knfsd: nfsd4: vary maximum delegation limit based on RAM size
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48
49 /*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61
62 static void __free_pages_ok(struct page *page, unsigned int order);
63
64 /*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 32,
84 #endif
85 32,
86 };
87
88 EXPORT_SYMBOL(totalram_pages);
89
90 static char * const zone_names[MAX_NR_ZONES] = {
91 #ifdef CONFIG_ZONE_DMA
92 "DMA",
93 #endif
94 #ifdef CONFIG_ZONE_DMA32
95 "DMA32",
96 #endif
97 "Normal",
98 #ifdef CONFIG_HIGHMEM
99 "HighMem",
100 #endif
101 "Movable",
102 };
103
104 int min_free_kbytes = 1024;
105
106 unsigned long __meminitdata nr_kernel_pages;
107 unsigned long __meminitdata nr_all_pages;
108 static unsigned long __meminitdata dma_reserve;
109
110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
111 /*
112 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113 * ranges of memory (RAM) that may be registered with add_active_range().
114 * Ranges passed to add_active_range() will be merged if possible
115 * so the number of times add_active_range() can be called is
116 * related to the number of nodes and the number of holes
117 */
118 #ifdef CONFIG_MAX_ACTIVE_REGIONS
119 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
121 #else
122 #if MAX_NUMNODES >= 32
123 /* If there can be many nodes, allow up to 50 holes per node */
124 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
125 #else
126 /* By default, allow up to 256 distinct regions */
127 #define MAX_ACTIVE_REGIONS 256
128 #endif
129 #endif
130
131 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132 static int __meminitdata nr_nodemap_entries;
133 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139 unsigned long __initdata required_kernelcore;
140 unsigned long __initdata required_movablecore;
141 unsigned long __initdata zone_movable_pfn[MAX_NUMNODES];
142
143 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
144 int movable_zone;
145 EXPORT_SYMBOL(movable_zone);
146 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
147
148 #if MAX_NUMNODES > 1
149 int nr_node_ids __read_mostly = MAX_NUMNODES;
150 EXPORT_SYMBOL(nr_node_ids);
151 #endif
152
153 #ifdef CONFIG_DEBUG_VM
154 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
155 {
156 int ret = 0;
157 unsigned seq;
158 unsigned long pfn = page_to_pfn(page);
159
160 do {
161 seq = zone_span_seqbegin(zone);
162 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
163 ret = 1;
164 else if (pfn < zone->zone_start_pfn)
165 ret = 1;
166 } while (zone_span_seqretry(zone, seq));
167
168 return ret;
169 }
170
171 static int page_is_consistent(struct zone *zone, struct page *page)
172 {
173 if (!pfn_valid_within(page_to_pfn(page)))
174 return 0;
175 if (zone != page_zone(page))
176 return 0;
177
178 return 1;
179 }
180 /*
181 * Temporary debugging check for pages not lying within a given zone.
182 */
183 static int bad_range(struct zone *zone, struct page *page)
184 {
185 if (page_outside_zone_boundaries(zone, page))
186 return 1;
187 if (!page_is_consistent(zone, page))
188 return 1;
189
190 return 0;
191 }
192 #else
193 static inline int bad_range(struct zone *zone, struct page *page)
194 {
195 return 0;
196 }
197 #endif
198
199 static void bad_page(struct page *page)
200 {
201 printk(KERN_EMERG "Bad page state in process '%s'\n"
202 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
203 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
204 KERN_EMERG "Backtrace:\n",
205 current->comm, page, (int)(2*sizeof(unsigned long)),
206 (unsigned long)page->flags, page->mapping,
207 page_mapcount(page), page_count(page));
208 dump_stack();
209 page->flags &= ~(1 << PG_lru |
210 1 << PG_private |
211 1 << PG_locked |
212 1 << PG_active |
213 1 << PG_dirty |
214 1 << PG_reclaim |
215 1 << PG_slab |
216 1 << PG_swapcache |
217 1 << PG_writeback |
218 1 << PG_buddy );
219 set_page_count(page, 0);
220 reset_page_mapcount(page);
221 page->mapping = NULL;
222 add_taint(TAINT_BAD_PAGE);
223 }
224
225 /*
226 * Higher-order pages are called "compound pages". They are structured thusly:
227 *
228 * The first PAGE_SIZE page is called the "head page".
229 *
230 * The remaining PAGE_SIZE pages are called "tail pages".
231 *
232 * All pages have PG_compound set. All pages have their ->private pointing at
233 * the head page (even the head page has this).
234 *
235 * The first tail page's ->lru.next holds the address of the compound page's
236 * put_page() function. Its ->lru.prev holds the order of allocation.
237 * This usage means that zero-order pages may not be compound.
238 */
239
240 static void free_compound_page(struct page *page)
241 {
242 __free_pages_ok(page, compound_order(page));
243 }
244
245 static void prep_compound_page(struct page *page, unsigned long order)
246 {
247 int i;
248 int nr_pages = 1 << order;
249
250 set_compound_page_dtor(page, free_compound_page);
251 set_compound_order(page, order);
252 __SetPageHead(page);
253 for (i = 1; i < nr_pages; i++) {
254 struct page *p = page + i;
255
256 __SetPageTail(p);
257 p->first_page = page;
258 }
259 }
260
261 static void destroy_compound_page(struct page *page, unsigned long order)
262 {
263 int i;
264 int nr_pages = 1 << order;
265
266 if (unlikely(compound_order(page) != order))
267 bad_page(page);
268
269 if (unlikely(!PageHead(page)))
270 bad_page(page);
271 __ClearPageHead(page);
272 for (i = 1; i < nr_pages; i++) {
273 struct page *p = page + i;
274
275 if (unlikely(!PageTail(p) |
276 (p->first_page != page)))
277 bad_page(page);
278 __ClearPageTail(p);
279 }
280 }
281
282 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
283 {
284 int i;
285
286 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
287 /*
288 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
289 * and __GFP_HIGHMEM from hard or soft interrupt context.
290 */
291 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
292 for (i = 0; i < (1 << order); i++)
293 clear_highpage(page + i);
294 }
295
296 /*
297 * function for dealing with page's order in buddy system.
298 * zone->lock is already acquired when we use these.
299 * So, we don't need atomic page->flags operations here.
300 */
301 static inline unsigned long page_order(struct page *page)
302 {
303 return page_private(page);
304 }
305
306 static inline void set_page_order(struct page *page, int order)
307 {
308 set_page_private(page, order);
309 __SetPageBuddy(page);
310 }
311
312 static inline void rmv_page_order(struct page *page)
313 {
314 __ClearPageBuddy(page);
315 set_page_private(page, 0);
316 }
317
318 /*
319 * Locate the struct page for both the matching buddy in our
320 * pair (buddy1) and the combined O(n+1) page they form (page).
321 *
322 * 1) Any buddy B1 will have an order O twin B2 which satisfies
323 * the following equation:
324 * B2 = B1 ^ (1 << O)
325 * For example, if the starting buddy (buddy2) is #8 its order
326 * 1 buddy is #10:
327 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
328 *
329 * 2) Any buddy B will have an order O+1 parent P which
330 * satisfies the following equation:
331 * P = B & ~(1 << O)
332 *
333 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
334 */
335 static inline struct page *
336 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
337 {
338 unsigned long buddy_idx = page_idx ^ (1 << order);
339
340 return page + (buddy_idx - page_idx);
341 }
342
343 static inline unsigned long
344 __find_combined_index(unsigned long page_idx, unsigned int order)
345 {
346 return (page_idx & ~(1 << order));
347 }
348
349 /*
350 * This function checks whether a page is free && is the buddy
351 * we can do coalesce a page and its buddy if
352 * (a) the buddy is not in a hole &&
353 * (b) the buddy is in the buddy system &&
354 * (c) a page and its buddy have the same order &&
355 * (d) a page and its buddy are in the same zone.
356 *
357 * For recording whether a page is in the buddy system, we use PG_buddy.
358 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
359 *
360 * For recording page's order, we use page_private(page).
361 */
362 static inline int page_is_buddy(struct page *page, struct page *buddy,
363 int order)
364 {
365 if (!pfn_valid_within(page_to_pfn(buddy)))
366 return 0;
367
368 if (page_zone_id(page) != page_zone_id(buddy))
369 return 0;
370
371 if (PageBuddy(buddy) && page_order(buddy) == order) {
372 BUG_ON(page_count(buddy) != 0);
373 return 1;
374 }
375 return 0;
376 }
377
378 /*
379 * Freeing function for a buddy system allocator.
380 *
381 * The concept of a buddy system is to maintain direct-mapped table
382 * (containing bit values) for memory blocks of various "orders".
383 * The bottom level table contains the map for the smallest allocatable
384 * units of memory (here, pages), and each level above it describes
385 * pairs of units from the levels below, hence, "buddies".
386 * At a high level, all that happens here is marking the table entry
387 * at the bottom level available, and propagating the changes upward
388 * as necessary, plus some accounting needed to play nicely with other
389 * parts of the VM system.
390 * At each level, we keep a list of pages, which are heads of continuous
391 * free pages of length of (1 << order) and marked with PG_buddy. Page's
392 * order is recorded in page_private(page) field.
393 * So when we are allocating or freeing one, we can derive the state of the
394 * other. That is, if we allocate a small block, and both were
395 * free, the remainder of the region must be split into blocks.
396 * If a block is freed, and its buddy is also free, then this
397 * triggers coalescing into a block of larger size.
398 *
399 * -- wli
400 */
401
402 static inline void __free_one_page(struct page *page,
403 struct zone *zone, unsigned int order)
404 {
405 unsigned long page_idx;
406 int order_size = 1 << order;
407
408 if (unlikely(PageCompound(page)))
409 destroy_compound_page(page, order);
410
411 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
412
413 VM_BUG_ON(page_idx & (order_size - 1));
414 VM_BUG_ON(bad_range(zone, page));
415
416 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
417 while (order < MAX_ORDER-1) {
418 unsigned long combined_idx;
419 struct free_area *area;
420 struct page *buddy;
421
422 buddy = __page_find_buddy(page, page_idx, order);
423 if (!page_is_buddy(page, buddy, order))
424 break; /* Move the buddy up one level. */
425
426 list_del(&buddy->lru);
427 area = zone->free_area + order;
428 area->nr_free--;
429 rmv_page_order(buddy);
430 combined_idx = __find_combined_index(page_idx, order);
431 page = page + (combined_idx - page_idx);
432 page_idx = combined_idx;
433 order++;
434 }
435 set_page_order(page, order);
436 list_add(&page->lru, &zone->free_area[order].free_list);
437 zone->free_area[order].nr_free++;
438 }
439
440 static inline int free_pages_check(struct page *page)
441 {
442 if (unlikely(page_mapcount(page) |
443 (page->mapping != NULL) |
444 (page_count(page) != 0) |
445 (page->flags & (
446 1 << PG_lru |
447 1 << PG_private |
448 1 << PG_locked |
449 1 << PG_active |
450 1 << PG_slab |
451 1 << PG_swapcache |
452 1 << PG_writeback |
453 1 << PG_reserved |
454 1 << PG_buddy ))))
455 bad_page(page);
456 /*
457 * PageReclaim == PageTail. It is only an error
458 * for PageReclaim to be set if PageCompound is clear.
459 */
460 if (unlikely(!PageCompound(page) && PageReclaim(page)))
461 bad_page(page);
462 if (PageDirty(page))
463 __ClearPageDirty(page);
464 /*
465 * For now, we report if PG_reserved was found set, but do not
466 * clear it, and do not free the page. But we shall soon need
467 * to do more, for when the ZERO_PAGE count wraps negative.
468 */
469 return PageReserved(page);
470 }
471
472 /*
473 * Frees a list of pages.
474 * Assumes all pages on list are in same zone, and of same order.
475 * count is the number of pages to free.
476 *
477 * If the zone was previously in an "all pages pinned" state then look to
478 * see if this freeing clears that state.
479 *
480 * And clear the zone's pages_scanned counter, to hold off the "all pages are
481 * pinned" detection logic.
482 */
483 static void free_pages_bulk(struct zone *zone, int count,
484 struct list_head *list, int order)
485 {
486 spin_lock(&zone->lock);
487 zone->all_unreclaimable = 0;
488 zone->pages_scanned = 0;
489 while (count--) {
490 struct page *page;
491
492 VM_BUG_ON(list_empty(list));
493 page = list_entry(list->prev, struct page, lru);
494 /* have to delete it as __free_one_page list manipulates */
495 list_del(&page->lru);
496 __free_one_page(page, zone, order);
497 }
498 spin_unlock(&zone->lock);
499 }
500
501 static void free_one_page(struct zone *zone, struct page *page, int order)
502 {
503 spin_lock(&zone->lock);
504 zone->all_unreclaimable = 0;
505 zone->pages_scanned = 0;
506 __free_one_page(page, zone, order);
507 spin_unlock(&zone->lock);
508 }
509
510 static void __free_pages_ok(struct page *page, unsigned int order)
511 {
512 unsigned long flags;
513 int i;
514 int reserved = 0;
515
516 for (i = 0 ; i < (1 << order) ; ++i)
517 reserved += free_pages_check(page + i);
518 if (reserved)
519 return;
520
521 if (!PageHighMem(page))
522 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
523 arch_free_page(page, order);
524 kernel_map_pages(page, 1 << order, 0);
525
526 local_irq_save(flags);
527 __count_vm_events(PGFREE, 1 << order);
528 free_one_page(page_zone(page), page, order);
529 local_irq_restore(flags);
530 }
531
532 /*
533 * permit the bootmem allocator to evade page validation on high-order frees
534 */
535 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
536 {
537 if (order == 0) {
538 __ClearPageReserved(page);
539 set_page_count(page, 0);
540 set_page_refcounted(page);
541 __free_page(page);
542 } else {
543 int loop;
544
545 prefetchw(page);
546 for (loop = 0; loop < BITS_PER_LONG; loop++) {
547 struct page *p = &page[loop];
548
549 if (loop + 1 < BITS_PER_LONG)
550 prefetchw(p + 1);
551 __ClearPageReserved(p);
552 set_page_count(p, 0);
553 }
554
555 set_page_refcounted(page);
556 __free_pages(page, order);
557 }
558 }
559
560
561 /*
562 * The order of subdivision here is critical for the IO subsystem.
563 * Please do not alter this order without good reasons and regression
564 * testing. Specifically, as large blocks of memory are subdivided,
565 * the order in which smaller blocks are delivered depends on the order
566 * they're subdivided in this function. This is the primary factor
567 * influencing the order in which pages are delivered to the IO
568 * subsystem according to empirical testing, and this is also justified
569 * by considering the behavior of a buddy system containing a single
570 * large block of memory acted on by a series of small allocations.
