oom, PM: make OOM detection in the freezer path raceless
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/page_owner.h>
63
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 #define MIN_PERCPU_PAGELIST_FRACTION (8)
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 int _node_numa_mem_[MAX_NUMNODES];
88 #endif
89
90 /*
91 * Array of node states.
92 */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 [N_CPU] = { { [0] = 1UL } },
105 #endif /* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 unsigned long totalcma_pages __read_mostly;
115 /*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121 unsigned long dirty_balance_reserve __read_mostly;
122
123 int percpu_pagelist_fraction;
124 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125
126 #ifdef CONFIG_PM_SLEEP
127 /*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
135
136 static gfp_t saved_gfp_mask;
137
138 void pm_restore_gfp_mask(void)
139 {
140 WARN_ON(!mutex_is_locked(&pm_mutex));
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
145 }
146
147 void pm_restrict_gfp_mask(void)
148 {
149 WARN_ON(!mutex_is_locked(&pm_mutex));
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
153 }
154
155 bool pm_suspended_storage(void)
156 {
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160 }
161 #endif /* CONFIG_PM_SLEEP */
162
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly;
165 #endif
166
167 static void __free_pages_ok(struct page *page, unsigned int order);
168
169 /*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
179 */
180 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
181 #ifdef CONFIG_ZONE_DMA
182 256,
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 256,
186 #endif
187 #ifdef CONFIG_HIGHMEM
188 32,
189 #endif
190 32,
191 };
192
193 EXPORT_SYMBOL(totalram_pages);
194
195 static char * const zone_names[MAX_NR_ZONES] = {
196 #ifdef CONFIG_ZONE_DMA
197 "DMA",
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 "DMA32",
201 #endif
202 "Normal",
203 #ifdef CONFIG_HIGHMEM
204 "HighMem",
205 #endif
206 "Movable",
207 };
208
209 int min_free_kbytes = 1024;
210 int user_min_free_kbytes = -1;
211
212 static unsigned long __meminitdata nr_kernel_pages;
213 static unsigned long __meminitdata nr_all_pages;
214 static unsigned long __meminitdata dma_reserve;
215
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __initdata required_kernelcore;
220 static unsigned long __initdata required_movablecore;
221 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 int movable_zone;
225 EXPORT_SYMBOL(movable_zone);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227
228 #if MAX_NUMNODES > 1
229 int nr_node_ids __read_mostly = MAX_NUMNODES;
230 int nr_online_nodes __read_mostly = 1;
231 EXPORT_SYMBOL(nr_node_ids);
232 EXPORT_SYMBOL(nr_online_nodes);
233 #endif
234
235 int page_group_by_mobility_disabled __read_mostly;
236
237 void set_pageblock_migratetype(struct page *page, int migratetype)
238 {
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
241 migratetype = MIGRATE_UNMOVABLE;
242
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245 }
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
267
268 return ret;
269 }
270
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 if (!pfn_valid_within(page_to_pfn(page)))
274 return 0;
275 if (zone != page_zone(page))
276 return 0;
277
278 return 1;
279 }
280 /*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 if (page_outside_zone_boundaries(zone, page))
286 return 1;
287 if (!page_is_consistent(zone, page))
288 return 1;
289
290 return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 return 0;
296 }
297 #endif
298
299 static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
301 {
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 page_mapcount_reset(page); /* remove PageBuddy */
309 return;
310 }
311
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page_badflags(page, reason, bad_flags);
335
336 print_modules();
337 dump_stack();
338 out:
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343
344 /*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
353 *
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
357 */
358
359 static void free_compound_page(struct page *page)
360 {
361 __free_pages_ok(page, compound_order(page));
362 }
363
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
374 set_page_count(p, 0);
375 p->first_page = page;
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
379 }
380 }
381
382 static inline void prep_zero_page(struct page *page, unsigned int order,
383 gfp_t gfp_flags)
384 {
385 int i;
386
387 /*
388 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
389 * and __GFP_HIGHMEM from hard or soft interrupt context.
390 */
391 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
392 for (i = 0; i < (1 << order); i++)
393 clear_highpage(page + i);
394 }
395
396 #ifdef CONFIG_DEBUG_PAGEALLOC
397 unsigned int _debug_guardpage_minorder;
398 bool _debug_pagealloc_enabled __read_mostly;
399 bool _debug_guardpage_enabled __read_mostly;
400
401 static int __init early_debug_pagealloc(char *buf)
402 {
403 if (!buf)
404 return -EINVAL;
405
406 if (strcmp(buf, "on") == 0)
407 _debug_pagealloc_enabled = true;
408
409 return 0;
410 }
411 early_param("debug_pagealloc", early_debug_pagealloc);
412
413 static bool need_debug_guardpage(void)
414 {
415 /* If we don't use debug_pagealloc, we don't need guard page */
416 if (!debug_pagealloc_enabled())
417 return false;
418
419 return true;
420 }
421
422 static void init_debug_guardpage(void)
423 {
424 if (!debug_pagealloc_enabled())
425 return;
426
427 _debug_guardpage_enabled = true;
428 }
429
430 struct page_ext_operations debug_guardpage_ops = {
431 .need = need_debug_guardpage,
432 .init = init_debug_guardpage,
433 };
434
435 static int __init debug_guardpage_minorder_setup(char *buf)
436 {
437 unsigned long res;
438
439 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
440 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
441 return 0;
442 }
443 _debug_guardpage_minorder = res;
444 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
445 return 0;
446 }
447 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
448
449 static inline void set_page_guard(struct zone *zone, struct page *page,
450 unsigned int order, int migratetype)
451 {
452 struct page_ext *page_ext;
453
454 if (!debug_guardpage_enabled())
455 return;
456
457 page_ext = lookup_page_ext(page);
458 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
459
460 INIT_LIST_HEAD(&page->lru);
461 set_page_private(page, order);
462 /* Guard pages are not available for any usage */
463 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
464 }
465
466 static inline void clear_page_guard(struct zone *zone, struct page *page,
467 unsigned int order, int migratetype)
468 {
469 struct page_ext *page_ext;
470
471 if (!debug_guardpage_enabled())
472 return;
473
474 page_ext = lookup_page_ext(page);
475 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
476
477 set_page_private(page, 0);
478 if (!is_migrate_isolate(migratetype))
479 __mod_zone_freepage_state(zone, (1 << order), migratetype);
480 }
481 #else
482 struct page_ext_operations debug_guardpage_ops = { NULL, };
483 static inline void set_page_guard(struct zone *zone, struct page *page,
484 unsigned int order, int migratetype) {}
485 static inline void clear_page_guard(struct zone *zone, struct page *page,
486 unsigned int order, int migratetype) {}
487 #endif
488
489 static inline void set_page_order(struct page *page, unsigned int order)
490 {
491 set_page_private(page, order);
492 __SetPageBuddy(page);
493 }
494
495 static inline void rmv_page_order(struct page *page)
496 {
497 __ClearPageBuddy(page);
498 set_page_private(page, 0);
499 }
500
501 /*
502 * This function checks whether a page is free && is the buddy
503 * we can do coalesce a page and its buddy if
504 * (a) the buddy is not in a hole &&
505 * (b) the buddy is in the buddy system &&
506 * (c) a page and its buddy have the same order &&
507 * (d) a page and its buddy are in the same zone.
508 *
509 * For recording whether a page is in the buddy system, we set ->_mapcount
510 * PAGE_BUDDY_MAPCOUNT_VALUE.
511 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
512 * serialized by zone->lock.
513 *
514 * For recording page's order, we use page_private(page).
515 */
516 static inline int page_is_buddy(struct page *page, struct page *buddy,
517 unsigned int order)
518 {
519 if (!pfn_valid_within(page_to_pfn(buddy)))
520 return 0;
521
522 if (page_is_guard(buddy) && page_order(buddy) == order) {
523 if (page_zone_id(page) != page_zone_id(buddy))
524 return 0;
525
526 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
527
528 return 1;
529 }
530
531 if (PageBuddy(buddy) && page_order(buddy) == order) {
532 /*
533 * zone check is done late to avoid uselessly
534 * calculating zone/node ids for pages that could
535 * never merge.
536 */
537 if (page_zone_id(page) != page_zone_id(buddy))
538 return 0;
539
540 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
541
542 return 1;
543 }
544 return 0;
545 }
546
547 /*
548 * Freeing function for a buddy system allocator.
549 *
550 * The concept of a buddy system is to maintain direct-mapped table
551 * (containing bit values) for memory blocks of various "orders".
552 * The bottom level table contains the map for the smallest allocatable
553 * units of memory (here, pages), and each level above it describes
554 * pairs of units from the levels below, hence, "buddies".
555 * At a high level, all that happens here is marking the table entry
556 * at the bottom level available, and propagating the changes upward
557 * as necessary, plus some accounting needed to play nicely with other
558 * parts of the VM system.
559 * At each level, we keep a list of pages, which are heads of continuous
560 * free pages of length of (1 << order) and marked with _mapcount
561 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
562 * field.
563 * So when we are allocating or freeing one, we can derive the state of the
564 * other. That is, if we allocate a small block, and both were
565 * free, the remainder of the region must be split into blocks.
566 * If a block is freed, and its buddy is also free, then this
567 * triggers coalescing into a block of larger size.
568 *
569 * -- nyc
570 */
571
572 static inline void __free_one_page(struct page *page,
573 unsigned long pfn,
574 struct zone *zone, unsigned int order,
575 int migratetype)
576 {
577 unsigned long page_idx;
578 unsigned long combined_idx;
579 unsigned long uninitialized_var(buddy_idx);
580 struct page *buddy;
581 int max_order = MAX_ORDER;
582
583 VM_BUG_ON(!zone_is_initialized(zone));
584 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
585
586 VM_BUG_ON(migratetype == -1);
587 if (is_migrate_isolate(migratetype)) {
588 /*
589 * We restrict max order of merging to prevent merge
590 * between freepages on isolate pageblock and normal
591 * pageblock. Without this, pageblock isolation
592 * could cause incorrect freepage accounting.
593 */
594 max_order = min(MAX_ORDER, pageblock_order + 1);
595 } else {
596 __mod_zone_freepage_state(zone, 1 << order, migratetype);
597 }
598
599 page_idx = pfn & ((1 << max_order) - 1);
600
601 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
602 VM_BUG_ON_PAGE(bad_range(zone, page), page);
603
604 while (order < max_order - 1) {
605 buddy_idx = __find_buddy_index(page_idx, order);
606 buddy = page + (buddy_idx - page_idx);
607 if (!page_is_buddy(page, buddy, order))
608 break;
609 /*
610 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
611 * merge with it and move up one order.
612 */
613 if (page_is_guard(buddy)) {
614 clear_page_guard(zone, buddy, order, migratetype);
615 } else {
616 list_del(&buddy->lru);
617 zone->free_area[order].nr_free--;
618 rmv_page_order(buddy);
619 }
620 combined_idx = buddy_idx & page_idx;
621 page = page + (combined_idx - page_idx);
622 page_idx = combined_idx;
623 order++;
624 }
625 set_page_order(page, order);
626
627 /*
628 * If this is not the largest possible page, check if the buddy
629 * of the next-highest order is free. If it is, it's possible
630 * that pages are being freed that will coalesce soon. In case,
631 * that is happening, add the free page to the tail of the list
632 * so it's less likely to be used soon and more likely to be merged
633 * as a higher order page
634 */
635 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
636 struct page *higher_page, *higher_buddy;
637 combined_idx = buddy_idx & page_idx;
638 higher_page = page + (combined_idx - page_idx);
639 buddy_idx = __find_buddy_index(combined_idx, order + 1);
640 higher_buddy = higher_page + (buddy_idx - combined_idx);
641 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
642 list_add_tail(&page->lru,
643 &zone->free_area[order].free_list[migratetype]);
644 goto out;
645 }
646 }
647
648 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
649 out:
650 zone->free_area[order].nr_free++;
651 }
652
653 static inline int free_pages_check(struct page *page)
654 {
655 const char *bad_reason = NULL;
656 unsigned long bad_flags = 0;
657
658 if (unlikely(page_mapcount(page)))
659 bad_reason = "nonzero mapcount";
660 if (unlikely(page->mapping != NULL))
661 bad_reason = "non-NULL mapping";
662 if (unlikely(atomic_read(&page->_count) != 0))
663 bad_reason = "nonzero _count";
664 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
665 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
666 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
667 }
668 #ifdef CONFIG_MEMCG
669 if (unlikely(page->mem_cgroup))
670 bad_reason = "page still charged to cgroup";
671 #endif
672 if (unlikely(bad_reason)) {
673 bad_page(page, bad_reason, bad_flags);
674 return 1;
675 }
676 page_cpupid_reset_last(page);
677 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
678 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
679 return 0;
680 }
681
682 /*
683 * Frees a number of pages from the PCP lists
684 * Assumes all pages on list are in same zone, and of same order.
685 * count is the number of pages to free.
686 *
687 * If the zone was previously in an "all pages pinned" state then look to
688 * see if this freeing clears that state.
689 *
690 * And clear the zone's pages_scanned counter, to hold off the "all pages are
691 * pinned" detection logic.
692 */
693 static void free_pcppages_bulk(struct zone *zone, int count,
694 struct per_cpu_pages *pcp)
695 {
696 int migratetype = 0;
697 int batch_free = 0;
698 int to_free = count;
699 unsigned long nr_scanned;
700
701 spin_lock(&zone->lock);
702 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
703 if (nr_scanned)
704 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
705
706 while (to_free) {
707 struct page *page;
708 struct list_head *list;
709
710 /*
711 * Remove pages from lists in a round-robin fashion. A
712 * batch_free count is maintained that is incremented when an
713 * empty list is encountered. This is so more pages are freed
714 * off fuller lists instead of spinning excessively around empty
715 * lists
716 */
717 do {
718 batch_free++;
719 if (++migratetype == MIGRATE_PCPTYPES)
720 migratetype = 0;
721 list = &pcp->lists[migratetype];
722 } while (list_empty(list));
723
724 /* This is the only non-empty list. Free them all. */
725 if (batch_free == MIGRATE_PCPTYPES)
726 batch_free = to_free;
727
728 do {
729 int mt; /* migratetype of the to-be-freed page */
730
731 page = list_entry(list->prev, struct page, lru);
732 /* must delete as __free_one_page list manipulates */
733 list_del(&page->lru);
734 mt = get_freepage_migratetype(page);
735 if (unlikely(has_isolate_pageblock(zone)))
736 mt = get_pageblock_migratetype(page);
737
738 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
739 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
740 trace_mm_page_pcpu_drain(page, 0, mt);
741 } while (--to_free && --batch_free && !list_empty(list));
742 }
743 spin_unlock(&zone->lock);
744 }
745
746 static void free_one_page(struct zone *zone,
747 struct page *page, unsigned long pfn,
748 unsigned int order,
749 int migratetype)
750 {
751 unsigned long nr_scanned;
752 spin_lock(&zone->lock);
753 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
754 if (nr_scanned)
755 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
756
757 if (unlikely(has_isolate_pageblock(zone) ||
758 is_migrate_isolate(migratetype))) {
759 migratetype = get_pfnblock_migratetype(page, pfn);
760 }
761 __free_one_page(page, pfn, zone, order, migratetype);
762 spin_unlock(&zone->lock);
763 }
764
765 static int free_tail_pages_check(struct page *head_page, struct page *page)
766 {
767 if (!IS_ENABLED(CONFIG_DEBUG_VM))
768 return 0;
769 if (unlikely(!PageTail(page))) {
770 bad_page(page, "PageTail not set", 0);
771 return 1;
772 }
773 if (unlikely(page->first_page != head_page)) {
774 bad_page(page, "first_page not consistent", 0);
775 return 1;
776 }
777 return 0;
778 }
779
780 static bool free_pages_prepare(struct page *page, unsigned int order)
781 {
782 bool compound = PageCompound(page);
783 int i, bad = 0;
784
785 VM_BUG_ON_PAGE(PageTail(page), page);
786 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
787
788 trace_mm_page_free(page, order);
789 kmemcheck_free_shadow(page, order);
790
791 if (PageAnon(page))
792 page->mapping = NULL;
793 bad += free_pages_check(page);
794 for (i = 1; i < (1 << order); i++) {
795 if (compound)
796 bad += free_tail_pages_check(page, page + i);
797 bad += free_pages_check(page + i);
798 }
799 if (bad)
800 return false;
801
802 reset_page_owner(page, order);
803
804 if (!PageHighMem(page)) {
805 debug_check_no_locks_freed(page_address(page),
806 PAGE_SIZE << order);
807 debug_check_no_obj_freed(page_address(page),
808 PAGE_SIZE << order);
809 }
810 arch_free_page(page, order);
811 kernel_map_pages(page, 1 << order, 0);
812
813 return true;
814 }
815
816 static void __free_pages_ok(struct page *page, unsigned int order)
817 {
818 unsigned long flags;
819 int migratetype;
820 unsigned long pfn = page_to_pfn(page);
821
822 if (!free_pages_prepare(page, order))
823 return;
824
825 migratetype = get_pfnblock_migratetype(page, pfn);
826 local_irq_save(flags);
827 __count_vm_events(PGFREE, 1 << order);
828 set_freepage_migratetype(page, migratetype);
829 free_one_page(page_zone(page), page, pfn, order, migratetype);
830 local_irq_restore(flags);
831 }
832
833 void __init __free_pages_bootmem(struct page *page, unsigned int order)
834 {
835 unsigned int nr_pages = 1 << order;
836 struct page *p = page;
837 unsigned int loop;
838
839 prefetchw(p);
840 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
841 prefetchw(p + 1);
842 __ClearPageReserved(p);
843 set_page_count(p, 0);
844 }
845 __ClearPageReserved(p);
846 set_page_count(p, 0);
847
848 page_zone(page)->managed_pages += nr_pages;
849 set_page_refcounted(page);
850 __free_pages(page, order);
851 }
852
853 #ifdef CONFIG_CMA
854 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
855 void __init init_cma_reserved_pageblock(struct page *page)
856 {
857 unsigned i = pageblock_nr_pages;
858 struct page *p = page;
859
860 do {
861 __ClearPageReserved(p);
862 set_page_count(p, 0);
863 } while (++p, --i);
864
865 set_pageblock_migratetype(page, MIGRATE_CMA);
866
867 if (pageblock_order >= MAX_ORDER) {
868 i = pageblock_nr_pages;
869 p = page;
870 do {
871 set_page_refcounted(p);
872 __free_pages(p, MAX_ORDER - 1);
873 p += MAX_ORDER_NR_PAGES;
874 } while (i -= MAX_ORDER_NR_PAGES);
875 } else {
876 set_page_refcounted(page);
877 __free_pages(page, pageblock_order);
878 }
879
880 adjust_managed_page_count(page, pageblock_nr_pages);
881 }
882 #endif
883
884 /*
885 * The order of subdivision here is critical for the IO subsystem.
886 * Please do not alter this order without good reasons and regression
887 * testing. Specifically, as large blocks of memory are subdivided,
888 * the order in which smaller blocks are delivered depends on the order
889 * they're subdivided in this function. This is the primary factor
890 * influencing the order in which pages are delivered to the IO
891 * subsystem according to empirical testing, and this is also justified
892 * by considering the behavior of a buddy system containing a single
893 * large block of memory acted on by a series of small allocations.
894 * This behavior is a critical factor in sglist merging's success.
895 *
896 * -- nyc
897 */
898 static inline void expand(struct zone *zone, struct page *page,
899 int low, int high, struct free_area *area,
900 int migratetype)
901 {
902 unsigned long size = 1 << high;
903
904 while (high > low) {
905 area--;
906 high--;
907 size >>= 1;
908 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
909
910 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
911 debug_guardpage_enabled() &&
912 high < debug_guardpage_minorder()) {
913 /*
914 * Mark as guard pages (or page), that will allow to
915 * merge back to allocator when buddy will be freed.
916 * Corresponding page table entries will not be touched,
917 * pages will stay not present in virtual address space
918 */
919 set_page_guard(zone, &page[size], high, migratetype);
920 continue;
921 }
922 list_add(&page[size].lru, &area->free_list[migratetype]);
923 area->nr_free++;
924 set_page_order(&page[size], high);
925 }
926 }
927
928 /*
929 * This page is about to be returned from the page allocator
930 */
931 static inline int check_new_page(struct page *page)
932 {
933 const char *bad_reason = NULL;
934 unsigned long bad_flags = 0;
935
936 if (unlikely(page_mapcount(page)))
937 bad_reason = "nonzero mapcount";
938 if (unlikely(page->mapping != NULL))
939 bad_reason = "non-NULL mapping";
940 if (unlikely(atomic_read(&page->_count) != 0))
941 bad_reason = "nonzero _count";
942 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
943 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
944 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
945 }
946 #ifdef CONFIG_MEMCG
947 if (unlikely(page->mem_cgroup))
948 bad_reason = "page still charged to cgroup";
949 #endif
950 if (unlikely(bad_reason)) {
951 bad_page(page, bad_reason, bad_flags);
952 return 1;
953 }
954 return 0;
955 }
956
957 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
958 int alloc_flags)
959 {
960 int i;
961
962 for (i = 0; i < (1 << order); i++) {
963 struct page *p = page + i;
964 if (unlikely(check_new_page(p)))
965 return 1;
966 }
967
968 set_page_private(page, 0);
969 set_page_refcounted(page);
970
971 arch_alloc_page(page, order);
972 kernel_map_pages(page, 1 << order, 1);
973
974 if (gfp_flags & __GFP_ZERO)
975 prep_zero_page(page, order, gfp_flags);
976
977 if (order && (gfp_flags & __GFP_COMP))
978 prep_compound_page(page, order);
979
980 set_page_owner(page, order, gfp_flags);
981
982 /*
983 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
984 * allocate the page. The expectation is that the caller is taking
985 * steps that will free more memory. The caller should avoid the page
986 * being used for !PFMEMALLOC purposes.
987 */
988 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
989
990 return 0;
991 }
992
993 /*
994 * Go through the free lists for the given migratetype and remove
995 * the smallest available page from the freelists
996 */
997 static inline
998 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
999 int migratetype)
1000 {
1001 unsigned int current_order;
1002 struct free_area *area;
1003 struct page *page;
1004
1005 /* Find a page of the appropriate size in the preferred list */
1006 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1007 area = &(zone->free_area[current_order]);
1008 if (list_empty(&area->free_list[migratetype]))
1009 continue;
1010
1011 page = list_entry(area->free_list[migratetype].next,
1012 struct page, lru);
1013 list_del(&page->lru);
1014 rmv_page_order(page);
1015 area->nr_free--;
1016 expand(zone, page, order, current_order, area, migratetype);
1017 set_freepage_migratetype(page, migratetype);
1018 return page;
1019 }
1020
1021 return NULL;
1022 }
1023
1024
1025 /*
1026 * This array describes the order lists are fallen back to when
1027 * the free lists for the desirable migrate type are depleted
1028 */
1029 static int fallbacks[MIGRATE_TYPES][4] = {
1030 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1031 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1032 #ifdef CONFIG_CMA
1033 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1034 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1035 #else
1036 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1037 #endif
1038 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1039 #ifdef CONFIG_MEMORY_ISOLATION
1040 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1041 #endif
1042 };
1043
1044 /*
1045 * Move the free pages in a range to the free lists of the requested type.
1046 * Note that start_page and end_pages are not aligned on a pageblock
1047 * boundary. If alignment is required, use move_freepages_block()
1048 */
1049 int move_freepages(struct zone *zone,
1050 struct page *start_page, struct page *end_page,
1051 int migratetype)
1052 {
1053 struct page *page;
1054 unsigned long order;
1055 int pages_moved = 0;
1056
1057 #ifndef CONFIG_HOLES_IN_ZONE
1058 /*
1059 * page_zone is not safe to call in this context when
1060 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1061 * anyway as we check zone boundaries in move_freepages_block().
