badpage: ratelimit print_bad_pte and bad_page
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 unsigned long highest_memmap_pfn __read_mostly;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 static unsigned long resume;
227 static unsigned long nr_shown;
228 static unsigned long nr_unshown;
229
230 /*
231 * Allow a burst of 60 reports, then keep quiet for that minute;
232 * or allow a steady drip of one report per second.
233 */
234 if (nr_shown == 60) {
235 if (time_before(jiffies, resume)) {
236 nr_unshown++;
237 goto out;
238 }
239 if (nr_unshown) {
240 printk(KERN_EMERG
241 "Bad page state: %lu messages suppressed\n",
242 nr_unshown);
243 nr_unshown = 0;
244 }
245 nr_shown = 0;
246 }
247 if (nr_shown++ == 0)
248 resume = jiffies + 60 * HZ;
249
250 printk(KERN_EMERG "Bad page state in process %s pfn:%05lx\n",
251 current->comm, page_to_pfn(page));
252 printk(KERN_EMERG
253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 page, (void *)page->flags, page_count(page),
255 page_mapcount(page), page->mapping, page->index);
256 printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
257
258 dump_stack();
259 out:
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
262 add_taint(TAINT_BAD_PAGE);
263 }
264
265 /*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
278 */
279
280 static void free_compound_page(struct page *page)
281 {
282 __free_pages_ok(page, compound_order(page));
283 }
284
285 void prep_compound_page(struct page *page, unsigned long order)
286 {
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299 }
300
301 #ifdef CONFIG_HUGETLBFS
302 void prep_compound_gigantic_page(struct page *page, unsigned long order)
303 {
304 int i;
305 int nr_pages = 1 << order;
306 struct page *p = page + 1;
307
308 set_compound_page_dtor(page, free_compound_page);
309 set_compound_order(page, order);
310 __SetPageHead(page);
311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
312 __SetPageTail(p);
313 p->first_page = page;
314 }
315 }
316 #endif
317
318 static int destroy_compound_page(struct page *page, unsigned long order)
319 {
320 int i;
321 int nr_pages = 1 << order;
322 int bad = 0;
323
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
326 bad_page(page);
327 bad++;
328 }
329
330 __ClearPageHead(page);
331
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
334
335 if (unlikely(!PageTail(p) | (p->first_page != page))) {
336 bad_page(page);
337 bad++;
338 }
339 __ClearPageTail(p);
340 }
341
342 return bad;
343 }
344
345 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346 {
347 int i;
348
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356 }
357
358 static inline void set_page_order(struct page *page, int order)
359 {
360 set_page_private(page, order);
361 __SetPageBuddy(page);
362 }
363
364 static inline void rmv_page_order(struct page *page)
365 {
366 __ClearPageBuddy(page);
367 set_page_private(page, 0);
368 }
369
370 /*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
386 */
387 static inline struct page *
388 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389 {
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393 }
394
395 static inline unsigned long
396 __find_combined_index(unsigned long page_idx, unsigned int order)
397 {
398 return (page_idx & ~(1 << order));
399 }
400
401 /*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
404 * (a) the buddy is not in a hole &&
405 * (b) the buddy is in the buddy system &&
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
411 *
412 * For recording page's order, we use page_private(page).
413 */
414 static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
416 {
417 if (!pfn_valid_within(page_to_pfn(buddy)))
418 return 0;
419
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
425 return 1;
426 }
427 return 0;
428 }
429
430 /*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
444 * order is recorded in page_private(page) field.
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
454 static inline void __free_one_page(struct page *page,
455 struct zone *zone, unsigned int order)
456 {
457 unsigned long page_idx;
458 int order_size = 1 << order;
459 int migratetype = get_pageblock_migratetype(page);
460
461 if (unlikely(PageCompound(page)))
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
464
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
469
470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
473 struct page *buddy;
474
475 buddy = __page_find_buddy(page, page_idx, order);
476 if (!page_is_buddy(page, buddy, order))
477 break;
478
479 /* Our buddy is free, merge with it and move up one order. */
480 list_del(&buddy->lru);
481 zone->free_area[order].nr_free--;
482 rmv_page_order(buddy);
483 combined_idx = __find_combined_index(page_idx, order);
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
487 }
488 set_page_order(page, order);
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
491 zone->free_area[order].nr_free++;
492 }
493
494 static inline int free_pages_check(struct page *page)
495 {
496 free_page_mlock(page);
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
501 bad_page(page);
502 return 1;
503 }
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
507 }
508
509 /*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
512 * count is the number of pages to free.
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
520 static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
522 {
523 spin_lock(&zone->lock);
524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
525 zone->pages_scanned = 0;
526 while (count--) {
527 struct page *page;
528
529 VM_BUG_ON(list_empty(list));
530 page = list_entry(list->prev, struct page, lru);
531 /* have to delete it as __free_one_page list manipulates */
532 list_del(&page->lru);
533 __free_one_page(page, zone, order);
534 }
535 spin_unlock(&zone->lock);
536 }
537
538 static void free_one_page(struct zone *zone, struct page *page, int order)
539 {
540 spin_lock(&zone->lock);
541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
542 zone->pages_scanned = 0;
543 __free_one_page(page, zone, order);
544 spin_unlock(&zone->lock);
545 }
546
547 static void __free_pages_ok(struct page *page, unsigned int order)
548 {
549 unsigned long flags;
550 int i;
551 int bad = 0;
552
553 for (i = 0 ; i < (1 << order) ; ++i)
554 bad += free_pages_check(page + i);
555 if (bad)
556 return;
557
558 if (!PageHighMem(page)) {
559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
562 }
563 arch_free_page(page, order);
564 kernel_map_pages(page, 1 << order, 0);
565
566 local_irq_save(flags);
567 __count_vm_events(PGFREE, 1 << order);
568 free_one_page(page_zone(page), page, order);
569 local_irq_restore(flags);
570 }
571
572 /*
573 * permit the bootmem allocator to evade page validation on high-order frees
574 */
575 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
576 {
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
580 set_page_refcounted(page);
581 __free_page(page);
582 } else {
583 int loop;
584
585 prefetchw(page);
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
588
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
593 }
594
595 set_page_refcounted(page);
596 __free_pages(page, order);
597 }
598 }
599
600
601 /*
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
612 *
613 * -- wli
614 */
615 static inline void expand(struct zone *zone, struct page *page,
616 int low, int high, struct free_area *area,
617 int migratetype)
618 {
619 unsigned long size = 1 << high;
620
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
625 VM_BUG_ON(bad_range(zone, &page[size]));
626 list_add(&page[size].lru, &area->free_list[migratetype]);
627 area->nr_free++;
628 set_page_order(&page[size], high);
629 }
630 }
631
632 /*
633 * This page is about to be returned from the page allocator
634 */
635 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
636 {
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
641 bad_page(page);
642 return 1;
643 }
644
645 set_page_private(page, 0);
646 set_page_refcounted(page);
647
648 arch_alloc_page(page, order);
649 kernel_map_pages(page, 1 << order, 1);
650
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
653
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
656
657 return 0;
658 }
659
660 /*
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
663 */
664 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
665 int migratetype)
666 {
667 unsigned int current_order;
668 struct free_area * area;
669 struct page *page;
670
671 /* Find a page of the appropriate size in the preferred list */
672 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
673 area = &(zone->free_area[current_order]);
674 if (list_empty(&area->free_list[migratetype]))
675 continue;
676
677 page = list_entry(area->free_list[migratetype].next,
678 struct page, lru);
679 list_del(&page->lru);
680 rmv_page_order(page);
681 area->nr_free--;
682 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
683 expand(zone, page, order, current_order, area, migratetype);
684 return page;
685 }
686
687 return NULL;
688 }
689
690
691 /*
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
694 */
695 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
696 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
700 };
701
702 /*
703 * Move the free pages in a range to the free lists of the requested type.
704 * Note that start_page and end_pages are not aligned on a pageblock
705 * boundary. If alignment is required, use move_freepages_block()
706 */
707 static int move_freepages(struct zone *zone,
708 struct page *start_page, struct page *end_page,
709 int migratetype)
710 {
711 struct page *page;
712 unsigned long order;
713 int pages_moved = 0;
714
715 #ifndef CONFIG_HOLES_IN_ZONE
716 /*
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
721 * grouping pages by mobility
722 */
723 BUG_ON(page_zone(start_page) != page_zone(end_page));
724 #endif
725
726 for (page = start_page; page <= end_page;) {
727 /* Make sure we are not inadvertently changing nodes */
728 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
729
730 if (!pfn_valid_within(page_to_pfn(page))) {
731 page++;
732 continue;
733 }
734
735 if (!PageBuddy(page)) {
736 page++;
737 continue;
738 }
739
740 order = page_order(page);
741 list_del(&page->lru);
742 list_add(&page->lru,
743 &zone->free_area[order].free_list[migratetype]);
744 page += 1 << order;
745 pages_moved += 1 << order;
746 }
747
748 return pages_moved;
749 }
750
751 static int move_freepages_block(struct zone *zone, struct page *page,
752 int migratetype)
753 {
754 unsigned long start_pfn, end_pfn;
755 struct page *start_page, *end_page;
756
757 start_pfn = page_to_pfn(page);
758 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
759 start_page = pfn_to_page(start_pfn);
760 end_page = start_page + pageblock_nr_pages - 1;
761 end_pfn = start_pfn + pageblock_nr_pages - 1;
762
763 /* Do not cross zone boundaries */
764 if (start_pfn < zone->zone_start_pfn)
765 start_page = page;
766 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
767 return 0;
768
769 return move_freepages(zone, start_page, end_page, migratetype);
770 }
771
772 /* Remove an element from the buddy allocator from the fallback list */
773 static struct page *__rmqueue_fallback(struct zone *zone, int order,
774 int start_migratetype)
775 {
776 struct free_area * area;
777 int current_order;
778 struct page *page;
779 int migratetype, i;
780
781 /* Find the largest possible block of pages in the other list */
782 for (current_order = MAX_ORDER-1; current_order >= order;
783 --current_order) {
784 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
785 migratetype = fallbacks[start_migratetype][i];
786
787 /* MIGRATE_RESERVE handled later if necessary */
788 if (migratetype == MIGRATE_RESERVE)
789 continue;
790
791 area = &(zone->free_area[current_order]);
792 if (list_empty(&area->free_list[migratetype]))
793 continue;
794
795 page = list_entry(area->free_list[migratetype].next,
796 struct page, lru);
797 area->nr_free--;
798
799 /*
800 * If breaking a large block of pages, move all free
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
804 */
805 if (unlikely(current_order >= (pageblock_order >> 1)) ||
806 start_migratetype == MIGRATE_RECLAIMABLE) {
807 unsigned long pages;
808 pages = move_freepages_block(zone, page,
809 start_migratetype);
810
811 /* Claim the whole block if over half of it is free */
812 if (pages >= (1 << (pageblock_order-1)))
813 set_pageblock_migratetype(page,
814 start_migratetype);
815
816 migratetype = start_migratetype;
817 }
818
819 /* Remove the page from the freelists */
820 list_del(&page->lru);
821 rmv_page_order(page);
822 __mod_zone_page_state(zone, NR_FREE_PAGES,
823 -(1UL << order));
824
825 if (current_order == pageblock_order)
826 set_pageblock_migratetype(page,
827 start_migratetype);
828
829 expand(zone, page, order, current_order, area, migratetype);
830 return page;
831 }
832 }
833
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
836 }
837
838 /*
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
841 */
842 static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
844 {
845 struct page *page;
846
847 page = __rmqueue_smallest(zone, order, migratetype);
848
849 if (unlikely(!page))
850 page = __rmqueue_fallback(zone, order, migratetype);
851
852 return page;
853 }
854
855 /*
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
859 */
860 static int rmqueue_bulk(struct zone *zone, unsigned int order,
861 unsigned long count, struct list_head *list,
862 int migratetype)
863 {
864 int i;
865
866 spin_lock(&zone->lock);
867 for (i = 0; i < count; ++i) {
868 struct page *page = __rmqueue(zone, order, migratetype);
869 if (unlikely(page == NULL))
870 break;
871
872 /*
873 * Split buddy pages returned by expand() are received here
874 * in physical page order. The page is added to the callers and
875 * list and the list head then moves forward. From the callers
876 * perspective, the linked list is ordered by page number in
877 * some conditions. This is useful for IO devices that can
878 * merge IO requests if the physical pages are ordered
879 * properly.
880 */
881 list_add(&page->lru, list);
882 set_page_private(page, migratetype);
883 list = &page->lru;
884 }
885 spin_unlock(&zone->lock);
886 return i;
887 }
888
889 #ifdef CONFIG_NUMA
890 /*
891 * Called from the vmstat counter updater to drain pagesets of this
892 * currently executing processor on remote nodes after they have
893 * expired.
894 *
895 * Note that this function must be called with the thread pinned to
896 * a single processor.
897 */
898 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
899 {
900 unsigned long flags;
901 int to_drain;
902
903 local_irq_save(flags);
904 if (pcp->count >= pcp->batch)
905 to_drain = pcp->batch;
906 else
907 to_drain = pcp->count;
908 free_pages_bulk(zone, to_drain, &pcp->list, 0);
909 pcp->count -= to_drain;
910 local_irq_restore(flags);
911 }
912 #endif
913
914 /*
915 * Drain pages of the indicated processor.
916 *
917 * The processor must either be the current processor and the
918 * thread pinned to the current processor or a processor that
919 * is not online.
920 */
921 static void drain_pages(unsigned int cpu)
922 {
923 unsigned long flags;
924 struct zone *zone;
925
926 for_each_zone(zone) {
927 struct per_cpu_pageset *pset;
928 struct per_cpu_pages *pcp;
929
930 if (!populated_zone(zone))
931 continue;
932
933 pset = zone_pcp(zone, cpu);
934
935 pcp = &pset->pcp;
936 local_irq_save(flags);
937 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
938 pcp->count = 0;
939 local_irq_restore(flags);
940 }
941 }
942
943 /*
944 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
945 */
946 void drain_local_pages(void *arg)
947 {
948 drain_pages(smp_processor_id());
949 }
950
951 /*
952 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
953 */
954 void drain_all_pages(void)
955 {
956 on_each_cpu(drain_local_pages, NULL, 1);
957 }
958
959 #ifdef CONFIG_HIBERNATION
960
961 void mark_free_pages(struct zone *zone)
962 {
963 unsigned long pfn, max_zone_pfn;
964 unsigned long flags;
965 int order, t;
966 struct list_head *curr;
967
968 if (!zone->spanned_pages)
969 return;
970
971 spin_lock_irqsave(&zone->lock, flags);
972
973 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
974 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
975 if (pfn_valid(pfn)) {
976 struct page *page = pfn_to_page(pfn);
977
978 if (!swsusp_page_is_forbidden(page))
979 swsusp_unset_page_free(page);
980 }
981
982 for_each_migratetype_order(order, t) {
983 list_for_each(curr, &zone->free_area[order].free_list[t]) {
984 unsigned long i;
985
986 pfn = page_to_pfn(list_entry(curr, struct page, lru));
987 for (i = 0; i < (1UL << order); i++)
988 swsusp_set_page_free(pfn_to_page(pfn + i));
989 }
990 }
991 spin_unlock_irqrestore(&zone->lock, flags);
992 }
993 #endif /* CONFIG_PM */
994
995 /*
996 * Free a 0-order page
997 */
998 static void free_hot_cold_page(struct page *page, int cold)
999 {
1000 struct zone *zone = page_zone(page);
1001 struct per_cpu_pages *pcp;
1002 unsigned long flags;
1003
1004 if (PageAnon(page))
1005 page->mapping = NULL;
1006 if (free_pages_check(page))
1007 return;
1008
1009 if (!PageHighMem(page)) {
1010 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1011 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1012 }
1013 arch_free_page(page, 0);
1014 kernel_map_pages(page, 1, 0);
1015
1016 pcp = &zone_pcp(zone, get_cpu())->pcp;
1017 local_irq_save(flags);
1018 __count_vm_event(PGFREE);
1019 if (cold)
1020 list_add_tail(&page->lru, &pcp->list);
1021 else
1022 list_add(&page->lru, &pcp->list);
1023 set_page_private(page, get_pageblock_migratetype(page));
1024 pcp->count++;
1025 if (pcp->count >= pcp->high) {
1026 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1027 pcp->count -= pcp->batch;
1028 }
1029 local_irq_restore(flags);
1030 put_cpu();
1031 }
1032
1033 void free_hot_page(struct page *page)
1034 {
1035 free_hot_cold_page(page, 0);
1036 }
1037
1038 void free_cold_page(struct page *page)
1039 {
1040 free_hot_cold_page(page, 1);
1041 }
1042
1043 /*
1044 * split_page takes a non-compound higher-order page, and splits it into
1045 * n (1<<order) sub-pages: page[0..n]
1046 * Each sub-page must be freed individually.
