[PATCH] zone handle unaligned zone boundaries
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 #include "internal.h"
44
45 /*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map);
51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52 EXPORT_SYMBOL(node_possible_map);
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 unsigned long totalreserve_pages __read_mostly;
56 long nr_swap_pages;
57 int percpu_pagelist_fraction;
58
59 static void __free_pages_ok(struct page *page, unsigned int order);
60
61 /*
62 * results with 256, 32 in the lowmem_reserve sysctl:
63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64 * 1G machine -> (16M dma, 784M normal, 224M high)
65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 *
69 * TBD: should special case ZONE_DMA32 machines here - in those we normally
70 * don't need any ZONE_NORMAL reservation
71 */
72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73
74 EXPORT_SYMBOL(totalram_pages);
75
76 /*
77 * Used by page_zone() to look up the address of the struct zone whose
78 * id is encoded in the upper bits of page->flags
79 */
80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
81 EXPORT_SYMBOL(zone_table);
82
83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes = 1024;
85
86 unsigned long __initdata nr_kernel_pages;
87 unsigned long __initdata nr_all_pages;
88
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 {
92 int ret = 0;
93 unsigned seq;
94 unsigned long pfn = page_to_pfn(page);
95
96 do {
97 seq = zone_span_seqbegin(zone);
98 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
99 ret = 1;
100 else if (pfn < zone->zone_start_pfn)
101 ret = 1;
102 } while (zone_span_seqretry(zone, seq));
103
104 return ret;
105 }
106
107 static int page_is_consistent(struct zone *zone, struct page *page)
108 {
109 #ifdef CONFIG_HOLES_IN_ZONE
110 if (!pfn_valid(page_to_pfn(page)))
111 return 0;
112 #endif
113 if (zone != page_zone(page))
114 return 0;
115
116 return 1;
117 }
118 /*
119 * Temporary debugging check for pages not lying within a given zone.
120 */
121 static int bad_range(struct zone *zone, struct page *page)
122 {
123 if (page_outside_zone_boundaries(zone, page))
124 return 1;
125 if (!page_is_consistent(zone, page))
126 return 1;
127
128 return 0;
129 }
130
131 #else
132 static inline int bad_range(struct zone *zone, struct page *page)
133 {
134 return 0;
135 }
136 #endif
137
138 static void bad_page(struct page *page)
139 {
140 printk(KERN_EMERG "Bad page state in process '%s'\n"
141 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
143 KERN_EMERG "Backtrace:\n",
144 current->comm, page, (int)(2*sizeof(unsigned long)),
145 (unsigned long)page->flags, page->mapping,
146 page_mapcount(page), page_count(page));
147 dump_stack();
148 page->flags &= ~(1 << PG_lru |
149 1 << PG_private |
150 1 << PG_locked |
151 1 << PG_active |
152 1 << PG_dirty |
153 1 << PG_reclaim |
154 1 << PG_slab |
155 1 << PG_swapcache |
156 1 << PG_writeback |
157 1 << PG_buddy );
158 set_page_count(page, 0);
159 reset_page_mapcount(page);
160 page->mapping = NULL;
161 add_taint(TAINT_BAD_PAGE);
162 }
163
164 /*
165 * Higher-order pages are called "compound pages". They are structured thusly:
166 *
167 * The first PAGE_SIZE page is called the "head page".
168 *
169 * The remaining PAGE_SIZE pages are called "tail pages".
170 *
171 * All pages have PG_compound set. All pages have their ->private pointing at
172 * the head page (even the head page has this).
173 *
174 * The first tail page's ->lru.next holds the address of the compound page's
175 * put_page() function. Its ->lru.prev holds the order of allocation.
176 * This usage means that zero-order pages may not be compound.
177 */
178
179 static void free_compound_page(struct page *page)
180 {
181 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
182 }
183
184 static void prep_compound_page(struct page *page, unsigned long order)
185 {
186 int i;
187 int nr_pages = 1 << order;
188
189 page[1].lru.next = (void *)free_compound_page; /* set dtor */
190 page[1].lru.prev = (void *)order;
191 for (i = 0; i < nr_pages; i++) {
192 struct page *p = page + i;
193
194 __SetPageCompound(p);
195 set_page_private(p, (unsigned long)page);
196 }
197 }
198
199 static void destroy_compound_page(struct page *page, unsigned long order)
200 {
201 int i;
202 int nr_pages = 1 << order;
203
204 if (unlikely((unsigned long)page[1].lru.prev != order))
205 bad_page(page);
206
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
209
210 if (unlikely(!PageCompound(p) |
211 (page_private(p) != (unsigned long)page)))
212 bad_page(page);
213 __ClearPageCompound(p);
214 }
215 }
216
217 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
218 {
219 int i;
220
221 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
222 /*
223 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
224 * and __GFP_HIGHMEM from hard or soft interrupt context.
225 */
226 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
227 for (i = 0; i < (1 << order); i++)
228 clear_highpage(page + i);
229 }
230
231 /*
232 * function for dealing with page's order in buddy system.
233 * zone->lock is already acquired when we use these.
234 * So, we don't need atomic page->flags operations here.
235 */
236 static inline unsigned long page_order(struct page *page)
237 {
238 return page_private(page);
239 }
240
241 static inline void set_page_order(struct page *page, int order)
242 {
243 set_page_private(page, order);
244 __SetPageBuddy(page);
245 }
246
247 static inline void rmv_page_order(struct page *page)
248 {
249 __ClearPageBuddy(page);
250 set_page_private(page, 0);
251 }
252
253 /*
254 * Locate the struct page for both the matching buddy in our
255 * pair (buddy1) and the combined O(n+1) page they form (page).
256 *
257 * 1) Any buddy B1 will have an order O twin B2 which satisfies
258 * the following equation:
259 * B2 = B1 ^ (1 << O)
260 * For example, if the starting buddy (buddy2) is #8 its order
261 * 1 buddy is #10:
262 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
263 *
264 * 2) Any buddy B will have an order O+1 parent P which
265 * satisfies the following equation:
266 * P = B & ~(1 << O)
267 *
268 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
269 */
270 static inline struct page *
271 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
272 {
273 unsigned long buddy_idx = page_idx ^ (1 << order);
274
275 return page + (buddy_idx - page_idx);
276 }
277
278 static inline unsigned long
279 __find_combined_index(unsigned long page_idx, unsigned int order)
280 {
281 return (page_idx & ~(1 << order));
282 }
283
284 /*
285 * This function checks whether a page is free && is the buddy
286 * we can do coalesce a page and its buddy if
287 * (a) the buddy is not in a hole &&
288 * (b) the buddy is in the buddy system &&
289 * (c) a page and its buddy have the same order &&
290 * (d) a page and its buddy are in the same zone.
291 *
292 * For recording whether a page is in the buddy system, we use PG_buddy.
293 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
294 *
295 * For recording page's order, we use page_private(page).
296 */
297 static inline int page_is_buddy(struct page *page, struct page *buddy,
298 int order)
299 {
300 #ifdef CONFIG_HOLES_IN_ZONE
301 if (!pfn_valid(page_to_pfn(buddy)))
302 return 0;
303 #endif
304
305 if (page_zone_id(page) != page_zone_id(buddy))
306 return 0;
307
308 if (PageBuddy(buddy) && page_order(buddy) == order) {
309 BUG_ON(page_count(buddy) != 0);
310 return 1;
311 }
312 return 0;
313 }
314
315 /*
316 * Freeing function for a buddy system allocator.
317 *
318 * The concept of a buddy system is to maintain direct-mapped table
319 * (containing bit values) for memory blocks of various "orders".
320 * The bottom level table contains the map for the smallest allocatable
321 * units of memory (here, pages), and each level above it describes
322 * pairs of units from the levels below, hence, "buddies".
323 * At a high level, all that happens here is marking the table entry
324 * at the bottom level available, and propagating the changes upward
325 * as necessary, plus some accounting needed to play nicely with other
326 * parts of the VM system.
327 * At each level, we keep a list of pages, which are heads of continuous
328 * free pages of length of (1 << order) and marked with PG_buddy. Page's
329 * order is recorded in page_private(page) field.
330 * So when we are allocating or freeing one, we can derive the state of the
331 * other. That is, if we allocate a small block, and both were
332 * free, the remainder of the region must be split into blocks.
333 * If a block is freed, and its buddy is also free, then this
334 * triggers coalescing into a block of larger size.
335 *
336 * -- wli
337 */
338
339 static inline void __free_one_page(struct page *page,
340 struct zone *zone, unsigned int order)
341 {
342 unsigned long page_idx;
343 int order_size = 1 << order;
344
345 if (unlikely(PageCompound(page)))
346 destroy_compound_page(page, order);
347
348 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
349
350 BUG_ON(page_idx & (order_size - 1));
351 BUG_ON(bad_range(zone, page));
352
353 zone->free_pages += order_size;
354 while (order < MAX_ORDER-1) {
355 unsigned long combined_idx;
356 struct free_area *area;
357 struct page *buddy;
358
359 buddy = __page_find_buddy(page, page_idx, order);
360 if (!page_is_buddy(page, buddy, order))
361 break; /* Move the buddy up one level. */
362
363 list_del(&buddy->lru);
364 area = zone->free_area + order;
365 area->nr_free--;
366 rmv_page_order(buddy);
367 combined_idx = __find_combined_index(page_idx, order);
368 page = page + (combined_idx - page_idx);
369 page_idx = combined_idx;
370 order++;
371 }
372 set_page_order(page, order);
373 list_add(&page->lru, &zone->free_area[order].free_list);
374 zone->free_area[order].nr_free++;
375 }
376
377 static inline int free_pages_check(struct page *page)
378 {
379 if (unlikely(page_mapcount(page) |
380 (page->mapping != NULL) |
381 (page_count(page) != 0) |
382 (page->flags & (
383 1 << PG_lru |
384 1 << PG_private |
385 1 << PG_locked |
386 1 << PG_active |
387 1 << PG_reclaim |
388 1 << PG_slab |
389 1 << PG_swapcache |
390 1 << PG_writeback |
391 1 << PG_reserved |
392 1 << PG_buddy ))))
393 bad_page(page);
394 if (PageDirty(page))
395 __ClearPageDirty(page);
396 /*
397 * For now, we report if PG_reserved was found set, but do not
398 * clear it, and do not free the page. But we shall soon need
399 * to do more, for when the ZERO_PAGE count wraps negative.
400 */
401 return PageReserved(page);
402 }
403
404 /*
405 * Frees a list of pages.