1062 * Remove at a later date when no bug reports exist related to
1063 * grouping pages by mobility
1064 */
1065 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1066 #endif
1067
1068 for (page = start_page; page <= end_page;) {
1069 /* Make sure we are not inadvertently changing nodes */
1070 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1071
1072 if (!pfn_valid_within(page_to_pfn(page))) {
1073 page++;
1074 continue;
1075 }
1076
1077 if (!PageBuddy(page)) {
1078 page++;
1079 continue;
1080 }
1081
1082 order = page_order(page);
1083 list_move(&page->lru,
1084 &zone->free_area[order].free_list[migratetype]);
1085 set_freepage_migratetype(page, migratetype);
1086 page += 1 << order;
1087 pages_moved += 1 << order;
1088 }
1089
1090 return pages_moved;
1091 }
1092
1093 int move_freepages_block(struct zone *zone, struct page *page,
1094 int migratetype)
1095 {
1096 unsigned long start_pfn, end_pfn;
1097 struct page *start_page, *end_page;
1098
1099 start_pfn = page_to_pfn(page);
1100 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1101 start_page = pfn_to_page(start_pfn);
1102 end_page = start_page + pageblock_nr_pages - 1;
1103 end_pfn = start_pfn + pageblock_nr_pages - 1;
1104
1105 /* Do not cross zone boundaries */
1106 if (!zone_spans_pfn(zone, start_pfn))
1107 start_page = page;
1108 if (!zone_spans_pfn(zone, end_pfn))
1109 return 0;
1110
1111 return move_freepages(zone, start_page, end_page, migratetype);
1112 }
1113
1114 static void change_pageblock_range(struct page *pageblock_page,
1115 int start_order, int migratetype)
1116 {
1117 int nr_pageblocks = 1 << (start_order - pageblock_order);
1118
1119 while (nr_pageblocks--) {
1120 set_pageblock_migratetype(pageblock_page, migratetype);
1121 pageblock_page += pageblock_nr_pages;
1122 }
1123 }
1124
1125 /*
1126 * If breaking a large block of pages, move all free pages to the preferred
1127 * allocation list. If falling back for a reclaimable kernel allocation, be
1128 * more aggressive about taking ownership of free pages.
1129 *
1130 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1131 * nor move CMA pages to different free lists. We don't want unmovable pages
1132 * to be allocated from MIGRATE_CMA areas.
1133 *
1134 * Returns the new migratetype of the pageblock (or the same old migratetype
1135 * if it was unchanged).
1136 */
1137 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1138 int start_type, int fallback_type)
1139 {
1140 int current_order = page_order(page);
1141
1142 /*
1143 * When borrowing from MIGRATE_CMA, we need to release the excess
1144 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1145 * is set to CMA so it is returned to the correct freelist in case
1146 * the page ends up being not actually allocated from the pcp lists.
1147 */
1148 if (is_migrate_cma(fallback_type))
1149 return fallback_type;
1150
1151 /* Take ownership for orders >= pageblock_order */
1152 if (current_order >= pageblock_order) {
1153 change_pageblock_range(page, current_order, start_type);
1154 return start_type;
1155 }
1156
1157 if (current_order >= pageblock_order / 2 ||
1158 start_type == MIGRATE_RECLAIMABLE ||
1159 page_group_by_mobility_disabled) {
1160 int pages;
1161
1162 pages = move_freepages_block(zone, page, start_type);
1163
1164 /* Claim the whole block if over half of it is free */
1165 if (pages >= (1 << (pageblock_order-1)) ||
1166 page_group_by_mobility_disabled) {
1167
1168 set_pageblock_migratetype(page, start_type);
1169 return start_type;
1170 }
1171
1172 }
1173
1174 return fallback_type;
1175 }
1176
1177 /* Remove an element from the buddy allocator from the fallback list */
1178 static inline struct page *
1179 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1180 {
1181 struct free_area *area;
1182 unsigned int current_order;
1183 struct page *page;
1184 int migratetype, new_type, i;
1185
1186 /* Find the largest possible block of pages in the other list */
1187 for (current_order = MAX_ORDER-1;
1188 current_order >= order && current_order <= MAX_ORDER-1;
1189 --current_order) {
1190 for (i = 0;; i++) {
1191 migratetype = fallbacks[start_migratetype][i];
1192
1193 /* MIGRATE_RESERVE handled later if necessary */
1194 if (migratetype == MIGRATE_RESERVE)
1195 break;
1196
1197 area = &(zone->free_area[current_order]);
1198 if (list_empty(&area->free_list[migratetype]))
1199 continue;
1200
1201 page = list_entry(area->free_list[migratetype].next,
1202 struct page, lru);
1203 area->nr_free--;
1204
1205 new_type = try_to_steal_freepages(zone, page,
1206 start_migratetype,
1207 migratetype);
1208
1209 /* Remove the page from the freelists */
1210 list_del(&page->lru);
1211 rmv_page_order(page);
1212
1213 expand(zone, page, order, current_order, area,
1214 new_type);
1215 /* The freepage_migratetype may differ from pageblock's
1216 * migratetype depending on the decisions in
1217 * try_to_steal_freepages. This is OK as long as it does
1218 * not differ for MIGRATE_CMA type.
1219 */
1220 set_freepage_migratetype(page, new_type);
1221
1222 trace_mm_page_alloc_extfrag(page, order, current_order,
1223 start_migratetype, migratetype, new_type);
1224
1225 return page;
1226 }
1227 }
1228
1229 return NULL;
1230 }
1231
1232 /*
1233 * Do the hard work of removing an element from the buddy allocator.
1234 * Call me with the zone->lock already held.
1235 */
1236 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1237 int migratetype)
1238 {
1239 struct page *page;
1240
1241 retry_reserve:
1242 page = __rmqueue_smallest(zone, order, migratetype);
1243
1244 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1245 page = __rmqueue_fallback(zone, order, migratetype);
1246
1247 /*
1248 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1249 * is used because __rmqueue_smallest is an inline function
1250 * and we want just one call site
1251 */
1252 if (!page) {
1253 migratetype = MIGRATE_RESERVE;
1254 goto retry_reserve;
1255 }
1256 }
1257
1258 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1259 return page;
1260 }
1261
1262 /*
1263 * Obtain a specified number of elements from the buddy allocator, all under
1264 * a single hold of the lock, for efficiency. Add them to the supplied list.
1265 * Returns the number of new pages which were placed at *list.
1266 */
1267 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1268 unsigned long count, struct list_head *list,
1269 int migratetype, bool cold)
1270 {
1271 int i;
1272
1273 spin_lock(&zone->lock);
1274 for (i = 0; i < count; ++i) {
1275 struct page *page = __rmqueue(zone, order, migratetype);
1276 if (unlikely(page == NULL))
1277 break;
1278
1279 /*
1280 * Split buddy pages returned by expand() are received here
1281 * in physical page order. The page is added to the callers and
1282 * list and the list head then moves forward. From the callers
1283 * perspective, the linked list is ordered by page number in
1284 * some conditions. This is useful for IO devices that can
1285 * merge IO requests if the physical pages are ordered
1286 * properly.
1287 */
1288 if (likely(!cold))
1289 list_add(&page->lru, list);
1290 else
1291 list_add_tail(&page->lru, list);
1292 list = &page->lru;
1293 if (is_migrate_cma(get_freepage_migratetype(page)))
1294 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1295 -(1 << order));
1296 }
1297 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1298 spin_unlock(&zone->lock);
1299 return i;
1300 }
1301
1302 #ifdef CONFIG_NUMA
1303 /*
1304 * Called from the vmstat counter updater to drain pagesets of this
1305 * currently executing processor on remote nodes after they have
1306 * expired.
1307 *
1308 * Note that this function must be called with the thread pinned to
1309 * a single processor.
1310 */
1311 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1312 {
1313 unsigned long flags;
1314 int to_drain, batch;
1315
1316 local_irq_save(flags);
1317 batch = ACCESS_ONCE(pcp->batch);
1318 to_drain = min(pcp->count, batch);
1319 if (to_drain > 0) {
1320 free_pcppages_bulk(zone, to_drain, pcp);
1321 pcp->count -= to_drain;
1322 }
1323 local_irq_restore(flags);
1324 }
1325 #endif
1326
1327 /*
1328 * Drain pcplists of the indicated processor and zone.
1329 *
1330 * The processor must either be the current processor and the
1331 * thread pinned to the current processor or a processor that
1332 * is not online.
1333 */
1334 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1335 {
1336 unsigned long flags;
1337 struct per_cpu_pageset *pset;
1338 struct per_cpu_pages *pcp;
1339
1340 local_irq_save(flags);
1341 pset = per_cpu_ptr(zone->pageset, cpu);
1342
1343 pcp = &pset->pcp;
1344 if (pcp->count) {
1345 free_pcppages_bulk(zone, pcp->count, pcp);
1346 pcp->count = 0;
1347 }
1348 local_irq_restore(flags);
1349 }
1350
1351 /*
1352 * Drain pcplists of all zones on the indicated processor.
1353 *
1354 * The processor must either be the current processor and the
1355 * thread pinned to the current processor or a processor that
1356 * is not online.
1357 */
1358 static void drain_pages(unsigned int cpu)
1359 {
1360 struct zone *zone;
1361
1362 for_each_populated_zone(zone) {
1363 drain_pages_zone(cpu, zone);
1364 }
1365 }
1366
1367 /*
1368 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1369 *
1370 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1371 * the single zone's pages.
1372 */
1373 void drain_local_pages(struct zone *zone)
1374 {
1375 int cpu = smp_processor_id();
1376
1377 if (zone)
1378 drain_pages_zone(cpu, zone);
1379 else
1380 drain_pages(cpu);
1381 }
1382
1383 /*
1384 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1385 *
1386 * When zone parameter is non-NULL, spill just the single zone's pages.
1387 *
1388 * Note that this code is protected against sending an IPI to an offline
1389 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1390 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1391 * nothing keeps CPUs from showing up after we populated the cpumask and
1392 * before the call to on_each_cpu_mask().
1393 */
1394 void drain_all_pages(struct zone *zone)
1395 {
1396 int cpu;
1397
1398 /*
1399 * Allocate in the BSS so we wont require allocation in
1400 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1401 */
1402 static cpumask_t cpus_with_pcps;
1403
1404 /*
1405 * We don't care about racing with CPU hotplug event
1406 * as offline notification will cause the notified
1407 * cpu to drain that CPU pcps and on_each_cpu_mask
1408 * disables preemption as part of its processing
1409 */
1410 for_each_online_cpu(cpu) {
1411 struct per_cpu_pageset *pcp;
1412 struct zone *z;
1413 bool has_pcps = false;
1414
1415 if (zone) {
1416 pcp = per_cpu_ptr(zone->pageset, cpu);
1417 if (pcp->pcp.count)
1418 has_pcps = true;
1419 } else {
1420 for_each_populated_zone(z) {
1421 pcp = per_cpu_ptr(z->pageset, cpu);
1422 if (pcp->pcp.count) {
1423 has_pcps = true;
1424 break;
1425 }
1426 }
1427 }
1428
1429 if (has_pcps)
1430 cpumask_set_cpu(cpu, &cpus_with_pcps);
1431 else
1432 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1433 }
1434 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1435 zone, 1);
1436 }
1437
1438 #ifdef CONFIG_HIBERNATION
1439
1440 void mark_free_pages(struct zone *zone)
1441 {
1442 unsigned long pfn, max_zone_pfn;
1443 unsigned long flags;
1444 unsigned int order, t;
1445 struct list_head *curr;
1446
1447 if (zone_is_empty(zone))
1448 return;
1449
1450 spin_lock_irqsave(&zone->lock, flags);
1451
1452 max_zone_pfn = zone_end_pfn(zone);
1453 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1454 if (pfn_valid(pfn)) {
1455 struct page *page = pfn_to_page(pfn);
1456
1457 if (!swsusp_page_is_forbidden(page))
1458 swsusp_unset_page_free(page);
1459 }
1460
1461 for_each_migratetype_order(order, t) {
1462 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1463 unsigned long i;
1464
1465 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1466 for (i = 0; i < (1UL << order); i++)
1467 swsusp_set_page_free(pfn_to_page(pfn + i));
1468 }
1469 }
1470 spin_unlock_irqrestore(&zone->lock, flags);
1471 }
1472 #endif /* CONFIG_PM */
1473
1474 /*
1475 * Free a 0-order page
1476 * cold == true ? free a cold page : free a hot page
1477 */
1478 void free_hot_cold_page(struct page *page, bool cold)
1479 {
1480 struct zone *zone = page_zone(page);
1481 struct per_cpu_pages *pcp;
1482 unsigned long flags;
1483 unsigned long pfn = page_to_pfn(page);
1484 int migratetype;
1485
1486 if (!free_pages_prepare(page, 0))
1487 return;
1488
1489 migratetype = get_pfnblock_migratetype(page, pfn);
1490 set_freepage_migratetype(page, migratetype);
1491 local_irq_save(flags);
1492 __count_vm_event(PGFREE);
1493
1494 /*
1495 * We only track unmovable, reclaimable and movable on pcp lists.
1496 * Free ISOLATE pages back to the allocator because they are being
1497 * offlined but treat RESERVE as movable pages so we can get those
1498 * areas back if necessary. Otherwise, we may have to free
1499 * excessively into the page allocator
1500 */
1501 if (migratetype >= MIGRATE_PCPTYPES) {
1502 if (unlikely(is_migrate_isolate(migratetype))) {
1503 free_one_page(zone, page, pfn, 0, migratetype);
1504 goto out;
1505 }
1506 migratetype = MIGRATE_MOVABLE;
1507 }
1508
1509 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1510 if (!cold)
1511 list_add(&page->lru, &pcp->lists[migratetype]);
1512 else
1513 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1514 pcp->count++;
1515 if (pcp->count >= pcp->high) {
1516 unsigned long batch = ACCESS_ONCE(pcp->batch);
1517 free_pcppages_bulk(zone, batch, pcp);
1518 pcp->count -= batch;
1519 }
1520
1521 out:
1522 local_irq_restore(flags);
1523 }
1524
1525 /*
1526 * Free a list of 0-order pages
1527 */
1528 void free_hot_cold_page_list(struct list_head *list, bool cold)
1529 {
1530 struct page *page, *next;
1531
1532 list_for_each_entry_safe(page, next, list, lru) {
1533 trace_mm_page_free_batched(page, cold);
1534 free_hot_cold_page(page, cold);
1535 }
1536 }
1537
1538 /*
1539 * split_page takes a non-compound higher-order page, and splits it into
1540 * n (1<<order) sub-pages: page[0..n]
1541 * Each sub-page must be freed individually.
1542 *
1543 * Note: this is probably too low level an operation for use in drivers.
1544 * Please consult with lkml before using this in your driver.
1545 */
1546 void split_page(struct page *page, unsigned int order)
1547 {
1548 int i;
1549
1550 VM_BUG_ON_PAGE(PageCompound(page), page);
1551 VM_BUG_ON_PAGE(!page_count(page), page);
1552
1553 #ifdef CONFIG_KMEMCHECK
1554 /*
1555 * Split shadow pages too, because free(page[0]) would
1556 * otherwise free the whole shadow.
1557 */
1558 if (kmemcheck_page_is_tracked(page))
1559 split_page(virt_to_page(page[0].shadow), order);
1560 #endif
1561
1562 set_page_owner(page, 0, 0);
1563 for (i = 1; i < (1 << order); i++) {
1564 set_page_refcounted(page + i);
1565 set_page_owner(page + i, 0, 0);
1566 }
1567 }
1568 EXPORT_SYMBOL_GPL(split_page);
1569
1570 int __isolate_free_page(struct page *page, unsigned int order)
1571 {
1572 unsigned long watermark;
1573 struct zone *zone;
1574 int mt;
1575
1576 BUG_ON(!PageBuddy(page));
1577
1578 zone = page_zone(page);
1579 mt = get_pageblock_migratetype(page);
1580
1581 if (!is_migrate_isolate(mt)) {
1582 /* Obey watermarks as if the page was being allocated */
1583 watermark = low_wmark_pages(zone) + (1 << order);
1584 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1585 return 0;
1586
1587 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1588 }
1589
1590 /* Remove page from free list */
1591 list_del(&page->lru);
1592 zone->free_area[order].nr_free--;
1593 rmv_page_order(page);
1594
1595 /* Set the pageblock if the isolated page is at least a pageblock */
1596 if (order >= pageblock_order - 1) {
1597 struct page *endpage = page + (1 << order) - 1;
1598 for (; page < endpage; page += pageblock_nr_pages) {
1599 int mt = get_pageblock_migratetype(page);
1600 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1601 set_pageblock_migratetype(page,
1602 MIGRATE_MOVABLE);
1603 }
1604 }
1605
1606 set_page_owner(page, order, 0);
1607 return 1UL << order;
1608 }
1609
1610 /*
1611 * Similar to split_page except the page is already free. As this is only
1612 * being used for migration, the migratetype of the block also changes.
1613 * As this is called with interrupts disabled, the caller is responsible
1614 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1615 * are enabled.
1616 *
1617 * Note: this is probably too low level an operation for use in drivers.
1618 * Please consult with lkml before using this in your driver.
1619 */
1620 int split_free_page(struct page *page)
1621 {
1622 unsigned int order;
1623 int nr_pages;
1624
1625 order = page_order(page);
1626
1627 nr_pages = __isolate_free_page(page, order);
1628 if (!nr_pages)
1629 return 0;
1630
1631 /* Split into individual pages */
1632 set_page_refcounted(page);
1633 split_page(page, order);
1634 return nr_pages;
1635 }
1636
1637 /*
1638 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1639 */
1640 static inline
1641 struct page *buffered_rmqueue(struct zone *preferred_zone,
1642 struct zone *zone, unsigned int order,
1643 gfp_t gfp_flags, int migratetype)
1644 {
1645 unsigned long flags;
1646 struct page *page;
1647 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1648
1649 if (likely(order == 0)) {
1650 struct per_cpu_pages *pcp;
1651 struct list_head *list;
1652
1653 local_irq_save(flags);
1654 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1655 list = &pcp->lists[migratetype];
1656 if (list_empty(list)) {
1657 pcp->count += rmqueue_bulk(zone, 0,
1658 pcp->batch, list,
1659 migratetype, cold);
1660 if (unlikely(list_empty(list)))
1661 goto failed;
1662 }
1663
1664 if (cold)
1665 page = list_entry(list->prev, struct page, lru);
1666 else
1667 page = list_entry(list->next, struct page, lru);
1668
1669 list_del(&page->lru);
1670 pcp->count--;
1671 } else {
1672 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1673 /*
1674 * __GFP_NOFAIL is not to be used in new code.
1675 *
1676 * All __GFP_NOFAIL callers should be fixed so that they
1677 * properly detect and handle allocation failures.
1678 *
1679 * We most definitely don't want callers attempting to
1680 * allocate greater than order-1 page units with
1681 * __GFP_NOFAIL.
1682 */
1683 WARN_ON_ONCE(order > 1);
1684 }
1685 spin_lock_irqsave(&zone->lock, flags);
1686 page = __rmqueue(zone, order, migratetype);
1687 spin_unlock(&zone->lock);
1688 if (!page)
1689 goto failed;
1690 __mod_zone_freepage_state(zone, -(1 << order),
1691 get_freepage_migratetype(page));
1692 }
1693
1694 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1695 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1696 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1697 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1698
1699 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1700 zone_statistics(preferred_zone, zone, gfp_flags);
1701 local_irq_restore(flags);
1702
1703 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1704 return page;
1705
1706 failed:
1707 local_irq_restore(flags);
1708 return NULL;
1709 }
1710
1711 #ifdef CONFIG_FAIL_PAGE_ALLOC
1712
1713 static struct {
1714 struct fault_attr attr;
1715
1716 u32 ignore_gfp_highmem;
1717 u32 ignore_gfp_wait;
1718 u32 min_order;
1719 } fail_page_alloc = {
1720 .attr = FAULT_ATTR_INITIALIZER,
1721 .ignore_gfp_wait = 1,
1722 .ignore_gfp_highmem = 1,
1723 .min_order = 1,
1724 };
1725
1726 static int __init setup_fail_page_alloc(char *str)
1727 {
1728 return setup_fault_attr(&fail_page_alloc.attr, str);
1729 }
1730 __setup("fail_page_alloc=", setup_fail_page_alloc);
1731
1732 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1733 {
1734 if (order < fail_page_alloc.min_order)
1735 return false;
1736 if (gfp_mask & __GFP_NOFAIL)
1737 return false;
1738 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1739 return false;
1740 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1741 return false;
1742
1743 return should_fail(&fail_page_alloc.attr, 1 << order);
1744 }
1745
1746 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1747
1748 static int __init fail_page_alloc_debugfs(void)
1749 {
1750 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1751 struct dentry *dir;
1752
1753 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1754 &fail_page_alloc.attr);
1755 if (IS_ERR(dir))
1756 return PTR_ERR(dir);
1757
1758 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1759 &fail_page_alloc.ignore_gfp_wait))
1760 goto fail;
1761 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1762 &fail_page_alloc.ignore_gfp_highmem))
1763 goto fail;
1764 if (!debugfs_create_u32("min-order", mode, dir,
1765 &fail_page_alloc.min_order))
1766 goto fail;
1767
1768 return 0;
1769 fail:
1770 debugfs_remove_recursive(dir);
1771
1772 return -ENOMEM;
1773 }
1774
1775 late_initcall(fail_page_alloc_debugfs);
1776
1777 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1778
1779 #else /* CONFIG_FAIL_PAGE_ALLOC */
1780
1781 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1782 {
1783 return false;
1784 }
1785
1786 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1787
1788 /*
1789 * Return true if free pages are above 'mark'. This takes into account the order
1790 * of the allocation.
1791 */
1792 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1793 unsigned long mark, int classzone_idx, int alloc_flags,
1794 long free_pages)
1795 {
1796 /* free_pages may go negative - that's OK */
1797 long min = mark;
1798 int o;
1799 long free_cma = 0;
1800
1801 free_pages -= (1 << order) - 1;
1802 if (alloc_flags & ALLOC_HIGH)
1803 min -= min / 2;
1804 if (alloc_flags & ALLOC_HARDER)
1805 min -= min / 4;
1806 #ifdef CONFIG_CMA
1807 /* If allocation can't use CMA areas don't use free CMA pages */
1808 if (!(alloc_flags & ALLOC_CMA))
1809 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1810 #endif
1811
1812 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1813 return false;
1814 for (o = 0; o < order; o++) {
1815 /* At the next order, this order's pages become unavailable */
1816 free_pages -= z->free_area[o].nr_free << o;
1817
1818 /* Require fewer higher order pages to be free */
1819 min >>= 1;
1820
1821 if (free_pages <= min)
1822 return false;
1823 }
1824 return true;
1825 }
1826
1827 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1828 int classzone_idx, int alloc_flags)
1829 {
1830 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1831 zone_page_state(z, NR_FREE_PAGES));
1832 }
1833
1834 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1835 unsigned long mark, int classzone_idx, int alloc_flags)
1836 {
1837 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1838
1839 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1840 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1841
1842 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1843 free_pages);
1844 }
1845
1846 #ifdef CONFIG_NUMA
1847 /*
1848 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1849 * skip over zones that are not allowed by the cpuset, or that have
1850 * been recently (in last second) found to be nearly full. See further
1851 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1852 * that have to skip over a lot of full or unallowed zones.
1853 *
1854 * If the zonelist cache is present in the passed zonelist, then
1855 * returns a pointer to the allowed node mask (either the current
1856 * tasks mems_allowed, or node_states[N_MEMORY].)
1857 *
1858 * If the zonelist cache is not available for this zonelist, does
1859 * nothing and returns NULL.
1860 *
1861 * If the fullzones BITMAP in the zonelist cache is stale (more than
1862 * a second since last zap'd) then we zap it out (clear its bits.)
1863 *
1864 * We hold off even calling zlc_setup, until after we've checked the
1865 * first zone in the zonelist, on the theory that most allocations will
1866 * be satisfied from that first zone, so best to examine that zone as
1867 * quickly as we can.
