_FOR_NODE_WITH_CPUS;
1431
1432 /* Slight preference for less loaded node */
1433 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1434 val += node_load[n];
1435
1436 if (val < min_val) {
1437 min_val = val;
1438 best_node = n;
1439 }
1440 }
1441
1442 if (best_node >= 0)
1443 node_set(best_node, *used_node_mask);
1444
1445 return best_node;
1446 }
1447
1448 static void __meminit build_zonelists(pg_data_t *pgdat)
1449 {
1450 int j, node, local_node;
1451 enum zone_type i;
1452 int prev_node, load;
1453 struct zonelist *zonelist;
1454 nodemask_t used_mask;
1455
1456 /* initialize zonelists */
1457 for (i = 0; i < MAX_NR_ZONES; i++) {
1458 zonelist = pgdat->node_zonelists + i;
1459 zonelist->zones[0] = NULL;
1460 }
1461
1462 /* NUMA-aware ordering of nodes */
1463 local_node = pgdat->node_id;
1464 load = num_online_nodes();
1465 prev_node = local_node;
1466 nodes_clear(used_mask);
1467 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1468 int distance = node_distance(local_node, node);
1469
1470 /*
1471 * If another node is sufficiently far away then it is better
1472 * to reclaim pages in a zone before going off node.
1473 */
1474 if (distance > RECLAIM_DISTANCE)
1475 zone_reclaim_mode = 1;
1476
1477 /*
1478 * We don't want to pressure a particular node.
1479 * So adding penalty to the first node in same
1480 * distance group to make it round-robin.
1481 */
1482
1483 if (distance != node_distance(local_node, prev_node))
1484 node_load[node] += load;
1485 prev_node = node;
1486 load--;
1487 for (i = 0; i < MAX_NR_ZONES; i++) {
1488 zonelist = pgdat->node_zonelists + i;
1489 for (j = 0; zonelist->zones[j] != NULL; j++);
1490
1491 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1492 zonelist->zones[j] = NULL;
1493 }
1494 }
1495 }
1496
1497 #else /* CONFIG_NUMA */
1498
1499 static void __meminit build_zonelists(pg_data_t *pgdat)
1500 {
1501 int node, local_node;
1502 enum zone_type i,j;
1503
1504 local_node = pgdat->node_id;
1505 for (i = 0; i < MAX_NR_ZONES; i++) {
1506 struct zonelist *zonelist;
1507
1508 zonelist = pgdat->node_zonelists + i;
1509
1510 j = build_zonelists_node(pgdat, zonelist, 0, i);
1511 /*
1512 * Now we build the zonelist so that it contains the zones
1513 * of all the other nodes.
1514 * We don't want to pressure a particular node, so when
1515 * building the zones for node N, we make sure that the
1516 * zones coming right after the local ones are those from
1517 * node N+1 (modulo N)
1518 */
1519 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1520 if (!node_online(node))
1521 continue;
1522 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1523 }
1524 for (node = 0; node < local_node; node++) {
1525 if (!node_online(node))
1526 continue;
1527 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1528 }
1529
1530 zonelist->zones[j] = NULL;
1531 }
1532 }
1533
1534 #endif /* CONFIG_NUMA */
1535
1536 /* return values int ....just for stop_machine_run() */
1537 static int __meminit __build_all_zonelists(void *dummy)
1538 {
1539 int nid;
1540 for_each_online_node(nid)
1541 build_zonelists(NODE_DATA(nid));
1542 return 0;
1543 }
1544
1545 void __meminit build_all_zonelists(void)
1546 {
1547 if (system_state == SYSTEM_BOOTING) {
1548 __build_all_zonelists(0);
1549 cpuset_init_current_mems_allowed();
1550 } else {
1551 /* we have to stop all cpus to guaranntee there is no user
1552 of zonelist */
1553 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1554 /* cpuset refresh routine should be here */
1555 }
1556 vm_total_pages = nr_free_pagecache_pages();
1557 printk("Built %i zonelists. Total pages: %ld\n",
1558 num_online_nodes(), vm_total_pages);
1559 }
1560
1561 /*
1562 * Helper functions to size the waitqueue hash table.