571 * This behavior is a critical factor in sglist merging's success.
572 *
573 * -- wli
574 */
575 static inline void expand(struct zone *zone, struct page *page,
576 int low, int high, struct free_area *area)
577 {
578 unsigned long size = 1 << high;
579
580 while (high > low) {
581 area--;
582 high--;
583 size >>= 1;
584 VM_BUG_ON(bad_range(zone, &page[size]));
585 list_add(&page[size].lru, &area->free_list);
586 area->nr_free++;
587 set_page_order(&page[size], high);
588 }
589 }
590
591 /*
592 * This page is about to be returned from the page allocator
593 */
594 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
595 {
596 if (unlikely(page_mapcount(page) |
597 (page->mapping != NULL) |
598 (page_count(page) != 0) |
599 (page->flags & (
600 1 << PG_lru |
601 1 << PG_private |
602 1 << PG_locked |
603 1 << PG_active |
604 1 << PG_dirty |
605 1 << PG_reclaim |
606 1 << PG_slab |
607 1 << PG_swapcache |
608 1 << PG_writeback |
609 1 << PG_reserved |
610 1 << PG_buddy ))))
611 bad_page(page);
612
613 /*
614 * For now, we report if PG_reserved was found set, but do not
615 * clear it, and do not allocate the page: as a safety net.
616 */
617 if (PageReserved(page))
618 return 1;
619
620 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
621 1 << PG_referenced | 1 << PG_arch_1 |
622 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
623 set_page_private(page, 0);
624 set_page_refcounted(page);
625
626 arch_alloc_page(page, order);
627 kernel_map_pages(page, 1 << order, 1);
628
629 if (gfp_flags & __GFP_ZERO)
630 prep_zero_page(page, order, gfp_flags);
631
632 if (order && (gfp_flags & __GFP_COMP))
633 prep_compound_page(page, order);
634
635 return 0;
636 }
637
638 /*
639 * Do the hard work of removing an element from the buddy allocator.
640 * Call me with the zone->lock already held.
641 */
642 static struct page *__rmqueue(struct zone *zone, unsigned int order)
643 {
644 struct free_area * area;
645 unsigned int current_order;
646 struct page *page;
647
648 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
649 area = zone->free_area + current_order;
650 if (list_empty(&area->free_list))
651 continue;
652
653 page = list_entry(area->free_list.next, struct page, lru);
654 list_del(&page->lru);
655 rmv_page_order(page);
656 area->nr_free--;
657 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
658 expand(zone, page, order, current_order, area);
659 return page;
660 }
661
662 return NULL;
663 }
664
665 /*
666 * Obtain a specified number of elements from the buddy allocator, all under
667 * a single hold of the lock, for efficiency. Add them to the supplied list.
668 * Returns the number of new pages which were placed at *list.
669 */
670 static int rmqueue_bulk(struct zone *zone, unsigned int order,
671 unsigned long count, struct list_head *list)
672 {
673 int i;
674
675 spin_lock(&zone->lock);
676 for (i = 0; i < count; ++i) {
677 struct page *page = __rmqueue(zone, order);
678 if (unlikely(page == NULL))
679 break;
680 list_add_tail(&page->lru, list);
681 }
682 spin_unlock(&zone->lock);
683 return i;
684 }
685
686 #ifdef CONFIG_NUMA
687 /*
688 * Called from the vmstat counter updater to drain pagesets of this
689 * currently executing processor on remote nodes after they have
690 * expired.
691 *
692 * Note that this function must be called with the thread pinned to
693 * a single processor.
694 */
695 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
696 {
697 unsigned long flags;
698 int to_drain;
699
700 local_irq_save(flags);
701 if (pcp->count >= pcp->batch)
702 to_drain = pcp->batch;
703 else
704 to_drain = pcp->count;
705 free_pages_bulk(zone, to_drain, &pcp->list, 0);
706 pcp->count -= to_drain;
707 local_irq_restore(flags);
708 }
709 #endif
710
711 static void __drain_pages(unsigned int cpu)
712 {
713 unsigned long flags;
714 struct zone *zone;
715 int i;
716
717 for_each_zone(zone) {
718 struct per_cpu_pageset *pset;
719
720 if (!populated_zone(zone))
721 continue;
722
723 pset = zone_pcp(zone, cpu);
724 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
725 struct per_cpu_pages *pcp;
726
727 pcp = &pset->pcp[i];
728 local_irq_save(flags);
729 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
730 pcp->count = 0;
731 local_irq_restore(flags);
732 }
733 }
734 }
735
736 #ifdef CONFIG_PM
737
738 void mark_free_pages(struct zone *zone)
739 {
740 unsigned long pfn, max_zone_pfn;
741 unsigned long flags;
742 int order;
743 struct list_head *curr;
744
745 if (!zone->spanned_pages)
746 return;
747
748 spin_lock_irqsave(&zone->lock, flags);
749
750 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
751 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
752 if (pfn_valid(pfn)) {
753 struct page *page = pfn_to_page(pfn);
754
755 if (!swsusp_page_is_forbidden(page))
756 swsusp_unset_page_free(page);
757 }
758
759 for (order = MAX_ORDER - 1; order >= 0; --order)
760 list_for_each(curr, &zone->free_area[order].free_list) {
761 unsigned long i;
762
763 pfn = page_to_pfn(list_entry(curr, struct page, lru));
764 for (i = 0; i < (1UL << order); i++)
765 swsusp_set_page_free(pfn_to_page(pfn + i));
766 }
767
768 spin_unlock_irqrestore(&zone->lock, flags);
769 }
770
771 /*
772 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
773 */
774 void drain_local_pages(void)
775 {
776 unsigned long flags;
777
778 local_irq_save(flags);
779 __drain_pages(smp_processor_id());
780 local_irq_restore(flags);
781 }
782 #endif /* CONFIG_PM */
783
784 /*
785 * Free a 0-order page
786 */
787 static void fastcall free_hot_cold_page(struct page *page, int cold)
788 {
789 struct zone *zone = page_zone(page);
790 struct per_cpu_pages *pcp;
791 unsigned long flags;
792
793 if (PageAnon(page))
794 page->mapping = NULL;
795 if (free_pages_check(page))
796 return;
797
798 if (!PageHighMem(page))
799 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
800 arch_free_page(page, 0);
801 kernel_map_pages(page, 1, 0);
802
803 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
804 local_irq_save(flags);
805 __count_vm_event(PGFREE);
806 list_add(&page->lru, &pcp->list);
807 pcp->count++;
808 if (pcp->count >= pcp->high) {
809 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
810 pcp->count -= pcp->batch;
811 }
812 local_irq_restore(flags);
813 put_cpu();
814 }
815
816 void fastcall free_hot_page(struct page *page)
817 {
818 free_hot_cold_page(page, 0);
819 }
820
821 void fastcall free_cold_page(struct page *page)
822 {
823 free_hot_cold_page(page, 1);
824 }
825
826 /*
827 * split_page takes a non-compound higher-order page, and splits it into
828 * n (1<<order) sub-pages: page[0..n]
829 * Each sub-page must be freed individually.
830 *
831 * Note: this is probably too low level an operation for use in drivers.
832 * Please consult with lkml before using this in your driver.
833 */
834 void split_page(struct page *page, unsigned int order)
835 {
836 int i;
837
838 VM_BUG_ON(PageCompound(page));
839 VM_BUG_ON(!page_count(page));
840 for (i = 1; i < (1 << order); i++)
841 set_page_refcounted(page + i);
842 }
843
844 /*
845 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
846 * we cheat by calling it from here, in the order > 0 path. Saves a branch
847 * or two.
848 */
849 static struct page *buffered_rmqueue(struct zonelist *zonelist,
850 struct zone *zone, int order, gfp_t gfp_flags)
851 {
852 unsigned long flags;
853 struct page *page;
854 int cold = !!(gfp_flags & __GFP_COLD);
855 int cpu;
856
857 again:
858 cpu = get_cpu();
859 if (likely(order == 0)) {
860 struct per_cpu_pages *pcp;
861
862 pcp = &zone_pcp(zone, cpu)->pcp[cold];
863 local_irq_save(flags);
864 if (!pcp->count) {
865 pcp->count = rmqueue_bulk(zone, 0,
866 pcp->batch, &pcp->list);
867 if (unlikely(!pcp->count))
868 goto failed;
869 }
870 page = list_entry(pcp->list.next, struct page, lru);
871 list_del(&page->lru);
872 pcp->count--;
873 } else {
874 spin_lock_irqsave(&zone->lock, flags);
875 page = __rmqueue(zone, order);
876 spin_unlock(&zone->lock);
877 if (!page)
878 goto failed;
879 }
880
881 __count_zone_vm_events(PGALLOC, zone, 1 << order);
882 zone_statistics(zonelist, zone);
883 local_irq_restore(flags);
884 put_cpu();
885
886 VM_BUG_ON(bad_range(zone, page));
887 if (prep_new_page(page, order, gfp_flags))
888 goto again;
889 return page;
890
891 failed:
892 local_irq_restore(flags);
893 put_cpu();
894 return NULL;
895 }
896
897 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
898 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
899 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
900 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
901 #define ALLOC_HARDER 0x10 /* try to alloc harder */
902 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
903 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
904
905 #ifdef CONFIG_FAIL_PAGE_ALLOC
906
907 static struct fail_page_alloc_attr {
908 struct fault_attr attr;
909
910 u32 ignore_gfp_highmem;
911 u32 ignore_gfp_wait;
912 u32 min_order;
913
914 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
915
916 struct dentry *ignore_gfp_highmem_file;
917 struct dentry *ignore_gfp_wait_file;
918 struct dentry *min_order_file;
919
920 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
921
922 } fail_page_alloc = {
923 .attr = FAULT_ATTR_INITIALIZER,
924 .ignore_gfp_wait = 1,
925 .ignore_gfp_highmem = 1,
926 .min_order = 1,
927 };
928
929 static int __init setup_fail_page_alloc(char *str)
930 {
931 return setup_fault_attr(&fail_page_alloc.attr, str);
932 }
933 __setup("fail_page_alloc=", setup_fail_page_alloc);
934
935 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
936 {
937 if (order < fail_page_alloc.min_order)
938 return 0;
939 if (gfp_mask & __GFP_NOFAIL)
940 return 0;
941 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
942 return 0;
943 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
944 return 0;
945
946 return should_fail(&fail_page_alloc.attr, 1 << order);
947 }
948
949 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
950
951 static int __init fail_page_alloc_debugfs(void)
952 {
953 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
954 struct dentry *dir;
955 int err;
956
957 err = init_fault_attr_dentries(&fail_page_alloc.attr,
958 "fail_page_alloc");
959 if (err)
960 return err;
961 dir = fail_page_alloc.attr.dentries.dir;
962
963 fail_page_alloc.ignore_gfp_wait_file =
964 debugfs_create_bool("ignore-gfp-wait", mode, dir,
965 &fail_page_alloc.ignore_gfp_wait);
966
967 fail_page_alloc.ignore_gfp_highmem_file =
968 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
969 &fail_page_alloc.ignore_gfp_highmem);
970 fail_page_alloc.min_order_file =
971 debugfs_create_u32("min-order", mode, dir,
972 &fail_page_alloc.min_order);
973
974 if (!fail_page_alloc.ignore_gfp_wait_file ||
975 !fail_page_alloc.ignore_gfp_highmem_file ||
976 !fail_page_alloc.min_order_file) {
977 err = -ENOMEM;
978 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
979 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
980 debugfs_remove(fail_page_alloc.min_order_file);
981 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
982 }
983
984 return err;
985 }
986
987 late_initcall(fail_page_alloc_debugfs);
988
989 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
990
991 #else /* CONFIG_FAIL_PAGE_ALLOC */
992
993 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
994 {
995 return 0;
996 }
997
998 #endif /* CONFIG_FAIL_PAGE_ALLOC */
999
1000 /*
1001 * Return 1 if free pages are above 'mark'. This takes into account the order
1002 * of the allocation.
1003 */
1004 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1005 int classzone_idx, int alloc_flags)
1006 {
1007 /* free_pages my go negative - that's OK */
1008 long min = mark;
1009 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1010 int o;
1011
1012 if (alloc_flags & ALLOC_HIGH)
1013 min -= min / 2;
1014 if (alloc_flags & ALLOC_HARDER)
1015 min -= min / 4;
1016
1017 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1018 return 0;
1019 for (o = 0; o < order; o++) {
1020 /* At the next order, this order's pages become unavailable */
1021 free_pages -= z->free_area[o].nr_free << o;
1022
1023 /* Require fewer higher order pages to be free */
1024 min >>= 1;
1025
1026 if (free_pages <= min)
1027 return 0;
1028 }
1029 return 1;
1030 }
1031
1032 #ifdef CONFIG_NUMA
1033 /*
1034 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1035 * skip over zones that are not allowed by the cpuset, or that have
1036 * been recently (in last second) found to be nearly full. See further
1037 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1038 * that have to skip over alot of full or unallowed zones.
1039 *
1040 * If the zonelist cache is present in the passed in zonelist, then
1041 * returns a pointer to the allowed node mask (either the current
1042 * tasks mems_allowed, or node_online_map.)
1043 *
1044 * If the zonelist cache is not available for this zonelist, does
1045 * nothing and returns NULL.
1046 *
1047 * If the fullzones BITMAP in the zonelist cache is stale (more than
1048 * a second since last zap'd) then we zap it out (clear its bits.)
1049 *
1050 * We hold off even calling zlc_setup, until after we've checked the
1051 * first zone in the zonelist, on the theory that most allocations will
1052 * be satisfied from that first zone, so best to examine that zone as
1053 * quickly as we can.
1054 */
1055 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1056 {
1057 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1058 nodemask_t *allowednodes; /* zonelist_cache approximation */
1059
1060 zlc = zonelist->zlcache_ptr;
1061 if (!zlc)
1062 return NULL;
1063
1064 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1065 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1066 zlc->last_full_zap = jiffies;
1067 }
1068
1069 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1070 &cpuset_current_mems_allowed :
1071 &node_online_map;
1072 return allowednodes;
1073 }
1074
1075 /*
1076 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1077 * if it is worth looking at further for free memory:
1078 * 1) Check that the zone isn't thought to be full (doesn't have its
1079 * bit set in the zonelist_cache fullzones BITMAP).
1080 * 2) Check that the zones node (obtained from the zonelist_cache
1081 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1082 * Return true (non-zero) if zone is worth looking at further, or
1083 * else return false (zero) if it is not.
1084 *
1085 * This check -ignores- the distinction between various watermarks,
1086 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1087 * found to be full for any variation of these watermarks, it will
1088 * be considered full for up to one second by all requests, unless
1089 * we are so low on memory on all allowed nodes that we are forced
1090 * into the second scan of the zonelist.
