mm: remove __GFP_NO_KSWAPD
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81
82 /*
83 * Array of node states.
84 */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 [N_CPU] = { { [0] = 1UL } },
94 #endif /* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106 unsigned long dirty_balance_reserve __read_mostly;
107
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110
111 #ifdef CONFIG_PM_SLEEP
112 /*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
120
121 static gfp_t saved_gfp_mask;
122
123 void pm_restore_gfp_mask(void)
124 {
125 WARN_ON(!mutex_is_locked(&pm_mutex));
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
130 }
131
132 void pm_restrict_gfp_mask(void)
133 {
134 WARN_ON(!mutex_is_locked(&pm_mutex));
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
138 }
139
140 bool pm_suspended_storage(void)
141 {
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151
152 static void __free_pages_ok(struct page *page, unsigned int order);
153
154 /*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
164 */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 32,
174 #endif
175 32,
176 };
177
178 EXPORT_SYMBOL(totalram_pages);
179
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 "DMA32",
186 #endif
187 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 "HighMem",
190 #endif
191 "Movable",
192 };
193
194 int min_free_kbytes = 1024;
195
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218
219 int page_group_by_mobility_disabled __read_mostly;
220
221 /*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234 }
235
236 bool oom_killer_disabled __read_mostly;
237
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
244
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
254 }
255
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 if (!pfn_valid_within(page_to_pfn(page)))
259 return 0;
260 if (zone != page_zone(page))
261 return 0;
262
263 return 1;
264 }
265 /*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 if (page_outside_zone_boundaries(zone, page))
271 return 1;
272 if (!page_is_consistent(zone, page))
273 return 1;
274
275 return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 return 0;
281 }
282 #endif
283
284 static void bad_page(struct page *page)
285 {
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
292 reset_page_mapcount(page); /* remove PageBuddy */
293 return;
294 }
295
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
317 current->comm, page_to_pfn(page));
318 dump_page(page);
319
320 print_modules();
321 dump_stack();
322 out:
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE);
326 }
327
328 /*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
337 *
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
341 */
342
343 static void free_compound_page(struct page *page)
344 {
345 __free_pages_ok(page, compound_order(page));
346 }
347
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
358 __SetPageTail(p);
359 set_page_count(p, 0);
360 p->first_page = page;
361 }
362 }
363
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369 int bad = 0;
370
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
373 bad_page(page);
374 bad++;
375 }
376
377 __ClearPageHead(page);
378
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
381
382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 bad_page(page);
384 bad++;
385 }
386 __ClearPageTail(p);
387 }
388
389 return bad;
390 }
391
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 int i;
395
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403 }
404
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435
436 static inline void set_page_order(struct page *page, int order)
437 {
438 set_page_private(page, order);
439 __SetPageBuddy(page);
440 }
441
442 static inline void rmv_page_order(struct page *page)
443 {
444 __ClearPageBuddy(page);
445 set_page_private(page, 0);
446 }
447
448 /*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464 */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 return page_idx ^ (1 << order);
469 }
470
471 /*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
474 * (a) the buddy is not in a hole &&
475 * (b) the buddy is in the buddy system &&
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
478 *
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
498 if (PageBuddy(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502 return 0;
503 }
504
505 /*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519 * order is recorded in page_private(page) field.
520 * So when we are allocating or freeing one, we can derive the state of the
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
523 * If a block is freed, and its buddy is also free, then this
524 * triggers coalescing into a block of larger size.
525 *
526 * -- wli
527 */
528
529 static inline void __free_one_page(struct page *page,
530 struct zone *zone, unsigned int order,
531 int migratetype)
532 {
533 unsigned long page_idx;
534 unsigned long combined_idx;
535 unsigned long uninitialized_var(buddy_idx);
536 struct page *buddy;
537
538 if (unlikely(PageCompound(page)))
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
541
542 VM_BUG_ON(migratetype == -1);
543
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
546 VM_BUG_ON(page_idx & ((1 << order) - 1));
547 VM_BUG_ON(bad_range(zone, page));
548
549 while (order < MAX_ORDER-1) {
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
552 if (!page_is_buddy(page, buddy, order))
553 break;
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
561 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
562 } else {
563 list_del(&buddy->lru);
564 zone->free_area[order].nr_free--;
565 rmv_page_order(buddy);
566 }
567 combined_idx = buddy_idx & page_idx;
568 page = page + (combined_idx - page_idx);
569 page_idx = combined_idx;
570 order++;
571 }
572 set_page_order(page, order);
573
574 /*
575 * If this is not the largest possible page, check if the buddy
576 * of the next-highest order is free. If it is, it's possible
577 * that pages are being freed that will coalesce soon. In case,
578 * that is happening, add the free page to the tail of the list
579 * so it's less likely to be used soon and more likely to be merged
580 * as a higher order page
581 */
582 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
583 struct page *higher_page, *higher_buddy;
584 combined_idx = buddy_idx & page_idx;
585 higher_page = page + (combined_idx - page_idx);
586 buddy_idx = __find_buddy_index(combined_idx, order + 1);
587 higher_buddy = higher_page + (buddy_idx - combined_idx);
588 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
589 list_add_tail(&page->lru,
590 &zone->free_area[order].free_list[migratetype]);
591 goto out;
592 }
593 }
594
595 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
596 out:
597 zone->free_area[order].nr_free++;
598 }
599
600 /*
601 * free_page_mlock() -- clean up attempts to free and mlocked() page.
602 * Page should not be on lru, so no need to fix that up.
603 * free_pages_check() will verify...
604 */
605 static inline void free_page_mlock(struct page *page)
606 {
607 __dec_zone_page_state(page, NR_MLOCK);
608 __count_vm_event(UNEVICTABLE_MLOCKFREED);
609 }
610
611 static inline int free_pages_check(struct page *page)
612 {
613 if (unlikely(page_mapcount(page) |
614 (page->mapping != NULL) |
615 (atomic_read(&page->_count) != 0) |
616 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
617 (mem_cgroup_bad_page_check(page)))) {
618 bad_page(page);
619 return 1;
620 }
621 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
622 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
623 return 0;
624 }
625
626 /*
627 * Frees a number of pages from the PCP lists
628 * Assumes all pages on list are in same zone, and of same order.
629 * count is the number of pages to free.
630 *
631 * If the zone was previously in an "all pages pinned" state then look to
632 * see if this freeing clears that state.
633 *
634 * And clear the zone's pages_scanned counter, to hold off the "all pages are
635 * pinned" detection logic.
636 */
637 static void free_pcppages_bulk(struct zone *zone, int count,
638 struct per_cpu_pages *pcp)
639 {
640 int migratetype = 0;
641 int batch_free = 0;
642 int to_free = count;
643
644 spin_lock(&zone->lock);
645 zone->all_unreclaimable = 0;
646 zone->pages_scanned = 0;
647
648 while (to_free) {
649 struct page *page;
650 struct list_head *list;
651
652 /*
653 * Remove pages from lists in a round-robin fashion. A
654 * batch_free count is maintained that is incremented when an
655 * empty list is encountered. This is so more pages are freed
656 * off fuller lists instead of spinning excessively around empty
657 * lists
658 */
659 do {
660 batch_free++;
661 if (++migratetype == MIGRATE_PCPTYPES)
662 migratetype = 0;
663 list = &pcp->lists[migratetype];
664 } while (list_empty(list));
665
666 /* This is the only non-empty list. Free them all. */
667 if (batch_free == MIGRATE_PCPTYPES)
668 batch_free = to_free;
669
670 do {
671 page = list_entry(list->prev, struct page, lru);
672 /* must delete as __free_one_page list manipulates */
673 list_del(&page->lru);
674 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
675 __free_one_page(page, zone, 0, page_private(page));
676 trace_mm_page_pcpu_drain(page, 0, page_private(page));
677 } while (--to_free && --batch_free && !list_empty(list));
678 }
679 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
680 spin_unlock(&zone->lock);
681 }
682
683 static void free_one_page(struct zone *zone, struct page *page, int order,
684 int migratetype)
685 {
686 spin_lock(&zone->lock);
687 zone->all_unreclaimable = 0;
688 zone->pages_scanned = 0;
689
690 __free_one_page(page, zone, order, migratetype);
691 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
692 spin_unlock(&zone->lock);
693 }
694
695 static bool free_pages_prepare(struct page *page, unsigned int order)
696 {
697 int i;
698 int bad = 0;
699
700 trace_mm_page_free(page, order);
701 kmemcheck_free_shadow(page, order);
702
703 if (PageAnon(page))
704 page->mapping = NULL;
705 for (i = 0; i < (1 << order); i++)
706 bad += free_pages_check(page + i);
707 if (bad)
708 return false;
709
710 if (!PageHighMem(page)) {
711 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
712 debug_check_no_obj_freed(page_address(page),
713 PAGE_SIZE << order);
714 }
715 arch_free_page(page, order);
716 kernel_map_pages(page, 1 << order, 0);
717
718 return true;
719 }
720
721 static void __free_pages_ok(struct page *page, unsigned int order)
722 {
723 unsigned long flags;
724 int wasMlocked = __TestClearPageMlocked(page);
725
726 if (!free_pages_prepare(page, order))
727 return;
728
729 local_irq_save(flags);
730 if (unlikely(wasMlocked))
731 free_page_mlock(page);
732 __count_vm_events(PGFREE, 1 << order);
733 free_one_page(page_zone(page), page, order,
734 get_pageblock_migratetype(page));
735 local_irq_restore(flags);
736 }
737
738 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
739 {
740 unsigned int nr_pages = 1 << order;
741 unsigned int loop;
742
743 prefetchw(page);
744 for (loop = 0; loop < nr_pages; loop++) {
745 struct page *p = &page[loop];
746
747 if (loop + 1 < nr_pages)
748 prefetchw(p + 1);
749 __ClearPageReserved(p);
750 set_page_count(p, 0);
751 }
752
753 set_page_refcounted(page);
754 __free_pages(page, order);
755 }
756
757 #ifdef CONFIG_CMA
758 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
759 void __init init_cma_reserved_pageblock(struct page *page)
760 {
761 unsigned i = pageblock_nr_pages;
762 struct page *p = page;
763
764 do {
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767 } while (++p, --i);
768
769 set_page_refcounted(page);
770 set_pageblock_migratetype(page, MIGRATE_CMA);
771 __free_pages(page, pageblock_order);
772 totalram_pages += pageblock_nr_pages;
773 }
774 #endif
775
776 /*
777 * The order of subdivision here is critical for the IO subsystem.
778 * Please do not alter this order without good reasons and regression
779 * testing. Specifically, as large blocks of memory are subdivided,
780 * the order in which smaller blocks are delivered depends on the order
781 * they're subdivided in this function. This is the primary factor
782 * influencing the order in which pages are delivered to the IO
783 * subsystem according to empirical testing, and this is also justified
784 * by considering the behavior of a buddy system containing a single
785 * large block of memory acted on by a series of small allocations.
786 * This behavior is a critical factor in sglist merging's success.
787 *
788 * -- wli
789 */
790 static inline void expand(struct zone *zone, struct page *page,
791 int low, int high, struct free_area *area,
792 int migratetype)
793 {
794 unsigned long size = 1 << high;
795
796 while (high > low) {
797 area--;
798 high--;
799 size >>= 1;
800 VM_BUG_ON(bad_range(zone, &page[size]));
801
802 #ifdef CONFIG_DEBUG_PAGEALLOC
803 if (high < debug_guardpage_minorder()) {
804 /*
805 * Mark as guard pages (or page), that will allow to
806 * merge back to allocator when buddy will be freed.
807 * Corresponding page table entries will not be touched,
808 * pages will stay not present in virtual address space
809 */
810 INIT_LIST_HEAD(&page[size].lru);
811 set_page_guard_flag(&page[size]);
812 set_page_private(&page[size], high);
813 /* Guard pages are not available for any usage */
814 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
815 continue;
816 }
817 #endif
818 list_add(&page[size].lru, &area->free_list[migratetype]);
819 area->nr_free++;
820 set_page_order(&page[size], high);
821 }
822 }
823
824 /*
825 * This page is about to be returned from the page allocator
826 */
827 static inline int check_new_page(struct page *page)
828 {
829 if (unlikely(page_mapcount(page) |
830 (page->mapping != NULL) |
831 (atomic_read(&page->_count) != 0) |
832 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
833 (mem_cgroup_bad_page_check(page)))) {
834 bad_page(page);
835 return 1;
836 }
837 return 0;
838 }
839
840 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
841 {
842 int i;
843
844 for (i = 0; i < (1 << order); i++) {
845 struct page *p = page + i;
846 if (unlikely(check_new_page(p)))
847 return 1;
848 }
849
850 set_page_private(page, 0);
851 set_page_refcounted(page);
852
853 arch_alloc_page(page, order);
854 kernel_map_pages(page, 1 << order, 1);
855
856 if (gfp_flags & __GFP_ZERO)
857 prep_zero_page(page, order, gfp_flags);
858
859 if (order && (gfp_flags & __GFP_COMP))
860 prep_compound_page(page, order);
861
862 return 0;
863 }
864
865 /*
866 * Go through the free lists for the given migratetype and remove
867 * the smallest available page from the freelists
868 */
869 static inline
870 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
871 int migratetype)
872 {
873 unsigned int current_order;
874 struct free_area * area;
875 struct page *page;
876
877 /* Find a page of the appropriate size in the preferred list */
878 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
879 area = &(zone->free_area[current_order]);
880 if (list_empty(&area->free_list[migratetype]))
881 continue;
882
883 page = list_entry(area->free_list[migratetype].next,
884 struct page, lru);
885 list_del(&page->lru);
886 rmv_page_order(page);
887 area->nr_free--;
888 expand(zone, page, order, current_order, area, migratetype);
889 return page;
890 }
891
892 return NULL;
893 }
894
895
896 /*
897 * This array describes the order lists are fallen back to when
898 * the free lists for the desirable migrate type are depleted
899 */
900 static int fallbacks[MIGRATE_TYPES][4] = {
901 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
902 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
903 #ifdef CONFIG_CMA
904 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
905 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
906 #else
907 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
908 #endif
909 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
910 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
911 };
912
913 /*
914 * Move the free pages in a range to the free lists of the requested type.
915 * Note that start_page and end_pages are not aligned on a pageblock
916 * boundary. If alignment is required, use move_freepages_block()
917 */
918 static int move_freepages(struct zone *zone,
919 struct page *start_page, struct page *end_page,
920 int migratetype)
921 {
922 struct page *page;
923 unsigned long order;
924 int pages_moved = 0;
925
926 #ifndef CONFIG_HOLES_IN_ZONE
927 /*
928 * page_zone is not safe to call in this context when
929 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
930 * anyway as we check zone boundaries in move_freepages_block().
931 * Remove at a later date when no bug reports exist related to
932 * grouping pages by mobility
933 */
934 BUG_ON(page_zone(start_page) != page_zone(end_page));
935 #endif
936
937 for (page = start_page; page <= end_page;) {
938 /* Make sure we are not inadvertently changing nodes */
939 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
940
941 if (!pfn_valid_within(page_to_pfn(page))) {
942 page++;
943 continue;
944 }
945
946 if (!PageBuddy(page)) {
947 page++;
948 continue;
949 }
950
951 order = page_order(page);
952 list_move(&page->lru,
953 &zone->free_area[order].free_list[migratetype]);
954 page += 1 << order;
955 pages_moved += 1 << order;
956 }
957
958 return pages_moved;
959 }
960
961 int move_freepages_block(struct zone *zone, struct page *page,
962 int migratetype)
963 {
964 unsigned long start_pfn, end_pfn;
965 struct page *start_page, *end_page;
966
967 start_pfn = page_to_pfn(page);
968 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
969 start_page = pfn_to_page(start_pfn);
970 end_page = start_page + pageblock_nr_pages - 1;
971 end_pfn = start_pfn + pageblock_nr_pages - 1;
972
973 /* Do not cross zone boundaries */
974 if (start_pfn < zone->zone_start_pfn)
975 start_page = page;
976 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
977 return 0;
978
979 return move_freepages(zone, start_page, end_page, migratetype);
980 }
981
982 static void change_pageblock_range(struct page *pageblock_page,
983 int start_order, int migratetype)
984 {
985 int nr_pageblocks = 1 << (start_order - pageblock_order);
986
987 while (nr_pageblocks--) {
988 set_pageblock_migratetype(pageblock_page, migratetype);
989 pageblock_page += pageblock_nr_pages;
990 }
991 }
992
993 /* Remove an element from the buddy allocator from the fallback list */
994 static inline struct page *
995 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
996 {
997 struct free_area * area;
998 int current_order;
999 struct page *page;
1000 int migratetype, i;
1001
1002 /* Find the largest possible block of pages in the other list */
1003 for (current_order = MAX_ORDER-1; current_order >= order;
1004 --current_order) {
1005 for (i = 0;; i++) {
1006 migratetype = fallbacks[start_migratetype][i];
1007
1008 /* MIGRATE_RESERVE handled later if necessary */
1009 if (migratetype == MIGRATE_RESERVE)
1010 break;
1011
1012 area = &(zone->free_area[current_order]);
1013 if (list_empty(&area->free_list[migratetype]))
1014 continue;
1015
1016 page = list_entry(area->free_list[migratetype].next,
1017 struct page, lru);
1018 area->nr_free--;
1019
1020 /*
1021 * If breaking a large block of pages, move all free
1022 * pages to the preferred allocation list. If falling
1023 * back for a reclaimable kernel allocation, be more
1024 * aggressive about taking ownership of free pages
1025 *
1026 * On the other hand, never change migration
1027 * type of MIGRATE_CMA pageblocks nor move CMA
1028 * pages on different free lists. We don't
1029 * want unmovable pages to be allocated from
1030 * MIGRATE_CMA areas.
1031 */
1032 if (!is_migrate_cma(migratetype) &&
1033 (unlikely(current_order >= pageblock_order / 2) ||
1034 start_migratetype == MIGRATE_RECLAIMABLE ||
1035 page_group_by_mobility_disabled)) {
1036 int pages;
1037 pages = move_freepages_block(zone, page,
1038 start_migratetype);
1039
1040 /* Claim the whole block if over half of it is free */
1041 if (pages >= (1 << (pageblock_order-1)) ||
1042 page_group_by_mobility_disabled)
1043 set_pageblock_migratetype(page,
1044 start_migratetype);
1045
1046 migratetype = start_migratetype;
1047 }
1048
1049 /* Remove the page from the freelists */
1050 list_del(&page->lru);
1051 rmv_page_order(page);
1052
1053 /* Take ownership for orders >= pageblock_order */
1054 if (current_order >= pageblock_order &&
1055 !is_migrate_cma(migratetype))
1056 change_pageblock_range(page, current_order,
1057 start_migratetype);
1058
1059 expand(zone, page, order, current_order, area,
1060 is_migrate_cma(migratetype)
1061 ? migratetype : start_migratetype);
1062
1063 trace_mm_page_alloc_extfrag(page, order, current_order,
1064 start_migratetype, migratetype);
1065
1066 return page;
1067 }
1068 }
1069
1070 return NULL;
1071 }
1072
1073 /*
1074 * Do the hard work of removing an element from the buddy allocator.
1075 * Call me with the zone->lock already held.
1076 */
1077 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1078 int migratetype)
1079 {
1080 struct page *page;
1081
1082 retry_reserve:
1083 page = __rmqueue_smallest(zone, order, migratetype);
1084
1085 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1086 page = __rmqueue_fallback(zone, order, migratetype);
1087
1088 /*
1089 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1090 * is used because __rmqueue_smallest is an inline function
1091 * and we want just one call site
1092 */
1093 if (!page) {
1094 migratetype = MIGRATE_RESERVE;
1095 goto retry_reserve;
1096 }
1097 }
1098
1099 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1100 return page;
1101 }
1102
1103 /*
1104 * Obtain a specified number of elements from the buddy allocator, all under
1105 * a single hold of the lock, for efficiency. Add them to the supplied list.
1106 * Returns the number of new pages which were placed at *list.
1107 */
1108 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1109 unsigned long count, struct list_head *list,
1110 int migratetype, int cold)
1111 {
1112 int mt = migratetype, i;
1113
1114 spin_lock(&zone->lock);
1115 for (i = 0; i < count; ++i) {
1116 struct page *page = __rmqueue(zone, order, migratetype);
1117 if (unlikely(page == NULL))
1118 break;
1119
1120 /*
1121 * Split buddy pages returned by expand() are received here
1122 * in physical page order. The page is added to the callers and
1123 * list and the list head then moves forward. From the callers
1124 * perspective, the linked list is ordered by page number in
1125 * some conditions. This is useful for IO devices that can
1126 * merge IO requests if the physical pages are ordered
1127 * properly.