1868 */
1869 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1870 {
1871 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1872 nodemask_t *allowednodes; /* zonelist_cache approximation */
1873
1874 zlc = zonelist->zlcache_ptr;
1875 if (!zlc)
1876 return NULL;
1877
1878 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1879 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1880 zlc->last_full_zap = jiffies;
1881 }
1882
1883 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1884 &cpuset_current_mems_allowed :
1885 &node_states[N_MEMORY];
1886 return allowednodes;
1887 }
1888
1889 /*
1890 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1891 * if it is worth looking at further for free memory:
1892 * 1) Check that the zone isn't thought to be full (doesn't have its
1893 * bit set in the zonelist_cache fullzones BITMAP).
1894 * 2) Check that the zones node (obtained from the zonelist_cache
1895 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1896 * Return true (non-zero) if zone is worth looking at further, or
1897 * else return false (zero) if it is not.
1898 *
1899 * This check -ignores- the distinction between various watermarks,
1900 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1901 * found to be full for any variation of these watermarks, it will
1902 * be considered full for up to one second by all requests, unless
1903 * we are so low on memory on all allowed nodes that we are forced
1904 * into the second scan of the zonelist.
1905 *
1906 * In the second scan we ignore this zonelist cache and exactly
1907 * apply the watermarks to all zones, even it is slower to do so.
1908 * We are low on memory in the second scan, and should leave no stone
1909 * unturned looking for a free page.
1910 */
1911 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1912 nodemask_t *allowednodes)
1913 {
1914 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1915 int i; /* index of *z in zonelist zones */
1916 int n; /* node that zone *z is on */
1917
1918 zlc = zonelist->zlcache_ptr;
1919 if (!zlc)
1920 return 1;
1921
1922 i = z - zonelist->_zonerefs;
1923 n = zlc->z_to_n[i];
1924
1925 /* This zone is worth trying if it is allowed but not full */
1926 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1927 }
1928
1929 /*
1930 * Given 'z' scanning a zonelist, set the corresponding bit in
1931 * zlc->fullzones, so that subsequent attempts to allocate a page
1932 * from that zone don't waste time re-examining it.
1933 */
1934 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1935 {
1936 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1937 int i; /* index of *z in zonelist zones */
1938
1939 zlc = zonelist->zlcache_ptr;
1940 if (!zlc)
1941 return;
1942
1943 i = z - zonelist->_zonerefs;
1944
1945 set_bit(i, zlc->fullzones);
1946 }
1947
1948 /*
1949 * clear all zones full, called after direct reclaim makes progress so that
1950 * a zone that was recently full is not skipped over for up to a second
1951 */
1952 static void zlc_clear_zones_full(struct zonelist *zonelist)
1953 {
1954 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1955
1956 zlc = zonelist->zlcache_ptr;
1957 if (!zlc)
1958 return;
1959
1960 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1961 }
1962
1963 static bool zone_local(struct zone *local_zone, struct zone *zone)
1964 {
1965 return local_zone->node == zone->node;
1966 }
1967
1968 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1969 {
1970 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1971 RECLAIM_DISTANCE;
1972 }
1973
1974 #else /* CONFIG_NUMA */
1975
1976 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1977 {
1978 return NULL;
1979 }
1980
1981 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1982 nodemask_t *allowednodes)
1983 {
1984 return 1;
1985 }
1986
1987 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1988 {
1989 }
1990
1991 static void zlc_clear_zones_full(struct zonelist *zonelist)
1992 {
1993 }
1994
1995 static bool zone_local(struct zone *local_zone, struct zone *zone)
1996 {
1997 return true;
1998 }
1999
2000 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2001 {
2002 return true;
2003 }
2004
2005 #endif /* CONFIG_NUMA */
2006
2007 static void reset_alloc_batches(struct zone *preferred_zone)
2008 {
2009 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2010
2011 do {
2012 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2013 high_wmark_pages(zone) - low_wmark_pages(zone) -
2014 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2015 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2016 } while (zone++ != preferred_zone);
2017 }
2018
2019 /*
2020 * get_page_from_freelist goes through the zonelist trying to allocate
2021 * a page.
2022 */
2023 static struct page *
2024 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2025 const struct alloc_context *ac)
2026 {
2027 struct zonelist *zonelist = ac->zonelist;
2028 struct zoneref *z;
2029 struct page *page = NULL;
2030 struct zone *zone;
2031 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2032 int zlc_active = 0; /* set if using zonelist_cache */
2033 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2034 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2035 (gfp_mask & __GFP_WRITE);
2036 int nr_fair_skipped = 0;
2037 bool zonelist_rescan;
2038
2039 zonelist_scan:
2040 zonelist_rescan = false;
2041
2042 /*
2043 * Scan zonelist, looking for a zone with enough free.
2044 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2045 */
2046 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2047 ac->nodemask) {
2048 unsigned long mark;
2049
2050 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2051 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2052 continue;
2053 if (cpusets_enabled() &&
2054 (alloc_flags & ALLOC_CPUSET) &&
2055 !cpuset_zone_allowed(zone, gfp_mask))
2056 continue;
2057 /*
2058 * Distribute pages in proportion to the individual
2059 * zone size to ensure fair page aging. The zone a
2060 * page was allocated in should have no effect on the
2061 * time the page has in memory before being reclaimed.
2062 */
2063 if (alloc_flags & ALLOC_FAIR) {
2064 if (!zone_local(ac->preferred_zone, zone))
2065 break;
2066 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2067 nr_fair_skipped++;
2068 continue;
2069 }
2070 }
2071 /*
2072 * When allocating a page cache page for writing, we
2073 * want to get it from a zone that is within its dirty
2074 * limit, such that no single zone holds more than its
2075 * proportional share of globally allowed dirty pages.
2076 * The dirty limits take into account the zone's
2077 * lowmem reserves and high watermark so that kswapd
2078 * should be able to balance it without having to
2079 * write pages from its LRU list.
2080 *
2081 * This may look like it could increase pressure on
2082 * lower zones by failing allocations in higher zones
2083 * before they are full. But the pages that do spill
2084 * over are limited as the lower zones are protected
2085 * by this very same mechanism. It should not become
2086 * a practical burden to them.
2087 *
2088 * XXX: For now, allow allocations to potentially
2089 * exceed the per-zone dirty limit in the slowpath
2090 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2091 * which is important when on a NUMA setup the allowed
2092 * zones are together not big enough to reach the
2093 * global limit. The proper fix for these situations
2094 * will require awareness of zones in the
2095 * dirty-throttling and the flusher threads.
2096 */
2097 if (consider_zone_dirty && !zone_dirty_ok(zone))
2098 continue;
2099
2100 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2101 if (!zone_watermark_ok(zone, order, mark,
2102 ac->classzone_idx, alloc_flags)) {
2103 int ret;
2104
2105 /* Checked here to keep the fast path fast */
2106 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2107 if (alloc_flags & ALLOC_NO_WATERMARKS)
2108 goto try_this_zone;
2109
2110 if (IS_ENABLED(CONFIG_NUMA) &&
2111 !did_zlc_setup && nr_online_nodes > 1) {
2112 /*
2113 * we do zlc_setup if there are multiple nodes
2114 * and before considering the first zone allowed
2115 * by the cpuset.
2116 */
2117 allowednodes = zlc_setup(zonelist, alloc_flags);
2118 zlc_active = 1;
2119 did_zlc_setup = 1;
2120 }
2121
2122 if (zone_reclaim_mode == 0 ||
2123 !zone_allows_reclaim(ac->preferred_zone, zone))
2124 goto this_zone_full;
2125
2126 /*
2127 * As we may have just activated ZLC, check if the first
2128 * eligible zone has failed zone_reclaim recently.
2129 */
2130 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2131 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2132 continue;
2133
2134 ret = zone_reclaim(zone, gfp_mask, order);
2135 switch (ret) {
2136 case ZONE_RECLAIM_NOSCAN:
2137 /* did not scan */
2138 continue;
2139 case ZONE_RECLAIM_FULL:
2140 /* scanned but unreclaimable */
2141 continue;
2142 default:
2143 /* did we reclaim enough */
2144 if (zone_watermark_ok(zone, order, mark,
2145 ac->classzone_idx, alloc_flags))
2146 goto try_this_zone;
2147
2148 /*
2149 * Failed to reclaim enough to meet watermark.
2150 * Only mark the zone full if checking the min
2151 * watermark or if we failed to reclaim just
2152 * 1<<order pages or else the page allocator
2153 * fastpath will prematurely mark zones full
2154 * when the watermark is between the low and
2155 * min watermarks.
2156 */
2157 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2158 ret == ZONE_RECLAIM_SOME)
2159 goto this_zone_full;
2160
2161 continue;
2162 }
2163 }
2164
2165 try_this_zone:
2166 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2167 gfp_mask, ac->migratetype);
2168 if (page) {
2169 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2170 goto try_this_zone;
2171 return page;
2172 }
2173 this_zone_full:
2174 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2175 zlc_mark_zone_full(zonelist, z);
2176 }
2177
2178 /*
2179 * The first pass makes sure allocations are spread fairly within the
2180 * local node. However, the local node might have free pages left
2181 * after the fairness batches are exhausted, and remote zones haven't
2182 * even been considered yet. Try once more without fairness, and
2183 * include remote zones now, before entering the slowpath and waking
2184 * kswapd: prefer spilling to a remote zone over swapping locally.
2185 */
2186 if (alloc_flags & ALLOC_FAIR) {
2187 alloc_flags &= ~ALLOC_FAIR;
2188 if (nr_fair_skipped) {
2189 zonelist_rescan = true;
2190 reset_alloc_batches(ac->preferred_zone);
2191 }
2192 if (nr_online_nodes > 1)
2193 zonelist_rescan = true;
2194 }
2195
2196 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2197 /* Disable zlc cache for second zonelist scan */
2198 zlc_active = 0;
2199 zonelist_rescan = true;
2200 }
2201
2202 if (zonelist_rescan)
2203 goto zonelist_scan;
2204
2205 return NULL;
2206 }
2207
2208 /*
2209 * Large machines with many possible nodes should not always dump per-node
2210 * meminfo in irq context.
2211 */
2212 static inline bool should_suppress_show_mem(void)
2213 {
2214 bool ret = false;
2215
2216 #if NODES_SHIFT > 8
2217 ret = in_interrupt();
2218 #endif
2219 return ret;
2220 }
2221
2222 static DEFINE_RATELIMIT_STATE(nopage_rs,
2223 DEFAULT_RATELIMIT_INTERVAL,
2224 DEFAULT_RATELIMIT_BURST);
2225
2226 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2227 {
2228 unsigned int filter = SHOW_MEM_FILTER_NODES;
2229
2230 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2231 debug_guardpage_minorder() > 0)
2232 return;
2233
2234 /*
2235 * This documents exceptions given to allocations in certain
2236 * contexts that are allowed to allocate outside current's set
2237 * of allowed nodes.
2238 */
2239 if (!(gfp_mask & __GFP_NOMEMALLOC))
2240 if (test_thread_flag(TIF_MEMDIE) ||
2241 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2242 filter &= ~SHOW_MEM_FILTER_NODES;
2243 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2244 filter &= ~SHOW_MEM_FILTER_NODES;
2245
2246 if (fmt) {
2247 struct va_format vaf;
2248 va_list args;
2249
2250 va_start(args, fmt);
2251
2252 vaf.fmt = fmt;
2253 vaf.va = &args;
2254
2255 pr_warn("%pV", &vaf);
2256
2257 va_end(args);
2258 }
2259
2260 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2261 current->comm, order, gfp_mask);
2262
2263 dump_stack();
2264 if (!should_suppress_show_mem())
2265 show_mem(filter);
2266 }
2267
2268 static inline int
2269 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2270 unsigned long did_some_progress,
2271 unsigned long pages_reclaimed)
2272 {
2273 /* Do not loop if specifically requested */
2274 if (gfp_mask & __GFP_NORETRY)
2275 return 0;
2276
2277 /* Always retry if specifically requested */
2278 if (gfp_mask & __GFP_NOFAIL)
2279 return 1;
2280
2281 /*
2282 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2283 * making forward progress without invoking OOM. Suspend also disables
2284 * storage devices so kswapd will not help. Bail if we are suspending.
2285 */
2286 if (!did_some_progress && pm_suspended_storage())
2287 return 0;
2288
2289 /*
2290 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2291 * means __GFP_NOFAIL, but that may not be true in other
2292 * implementations.
2293 */
2294 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2295 return 1;
2296
2297 /*
2298 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2299 * specified, then we retry until we no longer reclaim any pages
2300 * (above), or we've reclaimed an order of pages at least as
2301 * large as the allocation's order. In both cases, if the
2302 * allocation still fails, we stop retrying.
2303 */
2304 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2305 return 1;
2306
2307 return 0;
2308 }
2309
2310 static inline struct page *
2311 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2312 const struct alloc_context *ac, unsigned long *did_some_progress)
2313 {
2314 struct page *page;
2315
2316 *did_some_progress = 0;
2317
2318 /*
2319 * Acquire the per-zone oom lock for each zone. If that
2320 * fails, somebody else is making progress for us.
2321 */
2322 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2323 *did_some_progress = 1;
2324 schedule_timeout_uninterruptible(1);
2325 return NULL;
2326 }
2327
2328 /*
2329 * Go through the zonelist yet one more time, keep very high watermark
2330 * here, this is only to catch a parallel oom killing, we must fail if
2331 * we're still under heavy pressure.
2332 */
2333 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2334 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2335 if (page)
2336 goto out;
2337
2338 if (!(gfp_mask & __GFP_NOFAIL)) {
2339 /* Coredumps can quickly deplete all memory reserves */
2340 if (current->flags & PF_DUMPCORE)
2341 goto out;
2342 /* The OOM killer will not help higher order allocs */
2343 if (order > PAGE_ALLOC_COSTLY_ORDER)
2344 goto out;
2345 /* The OOM killer does not needlessly kill tasks for lowmem */
2346 if (ac->high_zoneidx < ZONE_NORMAL)
2347 goto out;
2348 /* The OOM killer does not compensate for light reclaim */
2349 if (!(gfp_mask & __GFP_FS))
2350 goto out;
2351 /*
2352 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2353 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2354 * The caller should handle page allocation failure by itself if
2355 * it specifies __GFP_THISNODE.
2356 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2357 */
2358 if (gfp_mask & __GFP_THISNODE)
2359 goto out;
2360 }
2361 /* Exhausted what can be done so it's blamo time */
2362 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false))
2363 *did_some_progress = 1;
2364 out:
2365 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2366 return page;
2367 }
2368
2369 #ifdef CONFIG_COMPACTION
2370 /* Try memory compaction for high-order allocations before reclaim */
2371 static struct page *
2372 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2373 int alloc_flags, const struct alloc_context *ac,
2374 enum migrate_mode mode, int *contended_compaction,
2375 bool *deferred_compaction)
2376 {
2377 unsigned long compact_result;
2378 struct page *page;
2379
2380 if (!order)
2381 return NULL;
2382
2383 current->flags |= PF_MEMALLOC;
2384 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2385 mode, contended_compaction);
2386 current->flags &= ~PF_MEMALLOC;
2387
2388 switch (compact_result) {
2389 case COMPACT_DEFERRED:
2390 *deferred_compaction = true;
2391 /* fall-through */
2392 case COMPACT_SKIPPED:
2393 return NULL;
2394 default:
2395 break;
2396 }
2397
2398 /*
2399 * At least in one zone compaction wasn't deferred or skipped, so let's
2400 * count a compaction stall
2401 */
2402 count_vm_event(COMPACTSTALL);
2403
2404 page = get_page_from_freelist(gfp_mask, order,
2405 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2406
2407 if (page) {
2408 struct zone *zone = page_zone(page);
2409
2410 zone->compact_blockskip_flush = false;
2411 compaction_defer_reset(zone, order, true);
2412 count_vm_event(COMPACTSUCCESS);
2413 return page;
2414 }
2415
2416 /*
2417 * It's bad if compaction run occurs and fails. The most likely reason
2418 * is that pages exist, but not enough to satisfy watermarks.
2419 */
2420 count_vm_event(COMPACTFAIL);
2421
2422 cond_resched();
2423
2424 return NULL;
2425 }
2426 #else
2427 static inline struct page *
2428 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2429 int alloc_flags, const struct alloc_context *ac,
2430 enum migrate_mode mode, int *contended_compaction,
2431 bool *deferred_compaction)
2432 {
2433 return NULL;
2434 }
2435 #endif /* CONFIG_COMPACTION */
2436
2437 /* Perform direct synchronous page reclaim */
2438 static int
2439 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2440 const struct alloc_context *ac)
2441 {
2442 struct reclaim_state reclaim_state;
2443 int progress;
2444
2445 cond_resched();
2446
2447 /* We now go into synchronous reclaim */
2448 cpuset_memory_pressure_bump();
2449 current->flags |= PF_MEMALLOC;
2450 lockdep_set_current_reclaim_state(gfp_mask);
2451 reclaim_state.reclaimed_slab = 0;
2452 current->reclaim_state = &reclaim_state;
2453
2454 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2455 ac->nodemask);
2456
2457 current->reclaim_state = NULL;
2458 lockdep_clear_current_reclaim_state();
2459 current->flags &= ~PF_MEMALLOC;
2460
2461 cond_resched();
2462
2463 return progress;
2464 }
2465
2466 /* The really slow allocator path where we enter direct reclaim */
2467 static inline struct page *
2468 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2469 int alloc_flags, const struct alloc_context *ac,
2470 unsigned long *did_some_progress)
2471 {
2472 struct page *page = NULL;
2473 bool drained = false;
2474
2475 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2476 if (unlikely(!(*did_some_progress)))
2477 return NULL;
2478
2479 /* After successful reclaim, reconsider all zones for allocation */
2480 if (IS_ENABLED(CONFIG_NUMA))
2481 zlc_clear_zones_full(ac->zonelist);
2482
2483 retry:
2484 page = get_page_from_freelist(gfp_mask, order,
2485 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2486
2487 /*
2488 * If an allocation failed after direct reclaim, it could be because
2489 * pages are pinned on the per-cpu lists. Drain them and try again
2490 */
2491 if (!page && !drained) {
2492 drain_all_pages(NULL);
2493 drained = true;
2494 goto retry;
2495 }
2496
2497 return page;
2498 }
2499
2500 /*
2501 * This is called in the allocator slow-path if the allocation request is of
2502 * sufficient urgency to ignore watermarks and take other desperate measures
2503 */
2504 static inline struct page *
2505 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2506 const struct alloc_context *ac)
2507 {
2508 struct page *page;
2509
2510 do {
2511 page = get_page_from_freelist(gfp_mask, order,
2512 ALLOC_NO_WATERMARKS, ac);
2513
2514 if (!page && gfp_mask & __GFP_NOFAIL)
2515 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2516 HZ/50);
2517 } while (!page && (gfp_mask & __GFP_NOFAIL));
2518
2519 return page;
2520 }
2521
2522 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2523 {
2524 struct zoneref *z;
2525 struct zone *zone;
2526
2527 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2528 ac->high_zoneidx, ac->nodemask)
2529 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2530 }
2531
2532 static inline int
2533 gfp_to_alloc_flags(gfp_t gfp_mask)
2534 {
2535 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2536 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2537
2538 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2539 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2540
2541 /*
2542 * The caller may dip into page reserves a bit more if the caller
2543 * cannot run direct reclaim, or if the caller has realtime scheduling
2544 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2545 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2546 */
2547 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2548
2549 if (atomic) {
2550 /*
2551 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2552 * if it can't schedule.
2553 */
2554 if (!(gfp_mask & __GFP_NOMEMALLOC))
2555 alloc_flags |= ALLOC_HARDER;
2556 /*
2557 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2558 * comment for __cpuset_node_allowed().
2559 */
2560 alloc_flags &= ~ALLOC_CPUSET;
2561 } else if (unlikely(rt_task(current)) && !in_interrupt())
2562 alloc_flags |= ALLOC_HARDER;
2563
2564 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2565 if (gfp_mask & __GFP_MEMALLOC)
2566 alloc_flags |= ALLOC_NO_WATERMARKS;
2567 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2568 alloc_flags |= ALLOC_NO_WATERMARKS;
2569 else if (!in_interrupt() &&
2570 ((current->flags & PF_MEMALLOC) ||
2571 unlikely(test_thread_flag(TIF_MEMDIE))))
2572 alloc_flags |= ALLOC_NO_WATERMARKS;
2573 }
2574 #ifdef CONFIG_CMA
2575 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2576 alloc_flags |= ALLOC_CMA;
2577 #endif
2578 return alloc_flags;
2579 }
2580
2581 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2582 {
2583 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2584 }
2585
2586 static inline struct page *
2587 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2588 struct alloc_context *ac)
2589 {
2590 const gfp_t wait = gfp_mask & __GFP_WAIT;
2591 struct page *page = NULL;
2592 int alloc_flags;
2593 unsigned long pages_reclaimed = 0;
2594 unsigned long did_some_progress;
2595 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2596 bool deferred_compaction = false;
2597 int contended_compaction = COMPACT_CONTENDED_NONE;
2598
2599 /*
2600 * In the slowpath, we sanity check order to avoid ever trying to
2601 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2602 * be using allocators in order of preference for an area that is
2603 * too large.
2604 */
2605 if (order >= MAX_ORDER) {
2606 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2607 return NULL;
2608 }
2609
2610 /*
2611 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2612 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2613 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2614 * using a larger set of nodes after it has established that the
2615 * allowed per node queues are empty and that nodes are
2616 * over allocated.
2617 */
2618 if (IS_ENABLED(CONFIG_NUMA) &&
2619 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2620 goto nopage;
2621
2622 retry:
2623 if (!(gfp_mask & __GFP_NO_KSWAPD))
2624 wake_all_kswapds(order, ac);
2625
2626 /*
2627 * OK, we're below the kswapd watermark and have kicked background
2628 * reclaim. Now things get more complex, so set up alloc_flags according
2629 * to how we want to proceed.
2630 */
2631 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2632
2633 /*
2634 * Find the true preferred zone if the allocation is unconstrained by
2635 * cpusets.
2636 */
2637 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2638 struct zoneref *preferred_zoneref;
2639 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2640 ac->high_zoneidx, NULL, &ac->preferred_zone);
2641 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2642 }
2643
2644 /* This is the last chance, in general, before the goto nopage. */
2645 page = get_page_from_freelist(gfp_mask, order,
2646 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2647 if (page)
2648 goto got_pg;
2649
2650 /* Allocate without watermarks if the context allows */
2651 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2652 /*
2653 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2654 * the allocation is high priority and these type of
2655 * allocations are system rather than user orientated
2656 */
2657 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2658
2659 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2660
2661 if (page) {
2662 goto got_pg;
2663 }
2664 }
2665
2666 /* Atomic allocations - we can't balance anything */
2667 if (!wait) {
2668 /*
2669 * All existing users of the deprecated __GFP_NOFAIL are
2670 * blockable, so warn of any new users that actually allow this
2671 * type of allocation to fail.
2672 */
2673 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2674 goto nopage;
2675 }
2676
2677 /* Avoid recursion of direct reclaim */
2678 if (current->flags & PF_MEMALLOC)
2679 goto nopage;
2680
2681 /* Avoid allocations with no watermarks from looping endlessly */
2682 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2683 goto nopage;
2684
2685 /*
2686 * Try direct compaction. The first pass is asynchronous. Subsequent
2687 * attempts after direct reclaim are synchronous
2688 */
2689 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2690 migration_mode,
2691 &contended_compaction,
2692 &deferred_compaction);
2693 if (page)
2694 goto got_pg;
2695
2696 /* Checks for THP-specific high-order allocations */
2697 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2698 /*
2699 * If compaction is deferred for high-order allocations, it is
2700 * because sync compaction recently failed. If this is the case
2701 * and the caller requested a THP allocation, we do not want
2702 * to heavily disrupt the system, so we fail the allocation
2703 * instead of entering direct reclaim.
2704 */
2705 if (deferred_compaction)
2706 goto nopage;
2707
2708 /*
2709 * In all zones where compaction was attempted (and not
2710 * deferred or skipped), lock contention has been detected.