1091 *
1092 * In the second scan we ignore this zonelist cache and exactly
1093 * apply the watermarks to all zones, even it is slower to do so.
1094 * We are low on memory in the second scan, and should leave no stone
1095 * unturned looking for a free page.
1096 */
1097 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1098 nodemask_t *allowednodes)
1099 {
1100 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1101 int i; /* index of *z in zonelist zones */
1102 int n; /* node that zone *z is on */
1103
1104 zlc = zonelist->zlcache_ptr;
1105 if (!zlc)
1106 return 1;
1107
1108 i = z - zonelist->zones;
1109 n = zlc->z_to_n[i];
1110
1111 /* This zone is worth trying if it is allowed but not full */
1112 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1113 }
1114
1115 /*
1116 * Given 'z' scanning a zonelist, set the corresponding bit in
1117 * zlc->fullzones, so that subsequent attempts to allocate a page
1118 * from that zone don't waste time re-examining it.
1119 */
1120 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1121 {
1122 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1123 int i; /* index of *z in zonelist zones */
1124
1125 zlc = zonelist->zlcache_ptr;
1126 if (!zlc)
1127 return;
1128
1129 i = z - zonelist->zones;
1130
1131 set_bit(i, zlc->fullzones);
1132 }
1133
1134 #else /* CONFIG_NUMA */
1135
1136 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1137 {
1138 return NULL;
1139 }
1140
1141 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1142 nodemask_t *allowednodes)
1143 {
1144 return 1;
1145 }
1146
1147 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1148 {
1149 }
1150 #endif /* CONFIG_NUMA */
1151
1152 /*
1153 * get_page_from_freelist goes through the zonelist trying to allocate
1154 * a page.
1155 */
1156 static struct page *
1157 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1158 struct zonelist *zonelist, int alloc_flags)
1159 {
1160 struct zone **z;
1161 struct page *page = NULL;
1162 int classzone_idx = zone_idx(zonelist->zones[0]);
1163 struct zone *zone;
1164 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1165 int zlc_active = 0; /* set if using zonelist_cache */
1166 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1167
1168 zonelist_scan:
1169 /*
1170 * Scan zonelist, looking for a zone with enough free.
1171 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1172 */
1173 z = zonelist->zones;
1174
1175 do {
1176 if (NUMA_BUILD && zlc_active &&
1177 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1178 continue;
1179 zone = *z;
1180 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1181 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1182 break;
1183 if ((alloc_flags & ALLOC_CPUSET) &&
1184 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1185 goto try_next_zone;
1186
1187 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1188 unsigned long mark;
1189 if (alloc_flags & ALLOC_WMARK_MIN)
1190 mark = zone->pages_min;
1191 else if (alloc_flags & ALLOC_WMARK_LOW)
1192 mark = zone->pages_low;
1193 else
1194 mark = zone->pages_high;
1195 if (!zone_watermark_ok(zone, order, mark,
1196 classzone_idx, alloc_flags)) {
1197 if (!zone_reclaim_mode ||
1198 !zone_reclaim(zone, gfp_mask, order))
1199 goto this_zone_full;
1200 }
1201 }
1202
1203 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1204 if (page)
1205 break;
1206 this_zone_full:
1207 if (NUMA_BUILD)
1208 zlc_mark_zone_full(zonelist, z);
1209 try_next_zone:
1210 if (NUMA_BUILD && !did_zlc_setup) {
1211 /* we do zlc_setup after the first zone is tried */
1212 allowednodes = zlc_setup(zonelist, alloc_flags);
1213 zlc_active = 1;
1214 did_zlc_setup = 1;
1215 }
1216 } while (*(++z) != NULL);
1217
1218 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1219 /* Disable zlc cache for second zonelist scan */
1220 zlc_active = 0;
1221 goto zonelist_scan;
1222 }
1223 return page;
1224 }
1225
1226 /*
1227 * This is the 'heart' of the zoned buddy allocator.
1228 */
1229 struct page * fastcall
1230 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1231 struct zonelist *zonelist)
1232 {
1233 const gfp_t wait = gfp_mask & __GFP_WAIT;
1234 struct zone **z;
1235 struct page *page;
1236 struct reclaim_state reclaim_state;
1237 struct task_struct *p = current;
1238 int do_retry;
1239 int alloc_flags;
1240 int did_some_progress;
1241
1242 might_sleep_if(wait);
1243
1244 if (should_fail_alloc_page(gfp_mask, order))
1245 return NULL;
1246
1247 restart:
1248 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1249
1250 if (unlikely(*z == NULL)) {
1251 /* Should this ever happen?? */
1252 return NULL;
1253 }
1254
1255 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1256 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1257 if (page)
1258 goto got_pg;
1259
1260 /*
1261 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1262 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1263 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1264 * using a larger set of nodes after it has established that the
1265 * allowed per node queues are empty and that nodes are
1266 * over allocated.
1267 */
1268 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1269 goto nopage;
1270
1271 for (z = zonelist->zones; *z; z++)
1272 wakeup_kswapd(*z, order);
1273
1274 /*
1275 * OK, we're below the kswapd watermark and have kicked background
1276 * reclaim. Now things get more complex, so set up alloc_flags according
1277 * to how we want to proceed.
1278 *
1279 * The caller may dip into page reserves a bit more if the caller
1280 * cannot run direct reclaim, or if the caller has realtime scheduling
1281 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1282 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1283 */
1284 alloc_flags = ALLOC_WMARK_MIN;
1285 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1286 alloc_flags |= ALLOC_HARDER;
1287 if (gfp_mask & __GFP_HIGH)
1288 alloc_flags |= ALLOC_HIGH;
1289 if (wait)
1290 alloc_flags |= ALLOC_CPUSET;
1291
1292 /*
1293 * Go through the zonelist again. Let __GFP_HIGH and allocations
1294 * coming from realtime tasks go deeper into reserves.
1295 *
1296 * This is the last chance, in general, before the goto nopage.
1297 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1298 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1299 */
1300 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1301 if (page)
1302 goto got_pg;
1303
1304 /* This allocation should allow future memory freeing. */
1305
1306 rebalance:
1307 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1308 && !in_interrupt()) {
1309 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1310 nofail_alloc:
1311 /* go through the zonelist yet again, ignoring mins */
1312 page = get_page_from_freelist(gfp_mask, order,
1313 zonelist, ALLOC_NO_WATERMARKS);
1314 if (page)
1315 goto got_pg;
1316 if (gfp_mask & __GFP_NOFAIL) {
1317 congestion_wait(WRITE, HZ/50);
1318 goto nofail_alloc;
1319 }
1320 }
1321 goto nopage;
1322 }
1323
1324 /* Atomic allocations - we can't balance anything */
1325 if (!wait)
1326 goto nopage;
1327
1328 cond_resched();
1329
1330 /* We now go into synchronous reclaim */
1331 cpuset_memory_pressure_bump();
1332 p->flags |= PF_MEMALLOC;
1333 reclaim_state.reclaimed_slab = 0;
1334 p->reclaim_state = &reclaim_state;
1335
1336 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1337
1338 p->reclaim_state = NULL;
1339 p->flags &= ~PF_MEMALLOC;
1340
1341 cond_resched();
1342
1343 if (likely(did_some_progress)) {
1344 page = get_page_from_freelist(gfp_mask, order,
1345 zonelist, alloc_flags);
1346 if (page)
1347 goto got_pg;
1348 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1349 /*
1350 * Go through the zonelist yet one more time, keep
1351 * very high watermark here, this is only to catch
1352 * a parallel oom killing, we must fail if we're still
1353 * under heavy pressure.
1354 */
1355 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1356 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1357 if (page)
1358 goto got_pg;
1359
1360 out_of_memory(zonelist, gfp_mask, order);
1361 goto restart;
1362 }
1363
1364 /*
1365 * Don't let big-order allocations loop unless the caller explicitly
1366 * requests that. Wait for some write requests to complete then retry.
1367 *
1368 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1369 * <= 3, but that may not be true in other implementations.
1370 */
1371 do_retry = 0;
1372 if (!(gfp_mask & __GFP_NORETRY)) {
1373 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1374 (gfp_mask & __GFP_REPEAT))
1375 do_retry = 1;
1376 if (gfp_mask & __GFP_NOFAIL)
1377 do_retry = 1;
1378 }
1379 if (do_retry) {
1380 congestion_wait(WRITE, HZ/50);
1381 goto rebalance;
1382 }
1383
1384 nopage:
1385 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1386 printk(KERN_WARNING "%s: page allocation failure."
1387 " order:%d, mode:0x%x\n",
1388 p->comm, order, gfp_mask);
1389 dump_stack();
1390 show_mem();
1391 }
1392 got_pg:
1393 return page;
1394 }
1395
1396 EXPORT_SYMBOL(__alloc_pages);
1397
1398 /*
1399 * Common helper functions.
1400 */
1401 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1402 {
1403 struct page * page;
1404 page = alloc_pages(gfp_mask, order);
1405 if (!page)
1406 return 0;
1407 return (unsigned long) page_address(page);
1408 }
1409
1410 EXPORT_SYMBOL(__get_free_pages);
1411
1412 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1413 {
1414 struct page * page;
1415
1416 /*
1417 * get_zeroed_page() returns a 32-bit address, which cannot represent
1418 * a highmem page
1419 */
1420 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1421
1422 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1423 if (page)
1424 return (unsigned long) page_address(page);
1425 return 0;
1426 }
1427
1428 EXPORT_SYMBOL(get_zeroed_page);
1429
1430 void __pagevec_free(struct pagevec *pvec)
1431 {
1432 int i = pagevec_count(pvec);
1433
1434 while (--i >= 0)
1435 free_hot_cold_page(pvec->pages[i], pvec->cold);
1436 }
1437
1438 fastcall void __free_pages(struct page *page, unsigned int order)
1439 {
1440 if (put_page_testzero(page)) {
1441 if (order == 0)
1442 free_hot_page(page);
1443 else
1444 __free_pages_ok(page, order);
1445 }
1446 }
1447
1448 EXPORT_SYMBOL(__free_pages);
1449
1450 fastcall void free_pages(unsigned long addr, unsigned int order)
1451 {
1452 if (addr != 0) {
1453 VM_BUG_ON(!virt_addr_valid((void *)addr));
1454 __free_pages(virt_to_page((void *)addr), order);
1455 }
1456 }
1457
1458 EXPORT_SYMBOL(free_pages);
1459
1460 static unsigned int nr_free_zone_pages(int offset)
1461 {
1462 /* Just pick one node, since fallback list is circular */
1463 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1464 unsigned int sum = 0;
1465
1466 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1467 struct zone **zonep = zonelist->zones;
1468 struct zone *zone;
1469
1470 for (zone = *zonep++; zone; zone = *zonep++) {
1471 unsigned long size = zone->present_pages;
1472 unsigned long high = zone->pages_high;
1473 if (size > high)
1474 sum += size - high;
1475 }
1476
1477 return sum;
1478 }
1479
1480 /*
1481 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1482 */
1483 unsigned int nr_free_buffer_pages(void)
1484 {
1485 return nr_free_zone_pages(gfp_zone(GFP_USER));
1486 }
1487 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1488
1489 /*
1490 * Amount of free RAM allocatable within all zones
1491 */
1492 unsigned int nr_free_pagecache_pages(void)
1493 {
1494 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1495 }
1496
1497 static inline void show_node(struct zone *zone)
1498 {
1499 if (NUMA_BUILD)
1500 printk("Node %d ", zone_to_nid(zone));
1501 }
1502
1503 void si_meminfo(struct sysinfo *val)
1504 {
1505 val->totalram = totalram_pages;
1506 val->sharedram = 0;
1507 val->freeram = global_page_state(NR_FREE_PAGES);
1508 val->bufferram = nr_blockdev_pages();
1509 val->totalhigh = totalhigh_pages;
1510 val->freehigh = nr_free_highpages();
1511 val->mem_unit = PAGE_SIZE;
1512 }
1513
1514 EXPORT_SYMBOL(si_meminfo);
1515
1516 #ifdef CONFIG_NUMA
1517 void si_meminfo_node(struct sysinfo *val, int nid)
1518 {
1519 pg_data_t *pgdat = NODE_DATA(nid);
1520
1521 val->totalram = pgdat->node_present_pages;
1522 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1523 #ifdef CONFIG_HIGHMEM
1524 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1525 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1526 NR_FREE_PAGES);
1527 #else
1528 val->totalhigh = 0;
1529 val->freehigh = 0;
1530 #endif
1531 val->mem_unit = PAGE_SIZE;
1532 }
1533 #endif
1534
1535 #define K(x) ((x) << (PAGE_SHIFT-10))
1536
1537 /*
1538 * Show free area list (used inside shift_scroll-lock stuff)
1539 * We also calculate the percentage fragmentation. We do this by counting the
1540 * memory on each free list with the exception of the first item on the list.
1541 */
1542 void show_free_areas(void)
1543 {
1544 int cpu;
1545 struct zone *zone;
1546
1547 for_each_zone(zone) {
1548 if (!populated_zone(zone))
1549 continue;
1550
1551 show_node(zone);
1552 printk("%s per-cpu:\n", zone->name);
1553
1554 for_each_online_cpu(cpu) {
1555 struct per_cpu_pageset *pageset;
1556
1557 pageset = zone_pcp(zone, cpu);
1558
1559 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1560 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1561 cpu, pageset->pcp[0].high,
1562 pageset->pcp[0].batch, pageset->pcp[0].count,
1563 pageset->pcp[1].high, pageset->pcp[1].batch,
1564 pageset->pcp[1].count);
1565 }
1566 }
1567
1568 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1569 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1570 global_page_state(NR_ACTIVE),
1571 global_page_state(NR_INACTIVE),
1572 global_page_state(NR_FILE_DIRTY),
1573 global_page_state(NR_WRITEBACK),
1574 global_page_state(NR_UNSTABLE_NFS),
1575 global_page_state(NR_FREE_PAGES),
1576 global_page_state(NR_SLAB_RECLAIMABLE) +
1577 global_page_state(NR_SLAB_UNRECLAIMABLE),
1578 global_page_state(NR_FILE_MAPPED),
1579 global_page_state(NR_PAGETABLE),
1580 global_page_state(NR_BOUNCE));
1581
1582 for_each_zone(zone) {
1583 int i;
1584
1585 if (!populated_zone(zone))
1586 continue;
1587
1588 show_node(zone);
1589 printk("%s"
1590 " free:%lukB"
1591 " min:%lukB"
1592 " low:%lukB"
1593 " high:%lukB"
1594 " active:%lukB"
1595 " inactive:%lukB"
1596 " present:%lukB"
1597 " pages_scanned:%lu"
1598 " all_unreclaimable? %s"
1599 "\n",
1600 zone->name,
1601 K(zone_page_state(zone, NR_FREE_PAGES)),
1602 K(zone->pages_min),
1603 K(zone->pages_low),
1604 K(zone->pages_high),
1605 K(zone_page_state(zone, NR_ACTIVE)),
1606 K(zone_page_state(zone, NR_INACTIVE)),
1607 K(zone->present_pages),
1608 zone->pages_scanned,
1609 (zone->all_unreclaimable ? "yes" : "no")
1610 );
1611 printk("lowmem_reserve[]:");
1612 for (i = 0; i < MAX_NR_ZONES; i++)
1613 printk(" %lu", zone->lowmem_reserve[i]);
1614 printk("\n");
1615 }
1616
1617 for_each_zone(zone) {
1618 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1619
1620 if (!populated_zone(zone))
1621 continue;
1622
1623 show_node(zone);
1624 printk("%s: ", zone->name);
1625
1626 spin_lock_irqsave(&zone->lock, flags);
1627 for (order = 0; order < MAX_ORDER; order++) {
1628 nr[order] = zone->free_area[order].nr_free;
1629 total += nr[order] << order;
1630 }
1631 spin_unlock_irqrestore(&zone->lock, flags);
1632 for (order = 0; order < MAX_ORDER; order++)
1633 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1634 printk("= %lukB\n", K(total));
1635 }
1636
1637 show_swap_cache_info();
1638 }
1639
1640 /*
1641 * Builds allocation fallback zone lists.