1128 */
1129 if (likely(cold == 0))
1130 list_add(&page->lru, list);
1131 else
1132 list_add_tail(&page->lru, list);
1133 if (IS_ENABLED(CONFIG_CMA)) {
1134 mt = get_pageblock_migratetype(page);
1135 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1136 mt = migratetype;
1137 }
1138 set_page_private(page, mt);
1139 list = &page->lru;
1140 }
1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 spin_unlock(&zone->lock);
1143 return i;
1144 }
1145
1146 #ifdef CONFIG_NUMA
1147 /*
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
1154 */
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156 {
1157 unsigned long flags;
1158 int to_drain;
1159
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
1169 local_irq_restore(flags);
1170 }
1171 #endif
1172
1173 /*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180 static void drain_pages(unsigned int cpu)
1181 {
1182 unsigned long flags;
1183 struct zone *zone;
1184
1185 for_each_populated_zone(zone) {
1186 struct per_cpu_pageset *pset;
1187 struct per_cpu_pages *pcp;
1188
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
1191
1192 pcp = &pset->pcp;
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
1197 local_irq_restore(flags);
1198 }
1199 }
1200
1201 /*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204 void drain_local_pages(void *arg)
1205 {
1206 drain_pages(smp_processor_id());
1207 }
1208
1209 /*
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
1217 */
1218 void drain_all_pages(void)
1219 {
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251 }
1252
1253 #ifdef CONFIG_HIBERNATION
1254
1255 void mark_free_pages(struct zone *zone)
1256 {
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
1259 int order, t;
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
1274 }
1275
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 unsigned long i;
1279
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
1282 swsusp_set_page_free(pfn_to_page(pfn + i));
1283 }
1284 }
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286 }
1287 #endif /* CONFIG_PM */
1288
1289 /*
1290 * Free a 0-order page
1291 * cold == 1 ? free a cold page : free a hot page
1292 */
1293 void free_hot_cold_page(struct page *page, int cold)
1294 {
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
1298 int migratetype;
1299 int wasMlocked = __TestClearPageMlocked(page);
1300
1301 if (!free_pages_prepare(page, 0))
1302 return;
1303
1304 migratetype = get_pageblock_migratetype(page);
1305 set_page_private(page, migratetype);
1306 local_irq_save(flags);
1307 if (unlikely(wasMlocked))
1308 free_page_mlock(page);
1309 __count_vm_event(PGFREE);
1310
1311 /*
1312 * We only track unmovable, reclaimable and movable on pcp lists.
1313 * Free ISOLATE pages back to the allocator because they are being
1314 * offlined but treat RESERVE as movable pages so we can get those
1315 * areas back if necessary. Otherwise, we may have to free
1316 * excessively into the page allocator
1317 */
1318 if (migratetype >= MIGRATE_PCPTYPES) {
1319 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1320 free_one_page(zone, page, 0, migratetype);
1321 goto out;
1322 }
1323 migratetype = MIGRATE_MOVABLE;
1324 }
1325
1326 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1327 if (cold)
1328 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1329 else
1330 list_add(&page->lru, &pcp->lists[migratetype]);
1331 pcp->count++;
1332 if (pcp->count >= pcp->high) {
1333 free_pcppages_bulk(zone, pcp->batch, pcp);
1334 pcp->count -= pcp->batch;
1335 }
1336
1337 out:
1338 local_irq_restore(flags);
1339 }
1340
1341 /*
1342 * Free a list of 0-order pages
1343 */
1344 void free_hot_cold_page_list(struct list_head *list, int cold)
1345 {
1346 struct page *page, *next;
1347
1348 list_for_each_entry_safe(page, next, list, lru) {
1349 trace_mm_page_free_batched(page, cold);
1350 free_hot_cold_page(page, cold);
1351 }
1352 }
1353
1354 /*
1355 * split_page takes a non-compound higher-order page, and splits it into
1356 * n (1<<order) sub-pages: page[0..n]
1357 * Each sub-page must be freed individually.
1358 *
1359 * Note: this is probably too low level an operation for use in drivers.
1360 * Please consult with lkml before using this in your driver.
1361 */
1362 void split_page(struct page *page, unsigned int order)
1363 {
1364 int i;
1365
1366 VM_BUG_ON(PageCompound(page));
1367 VM_BUG_ON(!page_count(page));
1368
1369 #ifdef CONFIG_KMEMCHECK
1370 /*
1371 * Split shadow pages too, because free(page[0]) would
1372 * otherwise free the whole shadow.
1373 */
1374 if (kmemcheck_page_is_tracked(page))
1375 split_page(virt_to_page(page[0].shadow), order);
1376 #endif
1377
1378 for (i = 1; i < (1 << order); i++)
1379 set_page_refcounted(page + i);
1380 }
1381
1382 /*
1383 * Similar to split_page except the page is already free. As this is only
1384 * being used for migration, the migratetype of the block also changes.
1385 * As this is called with interrupts disabled, the caller is responsible
1386 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1387 * are enabled.
1388 *
1389 * Note: this is probably too low level an operation for use in drivers.
1390 * Please consult with lkml before using this in your driver.
1391 */
1392 int split_free_page(struct page *page)
1393 {
1394 unsigned int order;
1395 unsigned long watermark;
1396 struct zone *zone;
1397
1398 BUG_ON(!PageBuddy(page));
1399
1400 zone = page_zone(page);
1401 order = page_order(page);
1402
1403 /* Obey watermarks as if the page was being allocated */
1404 watermark = low_wmark_pages(zone) + (1 << order);
1405 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1406 return 0;
1407
1408 /* Remove page from free list */
1409 list_del(&page->lru);
1410 zone->free_area[order].nr_free--;
1411 rmv_page_order(page);
1412 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1413
1414 /* Split into individual pages */
1415 set_page_refcounted(page);
1416 split_page(page, order);
1417
1418 if (order >= pageblock_order - 1) {
1419 struct page *endpage = page + (1 << order) - 1;
1420 for (; page < endpage; page += pageblock_nr_pages) {
1421 int mt = get_pageblock_migratetype(page);
1422 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1423 set_pageblock_migratetype(page,
1424 MIGRATE_MOVABLE);
1425 }
1426 }
1427
1428 return 1 << order;
1429 }
1430
1431 /*
1432 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1433 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1434 * or two.
1435 */
1436 static inline
1437 struct page *buffered_rmqueue(struct zone *preferred_zone,
1438 struct zone *zone, int order, gfp_t gfp_flags,
1439 int migratetype)
1440 {
1441 unsigned long flags;
1442 struct page *page;
1443 int cold = !!(gfp_flags & __GFP_COLD);
1444
1445 again:
1446 if (likely(order == 0)) {
1447 struct per_cpu_pages *pcp;
1448 struct list_head *list;
1449
1450 local_irq_save(flags);
1451 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1452 list = &pcp->lists[migratetype];
1453 if (list_empty(list)) {
1454 pcp->count += rmqueue_bulk(zone, 0,
1455 pcp->batch, list,
1456 migratetype, cold);
1457 if (unlikely(list_empty(list)))
1458 goto failed;
1459 }
1460
1461 if (cold)
1462 page = list_entry(list->prev, struct page, lru);
1463 else
1464 page = list_entry(list->next, struct page, lru);
1465
1466 list_del(&page->lru);
1467 pcp->count--;
1468 } else {
1469 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1470 /*
1471 * __GFP_NOFAIL is not to be used in new code.
1472 *
1473 * All __GFP_NOFAIL callers should be fixed so that they
1474 * properly detect and handle allocation failures.
1475 *
1476 * We most definitely don't want callers attempting to
1477 * allocate greater than order-1 page units with
1478 * __GFP_NOFAIL.
1479 */
1480 WARN_ON_ONCE(order > 1);
1481 }
1482 spin_lock_irqsave(&zone->lock, flags);
1483 page = __rmqueue(zone, order, migratetype);
1484 spin_unlock(&zone->lock);
1485 if (!page)
1486 goto failed;
1487 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1488 }
1489
1490 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1491 zone_statistics(preferred_zone, zone, gfp_flags);
1492 local_irq_restore(flags);
1493
1494 VM_BUG_ON(bad_range(zone, page));
1495 if (prep_new_page(page, order, gfp_flags))
1496 goto again;
1497 return page;
1498
1499 failed:
1500 local_irq_restore(flags);
1501 return NULL;
1502 }
1503
1504 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1505 #define ALLOC_WMARK_MIN WMARK_MIN
1506 #define ALLOC_WMARK_LOW WMARK_LOW
1507 #define ALLOC_WMARK_HIGH WMARK_HIGH
1508 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1509
1510 /* Mask to get the watermark bits */
1511 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1512
1513 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1514 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1515 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1516
1517 #ifdef CONFIG_FAIL_PAGE_ALLOC
1518
1519 static struct {
1520 struct fault_attr attr;
1521
1522 u32 ignore_gfp_highmem;
1523 u32 ignore_gfp_wait;
1524 u32 min_order;
1525 } fail_page_alloc = {
1526 .attr = FAULT_ATTR_INITIALIZER,
1527 .ignore_gfp_wait = 1,
1528 .ignore_gfp_highmem = 1,
1529 .min_order = 1,
1530 };
1531
1532 static int __init setup_fail_page_alloc(char *str)
1533 {
1534 return setup_fault_attr(&fail_page_alloc.attr, str);
1535 }
1536 __setup("fail_page_alloc=", setup_fail_page_alloc);
1537
1538 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1539 {
1540 if (order < fail_page_alloc.min_order)
1541 return false;
1542 if (gfp_mask & __GFP_NOFAIL)
1543 return false;
1544 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1545 return false;
1546 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1547 return false;
1548
1549 return should_fail(&fail_page_alloc.attr, 1 << order);
1550 }
1551
1552 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1553
1554 static int __init fail_page_alloc_debugfs(void)
1555 {
1556 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1557 struct dentry *dir;
1558
1559 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1560 &fail_page_alloc.attr);
1561 if (IS_ERR(dir))
1562 return PTR_ERR(dir);
1563
1564 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1565 &fail_page_alloc.ignore_gfp_wait))
1566 goto fail;
1567 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1568 &fail_page_alloc.ignore_gfp_highmem))
1569 goto fail;
1570 if (!debugfs_create_u32("min-order", mode, dir,
1571 &fail_page_alloc.min_order))
1572 goto fail;
1573
1574 return 0;
1575 fail:
1576 debugfs_remove_recursive(dir);
1577
1578 return -ENOMEM;
1579 }
1580
1581 late_initcall(fail_page_alloc_debugfs);
1582
1583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1584
1585 #else /* CONFIG_FAIL_PAGE_ALLOC */
1586
1587 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1588 {
1589 return false;
1590 }
1591
1592 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1593
1594 /*
1595 * Return true if free pages are above 'mark'. This takes into account the order
1596 * of the allocation.
1597 */
1598 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1599 int classzone_idx, int alloc_flags, long free_pages)
1600 {
1601 /* free_pages my go negative - that's OK */
1602 long min = mark;
1603 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1604 int o;
1605
1606 free_pages -= (1 << order) - 1;
1607 if (alloc_flags & ALLOC_HIGH)
1608 min -= min / 2;
1609 if (alloc_flags & ALLOC_HARDER)
1610 min -= min / 4;
1611
1612 if (free_pages <= min + lowmem_reserve)
1613 return false;
1614 for (o = 0; o < order; o++) {
1615 /* At the next order, this order's pages become unavailable */
1616 free_pages -= z->free_area[o].nr_free << o;
1617
1618 /* Require fewer higher order pages to be free */
1619 min >>= 1;
1620
1621 if (free_pages <= min)
1622 return false;
1623 }
1624 return true;
1625 }
1626
1627 #ifdef CONFIG_MEMORY_ISOLATION
1628 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1629 {
1630 if (unlikely(zone->nr_pageblock_isolate))
1631 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1632 return 0;
1633 }
1634 #else
1635 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1636 {
1637 return 0;
1638 }
1639 #endif
1640
1641 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1642 int classzone_idx, int alloc_flags)
1643 {
1644 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1645 zone_page_state(z, NR_FREE_PAGES));
1646 }
1647
1648 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1649 int classzone_idx, int alloc_flags)
1650 {
1651 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1652
1653 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1654 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1655
1656 /*
1657 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1658 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1659 * sleep although it could do so. But this is more desirable for memory
1660 * hotplug than sleeping which can cause a livelock in the direct
1661 * reclaim path.
1662 */
1663 free_pages -= nr_zone_isolate_freepages(z);
1664 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1665 free_pages);
1666 }
1667
1668 #ifdef CONFIG_NUMA
1669 /*
1670 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1671 * skip over zones that are not allowed by the cpuset, or that have
1672 * been recently (in last second) found to be nearly full. See further
1673 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1674 * that have to skip over a lot of full or unallowed zones.
1675 *
1676 * If the zonelist cache is present in the passed in zonelist, then
1677 * returns a pointer to the allowed node mask (either the current
1678 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1679 *
1680 * If the zonelist cache is not available for this zonelist, does
1681 * nothing and returns NULL.
1682 *
1683 * If the fullzones BITMAP in the zonelist cache is stale (more than
1684 * a second since last zap'd) then we zap it out (clear its bits.)
1685 *
1686 * We hold off even calling zlc_setup, until after we've checked the
1687 * first zone in the zonelist, on the theory that most allocations will
1688 * be satisfied from that first zone, so best to examine that zone as
1689 * quickly as we can.
1690 */
1691 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1692 {
1693 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1694 nodemask_t *allowednodes; /* zonelist_cache approximation */
1695
1696 zlc = zonelist->zlcache_ptr;
1697 if (!zlc)
1698 return NULL;
1699
1700 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1701 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1702 zlc->last_full_zap = jiffies;
1703 }
1704
1705 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1706 &cpuset_current_mems_allowed :
1707 &node_states[N_HIGH_MEMORY];
1708 return allowednodes;
1709 }
1710
1711 /*
1712 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1713 * if it is worth looking at further for free memory:
1714 * 1) Check that the zone isn't thought to be full (doesn't have its
1715 * bit set in the zonelist_cache fullzones BITMAP).
1716 * 2) Check that the zones node (obtained from the zonelist_cache
1717 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1718 * Return true (non-zero) if zone is worth looking at further, or
1719 * else return false (zero) if it is not.
1720 *
1721 * This check -ignores- the distinction between various watermarks,
1722 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1723 * found to be full for any variation of these watermarks, it will
1724 * be considered full for up to one second by all requests, unless
1725 * we are so low on memory on all allowed nodes that we are forced
1726 * into the second scan of the zonelist.
1727 *
1728 * In the second scan we ignore this zonelist cache and exactly
1729 * apply the watermarks to all zones, even it is slower to do so.
1730 * We are low on memory in the second scan, and should leave no stone
1731 * unturned looking for a free page.
1732 */
1733 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1734 nodemask_t *allowednodes)
1735 {
1736 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1737 int i; /* index of *z in zonelist zones */
1738 int n; /* node that zone *z is on */
1739
1740 zlc = zonelist->zlcache_ptr;
1741 if (!zlc)
1742 return 1;
1743
1744 i = z - zonelist->_zonerefs;
1745 n = zlc->z_to_n[i];
1746
1747 /* This zone is worth trying if it is allowed but not full */
1748 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1749 }
1750
1751 /*
1752 * Given 'z' scanning a zonelist, set the corresponding bit in
1753 * zlc->fullzones, so that subsequent attempts to allocate a page
1754 * from that zone don't waste time re-examining it.
1755 */
1756 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1757 {
1758 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1759 int i; /* index of *z in zonelist zones */
1760
1761 zlc = zonelist->zlcache_ptr;
1762 if (!zlc)
1763 return;
1764
1765 i = z - zonelist->_zonerefs;
1766
1767 set_bit(i, zlc->fullzones);
1768 }
1769
1770 /*
1771 * clear all zones full, called after direct reclaim makes progress so that
1772 * a zone that was recently full is not skipped over for up to a second
1773 */
1774 static void zlc_clear_zones_full(struct zonelist *zonelist)
1775 {
1776 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
1782 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1783 }
1784
1785 #else /* CONFIG_NUMA */
1786
1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1788 {
1789 return NULL;
1790 }
1791
1792 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1793 nodemask_t *allowednodes)
1794 {
1795 return 1;
1796 }
1797
1798 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1799 {
1800 }
1801
1802 static void zlc_clear_zones_full(struct zonelist *zonelist)
1803 {
1804 }
1805 #endif /* CONFIG_NUMA */
1806
1807 /*
1808 * get_page_from_freelist goes through the zonelist trying to allocate
1809 * a page.
1810 */
1811 static struct page *
1812 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1813 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1814 struct zone *preferred_zone, int migratetype)
1815 {
1816 struct zoneref *z;
1817 struct page *page = NULL;
1818 int classzone_idx;
1819 struct zone *zone;
1820 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1821 int zlc_active = 0; /* set if using zonelist_cache */
1822 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1823
1824 classzone_idx = zone_idx(preferred_zone);
1825 zonelist_scan:
1826 /*
1827 * Scan zonelist, looking for a zone with enough free.
1828 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1829 */
1830 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1831 high_zoneidx, nodemask) {
1832 if (NUMA_BUILD && zlc_active &&
1833 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1834 continue;
1835 if ((alloc_flags & ALLOC_CPUSET) &&
1836 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1837 continue;
1838 /*
1839 * When allocating a page cache page for writing, we
1840 * want to get it from a zone that is within its dirty
1841 * limit, such that no single zone holds more than its
1842 * proportional share of globally allowed dirty pages.
1843 * The dirty limits take into account the zone's
1844 * lowmem reserves and high watermark so that kswapd
1845 * should be able to balance it without having to
1846 * write pages from its LRU list.
1847 *
1848 * This may look like it could increase pressure on
1849 * lower zones by failing allocations in higher zones
1850 * before they are full. But the pages that do spill
1851 * over are limited as the lower zones are protected
1852 * by this very same mechanism. It should not become
1853 * a practical burden to them.
1854 *
1855 * XXX: For now, allow allocations to potentially
1856 * exceed the per-zone dirty limit in the slowpath
1857 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1858 * which is important when on a NUMA setup the allowed
1859 * zones are together not big enough to reach the
1860 * global limit. The proper fix for these situations
1861 * will require awareness of zones in the
1862 * dirty-throttling and the flusher threads.
1863 */
1864 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1865 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1866 goto this_zone_full;
1867
1868 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1869 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1870 unsigned long mark;
1871 int ret;
1872
1873 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1874 if (zone_watermark_ok(zone, order, mark,
1875 classzone_idx, alloc_flags))
1876 goto try_this_zone;
1877
1878 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1879 /*
1880 * we do zlc_setup if there are multiple nodes
1881 * and before considering the first zone allowed
1882 * by the cpuset.
1883 */
1884 allowednodes = zlc_setup(zonelist, alloc_flags);
1885 zlc_active = 1;
1886 did_zlc_setup = 1;
1887 }
1888
1889 if (zone_reclaim_mode == 0)
1890 goto this_zone_full;
1891
1892 /*
1893 * As we may have just activated ZLC, check if the first
1894 * eligible zone has failed zone_reclaim recently.
1895 */
1896 if (NUMA_BUILD && zlc_active &&
1897 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1898 continue;
1899
1900 ret = zone_reclaim(zone, gfp_mask, order);
1901 switch (ret) {
1902 case ZONE_RECLAIM_NOSCAN:
1903 /* did not scan */
1904 continue;
1905 case ZONE_RECLAIM_FULL:
1906 /* scanned but unreclaimable */
1907 continue;
1908 default:
1909 /* did we reclaim enough */
1910 if (!zone_watermark_ok(zone, order, mark,
1911 classzone_idx, alloc_flags))
1912 goto this_zone_full;
1913 }
1914 }
1915
1916 try_this_zone:
1917 page = buffered_rmqueue(preferred_zone, zone, order,
1918 gfp_mask, migratetype);
1919 if (page)
1920 break;
1921 this_zone_full:
1922 if (NUMA_BUILD)
1923 zlc_mark_zone_full(zonelist, z);
1924 }
1925
1926 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1927 /* Disable zlc cache for second zonelist scan */
1928 zlc_active = 0;
1929 goto zonelist_scan;
1930 }
1931
1932 if (page)
1933 /*
1934 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1935 * necessary to allocate the page. The expectation is
1936 * that the caller is taking steps that will free more
1937 * memory. The caller should avoid the page being used
1938 * for !PFMEMALLOC purposes.
1939 */
1940 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1941
1942 return page;
1943 }
1944
1945 /*
1946 * Large machines with many possible nodes should not always dump per-node
1947 * meminfo in irq context.
1948 */
1949 static inline bool should_suppress_show_mem(void)
1950 {
1951 bool ret = false;
1952
1953 #if NODES_SHIFT > 8
1954 ret = in_interrupt();
1955 #endif
1956 return ret;
1957 }
1958
1959 static DEFINE_RATELIMIT_STATE(nopage_rs,
1960 DEFAULT_RATELIMIT_INTERVAL,
1961 DEFAULT_RATELIMIT_BURST);
1962
1963 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1964 {
1965 unsigned int filter = SHOW_MEM_FILTER_NODES;
1966
1967 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1968 debug_guardpage_minorder() > 0)
1969 return;
1970
1971 /*
1972 * This documents exceptions given to allocations in certain
1973 * contexts that are allowed to allocate outside current's set
1974 * of allowed nodes.