2711 * For THP allocation we do not want to disrupt the others
2712 * so we fallback to base pages instead.
2713 */
2714 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2715 goto nopage;
2716
2717 /*
2718 * If compaction was aborted due to need_resched(), we do not
2719 * want to further increase allocation latency, unless it is
2720 * khugepaged trying to collapse.
2721 */
2722 if (contended_compaction == COMPACT_CONTENDED_SCHED
2723 && !(current->flags & PF_KTHREAD))
2724 goto nopage;
2725 }
2726
2727 /*
2728 * It can become very expensive to allocate transparent hugepages at
2729 * fault, so use asynchronous memory compaction for THP unless it is
2730 * khugepaged trying to collapse.
2731 */
2732 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2733 (current->flags & PF_KTHREAD))
2734 migration_mode = MIGRATE_SYNC_LIGHT;
2735
2736 /* Try direct reclaim and then allocating */
2737 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2738 &did_some_progress);
2739 if (page)
2740 goto got_pg;
2741
2742 /* Check if we should retry the allocation */
2743 pages_reclaimed += did_some_progress;
2744 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2745 pages_reclaimed)) {
2746 /*
2747 * If we fail to make progress by freeing individual
2748 * pages, but the allocation wants us to keep going,
2749 * start OOM killing tasks.
2750 */
2751 if (!did_some_progress) {
2752 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2753 &did_some_progress);
2754 if (page)
2755 goto got_pg;
2756 if (!did_some_progress)
2757 goto nopage;
2758 }
2759 /* Wait for some write requests to complete then retry */
2760 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2761 goto retry;
2762 } else {
2763 /*
2764 * High-order allocations do not necessarily loop after
2765 * direct reclaim and reclaim/compaction depends on compaction
2766 * being called after reclaim so call directly if necessary
2767 */
2768 page = __alloc_pages_direct_compact(gfp_mask, order,
2769 alloc_flags, ac, migration_mode,
2770 &contended_compaction,
2771 &deferred_compaction);
2772 if (page)
2773 goto got_pg;
2774 }
2775
2776 nopage:
2777 warn_alloc_failed(gfp_mask, order, NULL);
2778 got_pg:
2779 return page;
2780 }
2781
2782 /*
2783 * This is the 'heart' of the zoned buddy allocator.
2784 */
2785 struct page *
2786 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2787 struct zonelist *zonelist, nodemask_t *nodemask)
2788 {
2789 struct zoneref *preferred_zoneref;
2790 struct page *page = NULL;
2791 unsigned int cpuset_mems_cookie;
2792 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2793 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2794 struct alloc_context ac = {
2795 .high_zoneidx = gfp_zone(gfp_mask),
2796 .nodemask = nodemask,
2797 .migratetype = gfpflags_to_migratetype(gfp_mask),
2798 };
2799
2800 gfp_mask &= gfp_allowed_mask;
2801
2802 lockdep_trace_alloc(gfp_mask);
2803
2804 might_sleep_if(gfp_mask & __GFP_WAIT);
2805
2806 if (should_fail_alloc_page(gfp_mask, order))
2807 return NULL;
2808
2809 /*
2810 * Check the zones suitable for the gfp_mask contain at least one
2811 * valid zone. It's possible to have an empty zonelist as a result
2812 * of GFP_THISNODE and a memoryless node
2813 */
2814 if (unlikely(!zonelist->_zonerefs->zone))
2815 return NULL;
2816
2817 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2818 alloc_flags |= ALLOC_CMA;
2819
2820 retry_cpuset:
2821 cpuset_mems_cookie = read_mems_allowed_begin();
2822
2823 /* We set it here, as __alloc_pages_slowpath might have changed it */
2824 ac.zonelist = zonelist;
2825 /* The preferred zone is used for statistics later */
2826 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2827 ac.nodemask ? : &cpuset_current_mems_allowed,
2828 &ac.preferred_zone);
2829 if (!ac.preferred_zone)
2830 goto out;
2831 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2832
2833 /* First allocation attempt */
2834 alloc_mask = gfp_mask|__GFP_HARDWALL;
2835 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2836 if (unlikely(!page)) {
2837 /*
2838 * Runtime PM, block IO and its error handling path
2839 * can deadlock because I/O on the device might not
2840 * complete.
2841 */
2842 alloc_mask = memalloc_noio_flags(gfp_mask);
2843
2844 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2845 }
2846
2847 if (kmemcheck_enabled && page)
2848 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2849
2850 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2851
2852 out:
2853 /*
2854 * When updating a task's mems_allowed, it is possible to race with
2855 * parallel threads in such a way that an allocation can fail while
2856 * the mask is being updated. If a page allocation is about to fail,
2857 * check if the cpuset changed during allocation and if so, retry.
2858 */
2859 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2860 goto retry_cpuset;
2861
2862 return page;
2863 }
2864 EXPORT_SYMBOL(__alloc_pages_nodemask);
2865
2866 /*
2867 * Common helper functions.
2868 */
2869 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2870 {
2871 struct page *page;
2872
2873 /*
2874 * __get_free_pages() returns a 32-bit address, which cannot represent
2875 * a highmem page
2876 */
2877 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2878
2879 page = alloc_pages(gfp_mask, order);
2880 if (!page)
2881 return 0;
2882 return (unsigned long) page_address(page);
2883 }
2884 EXPORT_SYMBOL(__get_free_pages);
2885
2886 unsigned long get_zeroed_page(gfp_t gfp_mask)
2887 {
2888 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2889 }
2890 EXPORT_SYMBOL(get_zeroed_page);
2891
2892 void __free_pages(struct page *page, unsigned int order)
2893 {
2894 if (put_page_testzero(page)) {
2895 if (order == 0)
2896 free_hot_cold_page(page, false);
2897 else
2898 __free_pages_ok(page, order);
2899 }
2900 }
2901
2902 EXPORT_SYMBOL(__free_pages);
2903
2904 void free_pages(unsigned long addr, unsigned int order)
2905 {
2906 if (addr != 0) {
2907 VM_BUG_ON(!virt_addr_valid((void *)addr));
2908 __free_pages(virt_to_page((void *)addr), order);
2909 }
2910 }
2911
2912 EXPORT_SYMBOL(free_pages);
2913
2914 /*
2915 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2916 * of the current memory cgroup.
2917 *
2918 * It should be used when the caller would like to use kmalloc, but since the
2919 * allocation is large, it has to fall back to the page allocator.
2920 */
2921 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2922 {
2923 struct page *page;
2924 struct mem_cgroup *memcg = NULL;
2925
2926 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2927 return NULL;
2928 page = alloc_pages(gfp_mask, order);
2929 memcg_kmem_commit_charge(page, memcg, order);
2930 return page;
2931 }
2932
2933 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2934 {
2935 struct page *page;
2936 struct mem_cgroup *memcg = NULL;
2937
2938 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2939 return NULL;
2940 page = alloc_pages_node(nid, gfp_mask, order);
2941 memcg_kmem_commit_charge(page, memcg, order);
2942 return page;
2943 }
2944
2945 /*
2946 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2947 * alloc_kmem_pages.
2948 */
2949 void __free_kmem_pages(struct page *page, unsigned int order)
2950 {
2951 memcg_kmem_uncharge_pages(page, order);
2952 __free_pages(page, order);
2953 }
2954
2955 void free_kmem_pages(unsigned long addr, unsigned int order)
2956 {
2957 if (addr != 0) {
2958 VM_BUG_ON(!virt_addr_valid((void *)addr));
2959 __free_kmem_pages(virt_to_page((void *)addr), order);
2960 }
2961 }
2962
2963 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2964 {
2965 if (addr) {
2966 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2967 unsigned long used = addr + PAGE_ALIGN(size);
2968
2969 split_page(virt_to_page((void *)addr), order);
2970 while (used < alloc_end) {
2971 free_page(used);
2972 used += PAGE_SIZE;
2973 }
2974 }
2975 return (void *)addr;
2976 }
2977
2978 /**
2979 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2980 * @size: the number of bytes to allocate
2981 * @gfp_mask: GFP flags for the allocation
2982 *
2983 * This function is similar to alloc_pages(), except that it allocates the
2984 * minimum number of pages to satisfy the request. alloc_pages() can only
2985 * allocate memory in power-of-two pages.
2986 *
2987 * This function is also limited by MAX_ORDER.
2988 *
2989 * Memory allocated by this function must be released by free_pages_exact().
2990 */
2991 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2992 {
2993 unsigned int order = get_order(size);
2994 unsigned long addr;
2995
2996 addr = __get_free_pages(gfp_mask, order);
2997 return make_alloc_exact(addr, order, size);
2998 }
2999 EXPORT_SYMBOL(alloc_pages_exact);
3000
3001 /**
3002 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3003 * pages on a node.
3004 * @nid: the preferred node ID where memory should be allocated
3005 * @size: the number of bytes to allocate
3006 * @gfp_mask: GFP flags for the allocation
3007 *
3008 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3009 * back.
3010 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3011 * but is not exact.
3012 */
3013 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3014 {
3015 unsigned order = get_order(size);
3016 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3017 if (!p)
3018 return NULL;
3019 return make_alloc_exact((unsigned long)page_address(p), order, size);
3020 }
3021
3022 /**
3023 * free_pages_exact - release memory allocated via alloc_pages_exact()
3024 * @virt: the value returned by alloc_pages_exact.
3025 * @size: size of allocation, same value as passed to alloc_pages_exact().
3026 *
3027 * Release the memory allocated by a previous call to alloc_pages_exact.
3028 */
3029 void free_pages_exact(void *virt, size_t size)
3030 {
3031 unsigned long addr = (unsigned long)virt;
3032 unsigned long end = addr + PAGE_ALIGN(size);
3033
3034 while (addr < end) {
3035 free_page(addr);
3036 addr += PAGE_SIZE;
3037 }
3038 }
3039 EXPORT_SYMBOL(free_pages_exact);
3040
3041 /**
3042 * nr_free_zone_pages - count number of pages beyond high watermark
3043 * @offset: The zone index of the highest zone
3044 *
3045 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3046 * high watermark within all zones at or below a given zone index. For each
3047 * zone, the number of pages is calculated as:
3048 * managed_pages - high_pages
3049 */
3050 static unsigned long nr_free_zone_pages(int offset)
3051 {
3052 struct zoneref *z;
3053 struct zone *zone;
3054
3055 /* Just pick one node, since fallback list is circular */
3056 unsigned long sum = 0;
3057
3058 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3059
3060 for_each_zone_zonelist(zone, z, zonelist, offset) {
3061 unsigned long size = zone->managed_pages;
3062 unsigned long high = high_wmark_pages(zone);
3063 if (size > high)
3064 sum += size - high;
3065 }
3066
3067 return sum;
3068 }
3069
3070 /**
3071 * nr_free_buffer_pages - count number of pages beyond high watermark
3072 *
3073 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3074 * watermark within ZONE_DMA and ZONE_NORMAL.
3075 */
3076 unsigned long nr_free_buffer_pages(void)
3077 {
3078 return nr_free_zone_pages(gfp_zone(GFP_USER));
3079 }
3080 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3081
3082 /**
3083 * nr_free_pagecache_pages - count number of pages beyond high watermark
3084 *
3085 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3086 * high watermark within all zones.
3087 */
3088 unsigned long nr_free_pagecache_pages(void)
3089 {
3090 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3091 }
3092
3093 static inline void show_node(struct zone *zone)
3094 {
3095 if (IS_ENABLED(CONFIG_NUMA))
3096 printk("Node %d ", zone_to_nid(zone));
3097 }
3098
3099 void si_meminfo(struct sysinfo *val)
3100 {
3101 val->totalram = totalram_pages;
3102 val->sharedram = global_page_state(NR_SHMEM);
3103 val->freeram = global_page_state(NR_FREE_PAGES);
3104 val->bufferram = nr_blockdev_pages();
3105 val->totalhigh = totalhigh_pages;
3106 val->freehigh = nr_free_highpages();
3107 val->mem_unit = PAGE_SIZE;
3108 }
3109
3110 EXPORT_SYMBOL(si_meminfo);
3111
3112 #ifdef CONFIG_NUMA
3113 void si_meminfo_node(struct sysinfo *val, int nid)
3114 {
3115 int zone_type; /* needs to be signed */
3116 unsigned long managed_pages = 0;
3117 pg_data_t *pgdat = NODE_DATA(nid);
3118
3119 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3120 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3121 val->totalram = managed_pages;
3122 val->sharedram = node_page_state(nid, NR_SHMEM);
3123 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3124 #ifdef CONFIG_HIGHMEM
3125 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3126 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3127 NR_FREE_PAGES);
3128 #else
3129 val->totalhigh = 0;
3130 val->freehigh = 0;
3131 #endif
3132 val->mem_unit = PAGE_SIZE;
3133 }
3134 #endif
3135
3136 /*
3137 * Determine whether the node should be displayed or not, depending on whether
3138 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3139 */
3140 bool skip_free_areas_node(unsigned int flags, int nid)
3141 {
3142 bool ret = false;
3143 unsigned int cpuset_mems_cookie;
3144
3145 if (!(flags & SHOW_MEM_FILTER_NODES))
3146 goto out;
3147
3148 do {
3149 cpuset_mems_cookie = read_mems_allowed_begin();
3150 ret = !node_isset(nid, cpuset_current_mems_allowed);
3151 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3152 out:
3153 return ret;
3154 }
3155
3156 #define K(x) ((x) << (PAGE_SHIFT-10))
3157
3158 static void show_migration_types(unsigned char type)
3159 {
3160 static const char types[MIGRATE_TYPES] = {
3161 [MIGRATE_UNMOVABLE] = 'U',
3162 [MIGRATE_RECLAIMABLE] = 'E',
3163 [MIGRATE_MOVABLE] = 'M',
3164 [MIGRATE_RESERVE] = 'R',
3165 #ifdef CONFIG_CMA
3166 [MIGRATE_CMA] = 'C',
3167 #endif
3168 #ifdef CONFIG_MEMORY_ISOLATION
3169 [MIGRATE_ISOLATE] = 'I',
3170 #endif
3171 };
3172 char tmp[MIGRATE_TYPES + 1];
3173 char *p = tmp;
3174 int i;
3175
3176 for (i = 0; i < MIGRATE_TYPES; i++) {
3177 if (type & (1 << i))
3178 *p++ = types[i];
3179 }
3180
3181 *p = '\0';
3182 printk("(%s) ", tmp);
3183 }
3184
3185 /*
3186 * Show free area list (used inside shift_scroll-lock stuff)
3187 * We also calculate the percentage fragmentation. We do this by counting the
3188 * memory on each free list with the exception of the first item on the list.
3189 * Suppresses nodes that are not allowed by current's cpuset if
3190 * SHOW_MEM_FILTER_NODES is passed.
3191 */
3192 void show_free_areas(unsigned int filter)
3193 {
3194 int cpu;
3195 struct zone *zone;
3196
3197 for_each_populated_zone(zone) {
3198 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3199 continue;
3200 show_node(zone);
3201 printk("%s per-cpu:\n", zone->name);
3202
3203 for_each_online_cpu(cpu) {
3204 struct per_cpu_pageset *pageset;
3205
3206 pageset = per_cpu_ptr(zone->pageset, cpu);
3207
3208 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3209 cpu, pageset->pcp.high,
3210 pageset->pcp.batch, pageset->pcp.count);
3211 }
3212 }
3213
3214 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3215 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3216 " unevictable:%lu"
3217 " dirty:%lu writeback:%lu unstable:%lu\n"
3218 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3219 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3220 " free_cma:%lu\n",
3221 global_page_state(NR_ACTIVE_ANON),
3222 global_page_state(NR_INACTIVE_ANON),
3223 global_page_state(NR_ISOLATED_ANON),
3224 global_page_state(NR_ACTIVE_FILE),
3225 global_page_state(NR_INACTIVE_FILE),
3226 global_page_state(NR_ISOLATED_FILE),
3227 global_page_state(NR_UNEVICTABLE),
3228 global_page_state(NR_FILE_DIRTY),
3229 global_page_state(NR_WRITEBACK),
3230 global_page_state(NR_UNSTABLE_NFS),
3231 global_page_state(NR_FREE_PAGES),
3232 global_page_state(NR_SLAB_RECLAIMABLE),
3233 global_page_state(NR_SLAB_UNRECLAIMABLE),
3234 global_page_state(NR_FILE_MAPPED),
3235 global_page_state(NR_SHMEM),
3236 global_page_state(NR_PAGETABLE),
3237 global_page_state(NR_BOUNCE),
3238 global_page_state(NR_FREE_CMA_PAGES));
3239
3240 for_each_populated_zone(zone) {
3241 int i;
3242
3243 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3244 continue;
3245 show_node(zone);
3246 printk("%s"
3247 " free:%lukB"
3248 " min:%lukB"
3249 " low:%lukB"
3250 " high:%lukB"
3251 " active_anon:%lukB"
3252 " inactive_anon:%lukB"
3253 " active_file:%lukB"
3254 " inactive_file:%lukB"
3255 " unevictable:%lukB"
3256 " isolated(anon):%lukB"
3257 " isolated(file):%lukB"
3258 " present:%lukB"
3259 " managed:%lukB"
3260 " mlocked:%lukB"
3261 " dirty:%lukB"
3262 " writeback:%lukB"
3263 " mapped:%lukB"
3264 " shmem:%lukB"
3265 " slab_reclaimable:%lukB"
3266 " slab_unreclaimable:%lukB"
3267 " kernel_stack:%lukB"
3268 " pagetables:%lukB"
3269 " unstable:%lukB"
3270 " bounce:%lukB"
3271 " free_cma:%lukB"
3272 " writeback_tmp:%lukB"
3273 " pages_scanned:%lu"
3274 " all_unreclaimable? %s"
3275 "\n",
3276 zone->name,
3277 K(zone_page_state(zone, NR_FREE_PAGES)),
3278 K(min_wmark_pages(zone)),
3279 K(low_wmark_pages(zone)),
3280 K(high_wmark_pages(zone)),
3281 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3282 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3283 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3284 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3285 K(zone_page_state(zone, NR_UNEVICTABLE)),
3286 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3287 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3288 K(zone->present_pages),
3289 K(zone->managed_pages),
3290 K(zone_page_state(zone, NR_MLOCK)),
3291 K(zone_page_state(zone, NR_FILE_DIRTY)),
3292 K(zone_page_state(zone, NR_WRITEBACK)),
3293 K(zone_page_state(zone, NR_FILE_MAPPED)),
3294 K(zone_page_state(zone, NR_SHMEM)),
3295 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3296 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3297 zone_page_state(zone, NR_KERNEL_STACK) *
3298 THREAD_SIZE / 1024,
3299 K(zone_page_state(zone, NR_PAGETABLE)),
3300 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3301 K(zone_page_state(zone, NR_BOUNCE)),
3302 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3303 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3304 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3305 (!zone_reclaimable(zone) ? "yes" : "no")
3306 );
3307 printk("lowmem_reserve[]:");
3308 for (i = 0; i < MAX_NR_ZONES; i++)
3309 printk(" %ld", zone->lowmem_reserve[i]);
3310 printk("\n");
3311 }
3312
3313 for_each_populated_zone(zone) {
3314 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3315 unsigned char types[MAX_ORDER];
3316
3317 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3318 continue;
3319 show_node(zone);
3320 printk("%s: ", zone->name);
3321
3322 spin_lock_irqsave(&zone->lock, flags);
3323 for (order = 0; order < MAX_ORDER; order++) {
3324 struct free_area *area = &zone->free_area[order];
3325 int type;
3326
3327 nr[order] = area->nr_free;
3328 total += nr[order] << order;
3329
3330 types[order] = 0;
3331 for (type = 0; type < MIGRATE_TYPES; type++) {
3332 if (!list_empty(&area->free_list[type]))
3333 types[order] |= 1 << type;
3334 }
3335 }
3336 spin_unlock_irqrestore(&zone->lock, flags);
3337 for (order = 0; order < MAX_ORDER; order++) {
3338 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3339 if (nr[order])
3340 show_migration_types(types[order]);
3341 }
3342 printk("= %lukB\n", K(total));
3343 }
3344
3345 hugetlb_show_meminfo();
3346
3347 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3348
3349 show_swap_cache_info();
3350 }
3351
3352 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3353 {
3354 zoneref->zone = zone;
3355 zoneref->zone_idx = zone_idx(zone);
3356 }
3357
3358 /*
3359 * Builds allocation fallback zone lists.
3360 *
3361 * Add all populated zones of a node to the zonelist.
3362 */
3363 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3364 int nr_zones)
3365 {
3366 struct zone *zone;
3367 enum zone_type zone_type = MAX_NR_ZONES;
3368
3369 do {
3370 zone_type--;
3371 zone = pgdat->node_zones + zone_type;
3372 if (populated_zone(zone)) {
3373 zoneref_set_zone(zone,
3374 &zonelist->_zonerefs[nr_zones++]);
3375 check_highest_zone(zone_type);
3376 }
3377 } while (zone_type);
3378
3379 return nr_zones;
3380 }
3381
3382
3383 /*
3384 * zonelist_order:
3385 * 0 = automatic detection of better ordering.
3386 * 1 = order by ([node] distance, -zonetype)
3387 * 2 = order by (-zonetype, [node] distance)
3388 *
3389 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3390 * the same zonelist. So only NUMA can configure this param.
3391 */
3392 #define ZONELIST_ORDER_DEFAULT 0
3393 #define ZONELIST_ORDER_NODE 1
3394 #define ZONELIST_ORDER_ZONE 2
3395
3396 /* zonelist order in the kernel.
3397 * set_zonelist_order() will set this to NODE or ZONE.
3398 */
3399 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3400 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3401
3402
3403 #ifdef CONFIG_NUMA
3404 /* The value user specified ....changed by config */
3405 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3406 /* string for sysctl */
3407 #define NUMA_ZONELIST_ORDER_LEN 16
3408 char numa_zonelist_order[16] = "default";
3409
3410 /*
3411 * interface for configure zonelist ordering.
3412 * command line option "numa_zonelist_order"
3413 * = "[dD]efault - default, automatic configuration.
3414 * = "[nN]ode - order by node locality, then by zone within node
3415 * = "[zZ]one - order by zone, then by locality within zone
3416 */
3417
3418 static int __parse_numa_zonelist_order(char *s)
3419 {
3420 if (*s == 'd' || *s == 'D') {
3421 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3422 } else if (*s == 'n' || *s == 'N') {
3423 user_zonelist_order = ZONELIST_ORDER_NODE;
3424 } else if (*s == 'z' || *s == 'Z') {
3425 user_zonelist_order = ZONELIST_ORDER_ZONE;
3426 } else {
3427 printk(KERN_WARNING
3428 "Ignoring invalid numa_zonelist_order value: "
3429 "%s\n", s);
3430 return -EINVAL;
3431 }
3432 return 0;
3433 }
3434
3435 static __init int setup_numa_zonelist_order(char *s)
3436 {
3437 int ret;
3438
3439 if (!s)
3440 return 0;
3441
3442 ret = __parse_numa_zonelist_order(s);
3443 if (ret == 0)
3444 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3445
3446 return ret;
3447 }
3448 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3449
3450 /*
3451 * sysctl handler for numa_zonelist_order
3452 */
3453 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3454 void __user *buffer, size_t *length,
3455 loff_t *ppos)
3456 {
3457 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3458 int ret;
3459 static DEFINE_MUTEX(zl_order_mutex);
3460
3461 mutex_lock(&zl_order_mutex);
3462 if (write) {
3463 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3464 ret = -EINVAL;
3465 goto out;
3466 }
3467 strcpy(saved_string, (char *)table->data);
3468 }
3469 ret = proc_dostring(table, write, buffer, length, ppos);
3470 if (ret)
3471 goto out;
3472 if (write) {
3473 int oldval = user_zonelist_order;
3474
3475 ret = __parse_numa_zonelist_order((char *)table->data);
3476 if (ret) {
3477 /*
3478 * bogus value. restore saved string
3479 */
3480 strncpy((char *)table->data, saved_string,
3481 NUMA_ZONELIST_ORDER_LEN);
3482 user_zonelist_order = oldval;
3483 } else if (oldval != user_zonelist_order) {
3484 mutex_lock(&zonelists_mutex);
3485 build_all_zonelists(NULL, NULL);
3486 mutex_unlock(&zonelists_mutex);
3487 }
3488 }
3489 out:
3490 mutex_unlock(&zl_order_mutex);
3491 return ret;
3492 }
3493
3494
3495 #define MAX_NODE_LOAD (nr_online_nodes)
3496 static int node_load[MAX_NUMNODES];
3497
3498 /**
3499 * find_next_best_node - find the next node that should appear in a given node's fallback list
3500 * @node: node whose fallback list we're appending
3501 * @used_node_mask: nodemask_t of already used nodes
3502 *
3503 * We use a number of factors to determine which is the next node that should
3504 * appear on a given node's fallback list. The node should not have appeared
3505 * already in @node's fallback list, and it should be the next closest node
3506 * according to the distance array (which contains arbitrary distance values
3507 * from each node to each node in the system), and should also prefer nodes
3508 * with no CPUs, since presumably they'll have very little allocation pressure
3509 * on them otherwise.