1047 *
1048 * Note: this is probably too low level an operation for use in drivers.
1049 * Please consult with lkml before using this in your driver.
1050 */
1051 void split_page(struct page *page, unsigned int order)
1052 {
1053 int i;
1054
1055 VM_BUG_ON(PageCompound(page));
1056 VM_BUG_ON(!page_count(page));
1057 for (i = 1; i < (1 << order); i++)
1058 set_page_refcounted(page + i);
1059 }
1060
1061 /*
1062 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1063 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1064 * or two.
1065 */
1066 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1067 struct zone *zone, int order, gfp_t gfp_flags)
1068 {
1069 unsigned long flags;
1070 struct page *page;
1071 int cold = !!(gfp_flags & __GFP_COLD);
1072 int cpu;
1073 int migratetype = allocflags_to_migratetype(gfp_flags);
1074
1075 again:
1076 cpu = get_cpu();
1077 if (likely(order == 0)) {
1078 struct per_cpu_pages *pcp;
1079
1080 pcp = &zone_pcp(zone, cpu)->pcp;
1081 local_irq_save(flags);
1082 if (!pcp->count) {
1083 pcp->count = rmqueue_bulk(zone, 0,
1084 pcp->batch, &pcp->list, migratetype);
1085 if (unlikely(!pcp->count))
1086 goto failed;
1087 }
1088
1089 /* Find a page of the appropriate migrate type */
1090 if (cold) {
1091 list_for_each_entry_reverse(page, &pcp->list, lru)
1092 if (page_private(page) == migratetype)
1093 break;
1094 } else {
1095 list_for_each_entry(page, &pcp->list, lru)
1096 if (page_private(page) == migratetype)
1097 break;
1098 }
1099
1100 /* Allocate more to the pcp list if necessary */
1101 if (unlikely(&page->lru == &pcp->list)) {
1102 pcp->count += rmqueue_bulk(zone, 0,
1103 pcp->batch, &pcp->list, migratetype);
1104 page = list_entry(pcp->list.next, struct page, lru);
1105 }
1106
1107 list_del(&page->lru);
1108 pcp->count--;
1109 } else {
1110 spin_lock_irqsave(&zone->lock, flags);
1111 page = __rmqueue(zone, order, migratetype);
1112 spin_unlock(&zone->lock);
1113 if (!page)
1114 goto failed;
1115 }
1116
1117 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1118 zone_statistics(preferred_zone, zone);
1119 local_irq_restore(flags);
1120 put_cpu();
1121
1122 VM_BUG_ON(bad_range(zone, page));
1123 if (prep_new_page(page, order, gfp_flags))
1124 goto again;
1125 return page;
1126
1127 failed:
1128 local_irq_restore(flags);
1129 put_cpu();
1130 return NULL;
1131 }
1132
1133 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1134 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1135 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1136 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1137 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1138 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1139 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1140
1141 #ifdef CONFIG_FAIL_PAGE_ALLOC
1142
1143 static struct fail_page_alloc_attr {
1144 struct fault_attr attr;
1145
1146 u32 ignore_gfp_highmem;
1147 u32 ignore_gfp_wait;
1148 u32 min_order;
1149
1150 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1151
1152 struct dentry *ignore_gfp_highmem_file;
1153 struct dentry *ignore_gfp_wait_file;
1154 struct dentry *min_order_file;
1155
1156 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1157
1158 } fail_page_alloc = {
1159 .attr = FAULT_ATTR_INITIALIZER,
1160 .ignore_gfp_wait = 1,
1161 .ignore_gfp_highmem = 1,
1162 .min_order = 1,
1163 };
1164
1165 static int __init setup_fail_page_alloc(char *str)
1166 {
1167 return setup_fault_attr(&fail_page_alloc.attr, str);
1168 }
1169 __setup("fail_page_alloc=", setup_fail_page_alloc);
1170
1171 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1172 {
1173 if (order < fail_page_alloc.min_order)
1174 return 0;
1175 if (gfp_mask & __GFP_NOFAIL)
1176 return 0;
1177 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1178 return 0;
1179 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1180 return 0;
1181
1182 return should_fail(&fail_page_alloc.attr, 1 << order);
1183 }
1184
1185 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1186
1187 static int __init fail_page_alloc_debugfs(void)
1188 {
1189 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1190 struct dentry *dir;
1191 int err;
1192
1193 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1194 "fail_page_alloc");
1195 if (err)
1196 return err;
1197 dir = fail_page_alloc.attr.dentries.dir;
1198
1199 fail_page_alloc.ignore_gfp_wait_file =
1200 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1201 &fail_page_alloc.ignore_gfp_wait);
1202
1203 fail_page_alloc.ignore_gfp_highmem_file =
1204 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1205 &fail_page_alloc.ignore_gfp_highmem);
1206 fail_page_alloc.min_order_file =
1207 debugfs_create_u32("min-order", mode, dir,
1208 &fail_page_alloc.min_order);
1209
1210 if (!fail_page_alloc.ignore_gfp_wait_file ||
1211 !fail_page_alloc.ignore_gfp_highmem_file ||
1212 !fail_page_alloc.min_order_file) {
1213 err = -ENOMEM;
1214 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1215 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1216 debugfs_remove(fail_page_alloc.min_order_file);
1217 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1218 }
1219
1220 return err;
1221 }
1222
1223 late_initcall(fail_page_alloc_debugfs);
1224
1225 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1226
1227 #else /* CONFIG_FAIL_PAGE_ALLOC */
1228
1229 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1230 {
1231 return 0;
1232 }
1233
1234 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1235
1236 /*
1237 * Return 1 if free pages are above 'mark'. This takes into account the order
1238 * of the allocation.
1239 */
1240 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1241 int classzone_idx, int alloc_flags)
1242 {
1243 /* free_pages my go negative - that's OK */
1244 long min = mark;
1245 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1246 int o;
1247
1248 if (alloc_flags & ALLOC_HIGH)
1249 min -= min / 2;
1250 if (alloc_flags & ALLOC_HARDER)
1251 min -= min / 4;
1252
1253 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1254 return 0;
1255 for (o = 0; o < order; o++) {
1256 /* At the next order, this order's pages become unavailable */
1257 free_pages -= z->free_area[o].nr_free << o;
1258
1259 /* Require fewer higher order pages to be free */
1260 min >>= 1;
1261
1262 if (free_pages <= min)
1263 return 0;
1264 }
1265 return 1;
1266 }
1267
1268 #ifdef CONFIG_NUMA
1269 /*
1270 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1271 * skip over zones that are not allowed by the cpuset, or that have
1272 * been recently (in last second) found to be nearly full. See further
1273 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1274 * that have to skip over a lot of full or unallowed zones.
1275 *
1276 * If the zonelist cache is present in the passed in zonelist, then
1277 * returns a pointer to the allowed node mask (either the current
1278 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1279 *
1280 * If the zonelist cache is not available for this zonelist, does
1281 * nothing and returns NULL.
1282 *
1283 * If the fullzones BITMAP in the zonelist cache is stale (more than
1284 * a second since last zap'd) then we zap it out (clear its bits.)
1285 *
1286 * We hold off even calling zlc_setup, until after we've checked the
1287 * first zone in the zonelist, on the theory that most allocations will
1288 * be satisfied from that first zone, so best to examine that zone as
1289 * quickly as we can.
1290 */
1291 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1292 {
1293 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1294 nodemask_t *allowednodes; /* zonelist_cache approximation */
1295
1296 zlc = zonelist->zlcache_ptr;
1297 if (!zlc)
1298 return NULL;
1299
1300 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1301 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1302 zlc->last_full_zap = jiffies;
1303 }
1304
1305 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1306 &cpuset_current_mems_allowed :
1307 &node_states[N_HIGH_MEMORY];
1308 return allowednodes;
1309 }
1310
1311 /*
1312 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1313 * if it is worth looking at further for free memory:
1314 * 1) Check that the zone isn't thought to be full (doesn't have its
1315 * bit set in the zonelist_cache fullzones BITMAP).
1316 * 2) Check that the zones node (obtained from the zonelist_cache
1317 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1318 * Return true (non-zero) if zone is worth looking at further, or
1319 * else return false (zero) if it is not.
1320 *
1321 * This check -ignores- the distinction between various watermarks,
1322 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1323 * found to be full for any variation of these watermarks, it will
1324 * be considered full for up to one second by all requests, unless
1325 * we are so low on memory on all allowed nodes that we are forced
1326 * into the second scan of the zonelist.
1327 *
1328 * In the second scan we ignore this zonelist cache and exactly
1329 * apply the watermarks to all zones, even it is slower to do so.
1330 * We are low on memory in the second scan, and should leave no stone
1331 * unturned looking for a free page.
1332 */
1333 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1334 nodemask_t *allowednodes)
1335 {
1336 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1337 int i; /* index of *z in zonelist zones */
1338 int n; /* node that zone *z is on */
1339
1340 zlc = zonelist->zlcache_ptr;
1341 if (!zlc)
1342 return 1;
1343
1344 i = z - zonelist->_zonerefs;
1345 n = zlc->z_to_n[i];
1346
1347 /* This zone is worth trying if it is allowed but not full */
1348 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1349 }
1350
1351 /*
1352 * Given 'z' scanning a zonelist, set the corresponding bit in
1353 * zlc->fullzones, so that subsequent attempts to allocate a page
1354 * from that zone don't waste time re-examining it.
1355 */
1356 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1357 {
1358 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1359 int i; /* index of *z in zonelist zones */
1360
1361 zlc = zonelist->zlcache_ptr;
1362 if (!zlc)
1363 return;
1364
1365 i = z - zonelist->_zonerefs;
1366
1367 set_bit(i, zlc->fullzones);
1368 }
1369
1370 #else /* CONFIG_NUMA */
1371
1372 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1373 {
1374 return NULL;
1375 }
1376
1377 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1378 nodemask_t *allowednodes)
1379 {
1380 return 1;
1381 }
1382
1383 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1384 {
1385 }
1386 #endif /* CONFIG_NUMA */
1387
1388 /*
1389 * get_page_from_freelist goes through the zonelist trying to allocate
1390 * a page.
1391 */
1392 static struct page *
1393 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1394 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1395 {
1396 struct zoneref *z;
1397 struct page *page = NULL;
1398 int classzone_idx;
1399 struct zone *zone, *preferred_zone;
1400 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1401 int zlc_active = 0; /* set if using zonelist_cache */
1402 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1403
1404 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1405 &preferred_zone);
1406 if (!preferred_zone)
1407 return NULL;
1408
1409 classzone_idx = zone_idx(preferred_zone);
1410
1411 zonelist_scan:
1412 /*
1413 * Scan zonelist, looking for a zone with enough free.
1414 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1415 */
1416 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1417 high_zoneidx, nodemask) {
1418 if (NUMA_BUILD && zlc_active &&
1419 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1420 continue;
1421 if ((alloc_flags & ALLOC_CPUSET) &&
1422 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1423 goto try_next_zone;
1424
1425 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1426 unsigned long mark;
1427 if (alloc_flags & ALLOC_WMARK_MIN)
1428 mark = zone->pages_min;
1429 else if (alloc_flags & ALLOC_WMARK_LOW)
1430 mark = zone->pages_low;
1431 else
1432 mark = zone->pages_high;
1433 if (!zone_watermark_ok(zone, order, mark,
1434 classzone_idx, alloc_flags)) {
1435 if (!zone_reclaim_mode ||
1436 !zone_reclaim(zone, gfp_mask, order))
1437 goto this_zone_full;
1438 }
1439 }
1440
1441 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1442 if (page)
1443 break;
1444 this_zone_full:
1445 if (NUMA_BUILD)
1446 zlc_mark_zone_full(zonelist, z);
1447 try_next_zone:
1448 if (NUMA_BUILD && !did_zlc_setup) {
1449 /* we do zlc_setup after the first zone is tried */
1450 allowednodes = zlc_setup(zonelist, alloc_flags);
1451 zlc_active = 1;
1452 did_zlc_setup = 1;
1453 }
1454 }
1455
1456 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1457 /* Disable zlc cache for second zonelist scan */
1458 zlc_active = 0;
1459 goto zonelist_scan;
1460 }
1461 return page;
1462 }
1463
1464 /*
1465 * This is the 'heart' of the zoned buddy allocator.
1466 */
1467 struct page *
1468 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1469 struct zonelist *zonelist, nodemask_t *nodemask)
1470 {
1471 const gfp_t wait = gfp_mask & __GFP_WAIT;
1472 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1473 struct zoneref *z;
1474 struct zone *zone;
1475 struct page *page;
1476 struct reclaim_state reclaim_state;
1477 struct task_struct *p = current;
1478 int do_retry;
1479 int alloc_flags;
1480 unsigned long did_some_progress;
1481 unsigned long pages_reclaimed = 0;
1482
1483 might_sleep_if(wait);
1484
1485 if (should_fail_alloc_page(gfp_mask, order))
1486 return NULL;
1487
1488 restart:
1489 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1490
1491 if (unlikely(!z->zone)) {
1492 /*
1493 * Happens if we have an empty zonelist as a result of
1494 * GFP_THISNODE being used on a memoryless node
1495 */
1496 return NULL;
1497 }
1498
1499 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1500 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1501 if (page)
1502 goto got_pg;
1503
1504 /*
1505 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1506 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1507 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1508 * using a larger set of nodes after it has established that the
1509 * allowed per node queues are empty and that nodes are
1510 * over allocated.
1511 */
1512 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1513 goto nopage;
1514
1515 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1516 wakeup_kswapd(zone, order);
1517
1518 /*
1519 * OK, we're below the kswapd watermark and have kicked background
1520 * reclaim. Now things get more complex, so set up alloc_flags according
1521 * to how we want to proceed.