1975 */
1976 if (!(gfp_mask & __GFP_NOMEMALLOC))
1977 if (test_thread_flag(TIF_MEMDIE) ||
1978 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1979 filter &= ~SHOW_MEM_FILTER_NODES;
1980 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1981 filter &= ~SHOW_MEM_FILTER_NODES;
1982
1983 if (fmt) {
1984 struct va_format vaf;
1985 va_list args;
1986
1987 va_start(args, fmt);
1988
1989 vaf.fmt = fmt;
1990 vaf.va = &args;
1991
1992 pr_warn("%pV", &vaf);
1993
1994 va_end(args);
1995 }
1996
1997 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1998 current->comm, order, gfp_mask);
1999
2000 dump_stack();
2001 if (!should_suppress_show_mem())
2002 show_mem(filter);
2003 }
2004
2005 static inline int
2006 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2007 unsigned long did_some_progress,
2008 unsigned long pages_reclaimed)
2009 {
2010 /* Do not loop if specifically requested */
2011 if (gfp_mask & __GFP_NORETRY)
2012 return 0;
2013
2014 /* Always retry if specifically requested */
2015 if (gfp_mask & __GFP_NOFAIL)
2016 return 1;
2017
2018 /*
2019 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2020 * making forward progress without invoking OOM. Suspend also disables
2021 * storage devices so kswapd will not help. Bail if we are suspending.
2022 */
2023 if (!did_some_progress && pm_suspended_storage())
2024 return 0;
2025
2026 /*
2027 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2028 * means __GFP_NOFAIL, but that may not be true in other
2029 * implementations.
2030 */
2031 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2032 return 1;
2033
2034 /*
2035 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2036 * specified, then we retry until we no longer reclaim any pages
2037 * (above), or we've reclaimed an order of pages at least as
2038 * large as the allocation's order. In both cases, if the
2039 * allocation still fails, we stop retrying.
2040 */
2041 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2042 return 1;
2043
2044 return 0;
2045 }
2046
2047 static inline struct page *
2048 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2049 struct zonelist *zonelist, enum zone_type high_zoneidx,
2050 nodemask_t *nodemask, struct zone *preferred_zone,
2051 int migratetype)
2052 {
2053 struct page *page;
2054
2055 /* Acquire the OOM killer lock for the zones in zonelist */
2056 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2057 schedule_timeout_uninterruptible(1);
2058 return NULL;
2059 }
2060
2061 /*
2062 * Go through the zonelist yet one more time, keep very high watermark
2063 * here, this is only to catch a parallel oom killing, we must fail if
2064 * we're still under heavy pressure.
2065 */
2066 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2067 order, zonelist, high_zoneidx,
2068 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2069 preferred_zone, migratetype);
2070 if (page)
2071 goto out;
2072
2073 if (!(gfp_mask & __GFP_NOFAIL)) {
2074 /* The OOM killer will not help higher order allocs */
2075 if (order > PAGE_ALLOC_COSTLY_ORDER)
2076 goto out;
2077 /* The OOM killer does not needlessly kill tasks for lowmem */
2078 if (high_zoneidx < ZONE_NORMAL)
2079 goto out;
2080 /*
2081 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2082 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2083 * The caller should handle page allocation failure by itself if
2084 * it specifies __GFP_THISNODE.
2085 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2086 */
2087 if (gfp_mask & __GFP_THISNODE)
2088 goto out;
2089 }
2090 /* Exhausted what can be done so it's blamo time */
2091 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2092
2093 out:
2094 clear_zonelist_oom(zonelist, gfp_mask);
2095 return page;
2096 }
2097
2098 #ifdef CONFIG_COMPACTION
2099 /* Try memory compaction for high-order allocations before reclaim */
2100 static struct page *
2101 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2102 struct zonelist *zonelist, enum zone_type high_zoneidx,
2103 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2104 int migratetype, bool sync_migration,
2105 bool *contended_compaction, bool *deferred_compaction,
2106 unsigned long *did_some_progress)
2107 {
2108 struct page *page;
2109
2110 if (!order)
2111 return NULL;
2112
2113 if (compaction_deferred(preferred_zone, order)) {
2114 *deferred_compaction = true;
2115 return NULL;
2116 }
2117
2118 current->flags |= PF_MEMALLOC;
2119 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2120 nodemask, sync_migration,
2121 contended_compaction);
2122 current->flags &= ~PF_MEMALLOC;
2123 if (*did_some_progress != COMPACT_SKIPPED) {
2124
2125 /* Page migration frees to the PCP lists but we want merging */
2126 drain_pages(get_cpu());
2127 put_cpu();
2128
2129 page = get_page_from_freelist(gfp_mask, nodemask,
2130 order, zonelist, high_zoneidx,
2131 alloc_flags & ~ALLOC_NO_WATERMARKS,
2132 preferred_zone, migratetype);
2133 if (page) {
2134 preferred_zone->compact_considered = 0;
2135 preferred_zone->compact_defer_shift = 0;
2136 if (order >= preferred_zone->compact_order_failed)
2137 preferred_zone->compact_order_failed = order + 1;
2138 count_vm_event(COMPACTSUCCESS);
2139 return page;
2140 }
2141
2142 /*
2143 * It's bad if compaction run occurs and fails.
2144 * The most likely reason is that pages exist,
2145 * but not enough to satisfy watermarks.
2146 */
2147 count_vm_event(COMPACTFAIL);
2148
2149 /*
2150 * As async compaction considers a subset of pageblocks, only
2151 * defer if the failure was a sync compaction failure.
2152 */
2153 if (sync_migration)
2154 defer_compaction(preferred_zone, order);
2155
2156 cond_resched();
2157 }
2158
2159 return NULL;
2160 }
2161 #else
2162 static inline struct page *
2163 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2164 struct zonelist *zonelist, enum zone_type high_zoneidx,
2165 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2166 int migratetype, bool sync_migration,
2167 bool *contended_compaction, bool *deferred_compaction,
2168 unsigned long *did_some_progress)
2169 {
2170 return NULL;
2171 }
2172 #endif /* CONFIG_COMPACTION */
2173
2174 /* Perform direct synchronous page reclaim */
2175 static int
2176 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2177 nodemask_t *nodemask)
2178 {
2179 struct reclaim_state reclaim_state;
2180 int progress;
2181
2182 cond_resched();
2183
2184 /* We now go into synchronous reclaim */
2185 cpuset_memory_pressure_bump();
2186 current->flags |= PF_MEMALLOC;
2187 lockdep_set_current_reclaim_state(gfp_mask);
2188 reclaim_state.reclaimed_slab = 0;
2189 current->reclaim_state = &reclaim_state;
2190
2191 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2192
2193 current->reclaim_state = NULL;
2194 lockdep_clear_current_reclaim_state();
2195 current->flags &= ~PF_MEMALLOC;
2196
2197 cond_resched();
2198
2199 return progress;
2200 }
2201
2202 /* The really slow allocator path where we enter direct reclaim */
2203 static inline struct page *
2204 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2207 int migratetype, unsigned long *did_some_progress)
2208 {
2209 struct page *page = NULL;
2210 bool drained = false;
2211
2212 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2213 nodemask);
2214 if (unlikely(!(*did_some_progress)))
2215 return NULL;
2216
2217 /* After successful reclaim, reconsider all zones for allocation */
2218 if (NUMA_BUILD)
2219 zlc_clear_zones_full(zonelist);
2220
2221 retry:
2222 page = get_page_from_freelist(gfp_mask, nodemask, order,
2223 zonelist, high_zoneidx,
2224 alloc_flags & ~ALLOC_NO_WATERMARKS,
2225 preferred_zone, migratetype);
2226
2227 /*
2228 * If an allocation failed after direct reclaim, it could be because
2229 * pages are pinned on the per-cpu lists. Drain them and try again
2230 */
2231 if (!page && !drained) {
2232 drain_all_pages();
2233 drained = true;
2234 goto retry;
2235 }
2236
2237 return page;
2238 }
2239
2240 /*
2241 * This is called in the allocator slow-path if the allocation request is of
2242 * sufficient urgency to ignore watermarks and take other desperate measures
2243 */
2244 static inline struct page *
2245 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2246 struct zonelist *zonelist, enum zone_type high_zoneidx,
2247 nodemask_t *nodemask, struct zone *preferred_zone,
2248 int migratetype)
2249 {
2250 struct page *page;
2251
2252 do {
2253 page = get_page_from_freelist(gfp_mask, nodemask, order,
2254 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2255 preferred_zone, migratetype);
2256
2257 if (!page && gfp_mask & __GFP_NOFAIL)
2258 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2259 } while (!page && (gfp_mask & __GFP_NOFAIL));
2260
2261 return page;
2262 }
2263
2264 static inline
2265 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2266 enum zone_type high_zoneidx,
2267 enum zone_type classzone_idx)
2268 {
2269 struct zoneref *z;
2270 struct zone *zone;
2271
2272 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2273 wakeup_kswapd(zone, order, classzone_idx);
2274 }
2275
2276 static inline int
2277 gfp_to_alloc_flags(gfp_t gfp_mask)
2278 {
2279 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2280 const gfp_t wait = gfp_mask & __GFP_WAIT;
2281
2282 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2283 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2284
2285 /*
2286 * The caller may dip into page reserves a bit more if the caller
2287 * cannot run direct reclaim, or if the caller has realtime scheduling
2288 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2289 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2290 */
2291 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2292
2293 if (!wait) {
2294 /*
2295 * Not worth trying to allocate harder for
2296 * __GFP_NOMEMALLOC even if it can't schedule.
2297 */
2298 if (!(gfp_mask & __GFP_NOMEMALLOC))
2299 alloc_flags |= ALLOC_HARDER;
2300 /*
2301 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2302 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2303 */
2304 alloc_flags &= ~ALLOC_CPUSET;
2305 } else if (unlikely(rt_task(current)) && !in_interrupt())
2306 alloc_flags |= ALLOC_HARDER;
2307
2308 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2309 if (gfp_mask & __GFP_MEMALLOC)
2310 alloc_flags |= ALLOC_NO_WATERMARKS;
2311 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2312 alloc_flags |= ALLOC_NO_WATERMARKS;
2313 else if (!in_interrupt() &&
2314 ((current->flags & PF_MEMALLOC) ||
2315 unlikely(test_thread_flag(TIF_MEMDIE))))
2316 alloc_flags |= ALLOC_NO_WATERMARKS;
2317 }
2318
2319 return alloc_flags;
2320 }
2321
2322 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2323 {
2324 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2325 }
2326
2327 static inline struct page *
2328 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2329 struct zonelist *zonelist, enum zone_type high_zoneidx,
2330 nodemask_t *nodemask, struct zone *preferred_zone,
2331 int migratetype)
2332 {
2333 const gfp_t wait = gfp_mask & __GFP_WAIT;
2334 struct page *page = NULL;
2335 int alloc_flags;
2336 unsigned long pages_reclaimed = 0;
2337 unsigned long did_some_progress;
2338 bool sync_migration = false;
2339 bool deferred_compaction = false;
2340 bool contended_compaction = false;
2341
2342 /*
2343 * In the slowpath, we sanity check order to avoid ever trying to
2344 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2345 * be using allocators in order of preference for an area that is
2346 * too large.
2347 */
2348 if (order >= MAX_ORDER) {
2349 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2350 return NULL;
2351 }
2352
2353 /*
2354 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2355 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2356 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2357 * using a larger set of nodes after it has established that the
2358 * allowed per node queues are empty and that nodes are
2359 * over allocated.
2360 */
2361 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2362 goto nopage;
2363
2364 restart:
2365 wake_all_kswapd(order, zonelist, high_zoneidx,
2366 zone_idx(preferred_zone));
2367
2368 /*
2369 * OK, we're below the kswapd watermark and have kicked background
2370 * reclaim. Now things get more complex, so set up alloc_flags according
2371 * to how we want to proceed.
2372 */
2373 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2374
2375 /*
2376 * Find the true preferred zone if the allocation is unconstrained by
2377 * cpusets.
2378 */
2379 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2380 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2381 &preferred_zone);
2382
2383 rebalance:
2384 /* This is the last chance, in general, before the goto nopage. */
2385 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2386 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2387 preferred_zone, migratetype);
2388 if (page)
2389 goto got_pg;
2390
2391 /* Allocate without watermarks if the context allows */
2392 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2393 /*
2394 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2395 * the allocation is high priority and these type of
2396 * allocations are system rather than user orientated
2397 */
2398 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2399
2400 page = __alloc_pages_high_priority(gfp_mask, order,
2401 zonelist, high_zoneidx, nodemask,
2402 preferred_zone, migratetype);
2403 if (page) {
2404 goto got_pg;
2405 }
2406 }
2407
2408 /* Atomic allocations - we can't balance anything */
2409 if (!wait)
2410 goto nopage;
2411
2412 /* Avoid recursion of direct reclaim */
2413 if (current->flags & PF_MEMALLOC)
2414 goto nopage;
2415
2416 /* Avoid allocations with no watermarks from looping endlessly */
2417 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2418 goto nopage;
2419
2420 /*
2421 * Try direct compaction. The first pass is asynchronous. Subsequent
2422 * attempts after direct reclaim are synchronous
2423 */
2424 page = __alloc_pages_direct_compact(gfp_mask, order,
2425 zonelist, high_zoneidx,
2426 nodemask,
2427 alloc_flags, preferred_zone,
2428 migratetype, sync_migration,
2429 &contended_compaction,
2430 &deferred_compaction,
2431 &did_some_progress);
2432 if (page)
2433 goto got_pg;
2434 sync_migration = true;
2435
2436 /*
2437 * If compaction is deferred for high-order allocations, it is because
2438 * sync compaction recently failed. In this is the case and the caller
2439 * requested a movable allocation that does not heavily disrupt the
2440 * system then fail the allocation instead of entering direct reclaim.
2441 */
2442 if ((deferred_compaction || contended_compaction) &&
2443 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
2444 goto nopage;
2445
2446 /* Try direct reclaim and then allocating */
2447 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2448 zonelist, high_zoneidx,
2449 nodemask,
2450 alloc_flags, preferred_zone,
2451 migratetype, &did_some_progress);
2452 if (page)
2453 goto got_pg;
2454
2455 /*
2456 * If we failed to make any progress reclaiming, then we are
2457 * running out of options and have to consider going OOM
2458 */
2459 if (!did_some_progress) {
2460 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2461 if (oom_killer_disabled)
2462 goto nopage;
2463 /* Coredumps can quickly deplete all memory reserves */
2464 if ((current->flags & PF_DUMPCORE) &&
2465 !(gfp_mask & __GFP_NOFAIL))
2466 goto nopage;
2467 page = __alloc_pages_may_oom(gfp_mask, order,
2468 zonelist, high_zoneidx,
2469 nodemask, preferred_zone,
2470 migratetype);
2471 if (page)
2472 goto got_pg;
2473
2474 if (!(gfp_mask & __GFP_NOFAIL)) {
2475 /*
2476 * The oom killer is not called for high-order
2477 * allocations that may fail, so if no progress
2478 * is being made, there are no other options and
2479 * retrying is unlikely to help.
2480 */
2481 if (order > PAGE_ALLOC_COSTLY_ORDER)
2482 goto nopage;
2483 /*
2484 * The oom killer is not called for lowmem
2485 * allocations to prevent needlessly killing
2486 * innocent tasks.
2487 */
2488 if (high_zoneidx < ZONE_NORMAL)
2489 goto nopage;
2490 }
2491
2492 goto restart;
2493 }
2494 }
2495
2496 /* Check if we should retry the allocation */
2497 pages_reclaimed += did_some_progress;
2498 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2499 pages_reclaimed)) {
2500 /* Wait for some write requests to complete then retry */
2501 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2502 goto rebalance;
2503 } else {
2504 /*
2505 * High-order allocations do not necessarily loop after
2506 * direct reclaim and reclaim/compaction depends on compaction
2507 * being called after reclaim so call directly if necessary
2508 */
2509 page = __alloc_pages_direct_compact(gfp_mask, order,
2510 zonelist, high_zoneidx,
2511 nodemask,
2512 alloc_flags, preferred_zone,
2513 migratetype, sync_migration,
2514 &contended_compaction,
2515 &deferred_compaction,
2516 &did_some_progress);
2517 if (page)
2518 goto got_pg;
2519 }
2520
2521 nopage:
2522 warn_alloc_failed(gfp_mask, order, NULL);
2523 return page;
2524 got_pg:
2525 if (kmemcheck_enabled)
2526 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2527
2528 return page;
2529 }
2530
2531 /*
2532 * This is the 'heart' of the zoned buddy allocator.
2533 */
2534 struct page *
2535 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2536 struct zonelist *zonelist, nodemask_t *nodemask)
2537 {
2538 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2539 struct zone *preferred_zone;
2540 struct page *page = NULL;
2541 int migratetype = allocflags_to_migratetype(gfp_mask);
2542 unsigned int cpuset_mems_cookie;
2543
2544 gfp_mask &= gfp_allowed_mask;
2545
2546 lockdep_trace_alloc(gfp_mask);
2547
2548 might_sleep_if(gfp_mask & __GFP_WAIT);
2549
2550 if (should_fail_alloc_page(gfp_mask, order))
2551 return NULL;
2552
2553 /*
2554 * Check the zones suitable for the gfp_mask contain at least one
2555 * valid zone. It's possible to have an empty zonelist as a result
2556 * of GFP_THISNODE and a memoryless node
2557 */
2558 if (unlikely(!zonelist->_zonerefs->zone))
2559 return NULL;
2560
2561 retry_cpuset:
2562 cpuset_mems_cookie = get_mems_allowed();
2563
2564 /* The preferred zone is used for statistics later */
2565 first_zones_zonelist(zonelist, high_zoneidx,
2566 nodemask ? : &cpuset_current_mems_allowed,
2567 &preferred_zone);
2568 if (!preferred_zone)
2569 goto out;
2570
2571 /* First allocation attempt */
2572 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2573 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2574 preferred_zone, migratetype);
2575 if (unlikely(!page))
2576 page = __alloc_pages_slowpath(gfp_mask, order,
2577 zonelist, high_zoneidx, nodemask,
2578 preferred_zone, migratetype);
2579
2580 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2581
2582 out:
2583 /*
2584 * When updating a task's mems_allowed, it is possible to race with
2585 * parallel threads in such a way that an allocation can fail while
2586 * the mask is being updated. If a page allocation is about to fail,
2587 * check if the cpuset changed during allocation and if so, retry.
2588 */
2589 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2590 goto retry_cpuset;
2591
2592 return page;
2593 }
2594 EXPORT_SYMBOL(__alloc_pages_nodemask);
2595
2596 /*
2597 * Common helper functions.
2598 */
2599 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2600 {
2601 struct page *page;
2602
2603 /*
2604 * __get_free_pages() returns a 32-bit address, which cannot represent
2605 * a highmem page
2606 */
2607 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2608
2609 page = alloc_pages(gfp_mask, order);
2610 if (!page)
2611 return 0;
2612 return (unsigned long) page_address(page);
2613 }
2614 EXPORT_SYMBOL(__get_free_pages);
2615
2616 unsigned long get_zeroed_page(gfp_t gfp_mask)
2617 {
2618 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2619 }
2620 EXPORT_SYMBOL(get_zeroed_page);
2621
2622 void __free_pages(struct page *page, unsigned int order)
2623 {
2624 if (put_page_testzero(page)) {
2625 if (order == 0)
2626 free_hot_cold_page(page, 0);
2627 else
2628 __free_pages_ok(page, order);
2629 }
2630 }
2631
2632 EXPORT_SYMBOL(__free_pages);
2633
2634 void free_pages(unsigned long addr, unsigned int order)
2635 {
2636 if (addr != 0) {
2637 VM_BUG_ON(!virt_addr_valid((void *)addr));
2638 __free_pages(virt_to_page((void *)addr), order);
2639 }
2640 }
2641
2642 EXPORT_SYMBOL(free_pages);
2643
2644 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2645 {
2646 if (addr) {
2647 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2648 unsigned long used = addr + PAGE_ALIGN(size);
2649
2650 split_page(virt_to_page((void *)addr), order);
2651 while (used < alloc_end) {
2652 free_page(used);
2653 used += PAGE_SIZE;
2654 }
2655 }
2656 return (void *)addr;
2657 }
2658
2659 /**
2660 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2661 * @size: the number of bytes to allocate
2662 * @gfp_mask: GFP flags for the allocation
2663 *
2664 * This function is similar to alloc_pages(), except that it allocates the
2665 * minimum number of pages to satisfy the request. alloc_pages() can only
2666 * allocate memory in power-of-two pages.
2667 *
2668 * This function is also limited by MAX_ORDER.
2669 *
2670 * Memory allocated by this function must be released by free_pages_exact().
2671 */
2672 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2673 {
2674 unsigned int order = get_order(size);
2675 unsigned long addr;
2676
2677 addr = __get_free_pages(gfp_mask, order);
2678 return make_alloc_exact(addr, order, size);
2679 }
2680 EXPORT_SYMBOL(alloc_pages_exact);
2681
2682 /**
2683 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2684 * pages on a node.