3510 * It returns -1 if no node is found.
3511 */
3512 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3513 {
3514 int n, val;
3515 int min_val = INT_MAX;
3516 int best_node = NUMA_NO_NODE;
3517 const struct cpumask *tmp = cpumask_of_node(0);
3518
3519 /* Use the local node if we haven't already */
3520 if (!node_isset(node, *used_node_mask)) {
3521 node_set(node, *used_node_mask);
3522 return node;
3523 }
3524
3525 for_each_node_state(n, N_MEMORY) {
3526
3527 /* Don't want a node to appear more than once */
3528 if (node_isset(n, *used_node_mask))
3529 continue;
3530
3531 /* Use the distance array to find the distance */
3532 val = node_distance(node, n);
3533
3534 /* Penalize nodes under us ("prefer the next node") */
3535 val += (n < node);
3536
3537 /* Give preference to headless and unused nodes */
3538 tmp = cpumask_of_node(n);
3539 if (!cpumask_empty(tmp))
3540 val += PENALTY_FOR_NODE_WITH_CPUS;
3541
3542 /* Slight preference for less loaded node */
3543 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3544 val += node_load[n];
3545
3546 if (val < min_val) {
3547 min_val = val;
3548 best_node = n;
3549 }
3550 }
3551
3552 if (best_node >= 0)
3553 node_set(best_node, *used_node_mask);
3554
3555 return best_node;
3556 }
3557
3558
3559 /*
3560 * Build zonelists ordered by node and zones within node.
3561 * This results in maximum locality--normal zone overflows into local
3562 * DMA zone, if any--but risks exhausting DMA zone.
3563 */
3564 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3565 {
3566 int j;
3567 struct zonelist *zonelist;
3568
3569 zonelist = &pgdat->node_zonelists[0];
3570 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3571 ;
3572 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3573 zonelist->_zonerefs[j].zone = NULL;
3574 zonelist->_zonerefs[j].zone_idx = 0;
3575 }
3576
3577 /*
3578 * Build gfp_thisnode zonelists
3579 */
3580 static void build_thisnode_zonelists(pg_data_t *pgdat)
3581 {
3582 int j;
3583 struct zonelist *zonelist;
3584
3585 zonelist = &pgdat->node_zonelists[1];
3586 j = build_zonelists_node(pgdat, zonelist, 0);
3587 zonelist->_zonerefs[j].zone = NULL;
3588 zonelist->_zonerefs[j].zone_idx = 0;
3589 }
3590
3591 /*
3592 * Build zonelists ordered by zone and nodes within zones.
3593 * This results in conserving DMA zone[s] until all Normal memory is
3594 * exhausted, but results in overflowing to remote node while memory
3595 * may still exist in local DMA zone.
3596 */
3597 static int node_order[MAX_NUMNODES];
3598
3599 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3600 {
3601 int pos, j, node;
3602 int zone_type; /* needs to be signed */
3603 struct zone *z;
3604 struct zonelist *zonelist;
3605
3606 zonelist = &pgdat->node_zonelists[0];
3607 pos = 0;
3608 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3609 for (j = 0; j < nr_nodes; j++) {
3610 node = node_order[j];
3611 z = &NODE_DATA(node)->node_zones[zone_type];
3612 if (populated_zone(z)) {
3613 zoneref_set_zone(z,
3614 &zonelist->_zonerefs[pos++]);
3615 check_highest_zone(zone_type);
3616 }
3617 }
3618 }
3619 zonelist->_zonerefs[pos].zone = NULL;
3620 zonelist->_zonerefs[pos].zone_idx = 0;
3621 }
3622
3623 #if defined(CONFIG_64BIT)
3624 /*
3625 * Devices that require DMA32/DMA are relatively rare and do not justify a
3626 * penalty to every machine in case the specialised case applies. Default
3627 * to Node-ordering on 64-bit NUMA machines
3628 */
3629 static int default_zonelist_order(void)
3630 {
3631 return ZONELIST_ORDER_NODE;
3632 }
3633 #else
3634 /*
3635 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3636 * by the kernel. If processes running on node 0 deplete the low memory zone
3637 * then reclaim will occur more frequency increasing stalls and potentially
3638 * be easier to OOM if a large percentage of the zone is under writeback or
3639 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3640 * Hence, default to zone ordering on 32-bit.
3641 */
3642 static int default_zonelist_order(void)
3643 {
3644 return ZONELIST_ORDER_ZONE;
3645 }
3646 #endif /* CONFIG_64BIT */
3647
3648 static void set_zonelist_order(void)
3649 {
3650 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3651 current_zonelist_order = default_zonelist_order();
3652 else
3653 current_zonelist_order = user_zonelist_order;
3654 }
3655
3656 static void build_zonelists(pg_data_t *pgdat)
3657 {
3658 int j, node, load;
3659 enum zone_type i;
3660 nodemask_t used_mask;
3661 int local_node, prev_node;
3662 struct zonelist *zonelist;
3663 int order = current_zonelist_order;
3664
3665 /* initialize zonelists */
3666 for (i = 0; i < MAX_ZONELISTS; i++) {
3667 zonelist = pgdat->node_zonelists + i;
3668 zonelist->_zonerefs[0].zone = NULL;
3669 zonelist->_zonerefs[0].zone_idx = 0;
3670 }
3671
3672 /* NUMA-aware ordering of nodes */
3673 local_node = pgdat->node_id;
3674 load = nr_online_nodes;
3675 prev_node = local_node;
3676 nodes_clear(used_mask);
3677
3678 memset(node_order, 0, sizeof(node_order));
3679 j = 0;
3680
3681 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3682 /*
3683 * We don't want to pressure a particular node.
3684 * So adding penalty to the first node in same
3685 * distance group to make it round-robin.
3686 */
3687 if (node_distance(local_node, node) !=
3688 node_distance(local_node, prev_node))
3689 node_load[node] = load;
3690
3691 prev_node = node;
3692 load--;
3693 if (order == ZONELIST_ORDER_NODE)
3694 build_zonelists_in_node_order(pgdat, node);
3695 else
3696 node_order[j++] = node; /* remember order */
3697 }
3698
3699 if (order == ZONELIST_ORDER_ZONE) {
3700 /* calculate node order -- i.e., DMA last! */
3701 build_zonelists_in_zone_order(pgdat, j);
3702 }
3703
3704 build_thisnode_zonelists(pgdat);
3705 }
3706
3707 /* Construct the zonelist performance cache - see further mmzone.h */
3708 static void build_zonelist_cache(pg_data_t *pgdat)
3709 {
3710 struct zonelist *zonelist;
3711 struct zonelist_cache *zlc;
3712 struct zoneref *z;
3713
3714 zonelist = &pgdat->node_zonelists[0];
3715 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3716 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3717 for (z = zonelist->_zonerefs; z->zone; z++)
3718 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3719 }
3720
3721 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3722 /*
3723 * Return node id of node used for "local" allocations.
3724 * I.e., first node id of first zone in arg node's generic zonelist.
3725 * Used for initializing percpu 'numa_mem', which is used primarily
3726 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3727 */
3728 int local_memory_node(int node)
3729 {
3730 struct zone *zone;
3731
3732 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3733 gfp_zone(GFP_KERNEL),
3734 NULL,
3735 &zone);
3736 return zone->node;
3737 }
3738 #endif
3739
3740 #else /* CONFIG_NUMA */
3741
3742 static void set_zonelist_order(void)
3743 {
3744 current_zonelist_order = ZONELIST_ORDER_ZONE;
3745 }
3746
3747 static void build_zonelists(pg_data_t *pgdat)
3748 {
3749 int node, local_node;
3750 enum zone_type j;
3751 struct zonelist *zonelist;
3752
3753 local_node = pgdat->node_id;
3754
3755 zonelist = &pgdat->node_zonelists[0];
3756 j = build_zonelists_node(pgdat, zonelist, 0);
3757
3758 /*
3759 * Now we build the zonelist so that it contains the zones
3760 * of all the other nodes.
3761 * We don't want to pressure a particular node, so when
3762 * building the zones for node N, we make sure that the
3763 * zones coming right after the local ones are those from
3764 * node N+1 (modulo N)
3765 */
3766 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3767 if (!node_online(node))
3768 continue;
3769 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3770 }
3771 for (node = 0; node < local_node; node++) {
3772 if (!node_online(node))
3773 continue;
3774 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3775 }
3776
3777 zonelist->_zonerefs[j].zone = NULL;
3778 zonelist->_zonerefs[j].zone_idx = 0;
3779 }
3780
3781 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3782 static void build_zonelist_cache(pg_data_t *pgdat)
3783 {
3784 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3785 }
3786
3787 #endif /* CONFIG_NUMA */
3788
3789 /*
3790 * Boot pageset table. One per cpu which is going to be used for all
3791 * zones and all nodes. The parameters will be set in such a way
3792 * that an item put on a list will immediately be handed over to
3793 * the buddy list. This is safe since pageset manipulation is done
3794 * with interrupts disabled.
3795 *
3796 * The boot_pagesets must be kept even after bootup is complete for
3797 * unused processors and/or zones. They do play a role for bootstrapping
3798 * hotplugged processors.
3799 *
3800 * zoneinfo_show() and maybe other functions do
3801 * not check if the processor is online before following the pageset pointer.
3802 * Other parts of the kernel may not check if the zone is available.
3803 */
3804 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3805 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3806 static void setup_zone_pageset(struct zone *zone);
3807
3808 /*
3809 * Global mutex to protect against size modification of zonelists
3810 * as well as to serialize pageset setup for the new populated zone.
3811 */
3812 DEFINE_MUTEX(zonelists_mutex);
3813
3814 /* return values int ....just for stop_machine() */
3815 static int __build_all_zonelists(void *data)
3816 {
3817 int nid;
3818 int cpu;
3819 pg_data_t *self = data;
3820
3821 #ifdef CONFIG_NUMA
3822 memset(node_load, 0, sizeof(node_load));
3823 #endif
3824
3825 if (self && !node_online(self->node_id)) {
3826 build_zonelists(self);
3827 build_zonelist_cache(self);
3828 }
3829
3830 for_each_online_node(nid) {
3831 pg_data_t *pgdat = NODE_DATA(nid);
3832
3833 build_zonelists(pgdat);
3834 build_zonelist_cache(pgdat);
3835 }
3836
3837 /*
3838 * Initialize the boot_pagesets that are going to be used
3839 * for bootstrapping processors. The real pagesets for
3840 * each zone will be allocated later when the per cpu
3841 * allocator is available.
3842 *
3843 * boot_pagesets are used also for bootstrapping offline
3844 * cpus if the system is already booted because the pagesets
3845 * are needed to initialize allocators on a specific cpu too.
3846 * F.e. the percpu allocator needs the page allocator which
3847 * needs the percpu allocator in order to allocate its pagesets
3848 * (a chicken-egg dilemma).
3849 */
3850 for_each_possible_cpu(cpu) {
3851 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3852
3853 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3854 /*
3855 * We now know the "local memory node" for each node--
3856 * i.e., the node of the first zone in the generic zonelist.
3857 * Set up numa_mem percpu variable for on-line cpus. During
3858 * boot, only the boot cpu should be on-line; we'll init the
3859 * secondary cpus' numa_mem as they come on-line. During
3860 * node/memory hotplug, we'll fixup all on-line cpus.
3861 */
3862 if (cpu_online(cpu))
3863 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3864 #endif
3865 }
3866
3867 return 0;
3868 }
3869
3870 /*
3871 * Called with zonelists_mutex held always
3872 * unless system_state == SYSTEM_BOOTING.
3873 */
3874 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3875 {
3876 set_zonelist_order();
3877
3878 if (system_state == SYSTEM_BOOTING) {
3879 __build_all_zonelists(NULL);
3880 mminit_verify_zonelist();
3881 cpuset_init_current_mems_allowed();
3882 } else {
3883 #ifdef CONFIG_MEMORY_HOTPLUG
3884 if (zone)
3885 setup_zone_pageset(zone);
3886 #endif
3887 /* we have to stop all cpus to guarantee there is no user
3888 of zonelist */
3889 stop_machine(__build_all_zonelists, pgdat, NULL);
3890 /* cpuset refresh routine should be here */
3891 }
3892 vm_total_pages = nr_free_pagecache_pages();
3893 /*
3894 * Disable grouping by mobility if the number of pages in the
3895 * system is too low to allow the mechanism to work. It would be
3896 * more accurate, but expensive to check per-zone. This check is
3897 * made on memory-hotadd so a system can start with mobility
3898 * disabled and enable it later
3899 */
3900 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3901 page_group_by_mobility_disabled = 1;
3902 else
3903 page_group_by_mobility_disabled = 0;
3904
3905 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3906 "Total pages: %ld\n",
3907 nr_online_nodes,
3908 zonelist_order_name[current_zonelist_order],
3909 page_group_by_mobility_disabled ? "off" : "on",
3910 vm_total_pages);
3911 #ifdef CONFIG_NUMA
3912 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3913 #endif
3914 }
3915
3916 /*
3917 * Helper functions to size the waitqueue hash table.
3918 * Essentially these want to choose hash table sizes sufficiently
3919 * large so that collisions trying to wait on pages are rare.
3920 * But in fact, the number of active page waitqueues on typical
3921 * systems is ridiculously low, less than 200. So this is even
3922 * conservative, even though it seems large.
3923 *
3924 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3925 * waitqueues, i.e. the size of the waitq table given the number of pages.
3926 */
3927 #define PAGES_PER_WAITQUEUE 256
3928
3929 #ifndef CONFIG_MEMORY_HOTPLUG
3930 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3931 {
3932 unsigned long size = 1;
3933
3934 pages /= PAGES_PER_WAITQUEUE;
3935
3936 while (size < pages)
3937 size <<= 1;
3938
3939 /*
3940 * Once we have dozens or even hundreds of threads sleeping
3941 * on IO we've got bigger problems than wait queue collision.
3942 * Limit the size of the wait table to a reasonable size.
3943 */
3944 size = min(size, 4096UL);
3945
3946 return max(size, 4UL);
3947 }
3948 #else
3949 /*
3950 * A zone's size might be changed by hot-add, so it is not possible to determine
3951 * a suitable size for its wait_table. So we use the maximum size now.
3952 *
3953 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3954 *
3955 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3956 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3957 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3958 *
3959 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3960 * or more by the traditional way. (See above). It equals:
3961 *
3962 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3963 * ia64(16K page size) : = ( 8G + 4M)byte.
3964 * powerpc (64K page size) : = (32G +16M)byte.
3965 */
3966 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3967 {
3968 return 4096UL;
3969 }
3970 #endif
3971
3972 /*
3973 * This is an integer logarithm so that shifts can be used later
3974 * to extract the more random high bits from the multiplicative
3975 * hash function before the remainder is taken.
3976 */
3977 static inline unsigned long wait_table_bits(unsigned long size)
3978 {
3979 return ffz(~size);
3980 }
3981
3982 /*
3983 * Check if a pageblock contains reserved pages
3984 */
3985 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3986 {
3987 unsigned long pfn;
3988
3989 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3990 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3991 return 1;
3992 }
3993 return 0;
3994 }
3995
3996 /*
3997 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3998 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3999 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4000 * higher will lead to a bigger reserve which will get freed as contiguous
4001 * blocks as reclaim kicks in
4002 */
4003 static void setup_zone_migrate_reserve(struct zone *zone)
4004 {
4005 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4006 struct page *page;
4007 unsigned long block_migratetype;
4008 int reserve;
4009 int old_reserve;
4010
4011 /*
4012 * Get the start pfn, end pfn and the number of blocks to reserve
4013 * We have to be careful to be aligned to pageblock_nr_pages to
4014 * make sure that we always check pfn_valid for the first page in
4015 * the block.
4016 */
4017 start_pfn = zone->zone_start_pfn;
4018 end_pfn = zone_end_pfn(zone);
4019 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4020 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4021 pageblock_order;
4022
4023 /*
4024 * Reserve blocks are generally in place to help high-order atomic
4025 * allocations that are short-lived. A min_free_kbytes value that
4026 * would result in more than 2 reserve blocks for atomic allocations
4027 * is assumed to be in place to help anti-fragmentation for the
4028 * future allocation of hugepages at runtime.
4029 */
4030 reserve = min(2, reserve);
4031 old_reserve = zone->nr_migrate_reserve_block;
4032
4033 /* When memory hot-add, we almost always need to do nothing */
4034 if (reserve == old_reserve)
4035 return;
4036 zone->nr_migrate_reserve_block = reserve;
4037
4038 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4039 if (!pfn_valid(pfn))
4040 continue;
4041 page = pfn_to_page(pfn);
4042
4043 /* Watch out for overlapping nodes */
4044 if (page_to_nid(page) != zone_to_nid(zone))
4045 continue;
4046
4047 block_migratetype = get_pageblock_migratetype(page);
4048
4049 /* Only test what is necessary when the reserves are not met */
4050 if (reserve > 0) {
4051 /*
4052 * Blocks with reserved pages will never free, skip
4053 * them.
4054 */
4055 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4056 if (pageblock_is_reserved(pfn, block_end_pfn))
4057 continue;
4058
4059 /* If this block is reserved, account for it */
4060 if (block_migratetype == MIGRATE_RESERVE) {
4061 reserve--;
4062 continue;
4063 }
4064
4065 /* Suitable for reserving if this block is movable */
4066 if (block_migratetype == MIGRATE_MOVABLE) {
4067 set_pageblock_migratetype(page,
4068 MIGRATE_RESERVE);
4069 move_freepages_block(zone, page,
4070 MIGRATE_RESERVE);
4071 reserve--;
4072 continue;
4073 }
4074 } else if (!old_reserve) {
4075 /*
4076 * At boot time we don't need to scan the whole zone
4077 * for turning off MIGRATE_RESERVE.
4078 */
4079 break;
4080 }
4081
4082 /*
4083 * If the reserve is met and this is a previous reserved block,
4084 * take it back
4085 */
4086 if (block_migratetype == MIGRATE_RESERVE) {
4087 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4088 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4089 }
4090 }
4091 }
4092
4093 /*
4094 * Initially all pages are reserved - free ones are freed
4095 * up by free_all_bootmem() once the early boot process is
4096 * done. Non-atomic initialization, single-pass.
4097 */
4098 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4099 unsigned long start_pfn, enum memmap_context context)
4100 {
4101 struct page *page;
4102 unsigned long end_pfn = start_pfn + size;
4103 unsigned long pfn;
4104 struct zone *z;
4105
4106 if (highest_memmap_pfn < end_pfn - 1)
4107 highest_memmap_pfn = end_pfn - 1;
4108
4109 z = &NODE_DATA(nid)->node_zones[zone];
4110 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4111 /*
4112 * There can be holes in boot-time mem_map[]s
4113 * handed to this function. They do not
4114 * exist on hotplugged memory.
4115 */
4116 if (context == MEMMAP_EARLY) {
4117 if (!early_pfn_valid(pfn))
4118 continue;
4119 if (!early_pfn_in_nid(pfn, nid))
4120 continue;
4121 }
4122 page = pfn_to_page(pfn);
4123 set_page_links(page, zone, nid, pfn);
4124 mminit_verify_page_links(page, zone, nid, pfn);
4125 init_page_count(page);
4126 page_mapcount_reset(page);
4127 page_cpupid_reset_last(page);
4128 SetPageReserved(page);
4129 /*
4130 * Mark the block movable so that blocks are reserved for
4131 * movable at startup. This will force kernel allocations
4132 * to reserve their blocks rather than leaking throughout
4133 * the address space during boot when many long-lived
4134 * kernel allocations are made. Later some blocks near
4135 * the start are marked MIGRATE_RESERVE by
4136 * setup_zone_migrate_reserve()
4137 *
4138 * bitmap is created for zone's valid pfn range. but memmap
4139 * can be created for invalid pages (for alignment)
4140 * check here not to call set_pageblock_migratetype() against
4141 * pfn out of zone.
4142 */
4143 if ((z->zone_start_pfn <= pfn)
4144 && (pfn < zone_end_pfn(z))
4145 && !(pfn & (pageblock_nr_pages - 1)))
4146 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4147
4148 INIT_LIST_HEAD(&page->lru);
4149 #ifdef WANT_PAGE_VIRTUAL
4150 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4151 if (!is_highmem_idx(zone))
4152 set_page_address(page, __va(pfn << PAGE_SHIFT));
4153 #endif
4154 }
4155 }
4156
4157 static void __meminit zone_init_free_lists(struct zone *zone)
4158 {
4159 unsigned int order, t;
4160 for_each_migratetype_order(order, t) {
4161 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4162 zone->free_area[order].nr_free = 0;
4163 }
4164 }
4165
4166 #ifndef __HAVE_ARCH_MEMMAP_INIT
4167 #define memmap_init(size, nid, zone, start_pfn) \
4168 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4169 #endif
4170
4171 static int zone_batchsize(struct zone *zone)
4172 {
4173 #ifdef CONFIG_MMU
4174 int batch;
4175
4176 /*
4177 * The per-cpu-pages pools are set to around 1000th of the
4178 * size of the zone. But no more than 1/2 of a meg.
4179 *
4180 * OK, so we don't know how big the cache is. So guess.
4181 */
4182 batch = zone->managed_pages / 1024;
4183 if (batch * PAGE_SIZE > 512 * 1024)
4184 batch = (512 * 1024) / PAGE_SIZE;
4185 batch /= 4; /* We effectively *= 4 below */
4186 if (batch < 1)
4187 batch = 1;
4188
4189 /*
4190 * Clamp the batch to a 2^n - 1 value. Having a power
4191 * of 2 value was found to be more likely to have
4192 * suboptimal cache aliasing properties in some cases.
4193 *
4194 * For example if 2 tasks are alternately allocating
4195 * batches of pages, one task can end up with a lot
4196 * of pages of one half of the possible page colors
4197 * and the other with pages of the other colors.
4198 */
4199 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4200
4201 return batch;
4202
4203 #else
4204 /* The deferral and batching of frees should be suppressed under NOMMU
4205 * conditions.
4206 *
4207 * The problem is that NOMMU needs to be able to allocate large chunks
4208 * of contiguous memory as there's no hardware page translation to
4209 * assemble apparent contiguous memory from discontiguous pages.
4210 *
4211 * Queueing large contiguous runs of pages for batching, however,
4212 * causes the pages to actually be freed in smaller chunks. As there
4213 * can be a significant delay between the individual batches being
4214 * recycled, this leads to the once large chunks of space being
4215 * fragmented and becoming unavailable for high-order allocations.
4216 */
4217 return 0;
4218 #endif
4219 }
4220
4221 /*
4222 * pcp->high and pcp->batch values are related and dependent on one another:
4223 * ->batch must never be higher then ->high.
4224 * The following function updates them in a safe manner without read side
4225 * locking.
4226 *
4227 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4228 * those fields changing asynchronously (acording the the above rule).