1563 * Essentially these want to choose hash table sizes sufficiently
1564 * large so that collisions trying to wait on pages are rare.
1565 * But in fact, the number of active page waitqueues on typical
1566 * systems is ridiculously low, less than 200. So this is even
1567 * conservative, even though it seems large.
1568 *
1569 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1570 * waitqueues, i.e. the size of the waitq table given the number of pages.
1571 */
1572 #define PAGES_PER_WAITQUEUE 256
1573
1574 #ifndef CONFIG_MEMORY_HOTPLUG
1575 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1576 {
1577 unsigned long size = 1;
1578
1579 pages /= PAGES_PER_WAITQUEUE;
1580
1581 while (size < pages)
1582 size <<= 1;
1583
1584 /*
1585 * Once we have dozens or even hundreds of threads sleeping
1586 * on IO we've got bigger problems than wait queue collision.
1587 * Limit the size of the wait table to a reasonable size.
1588 */
1589 size = min(size, 4096UL);
1590
1591 return max(size, 4UL);
1592 }
1593 #else
1594 /*
1595 * A zone's size might be changed by hot-add, so it is not possible to determine
1596 * a suitable size for its wait_table. So we use the maximum size now.
1597 *
1598 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
1599 *
1600 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
1601 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1602 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
1603 *
1604 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1605 * or more by the traditional way. (See above). It equals:
1606 *
1607 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
1608 * ia64(16K page size) : = ( 8G + 4M)byte.
1609 * powerpc (64K page size) : = (32G +16M)byte.
1610 */
1611 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1612 {
1613 return 4096UL;
1614 }
1615 #endif
1616
1617 /*
1618 * This is an integer logarithm so that shifts can be used later
1619 * to extract the more random high bits from the multiplicative
1620 * hash function before the remainder is taken.
1621 */
1622 static inline unsigned long wait_table_bits(unsigned long size)
1623 {
1624 return ffz(~size);
1625 }
1626
1627 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1628
1629 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1630 unsigned long *zones_size, unsigned long *zholes_size)
1631 {
1632 unsigned long realtotalpages, totalpages = 0;
1633 enum zone_type i;
1634
1635 for (i = 0; i < MAX_NR_ZONES; i++)
1636 totalpages += zones_size[i];
1637 pgdat->node_spanned_pages = totalpages;
1638
1639 realtotalpages = totalpages;
1640 if (zholes_size)
1641 for (i = 0; i < MAX_NR_ZONES; i++)
1642 realtotalpages -= zholes_size[i];
1643 pgdat->node_present_pages = realtotalpages;
1644 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1645 }
1646
1647
1648 /*
1649 * Initially all pages are reserved - free ones are freed
1650 * up by free_all_bootmem() once the early boot process is
1651 * done. Non-atomic initialization, single-pass.
1652 */
1653 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1654 unsigned long start_pfn)
1655 {
1656 struct page *page;
1657 unsigned long end_pfn = start_pfn + size;
1658 unsigned long pfn;
1659
1660 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1661 if (!early_pfn_valid(pfn))
1662 continue;
1663 page = pfn_to_page(pfn);
1664 set_page_links(page, zone, nid, pfn);
1665 init_page_count(page);
1666 reset_page_mapcount(page);
1667 SetPageReserved(page);
1668 INIT_LIST_HEAD(&page->lru);
1669 #ifdef WANT_PAGE_VIRTUAL
1670 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1671 if (!is_highmem_idx(zone))
1672 set_page_address(page, __va(pfn << PAGE_SHIFT));
1673 #endif
1674 }
1675 }
1676
1677 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1678 unsigned long size)
1679 {
1680 int order;
1681 for (order = 0; order < MAX_ORDER ; order++) {
1682 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1683 zone->free_area[order].nr_free = 0;
1684 }
1685 }
1686
1687 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1688 void zonetable_add(struct zone *zone, int nid, enum zone_type zid,
1689 unsigned long pfn, unsigned long size)
1690 {
1691 unsigned long snum = pfn_to_section_nr(pfn);
1692 unsigned long end = pfn_to_section_nr(pfn + size);
1693
1694 if (FLAGS_HAS_NODE)
1695 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1696 else
1697 for (; snum <= end; snum++)
1698 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1699 }
1700
1701 #ifndef __HAVE_ARCH_MEMMAP_INIT
1702 #define memmap_init(size, nid, zone, start_pfn) \
1703 memmap_init_zone((size), (nid), (zone), (start_pfn))
1704 #endif
1705
1706 static int __cpuinit zone_batchsize(struct zone *zone)
1707 {
1708 int batch;
1709
1710 /*
1711 * The per-cpu-pages pools are set to around 1000th of the
1712 * size of the zone. But no more than 1/2 of a meg.