1642 *
1643 * Add all populated zones of a node to the zonelist.
1644 */
1645 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1646 int nr_zones, enum zone_type zone_type)
1647 {
1648 struct zone *zone;
1649
1650 BUG_ON(zone_type >= MAX_NR_ZONES);
1651 zone_type++;
1652
1653 do {
1654 zone_type--;
1655 zone = pgdat->node_zones + zone_type;
1656 if (populated_zone(zone)) {
1657 zonelist->zones[nr_zones++] = zone;
1658 check_highest_zone(zone_type);
1659 }
1660
1661 } while (zone_type);
1662 return nr_zones;
1663 }
1664
1665
1666 /*
1667 * zonelist_order:
1668 * 0 = automatic detection of better ordering.
1669 * 1 = order by ([node] distance, -zonetype)
1670 * 2 = order by (-zonetype, [node] distance)
1671 *
1672 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1673 * the same zonelist. So only NUMA can configure this param.
1674 */
1675 #define ZONELIST_ORDER_DEFAULT 0
1676 #define ZONELIST_ORDER_NODE 1
1677 #define ZONELIST_ORDER_ZONE 2
1678
1679 /* zonelist order in the kernel.
1680 * set_zonelist_order() will set this to NODE or ZONE.
1681 */
1682 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1683 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1684
1685
1686 #ifdef CONFIG_NUMA
1687 /* The value user specified ....changed by config */
1688 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1689 /* string for sysctl */
1690 #define NUMA_ZONELIST_ORDER_LEN 16
1691 char numa_zonelist_order[16] = "default";
1692
1693 /*
1694 * interface for configure zonelist ordering.
1695 * command line option "numa_zonelist_order"
1696 * = "[dD]efault - default, automatic configuration.
1697 * = "[nN]ode - order by node locality, then by zone within node
1698 * = "[zZ]one - order by zone, then by locality within zone
1699 */
1700
1701 static int __parse_numa_zonelist_order(char *s)
1702 {
1703 if (*s == 'd' || *s == 'D') {
1704 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1705 } else if (*s == 'n' || *s == 'N') {
1706 user_zonelist_order = ZONELIST_ORDER_NODE;
1707 } else if (*s == 'z' || *s == 'Z') {
1708 user_zonelist_order = ZONELIST_ORDER_ZONE;
1709 } else {
1710 printk(KERN_WARNING
1711 "Ignoring invalid numa_zonelist_order value: "
1712 "%s\n", s);
1713 return -EINVAL;
1714 }
1715 return 0;
1716 }
1717
1718 static __init int setup_numa_zonelist_order(char *s)
1719 {
1720 if (s)
1721 return __parse_numa_zonelist_order(s);
1722 return 0;
1723 }
1724 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1725
1726 /*
1727 * sysctl handler for numa_zonelist_order
1728 */
1729 int numa_zonelist_order_handler(ctl_table *table, int write,
1730 struct file *file, void __user *buffer, size_t *length,
1731 loff_t *ppos)
1732 {
1733 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1734 int ret;
1735
1736 if (write)
1737 strncpy(saved_string, (char*)table->data,
1738 NUMA_ZONELIST_ORDER_LEN);
1739 ret = proc_dostring(table, write, file, buffer, length, ppos);
1740 if (ret)
1741 return ret;
1742 if (write) {
1743 int oldval = user_zonelist_order;
1744 if (__parse_numa_zonelist_order((char*)table->data)) {
1745 /*
1746 * bogus value. restore saved string
1747 */
1748 strncpy((char*)table->data, saved_string,
1749 NUMA_ZONELIST_ORDER_LEN);
1750 user_zonelist_order = oldval;
1751 } else if (oldval != user_zonelist_order)
1752 build_all_zonelists();
1753 }
1754 return 0;
1755 }
1756
1757
1758 #define MAX_NODE_LOAD (num_online_nodes())
1759 static int node_load[MAX_NUMNODES];
1760
1761 /**
1762 * find_next_best_node - find the next node that should appear in a given node's fallback list
1763 * @node: node whose fallback list we're appending
1764 * @used_node_mask: nodemask_t of already used nodes
1765 *
1766 * We use a number of factors to determine which is the next node that should
1767 * appear on a given node's fallback list. The node should not have appeared
1768 * already in @node's fallback list, and it should be the next closest node
1769 * according to the distance array (which contains arbitrary distance values
1770 * from each node to each node in the system), and should also prefer nodes
1771 * with no CPUs, since presumably they'll have very little allocation pressure
1772 * on them otherwise.
1773 * It returns -1 if no node is found.
1774 */
1775 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1776 {
1777 int n, val;
1778 int min_val = INT_MAX;
1779 int best_node = -1;
1780
1781 /* Use the local node if we haven't already */
1782 if (!node_isset(node, *used_node_mask)) {
1783 node_set(node, *used_node_mask);
1784 return node;
1785 }
1786
1787 for_each_online_node(n) {
1788 cpumask_t tmp;
1789
1790 /* Don't want a node to appear more than once */
1791 if (node_isset(n, *used_node_mask))
1792 continue;
1793
1794 /* Use the distance array to find the distance */
1795 val = node_distance(node, n);
1796
1797 /* Penalize nodes under us ("prefer the next node") */
1798 val += (n < node);
1799
1800 /* Give preference to headless and unused nodes */
1801 tmp = node_to_cpumask(n);
1802 if (!cpus_empty(tmp))
1803 val += PENALTY_FOR_NODE_WITH_CPUS;
1804
1805 /* Slight preference for less loaded node */
1806 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1807 val += node_load[n];
1808
1809 if (val < min_val) {
1810 min_val = val;
1811 best_node = n;
1812 }
1813 }
1814
1815 if (best_node >= 0)
1816 node_set(best_node, *used_node_mask);
1817
1818 return best_node;
1819 }
1820
1821
1822 /*
1823 * Build zonelists ordered by node and zones within node.
1824 * This results in maximum locality--normal zone overflows into local
1825 * DMA zone, if any--but risks exhausting DMA zone.
1826 */
1827 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1828 {
1829 enum zone_type i;
1830 int j;
1831 struct zonelist *zonelist;
1832
1833 for (i = 0; i < MAX_NR_ZONES; i++) {
1834 zonelist = pgdat->node_zonelists + i;
1835 for (j = 0; zonelist->zones[j] != NULL; j++)
1836 ;
1837 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1838 zonelist->zones[j] = NULL;
1839 }
1840 }
1841
1842 /*
1843 * Build zonelists ordered by zone and nodes within zones.
1844 * This results in conserving DMA zone[s] until all Normal memory is
1845 * exhausted, but results in overflowing to remote node while memory
1846 * may still exist in local DMA zone.
1847 */
1848 static int node_order[MAX_NUMNODES];
1849
1850 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1851 {
1852 enum zone_type i;
1853 int pos, j, node;
1854 int zone_type; /* needs to be signed */
1855 struct zone *z;
1856 struct zonelist *zonelist;
1857
1858 for (i = 0; i < MAX_NR_ZONES; i++) {
1859 zonelist = pgdat->node_zonelists + i;
1860 pos = 0;
1861 for (zone_type = i; zone_type >= 0; zone_type--) {
1862 for (j = 0; j < nr_nodes; j++) {
1863 node = node_order[j];
1864 z = &NODE_DATA(node)->node_zones[zone_type];
1865 if (populated_zone(z)) {
1866 zonelist->zones[pos++] = z;
1867 check_highest_zone(zone_type);
1868 }
1869 }
1870 }
1871 zonelist->zones[pos] = NULL;
1872 }
1873 }
1874
1875 static int default_zonelist_order(void)
1876 {
1877 int nid, zone_type;
1878 unsigned long low_kmem_size,total_size;
1879 struct zone *z;
1880 int average_size;
1881 /*
1882 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1883 * If they are really small and used heavily, the system can fall
1884 * into OOM very easily.
1885 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1886 */
1887 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1888 low_kmem_size = 0;
1889 total_size = 0;
1890 for_each_online_node(nid) {
1891 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1892 z = &NODE_DATA(nid)->node_zones[zone_type];
1893 if (populated_zone(z)) {
1894 if (zone_type < ZONE_NORMAL)
1895 low_kmem_size += z->present_pages;
1896 total_size += z->present_pages;
1897 }
1898 }
1899 }
1900 if (!low_kmem_size || /* there are no DMA area. */
1901 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1902 return ZONELIST_ORDER_NODE;
1903 /*
1904 * look into each node's config.
1905 * If there is a node whose DMA/DMA32 memory is very big area on
1906 * local memory, NODE_ORDER may be suitable.
1907 */
1908 average_size = total_size / (num_online_nodes() + 1);
1909 for_each_online_node(nid) {
1910 low_kmem_size = 0;
1911 total_size = 0;
1912 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1913 z = &NODE_DATA(nid)->node_zones[zone_type];
1914 if (populated_zone(z)) {
1915 if (zone_type < ZONE_NORMAL)
1916 low_kmem_size += z->present_pages;
1917 total_size += z->present_pages;
1918 }
1919 }
1920 if (low_kmem_size &&
1921 total_size > average_size && /* ignore small node */
1922 low_kmem_size > total_size * 70/100)
1923 return ZONELIST_ORDER_NODE;
1924 }
1925 return ZONELIST_ORDER_ZONE;
1926 }
1927
1928 static void set_zonelist_order(void)
1929 {
1930 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1931 current_zonelist_order = default_zonelist_order();
1932 else
1933 current_zonelist_order = user_zonelist_order;
1934 }
1935
1936 static void build_zonelists(pg_data_t *pgdat)
1937 {
1938 int j, node, load;
1939 enum zone_type i;
1940 nodemask_t used_mask;
1941 int local_node, prev_node;
1942 struct zonelist *zonelist;
1943 int order = current_zonelist_order;
1944
1945 /* initialize zonelists */
1946 for (i = 0; i < MAX_NR_ZONES; i++) {
1947 zonelist = pgdat->node_zonelists + i;
1948 zonelist->zones[0] = NULL;
1949 }
1950
1951 /* NUMA-aware ordering of nodes */
1952 local_node = pgdat->node_id;
1953 load = num_online_nodes();
1954 prev_node = local_node;
1955 nodes_clear(used_mask);
1956
1957 memset(node_load, 0, sizeof(node_load));
1958 memset(node_order, 0, sizeof(node_order));
1959 j = 0;
1960
1961 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1962 int distance = node_distance(local_node, node);
1963
1964 /*
1965 * If another node is sufficiently far away then it is better
1966 * to reclaim pages in a zone before going off node.
1967 */
1968 if (distance > RECLAIM_DISTANCE)
1969 zone_reclaim_mode = 1;
1970
1971 /*
1972 * We don't want to pressure a particular node.
1973 * So adding penalty to the first node in same
1974 * distance group to make it round-robin.
1975 */
1976 if (distance != node_distance(local_node, prev_node))
1977 node_load[node] = load;
1978
1979 prev_node = node;
1980 load--;
1981 if (order == ZONELIST_ORDER_NODE)
1982 build_zonelists_in_node_order(pgdat, node);
1983 else
1984 node_order[j++] = node; /* remember order */
1985 }
1986
1987 if (order == ZONELIST_ORDER_ZONE) {
1988 /* calculate node order -- i.e., DMA last! */
1989 build_zonelists_in_zone_order(pgdat, j);
1990 }
1991 }
1992
1993 /* Construct the zonelist performance cache - see further mmzone.h */
1994 static void build_zonelist_cache(pg_data_t *pgdat)
1995 {
1996 int i;
1997
1998 for (i = 0; i < MAX_NR_ZONES; i++) {
1999 struct zonelist *zonelist;
2000 struct zonelist_cache *zlc;
2001 struct zone **z;
2002
2003 zonelist = pgdat->node_zonelists + i;
2004 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2005 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2006 for (z = zonelist->zones; *z; z++)
2007 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2008 }
2009 }
2010
2011
2012 #else /* CONFIG_NUMA */
2013
2014 static void set_zonelist_order(void)
2015 {
2016 current_zonelist_order = ZONELIST_ORDER_ZONE;
2017 }
2018
2019 static void build_zonelists(pg_data_t *pgdat)
2020 {
2021 int node, local_node;
2022 enum zone_type i,j;
2023
2024 local_node = pgdat->node_id;
2025 for (i = 0; i < MAX_NR_ZONES; i++) {
2026 struct zonelist *zonelist;
2027
2028 zonelist = pgdat->node_zonelists + i;
2029
2030 j = build_zonelists_node(pgdat, zonelist, 0, i);
2031 /*
2032 * Now we build the zonelist so that it contains the zones
2033 * of all the other nodes.