406 * Assumes all pages on list are in same zone, and of same order.
407 * count is the number of pages to free.
408 *
409 * If the zone was previously in an "all pages pinned" state then look to
410 * see if this freeing clears that state.
411 *
412 * And clear the zone's pages_scanned counter, to hold off the "all pages are
413 * pinned" detection logic.
414 */
415 static void free_pages_bulk(struct zone *zone, int count,
416 struct list_head *list, int order)
417 {
418 spin_lock(&zone->lock);
419 zone->all_unreclaimable = 0;
420 zone->pages_scanned = 0;
421 while (count--) {
422 struct page *page;
423
424 BUG_ON(list_empty(list));
425 page = list_entry(list->prev, struct page, lru);
426 /* have to delete it as __free_one_page list manipulates */
427 list_del(&page->lru);
428 __free_one_page(page, zone, order);
429 }
430 spin_unlock(&zone->lock);
431 }
432
433 static void free_one_page(struct zone *zone, struct page *page, int order)
434 {
435 LIST_HEAD(list);
436 list_add(&page->lru, &list);
437 free_pages_bulk(zone, 1, &list, order);
438 }
439
440 static void __free_pages_ok(struct page *page, unsigned int order)
441 {
442 unsigned long flags;
443 int i;
444 int reserved = 0;
445
446 arch_free_page(page, order);
447 if (!PageHighMem(page))
448 mutex_debug_check_no_locks_freed(page_address(page),
449 PAGE_SIZE<<order);
450
451 for (i = 0 ; i < (1 << order) ; ++i)
452 reserved += free_pages_check(page + i);
453 if (reserved)
454 return;
455
456 kernel_map_pages(page, 1 << order, 0);
457 local_irq_save(flags);
458 __mod_page_state(pgfree, 1 << order);
459 free_one_page(page_zone(page), page, order);
460 local_irq_restore(flags);
461 }
462
463 /*
464 * permit the bootmem allocator to evade page validation on high-order frees
465 */
466 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
467 {
468 if (order == 0) {
469 __ClearPageReserved(page);
470 set_page_count(page, 0);
471 set_page_refcounted(page);
472 __free_page(page);
473 } else {
474 int loop;
475
476 prefetchw(page);
477 for (loop = 0; loop < BITS_PER_LONG; loop++) {
478 struct page *p = &page[loop];
479
480 if (loop + 1 < BITS_PER_LONG)
481 prefetchw(p + 1);
482 __ClearPageReserved(p);
483 set_page_count(p, 0);
484 }
485
486 set_page_refcounted(page);
487 __free_pages(page, order);
488 }
489 }
490
491
492 /*
493 * The order of subdivision here is critical for the IO subsystem.
494 * Please do not alter this order without good reasons and regression
495 * testing. Specifically, as large blocks of memory are subdivided,
496 * the order in which smaller blocks are delivered depends on the order
497 * they're subdivided in this function. This is the primary factor
498 * influencing the order in which pages are delivered to the IO
499 * subsystem according to empirical testing, and this is also justified
500 * by considering the behavior of a buddy system containing a single
501 * large block of memory acted on by a series of small allocations.
502 * This behavior is a critical factor in sglist merging's success.
503 *
504 * -- wli
505 */
506 static inline void expand(struct zone *zone, struct page *page,
507 int low, int high, struct free_area *area)
508 {
509 unsigned long size = 1 << high;
510
511 while (high > low) {
512 area--;
513 high--;
514 size >>= 1;
515 BUG_ON(bad_range(zone, &page[size]));
516 list_add(&page[size].lru, &area->free_list);
517 area->nr_free++;
518 set_page_order(&page[size], high);
519 }
520 }
521
522 /*
523 * This page is about to be returned from the page allocator
524 */
525 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
526 {
527 if (unlikely(page_mapcount(page) |
528 (page->mapping != NULL) |
529 (page_count(page) != 0) |
530 (page->flags & (
531 1 << PG_lru |
532 1 << PG_private |
533 1 << PG_locked |
534 1 << PG_active |
535 1 << PG_dirty |
536 1 << PG_reclaim |
537 1 << PG_slab |
538 1 << PG_swapcache |
539 1 << PG_writeback |
540 1 << PG_reserved |
541 1 << PG_buddy ))))
542 bad_page(page);
543
544 /*
545 * For now, we report if PG_reserved was found set, but do not
546 * clear it, and do not allocate the page: as a safety net.
547 */
548 if (PageReserved(page))
549 return 1;
550
551 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
552 1 << PG_referenced | 1 << PG_arch_1 |
553 1 << PG_checked | 1 << PG_mappedtodisk);
554 set_page_private(page, 0);
555 set_page_refcounted(page);
556 kernel_map_pages(page, 1 << order, 1);
557
558 if (gfp_flags & __GFP_ZERO)
559 prep_zero_page(page, order, gfp_flags);
560
561 if (order && (gfp_flags & __GFP_COMP))
562 prep_compound_page(page, order);
563
564 return 0;
565 }
566
567 /*
568 * Do the hard work of removing an element from the buddy allocator.
569 * Call me with the zone->lock already held.
570 */
571 static struct page *__rmqueue(struct zone *zone, unsigned int order)
572 {
573 struct free_area * area;
574 unsigned int current_order;
575 struct page *page;
576
577 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
578 area = zone->free_area + current_order;
579 if (list_empty(&area->free_list))
580 continue;
581
582 page = list_entry(area->free_list.next, struct page, lru);
583 list_del(&page->lru);
584 rmv_page_order(page);
585 area->nr_free--;
586 zone->free_pages -= 1UL << order;
587 expand(zone, page, order, current_order, area);
588 return page;
589 }
590
591 return NULL;
592 }
593
594 /*
595 * Obtain a specified number of elements from the buddy allocator, all under
596 * a single hold of the lock, for efficiency. Add them to the supplied list.
597 * Returns the number of new pages which were placed at *list.
598 */
599 static int rmqueue_bulk(struct zone *zone, unsigned int order,
600 unsigned long count, struct list_head *list)
601 {
602 int i;
603
604 spin_lock(&zone->lock);
605 for (i = 0; i < count; ++i) {
606 struct page *page = __rmqueue(zone, order);
607 if (unlikely(page == NULL))
608 break;
609 list_add_tail(&page->lru, list);
610 }
611 spin_unlock(&zone->lock);
612 return i;
613 }
614
615 #ifdef CONFIG_NUMA
616 /*
617 * Called from the slab reaper to drain pagesets on a particular node that
618 * belong to the currently executing processor.
619 * Note that this function must be called with the thread pinned to
620 * a single processor.
621 */
622 void drain_node_pages(int nodeid)
623 {
624 int i, z;
625 unsigned long flags;
626
627 for (z = 0; z < MAX_NR_ZONES; z++) {
628 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
629 struct per_cpu_pageset *pset;
630
631 pset = zone_pcp(zone, smp_processor_id());
632 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
633 struct per_cpu_pages *pcp;
634
635 pcp = &pset->pcp[i];
636 if (pcp->count) {
637 local_irq_save(flags);
638 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
639 pcp->count = 0;
640 local_irq_restore(flags);
641 }
642 }
643 }
644 }
645 #endif
646
647 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
648 static void __drain_pages(unsigned int cpu)
649 {
650 unsigned long flags;
651 struct zone *zone;
652 int i;
653
654 for_each_zone(zone) {
655 struct per_cpu_pageset *pset;
656
657 pset = zone_pcp(zone, cpu);
658 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
659 struct per_cpu_pages *pcp;
660
661 pcp = &pset->pcp[i];
662 local_irq_save(flags);
663 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
664 pcp->count = 0;
665 local_irq_restore(flags);
666 }
667 }
668 }
669 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
670
671 #ifdef CONFIG_PM
672
673 void mark_free_pages(struct zone *zone)
674 {
675 unsigned long zone_pfn, flags;
676 int order;
677 struct list_head *curr;
678
679 if (!zone->spanned_pages)
680 return;
681
682 spin_lock_irqsave(&zone->lock, flags);
683 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
684 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
685
686 for (order = MAX_ORDER - 1; order >= 0; --order)
687 list_for_each(curr, &zone->free_area[order].free_list) {
688 unsigned long start_pfn, i;
689
690 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
691
692 for (i=0; i < (1<<order); i++)
693 SetPageNosaveFree(pfn_to_page(start_pfn+i));
694 }
695 spin_unlock_irqrestore(&zone->lock, flags);
696 }
697
698 /*
699 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
700 */
701 void drain_local_pages(void)
702 {
703 unsigned long flags;
704
705 local_irq_save(flags);
706 __drain_pages(smp_processor_id());
707 local_irq_restore(flags);
708 }
709 #endif /* CONFIG_PM */
710
711 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
712 {
713 #ifdef CONFIG_NUMA
714 pg_data_t *pg = z->zone_pgdat;
715 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
716 struct per_cpu_pageset *p;
717
718 p = zone_pcp(z, cpu);
719 if (pg == orig) {
720 p->numa_hit++;
721 } else {
722 p->numa_miss++;
723 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
724 }
725 if (pg == NODE_DATA(numa_node_id()))
726 p->local_node++;
727 else
728 p->other_node++;
729 #endif
730 }
731
732 /*
733 * Free a 0-order page
734 */
735 static void fastcall free_hot_cold_page(struct page *page, int cold)
736 {
737 struct zone *zone = page_zone(page);
738 struct per_cpu_pages *pcp;
739 unsigned long flags;
740
741 arch_free_page(page, 0);
742
743 if (PageAnon(page))
744 page->mapping = NULL;
745 if (free_pages_check(page))
746 return;
747
748 kernel_map_pages(page, 1, 0);
749
750 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
751 local_irq_save(flags);
752 __inc_page_state(pgfree);
753 list_add(&page->lru, &pcp->list);
754 pcp->count++;
755 if (pcp->count >= pcp->high) {
756 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
757 pcp->count -= pcp->batch;
758 }
759 local_irq_restore(flags);
760 put_cpu();
761 }
762
763 void fastcall free_hot_page(struct page *page)
764 {
765 free_hot_cold_page(page, 0);
766 }
767
768 void fastcall free_cold_page(struct page *page)
769 {
770 free_hot_cold_page(page, 1);
771 }
772
773 /*
774 * split_page takes a non-compound higher-order page, and splits it into
775 * n (1<<order) sub-pages: page[0..n]
776 * Each sub-page must be freed individually.
777 *
778 * Note: this is probably too low level an operation for use in drivers.
779 * Please consult with lkml before using this in your driver.