4229 *
4230 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4231 * outside of boot time (or some other assurance that no concurrent updaters
4232 * exist).
4233 */
4234 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4235 unsigned long batch)
4236 {
4237 /* start with a fail safe value for batch */
4238 pcp->batch = 1;
4239 smp_wmb();
4240
4241 /* Update high, then batch, in order */
4242 pcp->high = high;
4243 smp_wmb();
4244
4245 pcp->batch = batch;
4246 }
4247
4248 /* a companion to pageset_set_high() */
4249 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4250 {
4251 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4252 }
4253
4254 static void pageset_init(struct per_cpu_pageset *p)
4255 {
4256 struct per_cpu_pages *pcp;
4257 int migratetype;
4258
4259 memset(p, 0, sizeof(*p));
4260
4261 pcp = &p->pcp;
4262 pcp->count = 0;
4263 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4264 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4265 }
4266
4267 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4268 {
4269 pageset_init(p);
4270 pageset_set_batch(p, batch);
4271 }
4272
4273 /*
4274 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4275 * to the value high for the pageset p.
4276 */
4277 static void pageset_set_high(struct per_cpu_pageset *p,
4278 unsigned long high)
4279 {
4280 unsigned long batch = max(1UL, high / 4);
4281 if ((high / 4) > (PAGE_SHIFT * 8))
4282 batch = PAGE_SHIFT * 8;
4283
4284 pageset_update(&p->pcp, high, batch);
4285 }
4286
4287 static void pageset_set_high_and_batch(struct zone *zone,
4288 struct per_cpu_pageset *pcp)
4289 {
4290 if (percpu_pagelist_fraction)
4291 pageset_set_high(pcp,
4292 (zone->managed_pages /
4293 percpu_pagelist_fraction));
4294 else
4295 pageset_set_batch(pcp, zone_batchsize(zone));
4296 }
4297
4298 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4299 {
4300 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4301
4302 pageset_init(pcp);
4303 pageset_set_high_and_batch(zone, pcp);
4304 }
4305
4306 static void __meminit setup_zone_pageset(struct zone *zone)
4307 {
4308 int cpu;
4309 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4310 for_each_possible_cpu(cpu)
4311 zone_pageset_init(zone, cpu);
4312 }
4313
4314 /*
4315 * Allocate per cpu pagesets and initialize them.
4316 * Before this call only boot pagesets were available.
4317 */
4318 void __init setup_per_cpu_pageset(void)
4319 {
4320 struct zone *zone;
4321
4322 for_each_populated_zone(zone)
4323 setup_zone_pageset(zone);
4324 }
4325
4326 static noinline __init_refok
4327 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4328 {
4329 int i;
4330 size_t alloc_size;
4331
4332 /*
4333 * The per-page waitqueue mechanism uses hashed waitqueues
4334 * per zone.
4335 */
4336 zone->wait_table_hash_nr_entries =
4337 wait_table_hash_nr_entries(zone_size_pages);
4338 zone->wait_table_bits =
4339 wait_table_bits(zone->wait_table_hash_nr_entries);
4340 alloc_size = zone->wait_table_hash_nr_entries
4341 * sizeof(wait_queue_head_t);
4342
4343 if (!slab_is_available()) {
4344 zone->wait_table = (wait_queue_head_t *)
4345 memblock_virt_alloc_node_nopanic(
4346 alloc_size, zone->zone_pgdat->node_id);
4347 } else {
4348 /*
4349 * This case means that a zone whose size was 0 gets new memory
4350 * via memory hot-add.
4351 * But it may be the case that a new node was hot-added. In
4352 * this case vmalloc() will not be able to use this new node's
4353 * memory - this wait_table must be initialized to use this new
4354 * node itself as well.
4355 * To use this new node's memory, further consideration will be
4356 * necessary.
4357 */
4358 zone->wait_table = vmalloc(alloc_size);
4359 }
4360 if (!zone->wait_table)
4361 return -ENOMEM;
4362
4363 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4364 init_waitqueue_head(zone->wait_table + i);
4365
4366 return 0;
4367 }
4368
4369 static __meminit void zone_pcp_init(struct zone *zone)
4370 {
4371 /*
4372 * per cpu subsystem is not up at this point. The following code
4373 * relies on the ability of the linker to provide the
4374 * offset of a (static) per cpu variable into the per cpu area.
4375 */
4376 zone->pageset = &boot_pageset;
4377
4378 if (populated_zone(zone))
4379 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4380 zone->name, zone->present_pages,
4381 zone_batchsize(zone));
4382 }
4383
4384 int __meminit init_currently_empty_zone(struct zone *zone,
4385 unsigned long zone_start_pfn,
4386 unsigned long size,
4387 enum memmap_context context)
4388 {
4389 struct pglist_data *pgdat = zone->zone_pgdat;
4390 int ret;
4391 ret = zone_wait_table_init(zone, size);
4392 if (ret)
4393 return ret;
4394 pgdat->nr_zones = zone_idx(zone) + 1;
4395
4396 zone->zone_start_pfn = zone_start_pfn;
4397
4398 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4399 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4400 pgdat->node_id,
4401 (unsigned long)zone_idx(zone),
4402 zone_start_pfn, (zone_start_pfn + size));
4403
4404 zone_init_free_lists(zone);
4405
4406 return 0;
4407 }
4408
4409 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4410 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4411 /*
4412 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4413 */
4414 int __meminit __early_pfn_to_nid(unsigned long pfn)
4415 {
4416 unsigned long start_pfn, end_pfn;
4417 int nid;
4418 /*
4419 * NOTE: The following SMP-unsafe globals are only used early in boot
4420 * when the kernel is running single-threaded.
4421 */
4422 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4423 static int __meminitdata last_nid;
4424
4425 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4426 return last_nid;
4427
4428 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4429 if (nid != -1) {
4430 last_start_pfn = start_pfn;
4431 last_end_pfn = end_pfn;
4432 last_nid = nid;
4433 }
4434
4435 return nid;
4436 }
4437 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4438
4439 int __meminit early_pfn_to_nid(unsigned long pfn)
4440 {
4441 int nid;
4442
4443 nid = __early_pfn_to_nid(pfn);
4444 if (nid >= 0)
4445 return nid;
4446 /* just returns 0 */
4447 return 0;
4448 }
4449
4450 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4451 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4452 {
4453 int nid;
4454
4455 nid = __early_pfn_to_nid(pfn);
4456 if (nid >= 0 && nid != node)
4457 return false;
4458 return true;
4459 }
4460 #endif
4461
4462 /**
4463 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4464 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4465 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4466 *
4467 * If an architecture guarantees that all ranges registered contain no holes
4468 * and may be freed, this this function may be used instead of calling
4469 * memblock_free_early_nid() manually.
4470 */
4471 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4472 {
4473 unsigned long start_pfn, end_pfn;
4474 int i, this_nid;
4475
4476 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4477 start_pfn = min(start_pfn, max_low_pfn);
4478 end_pfn = min(end_pfn, max_low_pfn);
4479
4480 if (start_pfn < end_pfn)
4481 memblock_free_early_nid(PFN_PHYS(start_pfn),
4482 (end_pfn - start_pfn) << PAGE_SHIFT,
4483 this_nid);
4484 }
4485 }
4486
4487 /**
4488 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4489 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4490 *
4491 * If an architecture guarantees that all ranges registered contain no holes and may
4492 * be freed, this function may be used instead of calling memory_present() manually.
4493 */
4494 void __init sparse_memory_present_with_active_regions(int nid)
4495 {
4496 unsigned long start_pfn, end_pfn;
4497 int i, this_nid;
4498
4499 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4500 memory_present(this_nid, start_pfn, end_pfn);
4501 }
4502
4503 /**
4504 * get_pfn_range_for_nid - Return the start and end page frames for a node
4505 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4506 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4507 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4508 *
4509 * It returns the start and end page frame of a node based on information
4510 * provided by memblock_set_node(). If called for a node
4511 * with no available memory, a warning is printed and the start and end
4512 * PFNs will be 0.
4513 */
4514 void __meminit get_pfn_range_for_nid(unsigned int nid,
4515 unsigned long *start_pfn, unsigned long *end_pfn)
4516 {
4517 unsigned long this_start_pfn, this_end_pfn;
4518 int i;
4519
4520 *start_pfn = -1UL;
4521 *end_pfn = 0;
4522
4523 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4524 *start_pfn = min(*start_pfn, this_start_pfn);
4525 *end_pfn = max(*end_pfn, this_end_pfn);
4526 }
4527
4528 if (*start_pfn == -1UL)
4529 *start_pfn = 0;
4530 }
4531
4532 /*
4533 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4534 * assumption is made that zones within a node are ordered in monotonic
4535 * increasing memory addresses so that the "highest" populated zone is used
4536 */
4537 static void __init find_usable_zone_for_movable(void)
4538 {
4539 int zone_index;
4540 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4541 if (zone_index == ZONE_MOVABLE)
4542 continue;
4543
4544 if (arch_zone_highest_possible_pfn[zone_index] >
4545 arch_zone_lowest_possible_pfn[zone_index])
4546 break;
4547 }
4548
4549 VM_BUG_ON(zone_index == -1);
4550 movable_zone = zone_index;
4551 }
4552
4553 /*
4554 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4555 * because it is sized independent of architecture. Unlike the other zones,
4556 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4557 * in each node depending on the size of each node and how evenly kernelcore
4558 * is distributed. This helper function adjusts the zone ranges
4559 * provided by the architecture for a given node by using the end of the
4560 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4561 * zones within a node are in order of monotonic increases memory addresses
4562 */
4563 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4564 unsigned long zone_type,
4565 unsigned long node_start_pfn,
4566 unsigned long node_end_pfn,
4567 unsigned long *zone_start_pfn,
4568 unsigned long *zone_end_pfn)
4569 {
4570 /* Only adjust if ZONE_MOVABLE is on this node */
4571 if (zone_movable_pfn[nid]) {
4572 /* Size ZONE_MOVABLE */
4573 if (zone_type == ZONE_MOVABLE) {
4574 *zone_start_pfn = zone_movable_pfn[nid];
4575 *zone_end_pfn = min(node_end_pfn,
4576 arch_zone_highest_possible_pfn[movable_zone]);
4577
4578 /* Adjust for ZONE_MOVABLE starting within this range */
4579 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4580 *zone_end_pfn > zone_movable_pfn[nid]) {
4581 *zone_end_pfn = zone_movable_pfn[nid];
4582
4583 /* Check if this whole range is within ZONE_MOVABLE */
4584 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4585 *zone_start_pfn = *zone_end_pfn;
4586 }
4587 }
4588
4589 /*
4590 * Return the number of pages a zone spans in a node, including holes
4591 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4592 */
4593 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4594 unsigned long zone_type,
4595 unsigned long node_start_pfn,
4596 unsigned long node_end_pfn,
4597 unsigned long *ignored)
4598 {
4599 unsigned long zone_start_pfn, zone_end_pfn;
4600
4601 /* Get the start and end of the zone */
4602 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4603 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4604 adjust_zone_range_for_zone_movable(nid, zone_type,
4605 node_start_pfn, node_end_pfn,
4606 &zone_start_pfn, &zone_end_pfn);
4607
4608 /* Check that this node has pages within the zone's required range */
4609 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4610 return 0;
4611
4612 /* Move the zone boundaries inside the node if necessary */
4613 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4614 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4615
4616 /* Return the spanned pages */
4617 return zone_end_pfn - zone_start_pfn;
4618 }
4619
4620 /*
4621 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4622 * then all holes in the requested range will be accounted for.
4623 */
4624 unsigned long __meminit __absent_pages_in_range(int nid,
4625 unsigned long range_start_pfn,
4626 unsigned long range_end_pfn)
4627 {
4628 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4629 unsigned long start_pfn, end_pfn;
4630 int i;
4631
4632 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4633 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4634 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4635 nr_absent -= end_pfn - start_pfn;
4636 }
4637 return nr_absent;
4638 }
4639
4640 /**
4641 * absent_pages_in_range - Return number of page frames in holes within a range
4642 * @start_pfn: The start PFN to start searching for holes
4643 * @end_pfn: The end PFN to stop searching for holes
4644 *
4645 * It returns the number of pages frames in memory holes within a range.
4646 */
4647 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4648 unsigned long end_pfn)
4649 {
4650 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4651 }
4652
4653 /* Return the number of page frames in holes in a zone on a node */
4654 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4655 unsigned long zone_type,
4656 unsigned long node_start_pfn,
4657 unsigned long node_end_pfn,
4658 unsigned long *ignored)
4659 {
4660 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4661 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4662 unsigned long zone_start_pfn, zone_end_pfn;
4663
4664 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4665 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4666
4667 adjust_zone_range_for_zone_movable(nid, zone_type,
4668 node_start_pfn, node_end_pfn,
4669 &zone_start_pfn, &zone_end_pfn);
4670 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4671 }
4672
4673 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4674 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4675 unsigned long zone_type,
4676 unsigned long node_start_pfn,
4677 unsigned long node_end_pfn,
4678 unsigned long *zones_size)
4679 {
4680 return zones_size[zone_type];
4681 }
4682
4683 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4684 unsigned long zone_type,
4685 unsigned long node_start_pfn,
4686 unsigned long node_end_pfn,
4687 unsigned long *zholes_size)
4688 {
4689 if (!zholes_size)
4690 return 0;
4691
4692 return zholes_size[zone_type];
4693 }
4694
4695 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4696
4697 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4698 unsigned long node_start_pfn,
4699 unsigned long node_end_pfn,
4700 unsigned long *zones_size,
4701 unsigned long *zholes_size)
4702 {
4703 unsigned long realtotalpages, totalpages = 0;
4704 enum zone_type i;
4705
4706 for (i = 0; i < MAX_NR_ZONES; i++)
4707 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4708 node_start_pfn,
4709 node_end_pfn,
4710 zones_size);
4711 pgdat->node_spanned_pages = totalpages;
4712
4713 realtotalpages = totalpages;
4714 for (i = 0; i < MAX_NR_ZONES; i++)
4715 realtotalpages -=
4716 zone_absent_pages_in_node(pgdat->node_id, i,
4717 node_start_pfn, node_end_pfn,
4718 zholes_size);
4719 pgdat->node_present_pages = realtotalpages;
4720 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4721 realtotalpages);
4722 }
4723
4724 #ifndef CONFIG_SPARSEMEM
4725 /*
4726 * Calculate the size of the zone->blockflags rounded to an unsigned long
4727 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4728 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4729 * round what is now in bits to nearest long in bits, then return it in
4730 * bytes.
4731 */
4732 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4733 {
4734 unsigned long usemapsize;
4735
4736 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4737 usemapsize = roundup(zonesize, pageblock_nr_pages);
4738 usemapsize = usemapsize >> pageblock_order;
4739 usemapsize *= NR_PAGEBLOCK_BITS;
4740 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4741
4742 return usemapsize / 8;
4743 }
4744
4745 static void __init setup_usemap(struct pglist_data *pgdat,
4746 struct zone *zone,
4747 unsigned long zone_start_pfn,
4748 unsigned long zonesize)
4749 {
4750 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4751 zone->pageblock_flags = NULL;
4752 if (usemapsize)
4753 zone->pageblock_flags =
4754 memblock_virt_alloc_node_nopanic(usemapsize,
4755 pgdat->node_id);
4756 }
4757 #else
4758 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4759 unsigned long zone_start_pfn, unsigned long zonesize) {}
4760 #endif /* CONFIG_SPARSEMEM */
4761
4762 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4763
4764 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4765 void __paginginit set_pageblock_order(void)
4766 {
4767 unsigned int order;
4768
4769 /* Check that pageblock_nr_pages has not already been setup */
4770 if (pageblock_order)
4771 return;
4772
4773 if (HPAGE_SHIFT > PAGE_SHIFT)
4774 order = HUGETLB_PAGE_ORDER;
4775 else
4776 order = MAX_ORDER - 1;
4777
4778 /*
4779 * Assume the largest contiguous order of interest is a huge page.
4780 * This value may be variable depending on boot parameters on IA64 and
4781 * powerpc.
4782 */
4783 pageblock_order = order;
4784 }
4785 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4786
4787 /*
4788 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4789 * is unused as pageblock_order is set at compile-time. See
4790 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4791 * the kernel config
4792 */
4793 void __paginginit set_pageblock_order(void)
4794 {
4795 }
4796
4797 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4798
4799 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4800 unsigned long present_pages)
4801 {
4802 unsigned long pages = spanned_pages;
4803
4804 /*
4805 * Provide a more accurate estimation if there are holes within
4806 * the zone and SPARSEMEM is in use. If there are holes within the
4807 * zone, each populated memory region may cost us one or two extra
4808 * memmap pages due to alignment because memmap pages for each
4809 * populated regions may not naturally algined on page boundary.
4810 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4811 */
4812 if (spanned_pages > present_pages + (present_pages >> 4) &&
4813 IS_ENABLED(CONFIG_SPARSEMEM))
4814 pages = present_pages;
4815
4816 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4817 }
4818
4819 /*
4820 * Set up the zone data structures:
4821 * - mark all pages reserved
4822 * - mark all memory queues empty
4823 * - clear the memory bitmaps
4824 *
4825 * NOTE: pgdat should get zeroed by caller.
4826 */
4827 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4828 unsigned long node_start_pfn, unsigned long node_end_pfn,
4829 unsigned long *zones_size, unsigned long *zholes_size)
4830 {
4831 enum zone_type j;
4832 int nid = pgdat->node_id;
4833 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4834 int ret;
4835
4836 pgdat_resize_init(pgdat);
4837 #ifdef CONFIG_NUMA_BALANCING
4838 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4839 pgdat->numabalancing_migrate_nr_pages = 0;
4840 pgdat->numabalancing_migrate_next_window = jiffies;
4841 #endif
4842 init_waitqueue_head(&pgdat->kswapd_wait);
4843 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4844 pgdat_page_ext_init(pgdat);
4845
4846 for (j = 0; j < MAX_NR_ZONES; j++) {
4847 struct zone *zone = pgdat->node_zones + j;
4848 unsigned long size, realsize, freesize, memmap_pages;
4849
4850 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4851 node_end_pfn, zones_size);
4852 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4853 node_start_pfn,
4854 node_end_pfn,
4855 zholes_size);
4856
4857 /*
4858 * Adjust freesize so that it accounts for how much memory
4859 * is used by this zone for memmap. This affects the watermark
4860 * and per-cpu initialisations
4861 */
4862 memmap_pages = calc_memmap_size(size, realsize);
4863 if (!is_highmem_idx(j)) {
4864 if (freesize >= memmap_pages) {
4865 freesize -= memmap_pages;
4866 if (memmap_pages)
4867 printk(KERN_DEBUG
4868 " %s zone: %lu pages used for memmap\n",
4869 zone_names[j], memmap_pages);
4870 } else
4871 printk(KERN_WARNING
4872 " %s zone: %lu pages exceeds freesize %lu\n",
4873 zone_names[j], memmap_pages, freesize);
4874 }
4875
4876 /* Account for reserved pages */
4877 if (j == 0 && freesize > dma_reserve) {
4878 freesize -= dma_reserve;
4879 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4880 zone_names[0], dma_reserve);
4881 }
4882
4883 if (!is_highmem_idx(j))
4884 nr_kernel_pages += freesize;
4885 /* Charge for highmem memmap if there are enough kernel pages */
4886 else if (nr_kernel_pages > memmap_pages * 2)
4887 nr_kernel_pages -= memmap_pages;
4888 nr_all_pages += freesize;
4889
4890 zone->spanned_pages = size;
4891 zone->present_pages = realsize;
4892 /*
4893 * Set an approximate value for lowmem here, it will be adjusted
4894 * when the bootmem allocator frees pages into the buddy system.
4895 * And all highmem pages will be managed by the buddy system.
4896 */
4897 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4898 #ifdef CONFIG_NUMA
4899 zone->node = nid;
4900 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4901 / 100;
4902 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4903 #endif
4904 zone->name = zone_names[j];
4905 spin_lock_init(&zone->lock);
4906 spin_lock_init(&zone->lru_lock);
4907 zone_seqlock_init(zone);
4908 zone->zone_pgdat = pgdat;
4909 zone_pcp_init(zone);
4910
4911 /* For bootup, initialized properly in watermark setup */
4912 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4913
4914 lruvec_init(&zone->lruvec);
4915 if (!size)
4916 continue;
4917
4918 set_pageblock_order();
4919 setup_usemap(pgdat, zone, zone_start_pfn, size);
4920 ret = init_currently_empty_zone(zone, zone_start_pfn,
4921 size, MEMMAP_EARLY);
4922 BUG_ON(ret);
4923 memmap_init(size, nid, j, zone_start_pfn);
4924 zone_start_pfn += size;
4925 }
4926 }
4927
4928 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4929 {
4930 /* Skip empty nodes */
4931 if (!pgdat->node_spanned_pages)
4932 return;
4933
4934 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4935 /* ia64 gets its own node_mem_map, before this, without bootmem */
4936 if (!pgdat->node_mem_map) {
4937 unsigned long size, start, end;
4938 struct page *map;
4939
4940 /*
4941 * The zone's endpoints aren't required to be MAX_ORDER
4942 * aligned but the node_mem_map endpoints must be in order
4943 * for the buddy allocator to function correctly.
4944 */
4945 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4946 end = pgdat_end_pfn(pgdat);
4947 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4948 size = (end - start) * sizeof(struct page);
4949 map = alloc_remap(pgdat->node_id, size);
4950 if (!map)
4951 map = memblock_virt_alloc_node_nopanic(size,
4952 pgdat->node_id);
4953 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4954 }
4955 #ifndef CONFIG_NEED_MULTIPLE_NODES
4956 /*
4957 * With no DISCONTIG, the global mem_map is just set as node 0's
4958 */
4959 if (pgdat == NODE_DATA(0)) {
4960 mem_map = NODE_DATA(0)->node_mem_map;
4961 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4962 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4963 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4964 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4965 }
4966 #endif
4967 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4968 }
4969
4970 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4971 unsigned long node_start_pfn, unsigned long *zholes_size)
4972 {
4973 pg_data_t *pgdat = NODE_DATA(nid);
4974 unsigned long start_pfn = 0;
4975 unsigned long end_pfn = 0;
4976
4977 /* pg_data_t should be reset to zero when it's allocated */
4978 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4979
4980 pgdat->node_id = nid;
4981 pgdat->node_start_pfn = node_start_pfn;
4982 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4983 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4984 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4985 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
4986 #endif
4987 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4988 zones_size, zholes_size);
4989
4990 alloc_node_mem_map(pgdat);
4991 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4992 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4993 nid, (unsigned long)pgdat,
4994 (unsigned long)pgdat->node_mem_map);
4995 #endif
4996
4997 free_area_init_core(pgdat, start_pfn, end_pfn,
4998 zones_size, zholes_size);
4999 }
5000
5001 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5002
5003 #if MAX_NUMNODES > 1
5004 /*
5005 * Figure out the number of possible node ids.
5006 */
5007 void __init setup_nr_node_ids(void)
5008 {
5009 unsigned int node;
5010 unsigned int highest = 0;
5011
5012 for_each_node_mask(node, node_possible_map)
5013 highest = node;
5014 nr_node_ids = highest + 1;
5015 }
5016 #endif
5017
5018 /**
5019 * node_map_pfn_alignment - determine the maximum internode alignment
5020 *
5021 * This function should be called after node map is populated and sorted.
5022 * It calculates the maximum power of two alignment which can distinguish
5023 * all the nodes.
5024 *
5025 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5026 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5027 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5028 * shifted, 1GiB is enough and this function will indicate so.
5029 *
5030 * This is used to test whether pfn -> nid mapping of the chosen memory
5031 * model has fine enough granularity to avoid incorrect mapping for the
5032 * populated node map.
5033 *
5034 * Returns the determined alignment in pfn's. 0 if there is no alignment
5035 * requirement (single node).