2034 * We don't want to pressure a particular node, so when
2035 * building the zones for node N, we make sure that the
2036 * zones coming right after the local ones are those from
2037 * node N+1 (modulo N)
2038 */
2039 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2040 if (!node_online(node))
2041 continue;
2042 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2043 }
2044 for (node = 0; node < local_node; node++) {
2045 if (!node_online(node))
2046 continue;
2047 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2048 }
2049
2050 zonelist->zones[j] = NULL;
2051 }
2052 }
2053
2054 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2055 static void build_zonelist_cache(pg_data_t *pgdat)
2056 {
2057 int i;
2058
2059 for (i = 0; i < MAX_NR_ZONES; i++)
2060 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2061 }
2062
2063 #endif /* CONFIG_NUMA */
2064
2065 /* return values int ....just for stop_machine_run() */
2066 static int __build_all_zonelists(void *dummy)
2067 {
2068 int nid;
2069
2070 for_each_online_node(nid) {
2071 build_zonelists(NODE_DATA(nid));
2072 build_zonelist_cache(NODE_DATA(nid));
2073 }
2074 return 0;
2075 }
2076
2077 void build_all_zonelists(void)
2078 {
2079 set_zonelist_order();
2080
2081 if (system_state == SYSTEM_BOOTING) {
2082 __build_all_zonelists(NULL);
2083 cpuset_init_current_mems_allowed();
2084 } else {
2085 /* we have to stop all cpus to guaranntee there is no user
2086 of zonelist */
2087 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2088 /* cpuset refresh routine should be here */
2089 }
2090 vm_total_pages = nr_free_pagecache_pages();
2091 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2092 num_online_nodes(),
2093 zonelist_order_name[current_zonelist_order],
2094 vm_total_pages);
2095 #ifdef CONFIG_NUMA
2096 printk("Policy zone: %s\n", zone_names[policy_zone]);
2097 #endif
2098 }
2099
2100 /*
2101 * Helper functions to size the waitqueue hash table.
2102 * Essentially these want to choose hash table sizes sufficiently
2103 * large so that collisions trying to wait on pages are rare.
2104 * But in fact, the number of active page waitqueues on typical
2105 * systems is ridiculously low, less than 200. So this is even
2106 * conservative, even though it seems large.
2107 *
2108 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2109 * waitqueues, i.e. the size of the waitq table given the number of pages.
2110 */
2111 #define PAGES_PER_WAITQUEUE 256
2112
2113 #ifndef CONFIG_MEMORY_HOTPLUG
2114 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2115 {
2116 unsigned long size = 1;
2117
2118 pages /= PAGES_PER_WAITQUEUE;
2119
2120 while (size < pages)
2121 size <<= 1;
2122
2123 /*
2124 * Once we have dozens or even hundreds of threads sleeping
2125 * on IO we've got bigger problems than wait queue collision.
2126 * Limit the size of the wait table to a reasonable size.
2127 */
2128 size = min(size, 4096UL);
2129
2130 return max(size, 4UL);
2131 }
2132 #else
2133 /*
2134 * A zone's size might be changed by hot-add, so it is not possible to determine
2135 * a suitable size for its wait_table. So we use the maximum size now.
2136 *
2137 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2138 *
2139 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2140 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2141 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2142 *
2143 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2144 * or more by the traditional way. (See above). It equals:
2145 *
2146 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2147 * ia64(16K page size) : = ( 8G + 4M)byte.
2148 * powerpc (64K page size) : = (32G +16M)byte.
2149 */
2150 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2151 {
2152 return 4096UL;
2153 }
2154 #endif
2155
2156 /*
2157 * This is an integer logarithm so that shifts can be used later
2158 * to extract the more random high bits from the multiplicative
2159 * hash function before the remainder is taken.
2160 */
2161 static inline unsigned long wait_table_bits(unsigned long size)
2162 {
2163 return ffz(~size);
2164 }
2165
2166 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2167
2168 /*
2169 * Initially all pages are reserved - free ones are freed
2170 * up by free_all_bootmem() once the early boot process is
2171 * done. Non-atomic initialization, single-pass.
2172 */
2173 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2174 unsigned long start_pfn, enum memmap_context context)
2175 {
2176 struct page *page;
2177 unsigned long end_pfn = start_pfn + size;
2178 unsigned long pfn;
2179
2180 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2181 /*
2182 * There can be holes in boot-time mem_map[]s
2183 * handed to this function. They do not
2184 * exist on hotplugged memory.
2185 */
2186 if (context == MEMMAP_EARLY) {
2187 if (!early_pfn_valid(pfn))
2188 continue;
2189 if (!early_pfn_in_nid(pfn, nid))
2190 continue;
2191 }
2192 page = pfn_to_page(pfn);
2193 set_page_links(page, zone, nid, pfn);
2194 init_page_count(page);
2195 reset_page_mapcount(page);
2196 SetPageReserved(page);
2197 INIT_LIST_HEAD(&page->lru);
2198 #ifdef WANT_PAGE_VIRTUAL
2199 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2200 if (!is_highmem_idx(zone))
2201 set_page_address(page, __va(pfn << PAGE_SHIFT));
2202 #endif
2203 }
2204 }
2205
2206 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2207 struct zone *zone, unsigned long size)
2208 {
2209 int order;
2210 for (order = 0; order < MAX_ORDER ; order++) {
2211 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2212 zone->free_area[order].nr_free = 0;
2213 }
2214 }
2215
2216 #ifndef __HAVE_ARCH_MEMMAP_INIT
2217 #define memmap_init(size, nid, zone, start_pfn) \
2218 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2219 #endif
2220
2221 static int __devinit zone_batchsize(struct zone *zone)
2222 {
2223 int batch;
2224
2225 /*
2226 * The per-cpu-pages pools are set to around 1000th of the
2227 * size of the zone. But no more than 1/2 of a meg.
2228 *
2229 * OK, so we don't know how big the cache is. So guess.
2230 */
2231 batch = zone->present_pages / 1024;
2232 if (batch * PAGE_SIZE > 512 * 1024)
2233 batch = (512 * 1024) / PAGE_SIZE;
2234 batch /= 4; /* We effectively *= 4 below */
2235 if (batch < 1)
2236 batch = 1;
2237
2238 /*
2239 * Clamp the batch to a 2^n - 1 value. Having a power
2240 * of 2 value was found to be more likely to have
2241 * suboptimal cache aliasing properties in some cases.
2242 *
2243 * For example if 2 tasks are alternately allocating
2244 * batches of pages, one task can end up with a lot
2245 * of pages of one half of the possible page colors
2246 * and the other with pages of the other colors.
2247 */
2248 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2249
2250 return batch;
2251 }
2252
2253 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2254 {
2255 struct per_cpu_pages *pcp;
2256
2257 memset(p, 0, sizeof(*p));
2258
2259 pcp = &p->pcp[0]; /* hot */
2260 pcp->count = 0;
2261 pcp->high = 6 * batch;
2262 pcp->batch = max(1UL, 1 * batch);
2263 INIT_LIST_HEAD(&pcp->list);
2264
2265 pcp = &p->pcp[1]; /* cold*/
2266 pcp->count = 0;
2267 pcp->high = 2 * batch;
2268 pcp->batch = max(1UL, batch/2);
2269 INIT_LIST_HEAD(&pcp->list);
2270 }
2271
2272 /*
2273 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2274 * to the value high for the pageset p.
2275 */
2276
2277 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2278 unsigned long high)
2279 {
2280 struct per_cpu_pages *pcp;
2281
2282 pcp = &p->pcp[0]; /* hot list */
2283 pcp->high = high;
2284 pcp->batch = max(1UL, high/4);
2285 if ((high/4) > (PAGE_SHIFT * 8))
2286 pcp->batch = PAGE_SHIFT * 8;
2287 }
2288
2289
2290 #ifdef CONFIG_NUMA
2291 /*
2292 * Boot pageset table. One per cpu which is going to be used for all
2293 * zones and all nodes. The parameters will be set in such a way
2294 * that an item put on a list will immediately be handed over to
2295 * the buddy list. This is safe since pageset manipulation is done
2296 * with interrupts disabled.
2297 *
2298 * Some NUMA counter updates may also be caught by the boot pagesets.
2299 *
2300 * The boot_pagesets must be kept even after bootup is complete for
2301 * unused processors and/or zones. They do play a role for bootstrapping
2302 * hotplugged processors.
2303 *
2304 * zoneinfo_show() and maybe other functions do
2305 * not check if the processor is online before following the pageset pointer.
2306 * Other parts of the kernel may not check if the zone is available.
2307 */
2308 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2309
2310 /*
2311 * Dynamically allocate memory for the
2312 * per cpu pageset array in struct zone.
2313 */
2314 static int __cpuinit process_zones(int cpu)
2315 {
2316 struct zone *zone, *dzone;
2317
2318 for_each_zone(zone) {
2319
2320 if (!populated_zone(zone))
2321 continue;
2322
2323 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2324 GFP_KERNEL, cpu_to_node(cpu));
2325 if (!zone_pcp(zone, cpu))
2326 goto bad;
2327
2328 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2329
2330 if (percpu_pagelist_fraction)
2331 setup_pagelist_highmark(zone_pcp(zone, cpu),
2332 (zone->present_pages / percpu_pagelist_fraction));
2333 }
2334
2335 return 0;
2336 bad:
2337 for_each_zone(dzone) {
2338 if (dzone == zone)
2339 break;
2340 kfree(zone_pcp(dzone, cpu));
2341 zone_pcp(dzone, cpu) = NULL;
2342 }
2343 return -ENOMEM;
2344 }
2345
2346 static inline void free_zone_pagesets(int cpu)
2347 {
2348 struct zone *zone;
2349
2350 for_each_zone(zone) {
2351 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2352
2353 /* Free per_cpu_pageset if it is slab allocated */
2354 if (pset != &boot_pageset[cpu])
2355 kfree(pset);
2356 zone_pcp(zone, cpu) = NULL;
2357 }
2358 }
2359
2360 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2361 unsigned long action,
2362 void *hcpu)
2363 {
2364 int cpu = (long)hcpu;
2365 int ret = NOTIFY_OK;
2366
2367 switch (action) {
2368 case CPU_UP_PREPARE:
2369 case CPU_UP_PREPARE_FROZEN:
2370 if (process_zones(cpu))
2371 ret = NOTIFY_BAD;
2372 break;
2373 case CPU_UP_CANCELED:
2374 case CPU_UP_CANCELED_FROZEN:
2375 case CPU_DEAD:
2376 case CPU_DEAD_FROZEN:
2377 free_zone_pagesets(cpu);
2378 break;
2379 default:
2380 break;
2381 }
2382 return ret;
2383 }
2384
2385 static struct notifier_block __cpuinitdata pageset_notifier =
2386 { &pageset_cpuup_callback, NULL, 0 };
2387
2388 void __init setup_per_cpu_pageset(void)
2389 {
2390 int err;
2391
2392 /* Initialize per_cpu_pageset for cpu 0.
2393 * A cpuup callback will do this for every cpu
2394 * as it comes online
2395 */
2396 err = process_zones(smp_processor_id());
2397 BUG_ON(err);
2398 register_cpu_notifier(&pageset_notifier);
2399 }
2400
2401 #endif
2402
2403 static noinline __init_refok
2404 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2405 {
2406 int i;
2407 struct pglist_data *pgdat = zone->zone_pgdat;
2408 size_t alloc_size;
2409
2410 /*
2411 * The per-page waitqueue mechanism uses hashed waitqueues
2412 * per zone.
2413 */
2414 zone->wait_table_hash_nr_entries =
2415 wait_table_hash_nr_entries(zone_size_pages);
2416 zone->wait_table_bits =
2417 wait_table_bits(zone->wait_table_hash_nr_entries);
2418 alloc_size = zone->wait_table_hash_nr_entries
2419 * sizeof(wait_queue_head_t);
2420
2421 if (system_state == SYSTEM_BOOTING) {
2422 zone->wait_table = (wait_queue_head_t *)
2423 alloc_bootmem_node(pgdat, alloc_size);
2424 } else {
2425 /*
2426 * This case means that a zone whose size was 0 gets new memory
2427 * via memory hot-add.
2428 * But it may be the case that a new node was hot-added. In
2429 * this case vmalloc() will not be able to use this new node's
2430 * memory - this wait_table must be initialized to use this new
2431 * node itself as well.
2432 * To use this new node's memory, further consideration will be
2433 * necessary.
2434 */
2435 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2436 }
2437 if (!zone->wait_table)
2438 return -ENOMEM;
2439
2440 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2441 init_waitqueue_head(zone->wait_table + i);
2442
2443 return 0;
2444 }
2445
2446 static __meminit void zone_pcp_init(struct zone *zone)
2447 {
2448 int cpu;
2449 unsigned long batch = zone_batchsize(zone);
2450
2451 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2452 #ifdef CONFIG_NUMA
2453 /* Early boot. Slab allocator not functional yet */
2454 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2455 setup_pageset(&boot_pageset[cpu],0);
2456 #else
2457 setup_pageset(zone_pcp(zone,cpu), batch);
2458 #endif
2459 }
2460 if (zone->present_pages)
2461 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2462 zone->name, zone->present_pages, batch);
2463 }
2464
2465 __meminit int init_currently_empty_zone(struct zone *zone,
2466 unsigned long zone_start_pfn,
2467 unsigned long size,
2468 enum memmap_context context)
2469 {
2470 struct pglist_data *pgdat = zone->zone_pgdat;
2471 int ret;
2472 ret = zone_wait_table_init(zone, size);
2473 if (ret)
2474 return ret;
2475 pgdat->nr_zones = zone_idx(zone) + 1;
2476
2477 zone->zone_start_pfn = zone_start_pfn;
2478
2479 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2480
2481 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2482
2483 return 0;
2484 }
2485
2486 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2487 /*
2488 * Basic iterator support. Return the first range of PFNs for a node
2489 * Note: nid == MAX_NUMNODES returns first region regardless of node
2490 */
2491 static int __meminit first_active_region_index_in_nid(int nid)
2492 {
2493 int i;
2494
2495 for (i = 0; i < nr_nodemap_entries; i++)
2496 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2497 return i;
2498
2499 return -1;
2500 }
2501
2502 /*
2503 * Basic iterator support. Return the next active range of PFNs for a node
2504 * Note: nid == MAX_NUMNODES returns next region regardles of node
2505 */
2506 static int __meminit next_active_region_index_in_nid(int index, int nid)
2507 {
2508 for (index = index + 1; index < nr_nodemap_entries; index++)
2509 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2510 return index;
2511
2512 return -1;
2513 }
2514
2515 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2516 /*
2517 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2518 * Architectures may implement their own version but if add_active_range()
2519 * was used and there are no special requirements, this is a convenient
2520 * alternative
2521 */
2522 int __meminit early_pfn_to_nid(unsigned long pfn)
2523 {
2524 int i;
2525
2526 for (i = 0; i < nr_nodemap_entries; i++) {
2527 unsigned long start_pfn = early_node_map[i].start_pfn;
2528 unsigned long end_pfn = early_node_map[i].end_pfn;
2529
2530 if (start_pfn <= pfn && pfn < end_pfn)
2531 return early_node_map[i].nid;
2532 }
2533
2534 return 0;
2535 }
2536 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2537
2538 /* Basic iterator support to walk early_node_map[] */
2539 #define for_each_active_range_index_in_nid(i, nid) \
2540 for (i = first_active_region_index_in_nid(nid); i != -1; \
2541 i = next_active_region_index_in_nid(i, nid))
2542
2543 /**
2544 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2545 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2546 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2547 *
2548 * If an architecture guarantees that all ranges registered with
2549 * add_active_ranges() contain no holes and may be freed, this
2550 * this function may be used instead of calling free_bootmem() manually.