780 */
781 void split_page(struct page *page, unsigned int order)
782 {
783 int i;
784
785 BUG_ON(PageCompound(page));
786 BUG_ON(!page_count(page));
787 for (i = 1; i < (1 << order); i++)
788 set_page_refcounted(page + i);
789 }
790
791 /*
792 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
793 * we cheat by calling it from here, in the order > 0 path. Saves a branch
794 * or two.
795 */
796 static struct page *buffered_rmqueue(struct zonelist *zonelist,
797 struct zone *zone, int order, gfp_t gfp_flags)
798 {
799 unsigned long flags;
800 struct page *page;
801 int cold = !!(gfp_flags & __GFP_COLD);
802 int cpu;
803
804 again:
805 cpu = get_cpu();
806 if (likely(order == 0)) {
807 struct per_cpu_pages *pcp;
808
809 pcp = &zone_pcp(zone, cpu)->pcp[cold];
810 local_irq_save(flags);
811 if (!pcp->count) {
812 pcp->count += rmqueue_bulk(zone, 0,
813 pcp->batch, &pcp->list);
814 if (unlikely(!pcp->count))
815 goto failed;
816 }
817 page = list_entry(pcp->list.next, struct page, lru);
818 list_del(&page->lru);
819 pcp->count--;
820 } else {
821 spin_lock_irqsave(&zone->lock, flags);
822 page = __rmqueue(zone, order);
823 spin_unlock(&zone->lock);
824 if (!page)
825 goto failed;
826 }
827
828 __mod_page_state_zone(zone, pgalloc, 1 << order);
829 zone_statistics(zonelist, zone, cpu);
830 local_irq_restore(flags);
831 put_cpu();
832
833 BUG_ON(bad_range(zone, page));
834 if (prep_new_page(page, order, gfp_flags))
835 goto again;
836 return page;
837
838 failed:
839 local_irq_restore(flags);
840 put_cpu();
841 return NULL;
842 }
843
844 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
845 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
846 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
847 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
848 #define ALLOC_HARDER 0x10 /* try to alloc harder */
849 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
850 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
851
852 /*
853 * Return 1 if free pages are above 'mark'. This takes into account the order
854 * of the allocation.
855 */
856 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
857 int classzone_idx, int alloc_flags)
858 {
859 /* free_pages my go negative - that's OK */
860 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
861 int o;
862
863 if (alloc_flags & ALLOC_HIGH)
864 min -= min / 2;
865 if (alloc_flags & ALLOC_HARDER)
866 min -= min / 4;
867
868 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
869 return 0;
870 for (o = 0; o < order; o++) {
871 /* At the next order, this order's pages become unavailable */
872 free_pages -= z->free_area[o].nr_free << o;
873
874 /* Require fewer higher order pages to be free */
875 min >>= 1;
876
877 if (free_pages <= min)
878 return 0;
879 }
880 return 1;
881 }
882
883 /*
884 * get_page_from_freeliest goes through the zonelist trying to allocate
885 * a page.
886 */
887 static struct page *
888 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
889 struct zonelist *zonelist, int alloc_flags)
890 {
891 struct zone **z = zonelist->zones;
892 struct page *page = NULL;
893 int classzone_idx = zone_idx(*z);
894
895 /*
896 * Go through the zonelist once, looking for a zone with enough free.
897 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
898 */
899 do {
900 if ((alloc_flags & ALLOC_CPUSET) &&
901 !cpuset_zone_allowed(*z, gfp_mask))
902 continue;
903
904 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
905 unsigned long mark;
906 if (alloc_flags & ALLOC_WMARK_MIN)
907 mark = (*z)->pages_min;
908 else if (alloc_flags & ALLOC_WMARK_LOW)
909 mark = (*z)->pages_low;
910 else
911 mark = (*z)->pages_high;
912 if (!zone_watermark_ok(*z, order, mark,
913 classzone_idx, alloc_flags))
914 if (!zone_reclaim_mode ||
915 !zone_reclaim(*z, gfp_mask, order))
916 continue;
917 }
918
919 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
920 if (page) {
921 break;
922 }
923 } while (*(++z) != NULL);
924 return page;
925 }
926
927 /*
928 * This is the 'heart' of the zoned buddy allocator.
929 */
930 struct page * fastcall
931 __alloc_pages(gfp_t gfp_mask, unsigned int order,
932 struct zonelist *zonelist)
933 {
934 const gfp_t wait = gfp_mask & __GFP_WAIT;
935 struct zone **z;
936 struct page *page;
937 struct reclaim_state reclaim_state;
938 struct task_struct *p = current;
939 int do_retry;
940 int alloc_flags;
941 int did_some_progress;
942
943 might_sleep_if(wait);
944
945 restart:
946 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
947
948 if (unlikely(*z == NULL)) {
949 /* Should this ever happen?? */
950 return NULL;
951 }
952
953 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
954 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
955 if (page)
956 goto got_pg;
957
958 do {
959 if (cpuset_zone_allowed(*z, gfp_mask|__GFP_HARDWALL))
960 wakeup_kswapd(*z, order);
961 } while (*(++z));
962
963 /*
964 * OK, we're below the kswapd watermark and have kicked background
965 * reclaim. Now things get more complex, so set up alloc_flags according
966 * to how we want to proceed.
967 *
968 * The caller may dip into page reserves a bit more if the caller
969 * cannot run direct reclaim, or if the caller has realtime scheduling
970 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
971 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
972 */
973 alloc_flags = ALLOC_WMARK_MIN;
974 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
975 alloc_flags |= ALLOC_HARDER;
976 if (gfp_mask & __GFP_HIGH)
977 alloc_flags |= ALLOC_HIGH;
978 if (wait)
979 alloc_flags |= ALLOC_CPUSET;
980
981 /*
982 * Go through the zonelist again. Let __GFP_HIGH and allocations
983 * coming from realtime tasks go deeper into reserves.
984 *
985 * This is the last chance, in general, before the goto nopage.
986 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
987 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
988 */
989 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
990 if (page)
991 goto got_pg;
992
993 /* This allocation should allow future memory freeing. */
994
995 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
996 && !in_interrupt()) {
997 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
998 nofail_alloc:
999 /* go through the zonelist yet again, ignoring mins */
1000 page = get_page_from_freelist(gfp_mask, order,
1001 zonelist, ALLOC_NO_WATERMARKS);
1002 if (page)
1003 goto got_pg;
1004 if (gfp_mask & __GFP_NOFAIL) {
1005 blk_congestion_wait(WRITE, HZ/50);
1006 goto nofail_alloc;
1007 }
1008 }
1009 goto nopage;
1010 }
1011
1012 /* Atomic allocations - we can't balance anything */
1013 if (!wait)
1014 goto nopage;
1015
1016 rebalance:
1017 cond_resched();
1018
1019 /* We now go into synchronous reclaim */
1020 cpuset_memory_pressure_bump();
1021 p->flags |= PF_MEMALLOC;
1022 reclaim_state.reclaimed_slab = 0;
1023 p->reclaim_state = &reclaim_state;
1024
1025 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1026
1027 p->reclaim_state = NULL;
1028 p->flags &= ~PF_MEMALLOC;
1029
1030 cond_resched();
1031
1032 if (likely(did_some_progress)) {
1033 page = get_page_from_freelist(gfp_mask, order,
1034 zonelist, alloc_flags);
1035 if (page)
1036 goto got_pg;
1037 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1038 /*
1039 * Go through the zonelist yet one more time, keep
1040 * very high watermark here, this is only to catch
1041 * a parallel oom killing, we must fail if we're still
1042 * under heavy pressure.
1043 */
1044 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1045 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1046 if (page)
1047 goto got_pg;
1048
1049 out_of_memory(zonelist, gfp_mask, order);
1050 goto restart;
1051 }
1052
1053 /*
1054 * Don't let big-order allocations loop unless the caller explicitly
1055 * requests that. Wait for some write requests to complete then retry.
1056 *
1057 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1058 * <= 3, but that may not be true in other implementations.
1059 */
1060 do_retry = 0;
1061 if (!(gfp_mask & __GFP_NORETRY)) {
1062 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1063 do_retry = 1;
1064 if (gfp_mask & __GFP_NOFAIL)
1065 do_retry = 1;
1066 }
1067 if (do_retry) {
1068 blk_congestion_wait(WRITE, HZ/50);
1069 goto rebalance;
1070 }
1071
1072 nopage:
1073 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1074 printk(KERN_WARNING "%s: page allocation failure."
1075 " order:%d, mode:0x%x\n",
1076 p->comm, order, gfp_mask);
1077 dump_stack();
1078 show_mem();
1079 }
1080 got_pg:
1081 return page;
1082 }
1083
1084 EXPORT_SYMBOL(__alloc_pages);
1085
1086 /*
1087 * Common helper functions.