1713 *
1714 * OK, so we don't know how big the cache is. So guess.
1715 */
1716 batch = zone->present_pages / 1024;
1717 if (batch * PAGE_SIZE > 512 * 1024)
1718 batch = (512 * 1024) / PAGE_SIZE;
1719 batch /= 4; /* We effectively *= 4 below */
1720 if (batch < 1)
1721 batch = 1;
1722
1723 /*
1724 * Clamp the batch to a 2^n - 1 value. Having a power
1725 * of 2 value was found to be more likely to have
1726 * suboptimal cache aliasing properties in some cases.
1727 *
1728 * For example if 2 tasks are alternately allocating
1729 * batches of pages, one task can end up with a lot
1730 * of pages of one half of the possible page colors
1731 * and the other with pages of the other colors.
1732 */
1733 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1734
1735 return batch;
1736 }
1737
1738 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1739 {
1740 struct per_cpu_pages *pcp;
1741
1742 memset(p, 0, sizeof(*p));
1743
1744 pcp = &p->pcp[0]; /* hot */
1745 pcp->count = 0;
1746 pcp->high = 6 * batch;
1747 pcp->batch = max(1UL, 1 * batch);
1748 INIT_LIST_HEAD(&pcp->list);
1749
1750 pcp = &p->pcp[1]; /* cold*/
1751 pcp->count = 0;
1752 pcp->high = 2 * batch;
1753 pcp->batch = max(1UL, batch/2);
1754 INIT_LIST_HEAD(&pcp->list);
1755 }
1756
1757 /*
1758 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1759 * to the value high for the pageset p.
1760 */
1761
1762 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1763 unsigned long high)
1764 {
1765 struct per_cpu_pages *pcp;
1766
1767 pcp = &p->pcp[0]; /* hot list */
1768 pcp->high = high;
1769 pcp->batch = max(1UL, high/4);
1770 if ((high/4) > (PAGE_SHIFT * 8))
1771 pcp->batch = PAGE_SHIFT * 8;
1772 }
1773
1774
1775 #ifdef CONFIG_NUMA
1776 /*
1777 * Boot pageset table. One per cpu which is going to be used for all
1778 * zones and all nodes. The parameters will be set in such a way
1779 * that an item put on a list will immediately be handed over to
1780 * the buddy list. This is safe since pageset manipulation is done
1781 * with interrupts disabled.
1782 *
1783 * Some NUMA counter updates may also be caught by the boot pagesets.
1784 *
1785 * The boot_pagesets must be kept even after bootup is complete for
1786 * unused processors and/or zones. They do play a role for bootstrapping
1787 * hotplugged processors.
1788 *
1789 * zoneinfo_show() and maybe other functions do
1790 * not check if the processor is online before following the pageset pointer.
1791 * Other parts of the kernel may not check if the zone is available.
1792 */
1793 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1794
1795 /*
1796 * Dynamically allocate memory for the
1797 * per cpu pageset array in struct zone.