2551 */
2552 void __init free_bootmem_with_active_regions(int nid,
2553 unsigned long max_low_pfn)
2554 {
2555 int i;
2556
2557 for_each_active_range_index_in_nid(i, nid) {
2558 unsigned long size_pages = 0;
2559 unsigned long end_pfn = early_node_map[i].end_pfn;
2560
2561 if (early_node_map[i].start_pfn >= max_low_pfn)
2562 continue;
2563
2564 if (end_pfn > max_low_pfn)
2565 end_pfn = max_low_pfn;
2566
2567 size_pages = end_pfn - early_node_map[i].start_pfn;
2568 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2569 PFN_PHYS(early_node_map[i].start_pfn),
2570 size_pages << PAGE_SHIFT);
2571 }
2572 }
2573
2574 /**
2575 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2576 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2577 *
2578 * If an architecture guarantees that all ranges registered with
2579 * add_active_ranges() contain no holes and may be freed, this
2580 * function may be used instead of calling memory_present() manually.
2581 */
2582 void __init sparse_memory_present_with_active_regions(int nid)
2583 {
2584 int i;
2585
2586 for_each_active_range_index_in_nid(i, nid)
2587 memory_present(early_node_map[i].nid,
2588 early_node_map[i].start_pfn,
2589 early_node_map[i].end_pfn);
2590 }
2591
2592 /**
2593 * push_node_boundaries - Push node boundaries to at least the requested boundary
2594 * @nid: The nid of the node to push the boundary for
2595 * @start_pfn: The start pfn of the node
2596 * @end_pfn: The end pfn of the node
2597 *
2598 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2599 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2600 * be hotplugged even though no physical memory exists. This function allows
2601 * an arch to push out the node boundaries so mem_map is allocated that can
2602 * be used later.
2603 */
2604 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2605 void __init push_node_boundaries(unsigned int nid,
2606 unsigned long start_pfn, unsigned long end_pfn)
2607 {
2608 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2609 nid, start_pfn, end_pfn);
2610
2611 /* Initialise the boundary for this node if necessary */
2612 if (node_boundary_end_pfn[nid] == 0)
2613 node_boundary_start_pfn[nid] = -1UL;
2614
2615 /* Update the boundaries */
2616 if (node_boundary_start_pfn[nid] > start_pfn)
2617 node_boundary_start_pfn[nid] = start_pfn;
2618 if (node_boundary_end_pfn[nid] < end_pfn)
2619 node_boundary_end_pfn[nid] = end_pfn;
2620 }
2621
2622 /* If necessary, push the node boundary out for reserve hotadd */
2623 static void __meminit account_node_boundary(unsigned int nid,
2624 unsigned long *start_pfn, unsigned long *end_pfn)
2625 {
2626 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2627 nid, *start_pfn, *end_pfn);
2628
2629 /* Return if boundary information has not been provided */
2630 if (node_boundary_end_pfn[nid] == 0)
2631 return;
2632
2633 /* Check the boundaries and update if necessary */
2634 if (node_boundary_start_pfn[nid] < *start_pfn)
2635 *start_pfn = node_boundary_start_pfn[nid];
2636 if (node_boundary_end_pfn[nid] > *end_pfn)
2637 *end_pfn = node_boundary_end_pfn[nid];
2638 }
2639 #else
2640 void __init push_node_boundaries(unsigned int nid,
2641 unsigned long start_pfn, unsigned long end_pfn) {}
2642
2643 static void __meminit account_node_boundary(unsigned int nid,
2644 unsigned long *start_pfn, unsigned long *end_pfn) {}
2645 #endif
2646
2647
2648 /**
2649 * get_pfn_range_for_nid - Return the start and end page frames for a node
2650 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2651 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2652 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2653 *
2654 * It returns the start and end page frame of a node based on information
2655 * provided by an arch calling add_active_range(). If called for a node
2656 * with no available memory, a warning is printed and the start and end
2657 * PFNs will be 0.
2658 */
2659 void __meminit get_pfn_range_for_nid(unsigned int nid,
2660 unsigned long *start_pfn, unsigned long *end_pfn)
2661 {
2662 int i;
2663 *start_pfn = -1UL;
2664 *end_pfn = 0;
2665
2666 for_each_active_range_index_in_nid(i, nid) {
2667 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2668 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2669 }
2670
2671 if (*start_pfn == -1UL) {
2672 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2673 *start_pfn = 0;
2674 }
2675
2676 /* Push the node boundaries out if requested */
2677 account_node_boundary(nid, start_pfn, end_pfn);
2678 }
2679
2680 /*
2681 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2682 * assumption is made that zones within a node are ordered in monotonic
2683 * increasing memory addresses so that the "highest" populated zone is used
2684 */
2685 void __init find_usable_zone_for_movable(void)
2686 {
2687 int zone_index;
2688 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2689 if (zone_index == ZONE_MOVABLE)
2690 continue;
2691
2692 if (arch_zone_highest_possible_pfn[zone_index] >
2693 arch_zone_lowest_possible_pfn[zone_index])
2694 break;
2695 }
2696
2697 VM_BUG_ON(zone_index == -1);
2698 movable_zone = zone_index;
2699 }
2700
2701 /*
2702 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2703 * because it is sized independant of architecture. Unlike the other zones,
2704 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2705 * in each node depending on the size of each node and how evenly kernelcore
2706 * is distributed. This helper function adjusts the zone ranges
2707 * provided by the architecture for a given node by using the end of the
2708 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2709 * zones within a node are in order of monotonic increases memory addresses
2710 */
2711 void __meminit adjust_zone_range_for_zone_movable(int nid,
2712 unsigned long zone_type,
2713 unsigned long node_start_pfn,
2714 unsigned long node_end_pfn,
2715 unsigned long *zone_start_pfn,
2716 unsigned long *zone_end_pfn)
2717 {
2718 /* Only adjust if ZONE_MOVABLE is on this node */
2719 if (zone_movable_pfn[nid]) {
2720 /* Size ZONE_MOVABLE */
2721 if (zone_type == ZONE_MOVABLE) {
2722 *zone_start_pfn = zone_movable_pfn[nid];
2723 *zone_end_pfn = min(node_end_pfn,
2724 arch_zone_highest_possible_pfn[movable_zone]);
2725
2726 /* Adjust for ZONE_MOVABLE starting within this range */
2727 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2728 *zone_end_pfn > zone_movable_pfn[nid]) {
2729 *zone_end_pfn = zone_movable_pfn[nid];
2730
2731 /* Check if this whole range is within ZONE_MOVABLE */
2732 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2733 *zone_start_pfn = *zone_end_pfn;
2734 }
2735 }
2736
2737 /*
2738 * Return the number of pages a zone spans in a node, including holes
2739 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2740 */
2741 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2742 unsigned long zone_type,
2743 unsigned long *ignored)
2744 {
2745 unsigned long node_start_pfn, node_end_pfn;
2746 unsigned long zone_start_pfn, zone_end_pfn;
2747
2748 /* Get the start and end of the node and zone */
2749 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2750 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2751 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2752 adjust_zone_range_for_zone_movable(nid, zone_type,
2753 node_start_pfn, node_end_pfn,
2754 &zone_start_pfn, &zone_end_pfn);
2755
2756 /* Check that this node has pages within the zone's required range */
2757 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2758 return 0;
2759
2760 /* Move the zone boundaries inside the node if necessary */
2761 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2762 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2763
2764 /* Return the spanned pages */
2765 return zone_end_pfn - zone_start_pfn;
2766 }
2767
2768 /*
2769 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2770 * then all holes in the requested range will be accounted for.
2771 */
2772 unsigned long __meminit __absent_pages_in_range(int nid,
2773 unsigned long range_start_pfn,
2774 unsigned long range_end_pfn)
2775 {
2776 int i = 0;
2777 unsigned long prev_end_pfn = 0, hole_pages = 0;
2778 unsigned long start_pfn;
2779
2780 /* Find the end_pfn of the first active range of pfns in the node */
2781 i = first_active_region_index_in_nid(nid);
2782 if (i == -1)
2783 return 0;
2784
2785 /* Account for ranges before physical memory on this node */
2786 if (early_node_map[i].start_pfn > range_start_pfn)
2787 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2788
2789 prev_end_pfn = early_node_map[i].start_pfn;
2790
2791 /* Find all holes for the zone within the node */
2792 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2793
2794 /* No need to continue if prev_end_pfn is outside the zone */
2795 if (prev_end_pfn >= range_end_pfn)
2796 break;
2797
2798 /* Make sure the end of the zone is not within the hole */
2799 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2800 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2801
2802 /* Update the hole size cound and move on */
2803 if (start_pfn > range_start_pfn) {
2804 BUG_ON(prev_end_pfn > start_pfn);
2805 hole_pages += start_pfn - prev_end_pfn;
2806 }
2807 prev_end_pfn = early_node_map[i].end_pfn;
2808 }
2809
2810 /* Account for ranges past physical memory on this node */
2811 if (range_end_pfn > prev_end_pfn)
2812 hole_pages += range_end_pfn -
2813 max(range_start_pfn, prev_end_pfn);
2814
2815 return hole_pages;
2816 }
2817
2818 /**
2819 * absent_pages_in_range - Return number of page frames in holes within a range
2820 * @start_pfn: The start PFN to start searching for holes
2821 * @end_pfn: The end PFN to stop searching for holes
2822 *
2823 * It returns the number of pages frames in memory holes within a range.
2824 */
2825 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2826 unsigned long end_pfn)
2827 {
2828 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2829 }
2830
2831 /* Return the number of page frames in holes in a zone on a node */
2832 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2833 unsigned long zone_type,
2834 unsigned long *ignored)
2835 {
2836 unsigned long node_start_pfn, node_end_pfn;
2837 unsigned long zone_start_pfn, zone_end_pfn;
2838
2839 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2840 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2841 node_start_pfn);
2842 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2843 node_end_pfn);
2844
2845 adjust_zone_range_for_zone_movable(nid, zone_type,
2846 node_start_pfn, node_end_pfn,
2847 &zone_start_pfn, &zone_end_pfn);
2848 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2849 }
2850
2851 #else
2852 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2853 unsigned long zone_type,
2854 unsigned long *zones_size)
2855 {
2856 return zones_size[zone_type];
2857 }
2858
2859 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2860 unsigned long zone_type,
2861 unsigned long *zholes_size)
2862 {
2863 if (!zholes_size)
2864 return 0;
2865
2866 return zholes_size[zone_type];
2867 }
2868
2869 #endif
2870
2871 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2872 unsigned long *zones_size, unsigned long *zholes_size)
2873 {
2874 unsigned long realtotalpages, totalpages = 0;
2875 enum zone_type i;
2876
2877 for (i = 0; i < MAX_NR_ZONES; i++)
2878 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2879 zones_size);
2880 pgdat->node_spanned_pages = totalpages;
2881
2882 realtotalpages = totalpages;
2883 for (i = 0; i < MAX_NR_ZONES; i++)
2884 realtotalpages -=
2885 zone_absent_pages_in_node(pgdat->node_id, i,
2886 zholes_size);
2887 pgdat->node_present_pages = realtotalpages;
2888 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2889 realtotalpages);
2890 }
2891
2892 /*
2893 * Set up the zone data structures:
2894 * - mark all pages reserved
2895 * - mark all memory queues empty
2896 * - clear the memory bitmaps
2897 */
2898 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2899 unsigned long *zones_size, unsigned long *zholes_size)
2900 {
2901 enum zone_type j;
2902 int nid = pgdat->node_id;
2903 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2904 int ret;
2905
2906 pgdat_resize_init(pgdat);
2907 pgdat->nr_zones = 0;
2908 init_waitqueue_head(&pgdat->kswapd_wait);
2909 pgdat->kswapd_max_order = 0;
2910
2911 for (j = 0; j < MAX_NR_ZONES; j++) {
2912 struct zone *zone = pgdat->node_zones + j;
2913 unsigned long size, realsize, memmap_pages;
2914
2915 size = zone_spanned_pages_in_node(nid, j, zones_size);
2916 realsize = size - zone_absent_pages_in_node(nid, j,
2917 zholes_size);
2918
2919 /*
2920 * Adjust realsize so that it accounts for how much memory
2921 * is used by this zone for memmap. This affects the watermark
2922 * and per-cpu initialisations
2923 */
2924 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2925 if (realsize >= memmap_pages) {
2926 realsize -= memmap_pages;
2927 printk(KERN_DEBUG
2928 " %s zone: %lu pages used for memmap\n",
2929 zone_names[j], memmap_pages);
2930 } else
2931 printk(KERN_WARNING
2932 " %s zone: %lu pages exceeds realsize %lu\n",
2933 zone_names[j], memmap_pages, realsize);
2934
2935 /* Account for reserved pages */
2936 if (j == 0 && realsize > dma_reserve) {
2937 realsize -= dma_reserve;
2938 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2939 zone_names[0], dma_reserve);
2940 }
2941
2942 if (!is_highmem_idx(j))
2943 nr_kernel_pages += realsize;
2944 nr_all_pages += realsize;
2945
2946 zone->spanned_pages = size;
2947 zone->present_pages = realsize;
2948 #ifdef CONFIG_NUMA
2949 zone->node = nid;
2950 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2951 / 100;
2952 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2953 #endif
2954 zone->name = zone_names[j];
2955 spin_lock_init(&zone->lock);
2956 spin_lock_init(&zone->lru_lock);
2957 zone_seqlock_init(zone);
2958 zone->zone_pgdat = pgdat;
2959
2960 zone->prev_priority = DEF_PRIORITY;
2961
2962 zone_pcp_init(zone);
2963 INIT_LIST_HEAD(&zone->active_list);
2964 INIT_LIST_HEAD(&zone->inactive_list);
2965 zone->nr_scan_active = 0;
2966 zone->nr_scan_inactive = 0;
2967 zap_zone_vm_stats(zone);
2968 atomic_set(&zone->reclaim_in_progress, 0);
2969 if (!size)
2970 continue;
2971
2972 ret = init_currently_empty_zone(zone, zone_start_pfn,
2973 size, MEMMAP_EARLY);
2974 BUG_ON(ret);
2975 zone_start_pfn += size;
2976 }
2977 }
2978
2979 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2980 {
2981 /* Skip empty nodes */
2982 if (!pgdat->node_spanned_pages)
2983 return;
2984
2985 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2986 /* ia64 gets its own node_mem_map, before this, without bootmem */
2987 if (!pgdat->node_mem_map) {
2988 unsigned long size, start, end;
2989 struct page *map;
2990
2991 /*
2992 * The zone's endpoints aren't required to be MAX_ORDER
2993 * aligned but the node_mem_map endpoints must be in order
2994 * for the buddy allocator to function correctly.