2685 * @nid: the preferred node ID where memory should be allocated
2686 * @size: the number of bytes to allocate
2687 * @gfp_mask: GFP flags for the allocation
2688 *
2689 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2690 * back.
2691 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2692 * but is not exact.
2693 */
2694 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2695 {
2696 unsigned order = get_order(size);
2697 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2698 if (!p)
2699 return NULL;
2700 return make_alloc_exact((unsigned long)page_address(p), order, size);
2701 }
2702 EXPORT_SYMBOL(alloc_pages_exact_nid);
2703
2704 /**
2705 * free_pages_exact - release memory allocated via alloc_pages_exact()
2706 * @virt: the value returned by alloc_pages_exact.
2707 * @size: size of allocation, same value as passed to alloc_pages_exact().
2708 *
2709 * Release the memory allocated by a previous call to alloc_pages_exact.
2710 */
2711 void free_pages_exact(void *virt, size_t size)
2712 {
2713 unsigned long addr = (unsigned long)virt;
2714 unsigned long end = addr + PAGE_ALIGN(size);
2715
2716 while (addr < end) {
2717 free_page(addr);
2718 addr += PAGE_SIZE;
2719 }
2720 }
2721 EXPORT_SYMBOL(free_pages_exact);
2722
2723 static unsigned int nr_free_zone_pages(int offset)
2724 {
2725 struct zoneref *z;
2726 struct zone *zone;
2727
2728 /* Just pick one node, since fallback list is circular */
2729 unsigned int sum = 0;
2730
2731 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2732
2733 for_each_zone_zonelist(zone, z, zonelist, offset) {
2734 unsigned long size = zone->present_pages;
2735 unsigned long high = high_wmark_pages(zone);
2736 if (size > high)
2737 sum += size - high;
2738 }
2739
2740 return sum;
2741 }
2742
2743 /*
2744 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2745 */
2746 unsigned int nr_free_buffer_pages(void)
2747 {
2748 return nr_free_zone_pages(gfp_zone(GFP_USER));
2749 }
2750 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2751
2752 /*
2753 * Amount of free RAM allocatable within all zones
2754 */
2755 unsigned int nr_free_pagecache_pages(void)
2756 {
2757 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2758 }
2759
2760 static inline void show_node(struct zone *zone)
2761 {
2762 if (NUMA_BUILD)
2763 printk("Node %d ", zone_to_nid(zone));
2764 }
2765
2766 void si_meminfo(struct sysinfo *val)
2767 {
2768 val->totalram = totalram_pages;
2769 val->sharedram = 0;
2770 val->freeram = global_page_state(NR_FREE_PAGES);
2771 val->bufferram = nr_blockdev_pages();
2772 val->totalhigh = totalhigh_pages;
2773 val->freehigh = nr_free_highpages();
2774 val->mem_unit = PAGE_SIZE;
2775 }
2776
2777 EXPORT_SYMBOL(si_meminfo);
2778
2779 #ifdef CONFIG_NUMA
2780 void si_meminfo_node(struct sysinfo *val, int nid)
2781 {
2782 pg_data_t *pgdat = NODE_DATA(nid);
2783
2784 val->totalram = pgdat->node_present_pages;
2785 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2786 #ifdef CONFIG_HIGHMEM
2787 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2788 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2789 NR_FREE_PAGES);
2790 #else
2791 val->totalhigh = 0;
2792 val->freehigh = 0;
2793 #endif
2794 val->mem_unit = PAGE_SIZE;
2795 }
2796 #endif
2797
2798 /*
2799 * Determine whether the node should be displayed or not, depending on whether
2800 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2801 */
2802 bool skip_free_areas_node(unsigned int flags, int nid)
2803 {
2804 bool ret = false;
2805 unsigned int cpuset_mems_cookie;
2806
2807 if (!(flags & SHOW_MEM_FILTER_NODES))
2808 goto out;
2809
2810 do {
2811 cpuset_mems_cookie = get_mems_allowed();
2812 ret = !node_isset(nid, cpuset_current_mems_allowed);
2813 } while (!put_mems_allowed(cpuset_mems_cookie));
2814 out:
2815 return ret;
2816 }
2817
2818 #define K(x) ((x) << (PAGE_SHIFT-10))
2819
2820 /*
2821 * Show free area list (used inside shift_scroll-lock stuff)
2822 * We also calculate the percentage fragmentation. We do this by counting the
2823 * memory on each free list with the exception of the first item on the list.
2824 * Suppresses nodes that are not allowed by current's cpuset if
2825 * SHOW_MEM_FILTER_NODES is passed.
2826 */
2827 void show_free_areas(unsigned int filter)
2828 {
2829 int cpu;
2830 struct zone *zone;
2831
2832 for_each_populated_zone(zone) {
2833 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2834 continue;
2835 show_node(zone);
2836 printk("%s per-cpu:\n", zone->name);
2837
2838 for_each_online_cpu(cpu) {
2839 struct per_cpu_pageset *pageset;
2840
2841 pageset = per_cpu_ptr(zone->pageset, cpu);
2842
2843 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2844 cpu, pageset->pcp.high,
2845 pageset->pcp.batch, pageset->pcp.count);
2846 }
2847 }
2848
2849 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2850 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2851 " unevictable:%lu"
2852 " dirty:%lu writeback:%lu unstable:%lu\n"
2853 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2854 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2855 global_page_state(NR_ACTIVE_ANON),
2856 global_page_state(NR_INACTIVE_ANON),
2857 global_page_state(NR_ISOLATED_ANON),
2858 global_page_state(NR_ACTIVE_FILE),
2859 global_page_state(NR_INACTIVE_FILE),
2860 global_page_state(NR_ISOLATED_FILE),
2861 global_page_state(NR_UNEVICTABLE),
2862 global_page_state(NR_FILE_DIRTY),
2863 global_page_state(NR_WRITEBACK),
2864 global_page_state(NR_UNSTABLE_NFS),
2865 global_page_state(NR_FREE_PAGES),
2866 global_page_state(NR_SLAB_RECLAIMABLE),
2867 global_page_state(NR_SLAB_UNRECLAIMABLE),
2868 global_page_state(NR_FILE_MAPPED),
2869 global_page_state(NR_SHMEM),
2870 global_page_state(NR_PAGETABLE),
2871 global_page_state(NR_BOUNCE));
2872
2873 for_each_populated_zone(zone) {
2874 int i;
2875
2876 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2877 continue;
2878 show_node(zone);
2879 printk("%s"
2880 " free:%lukB"
2881 " min:%lukB"
2882 " low:%lukB"
2883 " high:%lukB"
2884 " active_anon:%lukB"
2885 " inactive_anon:%lukB"
2886 " active_file:%lukB"
2887 " inactive_file:%lukB"
2888 " unevictable:%lukB"
2889 " isolated(anon):%lukB"
2890 " isolated(file):%lukB"
2891 " present:%lukB"
2892 " mlocked:%lukB"
2893 " dirty:%lukB"
2894 " writeback:%lukB"
2895 " mapped:%lukB"
2896 " shmem:%lukB"
2897 " slab_reclaimable:%lukB"
2898 " slab_unreclaimable:%lukB"
2899 " kernel_stack:%lukB"
2900 " pagetables:%lukB"
2901 " unstable:%lukB"
2902 " bounce:%lukB"
2903 " writeback_tmp:%lukB"
2904 " pages_scanned:%lu"
2905 " all_unreclaimable? %s"
2906 "\n",
2907 zone->name,
2908 K(zone_page_state(zone, NR_FREE_PAGES)),
2909 K(min_wmark_pages(zone)),
2910 K(low_wmark_pages(zone)),
2911 K(high_wmark_pages(zone)),
2912 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2913 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2914 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2915 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2916 K(zone_page_state(zone, NR_UNEVICTABLE)),
2917 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2918 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2919 K(zone->present_pages),
2920 K(zone_page_state(zone, NR_MLOCK)),
2921 K(zone_page_state(zone, NR_FILE_DIRTY)),
2922 K(zone_page_state(zone, NR_WRITEBACK)),
2923 K(zone_page_state(zone, NR_FILE_MAPPED)),
2924 K(zone_page_state(zone, NR_SHMEM)),
2925 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2926 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2927 zone_page_state(zone, NR_KERNEL_STACK) *
2928 THREAD_SIZE / 1024,
2929 K(zone_page_state(zone, NR_PAGETABLE)),
2930 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2931 K(zone_page_state(zone, NR_BOUNCE)),
2932 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2933 zone->pages_scanned,
2934 (zone->all_unreclaimable ? "yes" : "no")
2935 );
2936 printk("lowmem_reserve[]:");
2937 for (i = 0; i < MAX_NR_ZONES; i++)
2938 printk(" %lu", zone->lowmem_reserve[i]);
2939 printk("\n");
2940 }
2941
2942 for_each_populated_zone(zone) {
2943 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2944
2945 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2946 continue;
2947 show_node(zone);
2948 printk("%s: ", zone->name);
2949
2950 spin_lock_irqsave(&zone->lock, flags);
2951 for (order = 0; order < MAX_ORDER; order++) {
2952 nr[order] = zone->free_area[order].nr_free;
2953 total += nr[order] << order;
2954 }
2955 spin_unlock_irqrestore(&zone->lock, flags);
2956 for (order = 0; order < MAX_ORDER; order++)
2957 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2958 printk("= %lukB\n", K(total));
2959 }
2960
2961 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2962
2963 show_swap_cache_info();
2964 }
2965
2966 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2967 {
2968 zoneref->zone = zone;
2969 zoneref->zone_idx = zone_idx(zone);
2970 }
2971
2972 /*
2973 * Builds allocation fallback zone lists.
2974 *
2975 * Add all populated zones of a node to the zonelist.
2976 */
2977 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2978 int nr_zones, enum zone_type zone_type)
2979 {
2980 struct zone *zone;
2981
2982 BUG_ON(zone_type >= MAX_NR_ZONES);
2983 zone_type++;
2984
2985 do {
2986 zone_type--;
2987 zone = pgdat->node_zones + zone_type;
2988 if (populated_zone(zone)) {
2989 zoneref_set_zone(zone,
2990 &zonelist->_zonerefs[nr_zones++]);
2991 check_highest_zone(zone_type);
2992 }
2993
2994 } while (zone_type);
2995 return nr_zones;
2996 }
2997
2998
2999 /*
3000 * zonelist_order:
3001 * 0 = automatic detection of better ordering.
3002 * 1 = order by ([node] distance, -zonetype)
3003 * 2 = order by (-zonetype, [node] distance)
3004 *
3005 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3006 * the same zonelist. So only NUMA can configure this param.
3007 */
3008 #define ZONELIST_ORDER_DEFAULT 0
3009 #define ZONELIST_ORDER_NODE 1
3010 #define ZONELIST_ORDER_ZONE 2
3011
3012 /* zonelist order in the kernel.
3013 * set_zonelist_order() will set this to NODE or ZONE.
3014 */
3015 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3016 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3017
3018
3019 #ifdef CONFIG_NUMA
3020 /* The value user specified ....changed by config */
3021 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3022 /* string for sysctl */
3023 #define NUMA_ZONELIST_ORDER_LEN 16
3024 char numa_zonelist_order[16] = "default";
3025
3026 /*
3027 * interface for configure zonelist ordering.
3028 * command line option "numa_zonelist_order"
3029 * = "[dD]efault - default, automatic configuration.
3030 * = "[nN]ode - order by node locality, then by zone within node
3031 * = "[zZ]one - order by zone, then by locality within zone
3032 */
3033
3034 static int __parse_numa_zonelist_order(char *s)
3035 {
3036 if (*s == 'd' || *s == 'D') {
3037 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3038 } else if (*s == 'n' || *s == 'N') {
3039 user_zonelist_order = ZONELIST_ORDER_NODE;
3040 } else if (*s == 'z' || *s == 'Z') {
3041 user_zonelist_order = ZONELIST_ORDER_ZONE;
3042 } else {
3043 printk(KERN_WARNING
3044 "Ignoring invalid numa_zonelist_order value: "
3045 "%s\n", s);
3046 return -EINVAL;
3047 }
3048 return 0;
3049 }
3050
3051 static __init int setup_numa_zonelist_order(char *s)
3052 {
3053 int ret;
3054
3055 if (!s)
3056 return 0;
3057
3058 ret = __parse_numa_zonelist_order(s);
3059 if (ret == 0)
3060 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3061
3062 return ret;
3063 }
3064 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3065
3066 /*
3067 * sysctl handler for numa_zonelist_order
3068 */
3069 int numa_zonelist_order_handler(ctl_table *table, int write,
3070 void __user *buffer, size_t *length,
3071 loff_t *ppos)
3072 {
3073 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3074 int ret;
3075 static DEFINE_MUTEX(zl_order_mutex);
3076
3077 mutex_lock(&zl_order_mutex);
3078 if (write)
3079 strcpy(saved_string, (char*)table->data);
3080 ret = proc_dostring(table, write, buffer, length, ppos);
3081 if (ret)
3082 goto out;
3083 if (write) {
3084 int oldval = user_zonelist_order;
3085 if (__parse_numa_zonelist_order((char*)table->data)) {
3086 /*
3087 * bogus value. restore saved string
3088 */
3089 strncpy((char*)table->data, saved_string,
3090 NUMA_ZONELIST_ORDER_LEN);
3091 user_zonelist_order = oldval;
3092 } else if (oldval != user_zonelist_order) {
3093 mutex_lock(&zonelists_mutex);
3094 build_all_zonelists(NULL, NULL);
3095 mutex_unlock(&zonelists_mutex);
3096 }
3097 }
3098 out:
3099 mutex_unlock(&zl_order_mutex);
3100 return ret;
3101 }
3102
3103
3104 #define MAX_NODE_LOAD (nr_online_nodes)
3105 static int node_load[MAX_NUMNODES];
3106
3107 /**
3108 * find_next_best_node - find the next node that should appear in a given node's fallback list
3109 * @node: node whose fallback list we're appending
3110 * @used_node_mask: nodemask_t of already used nodes
3111 *
3112 * We use a number of factors to determine which is the next node that should
3113 * appear on a given node's fallback list. The node should not have appeared
3114 * already in @node's fallback list, and it should be the next closest node
3115 * according to the distance array (which contains arbitrary distance values
3116 * from each node to each node in the system), and should also prefer nodes
3117 * with no CPUs, since presumably they'll have very little allocation pressure
3118 * on them otherwise.
3119 * It returns -1 if no node is found.
3120 */
3121 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3122 {
3123 int n, val;
3124 int min_val = INT_MAX;
3125 int best_node = -1;
3126 const struct cpumask *tmp = cpumask_of_node(0);
3127
3128 /* Use the local node if we haven't already */
3129 if (!node_isset(node, *used_node_mask)) {
3130 node_set(node, *used_node_mask);
3131 return node;
3132 }
3133
3134 for_each_node_state(n, N_HIGH_MEMORY) {
3135
3136 /* Don't want a node to appear more than once */
3137 if (node_isset(n, *used_node_mask))
3138 continue;
3139
3140 /* Use the distance array to find the distance */
3141 val = node_distance(node, n);
3142
3143 /* Penalize nodes under us ("prefer the next node") */
3144 val += (n < node);
3145
3146 /* Give preference to headless and unused nodes */
3147 tmp = cpumask_of_node(n);
3148 if (!cpumask_empty(tmp))
3149 val += PENALTY_FOR_NODE_WITH_CPUS;
3150
3151 /* Slight preference for less loaded node */
3152 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3153 val += node_load[n];
3154
3155 if (val < min_val) {
3156 min_val = val;
3157 best_node = n;
3158 }
3159 }
3160
3161 if (best_node >= 0)
3162 node_set(best_node, *used_node_mask);
3163
3164 return best_node;
3165 }
3166
3167
3168 /*
3169 * Build zonelists ordered by node and zones within node.
3170 * This results in maximum locality--normal zone overflows into local
3171 * DMA zone, if any--but risks exhausting DMA zone.
3172 */
3173 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3174 {
3175 int j;
3176 struct zonelist *zonelist;
3177
3178 zonelist = &pgdat->node_zonelists[0];
3179 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3180 ;
3181 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3182 MAX_NR_ZONES - 1);
3183 zonelist->_zonerefs[j].zone = NULL;
3184 zonelist->_zonerefs[j].zone_idx = 0;
3185 }
3186
3187 /*
3188 * Build gfp_thisnode zonelists
3189 */
3190 static void build_thisnode_zonelists(pg_data_t *pgdat)
3191 {
3192 int j;
3193 struct zonelist *zonelist;
3194
3195 zonelist = &pgdat->node_zonelists[1];
3196 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3197 zonelist->_zonerefs[j].zone = NULL;
3198 zonelist->_zonerefs[j].zone_idx = 0;
3199 }
3200
3201 /*
3202 * Build zonelists ordered by zone and nodes within zones.
3203 * This results in conserving DMA zone[s] until all Normal memory is
3204 * exhausted, but results in overflowing to remote node while memory
3205 * may still exist in local DMA zone.
3206 */
3207 static int node_order[MAX_NUMNODES];
3208
3209 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3210 {
3211 int pos, j, node;
3212 int zone_type; /* needs to be signed */
3213 struct zone *z;
3214 struct zonelist *zonelist;
3215
3216 zonelist = &pgdat->node_zonelists[0];
3217 pos = 0;
3218 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3219 for (j = 0; j < nr_nodes; j++) {
3220 node = node_order[j];
3221 z = &NODE_DATA(node)->node_zones[zone_type];
3222 if (populated_zone(z)) {
3223 zoneref_set_zone(z,
3224 &zonelist->_zonerefs[pos++]);
3225 check_highest_zone(zone_type);
3226 }
3227 }
3228 }
3229 zonelist->_zonerefs[pos].zone = NULL;
3230 zonelist->_zonerefs[pos].zone_idx = 0;
3231 }
3232
3233 static int default_zonelist_order(void)
3234 {
3235 int nid, zone_type;
3236 unsigned long low_kmem_size,total_size;
3237 struct zone *z;
3238 int average_size;
3239 /*
3240 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3241 * If they are really small and used heavily, the system can fall
3242 * into OOM very easily.
3243 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3244 */
3245 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3246 low_kmem_size = 0;
3247 total_size = 0;
3248 for_each_online_node(nid) {
3249 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3250 z = &NODE_DATA(nid)->node_zones[zone_type];
3251 if (populated_zone(z)) {
3252 if (zone_type < ZONE_NORMAL)
3253 low_kmem_size += z->present_pages;
3254 total_size += z->present_pages;
3255 } else if (zone_type == ZONE_NORMAL) {
3256 /*
3257 * If any node has only lowmem, then node order
3258 * is preferred to allow kernel allocations
3259 * locally; otherwise, they can easily infringe
3260 * on other nodes when there is an abundance of
3261 * lowmem available to allocate from.
3262 */
3263 return ZONELIST_ORDER_NODE;
3264 }
3265 }
3266 }
3267 if (!low_kmem_size || /* there are no DMA area. */
3268 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3269 return ZONELIST_ORDER_NODE;
3270 /*
3271 * look into each node's config.
3272 * If there is a node whose DMA/DMA32 memory is very big area on
3273 * local memory, NODE_ORDER may be suitable.
3274 */
3275 average_size = total_size /
3276 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3277 for_each_online_node(nid) {
3278 low_kmem_size = 0;
3279 total_size = 0;
3280 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3281 z = &NODE_DATA(nid)->node_zones[zone_type];
3282 if (populated_zone(z)) {
3283 if (zone_type < ZONE_NORMAL)
3284 low_kmem_size += z->present_pages;
3285 total_size += z->present_pages;
3286 }
3287 }
3288 if (low_kmem_size &&
3289 total_size > average_size && /* ignore small node */
3290 low_kmem_size > total_size * 70/100)
3291 return ZONELIST_ORDER_NODE;
3292 }
3293 return ZONELIST_ORDER_ZONE;
3294 }
3295
3296 static void set_zonelist_order(void)
3297 {
3298 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3299 current_zonelist_order = default_zonelist_order();
3300 else
3301 current_zonelist_order = user_zonelist_order;
3302 }
3303
3304 static void build_zonelists(pg_data_t *pgdat)
3305 {
3306 int j, node, load;
3307 enum zone_type i;
3308 nodemask_t used_mask;
3309 int local_node, prev_node;
3310 struct zonelist *zonelist;
3311 int order = current_zonelist_order;
3312
3313 /* initialize zonelists */
3314 for (i = 0; i < MAX_ZONELISTS; i++) {
3315 zonelist = pgdat->node_zonelists + i;
3316 zonelist->_zonerefs[0].zone = NULL;
3317 zonelist->_zonerefs[0].zone_idx = 0;
3318 }
3319
3320 /* NUMA-aware ordering of nodes */
3321 local_node = pgdat->node_id;
3322 load = nr_online_nodes;
3323 prev_node = local_node;
3324 nodes_clear(used_mask);
3325
3326 memset(node_order, 0, sizeof(node_order));
3327 j = 0;
3328
3329 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3330 int distance = node_distance(local_node, node);
3331
3332 /*
3333 * If another node is sufficiently far away then it is better
3334 * to reclaim pages in a zone before going off node.