1088 */
1089 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1090 {
1091 struct page * page;
1092 page = alloc_pages(gfp_mask, order);
1093 if (!page)
1094 return 0;
1095 return (unsigned long) page_address(page);
1096 }
1097
1098 EXPORT_SYMBOL(__get_free_pages);
1099
1100 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1101 {
1102 struct page * page;
1103
1104 /*
1105 * get_zeroed_page() returns a 32-bit address, which cannot represent
1106 * a highmem page
1107 */
1108 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1109
1110 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1111 if (page)
1112 return (unsigned long) page_address(page);
1113 return 0;
1114 }
1115
1116 EXPORT_SYMBOL(get_zeroed_page);
1117
1118 void __pagevec_free(struct pagevec *pvec)
1119 {
1120 int i = pagevec_count(pvec);
1121
1122 while (--i >= 0)
1123 free_hot_cold_page(pvec->pages[i], pvec->cold);
1124 }
1125
1126 fastcall void __free_pages(struct page *page, unsigned int order)
1127 {
1128 if (put_page_testzero(page)) {
1129 if (order == 0)
1130 free_hot_page(page);
1131 else
1132 __free_pages_ok(page, order);
1133 }
1134 }
1135
1136 EXPORT_SYMBOL(__free_pages);
1137
1138 fastcall void free_pages(unsigned long addr, unsigned int order)
1139 {
1140 if (addr != 0) {
1141 BUG_ON(!virt_addr_valid((void *)addr));
1142 __free_pages(virt_to_page((void *)addr), order);
1143 }
1144 }
1145
1146 EXPORT_SYMBOL(free_pages);
1147
1148 /*
1149 * Total amount of free (allocatable) RAM:
1150 */
1151 unsigned int nr_free_pages(void)
1152 {
1153 unsigned int sum = 0;
1154 struct zone *zone;
1155
1156 for_each_zone(zone)
1157 sum += zone->free_pages;
1158
1159 return sum;
1160 }
1161
1162 EXPORT_SYMBOL(nr_free_pages);
1163
1164 #ifdef CONFIG_NUMA
1165 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1166 {
1167 unsigned int i, sum = 0;
1168
1169 for (i = 0; i < MAX_NR_ZONES; i++)
1170 sum += pgdat->node_zones[i].free_pages;
1171
1172 return sum;
1173 }
1174 #endif
1175
1176 static unsigned int nr_free_zone_pages(int offset)
1177 {
1178 /* Just pick one node, since fallback list is circular */
1179 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1180 unsigned int sum = 0;
1181
1182 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1183 struct zone **zonep = zonelist->zones;
1184 struct zone *zone;
1185
1186 for (zone = *zonep++; zone; zone = *zonep++) {
1187 unsigned long size = zone->present_pages;
1188 unsigned long high = zone->pages_high;
1189 if (size > high)
1190 sum += size - high;
1191 }
1192
1193 return sum;
1194 }
1195
1196 /*
1197 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1198 */
1199 unsigned int nr_free_buffer_pages(void)
1200 {
1201 return nr_free_zone_pages(gfp_zone(GFP_USER));
1202 }
1203
1204 /*
1205 * Amount of free RAM allocatable within all zones
1206 */
1207 unsigned int nr_free_pagecache_pages(void)
1208 {
1209 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1210 }
1211
1212 #ifdef CONFIG_HIGHMEM
1213 unsigned int nr_free_highpages (void)
1214 {
1215 pg_data_t *pgdat;
1216 unsigned int pages = 0;
1217
1218 for_each_online_pgdat(pgdat)
1219 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1220
1221 return pages;
1222 }
1223 #endif
1224
1225 #ifdef CONFIG_NUMA
1226 static void show_node(struct zone *zone)
1227 {
1228 printk("Node %d ", zone->zone_pgdat->node_id);
1229 }
1230 #else
1231 #define show_node(zone) do { } while (0)
1232 #endif
1233
1234 /*
1235 * Accumulate the page_state information across all CPUs.
1236 * The result is unavoidably approximate - it can change
1237 * during and after execution of this function.
1238 */
1239 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1240
1241 atomic_t nr_pagecache = ATOMIC_INIT(0);
1242 EXPORT_SYMBOL(nr_pagecache);
1243 #ifdef CONFIG_SMP
1244 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1245 #endif
1246
1247 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1248 {
1249 unsigned cpu;
1250
1251 memset(ret, 0, nr * sizeof(unsigned long));
1252 cpus_and(*cpumask, *cpumask, cpu_online_map);
1253
1254 for_each_cpu_mask(cpu, *cpumask) {
1255 unsigned long *in;
1256 unsigned long *out;
1257 unsigned off;
1258 unsigned next_cpu;
1259
1260 in = (unsigned long *)&per_cpu(page_states, cpu);
1261
1262 next_cpu = next_cpu(cpu, *cpumask);
1263 if (likely(next_cpu < NR_CPUS))
1264 prefetch(&per_cpu(page_states, next_cpu));
1265
1266 out = (unsigned long *)ret;
1267 for (off = 0; off < nr; off++)
1268 *out++ += *in++;
1269 }
1270 }
1271
1272 void get_page_state_node(struct page_state *ret, int node)
1273 {
1274 int nr;
1275 cpumask_t mask = node_to_cpumask(node);
1276
1277 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1278 nr /= sizeof(unsigned long);
1279
1280 __get_page_state(ret, nr+1, &mask);
1281 }
1282
1283 void get_page_state(struct page_state *ret)
1284 {
1285 int nr;
1286 cpumask_t mask = CPU_MASK_ALL;
1287
1288 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1289 nr /= sizeof(unsigned long);
1290
1291 __get_page_state(ret, nr + 1, &mask);
1292 }
1293
1294 void get_full_page_state(struct page_state *ret)
1295 {
1296 cpumask_t mask = CPU_MASK_ALL;
1297
1298 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1299 }
1300
1301 unsigned long read_page_state_offset(unsigned long offset)
1302 {
1303 unsigned long ret = 0;
1304 int cpu;
1305
1306 for_each_online_cpu(cpu) {
1307 unsigned long in;
1308
1309 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1310 ret += *((unsigned long *)in);
1311 }
1312 return ret;
1313 }
1314
1315 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1316 {
1317 void *ptr;
1318
1319 ptr = &__get_cpu_var(page_states);
1320 *(unsigned long *)(ptr + offset) += delta;
1321 }
1322 EXPORT_SYMBOL(__mod_page_state_offset);
1323
1324 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1325 {
1326 unsigned long flags;
1327 void *ptr;
1328
1329 local_irq_save(flags);
1330 ptr = &__get_cpu_var(page_states);
1331 *(unsigned long *)(ptr + offset) += delta;
1332 local_irq_restore(flags);
1333 }
1334 EXPORT_SYMBOL(mod_page_state_offset);
1335
1336 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1337 unsigned long *free, struct pglist_data *pgdat)
1338 {
1339 struct zone *zones = pgdat->node_zones;
1340 int i;
1341
1342 *active = 0;
1343 *inactive = 0;
1344 *free = 0;
1345 for (i = 0; i < MAX_NR_ZONES; i++) {
1346 *active += zones[i].nr_active;
1347 *inactive += zones[i].nr_inactive;
1348 *free += zones[i].free_pages;
1349 }
1350 }
1351
1352 void get_zone_counts(unsigned long *active,
1353 unsigned long *inactive, unsigned long *free)
1354 {
1355 struct pglist_data *pgdat;
1356
1357 *active = 0;
1358 *inactive = 0;
1359 *free = 0;
1360 for_each_online_pgdat(pgdat) {
1361 unsigned long l, m, n;
1362 __get_zone_counts(&l, &m, &n, pgdat);
1363 *active += l;
1364 *inactive += m;
1365 *free += n;
1366 }
1367 }
1368
1369 void si_meminfo(struct sysinfo *val)
1370 {
1371 val->totalram = totalram_pages;
1372 val->sharedram = 0;
1373 val->freeram = nr_free_pages();
1374 val->bufferram = nr_blockdev_pages();
1375 #ifdef CONFIG_HIGHMEM
1376 val->totalhigh = totalhigh_pages;
1377 val->freehigh = nr_free_highpages();
1378 #else
1379 val->totalhigh = 0;
1380 val->freehigh = 0;
1381 #endif
1382 val->mem_unit = PAGE_SIZE;
1383 }
1384
1385 EXPORT_SYMBOL(si_meminfo);
1386
1387 #ifdef CONFIG_NUMA
1388 void si_meminfo_node(struct sysinfo *val, int nid)
1389 {
1390 pg_data_t *pgdat = NODE_DATA(nid);
1391
1392 val->totalram = pgdat->node_present_pages;
1393 val->freeram = nr_free_pages_pgdat(pgdat);
1394 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1395 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1396 val->mem_unit = PAGE_SIZE;
1397 }
1398 #endif
1399
1400 #define K(x) ((x) << (PAGE_SHIFT-10))
1401
1402 /*
1403 * Show free area list (used inside shift_scroll-lock stuff)
1404 * We also calculate the percentage fragmentation. We do this by counting the
1405 * memory on each free list with the exception of the first item on the list.
1406 */
1407 void show_free_areas(void)
1408 {
1409 struct page_state ps;
1410 int cpu, temperature;
1411 unsigned long active;
1412 unsigned long inactive;
1413 unsigned long free;
1414 struct zone *zone;
1415
1416 for_each_zone(zone) {
1417 show_node(zone);
1418 printk("%s per-cpu:", zone->name);
1419
1420 if (!populated_zone(zone)) {
1421 printk(" empty\n");
1422 continue;
1423 } else
1424 printk("\n");
1425
1426 for_each_online_cpu(cpu) {
1427 struct per_cpu_pageset *pageset;
1428
1429 pageset = zone_pcp(zone, cpu);
1430
1431 for (temperature = 0; temperature < 2; temperature++)
1432 printk("cpu %d %s: high %d, batch %d used:%d\n",
1433 cpu,
1434 temperature ? "cold" : "hot",
1435 pageset->pcp[temperature].high,
1436 pageset->pcp[temperature].batch,
1437 pageset->pcp[temperature].count);
1438 }
1439 }
1440
1441 get_page_state(&ps);
1442 get_zone_counts(&active, &inactive, &free);
1443
1444 printk("Free pages: %11ukB (%ukB HighMem)\n",
1445 K(nr_free_pages()),
1446 K(nr_free_highpages()));
1447
1448 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1449 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1450 active,
1451 inactive,
1452 ps.nr_dirty,
1453 ps.nr_writeback,
1454 ps.nr_unstable,
1455 nr_free_pages(),
1456 ps.nr_slab,
1457 ps.nr_mapped,
1458 ps.nr_page_table_pages);
1459
1460 for_each_zone(zone) {
1461 int i;
1462
1463 show_node(zone);
1464 printk("%s"
1465 " free:%lukB"
1466 " min:%lukB"
1467 " low:%lukB"
1468 " high:%lukB"
1469 " active:%lukB"
1470 " inactive:%lukB"
1471 " present:%lukB"
1472 " pages_scanned:%lu"
1473 " all_unreclaimable? %s"
1474 "\n",
1475 zone->name,
1476 K(zone->free_pages),
1477 K(zone->pages_min),
1478 K(zone->pages_low),
1479 K(zone->pages_high),
1480 K(zone->nr_active),
1481 K(zone->nr_inactive),
1482 K(zone->present_pages),
1483 zone->pages_scanned,
1484 (zone->all_unreclaimable ? "yes" : "no")
1485 );
1486 printk("lowmem_reserve[]:");
1487 for (i = 0; i < MAX_NR_ZONES; i++)
1488 printk(" %lu", zone->lowmem_reserve[i]);
1489 printk("\n");
1490 }
1491
1492 for_each_zone(zone) {
1493 unsigned long nr, flags, order, total = 0;
1494
1495 show_node(zone);
1496 printk("%s: ", zone->name);
1497 if (!populated_zone(zone)) {
1498 printk("empty\n");
1499 continue;
1500 }
1501
1502 spin_lock_irqsave(&zone->lock, flags);
1503 for (order = 0; order < MAX_ORDER; order++) {
1504 nr = zone->free_area[order].nr_free;
1505 total += nr << order;
1506 printk("%lu*%lukB ", nr, K(1UL) << order);
1507 }
1508 spin_unlock_irqrestore(&zone->lock, flags);
1509 printk("= %lukB\n", K(total));
1510 }
1511
1512 show_swap_cache_info();
1513 }
1514
1515 /*
1516 * Builds allocation fallback zone lists.