1798 */
1799 static int __cpuinit process_zones(int cpu)
1800 {
1801 struct zone *zone, *dzone;
1802
1803 for_each_zone(zone) {
1804
1805 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1806 GFP_KERNEL, cpu_to_node(cpu));
1807 if (!zone_pcp(zone, cpu))
1808 goto bad;
1809
1810 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1811
1812 if (percpu_pagelist_fraction)
1813 setup_pagelist_highmark(zone_pcp(zone, cpu),
1814 (zone->present_pages / percpu_pagelist_fraction));
1815 }
1816
1817 return 0;
1818 bad:
1819 for_each_zone(dzone) {
1820 if (dzone == zone)
1821 break;
1822 kfree(zone_pcp(dzone, cpu));
1823 zone_pcp(dzone, cpu) = NULL;
1824 }
1825 return -ENOMEM;
1826 }
1827
1828 static inline void free_zone_pagesets(int cpu)
1829 {
1830 struct zone *zone;
1831
1832 for_each_zone(zone) {
1833 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1834
1835 /* Free per_cpu_pageset if it is slab allocated */
1836 if (pset != &boot_pageset[cpu])
1837 kfree(pset);
1838 zone_pcp(zone, cpu) = NULL;
1839 }
1840 }
1841
1842 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1843 unsigned long action,
1844 void *hcpu)
1845 {
1846 int cpu = (long)hcpu;
1847 int ret = NOTIFY_OK;
1848
1849 switch (action) {
1850 case CPU_UP_PREPARE:
1851 if (process_zones(cpu))
1852 ret = NOTIFY_BAD;
1853 break;
1854 case CPU_UP_CANCELED:
1855 case CPU_DEAD:
1856 free_zone_pagesets(cpu);
1857 break;
1858 default:
1859 break;
1860 }
1861 return ret;
1862 }
1863
1864 static struct notifier_block __cpuinitdata pageset_notifier =
1865 { &pageset_cpuup_callback, NULL, 0 };
1866
1867 void __init setup_per_cpu_pageset(void)
1868 {
1869 int err;
1870
1871 /* Initialize per_cpu_pageset for cpu 0.
1872 * A cpuup callback will do this for every cpu
1873 * as it comes online
1874 */
1875 err = process_zones(smp_processor_id());
1876 BUG_ON(err);
1877 register_cpu_notifier(&pageset_notifier);
1878 }
1879
1880 #endif
1881
1882 static __meminit
1883 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1884 {
1885 int i;
1886 struct pglist_data *pgdat = zone->zone_pgdat;
1887 size_t alloc_size;
1888
1889 /*
1890 * The per-page waitqueue mechanism uses hashed waitqueues
1891 * per zone.
1892 */
1893 zone->wait_table_hash_nr_entries =
1894 wait_table_hash_nr_entries(zone_size_pages);
1895 zone->wait_table_bits =
1896 wait_table_bits(zone->wait_table_hash_nr_entries);
1897 alloc_size = zone->wait_table_hash_nr_entries
1898 * sizeof(wait_queue_head_t);
1899
1900 if (system_state == SYSTEM_BOOTING) {
1901 zone->wait_table = (wait_queue_head_t *)
1902 alloc_bootmem_node(pgdat, alloc_size);
1903 } else {
1904 /*
1905 * This case means that a zone whose size was 0 gets new memory
1906 * via memory hot-add.
1907 * But it may be the case that a new node was hot-added. In
1908 * this case vmalloc() will not be able to use this new node's
1909 * memory - this wait_table must be initialized to use this new
1910 * node itself as well.
1911 * To use this new node's memory, further consideration will be
1912 * necessary.