1522 *
1523 * The caller may dip into page reserves a bit more if the caller
1524 * cannot run direct reclaim, or if the caller has realtime scheduling
1525 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1526 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1527 */
1528 alloc_flags = ALLOC_WMARK_MIN;
1529 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1530 alloc_flags |= ALLOC_HARDER;
1531 if (gfp_mask & __GFP_HIGH)
1532 alloc_flags |= ALLOC_HIGH;
1533 if (wait)
1534 alloc_flags |= ALLOC_CPUSET;
1535
1536 /*
1537 * Go through the zonelist again. Let __GFP_HIGH and allocations
1538 * coming from realtime tasks go deeper into reserves.
1539 *
1540 * This is the last chance, in general, before the goto nopage.
1541 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1542 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1543 */
1544 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1545 high_zoneidx, alloc_flags);
1546 if (page)
1547 goto got_pg;
1548
1549 /* This allocation should allow future memory freeing. */
1550
1551 rebalance:
1552 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1553 && !in_interrupt()) {
1554 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1555 nofail_alloc:
1556 /* go through the zonelist yet again, ignoring mins */
1557 page = get_page_from_freelist(gfp_mask, nodemask, order,
1558 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1559 if (page)
1560 goto got_pg;
1561 if (gfp_mask & __GFP_NOFAIL) {
1562 congestion_wait(WRITE, HZ/50);
1563 goto nofail_alloc;
1564 }
1565 }
1566 goto nopage;
1567 }
1568
1569 /* Atomic allocations - we can't balance anything */
1570 if (!wait)
1571 goto nopage;
1572
1573 cond_resched();
1574
1575 /* We now go into synchronous reclaim */
1576 cpuset_memory_pressure_bump();
1577 /*
1578 * The task's cpuset might have expanded its set of allowable nodes
1579 */
1580 cpuset_update_task_memory_state();
1581 p->flags |= PF_MEMALLOC;
1582 reclaim_state.reclaimed_slab = 0;
1583 p->reclaim_state = &reclaim_state;
1584
1585 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1586
1587 p->reclaim_state = NULL;
1588 p->flags &= ~PF_MEMALLOC;
1589
1590 cond_resched();
1591
1592 if (order != 0)
1593 drain_all_pages();
1594
1595 if (likely(did_some_progress)) {
1596 page = get_page_from_freelist(gfp_mask, nodemask, order,
1597 zonelist, high_zoneidx, alloc_flags);
1598 if (page)
1599 goto got_pg;
1600 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1601 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1602 schedule_timeout_uninterruptible(1);
1603 goto restart;
1604 }
1605
1606 /*
1607 * Go through the zonelist yet one more time, keep
1608 * very high watermark here, this is only to catch
1609 * a parallel oom killing, we must fail if we're still
1610 * under heavy pressure.
1611 */
1612 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1613 order, zonelist, high_zoneidx,
1614 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1615 if (page) {
1616 clear_zonelist_oom(zonelist, gfp_mask);
1617 goto got_pg;
1618 }
1619
1620 /* The OOM killer will not help higher order allocs so fail */
1621 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1622 clear_zonelist_oom(zonelist, gfp_mask);
1623 goto nopage;
1624 }
1625
1626 out_of_memory(zonelist, gfp_mask, order);
1627 clear_zonelist_oom(zonelist, gfp_mask);
1628 goto restart;
1629 }
1630
1631 /*
1632 * Don't let big-order allocations loop unless the caller explicitly
1633 * requests that. Wait for some write requests to complete then retry.
1634 *
1635 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1636 * means __GFP_NOFAIL, but that may not be true in other
1637 * implementations.
1638 *
1639 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1640 * specified, then we retry until we no longer reclaim any pages
1641 * (above), or we've reclaimed an order of pages at least as
1642 * large as the allocation's order. In both cases, if the
1643 * allocation still fails, we stop retrying.
1644 */
1645 pages_reclaimed += did_some_progress;
1646 do_retry = 0;
1647 if (!(gfp_mask & __GFP_NORETRY)) {
1648 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1649 do_retry = 1;
1650 } else {
1651 if (gfp_mask & __GFP_REPEAT &&
1652 pages_reclaimed < (1 << order))
1653 do_retry = 1;
1654 }
1655 if (gfp_mask & __GFP_NOFAIL)
1656 do_retry = 1;
1657 }
1658 if (do_retry) {
1659 congestion_wait(WRITE, HZ/50);
1660 goto rebalance;
1661 }
1662
1663 nopage:
1664 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1665 printk(KERN_WARNING "%s: page allocation failure."
1666 " order:%d, mode:0x%x\n",
1667 p->comm, order, gfp_mask);
1668 dump_stack();
1669 show_mem();
1670 }
1671 got_pg:
1672 return page;
1673 }
1674 EXPORT_SYMBOL(__alloc_pages_internal);
1675
1676 /*
1677 * Common helper functions.
1678 */
1679 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1680 {
1681 struct page * page;
1682 page = alloc_pages(gfp_mask, order);
1683 if (!page)
1684 return 0;
1685 return (unsigned long) page_address(page);
1686 }
1687
1688 EXPORT_SYMBOL(__get_free_pages);
1689
1690 unsigned long get_zeroed_page(gfp_t gfp_mask)
1691 {
1692 struct page * page;
1693
1694 /*
1695 * get_zeroed_page() returns a 32-bit address, which cannot represent
1696 * a highmem page
1697 */
1698 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1699
1700 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1701 if (page)
1702 return (unsigned long) page_address(page);
1703 return 0;
1704 }
1705
1706 EXPORT_SYMBOL(get_zeroed_page);
1707
1708 void __pagevec_free(struct pagevec *pvec)
1709 {
1710 int i = pagevec_count(pvec);
1711
1712 while (--i >= 0)
1713 free_hot_cold_page(pvec->pages[i], pvec->cold);
1714 }
1715
1716 void __free_pages(struct page *page, unsigned int order)
1717 {
1718 if (put_page_testzero(page)) {
1719 if (order == 0)
1720 free_hot_page(page);
1721 else
1722 __free_pages_ok(page, order);
1723 }
1724 }
1725
1726 EXPORT_SYMBOL(__free_pages);
1727
1728 void free_pages(unsigned long addr, unsigned int order)
1729 {
1730 if (addr != 0) {
1731 VM_BUG_ON(!virt_addr_valid((void *)addr));
1732 __free_pages(virt_to_page((void *)addr), order);
1733 }
1734 }
1735
1736 EXPORT_SYMBOL(free_pages);
1737
1738 /**
1739 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1740 * @size: the number of bytes to allocate
1741 * @gfp_mask: GFP flags for the allocation
1742 *
1743 * This function is similar to alloc_pages(), except that it allocates the
1744 * minimum number of pages to satisfy the request. alloc_pages() can only
1745 * allocate memory in power-of-two pages.
1746 *
1747 * This function is also limited by MAX_ORDER.
1748 *
1749 * Memory allocated by this function must be released by free_pages_exact().
1750 */
1751 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1752 {
1753 unsigned int order = get_order(size);
1754 unsigned long addr;
1755
1756 addr = __get_free_pages(gfp_mask, order);
1757 if (addr) {
1758 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1759 unsigned long used = addr + PAGE_ALIGN(size);
1760
1761 split_page(virt_to_page(addr), order);
1762 while (used < alloc_end) {
1763 free_page(used);
1764 used += PAGE_SIZE;
1765 }
1766 }
1767
1768 return (void *)addr;
1769 }
1770 EXPORT_SYMBOL(alloc_pages_exact);
1771
1772 /**
1773 * free_pages_exact - release memory allocated via alloc_pages_exact()
1774 * @virt: the value returned by alloc_pages_exact.
1775 * @size: size of allocation, same value as passed to alloc_pages_exact().
1776 *
1777 * Release the memory allocated by a previous call to alloc_pages_exact.
1778 */
1779 void free_pages_exact(void *virt, size_t size)
1780 {
1781 unsigned long addr = (unsigned long)virt;
1782 unsigned long end = addr + PAGE_ALIGN(size);
1783
1784 while (addr < end) {
1785 free_page(addr);
1786 addr += PAGE_SIZE;
1787 }
1788 }
1789 EXPORT_SYMBOL(free_pages_exact);
1790
1791 static unsigned int nr_free_zone_pages(int offset)
1792 {
1793 struct zoneref *z;
1794 struct zone *zone;
1795
1796 /* Just pick one node, since fallback list is circular */
1797 unsigned int sum = 0;
1798
1799 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1800
1801 for_each_zone_zonelist(zone, z, zonelist, offset) {
1802 unsigned long size = zone->present_pages;
1803 unsigned long high = zone->pages_high;
1804 if (size > high)
1805 sum += size - high;
1806 }
1807
1808 return sum;
1809 }
1810
1811 /*
1812 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1813 */
1814 unsigned int nr_free_buffer_pages(void)
1815 {
1816 return nr_free_zone_pages(gfp_zone(GFP_USER));
1817 }
1818 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1819
1820 /*
1821 * Amount of free RAM allocatable within all zones
1822 */
1823 unsigned int nr_free_pagecache_pages(void)
1824 {
1825 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1826 }
1827
1828 static inline void show_node(struct zone *zone)
1829 {
1830 if (NUMA_BUILD)
1831 printk("Node %d ", zone_to_nid(zone));
1832 }
1833
1834 void si_meminfo(struct sysinfo *val)
1835 {
1836 val->totalram = totalram_pages;
1837 val->sharedram = 0;
1838 val->freeram = global_page_state(NR_FREE_PAGES);
1839 val->bufferram = nr_blockdev_pages();
1840 val->totalhigh = totalhigh_pages;
1841 val->freehigh = nr_free_highpages();
1842 val->mem_unit = PAGE_SIZE;
1843 }
1844
1845 EXPORT_SYMBOL(si_meminfo);
1846
1847 #ifdef CONFIG_NUMA
1848 void si_meminfo_node(struct sysinfo *val, int nid)
1849 {
1850 pg_data_t *pgdat = NODE_DATA(nid);
1851
1852 val->totalram = pgdat->node_present_pages;
1853 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1854 #ifdef CONFIG_HIGHMEM
1855 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1856 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1857 NR_FREE_PAGES);
1858 #else
1859 val->totalhigh = 0;
1860 val->freehigh = 0;
1861 #endif
1862 val->mem_unit = PAGE_SIZE;
1863 }
1864 #endif
1865
1866 #define K(x) ((x) << (PAGE_SHIFT-10))
1867
1868 /*
1869 * Show free area list (used inside shift_scroll-lock stuff)
1870 * We also calculate the percentage fragmentation. We do this by counting the
1871 * memory on each free list with the exception of the first item on the list.
1872 */
1873 void show_free_areas(void)
1874 {
1875 int cpu;
1876 struct zone *zone;
1877
1878 for_each_zone(zone) {
1879 if (!populated_zone(zone))
1880 continue;
1881
1882 show_node(zone);
1883 printk("%s per-cpu:\n", zone->name);
1884
1885 for_each_online_cpu(cpu) {
1886 struct per_cpu_pageset *pageset;
1887
1888 pageset = zone_pcp(zone, cpu);
1889
1890 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1891 cpu, pageset->pcp.high,
1892 pageset->pcp.batch, pageset->pcp.count);
1893 }
1894 }
1895
1896 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1897 " inactive_file:%lu"
1898 //TODO: check/adjust line lengths
1899 #ifdef CONFIG_UNEVICTABLE_LRU
1900 " unevictable:%lu"
1901 #endif
1902 " dirty:%lu writeback:%lu unstable:%lu\n"
1903 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1904 global_page_state(NR_ACTIVE_ANON),
1905 global_page_state(NR_ACTIVE_FILE),
1906 global_page_state(NR_INACTIVE_ANON),
1907 global_page_state(NR_INACTIVE_FILE),
1908 #ifdef CONFIG_UNEVICTABLE_LRU
1909 global_page_state(NR_UNEVICTABLE),
1910 #endif
1911 global_page_state(NR_FILE_DIRTY),
1912 global_page_state(NR_WRITEBACK),
1913 global_page_state(NR_UNSTABLE_NFS),
1914 global_page_state(NR_FREE_PAGES),
1915 global_page_state(NR_SLAB_RECLAIMABLE) +
1916 global_page_state(NR_SLAB_UNRECLAIMABLE),
1917 global_page_state(NR_FILE_MAPPED),
1918 global_page_state(NR_PAGETABLE),
1919 global_page_state(NR_BOUNCE));
1920
1921 for_each_zone(zone) {
1922 int i;
1923
1924 if (!populated_zone(zone))
1925 continue;
1926
1927 show_node(zone);
1928 printk("%s"
1929 " free:%lukB"
1930 " min:%lukB"
1931 " low:%lukB"
1932 " high:%lukB"
1933 " active_anon:%lukB"
1934 " inactive_anon:%lukB"
1935 " active_file:%lukB"
1936 " inactive_file:%lukB"
1937 #ifdef CONFIG_UNEVICTABLE_LRU
1938 " unevictable:%lukB"
1939 #endif
1940 " present:%lukB"
1941 " pages_scanned:%lu"
1942 " all_unreclaimable? %s"
1943 "\n",
1944 zone->name,
1945 K(zone_page_state(zone, NR_FREE_PAGES)),
1946 K(zone->pages_min),
1947 K(zone->pages_low),
1948 K(zone->pages_high),
1949 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1950 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1951 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1952 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1953 #ifdef CONFIG_UNEVICTABLE_LRU
1954 K(zone_page_state(zone, NR_UNEVICTABLE)),
1955 #endif
1956 K(zone->present_pages),
1957 zone->pages_scanned,
1958 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1959 );
1960 printk("lowmem_reserve[]:");
1961 for (i = 0; i < MAX_NR_ZONES; i++)
1962 printk(" %lu", zone->lowmem_reserve[i]);
1963 printk("\n");
1964 }
1965
1966 for_each_zone(zone) {
1967 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1968
1969 if (!populated_zone(zone))
1970 continue;
1971
1972 show_node(zone);
1973 printk("%s: ", zone->name);
1974
1975 spin_lock_irqsave(&zone->lock, flags);
1976 for (order = 0; order < MAX_ORDER; order++) {
1977 nr[order] = zone->free_area[order].nr_free;
1978 total += nr[order] << order;
1979 }
1980 spin_unlock_irqrestore(&zone->lock, flags);
1981 for (order = 0; order < MAX_ORDER; order++)
1982 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1983 printk("= %lukB\n", K(total));
1984 }
1985
1986 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1987
1988 show_swap_cache_info();
1989 }
1990
1991 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1992 {
1993 zoneref->zone = zone;
1994 zoneref->zone_idx = zone_idx(zone);
1995 }
1996
1997 /*
1998 * Builds allocation fallback zone lists.
1999 *
2000 * Add all populated zones of a node to the zonelist.
2001 */
2002 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2003 int nr_zones, enum zone_type zone_type)
2004 {
2005 struct zone *zone;
2006
2007 BUG_ON(zone_type >= MAX_NR_ZONES);
2008 zone_type++;
2009
2010 do {
2011 zone_type--;
2012 zone = pgdat->node_zones + zone_type;
2013 if (populated_zone(zone)) {
2014 zoneref_set_zone(zone,
2015 &zonelist->_zonerefs[nr_zones++]);
2016 check_highest_zone(zone_type);
2017 }
2018
2019 } while (zone_type);
2020 return nr_zones;
2021 }
2022
2023
2024 /*
2025 * zonelist_order:
2026 * 0 = automatic detection of better ordering.