1517 *
1518 * Add all populated zones of a node to the zonelist.
1519 */
1520 static int __init build_zonelists_node(pg_data_t *pgdat,
1521 struct zonelist *zonelist, int nr_zones, int zone_type)
1522 {
1523 struct zone *zone;
1524
1525 BUG_ON(zone_type > ZONE_HIGHMEM);
1526
1527 do {
1528 zone = pgdat->node_zones + zone_type;
1529 if (populated_zone(zone)) {
1530 #ifndef CONFIG_HIGHMEM
1531 BUG_ON(zone_type > ZONE_NORMAL);
1532 #endif
1533 zonelist->zones[nr_zones++] = zone;
1534 check_highest_zone(zone_type);
1535 }
1536 zone_type--;
1537
1538 } while (zone_type >= 0);
1539 return nr_zones;
1540 }
1541
1542 static inline int highest_zone(int zone_bits)
1543 {
1544 int res = ZONE_NORMAL;
1545 if (zone_bits & (__force int)__GFP_HIGHMEM)
1546 res = ZONE_HIGHMEM;
1547 if (zone_bits & (__force int)__GFP_DMA32)
1548 res = ZONE_DMA32;
1549 if (zone_bits & (__force int)__GFP_DMA)
1550 res = ZONE_DMA;
1551 return res;
1552 }
1553
1554 #ifdef CONFIG_NUMA
1555 #define MAX_NODE_LOAD (num_online_nodes())
1556 static int __initdata node_load[MAX_NUMNODES];
1557 /**
1558 * find_next_best_node - find the next node that should appear in a given node's fallback list
1559 * @node: node whose fallback list we're appending
1560 * @used_node_mask: nodemask_t of already used nodes
1561 *
1562 * We use a number of factors to determine which is the next node that should
1563 * appear on a given node's fallback list. The node should not have appeared
1564 * already in @node's fallback list, and it should be the next closest node
1565 * according to the distance array (which contains arbitrary distance values
1566 * from each node to each node in the system), and should also prefer nodes
1567 * with no CPUs, since presumably they'll have very little allocation pressure
1568 * on them otherwise.
1569 * It returns -1 if no node is found.
1570 */
1571 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1572 {
1573 int n, val;
1574 int min_val = INT_MAX;
1575 int best_node = -1;
1576
1577 /* Use the local node if we haven't already */
1578 if (!node_isset(node, *used_node_mask)) {
1579 node_set(node, *used_node_mask);
1580 return node;
1581 }
1582
1583 for_each_online_node(n) {
1584 cpumask_t tmp;
1585
1586 /* Don't want a node to appear more than once */
1587 if (node_isset(n, *used_node_mask))
1588 continue;
1589
1590 /* Use the distance array to find the distance */
1591 val = node_distance(node, n);
1592
1593 /* Penalize nodes under us ("prefer the next node") */
1594 val += (n < node);
1595
1596 /* Give preference to headless and unused nodes */
1597 tmp = node_to_cpumask(n);
1598 if (!cpus_empty(tmp))
1599 val += PENALTY_FOR_NODE_WITH_CPUS;
1600
1601 /* Slight preference for less loaded node */
1602 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1603 val += node_load[n];
1604
1605 if (val < min_val) {
1606 min_val = val;
1607 best_node = n;
1608 }
1609 }
1610
1611 if (best_node >= 0)
1612 node_set(best_node, *used_node_mask);
1613
1614 return best_node;
1615 }
1616
1617 static void __init build_zonelists(pg_data_t *pgdat)
1618 {
1619 int i, j, k, node, local_node;
1620 int prev_node, load;
1621 struct zonelist *zonelist;
1622 nodemask_t used_mask;
1623
1624 /* initialize zonelists */
1625 for (i = 0; i < GFP_ZONETYPES; i++) {
1626 zonelist = pgdat->node_zonelists + i;
1627 zonelist->zones[0] = NULL;
1628 }
1629
1630 /* NUMA-aware ordering of nodes */
1631 local_node = pgdat->node_id;
1632 load = num_online_nodes();
1633 prev_node = local_node;
1634 nodes_clear(used_mask);
1635 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1636 int distance = node_distance(local_node, node);
1637
1638 /*
1639 * If another node is sufficiently far away then it is better
1640 * to reclaim pages in a zone before going off node.
1641 */
1642 if (distance > RECLAIM_DISTANCE)
1643 zone_reclaim_mode = 1;
1644
1645 /*
1646 * We don't want to pressure a particular node.
1647 * So adding penalty to the first node in same
1648 * distance group to make it round-robin.
1649 */
1650
1651 if (distance != node_distance(local_node, prev_node))
1652 node_load[node] += load;
1653 prev_node = node;
1654 load--;
1655 for (i = 0; i < GFP_ZONETYPES; i++) {
1656 zonelist = pgdat->node_zonelists + i;
1657 for (j = 0; zonelist->zones[j] != NULL; j++);
1658
1659 k = highest_zone(i);
1660
1661 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1662 zonelist->zones[j] = NULL;
1663 }
1664 }
1665 }
1666
1667 #else /* CONFIG_NUMA */
1668
1669 static void __init build_zonelists(pg_data_t *pgdat)
1670 {
1671 int i, j, k, node, local_node;
1672
1673 local_node = pgdat->node_id;
1674 for (i = 0; i < GFP_ZONETYPES; i++) {
1675 struct zonelist *zonelist;
1676
1677 zonelist = pgdat->node_zonelists + i;
1678
1679 j = 0;
1680 k = highest_zone(i);
1681 j = build_zonelists_node(pgdat, zonelist, j, k);
1682 /*
1683 * Now we build the zonelist so that it contains the zones
1684 * of all the other nodes.
1685 * We don't want to pressure a particular node, so when
1686 * building the zones for node N, we make sure that the
1687 * zones coming right after the local ones are those from
1688 * node N+1 (modulo N)
1689 */
1690 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1691 if (!node_online(node))
1692 continue;
1693 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1694 }
1695 for (node = 0; node < local_node; node++) {
1696 if (!node_online(node))
1697 continue;
1698 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1699 }
1700
1701 zonelist->zones[j] = NULL;
1702 }
1703 }
1704
1705 #endif /* CONFIG_NUMA */
1706
1707 void __init build_all_zonelists(void)
1708 {
1709 int i;
1710
1711 for_each_online_node(i)
1712 build_zonelists(NODE_DATA(i));
1713 printk("Built %i zonelists\n", num_online_nodes());
1714 cpuset_init_current_mems_allowed();
1715 }
1716
1717 /*
1718 * Helper functions to size the waitqueue hash table.
1719 * Essentially these want to choose hash table sizes sufficiently
1720 * large so that collisions trying to wait on pages are rare.
1721 * But in fact, the number of active page waitqueues on typical
1722 * systems is ridiculously low, less than 200. So this is even
1723 * conservative, even though it seems large.
1724 *
1725 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1726 * waitqueues, i.e. the size of the waitq table given the number of pages.
1727 */
1728 #define PAGES_PER_WAITQUEUE 256
1729
1730 static inline unsigned long wait_table_size(unsigned long pages)
1731 {
1732 unsigned long size = 1;
1733
1734 pages /= PAGES_PER_WAITQUEUE;
1735
1736 while (size < pages)
1737 size <<= 1;
1738
1739 /*
1740 * Once we have dozens or even hundreds of threads sleeping
1741 * on IO we've got bigger problems than wait queue collision.
1742 * Limit the size of the wait table to a reasonable size.
1743 */
1744 size = min(size, 4096UL);
1745
1746 return max(size, 4UL);
1747 }
1748
1749 /*
1750 * This is an integer logarithm so that shifts can be used later
1751 * to extract the more random high bits from the multiplicative
1752 * hash function before the remainder is taken.
1753 */
1754 static inline unsigned long wait_table_bits(unsigned long size)
1755 {
1756 return ffz(~size);
1757 }
1758
1759 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1760
1761 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1762 unsigned long *zones_size, unsigned long *zholes_size)
1763 {
1764 unsigned long realtotalpages, totalpages = 0;
1765 int i;
1766
1767 for (i = 0; i < MAX_NR_ZONES; i++)
1768 totalpages += zones_size[i];
1769 pgdat->node_spanned_pages = totalpages;
1770
1771 realtotalpages = totalpages;
1772 if (zholes_size)
1773 for (i = 0; i < MAX_NR_ZONES; i++)
1774 realtotalpages -= zholes_size[i];
1775 pgdat->node_present_pages = realtotalpages;
1776 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1777 }
1778
1779
1780 /*
1781 * Initially all pages are reserved - free ones are freed
1782 * up by free_all_bootmem() once the early boot process is
1783 * done. Non-atomic initialization, single-pass.
1784 */
1785 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1786 unsigned long start_pfn)
1787 {
1788 struct page *page;
1789 unsigned long end_pfn = start_pfn + size;
1790 unsigned long pfn;
1791
1792 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1793 if (!early_pfn_valid(pfn))
1794 continue;
1795 page = pfn_to_page(pfn);
1796 set_page_links(page, zone, nid, pfn);
1797 init_page_count(page);
1798 reset_page_mapcount(page);
1799 SetPageReserved(page);
1800 INIT_LIST_HEAD(&page->lru);
1801 #ifdef WANT_PAGE_VIRTUAL
1802 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1803 if (!is_highmem_idx(zone))
1804 set_page_address(page, __va(pfn << PAGE_SHIFT));
1805 #endif
1806 }
1807 }
1808
1809 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1810 unsigned long size)
1811 {
1812 int order;
1813 for (order = 0; order < MAX_ORDER ; order++) {
1814 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1815 zone->free_area[order].nr_free = 0;
1816 }
1817 }
1818
1819 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1820 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1821 unsigned long size)
1822 {
1823 unsigned long snum = pfn_to_section_nr(pfn);
1824 unsigned long end = pfn_to_section_nr(pfn + size);
1825
1826 if (FLAGS_HAS_NODE)
1827 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1828 else
1829 for (; snum <= end; snum++)
1830 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1831 }
1832
1833 #ifndef __HAVE_ARCH_MEMMAP_INIT
1834 #define memmap_init(size, nid, zone, start_pfn) \
1835 memmap_init_zone((size), (nid), (zone), (start_pfn))
1836 #endif
1837
1838 static int __cpuinit zone_batchsize(struct zone *zone)
1839 {
1840 int batch;
1841
1842 /*
1843 * The per-cpu-pages pools are set to around 1000th of the
1844 * size of the zone. But no more than 1/2 of a meg.