2995 */
2996 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2997 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2998 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2999 size = (end - start) * sizeof(struct page);
3000 map = alloc_remap(pgdat->node_id, size);
3001 if (!map)
3002 map = alloc_bootmem_node(pgdat, size);
3003 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3004 }
3005 #ifndef CONFIG_NEED_MULTIPLE_NODES
3006 /*
3007 * With no DISCONTIG, the global mem_map is just set as node 0's
3008 */
3009 if (pgdat == NODE_DATA(0)) {
3010 mem_map = NODE_DATA(0)->node_mem_map;
3011 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3012 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3013 mem_map -= pgdat->node_start_pfn;
3014 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3015 }
3016 #endif
3017 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3018 }
3019
3020 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3021 unsigned long *zones_size, unsigned long node_start_pfn,
3022 unsigned long *zholes_size)
3023 {
3024 pgdat->node_id = nid;
3025 pgdat->node_start_pfn = node_start_pfn;
3026 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3027
3028 alloc_node_mem_map(pgdat);
3029
3030 free_area_init_core(pgdat, zones_size, zholes_size);
3031 }
3032
3033 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3034
3035 #if MAX_NUMNODES > 1
3036 /*
3037 * Figure out the number of possible node ids.
3038 */
3039 static void __init setup_nr_node_ids(void)
3040 {
3041 unsigned int node;
3042 unsigned int highest = 0;
3043
3044 for_each_node_mask(node, node_possible_map)
3045 highest = node;
3046 nr_node_ids = highest + 1;
3047 }
3048 #else
3049 static inline void setup_nr_node_ids(void)
3050 {
3051 }
3052 #endif
3053
3054 /**
3055 * add_active_range - Register a range of PFNs backed by physical memory
3056 * @nid: The node ID the range resides on
3057 * @start_pfn: The start PFN of the available physical memory
3058 * @end_pfn: The end PFN of the available physical memory
3059 *
3060 * These ranges are stored in an early_node_map[] and later used by
3061 * free_area_init_nodes() to calculate zone sizes and holes. If the
3062 * range spans a memory hole, it is up to the architecture to ensure
3063 * the memory is not freed by the bootmem allocator. If possible
3064 * the range being registered will be merged with existing ranges.
3065 */
3066 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3067 unsigned long end_pfn)
3068 {
3069 int i;
3070
3071 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3072 "%d entries of %d used\n",
3073 nid, start_pfn, end_pfn,
3074 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3075
3076 /* Merge with existing active regions if possible */
3077 for (i = 0; i < nr_nodemap_entries; i++) {
3078 if (early_node_map[i].nid != nid)
3079 continue;
3080
3081 /* Skip if an existing region covers this new one */
3082 if (start_pfn >= early_node_map[i].start_pfn &&
3083 end_pfn <= early_node_map[i].end_pfn)
3084 return;
3085
3086 /* Merge forward if suitable */
3087 if (start_pfn <= early_node_map[i].end_pfn &&
3088 end_pfn > early_node_map[i].end_pfn) {
3089 early_node_map[i].end_pfn = end_pfn;
3090 return;
3091 }
3092
3093 /* Merge backward if suitable */
3094 if (start_pfn < early_node_map[i].end_pfn &&
3095 end_pfn >= early_node_map[i].start_pfn) {
3096 early_node_map[i].start_pfn = start_pfn;
3097 return;
3098 }
3099 }
3100
3101 /* Check that early_node_map is large enough */
3102 if (i >= MAX_ACTIVE_REGIONS) {
3103 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3104 MAX_ACTIVE_REGIONS);
3105 return;
3106 }
3107
3108 early_node_map[i].nid = nid;
3109 early_node_map[i].start_pfn = start_pfn;
3110 early_node_map[i].end_pfn = end_pfn;
3111 nr_nodemap_entries = i + 1;
3112 }
3113
3114 /**
3115 * shrink_active_range - Shrink an existing registered range of PFNs
3116 * @nid: The node id the range is on that should be shrunk
3117 * @old_end_pfn: The old end PFN of the range
3118 * @new_end_pfn: The new PFN of the range
3119 *
3120 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3121 * The map is kept at the end physical page range that has already been
3122 * registered with add_active_range(). This function allows an arch to shrink
3123 * an existing registered range.
3124 */
3125 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3126 unsigned long new_end_pfn)
3127 {
3128 int i;
3129
3130 /* Find the old active region end and shrink */
3131 for_each_active_range_index_in_nid(i, nid)
3132 if (early_node_map[i].end_pfn == old_end_pfn) {
3133 early_node_map[i].end_pfn = new_end_pfn;
3134 break;
3135 }
3136 }
3137
3138 /**
3139 * remove_all_active_ranges - Remove all currently registered regions
3140 *
3141 * During discovery, it may be found that a table like SRAT is invalid
3142 * and an alternative discovery method must be used. This function removes
3143 * all currently registered regions.
3144 */
3145 void __init remove_all_active_ranges(void)
3146 {
3147 memset(early_node_map, 0, sizeof(early_node_map));
3148 nr_nodemap_entries = 0;
3149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3150 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3151 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3153 }
3154
3155 /* Compare two active node_active_regions */
3156 static int __init cmp_node_active_region(const void *a, const void *b)
3157 {
3158 struct node_active_region *arange = (struct node_active_region *)a;
3159 struct node_active_region *brange = (struct node_active_region *)b;
3160
3161 /* Done this way to avoid overflows */
3162 if (arange->start_pfn > brange->start_pfn)
3163 return 1;
3164 if (arange->start_pfn < brange->start_pfn)
3165 return -1;
3166
3167 return 0;
3168 }
3169
3170 /* sort the node_map by start_pfn */
3171 static void __init sort_node_map(void)
3172 {
3173 sort(early_node_map, (size_t)nr_nodemap_entries,
3174 sizeof(struct node_active_region),
3175 cmp_node_active_region, NULL);
3176 }
3177
3178 /* Find the lowest pfn for a node */
3179 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3180 {
3181 int i;
3182 unsigned long min_pfn = ULONG_MAX;
3183
3184 /* Assuming a sorted map, the first range found has the starting pfn */
3185 for_each_active_range_index_in_nid(i, nid)
3186 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3187
3188 if (min_pfn == ULONG_MAX) {
3189 printk(KERN_WARNING
3190 "Could not find start_pfn for node %lu\n", nid);
3191 return 0;
3192 }
3193
3194 return min_pfn;
3195 }
3196
3197 /**
3198 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3199 *
3200 * It returns the minimum PFN based on information provided via
3201 * add_active_range().
3202 */
3203 unsigned long __init find_min_pfn_with_active_regions(void)
3204 {
3205 return find_min_pfn_for_node(MAX_NUMNODES);
3206 }
3207
3208 /**
3209 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3210 *
3211 * It returns the maximum PFN based on information provided via
3212 * add_active_range().
3213 */
3214 unsigned long __init find_max_pfn_with_active_regions(void)
3215 {
3216 int i;
3217 unsigned long max_pfn = 0;
3218
3219 for (i = 0; i < nr_nodemap_entries; i++)
3220 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3221
3222 return max_pfn;
3223 }
3224
3225 unsigned long __init early_calculate_totalpages(void)
3226 {
3227 int i;
3228 unsigned long totalpages = 0;
3229
3230 for (i = 0; i < nr_nodemap_entries; i++)
3231 totalpages += early_node_map[i].end_pfn -
3232 early_node_map[i].start_pfn;
3233
3234 return totalpages;
3235 }
3236
3237 /*
3238 * Find the PFN the Movable zone begins in each node. Kernel memory
3239 * is spread evenly between nodes as long as the nodes have enough
3240 * memory. When they don't, some nodes will have more kernelcore than
3241 * others
3242 */
3243 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3244 {
3245 int i, nid;
3246 unsigned long usable_startpfn;
3247 unsigned long kernelcore_node, kernelcore_remaining;
3248 int usable_nodes = num_online_nodes();
3249
3250 /*
3251 * If movablecore was specified, calculate what size of
3252 * kernelcore that corresponds so that memory usable for
3253 * any allocation type is evenly spread. If both kernelcore
3254 * and movablecore are specified, then the value of kernelcore
3255 * will be used for required_kernelcore if it's greater than
3256 * what movablecore would have allowed.
3257 */
3258 if (required_movablecore) {
3259 unsigned long totalpages = early_calculate_totalpages();
3260 unsigned long corepages;
3261
3262 /*
3263 * Round-up so that ZONE_MOVABLE is at least as large as what
3264 * was requested by the user
3265 */
3266 required_movablecore =
3267 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3268 corepages = totalpages - required_movablecore;
3269
3270 required_kernelcore = max(required_kernelcore, corepages);
3271 }
3272
3273 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3274 if (!required_kernelcore)
3275 return;
3276
3277 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3278 find_usable_zone_for_movable();
3279 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3280
3281 restart:
3282 /* Spread kernelcore memory as evenly as possible throughout nodes */
3283 kernelcore_node = required_kernelcore / usable_nodes;
3284 for_each_online_node(nid) {
3285 /*
3286 * Recalculate kernelcore_node if the division per node
3287 * now exceeds what is necessary to satisfy the requested
3288 * amount of memory for the kernel
3289 */
3290 if (required_kernelcore < kernelcore_node)
3291 kernelcore_node = required_kernelcore / usable_nodes;
3292
3293 /*
3294 * As the map is walked, we track how much memory is usable
3295 * by the kernel using kernelcore_remaining. When it is
3296 * 0, the rest of the node is usable by ZONE_MOVABLE
3297 */
3298 kernelcore_remaining = kernelcore_node;
3299
3300 /* Go through each range of PFNs within this node */
3301 for_each_active_range_index_in_nid(i, nid) {
3302 unsigned long start_pfn, end_pfn;
3303 unsigned long size_pages;
3304
3305 start_pfn = max(early_node_map[i].start_pfn,
3306 zone_movable_pfn[nid]);
3307 end_pfn = early_node_map[i].end_pfn;
3308 if (start_pfn >= end_pfn)
3309 continue;
3310
3311 /* Account for what is only usable for kernelcore */
3312 if (start_pfn < usable_startpfn) {
3313 unsigned long kernel_pages;
3314 kernel_pages = min(end_pfn, usable_startpfn)
3315 - start_pfn;
3316
3317 kernelcore_remaining -= min(kernel_pages,
3318 kernelcore_remaining);
3319 required_kernelcore -= min(kernel_pages,
3320 required_kernelcore);
3321
3322 /* Continue if range is now fully accounted */
3323 if (end_pfn <= usable_startpfn) {
3324
3325 /*
3326 * Push zone_movable_pfn to the end so
3327 * that if we have to rebalance
3328 * kernelcore across nodes, we will
3329 * not double account here
3330 */
3331 zone_movable_pfn[nid] = end_pfn;
3332 continue;
3333 }
3334 start_pfn = usable_startpfn;
3335 }
3336
3337 /*
3338 * The usable PFN range for ZONE_MOVABLE is from
3339 * start_pfn->end_pfn. Calculate size_pages as the
3340 * number of pages used as kernelcore
3341 */
3342 size_pages = end_pfn - start_pfn;
3343 if (size_pages > kernelcore_remaining)
3344 size_pages = kernelcore_remaining;
3345 zone_movable_pfn[nid] = start_pfn + size_pages;
3346
3347 /*
3348 * Some kernelcore has been met, update counts and
3349 * break if the kernelcore for this node has been
3350 * satisified
3351 */
3352 required_kernelcore -= min(required_kernelcore,
3353 size_pages);
3354 kernelcore_remaining -= size_pages;
3355 if (!kernelcore_remaining)
3356 break;
3357 }
3358 }
3359
3360 /*
3361 * If there is still required_kernelcore, we do another pass with one
3362 * less node in the count. This will push zone_movable_pfn[nid] further
3363 * along on the nodes that still have memory until kernelcore is
3364 * satisified
3365 */
3366 usable_nodes--;
3367 if (usable_nodes && required_kernelcore > usable_nodes)
3368 goto restart;
3369
3370 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3371 for (nid = 0; nid < MAX_NUMNODES; nid++)
3372 zone_movable_pfn[nid] =
3373 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3374 }
3375
3376 /**
3377 * free_area_init_nodes - Initialise all pg_data_t and zone data
3378 * @max_zone_pfn: an array of max PFNs for each zone
3379 *
3380 * This will call free_area_init_node() for each active node in the system.
3381 * Using the page ranges provided by add_active_range(), the size of each
3382 * zone in each node and their holes is calculated. If the maximum PFN
3383 * between two adjacent zones match, it is assumed that the zone is empty.
3384 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3385 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3386 * starts where the previous one ended. For example, ZONE_DMA32 starts
3387 * at arch_max_dma_pfn.
3388 */
3389 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3390 {
3391 unsigned long nid;
3392 enum zone_type i;
3393
3394 /* Sort early_node_map as initialisation assumes it is sorted */
3395 sort_node_map();
3396
3397 /* Record where the zone boundaries are */
3398 memset(arch_zone_lowest_possible_pfn, 0,
3399 sizeof(arch_zone_lowest_possible_pfn));
3400 memset(arch_zone_highest_possible_pfn, 0,
3401 sizeof(arch_zone_highest_possible_pfn));
3402 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3403 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3404 for (i = 1; i < MAX_NR_ZONES; i++) {
3405 if (i == ZONE_MOVABLE)
3406 continue;
3407 arch_zone_lowest_possible_pfn[i] =
3408 arch_zone_highest_possible_pfn[i-1];
3409 arch_zone_highest_possible_pfn[i] =
3410 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3411 }
3412 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3413 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3414
3415 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3416 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3417 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3418
3419 /* Print out the zone ranges */
3420 printk("Zone PFN ranges:\n");
3421 for (i = 0; i < MAX_NR_ZONES; i++) {
3422 if (i == ZONE_MOVABLE)
3423 continue;
3424 printk(" %-8s %8lu -> %8lu\n",
3425 zone_names[i],
3426 arch_zone_lowest_possible_pfn[i],
3427 arch_zone_highest_possible_pfn[i]);
3428 }
3429
3430 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3431 printk("Movable zone start PFN for each node\n");
3432 for (i = 0; i < MAX_NUMNODES; i++) {
3433 if (zone_movable_pfn[i])
3434 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3435 }
3436
3437 /* Print out the early_node_map[] */
3438 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3439 for (i = 0; i < nr_nodemap_entries; i++)
3440 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3441 early_node_map[i].start_pfn,
3442 early_node_map[i].end_pfn);
3443
3444 /* Initialise every node */
3445 setup_nr_node_ids();
3446 for_each_online_node(nid) {
3447 pg_data_t *pgdat = NODE_DATA(nid);
3448 free_area_init_node(nid, pgdat, NULL,
3449 find_min_pfn_for_node(nid), NULL);
3450 }
3451 }
3452
3453 static int __init cmdline_parse_core(char *p, unsigned long *core)
3454 {
3455 unsigned long long coremem;
3456 if (!p)
3457 return -EINVAL;
3458
3459 coremem = memparse(p, &p);
3460 *core = coremem >> PAGE_SHIFT;
3461
3462 /* Paranoid check that UL is enough for the coremem value */
3463 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3464
3465 return 0;
3466 }
3467
3468 /*
3469 * kernelcore=size sets the amount of memory for use for allocations that
3470 * cannot be reclaimed or migrated.