5036 */
5037 unsigned long __init node_map_pfn_alignment(void)
5038 {
5039 unsigned long accl_mask = 0, last_end = 0;
5040 unsigned long start, end, mask;
5041 int last_nid = -1;
5042 int i, nid;
5043
5044 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5045 if (!start || last_nid < 0 || last_nid == nid) {
5046 last_nid = nid;
5047 last_end = end;
5048 continue;
5049 }
5050
5051 /*
5052 * Start with a mask granular enough to pin-point to the
5053 * start pfn and tick off bits one-by-one until it becomes
5054 * too coarse to separate the current node from the last.
5055 */
5056 mask = ~((1 << __ffs(start)) - 1);
5057 while (mask && last_end <= (start & (mask << 1)))
5058 mask <<= 1;
5059
5060 /* accumulate all internode masks */
5061 accl_mask |= mask;
5062 }
5063
5064 /* convert mask to number of pages */
5065 return ~accl_mask + 1;
5066 }
5067
5068 /* Find the lowest pfn for a node */
5069 static unsigned long __init find_min_pfn_for_node(int nid)
5070 {
5071 unsigned long min_pfn = ULONG_MAX;
5072 unsigned long start_pfn;
5073 int i;
5074
5075 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5076 min_pfn = min(min_pfn, start_pfn);
5077
5078 if (min_pfn == ULONG_MAX) {
5079 printk(KERN_WARNING
5080 "Could not find start_pfn for node %d\n", nid);
5081 return 0;
5082 }
5083
5084 return min_pfn;
5085 }
5086
5087 /**
5088 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5089 *
5090 * It returns the minimum PFN based on information provided via
5091 * memblock_set_node().
5092 */
5093 unsigned long __init find_min_pfn_with_active_regions(void)
5094 {
5095 return find_min_pfn_for_node(MAX_NUMNODES);
5096 }
5097
5098 /*
5099 * early_calculate_totalpages()
5100 * Sum pages in active regions for movable zone.
5101 * Populate N_MEMORY for calculating usable_nodes.
5102 */
5103 static unsigned long __init early_calculate_totalpages(void)
5104 {
5105 unsigned long totalpages = 0;
5106 unsigned long start_pfn, end_pfn;
5107 int i, nid;
5108
5109 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5110 unsigned long pages = end_pfn - start_pfn;
5111
5112 totalpages += pages;
5113 if (pages)
5114 node_set_state(nid, N_MEMORY);
5115 }
5116 return totalpages;
5117 }
5118
5119 /*
5120 * Find the PFN the Movable zone begins in each node. Kernel memory
5121 * is spread evenly between nodes as long as the nodes have enough
5122 * memory. When they don't, some nodes will have more kernelcore than
5123 * others
5124 */
5125 static void __init find_zone_movable_pfns_for_nodes(void)
5126 {
5127 int i, nid;
5128 unsigned long usable_startpfn;
5129 unsigned long kernelcore_node, kernelcore_remaining;
5130 /* save the state before borrow the nodemask */
5131 nodemask_t saved_node_state = node_states[N_MEMORY];
5132 unsigned long totalpages = early_calculate_totalpages();
5133 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5134 struct memblock_region *r;
5135
5136 /* Need to find movable_zone earlier when movable_node is specified. */
5137 find_usable_zone_for_movable();
5138
5139 /*
5140 * If movable_node is specified, ignore kernelcore and movablecore
5141 * options.
5142 */
5143 if (movable_node_is_enabled()) {
5144 for_each_memblock(memory, r) {
5145 if (!memblock_is_hotpluggable(r))
5146 continue;
5147
5148 nid = r->nid;
5149
5150 usable_startpfn = PFN_DOWN(r->base);
5151 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5152 min(usable_startpfn, zone_movable_pfn[nid]) :
5153 usable_startpfn;
5154 }
5155
5156 goto out2;
5157 }
5158
5159 /*
5160 * If movablecore=nn[KMG] was specified, calculate what size of
5161 * kernelcore that corresponds so that memory usable for
5162 * any allocation type is evenly spread. If both kernelcore
5163 * and movablecore are specified, then the value of kernelcore
5164 * will be used for required_kernelcore if it's greater than
5165 * what movablecore would have allowed.
5166 */
5167 if (required_movablecore) {
5168 unsigned long corepages;
5169
5170 /*
5171 * Round-up so that ZONE_MOVABLE is at least as large as what
5172 * was requested by the user
5173 */
5174 required_movablecore =
5175 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5176 corepages = totalpages - required_movablecore;
5177
5178 required_kernelcore = max(required_kernelcore, corepages);
5179 }
5180
5181 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5182 if (!required_kernelcore)
5183 goto out;
5184
5185 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5186 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5187
5188 restart:
5189 /* Spread kernelcore memory as evenly as possible throughout nodes */
5190 kernelcore_node = required_kernelcore / usable_nodes;
5191 for_each_node_state(nid, N_MEMORY) {
5192 unsigned long start_pfn, end_pfn;
5193
5194 /*
5195 * Recalculate kernelcore_node if the division per node
5196 * now exceeds what is necessary to satisfy the requested
5197 * amount of memory for the kernel
5198 */
5199 if (required_kernelcore < kernelcore_node)
5200 kernelcore_node = required_kernelcore / usable_nodes;
5201
5202 /*
5203 * As the map is walked, we track how much memory is usable
5204 * by the kernel using kernelcore_remaining. When it is
5205 * 0, the rest of the node is usable by ZONE_MOVABLE
5206 */
5207 kernelcore_remaining = kernelcore_node;
5208
5209 /* Go through each range of PFNs within this node */
5210 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5211 unsigned long size_pages;
5212
5213 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5214 if (start_pfn >= end_pfn)
5215 continue;
5216
5217 /* Account for what is only usable for kernelcore */
5218 if (start_pfn < usable_startpfn) {
5219 unsigned long kernel_pages;
5220 kernel_pages = min(end_pfn, usable_startpfn)
5221 - start_pfn;
5222
5223 kernelcore_remaining -= min(kernel_pages,
5224 kernelcore_remaining);
5225 required_kernelcore -= min(kernel_pages,
5226 required_kernelcore);
5227
5228 /* Continue if range is now fully accounted */
5229 if (end_pfn <= usable_startpfn) {
5230
5231 /*
5232 * Push zone_movable_pfn to the end so
5233 * that if we have to rebalance
5234 * kernelcore across nodes, we will
5235 * not double account here
5236 */
5237 zone_movable_pfn[nid] = end_pfn;
5238 continue;
5239 }
5240 start_pfn = usable_startpfn;
5241 }
5242
5243 /*
5244 * The usable PFN range for ZONE_MOVABLE is from
5245 * start_pfn->end_pfn. Calculate size_pages as the
5246 * number of pages used as kernelcore
5247 */
5248 size_pages = end_pfn - start_pfn;
5249 if (size_pages > kernelcore_remaining)
5250 size_pages = kernelcore_remaining;
5251 zone_movable_pfn[nid] = start_pfn + size_pages;
5252
5253 /*
5254 * Some kernelcore has been met, update counts and
5255 * break if the kernelcore for this node has been
5256 * satisfied
5257 */
5258 required_kernelcore -= min(required_kernelcore,
5259 size_pages);
5260 kernelcore_remaining -= size_pages;
5261 if (!kernelcore_remaining)
5262 break;
5263 }
5264 }
5265
5266 /*
5267 * If there is still required_kernelcore, we do another pass with one
5268 * less node in the count. This will push zone_movable_pfn[nid] further
5269 * along on the nodes that still have memory until kernelcore is
5270 * satisfied
5271 */
5272 usable_nodes--;
5273 if (usable_nodes && required_kernelcore > usable_nodes)
5274 goto restart;
5275
5276 out2:
5277 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5278 for (nid = 0; nid < MAX_NUMNODES; nid++)
5279 zone_movable_pfn[nid] =
5280 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5281
5282 out:
5283 /* restore the node_state */
5284 node_states[N_MEMORY] = saved_node_state;
5285 }
5286
5287 /* Any regular or high memory on that node ? */
5288 static void check_for_memory(pg_data_t *pgdat, int nid)
5289 {
5290 enum zone_type zone_type;
5291
5292 if (N_MEMORY == N_NORMAL_MEMORY)
5293 return;
5294
5295 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5296 struct zone *zone = &pgdat->node_zones[zone_type];
5297 if (populated_zone(zone)) {
5298 node_set_state(nid, N_HIGH_MEMORY);
5299 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5300 zone_type <= ZONE_NORMAL)
5301 node_set_state(nid, N_NORMAL_MEMORY);
5302 break;
5303 }
5304 }
5305 }
5306
5307 /**
5308 * free_area_init_nodes - Initialise all pg_data_t and zone data
5309 * @max_zone_pfn: an array of max PFNs for each zone
5310 *
5311 * This will call free_area_init_node() for each active node in the system.
5312 * Using the page ranges provided by memblock_set_node(), the size of each
5313 * zone in each node and their holes is calculated. If the maximum PFN
5314 * between two adjacent zones match, it is assumed that the zone is empty.
5315 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5316 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5317 * starts where the previous one ended. For example, ZONE_DMA32 starts
5318 * at arch_max_dma_pfn.
5319 */
5320 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5321 {
5322 unsigned long start_pfn, end_pfn;
5323 int i, nid;
5324
5325 /* Record where the zone boundaries are */
5326 memset(arch_zone_lowest_possible_pfn, 0,
5327 sizeof(arch_zone_lowest_possible_pfn));
5328 memset(arch_zone_highest_possible_pfn, 0,
5329 sizeof(arch_zone_highest_possible_pfn));
5330 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5331 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5332 for (i = 1; i < MAX_NR_ZONES; i++) {
5333 if (i == ZONE_MOVABLE)
5334 continue;
5335 arch_zone_lowest_possible_pfn[i] =
5336 arch_zone_highest_possible_pfn[i-1];
5337 arch_zone_highest_possible_pfn[i] =
5338 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5339 }
5340 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5341 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5342
5343 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5344 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5345 find_zone_movable_pfns_for_nodes();
5346
5347 /* Print out the zone ranges */
5348 pr_info("Zone ranges:\n");
5349 for (i = 0; i < MAX_NR_ZONES; i++) {
5350 if (i == ZONE_MOVABLE)
5351 continue;
5352 pr_info(" %-8s ", zone_names[i]);
5353 if (arch_zone_lowest_possible_pfn[i] ==
5354 arch_zone_highest_possible_pfn[i])
5355 pr_cont("empty\n");
5356 else
5357 pr_cont("[mem %#018Lx-%#018Lx]\n",
5358 (u64)arch_zone_lowest_possible_pfn[i]
5359 << PAGE_SHIFT,
5360 ((u64)arch_zone_highest_possible_pfn[i]
5361 << PAGE_SHIFT) - 1);
5362 }
5363
5364 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5365 pr_info("Movable zone start for each node\n");
5366 for (i = 0; i < MAX_NUMNODES; i++) {
5367 if (zone_movable_pfn[i])
5368 pr_info(" Node %d: %#018Lx\n", i,
5369 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5370 }
5371
5372 /* Print out the early node map */
5373 pr_info("Early memory node ranges\n");
5374 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5375 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5376 (u64)start_pfn << PAGE_SHIFT,
5377 ((u64)end_pfn << PAGE_SHIFT) - 1);
5378
5379 /* Initialise every node */
5380 mminit_verify_pageflags_layout();
5381 setup_nr_node_ids();
5382 for_each_online_node(nid) {
5383 pg_data_t *pgdat = NODE_DATA(nid);
5384 free_area_init_node(nid, NULL,
5385 find_min_pfn_for_node(nid), NULL);
5386
5387 /* Any memory on that node */
5388 if (pgdat->node_present_pages)
5389 node_set_state(nid, N_MEMORY);
5390 check_for_memory(pgdat, nid);
5391 }
5392 }
5393
5394 static int __init cmdline_parse_core(char *p, unsigned long *core)
5395 {
5396 unsigned long long coremem;
5397 if (!p)
5398 return -EINVAL;
5399
5400 coremem = memparse(p, &p);
5401 *core = coremem >> PAGE_SHIFT;
5402
5403 /* Paranoid check that UL is enough for the coremem value */
5404 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5405
5406 return 0;
5407 }
5408
5409 /*
5410 * kernelcore=size sets the amount of memory for use for allocations that
5411 * cannot be reclaimed or migrated.
5412 */
5413 static int __init cmdline_parse_kernelcore(char *p)
5414 {
5415 return cmdline_parse_core(p, &required_kernelcore);
5416 }
5417
5418 /*
5419 * movablecore=size sets the amount of memory for use for allocations that
5420 * can be reclaimed or migrated.
5421 */
5422 static int __init cmdline_parse_movablecore(char *p)
5423 {
5424 return cmdline_parse_core(p, &required_movablecore);
5425 }
5426
5427 early_param("kernelcore", cmdline_parse_kernelcore);
5428 early_param("movablecore", cmdline_parse_movablecore);
5429
5430 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5431
5432 void adjust_managed_page_count(struct page *page, long count)
5433 {
5434 spin_lock(&managed_page_count_lock);
5435 page_zone(page)->managed_pages += count;
5436 totalram_pages += count;
5437 #ifdef CONFIG_HIGHMEM
5438 if (PageHighMem(page))
5439 totalhigh_pages += count;
5440 #endif
5441 spin_unlock(&managed_page_count_lock);
5442 }
5443 EXPORT_SYMBOL(adjust_managed_page_count);
5444
5445 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5446 {
5447 void *pos;
5448 unsigned long pages = 0;
5449
5450 start = (void *)PAGE_ALIGN((unsigned long)start);
5451 end = (void *)((unsigned long)end & PAGE_MASK);
5452 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5453 if ((unsigned int)poison <= 0xFF)
5454 memset(pos, poison, PAGE_SIZE);
5455 free_reserved_page(virt_to_page(pos));
5456 }
5457
5458 if (pages && s)
5459 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5460 s, pages << (PAGE_SHIFT - 10), start, end);
5461
5462 return pages;
5463 }
5464 EXPORT_SYMBOL(free_reserved_area);
5465
5466 #ifdef CONFIG_HIGHMEM
5467 void free_highmem_page(struct page *page)
5468 {
5469 __free_reserved_page(page);
5470 totalram_pages++;
5471 page_zone(page)->managed_pages++;
5472 totalhigh_pages++;
5473 }
5474 #endif
5475
5476
5477 void __init mem_init_print_info(const char *str)
5478 {
5479 unsigned long physpages, codesize, datasize, rosize, bss_size;
5480 unsigned long init_code_size, init_data_size;
5481
5482 physpages = get_num_physpages();
5483 codesize = _etext - _stext;
5484 datasize = _edata - _sdata;
5485 rosize = __end_rodata - __start_rodata;
5486 bss_size = __bss_stop - __bss_start;
5487 init_data_size = __init_end - __init_begin;
5488 init_code_size = _einittext - _sinittext;
5489
5490 /*
5491 * Detect special cases and adjust section sizes accordingly:
5492 * 1) .init.* may be embedded into .data sections
5493 * 2) .init.text.* may be out of [__init_begin, __init_end],
5494 * please refer to arch/tile/kernel/vmlinux.lds.S.
5495 * 3) .rodata.* may be embedded into .text or .data sections.
5496 */
5497 #define adj_init_size(start, end, size, pos, adj) \
5498 do { \
5499 if (start <= pos && pos < end && size > adj) \
5500 size -= adj; \
5501 } while (0)
5502
5503 adj_init_size(__init_begin, __init_end, init_data_size,
5504 _sinittext, init_code_size);
5505 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5506 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5507 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5508 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5509
5510 #undef adj_init_size
5511
5512 pr_info("Memory: %luK/%luK available "
5513 "(%luK kernel code, %luK rwdata, %luK rodata, "
5514 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5515 #ifdef CONFIG_HIGHMEM
5516 ", %luK highmem"
5517 #endif
5518 "%s%s)\n",
5519 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5520 codesize >> 10, datasize >> 10, rosize >> 10,
5521 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5522 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5523 totalcma_pages << (PAGE_SHIFT-10),
5524 #ifdef CONFIG_HIGHMEM
5525 totalhigh_pages << (PAGE_SHIFT-10),
5526 #endif
5527 str ? ", " : "", str ? str : "");
5528 }
5529
5530 /**
5531 * set_dma_reserve - set the specified number of pages reserved in the first zone
5532 * @new_dma_reserve: The number of pages to mark reserved
5533 *
5534 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5535 * In the DMA zone, a significant percentage may be consumed by kernel image
5536 * and other unfreeable allocations which can skew the watermarks badly. This
5537 * function may optionally be used to account for unfreeable pages in the
5538 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5539 * smaller per-cpu batchsize.
5540 */
5541 void __init set_dma_reserve(unsigned long new_dma_reserve)
5542 {
5543 dma_reserve = new_dma_reserve;
5544 }
5545
5546 void __init free_area_init(unsigned long *zones_size)
5547 {
5548 free_area_init_node(0, zones_size,
5549 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5550 }
5551
5552 static int page_alloc_cpu_notify(struct notifier_block *self,
5553 unsigned long action, void *hcpu)
5554 {
5555 int cpu = (unsigned long)hcpu;
5556
5557 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5558 lru_add_drain_cpu(cpu);
5559 drain_pages(cpu);
5560
5561 /*
5562 * Spill the event counters of the dead processor
5563 * into the current processors event counters.
5564 * This artificially elevates the count of the current
5565 * processor.
5566 */
5567 vm_events_fold_cpu(cpu);
5568
5569 /*
5570 * Zero the differential counters of the dead processor
5571 * so that the vm statistics are consistent.
5572 *
5573 * This is only okay since the processor is dead and cannot
5574 * race with what we are doing.
5575 */
5576 cpu_vm_stats_fold(cpu);
5577 }
5578 return NOTIFY_OK;
5579 }
5580
5581 void __init page_alloc_init(void)
5582 {
5583 hotcpu_notifier(page_alloc_cpu_notify, 0);
5584 }
5585
5586 /*
5587 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5588 * or min_free_kbytes changes.
5589 */
5590 static void calculate_totalreserve_pages(void)
5591 {
5592 struct pglist_data *pgdat;
5593 unsigned long reserve_pages = 0;
5594 enum zone_type i, j;
5595
5596 for_each_online_pgdat(pgdat) {
5597 for (i = 0; i < MAX_NR_ZONES; i++) {
5598 struct zone *zone = pgdat->node_zones + i;
5599 long max = 0;
5600
5601 /* Find valid and maximum lowmem_reserve in the zone */
5602 for (j = i; j < MAX_NR_ZONES; j++) {
5603 if (zone->lowmem_reserve[j] > max)
5604 max = zone->lowmem_reserve[j];
5605 }
5606
5607 /* we treat the high watermark as reserved pages. */
5608 max += high_wmark_pages(zone);
5609
5610 if (max > zone->managed_pages)
5611 max = zone->managed_pages;
5612 reserve_pages += max;
5613 /*
5614 * Lowmem reserves are not available to
5615 * GFP_HIGHUSER page cache allocations and
5616 * kswapd tries to balance zones to their high
5617 * watermark. As a result, neither should be
5618 * regarded as dirtyable memory, to prevent a
5619 * situation where reclaim has to clean pages
5620 * in order to balance the zones.
5621 */
5622 zone->dirty_balance_reserve = max;
5623 }
5624 }
5625 dirty_balance_reserve = reserve_pages;
5626 totalreserve_pages = reserve_pages;
5627 }
5628
5629 /*
5630 * setup_per_zone_lowmem_reserve - called whenever
5631 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5632 * has a correct pages reserved value, so an adequate number of
5633 * pages are left in the zone after a successful __alloc_pages().
5634 */
5635 static void setup_per_zone_lowmem_reserve(void)
5636 {
5637 struct pglist_data *pgdat;
5638 enum zone_type j, idx;
5639
5640 for_each_online_pgdat(pgdat) {
5641 for (j = 0; j < MAX_NR_ZONES; j++) {
5642 struct zone *zone = pgdat->node_zones + j;
5643 unsigned long managed_pages = zone->managed_pages;
5644
5645 zone->lowmem_reserve[j] = 0;
5646
5647 idx = j;
5648 while (idx) {
5649 struct zone *lower_zone;
5650
5651 idx--;
5652
5653 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5654 sysctl_lowmem_reserve_ratio[idx] = 1;
5655
5656 lower_zone = pgdat->node_zones + idx;
5657 lower_zone->lowmem_reserve[j] = managed_pages /
5658 sysctl_lowmem_reserve_ratio[idx];
5659 managed_pages += lower_zone->managed_pages;
5660 }
5661 }
5662 }
5663
5664 /* update totalreserve_pages */
5665 calculate_totalreserve_pages();
5666 }
5667
5668 static void __setup_per_zone_wmarks(void)
5669 {
5670 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5671 unsigned long lowmem_pages = 0;
5672 struct zone *zone;
5673 unsigned long flags;
5674
5675 /* Calculate total number of !ZONE_HIGHMEM pages */
5676 for_each_zone(zone) {
5677 if (!is_highmem(zone))
5678 lowmem_pages += zone->managed_pages;
5679 }
5680
5681 for_each_zone(zone) {
5682 u64 tmp;
5683
5684 spin_lock_irqsave(&zone->lock, flags);
5685 tmp = (u64)pages_min * zone->managed_pages;
5686 do_div(tmp, lowmem_pages);
5687 if (is_highmem(zone)) {
5688 /*
5689 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5690 * need highmem pages, so cap pages_min to a small
5691 * value here.
5692 *
5693 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5694 * deltas controls asynch page reclaim, and so should
5695 * not be capped for highmem.
5696 */
5697 unsigned long min_pages;
5698
5699 min_pages = zone->managed_pages / 1024;
5700 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5701 zone->watermark[WMARK_MIN] = min_pages;
5702 } else {
5703 /*
5704 * If it's a lowmem zone, reserve a number of pages
5705 * proportionate to the zone's size.
5706 */
5707 zone->watermark[WMARK_MIN] = tmp;
5708 }
5709
5710 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5711 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5712
5713 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5714 high_wmark_pages(zone) - low_wmark_pages(zone) -
5715 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5716
5717 setup_zone_migrate_reserve(zone);
5718 spin_unlock_irqrestore(&zone->lock, flags);
5719 }
5720
5721 /* update totalreserve_pages */
5722 calculate_totalreserve_pages();
5723 }
5724
5725 /**
5726 * setup_per_zone_wmarks - called when min_free_kbytes changes
5727 * or when memory is hot-{added|removed}
5728 *
5729 * Ensures that the watermark[min,low,high] values for each zone are set
5730 * correctly with respect to min_free_kbytes.
5731 */
5732 void setup_per_zone_wmarks(void)
5733 {
5734 mutex_lock(&zonelists_mutex);
5735 __setup_per_zone_wmarks();
5736 mutex_unlock(&zonelists_mutex);
5737 }
5738
5739 /*
5740 * The inactive anon list should be small enough that the VM never has to
5741 * do too much work, but large enough that each inactive page has a chance
5742 * to be referenced again before it is swapped out.
5743 *
5744 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5745 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5746 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5747 * the anonymous pages are kept on the inactive list.
5748 *
5749 * total target max
5750 * memory ratio inactive anon
5751 * -------------------------------------
5752 * 10MB 1 5MB
5753 * 100MB 1 50MB
5754 * 1GB 3 250MB
5755 * 10GB 10 0.9GB
5756 * 100GB 31 3GB
5757 * 1TB 101 10GB
5758 * 10TB 320 32GB
5759 */
5760 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5761 {
5762 unsigned int gb, ratio;
5763
5764 /* Zone size in gigabytes */
5765 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5766 if (gb)
5767 ratio = int_sqrt(10 * gb);
5768 else
5769 ratio = 1;
5770
5771 zone->inactive_ratio = ratio;
5772 }
5773
5774 static void __meminit setup_per_zone_inactive_ratio(void)
5775 {
5776 struct zone *zone;
5777
5778 for_each_zone(zone)
5779 calculate_zone_inactive_ratio(zone);
5780 }
5781
5782 /*
5783 * Initialise min_free_kbytes.