1845 *
1846 * OK, so we don't know how big the cache is. So guess.
1847 */
1848 batch = zone->present_pages / 1024;
1849 if (batch * PAGE_SIZE > 512 * 1024)
1850 batch = (512 * 1024) / PAGE_SIZE;
1851 batch /= 4; /* We effectively *= 4 below */
1852 if (batch < 1)
1853 batch = 1;
1854
1855 /*
1856 * Clamp the batch to a 2^n - 1 value. Having a power
1857 * of 2 value was found to be more likely to have
1858 * suboptimal cache aliasing properties in some cases.
1859 *
1860 * For example if 2 tasks are alternately allocating
1861 * batches of pages, one task can end up with a lot
1862 * of pages of one half of the possible page colors
1863 * and the other with pages of the other colors.
1864 */
1865 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1866
1867 return batch;
1868 }
1869
1870 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1871 {
1872 struct per_cpu_pages *pcp;
1873
1874 memset(p, 0, sizeof(*p));
1875
1876 pcp = &p->pcp[0]; /* hot */
1877 pcp->count = 0;
1878 pcp->high = 6 * batch;
1879 pcp->batch = max(1UL, 1 * batch);
1880 INIT_LIST_HEAD(&pcp->list);
1881
1882 pcp = &p->pcp[1]; /* cold*/
1883 pcp->count = 0;
1884 pcp->high = 2 * batch;
1885 pcp->batch = max(1UL, batch/2);
1886 INIT_LIST_HEAD(&pcp->list);
1887 }
1888
1889 /*
1890 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1891 * to the value high for the pageset p.
1892 */
1893
1894 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1895 unsigned long high)
1896 {
1897 struct per_cpu_pages *pcp;
1898
1899 pcp = &p->pcp[0]; /* hot list */
1900 pcp->high = high;
1901 pcp->batch = max(1UL, high/4);
1902 if ((high/4) > (PAGE_SHIFT * 8))
1903 pcp->batch = PAGE_SHIFT * 8;
1904 }
1905
1906
1907 #ifdef CONFIG_NUMA
1908 /*
1909 * Boot pageset table. One per cpu which is going to be used for all
1910 * zones and all nodes. The parameters will be set in such a way
1911 * that an item put on a list will immediately be handed over to
1912 * the buddy list. This is safe since pageset manipulation is done
1913 * with interrupts disabled.
1914 *
1915 * Some NUMA counter updates may also be caught by the boot pagesets.
1916 *
1917 * The boot_pagesets must be kept even after bootup is complete for
1918 * unused processors and/or zones. They do play a role for bootstrapping
1919 * hotplugged processors.
1920 *
1921 * zoneinfo_show() and maybe other functions do
1922 * not check if the processor is online before following the pageset pointer.
1923 * Other parts of the kernel may not check if the zone is available.
1924 */
1925 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1926
1927 /*
1928 * Dynamically allocate memory for the
1929 * per cpu pageset array in struct zone.
1930 */
1931 static int __cpuinit process_zones(int cpu)
1932 {
1933 struct zone *zone, *dzone;
1934
1935 for_each_zone(zone) {
1936
1937 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1938 GFP_KERNEL, cpu_to_node(cpu));
1939 if (!zone_pcp(zone, cpu))
1940 goto bad;
1941
1942 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1943
1944 if (percpu_pagelist_fraction)
1945 setup_pagelist_highmark(zone_pcp(zone, cpu),
1946 (zone->present_pages / percpu_pagelist_fraction));
1947 }
1948
1949 return 0;
1950 bad:
1951 for_each_zone(dzone) {
1952 if (dzone == zone)
1953 break;
1954 kfree(zone_pcp(dzone, cpu));
1955 zone_pcp(dzone, cpu) = NULL;
1956 }
1957 return -ENOMEM;
1958 }
1959
1960 static inline void free_zone_pagesets(int cpu)
1961 {
1962 struct zone *zone;
1963
1964 for_each_zone(zone) {
1965 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1966
1967 zone_pcp(zone, cpu) = NULL;
1968 kfree(pset);
1969 }
1970 }
1971
1972 static int pageset_cpuup_callback(struct notifier_block *nfb,
1973 unsigned long action,
1974 void *hcpu)
1975 {
1976 int cpu = (long)hcpu;
1977 int ret = NOTIFY_OK;
1978
1979 switch (action) {
1980 case CPU_UP_PREPARE:
1981 if (process_zones(cpu))
1982 ret = NOTIFY_BAD;
1983 break;
1984 case CPU_UP_CANCELED:
1985 case CPU_DEAD:
1986 free_zone_pagesets(cpu);
1987 break;
1988 default:
1989 break;
1990 }
1991 return ret;
1992 }
1993
1994 static struct notifier_block pageset_notifier =
1995 { &pageset_cpuup_callback, NULL, 0 };
1996
1997 void __init setup_per_cpu_pageset(void)
1998 {
1999 int err;
2000
2001 /* Initialize per_cpu_pageset for cpu 0.
2002 * A cpuup callback will do this for every cpu
2003 * as it comes online
2004 */
2005 err = process_zones(smp_processor_id());
2006 BUG_ON(err);
2007 register_cpu_notifier(&pageset_notifier);
2008 }
2009
2010 #endif
2011
2012 static __meminit
2013 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2014 {
2015 int i;
2016 struct pglist_data *pgdat = zone->zone_pgdat;
2017
2018 /*
2019 * The per-page waitqueue mechanism uses hashed waitqueues
2020 * per zone.
2021 */
2022 zone->wait_table_size = wait_table_size(zone_size_pages);
2023 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2024 zone->wait_table = (wait_queue_head_t *)
2025 alloc_bootmem_node(pgdat, zone->wait_table_size
2026 * sizeof(wait_queue_head_t));
2027
2028 for(i = 0; i < zone->wait_table_size; ++i)
2029 init_waitqueue_head(zone->wait_table + i);
2030 }
2031
2032 static __meminit void zone_pcp_init(struct zone *zone)
2033 {
2034 int cpu;
2035 unsigned long batch = zone_batchsize(zone);
2036
2037 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2038 #ifdef CONFIG_NUMA
2039 /* Early boot. Slab allocator not functional yet */
2040 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2041 setup_pageset(&boot_pageset[cpu],0);
2042 #else
2043 setup_pageset(zone_pcp(zone,cpu), batch);
2044 #endif
2045 }
2046 if (zone->present_pages)
2047 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2048 zone->name, zone->present_pages, batch);
2049 }
2050
2051 static __meminit void init_currently_empty_zone(struct zone *zone,
2052 unsigned long zone_start_pfn, unsigned long size)
2053 {
2054 struct pglist_data *pgdat = zone->zone_pgdat;
2055
2056 zone_wait_table_init(zone, size);
2057 pgdat->nr_zones = zone_idx(zone) + 1;
2058
2059 zone->zone_start_pfn = zone_start_pfn;
2060
2061 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2062
2063 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2064 }
2065
2066 /*
2067 * Set up the zone data structures:
2068 * - mark all pages reserved
2069 * - mark all memory queues empty
2070 * - clear the memory bitmaps
2071 */
2072 static void __init free_area_init_core(struct pglist_data *pgdat,
2073 unsigned long *zones_size, unsigned long *zholes_size)
2074 {
2075 unsigned long j;
2076 int nid = pgdat->node_id;
2077 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2078
2079 pgdat_resize_init(pgdat);
2080 pgdat->nr_zones = 0;
2081 init_waitqueue_head(&pgdat->kswapd_wait);
2082 pgdat->kswapd_max_order = 0;
2083
2084 for (j = 0; j < MAX_NR_ZONES; j++) {
2085 struct zone *zone = pgdat->node_zones + j;
2086 unsigned long size, realsize;
2087
2088 realsize = size = zones_size[j];
2089 if (zholes_size)
2090 realsize -= zholes_size[j];
2091
2092 if (j < ZONE_HIGHMEM)
2093 nr_kernel_pages += realsize;
2094 nr_all_pages += realsize;
2095
2096 zone->spanned_pages = size;
2097 zone->present_pages = realsize;
2098 zone->name = zone_names[j];
2099 spin_lock_init(&zone->lock);
2100 spin_lock_init(&zone->lru_lock);
2101 zone_seqlock_init(zone);
2102 zone->zone_pgdat = pgdat;
2103 zone->free_pages = 0;
2104
2105 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2106
2107 zone_pcp_init(zone);
2108 INIT_LIST_HEAD(&zone->active_list);
2109 INIT_LIST_HEAD(&zone->inactive_list);
2110 zone->nr_scan_active = 0;
2111 zone->nr_scan_inactive = 0;
2112 zone->nr_active = 0;
2113 zone->nr_inactive = 0;
2114 atomic_set(&zone->reclaim_in_progress, 0);
2115 if (!size)
2116 continue;
2117
2118 zonetable_add(zone, nid, j, zone_start_pfn, size);
2119 init_currently_empty_zone(zone, zone_start_pfn, size);
2120 zone_start_pfn += size;
2121 }
2122 }
2123
2124 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2125 {
2126 /* Skip empty nodes */
2127 if (!pgdat->node_spanned_pages)
2128 return;
2129
2130 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2131 /* ia64 gets its own node_mem_map, before this, without bootmem */
2132 if (!pgdat->node_mem_map) {
2133 unsigned long size, start, end;
2134 struct page *map;
2135
2136 /*
2137 * The zone's endpoints aren't required to be MAX_ORDER
2138 * aligned but the node_mem_map endpoints must be in order
2139 * for the buddy allocator to function correctly.