3471 */
3472 static int __init cmdline_parse_kernelcore(char *p)
3473 {
3474 return cmdline_parse_core(p, &required_kernelcore);
3475 }
3476
3477 /*
3478 * movablecore=size sets the amount of memory for use for allocations that
3479 * can be reclaimed or migrated.
3480 */
3481 static int __init cmdline_parse_movablecore(char *p)
3482 {
3483 return cmdline_parse_core(p, &required_movablecore);
3484 }
3485
3486 early_param("kernelcore", cmdline_parse_kernelcore);
3487 early_param("movablecore", cmdline_parse_movablecore);
3488
3489 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3490
3491 /**
3492 * set_dma_reserve - set the specified number of pages reserved in the first zone
3493 * @new_dma_reserve: The number of pages to mark reserved
3494 *
3495 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3496 * In the DMA zone, a significant percentage may be consumed by kernel image
3497 * and other unfreeable allocations which can skew the watermarks badly. This
3498 * function may optionally be used to account for unfreeable pages in the
3499 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3500 * smaller per-cpu batchsize.
3501 */
3502 void __init set_dma_reserve(unsigned long new_dma_reserve)
3503 {
3504 dma_reserve = new_dma_reserve;
3505 }
3506
3507 #ifndef CONFIG_NEED_MULTIPLE_NODES
3508 static bootmem_data_t contig_bootmem_data;
3509 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3510
3511 EXPORT_SYMBOL(contig_page_data);
3512 #endif
3513
3514 void __init free_area_init(unsigned long *zones_size)
3515 {
3516 free_area_init_node(0, NODE_DATA(0), zones_size,
3517 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3518 }
3519
3520 static int page_alloc_cpu_notify(struct notifier_block *self,
3521 unsigned long action, void *hcpu)
3522 {
3523 int cpu = (unsigned long)hcpu;
3524
3525 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3526 local_irq_disable();
3527 __drain_pages(cpu);
3528 vm_events_fold_cpu(cpu);
3529 local_irq_enable();
3530 refresh_cpu_vm_stats(cpu);
3531 }
3532 return NOTIFY_OK;
3533 }
3534
3535 void __init page_alloc_init(void)
3536 {
3537 hotcpu_notifier(page_alloc_cpu_notify, 0);
3538 }
3539
3540 /*
3541 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3542 * or min_free_kbytes changes.
3543 */
3544 static void calculate_totalreserve_pages(void)
3545 {
3546 struct pglist_data *pgdat;
3547 unsigned long reserve_pages = 0;
3548 enum zone_type i, j;
3549
3550 for_each_online_pgdat(pgdat) {
3551 for (i = 0; i < MAX_NR_ZONES; i++) {
3552 struct zone *zone = pgdat->node_zones + i;
3553 unsigned long max = 0;
3554
3555 /* Find valid and maximum lowmem_reserve in the zone */
3556 for (j = i; j < MAX_NR_ZONES; j++) {
3557 if (zone->lowmem_reserve[j] > max)
3558 max = zone->lowmem_reserve[j];
3559 }
3560
3561 /* we treat pages_high as reserved pages. */
3562 max += zone->pages_high;
3563
3564 if (max > zone->present_pages)
3565 max = zone->present_pages;
3566 reserve_pages += max;
3567 }
3568 }
3569 totalreserve_pages = reserve_pages;
3570 }
3571
3572 /*
3573 * setup_per_zone_lowmem_reserve - called whenever
3574 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3575 * has a correct pages reserved value, so an adequate number of
3576 * pages are left in the zone after a successful __alloc_pages().
3577 */
3578 static void setup_per_zone_lowmem_reserve(void)
3579 {
3580 struct pglist_data *pgdat;
3581 enum zone_type j, idx;
3582
3583 for_each_online_pgdat(pgdat) {
3584 for (j = 0; j < MAX_NR_ZONES; j++) {
3585 struct zone *zone = pgdat->node_zones + j;
3586 unsigned long present_pages = zone->present_pages;
3587
3588 zone->lowmem_reserve[j] = 0;
3589
3590 idx = j;
3591 while (idx) {
3592 struct zone *lower_zone;
3593
3594 idx--;
3595
3596 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3597 sysctl_lowmem_reserve_ratio[idx] = 1;
3598
3599 lower_zone = pgdat->node_zones + idx;
3600 lower_zone->lowmem_reserve[j] = present_pages /
3601 sysctl_lowmem_reserve_ratio[idx];
3602 present_pages += lower_zone->present_pages;
3603 }
3604 }
3605 }
3606
3607 /* update totalreserve_pages */
3608 calculate_totalreserve_pages();
3609 }
3610
3611 /**
3612 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3613 *
3614 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3615 * with respect to min_free_kbytes.
3616 */
3617 void setup_per_zone_pages_min(void)
3618 {
3619 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3620 unsigned long lowmem_pages = 0;
3621 struct zone *zone;
3622 unsigned long flags;
3623
3624 /* Calculate total number of !ZONE_HIGHMEM pages */
3625 for_each_zone(zone) {
3626 if (!is_highmem(zone))
3627 lowmem_pages += zone->present_pages;
3628 }
3629
3630 for_each_zone(zone) {
3631 u64 tmp;
3632
3633 spin_lock_irqsave(&zone->lru_lock, flags);
3634 tmp = (u64)pages_min * zone->present_pages;
3635 do_div(tmp, lowmem_pages);
3636 if (is_highmem(zone)) {
3637 /*
3638 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3639 * need highmem pages, so cap pages_min to a small
3640 * value here.
3641 *
3642 * The (pages_high-pages_low) and (pages_low-pages_min)
3643 * deltas controls asynch page reclaim, and so should
3644 * not be capped for highmem.
3645 */
3646 int min_pages;
3647
3648 min_pages = zone->present_pages / 1024;
3649 if (min_pages < SWAP_CLUSTER_MAX)
3650 min_pages = SWAP_CLUSTER_MAX;
3651 if (min_pages > 128)
3652 min_pages = 128;
3653 zone->pages_min = min_pages;
3654 } else {
3655 /*
3656 * If it's a lowmem zone, reserve a number of pages
3657 * proportionate to the zone's size.
3658 */
3659 zone->pages_min = tmp;
3660 }
3661
3662 zone->pages_low = zone->pages_min + (tmp >> 2);
3663 zone->pages_high = zone->pages_min + (tmp >> 1);
3664 spin_unlock_irqrestore(&zone->lru_lock, flags);
3665 }
3666
3667 /* update totalreserve_pages */
3668 calculate_totalreserve_pages();
3669 }
3670
3671 /*
3672 * Initialise min_free_kbytes.
3673 *
3674 * For small machines we want it small (128k min). For large machines
3675 * we want it large (64MB max). But it is not linear, because network
3676 * bandwidth does not increase linearly with machine size. We use
3677 *
3678 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3679 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3680 *
3681 * which yields
3682 *
3683 * 16MB: 512k
3684 * 32MB: 724k
3685 * 64MB: 1024k
3686 * 128MB: 1448k
3687 * 256MB: 2048k
3688 * 512MB: 2896k
3689 * 1024MB: 4096k
3690 * 2048MB: 5792k
3691 * 4096MB: 8192k
3692 * 8192MB: 11584k
3693 * 16384MB: 16384k
3694 */
3695 static int __init init_per_zone_pages_min(void)
3696 {
3697 unsigned long lowmem_kbytes;
3698
3699 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3700
3701 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3702 if (min_free_kbytes < 128)
3703 min_free_kbytes = 128;
3704 if (min_free_kbytes > 65536)
3705 min_free_kbytes = 65536;
3706 setup_per_zone_pages_min();
3707 setup_per_zone_lowmem_reserve();
3708 return 0;
3709 }
3710 module_init(init_per_zone_pages_min)
3711
3712 /*
3713 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3714 * that we can call two helper functions whenever min_free_kbytes
3715 * changes.
3716 */
3717 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3718 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3719 {
3720 proc_dointvec(table, write, file, buffer, length, ppos);
3721 if (write)
3722 setup_per_zone_pages_min();
3723 return 0;
3724 }
3725
3726 #ifdef CONFIG_NUMA
3727 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3728 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3729 {
3730 struct zone *zone;
3731 int rc;
3732
3733 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3734 if (rc)
3735 return rc;
3736
3737 for_each_zone(zone)
3738 zone->min_unmapped_pages = (zone->present_pages *
3739 sysctl_min_unmapped_ratio) / 100;
3740 return 0;
3741 }
3742
3743 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3744 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3745 {
3746 struct zone *zone;
3747 int rc;
3748
3749 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3750 if (rc)
3751 return rc;
3752
3753 for_each_zone(zone)
3754 zone->min_slab_pages = (zone->present_pages *
3755 sysctl_min_slab_ratio) / 100;
3756 return 0;
3757 }
3758 #endif
3759
3760 /*
3761 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3762 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3763 * whenever sysctl_lowmem_reserve_ratio changes.
3764 *
3765 * The reserve ratio obviously has absolutely no relation with the
3766 * pages_min watermarks. The lowmem reserve ratio can only make sense
3767 * if in function of the boot time zone sizes.
3768 */
3769 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3770 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3771 {
3772 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3773 setup_per_zone_lowmem_reserve();
3774 return 0;
3775 }
3776
3777 /*
3778 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3779 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3780 * can have before it gets flushed back to buddy allocator.
3781 */
3782
3783 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3784 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3785 {
3786 struct zone *zone;
3787 unsigned int cpu;
3788 int ret;
3789
3790 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3791 if (!write || (ret == -EINVAL))
3792 return ret;
3793 for_each_zone(zone) {
3794 for_each_online_cpu(cpu) {
3795 unsigned long high;
3796 high = zone->present_pages / percpu_pagelist_fraction;
3797 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3798 }
3799 }
3800 return 0;
3801 }
3802
3803 int hashdist = HASHDIST_DEFAULT;
3804
3805 #ifdef CONFIG_NUMA
3806 static int __init set_hashdist(char *str)
3807 {
3808 if (!str)
3809 return 0;
3810 hashdist = simple_strtoul(str, &str, 0);
3811 return 1;
3812 }
3813 __setup("hashdist=", set_hashdist);
3814 #endif
3815
3816 /*
3817 * allocate a large system hash table from bootmem
3818 * - it is assumed that the hash table must contain an exact power-of-2
3819 * quantity of entries
3820 * - limit is the number of hash buckets, not the total allocation size
3821 */
3822 void *__init alloc_large_system_hash(const char *tablename,
3823 unsigned long bucketsize,
3824 unsigned long numentries,
3825 int scale,
3826 int flags,
3827 unsigned int *_hash_shift,
3828 unsigned int *_hash_mask,
3829 unsigned long limit)
3830 {
3831 unsigned long long max = limit;
3832 unsigned long log2qty, size;
3833 void *table = NULL;
3834
3835 /* allow the kernel cmdline to have a say */
3836 if (!numentries) {
3837 /* round applicable memory size up to nearest megabyte */
3838 numentries = nr_kernel_pages;
3839 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3840 numentries >>= 20 - PAGE_SHIFT;
3841 numentries <<= 20 - PAGE_SHIFT;
3842
3843 /* limit to 1 bucket per 2^scale bytes of low memory */
3844 if (scale > PAGE_SHIFT)
3845 numentries >>= (scale - PAGE_SHIFT);
3846 else
3847 numentries <<= (PAGE_SHIFT - scale);
3848
3849 /* Make sure we've got at least a 0-order allocation.. */
3850 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3851 numentries = PAGE_SIZE / bucketsize;
3852 }
3853 numentries = roundup_pow_of_two(numentries);
3854
3855 /* limit allocation size to 1/16 total memory by default */
3856 if (max == 0) {
3857 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3858 do_div(max, bucketsize);
3859 }
3860
3861 if (numentries > max)
3862 numentries = max;
3863
3864 log2qty = ilog2(numentries);
3865
3866 do {
3867 size = bucketsize << log2qty;
3868 if (flags & HASH_EARLY)
3869 table = alloc_bootmem(size);
3870 else if (hashdist)
3871 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3872 else {
3873 unsigned long order;
3874 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3875 ;
3876 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3877 /*
3878 * If bucketsize is not a power-of-two, we may free
3879 * some pages at the end of hash table.
3880 */
3881 if (table) {
3882 unsigned long alloc_end = (unsigned long)table +
3883 (PAGE_SIZE << order);
3884 unsigned long used = (unsigned long)table +
3885 PAGE_ALIGN(size);
3886 split_page(virt_to_page(table), order);
3887 while (used < alloc_end) {
3888 free_page(used);
3889 used += PAGE_SIZE;
3890 }
3891 }
3892 }
3893 } while (!table && size > PAGE_SIZE && --log2qty);
3894
3895 if (!table)
3896 panic("Failed to allocate %s hash table\n", tablename);
3897
3898 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3899 tablename,
3900 (1U << log2qty),
3901 ilog2(size) - PAGE_SHIFT,
3902 size);
3903
3904 if (_hash_shift)
3905 *_hash_shift = log2qty;
3906 if (_hash_mask)
3907 *_hash_mask = (1 << log2qty) - 1;
3908
3909 return table;
3910 }
3911
3912 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3913 struct page *pfn_to_page(unsigned long pfn)
3914 {
3915 return __pfn_to_page(pfn);
3916 }
3917 unsigned long page_to_pfn(struct page *page)
3918 {
3919 return __page_to_pfn(page);
3920 }
3921 EXPORT_SYMBOL(pfn_to_page);
3922 EXPORT_SYMBOL(page_to_pfn);
3923 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3924
3925
This page took 0.129715 seconds and 6 git commands to generate.