3335 */
3336 if (distance > RECLAIM_DISTANCE)
3337 zone_reclaim_mode = 1;
3338
3339 /*
3340 * We don't want to pressure a particular node.
3341 * So adding penalty to the first node in same
3342 * distance group to make it round-robin.
3343 */
3344 if (distance != node_distance(local_node, prev_node))
3345 node_load[node] = load;
3346
3347 prev_node = node;
3348 load--;
3349 if (order == ZONELIST_ORDER_NODE)
3350 build_zonelists_in_node_order(pgdat, node);
3351 else
3352 node_order[j++] = node; /* remember order */
3353 }
3354
3355 if (order == ZONELIST_ORDER_ZONE) {
3356 /* calculate node order -- i.e., DMA last! */
3357 build_zonelists_in_zone_order(pgdat, j);
3358 }
3359
3360 build_thisnode_zonelists(pgdat);
3361 }
3362
3363 /* Construct the zonelist performance cache - see further mmzone.h */
3364 static void build_zonelist_cache(pg_data_t *pgdat)
3365 {
3366 struct zonelist *zonelist;
3367 struct zonelist_cache *zlc;
3368 struct zoneref *z;
3369
3370 zonelist = &pgdat->node_zonelists[0];
3371 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3372 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3373 for (z = zonelist->_zonerefs; z->zone; z++)
3374 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3375 }
3376
3377 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3378 /*
3379 * Return node id of node used for "local" allocations.
3380 * I.e., first node id of first zone in arg node's generic zonelist.
3381 * Used for initializing percpu 'numa_mem', which is used primarily
3382 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3383 */
3384 int local_memory_node(int node)
3385 {
3386 struct zone *zone;
3387
3388 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3389 gfp_zone(GFP_KERNEL),
3390 NULL,
3391 &zone);
3392 return zone->node;
3393 }
3394 #endif
3395
3396 #else /* CONFIG_NUMA */
3397
3398 static void set_zonelist_order(void)
3399 {
3400 current_zonelist_order = ZONELIST_ORDER_ZONE;
3401 }
3402
3403 static void build_zonelists(pg_data_t *pgdat)
3404 {
3405 int node, local_node;
3406 enum zone_type j;
3407 struct zonelist *zonelist;
3408
3409 local_node = pgdat->node_id;
3410
3411 zonelist = &pgdat->node_zonelists[0];
3412 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3413
3414 /*
3415 * Now we build the zonelist so that it contains the zones
3416 * of all the other nodes.
3417 * We don't want to pressure a particular node, so when
3418 * building the zones for node N, we make sure that the
3419 * zones coming right after the local ones are those from
3420 * node N+1 (modulo N)
3421 */
3422 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3423 if (!node_online(node))
3424 continue;
3425 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3426 MAX_NR_ZONES - 1);
3427 }
3428 for (node = 0; node < local_node; node++) {
3429 if (!node_online(node))
3430 continue;
3431 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3432 MAX_NR_ZONES - 1);
3433 }
3434
3435 zonelist->_zonerefs[j].zone = NULL;
3436 zonelist->_zonerefs[j].zone_idx = 0;
3437 }
3438
3439 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3440 static void build_zonelist_cache(pg_data_t *pgdat)
3441 {
3442 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3443 }
3444
3445 #endif /* CONFIG_NUMA */
3446
3447 /*
3448 * Boot pageset table. One per cpu which is going to be used for all
3449 * zones and all nodes. The parameters will be set in such a way
3450 * that an item put on a list will immediately be handed over to
3451 * the buddy list. This is safe since pageset manipulation is done
3452 * with interrupts disabled.
3453 *
3454 * The boot_pagesets must be kept even after bootup is complete for
3455 * unused processors and/or zones. They do play a role for bootstrapping
3456 * hotplugged processors.
3457 *
3458 * zoneinfo_show() and maybe other functions do
3459 * not check if the processor is online before following the pageset pointer.
3460 * Other parts of the kernel may not check if the zone is available.
3461 */
3462 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3463 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3464 static void setup_zone_pageset(struct zone *zone);
3465
3466 /*
3467 * Global mutex to protect against size modification of zonelists
3468 * as well as to serialize pageset setup for the new populated zone.
3469 */
3470 DEFINE_MUTEX(zonelists_mutex);
3471
3472 /* return values int ....just for stop_machine() */
3473 static int __build_all_zonelists(void *data)
3474 {
3475 int nid;
3476 int cpu;
3477 pg_data_t *self = data;
3478
3479 #ifdef CONFIG_NUMA
3480 memset(node_load, 0, sizeof(node_load));
3481 #endif
3482
3483 if (self && !node_online(self->node_id)) {
3484 build_zonelists(self);
3485 build_zonelist_cache(self);
3486 }
3487
3488 for_each_online_node(nid) {
3489 pg_data_t *pgdat = NODE_DATA(nid);
3490
3491 build_zonelists(pgdat);
3492 build_zonelist_cache(pgdat);
3493 }
3494
3495 /*
3496 * Initialize the boot_pagesets that are going to be used
3497 * for bootstrapping processors. The real pagesets for
3498 * each zone will be allocated later when the per cpu
3499 * allocator is available.
3500 *
3501 * boot_pagesets are used also for bootstrapping offline
3502 * cpus if the system is already booted because the pagesets
3503 * are needed to initialize allocators on a specific cpu too.
3504 * F.e. the percpu allocator needs the page allocator which
3505 * needs the percpu allocator in order to allocate its pagesets
3506 * (a chicken-egg dilemma).
3507 */
3508 for_each_possible_cpu(cpu) {
3509 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3510
3511 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3512 /*
3513 * We now know the "local memory node" for each node--
3514 * i.e., the node of the first zone in the generic zonelist.
3515 * Set up numa_mem percpu variable for on-line cpus. During
3516 * boot, only the boot cpu should be on-line; we'll init the
3517 * secondary cpus' numa_mem as they come on-line. During
3518 * node/memory hotplug, we'll fixup all on-line cpus.
3519 */
3520 if (cpu_online(cpu))
3521 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3522 #endif
3523 }
3524
3525 return 0;
3526 }
3527
3528 /*
3529 * Called with zonelists_mutex held always
3530 * unless system_state == SYSTEM_BOOTING.
3531 */
3532 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3533 {
3534 set_zonelist_order();
3535
3536 if (system_state == SYSTEM_BOOTING) {
3537 __build_all_zonelists(NULL);
3538 mminit_verify_zonelist();
3539 cpuset_init_current_mems_allowed();
3540 } else {
3541 /* we have to stop all cpus to guarantee there is no user
3542 of zonelist */
3543 #ifdef CONFIG_MEMORY_HOTPLUG
3544 if (zone)
3545 setup_zone_pageset(zone);
3546 #endif
3547 stop_machine(__build_all_zonelists, pgdat, NULL);
3548 /* cpuset refresh routine should be here */
3549 }
3550 vm_total_pages = nr_free_pagecache_pages();
3551 /*
3552 * Disable grouping by mobility if the number of pages in the
3553 * system is too low to allow the mechanism to work. It would be
3554 * more accurate, but expensive to check per-zone. This check is
3555 * made on memory-hotadd so a system can start with mobility
3556 * disabled and enable it later
3557 */
3558 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3559 page_group_by_mobility_disabled = 1;
3560 else
3561 page_group_by_mobility_disabled = 0;
3562
3563 printk("Built %i zonelists in %s order, mobility grouping %s. "
3564 "Total pages: %ld\n",
3565 nr_online_nodes,
3566 zonelist_order_name[current_zonelist_order],
3567 page_group_by_mobility_disabled ? "off" : "on",
3568 vm_total_pages);
3569 #ifdef CONFIG_NUMA
3570 printk("Policy zone: %s\n", zone_names[policy_zone]);
3571 #endif
3572 }
3573
3574 /*
3575 * Helper functions to size the waitqueue hash table.
3576 * Essentially these want to choose hash table sizes sufficiently
3577 * large so that collisions trying to wait on pages are rare.
3578 * But in fact, the number of active page waitqueues on typical
3579 * systems is ridiculously low, less than 200. So this is even
3580 * conservative, even though it seems large.
3581 *
3582 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3583 * waitqueues, i.e. the size of the waitq table given the number of pages.
3584 */
3585 #define PAGES_PER_WAITQUEUE 256
3586
3587 #ifndef CONFIG_MEMORY_HOTPLUG
3588 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3589 {
3590 unsigned long size = 1;
3591
3592 pages /= PAGES_PER_WAITQUEUE;
3593
3594 while (size < pages)
3595 size <<= 1;
3596
3597 /*
3598 * Once we have dozens or even hundreds of threads sleeping
3599 * on IO we've got bigger problems than wait queue collision.
3600 * Limit the size of the wait table to a reasonable size.
3601 */
3602 size = min(size, 4096UL);
3603
3604 return max(size, 4UL);
3605 }
3606 #else
3607 /*
3608 * A zone's size might be changed by hot-add, so it is not possible to determine
3609 * a suitable size for its wait_table. So we use the maximum size now.
3610 *
3611 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3612 *
3613 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3614 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3615 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3616 *
3617 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3618 * or more by the traditional way. (See above). It equals:
3619 *
3620 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3621 * ia64(16K page size) : = ( 8G + 4M)byte.
3622 * powerpc (64K page size) : = (32G +16M)byte.
3623 */
3624 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3625 {
3626 return 4096UL;
3627 }
3628 #endif
3629
3630 /*
3631 * This is an integer logarithm so that shifts can be used later
3632 * to extract the more random high bits from the multiplicative
3633 * hash function before the remainder is taken.
3634 */
3635 static inline unsigned long wait_table_bits(unsigned long size)
3636 {
3637 return ffz(~size);
3638 }
3639
3640 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3641
3642 /*
3643 * Check if a pageblock contains reserved pages
3644 */
3645 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3646 {
3647 unsigned long pfn;
3648
3649 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3650 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3651 return 1;
3652 }
3653 return 0;
3654 }
3655
3656 /*
3657 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3658 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3659 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3660 * higher will lead to a bigger reserve which will get freed as contiguous
3661 * blocks as reclaim kicks in
3662 */
3663 static void setup_zone_migrate_reserve(struct zone *zone)
3664 {
3665 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3666 struct page *page;
3667 unsigned long block_migratetype;
3668 int reserve;
3669
3670 /*
3671 * Get the start pfn, end pfn and the number of blocks to reserve
3672 * We have to be careful to be aligned to pageblock_nr_pages to
3673 * make sure that we always check pfn_valid for the first page in
3674 * the block.
3675 */
3676 start_pfn = zone->zone_start_pfn;
3677 end_pfn = start_pfn + zone->spanned_pages;
3678 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3679 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3680 pageblock_order;
3681
3682 /*
3683 * Reserve blocks are generally in place to help high-order atomic
3684 * allocations that are short-lived. A min_free_kbytes value that
3685 * would result in more than 2 reserve blocks for atomic allocations
3686 * is assumed to be in place to help anti-fragmentation for the
3687 * future allocation of hugepages at runtime.
3688 */
3689 reserve = min(2, reserve);
3690
3691 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3692 if (!pfn_valid(pfn))
3693 continue;
3694 page = pfn_to_page(pfn);
3695
3696 /* Watch out for overlapping nodes */
3697 if (page_to_nid(page) != zone_to_nid(zone))
3698 continue;
3699
3700 block_migratetype = get_pageblock_migratetype(page);
3701
3702 /* Only test what is necessary when the reserves are not met */
3703 if (reserve > 0) {
3704 /*
3705 * Blocks with reserved pages will never free, skip
3706 * them.
3707 */
3708 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3709 if (pageblock_is_reserved(pfn, block_end_pfn))
3710 continue;
3711
3712 /* If this block is reserved, account for it */
3713 if (block_migratetype == MIGRATE_RESERVE) {
3714 reserve--;
3715 continue;
3716 }
3717
3718 /* Suitable for reserving if this block is movable */
3719 if (block_migratetype == MIGRATE_MOVABLE) {
3720 set_pageblock_migratetype(page,
3721 MIGRATE_RESERVE);
3722 move_freepages_block(zone, page,
3723 MIGRATE_RESERVE);
3724 reserve--;
3725 continue;
3726 }
3727 }
3728
3729 /*
3730 * If the reserve is met and this is a previous reserved block,
3731 * take it back
3732 */
3733 if (block_migratetype == MIGRATE_RESERVE) {
3734 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3735 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3736 }
3737 }
3738 }
3739
3740 /*
3741 * Initially all pages are reserved - free ones are freed
3742 * up by free_all_bootmem() once the early boot process is
3743 * done. Non-atomic initialization, single-pass.
3744 */
3745 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3746 unsigned long start_pfn, enum memmap_context context)
3747 {
3748 struct page *page;
3749 unsigned long end_pfn = start_pfn + size;
3750 unsigned long pfn;
3751 struct zone *z;
3752
3753 if (highest_memmap_pfn < end_pfn - 1)
3754 highest_memmap_pfn = end_pfn - 1;
3755
3756 z = &NODE_DATA(nid)->node_zones[zone];
3757 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3758 /*
3759 * There can be holes in boot-time mem_map[]s
3760 * handed to this function. They do not
3761 * exist on hotplugged memory.
3762 */
3763 if (context == MEMMAP_EARLY) {
3764 if (!early_pfn_valid(pfn))
3765 continue;
3766 if (!early_pfn_in_nid(pfn, nid))
3767 continue;
3768 }
3769 page = pfn_to_page(pfn);
3770 set_page_links(page, zone, nid, pfn);
3771 mminit_verify_page_links(page, zone, nid, pfn);
3772 init_page_count(page);
3773 reset_page_mapcount(page);
3774 SetPageReserved(page);
3775 /*
3776 * Mark the block movable so that blocks are reserved for
3777 * movable at startup. This will force kernel allocations
3778 * to reserve their blocks rather than leaking throughout
3779 * the address space during boot when many long-lived
3780 * kernel allocations are made. Later some blocks near
3781 * the start are marked MIGRATE_RESERVE by
3782 * setup_zone_migrate_reserve()
3783 *
3784 * bitmap is created for zone's valid pfn range. but memmap
3785 * can be created for invalid pages (for alignment)
3786 * check here not to call set_pageblock_migratetype() against
3787 * pfn out of zone.
3788 */
3789 if ((z->zone_start_pfn <= pfn)
3790 && (pfn < z->zone_start_pfn + z->spanned_pages)
3791 && !(pfn & (pageblock_nr_pages - 1)))
3792 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3793
3794 INIT_LIST_HEAD(&page->lru);
3795 #ifdef WANT_PAGE_VIRTUAL
3796 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3797 if (!is_highmem_idx(zone))
3798 set_page_address(page, __va(pfn << PAGE_SHIFT));
3799 #endif
3800 }
3801 }
3802
3803 static void __meminit zone_init_free_lists(struct zone *zone)
3804 {
3805 int order, t;
3806 for_each_migratetype_order(order, t) {
3807 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3808 zone->free_area[order].nr_free = 0;
3809 }
3810 }
3811
3812 #ifndef __HAVE_ARCH_MEMMAP_INIT
3813 #define memmap_init(size, nid, zone, start_pfn) \
3814 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3815 #endif
3816
3817 static int __meminit zone_batchsize(struct zone *zone)
3818 {
3819 #ifdef CONFIG_MMU
3820 int batch;
3821
3822 /*
3823 * The per-cpu-pages pools are set to around 1000th of the
3824 * size of the zone. But no more than 1/2 of a meg.
3825 *
3826 * OK, so we don't know how big the cache is. So guess.
3827 */
3828 batch = zone->present_pages / 1024;
3829 if (batch * PAGE_SIZE > 512 * 1024)
3830 batch = (512 * 1024) / PAGE_SIZE;
3831 batch /= 4; /* We effectively *= 4 below */
3832 if (batch < 1)
3833 batch = 1;
3834
3835 /*
3836 * Clamp the batch to a 2^n - 1 value. Having a power
3837 * of 2 value was found to be more likely to have
3838 * suboptimal cache aliasing properties in some cases.
3839 *
3840 * For example if 2 tasks are alternately allocating
3841 * batches of pages, one task can end up with a lot
3842 * of pages of one half of the possible page colors
3843 * and the other with pages of the other colors.
3844 */
3845 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3846
3847 return batch;
3848
3849 #else
3850 /* The deferral and batching of frees should be suppressed under NOMMU
3851 * conditions.
3852 *
3853 * The problem is that NOMMU needs to be able to allocate large chunks
3854 * of contiguous memory as there's no hardware page translation to
3855 * assemble apparent contiguous memory from discontiguous pages.
3856 *
3857 * Queueing large contiguous runs of pages for batching, however,
3858 * causes the pages to actually be freed in smaller chunks. As there
3859 * can be a significant delay between the individual batches being
3860 * recycled, this leads to the once large chunks of space being
3861 * fragmented and becoming unavailable for high-order allocations.
3862 */
3863 return 0;
3864 #endif
3865 }
3866
3867 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3868 {
3869 struct per_cpu_pages *pcp;
3870 int migratetype;
3871
3872 memset(p, 0, sizeof(*p));
3873
3874 pcp = &p->pcp;
3875 pcp->count = 0;
3876 pcp->high = 6 * batch;
3877 pcp->batch = max(1UL, 1 * batch);
3878 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3879 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3880 }
3881
3882 /*
3883 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3884 * to the value high for the pageset p.
3885 */
3886
3887 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3888 unsigned long high)
3889 {
3890 struct per_cpu_pages *pcp;
3891
3892 pcp = &p->pcp;
3893 pcp->high = high;
3894 pcp->batch = max(1UL, high/4);
3895 if ((high/4) > (PAGE_SHIFT * 8))
3896 pcp->batch = PAGE_SHIFT * 8;
3897 }
3898
3899 static void __meminit setup_zone_pageset(struct zone *zone)
3900 {
3901 int cpu;
3902
3903 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3904
3905 for_each_possible_cpu(cpu) {
3906 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3907
3908 setup_pageset(pcp, zone_batchsize(zone));
3909
3910 if (percpu_pagelist_fraction)
3911 setup_pagelist_highmark(pcp,
3912 (zone->present_pages /
3913 percpu_pagelist_fraction));
3914 }
3915 }
3916
3917 /*
3918 * Allocate per cpu pagesets and initialize them.
3919 * Before this call only boot pagesets were available.
3920 */
3921 void __init setup_per_cpu_pageset(void)
3922 {
3923 struct zone *zone;
3924
3925 for_each_populated_zone(zone)
3926 setup_zone_pageset(zone);
3927 }
3928
3929 static noinline __init_refok
3930 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3931 {
3932 int i;
3933 struct pglist_data *pgdat = zone->zone_pgdat;
3934 size_t alloc_size;
3935
3936 /*
3937 * The per-page waitqueue mechanism uses hashed waitqueues
3938 * per zone.
3939 */
3940 zone->wait_table_hash_nr_entries =
3941 wait_table_hash_nr_entries(zone_size_pages);
3942 zone->wait_table_bits =
3943 wait_table_bits(zone->wait_table_hash_nr_entries);
3944 alloc_size = zone->wait_table_hash_nr_entries
3945 * sizeof(wait_queue_head_t);
3946
3947 if (!slab_is_available()) {
3948 zone->wait_table = (wait_queue_head_t *)
3949 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3950 } else {
3951 /*
3952 * This case means that a zone whose size was 0 gets new memory
3953 * via memory hot-add.
3954 * But it may be the case that a new node was hot-added. In
3955 * this case vmalloc() will not be able to use this new node's
3956 * memory - this wait_table must be initialized to use this new
3957 * node itself as well.
3958 * To use this new node's memory, further consideration will be
3959 * necessary.
3960 */
3961 zone->wait_table = vmalloc(alloc_size);
3962 }
3963 if (!zone->wait_table)
3964 return -ENOMEM;
3965
3966 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3967 init_waitqueue_head(zone->wait_table + i);
3968
3969 return 0;
3970 }
3971
3972 static __meminit void zone_pcp_init(struct zone *zone)
3973 {
3974 /*
3975 * per cpu subsystem is not up at this point. The following code
3976 * relies on the ability of the linker to provide the
3977 * offset of a (static) per cpu variable into the per cpu area.