2140 */
2141 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2142 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2143 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2144 size = (end - start) * sizeof(struct page);
2145 map = alloc_remap(pgdat->node_id, size);
2146 if (!map)
2147 map = alloc_bootmem_node(pgdat, size);
2148 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2149 }
2150 #ifdef CONFIG_FLATMEM
2151 /*
2152 * With no DISCONTIG, the global mem_map is just set as node 0's
2153 */
2154 if (pgdat == NODE_DATA(0))
2155 mem_map = NODE_DATA(0)->node_mem_map;
2156 #endif
2157 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2158 }
2159
2160 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2161 unsigned long *zones_size, unsigned long node_start_pfn,
2162 unsigned long *zholes_size)
2163 {
2164 pgdat->node_id = nid;
2165 pgdat->node_start_pfn = node_start_pfn;
2166 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2167
2168 alloc_node_mem_map(pgdat);
2169
2170 free_area_init_core(pgdat, zones_size, zholes_size);
2171 }
2172
2173 #ifndef CONFIG_NEED_MULTIPLE_NODES
2174 static bootmem_data_t contig_bootmem_data;
2175 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2176
2177 EXPORT_SYMBOL(contig_page_data);
2178 #endif
2179
2180 void __init free_area_init(unsigned long *zones_size)
2181 {
2182 free_area_init_node(0, NODE_DATA(0), zones_size,
2183 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2184 }
2185
2186 #ifdef CONFIG_PROC_FS
2187
2188 #include <linux/seq_file.h>
2189
2190 static void *frag_start(struct seq_file *m, loff_t *pos)
2191 {
2192 pg_data_t *pgdat;
2193 loff_t node = *pos;
2194 for (pgdat = first_online_pgdat();
2195 pgdat && node;
2196 pgdat = next_online_pgdat(pgdat))
2197 --node;
2198
2199 return pgdat;
2200 }
2201
2202 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2203 {
2204 pg_data_t *pgdat = (pg_data_t *)arg;
2205
2206 (*pos)++;
2207 return next_online_pgdat(pgdat);
2208 }
2209
2210 static void frag_stop(struct seq_file *m, void *arg)
2211 {
2212 }
2213
2214 /*
2215 * This walks the free areas for each zone.
2216 */
2217 static int frag_show(struct seq_file *m, void *arg)
2218 {
2219 pg_data_t *pgdat = (pg_data_t *)arg;
2220 struct zone *zone;
2221 struct zone *node_zones = pgdat->node_zones;
2222 unsigned long flags;
2223 int order;
2224
2225 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2226 if (!populated_zone(zone))
2227 continue;
2228
2229 spin_lock_irqsave(&zone->lock, flags);
2230 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2231 for (order = 0; order < MAX_ORDER; ++order)
2232 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2233 spin_unlock_irqrestore(&zone->lock, flags);
2234 seq_putc(m, '\n');
2235 }
2236 return 0;
2237 }
2238
2239 struct seq_operations fragmentation_op = {
2240 .start = frag_start,
2241 .next = frag_next,
2242 .stop = frag_stop,
2243 .show = frag_show,
2244 };
2245
2246 /*
2247 * Output information about zones in @pgdat.
2248 */
2249 static int zoneinfo_show(struct seq_file *m, void *arg)
2250 {
2251 pg_data_t *pgdat = arg;
2252 struct zone *zone;
2253 struct zone *node_zones = pgdat->node_zones;
2254 unsigned long flags;
2255
2256 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2257 int i;
2258
2259 if (!populated_zone(zone))
2260 continue;
2261
2262 spin_lock_irqsave(&zone->lock, flags);
2263 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2264 seq_printf(m,
2265 "\n pages free %lu"
2266 "\n min %lu"
2267 "\n low %lu"
2268 "\n high %lu"
2269 "\n active %lu"
2270 "\n inactive %lu"
2271 "\n scanned %lu (a: %lu i: %lu)"
2272 "\n spanned %lu"
2273 "\n present %lu",
2274 zone->free_pages,
2275 zone->pages_min,
2276 zone->pages_low,
2277 zone->pages_high,
2278 zone->nr_active,
2279 zone->nr_inactive,
2280 zone->pages_scanned,
2281 zone->nr_scan_active, zone->nr_scan_inactive,
2282 zone->spanned_pages,
2283 zone->present_pages);
2284 seq_printf(m,
2285 "\n protection: (%lu",
2286 zone->lowmem_reserve[0]);
2287 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2288 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2289 seq_printf(m,
2290 ")"
2291 "\n pagesets");
2292 for_each_online_cpu(i) {
2293 struct per_cpu_pageset *pageset;
2294 int j;
2295
2296 pageset = zone_pcp(zone, i);
2297 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2298 if (pageset->pcp[j].count)
2299 break;
2300 }
2301 if (j == ARRAY_SIZE(pageset->pcp))
2302 continue;
2303 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2304 seq_printf(m,
2305 "\n cpu: %i pcp: %i"
2306 "\n count: %i"
2307 "\n high: %i"
2308 "\n batch: %i",
2309 i, j,
2310 pageset->pcp[j].count,
2311 pageset->pcp[j].high,
2312 pageset->pcp[j].batch);
2313 }
2314 #ifdef CONFIG_NUMA
2315 seq_printf(m,
2316 "\n numa_hit: %lu"
2317 "\n numa_miss: %lu"
2318 "\n numa_foreign: %lu"
2319 "\n interleave_hit: %lu"
2320 "\n local_node: %lu"
2321 "\n other_node: %lu",
2322 pageset->numa_hit,
2323 pageset->numa_miss,
2324 pageset->numa_foreign,
2325 pageset->interleave_hit,
2326 pageset->local_node,
2327 pageset->other_node);
2328 #endif
2329 }
2330 seq_printf(m,
2331 "\n all_unreclaimable: %u"
2332 "\n prev_priority: %i"
2333 "\n temp_priority: %i"
2334 "\n start_pfn: %lu",
2335 zone->all_unreclaimable,
2336 zone->prev_priority,
2337 zone->temp_priority,
2338 zone->zone_start_pfn);
2339 spin_unlock_irqrestore(&zone->lock, flags);
2340 seq_putc(m, '\n');
2341 }
2342 return 0;
2343 }
2344
2345 struct seq_operations zoneinfo_op = {
2346 .start = frag_start, /* iterate over all zones. The same as in
2347 * fragmentation. */
2348 .next = frag_next,
2349 .stop = frag_stop,
2350 .show = zoneinfo_show,
2351 };
2352
2353 static char *vmstat_text[] = {
2354 "nr_dirty",
2355 "nr_writeback",
2356 "nr_unstable",
2357 "nr_page_table_pages",
2358 "nr_mapped",
2359 "nr_slab",
2360
2361 "pgpgin",
2362 "pgpgout",
2363 "pswpin",
2364 "pswpout",
2365
2366 "pgalloc_high",
2367 "pgalloc_normal",
2368 "pgalloc_dma32",
2369 "pgalloc_dma",
2370
2371 "pgfree",
2372 "pgactivate",
2373 "pgdeactivate",
2374
2375 "pgfault",
2376 "pgmajfault",
2377
2378 "pgrefill_high",
2379 "pgrefill_normal",
2380 "pgrefill_dma32",
2381 "pgrefill_dma",
2382
2383 "pgsteal_high",
2384 "pgsteal_normal",
2385 "pgsteal_dma32",
2386 "pgsteal_dma",
2387
2388 "pgscan_kswapd_high",
2389 "pgscan_kswapd_normal",
2390 "pgscan_kswapd_dma32",
2391 "pgscan_kswapd_dma",
2392
2393 "pgscan_direct_high",
2394 "pgscan_direct_normal",
2395 "pgscan_direct_dma32",
2396 "pgscan_direct_dma",
2397
2398 "pginodesteal",
2399 "slabs_scanned",
2400 "kswapd_steal",
2401 "kswapd_inodesteal",
2402 "pageoutrun",
2403 "allocstall",
2404
2405 "pgrotated",
2406 "nr_bounce",
2407 };
2408
2409 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2410 {
2411 struct page_state *ps;
2412
2413 if (*pos >= ARRAY_SIZE(vmstat_text))
2414 return NULL;
2415
2416 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2417 m->private = ps;
2418 if (!ps)
2419 return ERR_PTR(-ENOMEM);
2420 get_full_page_state(ps);
2421 ps->pgpgin /= 2; /* sectors -> kbytes */
2422 ps->pgpgout /= 2;
2423 return (unsigned long *)ps + *pos;
2424 }
2425
2426 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2427 {
2428 (*pos)++;
2429 if (*pos >= ARRAY_SIZE(vmstat_text))
2430 return NULL;
2431 return (unsigned long *)m->private + *pos;
2432 }
2433
2434 static int vmstat_show(struct seq_file *m, void *arg)
2435 {
2436 unsigned long *l = arg;
2437 unsigned long off = l - (unsigned long *)m->private;
2438
2439 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2440 return 0;
2441 }
2442
2443 static void vmstat_stop(struct seq_file *m, void *arg)
2444 {
2445 kfree(m->private);
2446 m->private = NULL;
2447 }
2448
2449 struct seq_operations vmstat_op = {
2450 .start = vmstat_start,
2451 .next = vmstat_next,
2452 .stop = vmstat_stop,
2453 .show = vmstat_show,
2454 };
2455
2456 #endif /* CONFIG_PROC_FS */
2457
2458 #ifdef CONFIG_HOTPLUG_CPU
2459 static int page_alloc_cpu_notify(struct notifier_block *self,
2460 unsigned long action, void *hcpu)
2461 {
2462 int cpu = (unsigned long)hcpu;
2463 long *count;
2464 unsigned long *src, *dest;
2465
2466 if (action == CPU_DEAD) {
2467 int i;
2468
2469 /* Drain local pagecache count. */
2470 count = &per_cpu(nr_pagecache_local, cpu);
2471 atomic_add(*count, &nr_pagecache);
2472 *count = 0;
2473 local_irq_disable();
2474 __drain_pages(cpu);
2475
2476 /* Add dead cpu's page_states to our own. */
2477 dest = (unsigned long *)&__get_cpu_var(page_states);
2478 src = (unsigned long *)&per_cpu(page_states, cpu);
2479
2480 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2481 i++) {
2482 dest[i] += src[i];
2483 src[i] = 0;
2484 }
2485
2486 local_irq_enable();
2487 }
2488 return NOTIFY_OK;
2489 }
2490 #endif /* CONFIG_HOTPLUG_CPU */
2491
2492 void __init page_alloc_init(void)
2493 {
2494 hotcpu_notifier(page_alloc_cpu_notify, 0);
2495 }
2496
2497 /*
2498 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2499 * or min_free_kbytes changes.