2027 * 1 = order by ([node] distance, -zonetype)
2028 * 2 = order by (-zonetype, [node] distance)
2029 *
2030 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2031 * the same zonelist. So only NUMA can configure this param.
2032 */
2033 #define ZONELIST_ORDER_DEFAULT 0
2034 #define ZONELIST_ORDER_NODE 1
2035 #define ZONELIST_ORDER_ZONE 2
2036
2037 /* zonelist order in the kernel.
2038 * set_zonelist_order() will set this to NODE or ZONE.
2039 */
2040 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2041 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2042
2043
2044 #ifdef CONFIG_NUMA
2045 /* The value user specified ....changed by config */
2046 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2047 /* string for sysctl */
2048 #define NUMA_ZONELIST_ORDER_LEN 16
2049 char numa_zonelist_order[16] = "default";
2050
2051 /*
2052 * interface for configure zonelist ordering.
2053 * command line option "numa_zonelist_order"
2054 * = "[dD]efault - default, automatic configuration.
2055 * = "[nN]ode - order by node locality, then by zone within node
2056 * = "[zZ]one - order by zone, then by locality within zone
2057 */
2058
2059 static int __parse_numa_zonelist_order(char *s)
2060 {
2061 if (*s == 'd' || *s == 'D') {
2062 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2063 } else if (*s == 'n' || *s == 'N') {
2064 user_zonelist_order = ZONELIST_ORDER_NODE;
2065 } else if (*s == 'z' || *s == 'Z') {
2066 user_zonelist_order = ZONELIST_ORDER_ZONE;
2067 } else {
2068 printk(KERN_WARNING
2069 "Ignoring invalid numa_zonelist_order value: "
2070 "%s\n", s);
2071 return -EINVAL;
2072 }
2073 return 0;
2074 }
2075
2076 static __init int setup_numa_zonelist_order(char *s)
2077 {
2078 if (s)
2079 return __parse_numa_zonelist_order(s);
2080 return 0;
2081 }
2082 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2083
2084 /*
2085 * sysctl handler for numa_zonelist_order
2086 */
2087 int numa_zonelist_order_handler(ctl_table *table, int write,
2088 struct file *file, void __user *buffer, size_t *length,
2089 loff_t *ppos)
2090 {
2091 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2092 int ret;
2093
2094 if (write)
2095 strncpy(saved_string, (char*)table->data,
2096 NUMA_ZONELIST_ORDER_LEN);
2097 ret = proc_dostring(table, write, file, buffer, length, ppos);
2098 if (ret)
2099 return ret;
2100 if (write) {
2101 int oldval = user_zonelist_order;
2102 if (__parse_numa_zonelist_order((char*)table->data)) {
2103 /*
2104 * bogus value. restore saved string
2105 */
2106 strncpy((char*)table->data, saved_string,
2107 NUMA_ZONELIST_ORDER_LEN);
2108 user_zonelist_order = oldval;
2109 } else if (oldval != user_zonelist_order)
2110 build_all_zonelists();
2111 }
2112 return 0;
2113 }
2114
2115
2116 #define MAX_NODE_LOAD (num_online_nodes())
2117 static int node_load[MAX_NUMNODES];
2118
2119 /**
2120 * find_next_best_node - find the next node that should appear in a given node's fallback list
2121 * @node: node whose fallback list we're appending
2122 * @used_node_mask: nodemask_t of already used nodes
2123 *
2124 * We use a number of factors to determine which is the next node that should
2125 * appear on a given node's fallback list. The node should not have appeared
2126 * already in @node's fallback list, and it should be the next closest node
2127 * according to the distance array (which contains arbitrary distance values
2128 * from each node to each node in the system), and should also prefer nodes
2129 * with no CPUs, since presumably they'll have very little allocation pressure
2130 * on them otherwise.
2131 * It returns -1 if no node is found.
2132 */
2133 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2134 {
2135 int n, val;
2136 int min_val = INT_MAX;
2137 int best_node = -1;
2138 node_to_cpumask_ptr(tmp, 0);
2139
2140 /* Use the local node if we haven't already */
2141 if (!node_isset(node, *used_node_mask)) {
2142 node_set(node, *used_node_mask);
2143 return node;
2144 }
2145
2146 for_each_node_state(n, N_HIGH_MEMORY) {
2147
2148 /* Don't want a node to appear more than once */
2149 if (node_isset(n, *used_node_mask))
2150 continue;
2151
2152 /* Use the distance array to find the distance */
2153 val = node_distance(node, n);
2154
2155 /* Penalize nodes under us ("prefer the next node") */
2156 val += (n < node);
2157
2158 /* Give preference to headless and unused nodes */
2159 node_to_cpumask_ptr_next(tmp, n);
2160 if (!cpus_empty(*tmp))
2161 val += PENALTY_FOR_NODE_WITH_CPUS;
2162
2163 /* Slight preference for less loaded node */
2164 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2165 val += node_load[n];
2166
2167 if (val < min_val) {
2168 min_val = val;
2169 best_node = n;
2170 }
2171 }
2172
2173 if (best_node >= 0)
2174 node_set(best_node, *used_node_mask);
2175
2176 return best_node;
2177 }
2178
2179
2180 /*
2181 * Build zonelists ordered by node and zones within node.
2182 * This results in maximum locality--normal zone overflows into local
2183 * DMA zone, if any--but risks exhausting DMA zone.
2184 */
2185 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2186 {
2187 int j;
2188 struct zonelist *zonelist;
2189
2190 zonelist = &pgdat->node_zonelists[0];
2191 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2192 ;
2193 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2194 MAX_NR_ZONES - 1);
2195 zonelist->_zonerefs[j].zone = NULL;
2196 zonelist->_zonerefs[j].zone_idx = 0;
2197 }
2198
2199 /*
2200 * Build gfp_thisnode zonelists
2201 */
2202 static void build_thisnode_zonelists(pg_data_t *pgdat)
2203 {
2204 int j;
2205 struct zonelist *zonelist;
2206
2207 zonelist = &pgdat->node_zonelists[1];
2208 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2209 zonelist->_zonerefs[j].zone = NULL;
2210 zonelist->_zonerefs[j].zone_idx = 0;
2211 }
2212
2213 /*
2214 * Build zonelists ordered by zone and nodes within zones.
2215 * This results in conserving DMA zone[s] until all Normal memory is
2216 * exhausted, but results in overflowing to remote node while memory
2217 * may still exist in local DMA zone.
2218 */
2219 static int node_order[MAX_NUMNODES];
2220
2221 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2222 {
2223 int pos, j, node;
2224 int zone_type; /* needs to be signed */
2225 struct zone *z;
2226 struct zonelist *zonelist;
2227
2228 zonelist = &pgdat->node_zonelists[0];
2229 pos = 0;
2230 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2231 for (j = 0; j < nr_nodes; j++) {
2232 node = node_order[j];
2233 z = &NODE_DATA(node)->node_zones[zone_type];
2234 if (populated_zone(z)) {
2235 zoneref_set_zone(z,
2236 &zonelist->_zonerefs[pos++]);
2237 check_highest_zone(zone_type);
2238 }
2239 }
2240 }
2241 zonelist->_zonerefs[pos].zone = NULL;
2242 zonelist->_zonerefs[pos].zone_idx = 0;
2243 }
2244
2245 static int default_zonelist_order(void)
2246 {
2247 int nid, zone_type;
2248 unsigned long low_kmem_size,total_size;
2249 struct zone *z;
2250 int average_size;
2251 /*
2252 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2253 * If they are really small and used heavily, the system can fall
2254 * into OOM very easily.
2255 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2256 */
2257 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2258 low_kmem_size = 0;
2259 total_size = 0;
2260 for_each_online_node(nid) {
2261 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2262 z = &NODE_DATA(nid)->node_zones[zone_type];
2263 if (populated_zone(z)) {
2264 if (zone_type < ZONE_NORMAL)
2265 low_kmem_size += z->present_pages;
2266 total_size += z->present_pages;
2267 }
2268 }
2269 }
2270 if (!low_kmem_size || /* there are no DMA area. */
2271 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2272 return ZONELIST_ORDER_NODE;
2273 /*
2274 * look into each node's config.
2275 * If there is a node whose DMA/DMA32 memory is very big area on
2276 * local memory, NODE_ORDER may be suitable.
2277 */
2278 average_size = total_size /
2279 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2280 for_each_online_node(nid) {
2281 low_kmem_size = 0;
2282 total_size = 0;
2283 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2284 z = &NODE_DATA(nid)->node_zones[zone_type];
2285 if (populated_zone(z)) {
2286 if (zone_type < ZONE_NORMAL)
2287 low_kmem_size += z->present_pages;
2288 total_size += z->present_pages;
2289 }
2290 }
2291 if (low_kmem_size &&
2292 total_size > average_size && /* ignore small node */
2293 low_kmem_size > total_size * 70/100)
2294 return ZONELIST_ORDER_NODE;
2295 }
2296 return ZONELIST_ORDER_ZONE;
2297 }
2298
2299 static void set_zonelist_order(void)
2300 {
2301 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2302 current_zonelist_order = default_zonelist_order();
2303 else
2304 current_zonelist_order = user_zonelist_order;
2305 }
2306
2307 static void build_zonelists(pg_data_t *pgdat)
2308 {
2309 int j, node, load;
2310 enum zone_type i;
2311 nodemask_t used_mask;
2312 int local_node, prev_node;
2313 struct zonelist *zonelist;
2314 int order = current_zonelist_order;
2315
2316 /* initialize zonelists */
2317 for (i = 0; i < MAX_ZONELISTS; i++) {
2318 zonelist = pgdat->node_zonelists + i;
2319 zonelist->_zonerefs[0].zone = NULL;
2320 zonelist->_zonerefs[0].zone_idx = 0;
2321 }
2322
2323 /* NUMA-aware ordering of nodes */
2324 local_node = pgdat->node_id;
2325 load = num_online_nodes();
2326 prev_node = local_node;
2327 nodes_clear(used_mask);
2328
2329 memset(node_load, 0, sizeof(node_load));
2330 memset(node_order, 0, sizeof(node_order));
2331 j = 0;
2332
2333 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2334 int distance = node_distance(local_node, node);
2335
2336 /*
2337 * If another node is sufficiently far away then it is better
2338 * to reclaim pages in a zone before going off node.
2339 */
2340 if (distance > RECLAIM_DISTANCE)
2341 zone_reclaim_mode = 1;
2342
2343 /*
2344 * We don't want to pressure a particular node.
2345 * So adding penalty to the first node in same
2346 * distance group to make it round-robin.
2347 */
2348 if (distance != node_distance(local_node, prev_node))
2349 node_load[node] = load;
2350
2351 prev_node = node;
2352 load--;
2353 if (order == ZONELIST_ORDER_NODE)
2354 build_zonelists_in_node_order(pgdat, node);
2355 else
2356 node_order[j++] = node; /* remember order */
2357 }
2358
2359 if (order == ZONELIST_ORDER_ZONE) {
2360 /* calculate node order -- i.e., DMA last! */
2361 build_zonelists_in_zone_order(pgdat, j);
2362 }
2363
2364 build_thisnode_zonelists(pgdat);
2365 }
2366
2367 /* Construct the zonelist performance cache - see further mmzone.h */
2368 static void build_zonelist_cache(pg_data_t *pgdat)
2369 {
2370 struct zonelist *zonelist;
2371 struct zonelist_cache *zlc;
2372 struct zoneref *z;
2373
2374 zonelist = &pgdat->node_zonelists[0];
2375 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2376 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2377 for (z = zonelist->_zonerefs; z->zone; z++)
2378 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2379 }
2380
2381
2382 #else /* CONFIG_NUMA */
2383
2384 static void set_zonelist_order(void)
2385 {
2386 current_zonelist_order = ZONELIST_ORDER_ZONE;
2387 }
2388
2389 static void build_zonelists(pg_data_t *pgdat)
2390 {
2391 int node, local_node;
2392 enum zone_type j;
2393 struct zonelist *zonelist;
2394
2395 local_node = pgdat->node_id;
2396
2397 zonelist = &pgdat->node_zonelists[0];
2398 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2399
2400 /*
2401 * Now we build the zonelist so that it contains the zones
2402 * of all the other nodes.
2403 * We don't want to pressure a particular node, so when
2404 * building the zones for node N, we make sure that the
2405 * zones coming right after the local ones are those from
2406 * node N+1 (modulo N)
2407 */
2408 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2409 if (!node_online(node))
2410 continue;
2411 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2412 MAX_NR_ZONES - 1);
2413 }
2414 for (node = 0; node < local_node; node++) {
2415 if (!node_online(node))
2416 continue;
2417 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2418 MAX_NR_ZONES - 1);
2419 }
2420
2421 zonelist->_zonerefs[j].zone = NULL;
2422 zonelist->_zonerefs[j].zone_idx = 0;
2423 }
2424
2425 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2426 static void build_zonelist_cache(pg_data_t *pgdat)
2427 {
2428 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2429 }
2430
2431 #endif /* CONFIG_NUMA */
2432
2433 /* return values int ....just for stop_machine() */
2434 static int __build_all_zonelists(void *dummy)
2435 {
2436 int nid;
2437
2438 for_each_online_node(nid) {
2439 pg_data_t *pgdat = NODE_DATA(nid);
2440
2441 build_zonelists(pgdat);
2442 build_zonelist_cache(pgdat);
2443 }
2444 return 0;
2445 }
2446
2447 void build_all_zonelists(void)
2448 {
2449 set_zonelist_order();
2450
2451 if (system_state == SYSTEM_BOOTING) {
2452 __build_all_zonelists(NULL);
2453 mminit_verify_zonelist();
2454 cpuset_init_current_mems_allowed();
2455 } else {
2456 /* we have to stop all cpus to guarantee there is no user
2457 of zonelist */
2458 stop_machine(__build_all_zonelists, NULL, NULL);
2459 /* cpuset refresh routine should be here */
2460 }
2461 vm_total_pages = nr_free_pagecache_pages();
2462 /*
2463 * Disable grouping by mobility if the number of pages in the
2464 * system is too low to allow the mechanism to work. It would be
2465 * more accurate, but expensive to check per-zone. This check is
2466 * made on memory-hotadd so a system can start with mobility
2467 * disabled and enable it later
2468 */
2469 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2470 page_group_by_mobility_disabled = 1;
2471 else
2472 page_group_by_mobility_disabled = 0;
2473
2474 printk("Built %i zonelists in %s order, mobility grouping %s. "
2475 "Total pages: %ld\n",
2476 num_online_nodes(),
2477 zonelist_order_name[current_zonelist_order],
2478 page_group_by_mobility_disabled ? "off" : "on",
2479 vm_total_pages);
2480 #ifdef CONFIG_NUMA
2481 printk("Policy zone: %s\n", zone_names[policy_zone]);
2482 #endif
2483 }
2484
2485 /*
2486 * Helper functions to size the waitqueue hash table.
2487 * Essentially these want to choose hash table sizes sufficiently
2488 * large so that collisions trying to wait on pages are rare.
2489 * But in fact, the number of active page waitqueues on typical
2490 * systems is ridiculously low, less than 200. So this is even
2491 * conservative, even though it seems large.
2492 *
2493 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2494 * waitqueues, i.e. the size of the waitq table given the number of pages.