3978 */
3979 zone->pageset = &boot_pageset;
3980
3981 if (zone->present_pages)
3982 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3983 zone->name, zone->present_pages,
3984 zone_batchsize(zone));
3985 }
3986
3987 int __meminit init_currently_empty_zone(struct zone *zone,
3988 unsigned long zone_start_pfn,
3989 unsigned long size,
3990 enum memmap_context context)
3991 {
3992 struct pglist_data *pgdat = zone->zone_pgdat;
3993 int ret;
3994 ret = zone_wait_table_init(zone, size);
3995 if (ret)
3996 return ret;
3997 pgdat->nr_zones = zone_idx(zone) + 1;
3998
3999 zone->zone_start_pfn = zone_start_pfn;
4000
4001 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4002 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4003 pgdat->node_id,
4004 (unsigned long)zone_idx(zone),
4005 zone_start_pfn, (zone_start_pfn + size));
4006
4007 zone_init_free_lists(zone);
4008
4009 return 0;
4010 }
4011
4012 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4013 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4014 /*
4015 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4016 * Architectures may implement their own version but if add_active_range()
4017 * was used and there are no special requirements, this is a convenient
4018 * alternative
4019 */
4020 int __meminit __early_pfn_to_nid(unsigned long pfn)
4021 {
4022 unsigned long start_pfn, end_pfn;
4023 int i, nid;
4024
4025 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4026 if (start_pfn <= pfn && pfn < end_pfn)
4027 return nid;
4028 /* This is a memory hole */
4029 return -1;
4030 }
4031 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4032
4033 int __meminit early_pfn_to_nid(unsigned long pfn)
4034 {
4035 int nid;
4036
4037 nid = __early_pfn_to_nid(pfn);
4038 if (nid >= 0)
4039 return nid;
4040 /* just returns 0 */
4041 return 0;
4042 }
4043
4044 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4045 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4046 {
4047 int nid;
4048
4049 nid = __early_pfn_to_nid(pfn);
4050 if (nid >= 0 && nid != node)
4051 return false;
4052 return true;
4053 }
4054 #endif
4055
4056 /**
4057 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4058 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4059 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4060 *
4061 * If an architecture guarantees that all ranges registered with
4062 * add_active_ranges() contain no holes and may be freed, this
4063 * this function may be used instead of calling free_bootmem() manually.
4064 */
4065 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4066 {
4067 unsigned long start_pfn, end_pfn;
4068 int i, this_nid;
4069
4070 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4071 start_pfn = min(start_pfn, max_low_pfn);
4072 end_pfn = min(end_pfn, max_low_pfn);
4073
4074 if (start_pfn < end_pfn)
4075 free_bootmem_node(NODE_DATA(this_nid),
4076 PFN_PHYS(start_pfn),
4077 (end_pfn - start_pfn) << PAGE_SHIFT);
4078 }
4079 }
4080
4081 /**
4082 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4083 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4084 *
4085 * If an architecture guarantees that all ranges registered with
4086 * add_active_ranges() contain no holes and may be freed, this
4087 * function may be used instead of calling memory_present() manually.
4088 */
4089 void __init sparse_memory_present_with_active_regions(int nid)
4090 {
4091 unsigned long start_pfn, end_pfn;
4092 int i, this_nid;
4093
4094 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4095 memory_present(this_nid, start_pfn, end_pfn);
4096 }
4097
4098 /**
4099 * get_pfn_range_for_nid - Return the start and end page frames for a node
4100 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4101 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4102 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4103 *
4104 * It returns the start and end page frame of a node based on information
4105 * provided by an arch calling add_active_range(). If called for a node
4106 * with no available memory, a warning is printed and the start and end
4107 * PFNs will be 0.
4108 */
4109 void __meminit get_pfn_range_for_nid(unsigned int nid,
4110 unsigned long *start_pfn, unsigned long *end_pfn)
4111 {
4112 unsigned long this_start_pfn, this_end_pfn;
4113 int i;
4114
4115 *start_pfn = -1UL;
4116 *end_pfn = 0;
4117
4118 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4119 *start_pfn = min(*start_pfn, this_start_pfn);
4120 *end_pfn = max(*end_pfn, this_end_pfn);
4121 }
4122
4123 if (*start_pfn == -1UL)
4124 *start_pfn = 0;
4125 }
4126
4127 /*
4128 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4129 * assumption is made that zones within a node are ordered in monotonic
4130 * increasing memory addresses so that the "highest" populated zone is used
4131 */
4132 static void __init find_usable_zone_for_movable(void)
4133 {
4134 int zone_index;
4135 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4136 if (zone_index == ZONE_MOVABLE)
4137 continue;
4138
4139 if (arch_zone_highest_possible_pfn[zone_index] >
4140 arch_zone_lowest_possible_pfn[zone_index])
4141 break;
4142 }
4143
4144 VM_BUG_ON(zone_index == -1);
4145 movable_zone = zone_index;
4146 }
4147
4148 /*
4149 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4150 * because it is sized independent of architecture. Unlike the other zones,
4151 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4152 * in each node depending on the size of each node and how evenly kernelcore
4153 * is distributed. This helper function adjusts the zone ranges
4154 * provided by the architecture for a given node by using the end of the
4155 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4156 * zones within a node are in order of monotonic increases memory addresses
4157 */
4158 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4159 unsigned long zone_type,
4160 unsigned long node_start_pfn,
4161 unsigned long node_end_pfn,
4162 unsigned long *zone_start_pfn,
4163 unsigned long *zone_end_pfn)
4164 {
4165 /* Only adjust if ZONE_MOVABLE is on this node */
4166 if (zone_movable_pfn[nid]) {
4167 /* Size ZONE_MOVABLE */
4168 if (zone_type == ZONE_MOVABLE) {
4169 *zone_start_pfn = zone_movable_pfn[nid];
4170 *zone_end_pfn = min(node_end_pfn,
4171 arch_zone_highest_possible_pfn[movable_zone]);
4172
4173 /* Adjust for ZONE_MOVABLE starting within this range */
4174 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4175 *zone_end_pfn > zone_movable_pfn[nid]) {
4176 *zone_end_pfn = zone_movable_pfn[nid];
4177
4178 /* Check if this whole range is within ZONE_MOVABLE */
4179 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4180 *zone_start_pfn = *zone_end_pfn;
4181 }
4182 }
4183
4184 /*
4185 * Return the number of pages a zone spans in a node, including holes
4186 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4187 */
4188 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4189 unsigned long zone_type,
4190 unsigned long *ignored)
4191 {
4192 unsigned long node_start_pfn, node_end_pfn;
4193 unsigned long zone_start_pfn, zone_end_pfn;
4194
4195 /* Get the start and end of the node and zone */
4196 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4197 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4198 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4199 adjust_zone_range_for_zone_movable(nid, zone_type,
4200 node_start_pfn, node_end_pfn,
4201 &zone_start_pfn, &zone_end_pfn);
4202
4203 /* Check that this node has pages within the zone's required range */
4204 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4205 return 0;
4206
4207 /* Move the zone boundaries inside the node if necessary */
4208 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4209 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4210
4211 /* Return the spanned pages */
4212 return zone_end_pfn - zone_start_pfn;
4213 }
4214
4215 /*
4216 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4217 * then all holes in the requested range will be accounted for.
4218 */
4219 unsigned long __meminit __absent_pages_in_range(int nid,
4220 unsigned long range_start_pfn,
4221 unsigned long range_end_pfn)
4222 {
4223 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4224 unsigned long start_pfn, end_pfn;
4225 int i;
4226
4227 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4228 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4229 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4230 nr_absent -= end_pfn - start_pfn;
4231 }
4232 return nr_absent;
4233 }
4234
4235 /**
4236 * absent_pages_in_range - Return number of page frames in holes within a range
4237 * @start_pfn: The start PFN to start searching for holes
4238 * @end_pfn: The end PFN to stop searching for holes
4239 *
4240 * It returns the number of pages frames in memory holes within a range.
4241 */
4242 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4243 unsigned long end_pfn)
4244 {
4245 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4246 }
4247
4248 /* Return the number of page frames in holes in a zone on a node */
4249 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4250 unsigned long zone_type,
4251 unsigned long *ignored)
4252 {
4253 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4254 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4255 unsigned long node_start_pfn, node_end_pfn;
4256 unsigned long zone_start_pfn, zone_end_pfn;
4257
4258 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4259 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4260 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4261
4262 adjust_zone_range_for_zone_movable(nid, zone_type,
4263 node_start_pfn, node_end_pfn,
4264 &zone_start_pfn, &zone_end_pfn);
4265 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4266 }
4267
4268 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4269 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4270 unsigned long zone_type,
4271 unsigned long *zones_size)
4272 {
4273 return zones_size[zone_type];
4274 }
4275
4276 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4277 unsigned long zone_type,
4278 unsigned long *zholes_size)
4279 {
4280 if (!zholes_size)
4281 return 0;
4282
4283 return zholes_size[zone_type];
4284 }
4285
4286 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4287
4288 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4289 unsigned long *zones_size, unsigned long *zholes_size)
4290 {
4291 unsigned long realtotalpages, totalpages = 0;
4292 enum zone_type i;
4293
4294 for (i = 0; i < MAX_NR_ZONES; i++)
4295 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4296 zones_size);
4297 pgdat->node_spanned_pages = totalpages;
4298
4299 realtotalpages = totalpages;
4300 for (i = 0; i < MAX_NR_ZONES; i++)
4301 realtotalpages -=
4302 zone_absent_pages_in_node(pgdat->node_id, i,
4303 zholes_size);
4304 pgdat->node_present_pages = realtotalpages;
4305 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4306 realtotalpages);
4307 }
4308
4309 #ifndef CONFIG_SPARSEMEM
4310 /*
4311 * Calculate the size of the zone->blockflags rounded to an unsigned long
4312 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4313 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4314 * round what is now in bits to nearest long in bits, then return it in
4315 * bytes.
4316 */
4317 static unsigned long __init usemap_size(unsigned long zonesize)
4318 {
4319 unsigned long usemapsize;
4320
4321 usemapsize = roundup(zonesize, pageblock_nr_pages);
4322 usemapsize = usemapsize >> pageblock_order;
4323 usemapsize *= NR_PAGEBLOCK_BITS;
4324 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4325
4326 return usemapsize / 8;
4327 }
4328
4329 static void __init setup_usemap(struct pglist_data *pgdat,
4330 struct zone *zone, unsigned long zonesize)
4331 {
4332 unsigned long usemapsize = usemap_size(zonesize);
4333 zone->pageblock_flags = NULL;
4334 if (usemapsize)
4335 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4336 usemapsize);
4337 }
4338 #else
4339 static inline void setup_usemap(struct pglist_data *pgdat,
4340 struct zone *zone, unsigned long zonesize) {}
4341 #endif /* CONFIG_SPARSEMEM */
4342
4343 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4344
4345 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4346 void __init set_pageblock_order(void)
4347 {
4348 unsigned int order;
4349
4350 /* Check that pageblock_nr_pages has not already been setup */
4351 if (pageblock_order)
4352 return;
4353
4354 if (HPAGE_SHIFT > PAGE_SHIFT)
4355 order = HUGETLB_PAGE_ORDER;
4356 else
4357 order = MAX_ORDER - 1;
4358
4359 /*
4360 * Assume the largest contiguous order of interest is a huge page.
4361 * This value may be variable depending on boot parameters on IA64 and
4362 * powerpc.
4363 */
4364 pageblock_order = order;
4365 }
4366 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4367
4368 /*
4369 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4370 * is unused as pageblock_order is set at compile-time. See
4371 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4372 * the kernel config
4373 */
4374 void __init set_pageblock_order(void)
4375 {
4376 }
4377
4378 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4379
4380 /*
4381 * Set up the zone data structures:
4382 * - mark all pages reserved
4383 * - mark all memory queues empty
4384 * - clear the memory bitmaps
4385 *
4386 * NOTE: pgdat should get zeroed by caller.
4387 */
4388 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4389 unsigned long *zones_size, unsigned long *zholes_size)
4390 {
4391 enum zone_type j;
4392 int nid = pgdat->node_id;
4393 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4394 int ret;
4395
4396 pgdat_resize_init(pgdat);
4397 init_waitqueue_head(&pgdat->kswapd_wait);
4398 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4399 pgdat_page_cgroup_init(pgdat);
4400
4401 for (j = 0; j < MAX_NR_ZONES; j++) {
4402 struct zone *zone = pgdat->node_zones + j;
4403 unsigned long size, realsize, memmap_pages;
4404
4405 size = zone_spanned_pages_in_node(nid, j, zones_size);
4406 realsize = size - zone_absent_pages_in_node(nid, j,
4407 zholes_size);
4408
4409 /*
4410 * Adjust realsize so that it accounts for how much memory
4411 * is used by this zone for memmap. This affects the watermark
4412 * and per-cpu initialisations
4413 */
4414 memmap_pages =
4415 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4416 if (realsize >= memmap_pages) {
4417 realsize -= memmap_pages;
4418 if (memmap_pages)
4419 printk(KERN_DEBUG
4420 " %s zone: %lu pages used for memmap\n",
4421 zone_names[j], memmap_pages);
4422 } else
4423 printk(KERN_WARNING
4424 " %s zone: %lu pages exceeds realsize %lu\n",
4425 zone_names[j], memmap_pages, realsize);
4426
4427 /* Account for reserved pages */
4428 if (j == 0 && realsize > dma_reserve) {
4429 realsize -= dma_reserve;
4430 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4431 zone_names[0], dma_reserve);
4432 }
4433
4434 if (!is_highmem_idx(j))
4435 nr_kernel_pages += realsize;
4436 nr_all_pages += realsize;
4437
4438 zone->spanned_pages = size;
4439 zone->present_pages = realsize;
4440 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4441 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4442 zone->spanned_pages;
4443 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4444 #endif
4445 #ifdef CONFIG_NUMA
4446 zone->node = nid;
4447 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4448 / 100;
4449 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4450 #endif
4451 zone->name = zone_names[j];
4452 spin_lock_init(&zone->lock);
4453 spin_lock_init(&zone->lru_lock);
4454 zone_seqlock_init(zone);
4455 zone->zone_pgdat = pgdat;
4456
4457 zone_pcp_init(zone);
4458 lruvec_init(&zone->lruvec, zone);
4459 if (!size)
4460 continue;
4461
4462 set_pageblock_order();
4463 setup_usemap(pgdat, zone, size);
4464 ret = init_currently_empty_zone(zone, zone_start_pfn,
4465 size, MEMMAP_EARLY);
4466 BUG_ON(ret);
4467 memmap_init(size, nid, j, zone_start_pfn);
4468 zone_start_pfn += size;
4469 }
4470 }
4471
4472 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4473 {
4474 /* Skip empty nodes */
4475 if (!pgdat->node_spanned_pages)
4476 return;
4477
4478 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4479 /* ia64 gets its own node_mem_map, before this, without bootmem */
4480 if (!pgdat->node_mem_map) {
4481 unsigned long size, start, end;
4482 struct page *map;
4483
4484 /*
4485 * The zone's endpoints aren't required to be MAX_ORDER
4486 * aligned but the node_mem_map endpoints must be in order
4487 * for the buddy allocator to function correctly.
4488 */
4489 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4490 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4491 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4492 size = (end - start) * sizeof(struct page);
4493 map = alloc_remap(pgdat->node_id, size);
4494 if (!map)
4495 map = alloc_bootmem_node_nopanic(pgdat, size);
4496 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4497 }
4498 #ifndef CONFIG_NEED_MULTIPLE_NODES
4499 /*
4500 * With no DISCONTIG, the global mem_map is just set as node 0's
4501 */
4502 if (pgdat == NODE_DATA(0)) {
4503 mem_map = NODE_DATA(0)->node_mem_map;
4504 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4505 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4506 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4507 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4508 }
4509 #endif
4510 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4511 }
4512
4513 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4514 unsigned long node_start_pfn, unsigned long *zholes_size)
4515 {
4516 pg_data_t *pgdat = NODE_DATA(nid);
4517
4518 /* pg_data_t should be reset to zero when it's allocated */
4519 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4520
4521 pgdat->node_id = nid;
4522 pgdat->node_start_pfn = node_start_pfn;
4523 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4524
4525 alloc_node_mem_map(pgdat);
4526 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4527 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4528 nid, (unsigned long)pgdat,
4529 (unsigned long)pgdat->node_mem_map);
4530 #endif
4531
4532 free_area_init_core(pgdat, zones_size, zholes_size);
4533 }
4534
4535 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4536
4537 #if MAX_NUMNODES > 1
4538 /*
4539 * Figure out the number of possible node ids.
4540 */
4541 static void __init setup_nr_node_ids(void)
4542 {
4543 unsigned int node;
4544 unsigned int highest = 0;
4545
4546 for_each_node_mask(node, node_possible_map)
4547 highest = node;
4548 nr_node_ids = highest + 1;
4549 }
4550 #else
4551 static inline void setup_nr_node_ids(void)
4552 {
4553 }
4554 #endif
4555
4556 /**
4557 * node_map_pfn_alignment - determine the maximum internode alignment
4558 *
4559 * This function should be called after node map is populated and sorted.
4560 * It calculates the maximum power of two alignment which can distinguish
4561 * all the nodes.
4562 *
4563 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4564 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4565 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4566 * shifted, 1GiB is enough and this function will indicate so.
4567 *
4568 * This is used to test whether pfn -> nid mapping of the chosen memory
4569 * model has fine enough granularity to avoid incorrect mapping for the
4570 * populated node map.
4571 *
4572 * Returns the determined alignment in pfn's. 0 if there is no alignment
4573 * requirement (single node).
4574 */
4575 unsigned long __init node_map_pfn_alignment(void)
4576 {
4577 unsigned long accl_mask = 0, last_end = 0;
4578 unsigned long start, end, mask;
4579 int last_nid = -1;
4580 int i, nid;
4581
4582 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4583 if (!start || last_nid < 0 || last_nid == nid) {
4584 last_nid = nid;
4585 last_end = end;
4586 continue;
4587 }
4588
4589 /*
4590 * Start with a mask granular enough to pin-point to the
4591 * start pfn and tick off bits one-by-one until it becomes
4592 * too coarse to separate the current node from the last.
4593 */
4594 mask = ~((1 << __ffs(start)) - 1);
4595 while (mask && last_end <= (start & (mask << 1)))
4596 mask <<= 1;
4597
4598 /* accumulate all internode masks */
4599 accl_mask |= mask;
4600 }
4601
4602 /* convert mask to number of pages */
4603 return ~accl_mask + 1;
4604 }
4605
4606 /* Find the lowest pfn for a node */
4607 static unsigned long __init find_min_pfn_for_node(int nid)
4608 {
4609 unsigned long min_pfn = ULONG_MAX;
4610 unsigned long start_pfn;
4611 int i;
4612
4613 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4614 min_pfn = min(min_pfn, start_pfn);
4615
4616 if (min_pfn == ULONG_MAX) {
4617 printk(KERN_WARNING
4618 "Could not find start_pfn for node %d\n", nid);
4619 return 0;
4620 }
4621
4622 return min_pfn;
4623 }
4624
4625 /**
4626 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4627 *
4628 * It returns the minimum PFN based on information provided via
4629 * add_active_range().
4630 */
4631 unsigned long __init find_min_pfn_with_active_regions(void)
4632 {
4633 return find_min_pfn_for_node(MAX_NUMNODES);
4634 }
4635
4636 /*
4637 * early_calculate_totalpages()
4638 * Sum pages in active regions for movable zone.
4639 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4640 */
4641 static unsigned long __init early_calculate_totalpages(void)
4642 {
4643 unsigned long totalpages = 0;
4644 unsigned long start_pfn, end_pfn;
4645 int i, nid;
4646
4647 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4648 unsigned long pages = end_pfn - start_pfn;
4649
4650 totalpages += pages;
4651 if (pages)
4652 node_set_state(nid, N_HIGH_MEMORY);
4653 }
4654 return totalpages;
4655 }
4656
4657 /*
4658 * Find the PFN the Movable zone begins in each node. Kernel memory
4659 * is spread evenly between nodes as long as the nodes have enough
4660 * memory. When they don't, some nodes will have more kernelcore than
4661 * others
4662 */
4663 static void __init find_zone_movable_pfns_for_nodes(void)
4664 {
4665 int i, nid;
4666 unsigned long usable_startpfn;
4667 unsigned long kernelcore_node, kernelcore_remaining;
4668 /* save the state before borrow the nodemask */
4669 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4670 unsigned long totalpages = early_calculate_totalpages();
4671 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4672
4673 /*
4674 * If movablecore was specified, calculate what size of
4675 * kernelcore that corresponds so that memory usable for
4676 * any allocation type is evenly spread. If both kernelcore
4677 * and movablecore are specified, then the value of kernelcore
4678 * will be used for required_kernelcore if it's greater than
4679 * what movablecore would have allowed.