5784 *
5785 * For small machines we want it small (128k min). For large machines
5786 * we want it large (64MB max). But it is not linear, because network
5787 * bandwidth does not increase linearly with machine size. We use
5788 *
5789 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5790 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5791 *
5792 * which yields
5793 *
5794 * 16MB: 512k
5795 * 32MB: 724k
5796 * 64MB: 1024k
5797 * 128MB: 1448k
5798 * 256MB: 2048k
5799 * 512MB: 2896k
5800 * 1024MB: 4096k
5801 * 2048MB: 5792k
5802 * 4096MB: 8192k
5803 * 8192MB: 11584k
5804 * 16384MB: 16384k
5805 */
5806 int __meminit init_per_zone_wmark_min(void)
5807 {
5808 unsigned long lowmem_kbytes;
5809 int new_min_free_kbytes;
5810
5811 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5812 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5813
5814 if (new_min_free_kbytes > user_min_free_kbytes) {
5815 min_free_kbytes = new_min_free_kbytes;
5816 if (min_free_kbytes < 128)
5817 min_free_kbytes = 128;
5818 if (min_free_kbytes > 65536)
5819 min_free_kbytes = 65536;
5820 } else {
5821 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5822 new_min_free_kbytes, user_min_free_kbytes);
5823 }
5824 setup_per_zone_wmarks();
5825 refresh_zone_stat_thresholds();
5826 setup_per_zone_lowmem_reserve();
5827 setup_per_zone_inactive_ratio();
5828 return 0;
5829 }
5830 module_init(init_per_zone_wmark_min)
5831
5832 /*
5833 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5834 * that we can call two helper functions whenever min_free_kbytes
5835 * changes.
5836 */
5837 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5838 void __user *buffer, size_t *length, loff_t *ppos)
5839 {
5840 int rc;
5841
5842 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5843 if (rc)
5844 return rc;
5845
5846 if (write) {
5847 user_min_free_kbytes = min_free_kbytes;
5848 setup_per_zone_wmarks();
5849 }
5850 return 0;
5851 }
5852
5853 #ifdef CONFIG_NUMA
5854 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5855 void __user *buffer, size_t *length, loff_t *ppos)
5856 {
5857 struct zone *zone;
5858 int rc;
5859
5860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5861 if (rc)
5862 return rc;
5863
5864 for_each_zone(zone)
5865 zone->min_unmapped_pages = (zone->managed_pages *
5866 sysctl_min_unmapped_ratio) / 100;
5867 return 0;
5868 }
5869
5870 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5871 void __user *buffer, size_t *length, loff_t *ppos)
5872 {
5873 struct zone *zone;
5874 int rc;
5875
5876 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5877 if (rc)
5878 return rc;
5879
5880 for_each_zone(zone)
5881 zone->min_slab_pages = (zone->managed_pages *
5882 sysctl_min_slab_ratio) / 100;
5883 return 0;
5884 }
5885 #endif
5886
5887 /*
5888 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5889 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5890 * whenever sysctl_lowmem_reserve_ratio changes.
5891 *
5892 * The reserve ratio obviously has absolutely no relation with the
5893 * minimum watermarks. The lowmem reserve ratio can only make sense
5894 * if in function of the boot time zone sizes.
5895 */
5896 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5897 void __user *buffer, size_t *length, loff_t *ppos)
5898 {
5899 proc_dointvec_minmax(table, write, buffer, length, ppos);
5900 setup_per_zone_lowmem_reserve();
5901 return 0;
5902 }
5903
5904 /*
5905 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5906 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5907 * pagelist can have before it gets flushed back to buddy allocator.
5908 */
5909 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5910 void __user *buffer, size_t *length, loff_t *ppos)
5911 {
5912 struct zone *zone;
5913 int old_percpu_pagelist_fraction;
5914 int ret;
5915
5916 mutex_lock(&pcp_batch_high_lock);
5917 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5918
5919 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5920 if (!write || ret < 0)
5921 goto out;
5922
5923 /* Sanity checking to avoid pcp imbalance */
5924 if (percpu_pagelist_fraction &&
5925 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5926 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5927 ret = -EINVAL;
5928 goto out;
5929 }
5930
5931 /* No change? */
5932 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5933 goto out;
5934
5935 for_each_populated_zone(zone) {
5936 unsigned int cpu;
5937
5938 for_each_possible_cpu(cpu)
5939 pageset_set_high_and_batch(zone,
5940 per_cpu_ptr(zone->pageset, cpu));
5941 }
5942 out:
5943 mutex_unlock(&pcp_batch_high_lock);
5944 return ret;
5945 }
5946
5947 int hashdist = HASHDIST_DEFAULT;
5948
5949 #ifdef CONFIG_NUMA
5950 static int __init set_hashdist(char *str)
5951 {
5952 if (!str)
5953 return 0;
5954 hashdist = simple_strtoul(str, &str, 0);
5955 return 1;
5956 }
5957 __setup("hashdist=", set_hashdist);
5958 #endif
5959
5960 /*
5961 * allocate a large system hash table from bootmem
5962 * - it is assumed that the hash table must contain an exact power-of-2
5963 * quantity of entries
5964 * - limit is the number of hash buckets, not the total allocation size
5965 */
5966 void *__init alloc_large_system_hash(const char *tablename,
5967 unsigned long bucketsize,
5968 unsigned long numentries,
5969 int scale,
5970 int flags,
5971 unsigned int *_hash_shift,
5972 unsigned int *_hash_mask,
5973 unsigned long low_limit,
5974 unsigned long high_limit)
5975 {
5976 unsigned long long max = high_limit;
5977 unsigned long log2qty, size;
5978 void *table = NULL;
5979
5980 /* allow the kernel cmdline to have a say */
5981 if (!numentries) {
5982 /* round applicable memory size up to nearest megabyte */
5983 numentries = nr_kernel_pages;
5984
5985 /* It isn't necessary when PAGE_SIZE >= 1MB */
5986 if (PAGE_SHIFT < 20)
5987 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5988
5989 /* limit to 1 bucket per 2^scale bytes of low memory */
5990 if (scale > PAGE_SHIFT)
5991 numentries >>= (scale - PAGE_SHIFT);
5992 else
5993 numentries <<= (PAGE_SHIFT - scale);
5994
5995 /* Make sure we've got at least a 0-order allocation.. */
5996 if (unlikely(flags & HASH_SMALL)) {
5997 /* Makes no sense without HASH_EARLY */
5998 WARN_ON(!(flags & HASH_EARLY));
5999 if (!(numentries >> *_hash_shift)) {
6000 numentries = 1UL << *_hash_shift;
6001 BUG_ON(!numentries);
6002 }
6003 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6004 numentries = PAGE_SIZE / bucketsize;
6005 }
6006 numentries = roundup_pow_of_two(numentries);
6007
6008 /* limit allocation size to 1/16 total memory by default */
6009 if (max == 0) {
6010 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6011 do_div(max, bucketsize);
6012 }
6013 max = min(max, 0x80000000ULL);
6014
6015 if (numentries < low_limit)
6016 numentries = low_limit;
6017 if (numentries > max)
6018 numentries = max;
6019
6020 log2qty = ilog2(numentries);
6021
6022 do {
6023 size = bucketsize << log2qty;
6024 if (flags & HASH_EARLY)
6025 table = memblock_virt_alloc_nopanic(size, 0);
6026 else if (hashdist)
6027 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6028 else {
6029 /*
6030 * If bucketsize is not a power-of-two, we may free
6031 * some pages at the end of hash table which
6032 * alloc_pages_exact() automatically does
6033 */
6034 if (get_order(size) < MAX_ORDER) {
6035 table = alloc_pages_exact(size, GFP_ATOMIC);
6036 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6037 }
6038 }
6039 } while (!table && size > PAGE_SIZE && --log2qty);
6040
6041 if (!table)
6042 panic("Failed to allocate %s hash table\n", tablename);
6043
6044 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6045 tablename,
6046 (1UL << log2qty),
6047 ilog2(size) - PAGE_SHIFT,
6048 size);
6049
6050 if (_hash_shift)
6051 *_hash_shift = log2qty;
6052 if (_hash_mask)
6053 *_hash_mask = (1 << log2qty) - 1;
6054
6055 return table;
6056 }
6057
6058 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6059 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6060 unsigned long pfn)
6061 {
6062 #ifdef CONFIG_SPARSEMEM
6063 return __pfn_to_section(pfn)->pageblock_flags;
6064 #else
6065 return zone->pageblock_flags;
6066 #endif /* CONFIG_SPARSEMEM */
6067 }
6068
6069 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6070 {
6071 #ifdef CONFIG_SPARSEMEM
6072 pfn &= (PAGES_PER_SECTION-1);
6073 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6074 #else
6075 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6076 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6077 #endif /* CONFIG_SPARSEMEM */
6078 }
6079
6080 /**
6081 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6082 * @page: The page within the block of interest
6083 * @pfn: The target page frame number
6084 * @end_bitidx: The last bit of interest to retrieve
6085 * @mask: mask of bits that the caller is interested in
6086 *
6087 * Return: pageblock_bits flags
6088 */
6089 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6090 unsigned long end_bitidx,
6091 unsigned long mask)
6092 {
6093 struct zone *zone;
6094 unsigned long *bitmap;
6095 unsigned long bitidx, word_bitidx;
6096 unsigned long word;
6097
6098 zone = page_zone(page);
6099 bitmap = get_pageblock_bitmap(zone, pfn);
6100 bitidx = pfn_to_bitidx(zone, pfn);
6101 word_bitidx = bitidx / BITS_PER_LONG;
6102 bitidx &= (BITS_PER_LONG-1);
6103
6104 word = bitmap[word_bitidx];
6105 bitidx += end_bitidx;
6106 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6107 }
6108
6109 /**
6110 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6111 * @page: The page within the block of interest
6112 * @flags: The flags to set
6113 * @pfn: The target page frame number
6114 * @end_bitidx: The last bit of interest
6115 * @mask: mask of bits that the caller is interested in
6116 */
6117 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6118 unsigned long pfn,
6119 unsigned long end_bitidx,
6120 unsigned long mask)
6121 {
6122 struct zone *zone;
6123 unsigned long *bitmap;
6124 unsigned long bitidx, word_bitidx;
6125 unsigned long old_word, word;
6126
6127 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6128
6129 zone = page_zone(page);
6130 bitmap = get_pageblock_bitmap(zone, pfn);
6131 bitidx = pfn_to_bitidx(zone, pfn);
6132 word_bitidx = bitidx / BITS_PER_LONG;
6133 bitidx &= (BITS_PER_LONG-1);
6134
6135 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6136
6137 bitidx += end_bitidx;
6138 mask <<= (BITS_PER_LONG - bitidx - 1);
6139 flags <<= (BITS_PER_LONG - bitidx - 1);
6140
6141 word = ACCESS_ONCE(bitmap[word_bitidx]);
6142 for (;;) {
6143 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6144 if (word == old_word)
6145 break;
6146 word = old_word;
6147 }
6148 }
6149
6150 /*
6151 * This function checks whether pageblock includes unmovable pages or not.
6152 * If @count is not zero, it is okay to include less @count unmovable pages
6153 *
6154 * PageLRU check without isolation or lru_lock could race so that
6155 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6156 * expect this function should be exact.
6157 */
6158 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6159 bool skip_hwpoisoned_pages)
6160 {
6161 unsigned long pfn, iter, found;
6162 int mt;
6163
6164 /*
6165 * For avoiding noise data, lru_add_drain_all() should be called
6166 * If ZONE_MOVABLE, the zone never contains unmovable pages
6167 */
6168 if (zone_idx(zone) == ZONE_MOVABLE)
6169 return false;
6170 mt = get_pageblock_migratetype(page);
6171 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6172 return false;
6173
6174 pfn = page_to_pfn(page);
6175 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6176 unsigned long check = pfn + iter;
6177
6178 if (!pfn_valid_within(check))
6179 continue;
6180
6181 page = pfn_to_page(check);
6182
6183 /*
6184 * Hugepages are not in LRU lists, but they're movable.
6185 * We need not scan over tail pages bacause we don't
6186 * handle each tail page individually in migration.
6187 */
6188 if (PageHuge(page)) {
6189 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6190 continue;
6191 }
6192
6193 /*
6194 * We can't use page_count without pin a page
6195 * because another CPU can free compound page.
6196 * This check already skips compound tails of THP
6197 * because their page->_count is zero at all time.
6198 */
6199 if (!atomic_read(&page->_count)) {
6200 if (PageBuddy(page))
6201 iter += (1 << page_order(page)) - 1;
6202 continue;
6203 }
6204
6205 /*
6206 * The HWPoisoned page may be not in buddy system, and
6207 * page_count() is not 0.
6208 */
6209 if (skip_hwpoisoned_pages && PageHWPoison(page))
6210 continue;
6211
6212 if (!PageLRU(page))
6213 found++;
6214 /*
6215 * If there are RECLAIMABLE pages, we need to check
6216 * it. But now, memory offline itself doesn't call
6217 * shrink_node_slabs() and it still to be fixed.
6218 */
6219 /*
6220 * If the page is not RAM, page_count()should be 0.
6221 * we don't need more check. This is an _used_ not-movable page.
6222 *
6223 * The problematic thing here is PG_reserved pages. PG_reserved
6224 * is set to both of a memory hole page and a _used_ kernel
6225 * page at boot.
6226 */
6227 if (found > count)
6228 return true;
6229 }
6230 return false;
6231 }
6232
6233 bool is_pageblock_removable_nolock(struct page *page)
6234 {
6235 struct zone *zone;
6236 unsigned long pfn;
6237
6238 /*
6239 * We have to be careful here because we are iterating over memory
6240 * sections which are not zone aware so we might end up outside of
6241 * the zone but still within the section.
6242 * We have to take care about the node as well. If the node is offline
6243 * its NODE_DATA will be NULL - see page_zone.
6244 */
6245 if (!node_online(page_to_nid(page)))
6246 return false;
6247
6248 zone = page_zone(page);
6249 pfn = page_to_pfn(page);
6250 if (!zone_spans_pfn(zone, pfn))
6251 return false;
6252
6253 return !has_unmovable_pages(zone, page, 0, true);
6254 }
6255
6256 #ifdef CONFIG_CMA
6257
6258 static unsigned long pfn_max_align_down(unsigned long pfn)
6259 {
6260 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6261 pageblock_nr_pages) - 1);
6262 }
6263
6264 static unsigned long pfn_max_align_up(unsigned long pfn)
6265 {
6266 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6267 pageblock_nr_pages));
6268 }
6269
6270 /* [start, end) must belong to a single zone. */
6271 static int __alloc_contig_migrate_range(struct compact_control *cc,
6272 unsigned long start, unsigned long end)
6273 {
6274 /* This function is based on compact_zone() from compaction.c. */
6275 unsigned long nr_reclaimed;
6276 unsigned long pfn = start;
6277 unsigned int tries = 0;
6278 int ret = 0;
6279
6280 migrate_prep();
6281
6282 while (pfn < end || !list_empty(&cc->migratepages)) {
6283 if (fatal_signal_pending(current)) {
6284 ret = -EINTR;
6285 break;
6286 }
6287
6288 if (list_empty(&cc->migratepages)) {
6289 cc->nr_migratepages = 0;
6290 pfn = isolate_migratepages_range(cc, pfn, end);
6291 if (!pfn) {
6292 ret = -EINTR;
6293 break;
6294 }
6295 tries = 0;
6296 } else if (++tries == 5) {
6297 ret = ret < 0 ? ret : -EBUSY;
6298 break;
6299 }
6300
6301 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6302 &cc->migratepages);
6303 cc->nr_migratepages -= nr_reclaimed;
6304
6305 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6306 NULL, 0, cc->mode, MR_CMA);
6307 }
6308 if (ret < 0) {
6309 putback_movable_pages(&cc->migratepages);
6310 return ret;
6311 }
6312 return 0;
6313 }
6314
6315 /**
6316 * alloc_contig_range() -- tries to allocate given range of pages
6317 * @start: start PFN to allocate
6318 * @end: one-past-the-last PFN to allocate
6319 * @migratetype: migratetype of the underlaying pageblocks (either
6320 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6321 * in range must have the same migratetype and it must
6322 * be either of the two.
6323 *
6324 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6325 * aligned, however it's the caller's responsibility to guarantee that
6326 * we are the only thread that changes migrate type of pageblocks the
6327 * pages fall in.
6328 *
6329 * The PFN range must belong to a single zone.
6330 *
6331 * Returns zero on success or negative error code. On success all
6332 * pages which PFN is in [start, end) are allocated for the caller and
6333 * need to be freed with free_contig_range().
6334 */
6335 int alloc_contig_range(unsigned long start, unsigned long end,
6336 unsigned migratetype)
6337 {
6338 unsigned long outer_start, outer_end;
6339 int ret = 0, order;
6340
6341 struct compact_control cc = {
6342 .nr_migratepages = 0,
6343 .order = -1,
6344 .zone = page_zone(pfn_to_page(start)),
6345 .mode = MIGRATE_SYNC,
6346 .ignore_skip_hint = true,
6347 };
6348 INIT_LIST_HEAD(&cc.migratepages);
6349
6350 /*
6351 * What we do here is we mark all pageblocks in range as
6352 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6353 * have different sizes, and due to the way page allocator
6354 * work, we align the range to biggest of the two pages so
6355 * that page allocator won't try to merge buddies from
6356 * different pageblocks and change MIGRATE_ISOLATE to some
6357 * other migration type.
6358 *
6359 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6360 * migrate the pages from an unaligned range (ie. pages that
6361 * we are interested in). This will put all the pages in
6362 * range back to page allocator as MIGRATE_ISOLATE.
6363 *
6364 * When this is done, we take the pages in range from page
6365 * allocator removing them from the buddy system. This way
6366 * page allocator will never consider using them.
6367 *
6368 * This lets us mark the pageblocks back as
6369 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6370 * aligned range but not in the unaligned, original range are
6371 * put back to page allocator so that buddy can use them.
6372 */
6373
6374 ret = start_isolate_page_range(pfn_max_align_down(start),
6375 pfn_max_align_up(end), migratetype,
6376 false);
6377 if (ret)
6378 return ret;
6379
6380 ret = __alloc_contig_migrate_range(&cc, start, end);
6381 if (ret)
6382 goto done;
6383
6384 /*
6385 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6386 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6387 * more, all pages in [start, end) are free in page allocator.
6388 * What we are going to do is to allocate all pages from
6389 * [start, end) (that is remove them from page allocator).
6390 *
6391 * The only problem is that pages at the beginning and at the
6392 * end of interesting range may be not aligned with pages that
6393 * page allocator holds, ie. they can be part of higher order
6394 * pages. Because of this, we reserve the bigger range and
6395 * once this is done free the pages we are not interested in.
6396 *
6397 * We don't have to hold zone->lock here because the pages are
6398 * isolated thus they won't get removed from buddy.
6399 */
6400
6401 lru_add_drain_all();
6402 drain_all_pages(cc.zone);
6403
6404 order = 0;
6405 outer_start = start;
6406 while (!PageBuddy(pfn_to_page(outer_start))) {
6407 if (++order >= MAX_ORDER) {
6408 ret = -EBUSY;
6409 goto done;
6410 }
6411 outer_start &= ~0UL << order;
6412 }
6413
6414 /* Make sure the range is really isolated. */
6415 if (test_pages_isolated(outer_start, end, false)) {
6416 pr_info("%s: [%lx, %lx) PFNs busy\n",
6417 __func__, outer_start, end);
6418 ret = -EBUSY;
6419 goto done;
6420 }
6421
6422 /* Grab isolated pages from freelists. */
6423 outer_end = isolate_freepages_range(&cc, outer_start, end);
6424 if (!outer_end) {
6425 ret = -EBUSY;
6426 goto done;
6427 }
6428
6429 /* Free head and tail (if any) */
6430 if (start != outer_start)
6431 free_contig_range(outer_start, start - outer_start);
6432 if (end != outer_end)
6433 free_contig_range(end, outer_end - end);
6434
6435 done:
6436 undo_isolate_page_range(pfn_max_align_down(start),
6437 pfn_max_align_up(end), migratetype);
6438 return ret;
6439 }
6440
6441 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6442 {
6443 unsigned int count = 0;
6444
6445 for (; nr_pages--; pfn++) {
6446 struct page *page = pfn_to_page(pfn);
6447
6448 count += page_count(page) != 1;
6449 __free_page(page);
6450 }
6451 WARN(count != 0, "%d pages are still in use!\n", count);
6452 }
6453 #endif
6454
6455 #ifdef CONFIG_MEMORY_HOTPLUG
6456 /*
6457 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6458 * page high values need to be recalulated.
6459 */
6460 void __meminit zone_pcp_update(struct zone *zone)
6461 {
6462 unsigned cpu;
6463 mutex_lock(&pcp_batch_high_lock);
6464 for_each_possible_cpu(cpu)
6465 pageset_set_high_and_batch(zone,
6466 per_cpu_ptr(zone->pageset, cpu));
6467 mutex_unlock(&pcp_batch_high_lock);
6468 }
6469 #endif
6470
6471 void zone_pcp_reset(struct zone *zone)
6472 {
6473 unsigned long flags;
6474 int cpu;
6475 struct per_cpu_pageset *pset;
6476
6477 /* avoid races with drain_pages() */
6478 local_irq_save(flags);
6479 if (zone->pageset != &boot_pageset) {
6480 for_each_online_cpu(cpu) {
6481 pset = per_cpu_ptr(zone->pageset, cpu);
6482 drain_zonestat(zone, pset);
6483 }
6484 free_percpu(zone->pageset);
6485 zone->pageset = &boot_pageset;
6486 }
6487 local_irq_restore(flags);
6488 }
6489
6490 #ifdef CONFIG_MEMORY_HOTREMOVE
6491 /*
6492 * All pages in the range must be isolated before calling this.
6493 */
6494 void
6495 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6496 {
6497 struct page *page;
6498 struct zone *zone;
6499 unsigned int order, i;
6500 unsigned long pfn;
6501 unsigned long flags;
6502 /* find the first valid pfn */
6503 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6504 if (pfn_valid(pfn))
6505 break;
6506 if (pfn == end_pfn)
6507 return;
6508 zone = page_zone(pfn_to_page(pfn));
6509 spin_lock_irqsave(&zone->lock, flags);
6510 pfn = start_pfn;
6511 while (pfn < end_pfn) {
6512 if (!pfn_valid(pfn)) {
6513 pfn++;
6514 continue;
6515 }
6516 page = pfn_to_page(pfn);
6517 /*
6518 * The HWPoisoned page may be not in buddy system, and
6519 * page_count() is not 0.
6520 */
6521 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6522 pfn++;
6523 SetPageReserved(page);
6524 continue;
6525 }
6526
6527 BUG_ON(page_count(page));
6528 BUG_ON(!PageBuddy(page));
6529 order = page_order(page);
6530 #ifdef CONFIG_DEBUG_VM
6531 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6532 pfn, 1 << order, end_pfn);
6533 #endif
6534 list_del(&page->lru);
6535 rmv_page_order(page);
6536 zone->free_area[order].nr_free--;
6537 for (i = 0; i < (1 << order); i++)
6538 SetPageReserved((page+i));
6539 pfn += (1 << order);
6540 }
6541 spin_unlock_irqrestore(&zone->lock, flags);
6542 }
6543 #endif
6544
6545 #ifdef CONFIG_MEMORY_FAILURE
6546 bool is_free_buddy_page(struct page *page)
6547 {
6548 struct zone *zone = page_zone(page);
6549 unsigned long pfn = page_to_pfn(page);
6550 unsigned long flags;
6551 unsigned int order;
6552
6553 spin_lock_irqsave(&zone->lock, flags);
6554 for (order = 0; order < MAX_ORDER; order++) {
6555 struct page *page_head = page - (pfn & ((1 << order) - 1));
6556
6557 if (PageBuddy(page_head) && page_order(page_head) >= order)
6558 break;
6559 }
6560 spin_unlock_irqrestore(&zone->lock, flags);
6561
6562 return order < MAX_ORDER;
6563 }
6564 #endif
This page took 0.189416 seconds and 6 git commands to generate.