2495 */
2496 #define PAGES_PER_WAITQUEUE 256
2497
2498 #ifndef CONFIG_MEMORY_HOTPLUG
2499 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2500 {
2501 unsigned long size = 1;
2502
2503 pages /= PAGES_PER_WAITQUEUE;
2504
2505 while (size < pages)
2506 size <<= 1;
2507
2508 /*
2509 * Once we have dozens or even hundreds of threads sleeping
2510 * on IO we've got bigger problems than wait queue collision.
2511 * Limit the size of the wait table to a reasonable size.
2512 */
2513 size = min(size, 4096UL);
2514
2515 return max(size, 4UL);
2516 }
2517 #else
2518 /*
2519 * A zone's size might be changed by hot-add, so it is not possible to determine
2520 * a suitable size for its wait_table. So we use the maximum size now.
2521 *
2522 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2523 *
2524 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2525 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2526 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2527 *
2528 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2529 * or more by the traditional way. (See above). It equals:
2530 *
2531 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2532 * ia64(16K page size) : = ( 8G + 4M)byte.
2533 * powerpc (64K page size) : = (32G +16M)byte.
2534 */
2535 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2536 {
2537 return 4096UL;
2538 }
2539 #endif
2540
2541 /*
2542 * This is an integer logarithm so that shifts can be used later
2543 * to extract the more random high bits from the multiplicative
2544 * hash function before the remainder is taken.
2545 */
2546 static inline unsigned long wait_table_bits(unsigned long size)
2547 {
2548 return ffz(~size);
2549 }
2550
2551 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2552
2553 /*
2554 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2555 * of blocks reserved is based on zone->pages_min. The memory within the
2556 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2557 * higher will lead to a bigger reserve which will get freed as contiguous
2558 * blocks as reclaim kicks in
2559 */
2560 static void setup_zone_migrate_reserve(struct zone *zone)
2561 {
2562 unsigned long start_pfn, pfn, end_pfn;
2563 struct page *page;
2564 unsigned long reserve, block_migratetype;
2565
2566 /* Get the start pfn, end pfn and the number of blocks to reserve */
2567 start_pfn = zone->zone_start_pfn;
2568 end_pfn = start_pfn + zone->spanned_pages;
2569 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2570 pageblock_order;
2571
2572 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2573 if (!pfn_valid(pfn))
2574 continue;
2575 page = pfn_to_page(pfn);
2576
2577 /* Watch out for overlapping nodes */
2578 if (page_to_nid(page) != zone_to_nid(zone))
2579 continue;
2580
2581 /* Blocks with reserved pages will never free, skip them. */
2582 if (PageReserved(page))
2583 continue;
2584
2585 block_migratetype = get_pageblock_migratetype(page);
2586
2587 /* If this block is reserved, account for it */
2588 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2589 reserve--;
2590 continue;
2591 }
2592
2593 /* Suitable for reserving if this block is movable */
2594 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2595 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2596 move_freepages_block(zone, page, MIGRATE_RESERVE);
2597 reserve--;
2598 continue;
2599 }
2600
2601 /*
2602 * If the reserve is met and this is a previous reserved block,
2603 * take it back
2604 */
2605 if (block_migratetype == MIGRATE_RESERVE) {
2606 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2607 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2608 }
2609 }
2610 }
2611
2612 /*
2613 * Initially all pages are reserved - free ones are freed
2614 * up by free_all_bootmem() once the early boot process is
2615 * done. Non-atomic initialization, single-pass.
2616 */
2617 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2618 unsigned long start_pfn, enum memmap_context context)
2619 {
2620 struct page *page;
2621 unsigned long end_pfn = start_pfn + size;
2622 unsigned long pfn;
2623 struct zone *z;
2624
2625 if (highest_memmap_pfn < end_pfn - 1)
2626 highest_memmap_pfn = end_pfn - 1;
2627
2628 z = &NODE_DATA(nid)->node_zones[zone];
2629 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2630 /*
2631 * There can be holes in boot-time mem_map[]s
2632 * handed to this function. They do not
2633 * exist on hotplugged memory.
2634 */
2635 if (context == MEMMAP_EARLY) {
2636 if (!early_pfn_valid(pfn))
2637 continue;
2638 if (!early_pfn_in_nid(pfn, nid))
2639 continue;
2640 }
2641 page = pfn_to_page(pfn);
2642 set_page_links(page, zone, nid, pfn);
2643 mminit_verify_page_links(page, zone, nid, pfn);
2644 init_page_count(page);
2645 reset_page_mapcount(page);
2646 SetPageReserved(page);
2647 /*
2648 * Mark the block movable so that blocks are reserved for
2649 * movable at startup. This will force kernel allocations
2650 * to reserve their blocks rather than leaking throughout
2651 * the address space during boot when many long-lived
2652 * kernel allocations are made. Later some blocks near
2653 * the start are marked MIGRATE_RESERVE by
2654 * setup_zone_migrate_reserve()
2655 *
2656 * bitmap is created for zone's valid pfn range. but memmap
2657 * can be created for invalid pages (for alignment)
2658 * check here not to call set_pageblock_migratetype() against
2659 * pfn out of zone.
2660 */
2661 if ((z->zone_start_pfn <= pfn)
2662 && (pfn < z->zone_start_pfn + z->spanned_pages)
2663 && !(pfn & (pageblock_nr_pages - 1)))
2664 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2665
2666 INIT_LIST_HEAD(&page->lru);
2667 #ifdef WANT_PAGE_VIRTUAL
2668 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2669 if (!is_highmem_idx(zone))
2670 set_page_address(page, __va(pfn << PAGE_SHIFT));
2671 #endif
2672 }
2673 }
2674
2675 static void __meminit zone_init_free_lists(struct zone *zone)
2676 {
2677 int order, t;
2678 for_each_migratetype_order(order, t) {
2679 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2680 zone->free_area[order].nr_free = 0;
2681 }
2682 }
2683
2684 #ifndef __HAVE_ARCH_MEMMAP_INIT
2685 #define memmap_init(size, nid, zone, start_pfn) \
2686 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2687 #endif
2688
2689 static int zone_batchsize(struct zone *zone)
2690 {
2691 int batch;
2692
2693 /*
2694 * The per-cpu-pages pools are set to around 1000th of the
2695 * size of the zone. But no more than 1/2 of a meg.
2696 *
2697 * OK, so we don't know how big the cache is. So guess.
2698 */
2699 batch = zone->present_pages / 1024;
2700 if (batch * PAGE_SIZE > 512 * 1024)
2701 batch = (512 * 1024) / PAGE_SIZE;
2702 batch /= 4; /* We effectively *= 4 below */
2703 if (batch < 1)
2704 batch = 1;
2705
2706 /*
2707 * Clamp the batch to a 2^n - 1 value. Having a power
2708 * of 2 value was found to be more likely to have
2709 * suboptimal cache aliasing properties in some cases.
2710 *
2711 * For example if 2 tasks are alternately allocating
2712 * batches of pages, one task can end up with a lot
2713 * of pages of one half of the possible page colors
2714 * and the other with pages of the other colors.
2715 */
2716 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2717
2718 return batch;
2719 }
2720
2721 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2722 {
2723 struct per_cpu_pages *pcp;
2724
2725 memset(p, 0, sizeof(*p));
2726
2727 pcp = &p->pcp;
2728 pcp->count = 0;
2729 pcp->high = 6 * batch;
2730 pcp->batch = max(1UL, 1 * batch);
2731 INIT_LIST_HEAD(&pcp->list);
2732 }
2733
2734 /*
2735 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2736 * to the value high for the pageset p.
2737 */
2738
2739 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2740 unsigned long high)
2741 {
2742 struct per_cpu_pages *pcp;
2743
2744 pcp = &p->pcp;
2745 pcp->high = high;
2746 pcp->batch = max(1UL, high/4);
2747 if ((high/4) > (PAGE_SHIFT * 8))
2748 pcp->batch = PAGE_SHIFT * 8;
2749 }
2750
2751
2752 #ifdef CONFIG_NUMA
2753 /*
2754 * Boot pageset table. One per cpu which is going to be used for all
2755 * zones and all nodes. The parameters will be set in such a way
2756 * that an item put on a list will immediately be handed over to
2757 * the buddy list. This is safe since pageset manipulation is done
2758 * with interrupts disabled.
2759 *
2760 * Some NUMA counter updates may also be caught by the boot pagesets.
2761 *
2762 * The boot_pagesets must be kept even after bootup is complete for
2763 * unused processors and/or zones. They do play a role for bootstrapping
2764 * hotplugged processors.
2765 *
2766 * zoneinfo_show() and maybe other functions do
2767 * not check if the processor is online before following the pageset pointer.
2768 * Other parts of the kernel may not check if the zone is available.
2769 */
2770 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2771
2772 /*
2773 * Dynamically allocate memory for the
2774 * per cpu pageset array in struct zone.
2775 */
2776 static int __cpuinit process_zones(int cpu)
2777 {
2778 struct zone *zone, *dzone;
2779 int node = cpu_to_node(cpu);
2780
2781 node_set_state(node, N_CPU); /* this node has a cpu */
2782
2783 for_each_zone(zone) {
2784
2785 if (!populated_zone(zone))
2786 continue;
2787
2788 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2789 GFP_KERNEL, node);
2790 if (!zone_pcp(zone, cpu))
2791 goto bad;
2792
2793 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2794
2795 if (percpu_pagelist_fraction)
2796 setup_pagelist_highmark(zone_pcp(zone, cpu),
2797 (zone->present_pages / percpu_pagelist_fraction));
2798 }
2799
2800 return 0;
2801 bad:
2802 for_each_zone(dzone) {
2803 if (!populated_zone(dzone))
2804 continue;
2805 if (dzone == zone)
2806 break;
2807 kfree(zone_pcp(dzone, cpu));
2808 zone_pcp(dzone, cpu) = NULL;
2809 }
2810 return -ENOMEM;
2811 }
2812
2813 static inline void free_zone_pagesets(int cpu)
2814 {
2815 struct zone *zone;
2816
2817 for_each_zone(zone) {
2818 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2819
2820 /* Free per_cpu_pageset if it is slab allocated */
2821 if (pset != &boot_pageset[cpu])
2822 kfree(pset);
2823 zone_pcp(zone, cpu) = NULL;
2824 }
2825 }
2826
2827 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2828 unsigned long action,
2829 void *hcpu)
2830 {
2831 int cpu = (long)hcpu;
2832 int ret = NOTIFY_OK;
2833
2834 switch (action) {
2835 case CPU_UP_PREPARE:
2836 case CPU_UP_PREPARE_FROZEN:
2837 if (process_zones(cpu))
2838 ret = NOTIFY_BAD;
2839 break;
2840 case CPU_UP_CANCELED:
2841 case CPU_UP_CANCELED_FROZEN:
2842 case CPU_DEAD:
2843 case CPU_DEAD_FROZEN:
2844 free_zone_pagesets(cpu);
2845 break;
2846 default:
2847 break;
2848 }
2849 return ret;
2850 }
2851
2852 static struct notifier_block __cpuinitdata pageset_notifier =
2853 { &pageset_cpuup_callback, NULL, 0 };
2854
2855 void __init setup_per_cpu_pageset(void)
2856 {
2857 int err;
2858
2859 /* Initialize per_cpu_pageset for cpu 0.
2860 * A cpuup callback will do this for every cpu
2861 * as it comes online
2862 */
2863 err = process_zones(smp_processor_id());
2864 BUG_ON(err);
2865 register_cpu_notifier(&pageset_notifier);
2866 }
2867
2868 #endif
2869
2870 static noinline __init_refok
2871 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2872 {
2873 int i;
2874 struct pglist_data *pgdat = zone->zone_pgdat;
2875 size_t alloc_size;
2876
2877 /*
2878 * The per-page waitqueue mechanism uses hashed waitqueues
2879 * per zone.
2880 */
2881 zone->wait_table_hash_nr_entries =
2882 wait_table_hash_nr_entries(zone_size_pages);
2883 zone->wait_table_bits =
2884 wait_table_bits(zone->wait_table_hash_nr_entries);
2885 alloc_size = zone->wait_table_hash_nr_entries
2886 * sizeof(wait_queue_head_t);
2887
2888 if (!slab_is_available()) {
2889 zone->wait_table = (wait_queue_head_t *)
2890 alloc_bootmem_node(pgdat, alloc_size);
2891 } else {
2892 /*
2893 * This case means that a zone whose size was 0 gets new memory
2894 * via memory hot-add.
2895 * But it may be the case that a new node was hot-added. In
2896 * this case vmalloc() will not be able to use this new node's
2897 * memory - this wait_table must be initialized to use this new
2898 * node itself as well.
2899 * To use this new node's memory, further consideration will be
2900 * necessary.
2901 */
2902 zone->wait_table = vmalloc(alloc_size);
2903 }
2904 if (!zone->wait_table)
2905 return -ENOMEM;
2906
2907 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2908 init_waitqueue_head(zone->wait_table + i);
2909
2910 return 0;
2911 }
2912
2913 static __meminit void zone_pcp_init(struct zone *zone)
2914 {
2915 int cpu;
2916 unsigned long batch = zone_batchsize(zone);
2917
2918 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2919 #ifdef CONFIG_NUMA
2920 /* Early boot. Slab allocator not functional yet */
2921 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2922 setup_pageset(&boot_pageset[cpu],0);
2923 #else
2924 setup_pageset(zone_pcp(zone,cpu), batch);
2925 #endif
2926 }
2927 if (zone->present_pages)
2928 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2929 zone->name, zone->present_pages, batch);
2930 }
2931
2932 __meminit int init_currently_empty_zone(struct zone *zone,
2933 unsigned long zone_start_pfn,
2934 unsigned long size,
2935 enum memmap_context context)
2936 {
2937 struct pglist_data *pgdat = zone->zone_pgdat;
2938 int ret;
2939 ret = zone_wait_table_init(zone, size);
2940 if (ret)
2941 return ret;
2942 pgdat->nr_zones = zone_idx(zone) + 1;
2943
2944 zone->zone_start_pfn = zone_start_pfn;
2945
2946 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2947 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2948 pgdat->node_id,
2949 (unsigned long)zone_idx(zone),
2950 zone_start_pfn, (zone_start_pfn + size));
2951
2952 zone_init_free_lists(zone);
2953
2954 return 0;
2955 }
2956
2957 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2958 /*
2959 * Basic iterator support. Return the first range of PFNs for a node
2960 * Note: nid == MAX_NUMNODES returns first region regardless of node
2961 */
2962 static int __meminit first_active_region_index_in_nid(int nid)
2963 {
2964 int i;
2965
2966 for (i = 0; i < nr_nodemap_entries; i++)
2967 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2968 return i;
2969
2970 return -1;
2971 }
2972
2973 /*
2974 * Basic iterator support. Return the next active range of PFNs for a node
2975 * Note: nid == MAX_NUMNODES returns next region regardless of node
2976 */
2977 static int __meminit next_active_region_index_in_nid(int index, int nid)
2978 {
2979 for (index = index + 1; index < nr_nodemap_entries; index++)
2980 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2981 return index;
2982
2983 return -1;
2984 }
2985
2986 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2987 /*
2988 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2989 * Architectures may implement their own version but if add_active_range()
2990 * was used and there are no special requirements, this is a convenient
2991 * alternative
2992 */
2993 int __meminit early_pfn_to_nid(unsigned long pfn)
2994 {
2995 int i;
2996
2997 for (i = 0; i < nr_nodemap_entries; i++) {
2998 unsigned long start_pfn = early_node_map[i].start_pfn;
2999 unsigned long end_pfn = early_node_map[i].end_pfn;
3000
3001 if (start_pfn <= pfn && pfn < end_pfn)
3002 return early_node_map[i].nid;
3003 }
3004
3005 return 0;
3006 }
3007 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3008
3009 /* Basic iterator support to walk early_node_map[] */
3010 #define for_each_active_range_index_in_nid(i, nid) \
3011 for (i = first_active_region_index_in_nid(nid); i != -1; \
3012 i = next_active_region_index_in_nid(i, nid))
3013
3014 /**
3015 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3016 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3017 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3018 *
3019 * If an architecture guarantees that all ranges registered with
3020 * add_active_ranges() contain no holes and may be freed, this
3021 * this function may be used instead of calling free_bootmem() manually.