4680 */
4681 if (required_movablecore) {
4682 unsigned long corepages;
4683
4684 /*
4685 * Round-up so that ZONE_MOVABLE is at least as large as what
4686 * was requested by the user
4687 */
4688 required_movablecore =
4689 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4690 corepages = totalpages - required_movablecore;
4691
4692 required_kernelcore = max(required_kernelcore, corepages);
4693 }
4694
4695 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4696 if (!required_kernelcore)
4697 goto out;
4698
4699 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4700 find_usable_zone_for_movable();
4701 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4702
4703 restart:
4704 /* Spread kernelcore memory as evenly as possible throughout nodes */
4705 kernelcore_node = required_kernelcore / usable_nodes;
4706 for_each_node_state(nid, N_HIGH_MEMORY) {
4707 unsigned long start_pfn, end_pfn;
4708
4709 /*
4710 * Recalculate kernelcore_node if the division per node
4711 * now exceeds what is necessary to satisfy the requested
4712 * amount of memory for the kernel
4713 */
4714 if (required_kernelcore < kernelcore_node)
4715 kernelcore_node = required_kernelcore / usable_nodes;
4716
4717 /*
4718 * As the map is walked, we track how much memory is usable
4719 * by the kernel using kernelcore_remaining. When it is
4720 * 0, the rest of the node is usable by ZONE_MOVABLE
4721 */
4722 kernelcore_remaining = kernelcore_node;
4723
4724 /* Go through each range of PFNs within this node */
4725 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4726 unsigned long size_pages;
4727
4728 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4729 if (start_pfn >= end_pfn)
4730 continue;
4731
4732 /* Account for what is only usable for kernelcore */
4733 if (start_pfn < usable_startpfn) {
4734 unsigned long kernel_pages;
4735 kernel_pages = min(end_pfn, usable_startpfn)
4736 - start_pfn;
4737
4738 kernelcore_remaining -= min(kernel_pages,
4739 kernelcore_remaining);
4740 required_kernelcore -= min(kernel_pages,
4741 required_kernelcore);
4742
4743 /* Continue if range is now fully accounted */
4744 if (end_pfn <= usable_startpfn) {
4745
4746 /*
4747 * Push zone_movable_pfn to the end so
4748 * that if we have to rebalance
4749 * kernelcore across nodes, we will
4750 * not double account here
4751 */
4752 zone_movable_pfn[nid] = end_pfn;
4753 continue;
4754 }
4755 start_pfn = usable_startpfn;
4756 }
4757
4758 /*
4759 * The usable PFN range for ZONE_MOVABLE is from
4760 * start_pfn->end_pfn. Calculate size_pages as the
4761 * number of pages used as kernelcore
4762 */
4763 size_pages = end_pfn - start_pfn;
4764 if (size_pages > kernelcore_remaining)
4765 size_pages = kernelcore_remaining;
4766 zone_movable_pfn[nid] = start_pfn + size_pages;
4767
4768 /*
4769 * Some kernelcore has been met, update counts and
4770 * break if the kernelcore for this node has been
4771 * satisified
4772 */
4773 required_kernelcore -= min(required_kernelcore,
4774 size_pages);
4775 kernelcore_remaining -= size_pages;
4776 if (!kernelcore_remaining)
4777 break;
4778 }
4779 }
4780
4781 /*
4782 * If there is still required_kernelcore, we do another pass with one
4783 * less node in the count. This will push zone_movable_pfn[nid] further
4784 * along on the nodes that still have memory until kernelcore is
4785 * satisified
4786 */
4787 usable_nodes--;
4788 if (usable_nodes && required_kernelcore > usable_nodes)
4789 goto restart;
4790
4791 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4792 for (nid = 0; nid < MAX_NUMNODES; nid++)
4793 zone_movable_pfn[nid] =
4794 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4795
4796 out:
4797 /* restore the node_state */
4798 node_states[N_HIGH_MEMORY] = saved_node_state;
4799 }
4800
4801 /* Any regular memory on that node ? */
4802 static void __init check_for_regular_memory(pg_data_t *pgdat)
4803 {
4804 #ifdef CONFIG_HIGHMEM
4805 enum zone_type zone_type;
4806
4807 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4808 struct zone *zone = &pgdat->node_zones[zone_type];
4809 if (zone->present_pages) {
4810 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4811 break;
4812 }
4813 }
4814 #endif
4815 }
4816
4817 /**
4818 * free_area_init_nodes - Initialise all pg_data_t and zone data
4819 * @max_zone_pfn: an array of max PFNs for each zone
4820 *
4821 * This will call free_area_init_node() for each active node in the system.
4822 * Using the page ranges provided by add_active_range(), the size of each
4823 * zone in each node and their holes is calculated. If the maximum PFN
4824 * between two adjacent zones match, it is assumed that the zone is empty.
4825 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4826 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4827 * starts where the previous one ended. For example, ZONE_DMA32 starts
4828 * at arch_max_dma_pfn.
4829 */
4830 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4831 {
4832 unsigned long start_pfn, end_pfn;
4833 int i, nid;
4834
4835 /* Record where the zone boundaries are */
4836 memset(arch_zone_lowest_possible_pfn, 0,
4837 sizeof(arch_zone_lowest_possible_pfn));
4838 memset(arch_zone_highest_possible_pfn, 0,
4839 sizeof(arch_zone_highest_possible_pfn));
4840 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4841 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4842 for (i = 1; i < MAX_NR_ZONES; i++) {
4843 if (i == ZONE_MOVABLE)
4844 continue;
4845 arch_zone_lowest_possible_pfn[i] =
4846 arch_zone_highest_possible_pfn[i-1];
4847 arch_zone_highest_possible_pfn[i] =
4848 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4849 }
4850 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4851 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4852
4853 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4854 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4855 find_zone_movable_pfns_for_nodes();
4856
4857 /* Print out the zone ranges */
4858 printk("Zone ranges:\n");
4859 for (i = 0; i < MAX_NR_ZONES; i++) {
4860 if (i == ZONE_MOVABLE)
4861 continue;
4862 printk(KERN_CONT " %-8s ", zone_names[i]);
4863 if (arch_zone_lowest_possible_pfn[i] ==
4864 arch_zone_highest_possible_pfn[i])
4865 printk(KERN_CONT "empty\n");
4866 else
4867 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4868 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4869 (arch_zone_highest_possible_pfn[i]
4870 << PAGE_SHIFT) - 1);
4871 }
4872
4873 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4874 printk("Movable zone start for each node\n");
4875 for (i = 0; i < MAX_NUMNODES; i++) {
4876 if (zone_movable_pfn[i])
4877 printk(" Node %d: %#010lx\n", i,
4878 zone_movable_pfn[i] << PAGE_SHIFT);
4879 }
4880
4881 /* Print out the early_node_map[] */
4882 printk("Early memory node ranges\n");
4883 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4884 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4885 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4886
4887 /* Initialise every node */
4888 mminit_verify_pageflags_layout();
4889 setup_nr_node_ids();
4890 for_each_online_node(nid) {
4891 pg_data_t *pgdat = NODE_DATA(nid);
4892 free_area_init_node(nid, NULL,
4893 find_min_pfn_for_node(nid), NULL);
4894
4895 /* Any memory on that node */
4896 if (pgdat->node_present_pages)
4897 node_set_state(nid, N_HIGH_MEMORY);
4898 check_for_regular_memory(pgdat);
4899 }
4900 }
4901
4902 static int __init cmdline_parse_core(char *p, unsigned long *core)
4903 {
4904 unsigned long long coremem;
4905 if (!p)
4906 return -EINVAL;
4907
4908 coremem = memparse(p, &p);
4909 *core = coremem >> PAGE_SHIFT;
4910
4911 /* Paranoid check that UL is enough for the coremem value */
4912 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4913
4914 return 0;
4915 }
4916
4917 /*
4918 * kernelcore=size sets the amount of memory for use for allocations that
4919 * cannot be reclaimed or migrated.
4920 */
4921 static int __init cmdline_parse_kernelcore(char *p)
4922 {
4923 return cmdline_parse_core(p, &required_kernelcore);
4924 }
4925
4926 /*
4927 * movablecore=size sets the amount of memory for use for allocations that
4928 * can be reclaimed or migrated.
4929 */
4930 static int __init cmdline_parse_movablecore(char *p)
4931 {
4932 return cmdline_parse_core(p, &required_movablecore);
4933 }
4934
4935 early_param("kernelcore", cmdline_parse_kernelcore);
4936 early_param("movablecore", cmdline_parse_movablecore);
4937
4938 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4939
4940 /**
4941 * set_dma_reserve - set the specified number of pages reserved in the first zone
4942 * @new_dma_reserve: The number of pages to mark reserved
4943 *
4944 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4945 * In the DMA zone, a significant percentage may be consumed by kernel image
4946 * and other unfreeable allocations which can skew the watermarks badly. This
4947 * function may optionally be used to account for unfreeable pages in the
4948 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4949 * smaller per-cpu batchsize.
4950 */
4951 void __init set_dma_reserve(unsigned long new_dma_reserve)
4952 {
4953 dma_reserve = new_dma_reserve;
4954 }
4955
4956 void __init free_area_init(unsigned long *zones_size)
4957 {
4958 free_area_init_node(0, zones_size,
4959 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4960 }
4961
4962 static int page_alloc_cpu_notify(struct notifier_block *self,
4963 unsigned long action, void *hcpu)
4964 {
4965 int cpu = (unsigned long)hcpu;
4966
4967 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4968 lru_add_drain_cpu(cpu);
4969 drain_pages(cpu);
4970
4971 /*
4972 * Spill the event counters of the dead processor
4973 * into the current processors event counters.
4974 * This artificially elevates the count of the current
4975 * processor.
4976 */
4977 vm_events_fold_cpu(cpu);
4978
4979 /*
4980 * Zero the differential counters of the dead processor
4981 * so that the vm statistics are consistent.
4982 *
4983 * This is only okay since the processor is dead and cannot
4984 * race with what we are doing.
4985 */
4986 refresh_cpu_vm_stats(cpu);
4987 }
4988 return NOTIFY_OK;
4989 }
4990
4991 void __init page_alloc_init(void)
4992 {
4993 hotcpu_notifier(page_alloc_cpu_notify, 0);
4994 }
4995
4996 /*
4997 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4998 * or min_free_kbytes changes.
4999 */
5000 static void calculate_totalreserve_pages(void)
5001 {
5002 struct pglist_data *pgdat;
5003 unsigned long reserve_pages = 0;
5004 enum zone_type i, j;
5005
5006 for_each_online_pgdat(pgdat) {
5007 for (i = 0; i < MAX_NR_ZONES; i++) {
5008 struct zone *zone = pgdat->node_zones + i;
5009 unsigned long max = 0;
5010
5011 /* Find valid and maximum lowmem_reserve in the zone */
5012 for (j = i; j < MAX_NR_ZONES; j++) {
5013 if (zone->lowmem_reserve[j] > max)
5014 max = zone->lowmem_reserve[j];
5015 }
5016
5017 /* we treat the high watermark as reserved pages. */
5018 max += high_wmark_pages(zone);
5019
5020 if (max > zone->present_pages)
5021 max = zone->present_pages;
5022 reserve_pages += max;
5023 /*
5024 * Lowmem reserves are not available to
5025 * GFP_HIGHUSER page cache allocations and
5026 * kswapd tries to balance zones to their high
5027 * watermark. As a result, neither should be
5028 * regarded as dirtyable memory, to prevent a
5029 * situation where reclaim has to clean pages
5030 * in order to balance the zones.
5031 */
5032 zone->dirty_balance_reserve = max;
5033 }
5034 }
5035 dirty_balance_reserve = reserve_pages;
5036 totalreserve_pages = reserve_pages;
5037 }
5038
5039 /*
5040 * setup_per_zone_lowmem_reserve - called whenever
5041 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5042 * has a correct pages reserved value, so an adequate number of
5043 * pages are left in the zone after a successful __alloc_pages().
5044 */
5045 static void setup_per_zone_lowmem_reserve(void)
5046 {
5047 struct pglist_data *pgdat;
5048 enum zone_type j, idx;
5049
5050 for_each_online_pgdat(pgdat) {
5051 for (j = 0; j < MAX_NR_ZONES; j++) {
5052 struct zone *zone = pgdat->node_zones + j;
5053 unsigned long present_pages = zone->present_pages;
5054
5055 zone->lowmem_reserve[j] = 0;
5056
5057 idx = j;
5058 while (idx) {
5059 struct zone *lower_zone;
5060
5061 idx--;
5062
5063 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5064 sysctl_lowmem_reserve_ratio[idx] = 1;
5065
5066 lower_zone = pgdat->node_zones + idx;
5067 lower_zone->lowmem_reserve[j] = present_pages /
5068 sysctl_lowmem_reserve_ratio[idx];
5069 present_pages += lower_zone->present_pages;
5070 }
5071 }
5072 }
5073
5074 /* update totalreserve_pages */
5075 calculate_totalreserve_pages();
5076 }
5077
5078 static void __setup_per_zone_wmarks(void)
5079 {
5080 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5081 unsigned long lowmem_pages = 0;
5082 struct zone *zone;
5083 unsigned long flags;
5084
5085 /* Calculate total number of !ZONE_HIGHMEM pages */
5086 for_each_zone(zone) {
5087 if (!is_highmem(zone))
5088 lowmem_pages += zone->present_pages;
5089 }
5090
5091 for_each_zone(zone) {
5092 u64 tmp;
5093
5094 spin_lock_irqsave(&zone->lock, flags);
5095 tmp = (u64)pages_min * zone->present_pages;
5096 do_div(tmp, lowmem_pages);
5097 if (is_highmem(zone)) {
5098 /*
5099 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5100 * need highmem pages, so cap pages_min to a small
5101 * value here.
5102 *
5103 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5104 * deltas controls asynch page reclaim, and so should
5105 * not be capped for highmem.
5106 */
5107 int min_pages;
5108
5109 min_pages = zone->present_pages / 1024;
5110 if (min_pages < SWAP_CLUSTER_MAX)
5111 min_pages = SWAP_CLUSTER_MAX;
5112 if (min_pages > 128)
5113 min_pages = 128;
5114 zone->watermark[WMARK_MIN] = min_pages;
5115 } else {
5116 /*
5117 * If it's a lowmem zone, reserve a number of pages
5118 * proportionate to the zone's size.
5119 */
5120 zone->watermark[WMARK_MIN] = tmp;
5121 }
5122
5123 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5124 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5125
5126 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5127 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5128 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5129
5130 setup_zone_migrate_reserve(zone);
5131 spin_unlock_irqrestore(&zone->lock, flags);
5132 }
5133
5134 /* update totalreserve_pages */
5135 calculate_totalreserve_pages();
5136 }
5137
5138 /**
5139 * setup_per_zone_wmarks - called when min_free_kbytes changes
5140 * or when memory is hot-{added|removed}
5141 *
5142 * Ensures that the watermark[min,low,high] values for each zone are set
5143 * correctly with respect to min_free_kbytes.
5144 */
5145 void setup_per_zone_wmarks(void)
5146 {
5147 mutex_lock(&zonelists_mutex);
5148 __setup_per_zone_wmarks();
5149 mutex_unlock(&zonelists_mutex);
5150 }
5151
5152 /*
5153 * The inactive anon list should be small enough that the VM never has to
5154 * do too much work, but large enough that each inactive page has a chance
5155 * to be referenced again before it is swapped out.
5156 *
5157 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5158 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5159 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5160 * the anonymous pages are kept on the inactive list.
5161 *
5162 * total target max
5163 * memory ratio inactive anon
5164 * -------------------------------------
5165 * 10MB 1 5MB
5166 * 100MB 1 50MB
5167 * 1GB 3 250MB
5168 * 10GB 10 0.9GB
5169 * 100GB 31 3GB
5170 * 1TB 101 10GB
5171 * 10TB 320 32GB
5172 */
5173 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5174 {
5175 unsigned int gb, ratio;
5176
5177 /* Zone size in gigabytes */
5178 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5179 if (gb)
5180 ratio = int_sqrt(10 * gb);
5181 else
5182 ratio = 1;
5183
5184 zone->inactive_ratio = ratio;
5185 }
5186
5187 static void __meminit setup_per_zone_inactive_ratio(void)
5188 {
5189 struct zone *zone;
5190
5191 for_each_zone(zone)
5192 calculate_zone_inactive_ratio(zone);
5193 }
5194
5195 /*
5196 * Initialise min_free_kbytes.
5197 *
5198 * For small machines we want it small (128k min). For large machines
5199 * we want it large (64MB max). But it is not linear, because network
5200 * bandwidth does not increase linearly with machine size. We use
5201 *
5202 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5203 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5204 *
5205 * which yields
5206 *
5207 * 16MB: 512k
5208 * 32MB: 724k
5209 * 64MB: 1024k
5210 * 128MB: 1448k
5211 * 256MB: 2048k
5212 * 512MB: 2896k
5213 * 1024MB: 4096k
5214 * 2048MB: 5792k
5215 * 4096MB: 8192k
5216 * 8192MB: 11584k
5217 * 16384MB: 16384k
5218 */
5219 int __meminit init_per_zone_wmark_min(void)
5220 {
5221 unsigned long lowmem_kbytes;
5222
5223 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5224
5225 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5226 if (min_free_kbytes < 128)
5227 min_free_kbytes = 128;
5228 if (min_free_kbytes > 65536)
5229 min_free_kbytes = 65536;
5230 setup_per_zone_wmarks();
5231 refresh_zone_stat_thresholds();
5232 setup_per_zone_lowmem_reserve();
5233 setup_per_zone_inactive_ratio();
5234 return 0;
5235 }
5236 module_init(init_per_zone_wmark_min)
5237
5238 /*
5239 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5240 * that we can call two helper functions whenever min_free_kbytes
5241 * changes.
5242 */
5243 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5244 void __user *buffer, size_t *length, loff_t *ppos)
5245 {
5246 proc_dointvec(table, write, buffer, length, ppos);
5247 if (write)
5248 setup_per_zone_wmarks();
5249 return 0;
5250 }
5251
5252 #ifdef CONFIG_NUMA
5253 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5254 void __user *buffer, size_t *length, loff_t *ppos)
5255 {
5256 struct zone *zone;
5257 int rc;
5258
5259 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5260 if (rc)
5261 return rc;
5262
5263 for_each_zone(zone)
5264 zone->min_unmapped_pages = (zone->present_pages *
5265 sysctl_min_unmapped_ratio) / 100;
5266 return 0;
5267 }
5268
5269 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5270 void __user *buffer, size_t *length, loff_t *ppos)
5271 {
5272 struct zone *zone;
5273 int rc;
5274
5275 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5276 if (rc)
5277 return rc;
5278
5279 for_each_zone(zone)
5280 zone->min_slab_pages = (zone->present_pages *
5281 sysctl_min_slab_ratio) / 100;
5282 return 0;
5283 }
5284 #endif
5285
5286 /*
5287 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5288 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5289 * whenever sysctl_lowmem_reserve_ratio changes.
5290 *
5291 * The reserve ratio obviously has absolutely no relation with the
5292 * minimum watermarks. The lowmem reserve ratio can only make sense
5293 * if in function of the boot time zone sizes.
5294 */
5295 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5296 void __user *buffer, size_t *length, loff_t *ppos)
5297 {
5298 proc_dointvec_minmax(table, write, buffer, length, ppos);
5299 setup_per_zone_lowmem_reserve();
5300 return 0;
5301 }
5302
5303 /*
5304 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5305 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5306 * can have before it gets flushed back to buddy allocator.