1913 */
1914 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
1915 }
1916 if (!zone->wait_table)
1917 return -ENOMEM;
1918
1919 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
1920 init_waitqueue_head(zone->wait_table + i);
1921
1922 return 0;
1923 }
1924
1925 static __meminit void zone_pcp_init(struct zone *zone)
1926 {
1927 int cpu;
1928 unsigned long batch = zone_batchsize(zone);
1929
1930 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1931 #ifdef CONFIG_NUMA
1932 /* Early boot. Slab allocator not functional yet */
1933 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1934 setup_pageset(&boot_pageset[cpu],0);
1935 #else
1936 setup_pageset(zone_pcp(zone,cpu), batch);
1937 #endif
1938 }
1939 if (zone->present_pages)
1940 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1941 zone->name, zone->present_pages, batch);
1942 }
1943
1944 __meminit int init_currently_empty_zone(struct zone *zone,
1945 unsigned long zone_start_pfn,
1946 unsigned long size)
1947 {
1948 struct pglist_data *pgdat = zone->zone_pgdat;
1949 int ret;
1950 ret = zone_wait_table_init(zone, size);
1951 if (ret)
1952 return ret;
1953 pgdat->nr_zones = zone_idx(zone) + 1;
1954
1955 zone->zone_start_pfn = zone_start_pfn;
1956
1957 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
1958
1959 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
1960
1961 return 0;
1962 }
1963
1964 /*
1965 * Set up the zone data structures:
1966 * - mark all pages reserved
1967 * - mark all memory queues empty
1968 * - clear the memory bitmaps
1969 */
1970 static void __meminit free_area_init_core(struct pglist_data *pgdat,
1971 unsigned long *zones_size, unsigned long *zholes_size)
1972 {
1973 enum zone_type j;
1974 int nid = pgdat->node_id;
1975 unsigned long zone_start_pfn = pgdat->node_start_pfn;
1976 int ret;
1977
1978 pgdat_resize_init(pgdat);
1979 pgdat->nr_zones = 0;
1980 init_waitqueue_head(&pgdat->kswapd_wait);
1981 pgdat->kswapd_max_order = 0;
1982
1983 for (j = 0; j < MAX_NR_ZONES; j++) {
1984 struct zone *zone = pgdat->node_zones + j;
1985 unsigned long size, realsize;
1986
1987 realsize = size = zones_size[j];
1988 if (zholes_size)
1989 realsize -= zholes_size[j];
1990
1991 if (!is_highmem_idx(j))
1992 nr_kernel_pages += realsize;
1993 nr_all_pages += realsize;
1994
1995 zone->spanned_pages = size;
1996 zone->present_pages = realsize;
1997 #ifdef CONFIG_NUMA
1998 zone->min_unmapped_ratio = (realsize*sysctl_min_unmapped_ratio)
1999 / 100;
2000 #endif
2001 zone->name = zone_names[j];
2002 spin_lock_init(&zone->lock);
2003 spin_lock_init(&zone->lru_lock);
2004 zone_seqlock_init(zone);
2005 zone->zone_pgdat = pgdat;
2006 zone->free_pages = 0;
2007
2008 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2009
2010 zone_pcp_init(zone);
2011 INIT_LIST_HEAD(&zone->active_list);
2012 INIT_LIST_HEAD(&zone->inactive_list);
2013 zone->nr_scan_active = 0;
2014 zone->nr_scan_inactive = 0;
2015 zone->nr_active = 0;
2016 zone->nr_inactive = 0;
2017 zap_zone_vm_stats(zone);
2018 atomic_set(&zone->reclaim_in_progress, 0);
2019 if (!size)
2020 continue;
2021
2022 zonetable_add(zone, nid, j, zone_start_pfn, size);
2023 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
2024 BUG_ON(ret);
2025 zone_start_pfn += size;
2026 }
2027 }
2028
2029 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2030 {
2031 /* Skip empty nodes */
2032 if (!pgdat->node_spanned_pages)
2033 return;
2034
2035 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2036 /* ia64 gets its own node_mem_map, before this, without bootmem */
2037 if (!pgdat->node_mem_map) {
2038 unsigned long size, start, end;
2039 struct page *map;
2040
2041 /*
2042 * The zone's endpoints aren't required to be MAX_ORDER
2043 * aligned but the node_mem_map endpoints must be in order
2044 * for the buddy allocator to function correctly.