3022 */
3023 void __init free_bootmem_with_active_regions(int nid,
3024 unsigned long max_low_pfn)
3025 {
3026 int i;
3027
3028 for_each_active_range_index_in_nid(i, nid) {
3029 unsigned long size_pages = 0;
3030 unsigned long end_pfn = early_node_map[i].end_pfn;
3031
3032 if (early_node_map[i].start_pfn >= max_low_pfn)
3033 continue;
3034
3035 if (end_pfn > max_low_pfn)
3036 end_pfn = max_low_pfn;
3037
3038 size_pages = end_pfn - early_node_map[i].start_pfn;
3039 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3040 PFN_PHYS(early_node_map[i].start_pfn),
3041 size_pages << PAGE_SHIFT);
3042 }
3043 }
3044
3045 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3046 {
3047 int i;
3048 int ret;
3049
3050 for_each_active_range_index_in_nid(i, nid) {
3051 ret = work_fn(early_node_map[i].start_pfn,
3052 early_node_map[i].end_pfn, data);
3053 if (ret)
3054 break;
3055 }
3056 }
3057 /**
3058 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3059 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3060 *
3061 * If an architecture guarantees that all ranges registered with
3062 * add_active_ranges() contain no holes and may be freed, this
3063 * function may be used instead of calling memory_present() manually.
3064 */
3065 void __init sparse_memory_present_with_active_regions(int nid)
3066 {
3067 int i;
3068
3069 for_each_active_range_index_in_nid(i, nid)
3070 memory_present(early_node_map[i].nid,
3071 early_node_map[i].start_pfn,
3072 early_node_map[i].end_pfn);
3073 }
3074
3075 /**
3076 * push_node_boundaries - Push node boundaries to at least the requested boundary
3077 * @nid: The nid of the node to push the boundary for
3078 * @start_pfn: The start pfn of the node
3079 * @end_pfn: The end pfn of the node
3080 *
3081 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3082 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3083 * be hotplugged even though no physical memory exists. This function allows
3084 * an arch to push out the node boundaries so mem_map is allocated that can
3085 * be used later.
3086 */
3087 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3088 void __init push_node_boundaries(unsigned int nid,
3089 unsigned long start_pfn, unsigned long end_pfn)
3090 {
3091 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3092 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3093 nid, start_pfn, end_pfn);
3094
3095 /* Initialise the boundary for this node if necessary */
3096 if (node_boundary_end_pfn[nid] == 0)
3097 node_boundary_start_pfn[nid] = -1UL;
3098
3099 /* Update the boundaries */
3100 if (node_boundary_start_pfn[nid] > start_pfn)
3101 node_boundary_start_pfn[nid] = start_pfn;
3102 if (node_boundary_end_pfn[nid] < end_pfn)
3103 node_boundary_end_pfn[nid] = end_pfn;
3104 }
3105
3106 /* If necessary, push the node boundary out for reserve hotadd */
3107 static void __meminit account_node_boundary(unsigned int nid,
3108 unsigned long *start_pfn, unsigned long *end_pfn)
3109 {
3110 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3111 "Entering account_node_boundary(%u, %lu, %lu)\n",
3112 nid, *start_pfn, *end_pfn);
3113
3114 /* Return if boundary information has not been provided */
3115 if (node_boundary_end_pfn[nid] == 0)
3116 return;
3117
3118 /* Check the boundaries and update if necessary */
3119 if (node_boundary_start_pfn[nid] < *start_pfn)
3120 *start_pfn = node_boundary_start_pfn[nid];
3121 if (node_boundary_end_pfn[nid] > *end_pfn)
3122 *end_pfn = node_boundary_end_pfn[nid];
3123 }
3124 #else
3125 void __init push_node_boundaries(unsigned int nid,
3126 unsigned long start_pfn, unsigned long end_pfn) {}
3127
3128 static void __meminit account_node_boundary(unsigned int nid,
3129 unsigned long *start_pfn, unsigned long *end_pfn) {}
3130 #endif
3131
3132
3133 /**
3134 * get_pfn_range_for_nid - Return the start and end page frames for a node
3135 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3136 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3137 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3138 *
3139 * It returns the start and end page frame of a node based on information
3140 * provided by an arch calling add_active_range(). If called for a node
3141 * with no available memory, a warning is printed and the start and end
3142 * PFNs will be 0.
3143 */
3144 void __meminit get_pfn_range_for_nid(unsigned int nid,
3145 unsigned long *start_pfn, unsigned long *end_pfn)
3146 {
3147 int i;
3148 *start_pfn = -1UL;
3149 *end_pfn = 0;
3150
3151 for_each_active_range_index_in_nid(i, nid) {
3152 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3153 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3154 }
3155
3156 if (*start_pfn == -1UL)
3157 *start_pfn = 0;
3158
3159 /* Push the node boundaries out if requested */
3160 account_node_boundary(nid, start_pfn, end_pfn);
3161 }
3162
3163 /*
3164 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3165 * assumption is made that zones within a node are ordered in monotonic
3166 * increasing memory addresses so that the "highest" populated zone is used
3167 */
3168 static void __init find_usable_zone_for_movable(void)
3169 {
3170 int zone_index;
3171 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3172 if (zone_index == ZONE_MOVABLE)
3173 continue;
3174
3175 if (arch_zone_highest_possible_pfn[zone_index] >
3176 arch_zone_lowest_possible_pfn[zone_index])
3177 break;
3178 }
3179
3180 VM_BUG_ON(zone_index == -1);
3181 movable_zone = zone_index;
3182 }
3183
3184 /*
3185 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3186 * because it is sized independant of architecture. Unlike the other zones,
3187 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3188 * in each node depending on the size of each node and how evenly kernelcore
3189 * is distributed. This helper function adjusts the zone ranges
3190 * provided by the architecture for a given node by using the end of the
3191 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3192 * zones within a node are in order of monotonic increases memory addresses
3193 */
3194 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3195 unsigned long zone_type,
3196 unsigned long node_start_pfn,
3197 unsigned long node_end_pfn,
3198 unsigned long *zone_start_pfn,
3199 unsigned long *zone_end_pfn)
3200 {
3201 /* Only adjust if ZONE_MOVABLE is on this node */
3202 if (zone_movable_pfn[nid]) {
3203 /* Size ZONE_MOVABLE */
3204 if (zone_type == ZONE_MOVABLE) {
3205 *zone_start_pfn = zone_movable_pfn[nid];
3206 *zone_end_pfn = min(node_end_pfn,
3207 arch_zone_highest_possible_pfn[movable_zone]);
3208
3209 /* Adjust for ZONE_MOVABLE starting within this range */
3210 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3211 *zone_end_pfn > zone_movable_pfn[nid]) {
3212 *zone_end_pfn = zone_movable_pfn[nid];
3213
3214 /* Check if this whole range is within ZONE_MOVABLE */
3215 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3216 *zone_start_pfn = *zone_end_pfn;
3217 }
3218 }
3219
3220 /*
3221 * Return the number of pages a zone spans in a node, including holes
3222 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3223 */
3224 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3225 unsigned long zone_type,
3226 unsigned long *ignored)
3227 {
3228 unsigned long node_start_pfn, node_end_pfn;
3229 unsigned long zone_start_pfn, zone_end_pfn;
3230
3231 /* Get the start and end of the node and zone */
3232 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3233 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3234 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3235 adjust_zone_range_for_zone_movable(nid, zone_type,
3236 node_start_pfn, node_end_pfn,
3237 &zone_start_pfn, &zone_end_pfn);
3238
3239 /* Check that this node has pages within the zone's required range */
3240 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3241 return 0;
3242
3243 /* Move the zone boundaries inside the node if necessary */
3244 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3245 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3246
3247 /* Return the spanned pages */
3248 return zone_end_pfn - zone_start_pfn;
3249 }
3250
3251 /*
3252 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3253 * then all holes in the requested range will be accounted for.
3254 */
3255 static unsigned long __meminit __absent_pages_in_range(int nid,
3256 unsigned long range_start_pfn,
3257 unsigned long range_end_pfn)
3258 {
3259 int i = 0;
3260 unsigned long prev_end_pfn = 0, hole_pages = 0;
3261 unsigned long start_pfn;
3262
3263 /* Find the end_pfn of the first active range of pfns in the node */
3264 i = first_active_region_index_in_nid(nid);
3265 if (i == -1)
3266 return 0;
3267
3268 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3269
3270 /* Account for ranges before physical memory on this node */
3271 if (early_node_map[i].start_pfn > range_start_pfn)
3272 hole_pages = prev_end_pfn - range_start_pfn;
3273
3274 /* Find all holes for the zone within the node */
3275 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3276
3277 /* No need to continue if prev_end_pfn is outside the zone */
3278 if (prev_end_pfn >= range_end_pfn)
3279 break;
3280
3281 /* Make sure the end of the zone is not within the hole */
3282 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3283 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3284
3285 /* Update the hole size cound and move on */
3286 if (start_pfn > range_start_pfn) {
3287 BUG_ON(prev_end_pfn > start_pfn);
3288 hole_pages += start_pfn - prev_end_pfn;
3289 }
3290 prev_end_pfn = early_node_map[i].end_pfn;
3291 }
3292
3293 /* Account for ranges past physical memory on this node */
3294 if (range_end_pfn > prev_end_pfn)
3295 hole_pages += range_end_pfn -
3296 max(range_start_pfn, prev_end_pfn);
3297
3298 return hole_pages;
3299 }
3300
3301 /**
3302 * absent_pages_in_range - Return number of page frames in holes within a range
3303 * @start_pfn: The start PFN to start searching for holes
3304 * @end_pfn: The end PFN to stop searching for holes
3305 *
3306 * It returns the number of pages frames in memory holes within a range.
3307 */
3308 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3309 unsigned long end_pfn)
3310 {
3311 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3312 }
3313
3314 /* Return the number of page frames in holes in a zone on a node */
3315 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3316 unsigned long zone_type,
3317 unsigned long *ignored)
3318 {
3319 unsigned long node_start_pfn, node_end_pfn;
3320 unsigned long zone_start_pfn, zone_end_pfn;
3321
3322 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3323 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3324 node_start_pfn);
3325 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3326 node_end_pfn);
3327
3328 adjust_zone_range_for_zone_movable(nid, zone_type,
3329 node_start_pfn, node_end_pfn,
3330 &zone_start_pfn, &zone_end_pfn);
3331 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3332 }
3333
3334 #else
3335 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3336 unsigned long zone_type,
3337 unsigned long *zones_size)
3338 {
3339 return zones_size[zone_type];
3340 }
3341
3342 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3343 unsigned long zone_type,
3344 unsigned long *zholes_size)
3345 {
3346 if (!zholes_size)
3347 return 0;
3348
3349 return zholes_size[zone_type];
3350 }
3351
3352 #endif
3353
3354 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3355 unsigned long *zones_size, unsigned long *zholes_size)
3356 {
3357 unsigned long realtotalpages, totalpages = 0;
3358 enum zone_type i;
3359
3360 for (i = 0; i < MAX_NR_ZONES; i++)
3361 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3362 zones_size);
3363 pgdat->node_spanned_pages = totalpages;
3364
3365 realtotalpages = totalpages;
3366 for (i = 0; i < MAX_NR_ZONES; i++)
3367 realtotalpages -=
3368 zone_absent_pages_in_node(pgdat->node_id, i,
3369 zholes_size);
3370 pgdat->node_present_pages = realtotalpages;
3371 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3372 realtotalpages);
3373 }
3374
3375 #ifndef CONFIG_SPARSEMEM
3376 /*
3377 * Calculate the size of the zone->blockflags rounded to an unsigned long
3378 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3379 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3380 * round what is now in bits to nearest long in bits, then return it in
3381 * bytes.
3382 */
3383 static unsigned long __init usemap_size(unsigned long zonesize)
3384 {
3385 unsigned long usemapsize;
3386
3387 usemapsize = roundup(zonesize, pageblock_nr_pages);
3388 usemapsize = usemapsize >> pageblock_order;
3389 usemapsize *= NR_PAGEBLOCK_BITS;
3390 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3391
3392 return usemapsize / 8;
3393 }
3394
3395 static void __init setup_usemap(struct pglist_data *pgdat,
3396 struct zone *zone, unsigned long zonesize)
3397 {
3398 unsigned long usemapsize = usemap_size(zonesize);
3399 zone->pageblock_flags = NULL;
3400 if (usemapsize)
3401 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3402 }
3403 #else
3404 static void inline setup_usemap(struct pglist_data *pgdat,
3405 struct zone *zone, unsigned long zonesize) {}
3406 #endif /* CONFIG_SPARSEMEM */
3407
3408 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3409
3410 /* Return a sensible default order for the pageblock size. */
3411 static inline int pageblock_default_order(void)
3412 {
3413 if (HPAGE_SHIFT > PAGE_SHIFT)
3414 return HUGETLB_PAGE_ORDER;
3415
3416 return MAX_ORDER-1;
3417 }
3418
3419 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3420 static inline void __init set_pageblock_order(unsigned int order)
3421 {
3422 /* Check that pageblock_nr_pages has not already been setup */
3423 if (pageblock_order)
3424 return;
3425
3426 /*
3427 * Assume the largest contiguous order of interest is a huge page.