2500 */
2501 static void calculate_totalreserve_pages(void)
2502 {
2503 struct pglist_data *pgdat;
2504 unsigned long reserve_pages = 0;
2505 int i, j;
2506
2507 for_each_online_pgdat(pgdat) {
2508 for (i = 0; i < MAX_NR_ZONES; i++) {
2509 struct zone *zone = pgdat->node_zones + i;
2510 unsigned long max = 0;
2511
2512 /* Find valid and maximum lowmem_reserve in the zone */
2513 for (j = i; j < MAX_NR_ZONES; j++) {
2514 if (zone->lowmem_reserve[j] > max)
2515 max = zone->lowmem_reserve[j];
2516 }
2517
2518 /* we treat pages_high as reserved pages. */
2519 max += zone->pages_high;
2520
2521 if (max > zone->present_pages)
2522 max = zone->present_pages;
2523 reserve_pages += max;
2524 }
2525 }
2526 totalreserve_pages = reserve_pages;
2527 }
2528
2529 /*
2530 * setup_per_zone_lowmem_reserve - called whenever
2531 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2532 * has a correct pages reserved value, so an adequate number of
2533 * pages are left in the zone after a successful __alloc_pages().
2534 */
2535 static void setup_per_zone_lowmem_reserve(void)
2536 {
2537 struct pglist_data *pgdat;
2538 int j, idx;
2539
2540 for_each_online_pgdat(pgdat) {
2541 for (j = 0; j < MAX_NR_ZONES; j++) {
2542 struct zone *zone = pgdat->node_zones + j;
2543 unsigned long present_pages = zone->present_pages;
2544
2545 zone->lowmem_reserve[j] = 0;
2546
2547 for (idx = j-1; idx >= 0; idx--) {
2548 struct zone *lower_zone;
2549
2550 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2551 sysctl_lowmem_reserve_ratio[idx] = 1;
2552
2553 lower_zone = pgdat->node_zones + idx;
2554 lower_zone->lowmem_reserve[j] = present_pages /
2555 sysctl_lowmem_reserve_ratio[idx];
2556 present_pages += lower_zone->present_pages;
2557 }
2558 }
2559 }
2560
2561 /* update totalreserve_pages */
2562 calculate_totalreserve_pages();
2563 }
2564
2565 /*
2566 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2567 * that the pages_{min,low,high} values for each zone are set correctly
2568 * with respect to min_free_kbytes.
2569 */
2570 void setup_per_zone_pages_min(void)
2571 {
2572 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2573 unsigned long lowmem_pages = 0;
2574 struct zone *zone;
2575 unsigned long flags;
2576
2577 /* Calculate total number of !ZONE_HIGHMEM pages */
2578 for_each_zone(zone) {
2579 if (!is_highmem(zone))
2580 lowmem_pages += zone->present_pages;
2581 }
2582
2583 for_each_zone(zone) {
2584 u64 tmp;
2585
2586 spin_lock_irqsave(&zone->lru_lock, flags);
2587 tmp = (u64)pages_min * zone->present_pages;
2588 do_div(tmp, lowmem_pages);
2589 if (is_highmem(zone)) {
2590 /*
2591 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2592 * need highmem pages, so cap pages_min to a small
2593 * value here.
2594 *
2595 * The (pages_high-pages_low) and (pages_low-pages_min)
2596 * deltas controls asynch page reclaim, and so should
2597 * not be capped for highmem.
2598 */
2599 int min_pages;
2600
2601 min_pages = zone->present_pages / 1024;
2602 if (min_pages < SWAP_CLUSTER_MAX)
2603 min_pages = SWAP_CLUSTER_MAX;
2604 if (min_pages > 128)
2605 min_pages = 128;
2606 zone->pages_min = min_pages;
2607 } else {
2608 /*
2609 * If it's a lowmem zone, reserve a number of pages
2610 * proportionate to the zone's size.
2611 */
2612 zone->pages_min = tmp;
2613 }
2614
2615 zone->pages_low = zone->pages_min + (tmp >> 2);
2616 zone->pages_high = zone->pages_min + (tmp >> 1);
2617 spin_unlock_irqrestore(&zone->lru_lock, flags);
2618 }
2619
2620 /* update totalreserve_pages */
2621 calculate_totalreserve_pages();
2622 }
2623
2624 /*
2625 * Initialise min_free_kbytes.
2626 *
2627 * For small machines we want it small (128k min). For large machines
2628 * we want it large (64MB max). But it is not linear, because network
2629 * bandwidth does not increase linearly with machine size. We use
2630 *
2631 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2632 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2633 *
2634 * which yields
2635 *
2636 * 16MB: 512k
2637 * 32MB: 724k
2638 * 64MB: 1024k
2639 * 128MB: 1448k
2640 * 256MB: 2048k
2641 * 512MB: 2896k
2642 * 1024MB: 4096k
2643 * 2048MB: 5792k
2644 * 4096MB: 8192k
2645 * 8192MB: 11584k
2646 * 16384MB: 16384k
2647 */
2648 static int __init init_per_zone_pages_min(void)
2649 {
2650 unsigned long lowmem_kbytes;
2651
2652 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2653
2654 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2655 if (min_free_kbytes < 128)
2656 min_free_kbytes = 128;
2657 if (min_free_kbytes > 65536)
2658 min_free_kbytes = 65536;
2659 setup_per_zone_pages_min();
2660 setup_per_zone_lowmem_reserve();
2661 return 0;
2662 }
2663 module_init(init_per_zone_pages_min)
2664
2665 /*
2666 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2667 * that we can call two helper functions whenever min_free_kbytes
2668 * changes.
2669 */
2670 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2671 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2672 {
2673 proc_dointvec(table, write, file, buffer, length, ppos);
2674 setup_per_zone_pages_min();
2675 return 0;
2676 }
2677
2678 /*
2679 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2680 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2681 * whenever sysctl_lowmem_reserve_ratio changes.
2682 *
2683 * The reserve ratio obviously has absolutely no relation with the
2684 * pages_min watermarks. The lowmem reserve ratio can only make sense
2685 * if in function of the boot time zone sizes.
2686 */
2687 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2688 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2689 {
2690 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2691 setup_per_zone_lowmem_reserve();
2692 return 0;
2693 }
2694
2695 /*
2696 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2697 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2698 * can have before it gets flushed back to buddy allocator.
2699 */
2700
2701 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2702 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2703 {
2704 struct zone *zone;
2705 unsigned int cpu;
2706 int ret;
2707
2708 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2709 if (!write || (ret == -EINVAL))
2710 return ret;
2711 for_each_zone(zone) {
2712 for_each_online_cpu(cpu) {
2713 unsigned long high;
2714 high = zone->present_pages / percpu_pagelist_fraction;
2715 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2716 }
2717 }
2718 return 0;
2719 }
2720
2721 __initdata int hashdist = HASHDIST_DEFAULT;
2722
2723 #ifdef CONFIG_NUMA
2724 static int __init set_hashdist(char *str)
2725 {
2726 if (!str)
2727 return 0;
2728 hashdist = simple_strtoul(str, &str, 0);
2729 return 1;
2730 }
2731 __setup("hashdist=", set_hashdist);
2732 #endif
2733
2734 /*
2735 * allocate a large system hash table from bootmem
2736 * - it is assumed that the hash table must contain an exact power-of-2
2737 * quantity of entries
2738 * - limit is the number of hash buckets, not the total allocation size
2739 */
2740 void *__init alloc_large_system_hash(const char *tablename,
2741 unsigned long bucketsize,
2742 unsigned long numentries,
2743 int scale,
2744 int flags,
2745 unsigned int *_hash_shift,
2746 unsigned int *_hash_mask,
2747 unsigned long limit)
2748 {
2749 unsigned long long max = limit;
2750 unsigned long log2qty, size;
2751 void *table = NULL;
2752
2753 /* allow the kernel cmdline to have a say */
2754 if (!numentries) {
2755 /* round applicable memory size up to nearest megabyte */
2756 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2757 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2758 numentries >>= 20 - PAGE_SHIFT;
2759 numentries <<= 20 - PAGE_SHIFT;
2760
2761 /* limit to 1 bucket per 2^scale bytes of low memory */
2762 if (scale > PAGE_SHIFT)
2763 numentries >>= (scale - PAGE_SHIFT);
2764 else
2765 numentries <<= (PAGE_SHIFT - scale);
2766 }
2767 numentries = roundup_pow_of_two(numentries);
2768
2769 /* limit allocation size to 1/16 total memory by default */
2770 if (max == 0) {
2771 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2772 do_div(max, bucketsize);
2773 }
2774
2775 if (numentries > max)
2776 numentries = max;
2777
2778 log2qty = long_log2(numentries);
2779
2780 do {
2781 size = bucketsize << log2qty;
2782 if (flags & HASH_EARLY)
2783 table = alloc_bootmem(size);
2784 else if (hashdist)
2785 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2786 else {
2787 unsigned long order;
2788 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2789 ;
2790 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2791 }
2792 } while (!table && size > PAGE_SIZE && --log2qty);
2793
2794 if (!table)
2795 panic("Failed to allocate %s hash table\n", tablename);
2796
2797 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2798 tablename,
2799 (1U << log2qty),
2800 long_log2(size) - PAGE_SHIFT,
2801 size);
2802
2803 if (_hash_shift)
2804 *_hash_shift = log2qty;
2805 if (_hash_mask)
2806 *_hash_mask = (1 << log2qty) - 1;
2807
2808 return table;
2809 }
2810
2811 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2812 /*
2813 * pfn <-> page translation. out-of-line version.
2814 * (see asm-generic/memory_model.h)
2815 */
2816 #if defined(CONFIG_FLATMEM)
2817 struct page *pfn_to_page(unsigned long pfn)
2818 {
2819 return mem_map + (pfn - ARCH_PFN_OFFSET);
2820 }
2821 unsigned long page_to_pfn(struct page *page)
2822 {
2823 return (page - mem_map) + ARCH_PFN_OFFSET;
2824 }
2825 #elif defined(CONFIG_DISCONTIGMEM)
2826 struct page *pfn_to_page(unsigned long pfn)
2827 {
2828 int nid = arch_pfn_to_nid(pfn);
2829 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2830 }
2831 unsigned long page_to_pfn(struct page *page)
2832 {
2833 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2834 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2835 }
2836 #elif defined(CONFIG_SPARSEMEM)
2837 struct page *pfn_to_page(unsigned long pfn)
2838 {
2839 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2840 }
2841
2842 unsigned long page_to_pfn(struct page *page)
2843 {
2844 long section_id = page_to_section(page);
2845 return page - __section_mem_map_addr(__nr_to_section(section_id));
2846 }
2847 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2848 EXPORT_SYMBOL(pfn_to_page);
2849 EXPORT_SYMBOL(page_to_pfn);
2850 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
This page took 0.309238 seconds and 6 git commands to generate.