2045 */
2046 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2047 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2048 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2049 size = (end - start) * sizeof(struct page);
2050 map = alloc_remap(pgdat->node_id, size);
2051 if (!map)
2052 map = alloc_bootmem_node(pgdat, size);
2053 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2054 }
2055 #ifdef CONFIG_FLATMEM
2056 /*
2057 * With no DISCONTIG, the global mem_map is just set as node 0's
2058 */
2059 if (pgdat == NODE_DATA(0))
2060 mem_map = NODE_DATA(0)->node_mem_map;
2061 #endif
2062 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2063 }
2064
2065 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2066 unsigned long *zones_size, unsigned long node_start_pfn,
2067 unsigned long *zholes_size)
2068 {
2069 pgdat->node_id = nid;
2070 pgdat->node_start_pfn = node_start_pfn;
2071 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2072
2073 alloc_node_mem_map(pgdat);
2074
2075 free_area_init_core(pgdat, zones_size, zholes_size);
2076 }
2077
2078 #ifndef CONFIG_NEED_MULTIPLE_NODES
2079 static bootmem_data_t contig_bootmem_data;
2080 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2081
2082 EXPORT_SYMBOL(contig_page_data);
2083 #endif
2084
2085 void __init free_area_init(unsigned long *zones_size)
2086 {
2087 free_area_init_node(0, NODE_DATA(0), zones_size,
2088 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2089 }
2090
2091 #ifdef CONFIG_HOTPLUG_CPU
2092 static int page_alloc_cpu_notify(struct notifier_block *self,
2093 unsigned long action, void *hcpu)
2094 {
2095 int cpu = (unsigned long)hcpu;
2096
2097 if (action == CPU_DEAD) {
2098 local_irq_disable();
2099 __drain_pages(cpu);
2100 vm_events_fold_cpu(cpu);
2101 local_irq_enable();
2102 refresh_cpu_vm_stats(cpu);
2103 }
2104 return NOTIFY_OK;
2105 }
2106 #endif /* CONFIG_HOTPLUG_CPU */
2107
2108 void __init page_alloc_init(void)
2109 {
2110 hotcpu_notifier(page_alloc_cpu_notify, 0);
2111 }
2112
2113 /*
2114 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2115 * or min_free_kbytes changes.
2116 */
2117 static void calculate_totalreserve_pages(void)
2118 {
2119 struct pglist_data *pgdat;
2120 unsigned long reserve_pages = 0;
2121 enum zone_type i, j;
2122
2123 for_each_online_pgdat(pgdat) {
2124 for (i = 0; i < MAX_NR_ZONES; i++) {
2125 struct zone *zone = pgdat->node_zones + i;
2126 unsigned long max = 0;
2127
2128 /* Find valid and maximum lowmem_reserve in the zone */
2129 for (j = i; j < MAX_NR_ZONES; j++) {
2130 if (zone->lowmem_reserve[j] > max)
2131 max = zone->lowmem_reserve[j];
2132 }
2133
2134 /* we treat pages_high as reserved pages. */
2135 max += zone->pages_high;
2136
2137 if (max > zone->present_pages)
2138 max = zone->present_pages;
2139 reserve_pages += max;
2140 }
2141 }
2142 totalreserve_pages = reserve_pages;
2143 }
2144
2145 /*
2146 * setup_per_zone_lowmem_reserve - called whenever
2147 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2148 * has a correct pages reserved value, so an adequate number of
2149 * pages are left in the zone after a successful __alloc_pages().
2150 */
2151 static void setup_per_zone_lowmem_reserve(void)
2152 {
2153 struct pglist_data *pgdat;
2154 enum zone_type j, idx;
2155
2156 for_each_online_pgdat(pgdat) {
2157 for (j = 0; j < MAX_NR_ZONES; j++) {
2158 struct zone *zone = pgdat->node_zones + j;
2159 unsigned long present_pages = zone->present_pages;
2160
2161 zone->lowmem_reserve[j] = 0;
2162
2163 idx = j;
2164 while (idx) {
2165 struct zone *lower_zone;
2166
2167 idx--;
2168
2169 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2170 sysctl_lowmem_reserve_ratio[idx] = 1;
2171
2172 lower_zone = pgdat->node_zones + idx;
2173 lower_zone->lowmem_reserve[j] = present_pages /
2174 sysctl_lowmem_reserve_ratio[idx];
2175 present_pages += lower_zone->present_pages;
2176 }
2177 }
2178 }
2179
2180 /* update totalreserve_pages */
2181 calculate_totalreserve_pages();
2182 }
2183
2184 /*
2185 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2186 * that the pages_{min,low,high} values for each zone are set correctly
2187 * with respect to min_free_kbytes.