3428 * This value may be variable depending on boot parameters on IA64
3429 */
3430 pageblock_order = order;
3431 }
3432 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3433
3434 /*
3435 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3436 * and pageblock_default_order() are unused as pageblock_order is set
3437 * at compile-time. See include/linux/pageblock-flags.h for the values of
3438 * pageblock_order based on the kernel config
3439 */
3440 static inline int pageblock_default_order(unsigned int order)
3441 {
3442 return MAX_ORDER-1;
3443 }
3444 #define set_pageblock_order(x) do {} while (0)
3445
3446 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3447
3448 /*
3449 * Set up the zone data structures:
3450 * - mark all pages reserved
3451 * - mark all memory queues empty
3452 * - clear the memory bitmaps
3453 */
3454 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3455 unsigned long *zones_size, unsigned long *zholes_size)
3456 {
3457 enum zone_type j;
3458 int nid = pgdat->node_id;
3459 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3460 int ret;
3461
3462 pgdat_resize_init(pgdat);
3463 pgdat->nr_zones = 0;
3464 init_waitqueue_head(&pgdat->kswapd_wait);
3465 pgdat->kswapd_max_order = 0;
3466 pgdat_page_cgroup_init(pgdat);
3467
3468 for (j = 0; j < MAX_NR_ZONES; j++) {
3469 struct zone *zone = pgdat->node_zones + j;
3470 unsigned long size, realsize, memmap_pages;
3471 enum lru_list l;
3472
3473 size = zone_spanned_pages_in_node(nid, j, zones_size);
3474 realsize = size - zone_absent_pages_in_node(nid, j,
3475 zholes_size);
3476
3477 /*
3478 * Adjust realsize so that it accounts for how much memory
3479 * is used by this zone for memmap. This affects the watermark
3480 * and per-cpu initialisations
3481 */
3482 memmap_pages =
3483 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3484 if (realsize >= memmap_pages) {
3485 realsize -= memmap_pages;
3486 if (memmap_pages)
3487 printk(KERN_DEBUG
3488 " %s zone: %lu pages used for memmap\n",
3489 zone_names[j], memmap_pages);
3490 } else
3491 printk(KERN_WARNING
3492 " %s zone: %lu pages exceeds realsize %lu\n",
3493 zone_names[j], memmap_pages, realsize);
3494
3495 /* Account for reserved pages */
3496 if (j == 0 && realsize > dma_reserve) {
3497 realsize -= dma_reserve;
3498 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3499 zone_names[0], dma_reserve);
3500 }
3501
3502 if (!is_highmem_idx(j))
3503 nr_kernel_pages += realsize;
3504 nr_all_pages += realsize;
3505
3506 zone->spanned_pages = size;
3507 zone->present_pages = realsize;
3508 #ifdef CONFIG_NUMA
3509 zone->node = nid;
3510 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3511 / 100;
3512 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3513 #endif
3514 zone->name = zone_names[j];
3515 spin_lock_init(&zone->lock);
3516 spin_lock_init(&zone->lru_lock);
3517 zone_seqlock_init(zone);
3518 zone->zone_pgdat = pgdat;
3519
3520 zone->prev_priority = DEF_PRIORITY;
3521
3522 zone_pcp_init(zone);
3523 for_each_lru(l) {
3524 INIT_LIST_HEAD(&zone->lru[l].list);
3525 zone->lru[l].nr_scan = 0;
3526 }
3527 zone->recent_rotated[0] = 0;
3528 zone->recent_rotated[1] = 0;
3529 zone->recent_scanned[0] = 0;
3530 zone->recent_scanned[1] = 0;
3531 zap_zone_vm_stats(zone);
3532 zone->flags = 0;
3533 if (!size)
3534 continue;
3535
3536 set_pageblock_order(pageblock_default_order());
3537 setup_usemap(pgdat, zone, size);
3538 ret = init_currently_empty_zone(zone, zone_start_pfn,
3539 size, MEMMAP_EARLY);
3540 BUG_ON(ret);
3541 memmap_init(size, nid, j, zone_start_pfn);
3542 zone_start_pfn += size;
3543 }
3544 }
3545
3546 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3547 {
3548 /* Skip empty nodes */
3549 if (!pgdat->node_spanned_pages)
3550 return;
3551
3552 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3553 /* ia64 gets its own node_mem_map, before this, without bootmem */
3554 if (!pgdat->node_mem_map) {
3555 unsigned long size, start, end;
3556 struct page *map;
3557
3558 /*
3559 * The zone's endpoints aren't required to be MAX_ORDER
3560 * aligned but the node_mem_map endpoints must be in order
3561 * for the buddy allocator to function correctly.
3562 */
3563 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3564 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3565 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3566 size = (end - start) * sizeof(struct page);
3567 map = alloc_remap(pgdat->node_id, size);
3568 if (!map)
3569 map = alloc_bootmem_node(pgdat, size);
3570 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3571 }
3572 #ifndef CONFIG_NEED_MULTIPLE_NODES
3573 /*
3574 * With no DISCONTIG, the global mem_map is just set as node 0's
3575 */
3576 if (pgdat == NODE_DATA(0)) {
3577 mem_map = NODE_DATA(0)->node_mem_map;
3578 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3579 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3580 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3581 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3582 }
3583 #endif
3584 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3585 }
3586
3587 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3588 unsigned long node_start_pfn, unsigned long *zholes_size)
3589 {
3590 pg_data_t *pgdat = NODE_DATA(nid);
3591
3592 pgdat->node_id = nid;
3593 pgdat->node_start_pfn = node_start_pfn;
3594 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3595
3596 alloc_node_mem_map(pgdat);
3597 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3598 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3599 nid, (unsigned long)pgdat,
3600 (unsigned long)pgdat->node_mem_map);
3601 #endif
3602
3603 free_area_init_core(pgdat, zones_size, zholes_size);
3604 }
3605
3606 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3607
3608 #if MAX_NUMNODES > 1
3609 /*
3610 * Figure out the number of possible node ids.
3611 */
3612 static void __init setup_nr_node_ids(void)
3613 {
3614 unsigned int node;
3615 unsigned int highest = 0;
3616
3617 for_each_node_mask(node, node_possible_map)
3618 highest = node;
3619 nr_node_ids = highest + 1;
3620 }
3621 #else
3622 static inline void setup_nr_node_ids(void)
3623 {
3624 }
3625 #endif
3626
3627 /**
3628 * add_active_range - Register a range of PFNs backed by physical memory
3629 * @nid: The node ID the range resides on
3630 * @start_pfn: The start PFN of the available physical memory
3631 * @end_pfn: The end PFN of the available physical memory
3632 *
3633 * These ranges are stored in an early_node_map[] and later used by
3634 * free_area_init_nodes() to calculate zone sizes and holes. If the
3635 * range spans a memory hole, it is up to the architecture to ensure
3636 * the memory is not freed by the bootmem allocator. If possible
3637 * the range being registered will be merged with existing ranges.
3638 */
3639 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3640 unsigned long end_pfn)
3641 {
3642 int i;
3643
3644 mminit_dprintk(MMINIT_TRACE, "memory_register",
3645 "Entering add_active_range(%d, %#lx, %#lx) "
3646 "%d entries of %d used\n",
3647 nid, start_pfn, end_pfn,
3648 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3649
3650 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3651
3652 /* Merge with existing active regions if possible */
3653 for (i = 0; i < nr_nodemap_entries; i++) {
3654 if (early_node_map[i].nid != nid)
3655 continue;
3656
3657 /* Skip if an existing region covers this new one */
3658 if (start_pfn >= early_node_map[i].start_pfn &&
3659 end_pfn <= early_node_map[i].end_pfn)
3660 return;
3661
3662 /* Merge forward if suitable */
3663 if (start_pfn <= early_node_map[i].end_pfn &&
3664 end_pfn > early_node_map[i].end_pfn) {
3665 early_node_map[i].end_pfn = end_pfn;
3666 return;
3667 }
3668
3669 /* Merge backward if suitable */
3670 if (start_pfn < early_node_map[i].end_pfn &&
3671 end_pfn >= early_node_map[i].start_pfn) {
3672 early_node_map[i].start_pfn = start_pfn;
3673 return;
3674 }
3675 }
3676
3677 /* Check that early_node_map is large enough */
3678 if (i >= MAX_ACTIVE_REGIONS) {
3679 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3680 MAX_ACTIVE_REGIONS);
3681 return;
3682 }
3683
3684 early_node_map[i].nid = nid;
3685 early_node_map[i].start_pfn = start_pfn;
3686 early_node_map[i].end_pfn = end_pfn;
3687 nr_nodemap_entries = i + 1;
3688 }
3689
3690 /**
3691 * remove_active_range - Shrink an existing registered range of PFNs
3692 * @nid: The node id the range is on that should be shrunk
3693 * @start_pfn: The new PFN of the range
3694 * @end_pfn: The new PFN of the range
3695 *
3696 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3697 * The map is kept near the end physical page range that has already been
3698 * registered. This function allows an arch to shrink an existing registered
3699 * range.
3700 */
3701 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3702 unsigned long end_pfn)
3703 {
3704 int i, j;
3705 int removed = 0;
3706
3707 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3708 nid, start_pfn, end_pfn);
3709
3710 /* Find the old active region end and shrink */
3711 for_each_active_range_index_in_nid(i, nid) {
3712 if (early_node_map[i].start_pfn >= start_pfn &&
3713 early_node_map[i].end_pfn <= end_pfn) {
3714 /* clear it */
3715 early_node_map[i].start_pfn = 0;
3716 early_node_map[i].end_pfn = 0;
3717 removed = 1;
3718 continue;
3719 }
3720 if (early_node_map[i].start_pfn < start_pfn &&
3721 early_node_map[i].end_pfn > start_pfn) {
3722 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3723 early_node_map[i].end_pfn = start_pfn;
3724 if (temp_end_pfn > end_pfn)
3725 add_active_range(nid, end_pfn, temp_end_pfn);
3726 continue;
3727 }
3728 if (early_node_map[i].start_pfn >= start_pfn &&
3729 early_node_map[i].end_pfn > end_pfn &&
3730 early_node_map[i].start_pfn < end_pfn) {
3731 early_node_map[i].start_pfn = end_pfn;
3732 continue;
3733 }
3734 }
3735
3736 if (!removed)
3737 return;
3738
3739 /* remove the blank ones */
3740 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3741 if (early_node_map[i].nid != nid)
3742 continue;
3743 if (early_node_map[i].end_pfn)
3744 continue;
3745 /* we found it, get rid of it */
3746 for (j = i; j < nr_nodemap_entries - 1; j++)
3747 memcpy(&early_node_map[j], &early_node_map[j+1],
3748 sizeof(early_node_map[j]));
3749 j = nr_nodemap_entries - 1;
3750 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3751 nr_nodemap_entries--;
3752 }
3753 }
3754
3755 /**
3756 * remove_all_active_ranges - Remove all currently registered regions
3757 *
3758 * During discovery, it may be found that a table like SRAT is invalid
3759 * and an alternative discovery method must be used. This function removes
3760 * all currently registered regions.
3761 */
3762 void __init remove_all_active_ranges(void)
3763 {
3764 memset(early_node_map, 0, sizeof(early_node_map));
3765 nr_nodemap_entries = 0;
3766 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3767 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3768 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3769 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3770 }
3771
3772 /* Compare two active node_active_regions */
3773 static int __init cmp_node_active_region(const void *a, const void *b)
3774 {
3775 struct node_active_region *arange = (struct node_active_region *)a;
3776 struct node_active_region *brange = (struct node_active_region *)b;
3777
3778 /* Done this way to avoid overflows */
3779 if (arange->start_pfn > brange->start_pfn)
3780 return 1;
3781 if (arange->start_pfn < brange->start_pfn)
3782 return -1;
3783
3784 return 0;
3785 }
3786
3787 /* sort the node_map by start_pfn */
3788 static void __init sort_node_map(void)
3789 {
3790 sort(early_node_map, (size_t)nr_nodemap_entries,
3791 sizeof(struct node_active_region),
3792 cmp_node_active_region, NULL);
3793 }
3794
3795 /* Find the lowest pfn for a node */
3796 static unsigned long __init find_min_pfn_for_node(int nid)
3797 {
3798 int i;
3799 unsigned long min_pfn = ULONG_MAX;
3800
3801 /* Assuming a sorted map, the first range found has the starting pfn */
3802 for_each_active_range_index_in_nid(i, nid)
3803 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3804
3805 if (min_pfn == ULONG_MAX) {
3806 printk(KERN_WARNING
3807 "Could not find start_pfn for node %d\n", nid);
3808 return 0;
3809 }
3810
3811 return min_pfn;
3812 }
3813
3814 /**
3815 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3816 *
3817 * It returns the minimum PFN based on information provided via
3818 * add_active_range().
3819 */
3820 unsigned long __init find_min_pfn_with_active_regions(void)
3821 {
3822 return find_min_pfn_for_node(MAX_NUMNODES);
3823 }
3824
3825 /*
3826 * early_calculate_totalpages()
3827 * Sum pages in active regions for movable zone.
3828 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3829 */
3830 static unsigned long __init early_calculate_totalpages(void)
3831 {
3832 int i;
3833 unsigned long totalpages = 0;
3834
3835 for (i = 0; i < nr_nodemap_entries; i++) {
3836 unsigned long pages = early_node_map[i].end_pfn -
3837 early_node_map[i].start_pfn;
3838 totalpages += pages;
3839 if (pages)
3840 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3841 }
3842 return totalpages;
3843 }
3844
3845 /*
3846 * Find the PFN the Movable zone begins in each node. Kernel memory
3847 * is spread evenly between nodes as long as the nodes have enough
3848 * memory. When they don't, some nodes will have more kernelcore than
3849 * others
3850 */
3851 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3852 {
3853 int i, nid;
3854 unsigned long usable_startpfn;
3855 unsigned long kernelcore_node, kernelcore_remaining;
3856 unsigned long totalpages = early_calculate_totalpages();
3857 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3858
3859 /*
3860 * If movablecore was specified, calculate what size of
3861 * kernelcore that corresponds so that memory usable for
3862 * any allocation type is evenly spread. If both kernelcore
3863 * and movablecore are specified, then the value of kernelcore
3864 * will be used for required_kernelcore if it's greater than
3865 * what movablecore would have allowed.
3866 */
3867 if (required_movablecore) {
3868 unsigned long corepages;
3869
3870 /*
3871 * Round-up so that ZONE_MOVABLE is at least as large as what
3872 * was requested by the user
3873 */
3874 required_movablecore =
3875 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3876 corepages = totalpages - required_movablecore;
3877
3878 required_kernelcore = max(required_kernelcore, corepages);
3879 }
3880
3881 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3882 if (!required_kernelcore)
3883 return;
3884
3885 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3886 find_usable_zone_for_movable();
3887 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3888
3889 restart:
3890 /* Spread kernelcore memory as evenly as possible throughout nodes */
3891 kernelcore_node = required_kernelcore / usable_nodes;
3892 for_each_node_state(nid, N_HIGH_MEMORY) {
3893 /*
3894 * Recalculate kernelcore_node if the division per node
3895 * now exceeds what is necessary to satisfy the requested
3896 * amount of memory for the kernel
3897 */
3898 if (required_kernelcore < kernelcore_node)
3899 kernelcore_node = required_kernelcore / usable_nodes;
3900
3901 /*
3902 * As the map is walked, we track how much memory is usable
3903 * by the kernel using kernelcore_remaining. When it is
3904 * 0, the rest of the node is usable by ZONE_MOVABLE
3905 */
3906 kernelcore_remaining = kernelcore_node;
3907
3908 /* Go through each range of PFNs within this node */
3909 for_each_active_range_index_in_nid(i, nid) {
3910 unsigned long start_pfn, end_pfn;
3911 unsigned long size_pages;
3912
3913 start_pfn = max(early_node_map[i].start_pfn,
3914 zone_movable_pfn[nid]);
3915 end_pfn = early_node_map[i].end_pfn;
3916 if (start_pfn >= end_pfn)
3917 continue;
3918
3919 /* Account for what is only usable for kernelcore */
3920 if (start_pfn < usable_startpfn) {
3921 unsigned long kernel_pages;
3922 kernel_pages = min(end_pfn, usable_startpfn)
3923 - start_pfn;
3924
3925 kernelcore_remaining -= min(kernel_pages,
3926 kernelcore_remaining);
3927 required_kernelcore -= min(kernel_pages,
3928 required_kernelcore);
3929
3930 /* Continue if range is now fully accounted */
3931 if (end_pfn <= usable_startpfn) {
3932
3933 /*
3934 * Push zone_movable_pfn to the end so
3935 * that if we have to rebalance
3936 * kernelcore across nodes, we will
3937 * not double account here
3938 */
3939 zone_movable_pfn[nid] = end_pfn;
3940 continue;
3941 }
3942 start_pfn = usable_startpfn;
3943 }
3944
3945 /*
3946 * The usable PFN range for ZONE_MOVABLE is from
3947 * start_pfn->end_pfn. Calculate size_pages as the
3948 * number of pages used as kernelcore
3949 */
3950 size_pages = end_pfn - start_pfn;
3951 if (size_pages > kernelcore_remaining)
3952 size_pages = kernelcore_remaining;
3953 zone_movable_pfn[nid] = start_pfn + size_pages;
3954
3955 /*
3956 * Some kernelcore has been met, update counts and
3957 * break if the kernelcore for this node has been
3958 * satisified
3959 */
3960 required_kernelcore -= min(required_kernelcore,
3961 size_pages);
3962 kernelcore_remaining -= size_pages;
3963 if (!kernelcore_remaining)
3964 break;
3965 }
3966 }
3967
3968 /*
3969 * If there is still required_kernelcore, we do another pass with one
3970 * less node in the count. This will push zone_movable_pfn[nid] further
3971 * along on the nodes that still have memory until kernelcore is
3972 * satisified
3973 */
3974 usable_nodes--;
3975 if (usable_nodes && required_kernelcore > usable_nodes)
3976 goto restart;
3977
3978 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3979 for (nid = 0; nid < MAX_NUMNODES; nid++)
3980 zone_movable_pfn[nid] =
3981 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3982 }
3983
3984 /* Any regular memory on that node ? */
3985 static void check_for_regular_memory(pg_data_t *pgdat)
3986 {
3987 #ifdef CONFIG_HIGHMEM
3988 enum zone_type zone_type;
3989
3990 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3991 struct zone *zone = &pgdat->node_zones[zone_type];
3992 if (zone->present_pages)
3993 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3994 }
3995 #endif
3996 }
3997
3998 /**
3999 * free_area_init_nodes - Initialise all pg_data_t and zone data
4000 * @max_zone_pfn: an array of max PFNs for each zone
4001 *
4002 * This will call free_area_init_node() for each active node in the system.