5307 */
5308
5309 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5310 void __user *buffer, size_t *length, loff_t *ppos)
5311 {
5312 struct zone *zone;
5313 unsigned int cpu;
5314 int ret;
5315
5316 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5317 if (!write || (ret < 0))
5318 return ret;
5319 for_each_populated_zone(zone) {
5320 for_each_possible_cpu(cpu) {
5321 unsigned long high;
5322 high = zone->present_pages / percpu_pagelist_fraction;
5323 setup_pagelist_highmark(
5324 per_cpu_ptr(zone->pageset, cpu), high);
5325 }
5326 }
5327 return 0;
5328 }
5329
5330 int hashdist = HASHDIST_DEFAULT;
5331
5332 #ifdef CONFIG_NUMA
5333 static int __init set_hashdist(char *str)
5334 {
5335 if (!str)
5336 return 0;
5337 hashdist = simple_strtoul(str, &str, 0);
5338 return 1;
5339 }
5340 __setup("hashdist=", set_hashdist);
5341 #endif
5342
5343 /*
5344 * allocate a large system hash table from bootmem
5345 * - it is assumed that the hash table must contain an exact power-of-2
5346 * quantity of entries
5347 * - limit is the number of hash buckets, not the total allocation size
5348 */
5349 void *__init alloc_large_system_hash(const char *tablename,
5350 unsigned long bucketsize,
5351 unsigned long numentries,
5352 int scale,
5353 int flags,
5354 unsigned int *_hash_shift,
5355 unsigned int *_hash_mask,
5356 unsigned long low_limit,
5357 unsigned long high_limit)
5358 {
5359 unsigned long long max = high_limit;
5360 unsigned long log2qty, size;
5361 void *table = NULL;
5362
5363 /* allow the kernel cmdline to have a say */
5364 if (!numentries) {
5365 /* round applicable memory size up to nearest megabyte */
5366 numentries = nr_kernel_pages;
5367 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5368 numentries >>= 20 - PAGE_SHIFT;
5369 numentries <<= 20 - PAGE_SHIFT;
5370
5371 /* limit to 1 bucket per 2^scale bytes of low memory */
5372 if (scale > PAGE_SHIFT)
5373 numentries >>= (scale - PAGE_SHIFT);
5374 else
5375 numentries <<= (PAGE_SHIFT - scale);
5376
5377 /* Make sure we've got at least a 0-order allocation.. */
5378 if (unlikely(flags & HASH_SMALL)) {
5379 /* Makes no sense without HASH_EARLY */
5380 WARN_ON(!(flags & HASH_EARLY));
5381 if (!(numentries >> *_hash_shift)) {
5382 numentries = 1UL << *_hash_shift;
5383 BUG_ON(!numentries);
5384 }
5385 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5386 numentries = PAGE_SIZE / bucketsize;
5387 }
5388 numentries = roundup_pow_of_two(numentries);
5389
5390 /* limit allocation size to 1/16 total memory by default */
5391 if (max == 0) {
5392 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5393 do_div(max, bucketsize);
5394 }
5395 max = min(max, 0x80000000ULL);
5396
5397 if (numentries < low_limit)
5398 numentries = low_limit;
5399 if (numentries > max)
5400 numentries = max;
5401
5402 log2qty = ilog2(numentries);
5403
5404 do {
5405 size = bucketsize << log2qty;
5406 if (flags & HASH_EARLY)
5407 table = alloc_bootmem_nopanic(size);
5408 else if (hashdist)
5409 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5410 else {
5411 /*
5412 * If bucketsize is not a power-of-two, we may free
5413 * some pages at the end of hash table which
5414 * alloc_pages_exact() automatically does
5415 */
5416 if (get_order(size) < MAX_ORDER) {
5417 table = alloc_pages_exact(size, GFP_ATOMIC);
5418 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5419 }
5420 }
5421 } while (!table && size > PAGE_SIZE && --log2qty);
5422
5423 if (!table)
5424 panic("Failed to allocate %s hash table\n", tablename);
5425
5426 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5427 tablename,
5428 (1UL << log2qty),
5429 ilog2(size) - PAGE_SHIFT,
5430 size);
5431
5432 if (_hash_shift)
5433 *_hash_shift = log2qty;
5434 if (_hash_mask)
5435 *_hash_mask = (1 << log2qty) - 1;
5436
5437 return table;
5438 }
5439
5440 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5441 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5442 unsigned long pfn)
5443 {
5444 #ifdef CONFIG_SPARSEMEM
5445 return __pfn_to_section(pfn)->pageblock_flags;
5446 #else
5447 return zone->pageblock_flags;
5448 #endif /* CONFIG_SPARSEMEM */
5449 }
5450
5451 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5452 {
5453 #ifdef CONFIG_SPARSEMEM
5454 pfn &= (PAGES_PER_SECTION-1);
5455 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5456 #else
5457 pfn = pfn - zone->zone_start_pfn;
5458 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5459 #endif /* CONFIG_SPARSEMEM */
5460 }
5461
5462 /**
5463 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5464 * @page: The page within the block of interest
5465 * @start_bitidx: The first bit of interest to retrieve
5466 * @end_bitidx: The last bit of interest
5467 * returns pageblock_bits flags
5468 */
5469 unsigned long get_pageblock_flags_group(struct page *page,
5470 int start_bitidx, int end_bitidx)
5471 {
5472 struct zone *zone;
5473 unsigned long *bitmap;
5474 unsigned long pfn, bitidx;
5475 unsigned long flags = 0;
5476 unsigned long value = 1;
5477
5478 zone = page_zone(page);
5479 pfn = page_to_pfn(page);
5480 bitmap = get_pageblock_bitmap(zone, pfn);
5481 bitidx = pfn_to_bitidx(zone, pfn);
5482
5483 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5484 if (test_bit(bitidx + start_bitidx, bitmap))
5485 flags |= value;
5486
5487 return flags;
5488 }
5489
5490 /**
5491 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5492 * @page: The page within the block of interest
5493 * @start_bitidx: The first bit of interest
5494 * @end_bitidx: The last bit of interest
5495 * @flags: The flags to set
5496 */
5497 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5498 int start_bitidx, int end_bitidx)
5499 {
5500 struct zone *zone;
5501 unsigned long *bitmap;
5502 unsigned long pfn, bitidx;
5503 unsigned long value = 1;
5504
5505 zone = page_zone(page);
5506 pfn = page_to_pfn(page);
5507 bitmap = get_pageblock_bitmap(zone, pfn);
5508 bitidx = pfn_to_bitidx(zone, pfn);
5509 VM_BUG_ON(pfn < zone->zone_start_pfn);
5510 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5511
5512 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5513 if (flags & value)
5514 __set_bit(bitidx + start_bitidx, bitmap);
5515 else
5516 __clear_bit(bitidx + start_bitidx, bitmap);
5517 }
5518
5519 /*
5520 * This function checks whether pageblock includes unmovable pages or not.
5521 * If @count is not zero, it is okay to include less @count unmovable pages
5522 *
5523 * PageLRU check wihtout isolation or lru_lock could race so that
5524 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5525 * expect this function should be exact.
5526 */
5527 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5528 {
5529 unsigned long pfn, iter, found;
5530 int mt;
5531
5532 /*
5533 * For avoiding noise data, lru_add_drain_all() should be called
5534 * If ZONE_MOVABLE, the zone never contains unmovable pages
5535 */
5536 if (zone_idx(zone) == ZONE_MOVABLE)
5537 return false;
5538 mt = get_pageblock_migratetype(page);
5539 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5540 return false;
5541
5542 pfn = page_to_pfn(page);
5543 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5544 unsigned long check = pfn + iter;
5545
5546 if (!pfn_valid_within(check))
5547 continue;
5548
5549 page = pfn_to_page(check);
5550 /*
5551 * We can't use page_count without pin a page
5552 * because another CPU can free compound page.
5553 * This check already skips compound tails of THP
5554 * because their page->_count is zero at all time.
5555 */
5556 if (!atomic_read(&page->_count)) {
5557 if (PageBuddy(page))
5558 iter += (1 << page_order(page)) - 1;
5559 continue;
5560 }
5561
5562 if (!PageLRU(page))
5563 found++;
5564 /*
5565 * If there are RECLAIMABLE pages, we need to check it.
5566 * But now, memory offline itself doesn't call shrink_slab()
5567 * and it still to be fixed.
5568 */
5569 /*
5570 * If the page is not RAM, page_count()should be 0.
5571 * we don't need more check. This is an _used_ not-movable page.
5572 *
5573 * The problematic thing here is PG_reserved pages. PG_reserved
5574 * is set to both of a memory hole page and a _used_ kernel
5575 * page at boot.
5576 */
5577 if (found > count)
5578 return true;
5579 }
5580 return false;
5581 }
5582
5583 bool is_pageblock_removable_nolock(struct page *page)
5584 {
5585 struct zone *zone;
5586 unsigned long pfn;
5587
5588 /*
5589 * We have to be careful here because we are iterating over memory
5590 * sections which are not zone aware so we might end up outside of
5591 * the zone but still within the section.
5592 * We have to take care about the node as well. If the node is offline
5593 * its NODE_DATA will be NULL - see page_zone.
5594 */
5595 if (!node_online(page_to_nid(page)))
5596 return false;
5597
5598 zone = page_zone(page);
5599 pfn = page_to_pfn(page);
5600 if (zone->zone_start_pfn > pfn ||
5601 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5602 return false;
5603
5604 return !has_unmovable_pages(zone, page, 0);
5605 }
5606
5607 #ifdef CONFIG_CMA
5608
5609 static unsigned long pfn_max_align_down(unsigned long pfn)
5610 {
5611 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5612 pageblock_nr_pages) - 1);
5613 }
5614
5615 static unsigned long pfn_max_align_up(unsigned long pfn)
5616 {
5617 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5618 pageblock_nr_pages));
5619 }
5620
5621 static struct page *
5622 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5623 int **resultp)
5624 {
5625 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5626
5627 if (PageHighMem(page))
5628 gfp_mask |= __GFP_HIGHMEM;
5629
5630 return alloc_page(gfp_mask);
5631 }
5632
5633 /* [start, end) must belong to a single zone. */
5634 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5635 {
5636 /* This function is based on compact_zone() from compaction.c. */
5637
5638 unsigned long pfn = start;
5639 unsigned int tries = 0;
5640 int ret = 0;
5641
5642 struct compact_control cc = {
5643 .nr_migratepages = 0,
5644 .order = -1,
5645 .zone = page_zone(pfn_to_page(start)),
5646 .sync = true,
5647 };
5648 INIT_LIST_HEAD(&cc.migratepages);
5649
5650 migrate_prep_local();
5651
5652 while (pfn < end || !list_empty(&cc.migratepages)) {
5653 if (fatal_signal_pending(current)) {
5654 ret = -EINTR;
5655 break;
5656 }
5657
5658 if (list_empty(&cc.migratepages)) {
5659 cc.nr_migratepages = 0;
5660 pfn = isolate_migratepages_range(cc.zone, &cc,
5661 pfn, end);
5662 if (!pfn) {
5663 ret = -EINTR;
5664 break;
5665 }
5666 tries = 0;
5667 } else if (++tries == 5) {
5668 ret = ret < 0 ? ret : -EBUSY;
5669 break;
5670 }
5671
5672 ret = migrate_pages(&cc.migratepages,
5673 __alloc_contig_migrate_alloc,
5674 0, false, MIGRATE_SYNC);
5675 }
5676
5677 putback_lru_pages(&cc.migratepages);
5678 return ret > 0 ? 0 : ret;
5679 }
5680
5681 /*
5682 * Update zone's cma pages counter used for watermark level calculation.
5683 */
5684 static inline void __update_cma_watermarks(struct zone *zone, int count)
5685 {
5686 unsigned long flags;
5687 spin_lock_irqsave(&zone->lock, flags);
5688 zone->min_cma_pages += count;
5689 spin_unlock_irqrestore(&zone->lock, flags);
5690 setup_per_zone_wmarks();
5691 }
5692
5693 /*
5694 * Trigger memory pressure bump to reclaim some pages in order to be able to
5695 * allocate 'count' pages in single page units. Does similar work as
5696 *__alloc_pages_slowpath() function.
5697 */
5698 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5699 {
5700 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5701 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5702 int did_some_progress = 0;
5703 int order = 1;
5704
5705 /*
5706 * Increase level of watermarks to force kswapd do his job
5707 * to stabilise at new watermark level.
5708 */
5709 __update_cma_watermarks(zone, count);
5710
5711 /* Obey watermarks as if the page was being allocated */
5712 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5713 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5714
5715 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5716 NULL);
5717 if (!did_some_progress) {
5718 /* Exhausted what can be done so it's blamo time */
5719 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5720 }
5721 }
5722
5723 /* Restore original watermark levels. */
5724 __update_cma_watermarks(zone, -count);
5725
5726 return count;
5727 }
5728
5729 /**
5730 * alloc_contig_range() -- tries to allocate given range of pages
5731 * @start: start PFN to allocate
5732 * @end: one-past-the-last PFN to allocate
5733 * @migratetype: migratetype of the underlaying pageblocks (either
5734 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5735 * in range must have the same migratetype and it must
5736 * be either of the two.
5737 *
5738 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5739 * aligned, however it's the caller's responsibility to guarantee that
5740 * we are the only thread that changes migrate type of pageblocks the
5741 * pages fall in.
5742 *
5743 * The PFN range must belong to a single zone.
5744 *
5745 * Returns zero on success or negative error code. On success all
5746 * pages which PFN is in [start, end) are allocated for the caller and
5747 * need to be freed with free_contig_range().
5748 */
5749 int alloc_contig_range(unsigned long start, unsigned long end,
5750 unsigned migratetype)
5751 {
5752 struct zone *zone = page_zone(pfn_to_page(start));
5753 unsigned long outer_start, outer_end;
5754 int ret = 0, order;
5755
5756 /*
5757 * What we do here is we mark all pageblocks in range as
5758 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5759 * have different sizes, and due to the way page allocator
5760 * work, we align the range to biggest of the two pages so
5761 * that page allocator won't try to merge buddies from
5762 * different pageblocks and change MIGRATE_ISOLATE to some
5763 * other migration type.
5764 *
5765 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5766 * migrate the pages from an unaligned range (ie. pages that
5767 * we are interested in). This will put all the pages in
5768 * range back to page allocator as MIGRATE_ISOLATE.
5769 *
5770 * When this is done, we take the pages in range from page
5771 * allocator removing them from the buddy system. This way
5772 * page allocator will never consider using them.
5773 *
5774 * This lets us mark the pageblocks back as
5775 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5776 * aligned range but not in the unaligned, original range are
5777 * put back to page allocator so that buddy can use them.
5778 */
5779
5780 ret = start_isolate_page_range(pfn_max_align_down(start),
5781 pfn_max_align_up(end), migratetype);
5782 if (ret)
5783 goto done;
5784
5785 ret = __alloc_contig_migrate_range(start, end);
5786 if (ret)
5787 goto done;
5788
5789 /*
5790 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5791 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5792 * more, all pages in [start, end) are free in page allocator.
5793 * What we are going to do is to allocate all pages from
5794 * [start, end) (that is remove them from page allocator).
5795 *
5796 * The only problem is that pages at the beginning and at the
5797 * end of interesting range may be not aligned with pages that
5798 * page allocator holds, ie. they can be part of higher order
5799 * pages. Because of this, we reserve the bigger range and
5800 * once this is done free the pages we are not interested in.
5801 *
5802 * We don't have to hold zone->lock here because the pages are
5803 * isolated thus they won't get removed from buddy.
5804 */
5805
5806 lru_add_drain_all();
5807 drain_all_pages();
5808
5809 order = 0;
5810 outer_start = start;
5811 while (!PageBuddy(pfn_to_page(outer_start))) {
5812 if (++order >= MAX_ORDER) {
5813 ret = -EBUSY;
5814 goto done;
5815 }
5816 outer_start &= ~0UL << order;
5817 }
5818
5819 /* Make sure the range is really isolated. */
5820 if (test_pages_isolated(outer_start, end)) {
5821 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5822 outer_start, end);
5823 ret = -EBUSY;
5824 goto done;
5825 }
5826
5827 /*
5828 * Reclaim enough pages to make sure that contiguous allocation
5829 * will not starve the system.
5830 */
5831 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5832
5833 /* Grab isolated pages from freelists. */
5834 outer_end = isolate_freepages_range(outer_start, end);
5835 if (!outer_end) {
5836 ret = -EBUSY;
5837 goto done;
5838 }
5839
5840 /* Free head and tail (if any) */
5841 if (start != outer_start)
5842 free_contig_range(outer_start, start - outer_start);
5843 if (end != outer_end)
5844 free_contig_range(end, outer_end - end);
5845
5846 done:
5847 undo_isolate_page_range(pfn_max_align_down(start),
5848 pfn_max_align_up(end), migratetype);
5849 return ret;
5850 }
5851
5852 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5853 {
5854 for (; nr_pages--; ++pfn)
5855 __free_page(pfn_to_page(pfn));
5856 }
5857 #endif
5858
5859 #ifdef CONFIG_MEMORY_HOTPLUG
5860 static int __meminit __zone_pcp_update(void *data)
5861 {
5862 struct zone *zone = data;
5863 int cpu;
5864 unsigned long batch = zone_batchsize(zone), flags;
5865
5866 for_each_possible_cpu(cpu) {
5867 struct per_cpu_pageset *pset;
5868 struct per_cpu_pages *pcp;
5869
5870 pset = per_cpu_ptr(zone->pageset, cpu);
5871 pcp = &pset->pcp;
5872
5873 local_irq_save(flags);
5874 if (pcp->count > 0)
5875 free_pcppages_bulk(zone, pcp->count, pcp);
5876 setup_pageset(pset, batch);
5877 local_irq_restore(flags);
5878 }
5879 return 0;
5880 }
5881
5882 void __meminit zone_pcp_update(struct zone *zone)
5883 {
5884 stop_machine(__zone_pcp_update, zone, NULL);
5885 }
5886 #endif
5887
5888 #ifdef CONFIG_MEMORY_HOTREMOVE
5889 void zone_pcp_reset(struct zone *zone)
5890 {
5891 unsigned long flags;
5892
5893 /* avoid races with drain_pages() */
5894 local_irq_save(flags);
5895 if (zone->pageset != &boot_pageset) {
5896 free_percpu(zone->pageset);
5897 zone->pageset = &boot_pageset;
5898 }
5899 local_irq_restore(flags);
5900 }
5901
5902 /*
5903 * All pages in the range must be isolated before calling this.
5904 */
5905 void
5906 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5907 {
5908 struct page *page;
5909 struct zone *zone;
5910 int order, i;
5911 unsigned long pfn;
5912 unsigned long flags;
5913 /* find the first valid pfn */
5914 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5915 if (pfn_valid(pfn))
5916 break;
5917 if (pfn == end_pfn)
5918 return;
5919 zone = page_zone(pfn_to_page(pfn));
5920 spin_lock_irqsave(&zone->lock, flags);
5921 pfn = start_pfn;
5922 while (pfn < end_pfn) {
5923 if (!pfn_valid(pfn)) {
5924 pfn++;
5925 continue;
5926 }
5927 page = pfn_to_page(pfn);
5928 BUG_ON(page_count(page));
5929 BUG_ON(!PageBuddy(page));
5930 order = page_order(page);
5931 #ifdef CONFIG_DEBUG_VM
5932 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5933 pfn, 1 << order, end_pfn);
5934 #endif
5935 list_del(&page->lru);
5936 rmv_page_order(page);
5937 zone->free_area[order].nr_free--;
5938 __mod_zone_page_state(zone, NR_FREE_PAGES,
5939 - (1UL << order));
5940 for (i = 0; i < (1 << order); i++)
5941 SetPageReserved((page+i));
5942 pfn += (1 << order);
5943 }
5944 spin_unlock_irqrestore(&zone->lock, flags);
5945 }
5946 #endif
5947
5948 #ifdef CONFIG_MEMORY_FAILURE
5949 bool is_free_buddy_page(struct page *page)
5950 {
5951 struct zone *zone = page_zone(page);
5952 unsigned long pfn = page_to_pfn(page);
5953 unsigned long flags;
5954 int order;
5955
5956 spin_lock_irqsave(&zone->lock, flags);
5957 for (order = 0; order < MAX_ORDER; order++) {
5958 struct page *page_head = page - (pfn & ((1 << order) - 1));
5959
5960 if (PageBuddy(page_head) && page_order(page_head) >= order)
5961 break;
5962 }
5963 spin_unlock_irqrestore(&zone->lock, flags);
5964
5965 return order < MAX_ORDER;
5966 }
5967 #endif
5968
5969 static const struct trace_print_flags pageflag_names[] = {
5970 {1UL << PG_locked, "locked" },
5971 {1UL << PG_error, "error" },
5972 {1UL << PG_referenced, "referenced" },
5973 {1UL << PG_uptodate, "uptodate" },
5974 {1UL << PG_dirty, "dirty" },
5975 {1UL << PG_lru, "lru" },
5976 {1UL << PG_active, "active" },
5977 {1UL << PG_slab, "slab" },
5978 {1UL << PG_owner_priv_1, "owner_priv_1" },
5979 {1UL << PG_arch_1, "arch_1" },
5980 {1UL << PG_reserved, "reserved" },
5981 {1UL << PG_private, "private" },
5982 {1UL << PG_private_2, "private_2" },
5983 {1UL << PG_writeback, "writeback" },
5984 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5985 {1UL << PG_head, "head" },
5986 {1UL << PG_tail, "tail" },
5987 #else
5988 {1UL << PG_compound, "compound" },
5989 #endif
5990 {1UL << PG_swapcache, "swapcache" },
5991 {1UL << PG_mappedtodisk, "mappedtodisk" },
5992 {1UL << PG_reclaim, "reclaim" },
5993 {1UL << PG_swapbacked, "swapbacked" },
5994 {1UL << PG_unevictable, "unevictable" },
5995 #ifdef CONFIG_MMU
5996 {1UL << PG_mlocked, "mlocked" },
5997 #endif
5998 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5999 {1UL << PG_uncached, "uncached" },
6000 #endif
6001 #ifdef CONFIG_MEMORY_FAILURE
6002 {1UL << PG_hwpoison, "hwpoison" },
6003 #endif
6004 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6005 {1UL << PG_compound_lock, "compound_lock" },
6006 #endif
6007 };
6008
6009 static void dump_page_flags(unsigned long flags)
6010 {
6011 const char *delim = "";
6012 unsigned long mask;
6013 int i;
6014
6015 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6016
6017 printk(KERN_ALERT "page flags: %#lx(", flags);
6018
6019 /* remove zone id */
6020 flags &= (1UL << NR_PAGEFLAGS) - 1;
6021
6022 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6023
6024 mask = pageflag_names[i].mask;
6025 if ((flags & mask) != mask)
6026 continue;
6027
6028 flags &= ~mask;
6029 printk("%s%s", delim, pageflag_names[i].name);
6030 delim = "|";
6031 }
6032
6033 /* check for left over flags */
6034 if (flags)
6035 printk("%s%#lx", delim, flags);
6036
6037 printk(")\n");
6038 }
6039
6040 void dump_page(struct page *page)
6041 {
6042 printk(KERN_ALERT
6043 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6044 page, atomic_read(&page->_count), page_mapcount(page),
6045 page->mapping, page->index);
6046 dump_page_flags(page->flags);
6047 mem_cgroup_print_bad_page(page);
6048 }
This page took 0.384117 seconds and 6 git commands to generate.