2188 */
2189 void setup_per_zone_pages_min(void)
2190 {
2191 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2192 unsigned long lowmem_pages = 0;
2193 struct zone *zone;
2194 unsigned long flags;
2195
2196 /* Calculate total number of !ZONE_HIGHMEM pages */
2197 for_each_zone(zone) {
2198 if (!is_highmem(zone))
2199 lowmem_pages += zone->present_pages;
2200 }
2201
2202 for_each_zone(zone) {
2203 u64 tmp;
2204
2205 spin_lock_irqsave(&zone->lru_lock, flags);
2206 tmp = (u64)pages_min * zone->present_pages;
2207 do_div(tmp, lowmem_pages);
2208 if (is_highmem(zone)) {
2209 /*
2210 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2211 * need highmem pages, so cap pages_min to a small
2212 * value here.
2213 *
2214 * The (pages_high-pages_low) and (pages_low-pages_min)
2215 * deltas controls asynch page reclaim, and so should
2216 * not be capped for highmem.
2217 */
2218 int min_pages;
2219
2220 min_pages = zone->present_pages / 1024;
2221 if (min_pages < SWAP_CLUSTER_MAX)
2222 min_pages = SWAP_CLUSTER_MAX;
2223 if (min_pages > 128)
2224 min_pages = 128;
2225 zone->pages_min = min_pages;
2226 } else {
2227 /*
2228 * If it's a lowmem zone, reserve a number of pages
2229 * proportionate to the zone's size.
2230 */
2231 zone->pages_min = tmp;
2232 }
2233
2234 zone->pages_low = zone->pages_min + (tmp >> 2);
2235 zone->pages_high = zone->pages_min + (tmp >> 1);
2236 spin_unlock_irqrestore(&zone->lru_lock, flags);
2237 }
2238
2239 /* update totalreserve_pages */
2240 calculate_totalreserve_pages();
2241 }
2242
2243 /*
2244 * Initialise min_free_kbytes.
2245 *
2246 * For small machines we want it small (128k min). For large machines
2247 * we want it large (64MB max). But it is not linear, because network
2248 * bandwidth does not increase linearly with machine size. We use
2249 *
2250 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2251 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2252 *
2253 * which yields
2254 *
2255 * 16MB: 512k
2256 * 32MB: 724k
2257 * 64MB: 1024k
2258 * 128MB: 1448k
2259 * 256MB: 2048k
2260 * 512MB: 2896k
2261 * 1024MB: 4096k
2262 * 2048MB: 5792k
2263 * 4096MB: 8192k
2264 * 8192MB: 11584k
2265 * 16384MB: 16384k
2266 */
2267 static int __init init_per_zone_pages_min(void)
2268 {
2269 unsigned long lowmem_kbytes;
2270
2271 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2272
2273 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2274 if (min_free_kbytes < 128)
2275 min_free_kbytes = 128;
2276 if (min_free_kbytes > 65536)
2277 min_free_kbytes = 65536;
2278 setup_per_zone_pages_min();
2279 setup_per_zone_lowmem_reserve();
2280 return 0;
2281 }
2282 module_init(init_per_zone_pages_min)
2283
2284 /*
2285 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2286 * that we can call two helper functions whenever min_free_kbytes
2287 * changes.
2288 */
2289 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2290 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2291 {
2292 proc_dointvec(table, write, file, buffer, length, ppos);
2293 setup_per_zone_pages_min();
2294 return 0;
2295 }
2296
2297 #ifdef CONFIG_NUMA
2298 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
2299 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2300 {
2301 struct zone *zone;
2302 int rc;
2303
2304 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2305 if (rc)
2306 return rc;
2307
2308 for_each_zone(zone)
2309 zone->min_unmapped_ratio = (zone->present_pages *
2310 sysctl_min_unmapped_ratio) / 100;
2311 return 0;
2312 }
2313 #endif
2314
2315 /*
2316 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2317 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2318 * whenever sysctl_lowmem_reserve_ratio changes.
2319 *
2320 * The reserve ratio obviously has absolutely no relation with the
2321 * pages_min watermarks. The lowmem reserve ratio can only make sense
2322 * if in function of the boot time zone sizes.
2323 */
2324 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2325 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2326 {
2327 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2328 setup_per_zone_lowmem_reserve();
2329 return 0;
2330 }
2331
2332 /*
2333 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2334 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2335 * can have before it gets flushed back to buddy allocator.
2336 */
2337
2338 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2339 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2340 {
2341 struct zone *zone;
2342 unsigned int cpu;
2343 int ret;
2344
2345 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2346 if (!write || (ret == -EINVAL))
2347 return ret;
2348 for_each_zone(zone) {
2349 for_each_online_cpu(cpu) {
2350 unsigned long high;
2351 high = zone->present_pages / percpu_pagelist_fraction;
2352 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2353 }
2354 }
2355 return 0;
2356 }
2357
2358 int hashdist = HASHDIST_DEFAULT;
2359
2360 #ifdef CONFIG_NUMA
2361 static int __init set_hashdist(char *str)
2362 {
2363 if (!str)
2364 return 0;
2365 hashdist = simple_strtoul(str, &str, 0);
2366 return 1;
2367 }
2368 __setup("hashdist=", set_hashdist);
2369 #endif
2370
2371 /*
2372 * allocate a large system hash table from bootmem
2373 * - it is assumed that the hash table must contain an exact power-of-2
2374 * quantity of entries
2375 * - limit is the number of hash buckets, not the total allocation size
2376 */
2377 void *__init alloc_large_system_hash(const char *tablename,
2378 unsigned long bucketsize,
2379 unsigned long numentries,
2380 int scale,
2381 int flags,
2382 unsigned int *_hash_shift,
2383 unsigned int *_hash_mask,
2384 unsigned long limit)
2385 {
2386 unsigned long long max = limit;
2387 unsigned long log2qty, size;
2388 void *table = NULL;
2389
2390 /* allow the kernel cmdline to have a say */
2391 if (!numentries) {
2392 /* round applicable memory size up to nearest megabyte */
2393 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2394 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2395 numentries >>= 20 - PAGE_SHIFT;
2396 numentries <<= 20 - PAGE_SHIFT;
2397
2398 /* limit to 1 bucket per 2^scale bytes of low memory */
2399 if (scale > PAGE_SHIFT)
2400 numentries >>= (scale - PAGE_SHIFT);
2401 else
2402 numentries <<= (PAGE_SHIFT - scale);
2403 }
2404 numentries = roundup_pow_of_two(numentries);
2405
2406 /* limit allocation size to 1/16 total memory by default */
2407 if (max == 0) {
2408 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2409 do_div(max, bucketsize);
2410 }
2411
2412 if (numentries > max)
2413 numentries = max;
2414
2415 log2qty = long_log2(numentries);
2416
2417 do {
2418 size = bucketsize << log2qty;
2419 if (flags & HASH_EARLY)
2420 table = alloc_bootmem(size);
2421 else if (hashdist)
2422 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2423 else {
2424 unsigned long order;
2425 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2426 ;
2427 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2428 }
2429 } while (!table && size > PAGE_SIZE && --log2qty);
2430
2431 if (!table)
2432 panic("Failed to allocate %s hash table\n", tablename);
2433
2434 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2435 tablename,
2436 (1U << log2qty),
2437 long_log2(size) - PAGE_SHIFT,
2438 size);
2439
2440 if (_hash_shift)
2441 *_hash_shift = log2qty;
2442 if (_hash_mask)
2443 *_hash_mask = (1 << log2qty) - 1;
2444
2445 return table;
2446 }
2447
2448 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2449 struct page *pfn_to_page(unsigned long pfn)
2450 {
2451 return __pfn_to_page(pfn);
2452 }
2453 unsigned long page_to_pfn(struct page *page)
2454 {
2455 return __page_to_pfn(page);
2456 }
2457 EXPORT_SYMBOL(pfn_to_page);
2458 EXPORT_SYMBOL(page_to_pfn);
2459 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
This page took 0.114408 seconds and 6 git commands to generate.