4003 * Using the page ranges provided by add_active_range(), the size of each
4004 * zone in each node and their holes is calculated. If the maximum PFN
4005 * between two adjacent zones match, it is assumed that the zone is empty.
4006 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4007 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4008 * starts where the previous one ended. For example, ZONE_DMA32 starts
4009 * at arch_max_dma_pfn.
4010 */
4011 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4012 {
4013 unsigned long nid;
4014 int i;
4015
4016 /* Sort early_node_map as initialisation assumes it is sorted */
4017 sort_node_map();
4018
4019 /* Record where the zone boundaries are */
4020 memset(arch_zone_lowest_possible_pfn, 0,
4021 sizeof(arch_zone_lowest_possible_pfn));
4022 memset(arch_zone_highest_possible_pfn, 0,
4023 sizeof(arch_zone_highest_possible_pfn));
4024 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4025 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4026 for (i = 1; i < MAX_NR_ZONES; i++) {
4027 if (i == ZONE_MOVABLE)
4028 continue;
4029 arch_zone_lowest_possible_pfn[i] =
4030 arch_zone_highest_possible_pfn[i-1];
4031 arch_zone_highest_possible_pfn[i] =
4032 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4033 }
4034 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4035 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4036
4037 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4038 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4039 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4040
4041 /* Print out the zone ranges */
4042 printk("Zone PFN ranges:\n");
4043 for (i = 0; i < MAX_NR_ZONES; i++) {
4044 if (i == ZONE_MOVABLE)
4045 continue;
4046 printk(" %-8s %0#10lx -> %0#10lx\n",
4047 zone_names[i],
4048 arch_zone_lowest_possible_pfn[i],
4049 arch_zone_highest_possible_pfn[i]);
4050 }
4051
4052 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4053 printk("Movable zone start PFN for each node\n");
4054 for (i = 0; i < MAX_NUMNODES; i++) {
4055 if (zone_movable_pfn[i])
4056 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4057 }
4058
4059 /* Print out the early_node_map[] */
4060 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4061 for (i = 0; i < nr_nodemap_entries; i++)
4062 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4063 early_node_map[i].start_pfn,
4064 early_node_map[i].end_pfn);
4065
4066 /* Initialise every node */
4067 mminit_verify_pageflags_layout();
4068 setup_nr_node_ids();
4069 for_each_online_node(nid) {
4070 pg_data_t *pgdat = NODE_DATA(nid);
4071 free_area_init_node(nid, NULL,
4072 find_min_pfn_for_node(nid), NULL);
4073
4074 /* Any memory on that node */
4075 if (pgdat->node_present_pages)
4076 node_set_state(nid, N_HIGH_MEMORY);
4077 check_for_regular_memory(pgdat);
4078 }
4079 }
4080
4081 static int __init cmdline_parse_core(char *p, unsigned long *core)
4082 {
4083 unsigned long long coremem;
4084 if (!p)
4085 return -EINVAL;
4086
4087 coremem = memparse(p, &p);
4088 *core = coremem >> PAGE_SHIFT;
4089
4090 /* Paranoid check that UL is enough for the coremem value */
4091 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4092
4093 return 0;
4094 }
4095
4096 /*
4097 * kernelcore=size sets the amount of memory for use for allocations that
4098 * cannot be reclaimed or migrated.
4099 */
4100 static int __init cmdline_parse_kernelcore(char *p)
4101 {
4102 return cmdline_parse_core(p, &required_kernelcore);
4103 }
4104
4105 /*
4106 * movablecore=size sets the amount of memory for use for allocations that
4107 * can be reclaimed or migrated.
4108 */
4109 static int __init cmdline_parse_movablecore(char *p)
4110 {
4111 return cmdline_parse_core(p, &required_movablecore);
4112 }
4113
4114 early_param("kernelcore", cmdline_parse_kernelcore);
4115 early_param("movablecore", cmdline_parse_movablecore);
4116
4117 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4118
4119 /**
4120 * set_dma_reserve - set the specified number of pages reserved in the first zone
4121 * @new_dma_reserve: The number of pages to mark reserved
4122 *
4123 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4124 * In the DMA zone, a significant percentage may be consumed by kernel image
4125 * and other unfreeable allocations which can skew the watermarks badly. This
4126 * function may optionally be used to account for unfreeable pages in the
4127 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4128 * smaller per-cpu batchsize.
4129 */
4130 void __init set_dma_reserve(unsigned long new_dma_reserve)
4131 {
4132 dma_reserve = new_dma_reserve;
4133 }
4134
4135 #ifndef CONFIG_NEED_MULTIPLE_NODES
4136 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4137 EXPORT_SYMBOL(contig_page_data);
4138 #endif
4139
4140 void __init free_area_init(unsigned long *zones_size)
4141 {
4142 free_area_init_node(0, zones_size,
4143 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4144 }
4145
4146 static int page_alloc_cpu_notify(struct notifier_block *self,
4147 unsigned long action, void *hcpu)
4148 {
4149 int cpu = (unsigned long)hcpu;
4150
4151 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4152 drain_pages(cpu);
4153
4154 /*
4155 * Spill the event counters of the dead processor
4156 * into the current processors event counters.
4157 * This artificially elevates the count of the current
4158 * processor.
4159 */
4160 vm_events_fold_cpu(cpu);
4161
4162 /*
4163 * Zero the differential counters of the dead processor
4164 * so that the vm statistics are consistent.
4165 *
4166 * This is only okay since the processor is dead and cannot
4167 * race with what we are doing.
4168 */
4169 refresh_cpu_vm_stats(cpu);
4170 }
4171 return NOTIFY_OK;
4172 }
4173
4174 void __init page_alloc_init(void)
4175 {
4176 hotcpu_notifier(page_alloc_cpu_notify, 0);
4177 }
4178
4179 /*
4180 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4181 * or min_free_kbytes changes.
4182 */
4183 static void calculate_totalreserve_pages(void)
4184 {
4185 struct pglist_data *pgdat;
4186 unsigned long reserve_pages = 0;
4187 enum zone_type i, j;
4188
4189 for_each_online_pgdat(pgdat) {
4190 for (i = 0; i < MAX_NR_ZONES; i++) {
4191 struct zone *zone = pgdat->node_zones + i;
4192 unsigned long max = 0;
4193
4194 /* Find valid and maximum lowmem_reserve in the zone */
4195 for (j = i; j < MAX_NR_ZONES; j++) {
4196 if (zone->lowmem_reserve[j] > max)
4197 max = zone->lowmem_reserve[j];
4198 }
4199
4200 /* we treat pages_high as reserved pages. */
4201 max += zone->pages_high;
4202
4203 if (max > zone->present_pages)
4204 max = zone->present_pages;
4205 reserve_pages += max;
4206 }
4207 }
4208 totalreserve_pages = reserve_pages;
4209 }
4210
4211 /*
4212 * setup_per_zone_lowmem_reserve - called whenever
4213 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4214 * has a correct pages reserved value, so an adequate number of
4215 * pages are left in the zone after a successful __alloc_pages().
4216 */
4217 static void setup_per_zone_lowmem_reserve(void)
4218 {
4219 struct pglist_data *pgdat;
4220 enum zone_type j, idx;
4221
4222 for_each_online_pgdat(pgdat) {
4223 for (j = 0; j < MAX_NR_ZONES; j++) {
4224 struct zone *zone = pgdat->node_zones + j;
4225 unsigned long present_pages = zone->present_pages;
4226
4227 zone->lowmem_reserve[j] = 0;
4228
4229 idx = j;
4230 while (idx) {
4231 struct zone *lower_zone;
4232
4233 idx--;
4234
4235 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4236 sysctl_lowmem_reserve_ratio[idx] = 1;
4237
4238 lower_zone = pgdat->node_zones + idx;
4239 lower_zone->lowmem_reserve[j] = present_pages /
4240 sysctl_lowmem_reserve_ratio[idx];
4241 present_pages += lower_zone->present_pages;
4242 }
4243 }
4244 }
4245
4246 /* update totalreserve_pages */
4247 calculate_totalreserve_pages();
4248 }
4249
4250 /**
4251 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4252 *
4253 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4254 * with respect to min_free_kbytes.
4255 */
4256 void setup_per_zone_pages_min(void)
4257 {
4258 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4259 unsigned long lowmem_pages = 0;
4260 struct zone *zone;
4261 unsigned long flags;
4262
4263 /* Calculate total number of !ZONE_HIGHMEM pages */
4264 for_each_zone(zone) {
4265 if (!is_highmem(zone))
4266 lowmem_pages += zone->present_pages;
4267 }
4268
4269 for_each_zone(zone) {
4270 u64 tmp;
4271
4272 spin_lock_irqsave(&zone->lock, flags);
4273 tmp = (u64)pages_min * zone->present_pages;
4274 do_div(tmp, lowmem_pages);
4275 if (is_highmem(zone)) {
4276 /*
4277 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4278 * need highmem pages, so cap pages_min to a small
4279 * value here.
4280 *
4281 * The (pages_high-pages_low) and (pages_low-pages_min)
4282 * deltas controls asynch page reclaim, and so should
4283 * not be capped for highmem.
4284 */
4285 int min_pages;
4286
4287 min_pages = zone->present_pages / 1024;
4288 if (min_pages < SWAP_CLUSTER_MAX)
4289 min_pages = SWAP_CLUSTER_MAX;
4290 if (min_pages > 128)
4291 min_pages = 128;
4292 zone->pages_min = min_pages;
4293 } else {
4294 /*
4295 * If it's a lowmem zone, reserve a number of pages
4296 * proportionate to the zone's size.
4297 */
4298 zone->pages_min = tmp;
4299 }
4300
4301 zone->pages_low = zone->pages_min + (tmp >> 2);
4302 zone->pages_high = zone->pages_min + (tmp >> 1);
4303 setup_zone_migrate_reserve(zone);
4304 spin_unlock_irqrestore(&zone->lock, flags);
4305 }
4306
4307 /* update totalreserve_pages */
4308 calculate_totalreserve_pages();
4309 }
4310
4311 /**
4312 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4313 *
4314 * The inactive anon list should be small enough that the VM never has to
4315 * do too much work, but large enough that each inactive page has a chance
4316 * to be referenced again before it is swapped out.
4317 *
4318 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4319 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4320 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4321 * the anonymous pages are kept on the inactive list.
4322 *
4323 * total target max
4324 * memory ratio inactive anon
4325 * -------------------------------------
4326 * 10MB 1 5MB
4327 * 100MB 1 50MB
4328 * 1GB 3 250MB
4329 * 10GB 10 0.9GB
4330 * 100GB 31 3GB
4331 * 1TB 101 10GB
4332 * 10TB 320 32GB
4333 */
4334 static void setup_per_zone_inactive_ratio(void)
4335 {
4336 struct zone *zone;
4337
4338 for_each_zone(zone) {
4339 unsigned int gb, ratio;
4340
4341 /* Zone size in gigabytes */
4342 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4343 ratio = int_sqrt(10 * gb);
4344 if (!ratio)
4345 ratio = 1;
4346
4347 zone->inactive_ratio = ratio;
4348 }
4349 }
4350
4351 /*
4352 * Initialise min_free_kbytes.
4353 *
4354 * For small machines we want it small (128k min). For large machines
4355 * we want it large (64MB max). But it is not linear, because network
4356 * bandwidth does not increase linearly with machine size. We use
4357 *
4358 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4359 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4360 *
4361 * which yields
4362 *
4363 * 16MB: 512k
4364 * 32MB: 724k
4365 * 64MB: 1024k
4366 * 128MB: 1448k
4367 * 256MB: 2048k
4368 * 512MB: 2896k
4369 * 1024MB: 4096k
4370 * 2048MB: 5792k
4371 * 4096MB: 8192k
4372 * 8192MB: 11584k
4373 * 16384MB: 16384k
4374 */
4375 static int __init init_per_zone_pages_min(void)
4376 {
4377 unsigned long lowmem_kbytes;
4378
4379 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4380
4381 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4382 if (min_free_kbytes < 128)
4383 min_free_kbytes = 128;
4384 if (min_free_kbytes > 65536)
4385 min_free_kbytes = 65536;
4386 setup_per_zone_pages_min();
4387 setup_per_zone_lowmem_reserve();
4388 setup_per_zone_inactive_ratio();
4389 return 0;
4390 }
4391 module_init(init_per_zone_pages_min)
4392
4393 /*
4394 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4395 * that we can call two helper functions whenever min_free_kbytes
4396 * changes.
4397 */
4398 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4399 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4400 {
4401 proc_dointvec(table, write, file, buffer, length, ppos);
4402 if (write)
4403 setup_per_zone_pages_min();
4404 return 0;
4405 }
4406
4407 #ifdef CONFIG_NUMA
4408 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4409 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4410 {
4411 struct zone *zone;
4412 int rc;
4413
4414 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4415 if (rc)
4416 return rc;
4417
4418 for_each_zone(zone)
4419 zone->min_unmapped_pages = (zone->present_pages *
4420 sysctl_min_unmapped_ratio) / 100;
4421 return 0;
4422 }
4423
4424 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4425 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4426 {
4427 struct zone *zone;
4428 int rc;
4429
4430 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4431 if (rc)
4432 return rc;
4433
4434 for_each_zone(zone)
4435 zone->min_slab_pages = (zone->present_pages *
4436 sysctl_min_slab_ratio) / 100;
4437 return 0;
4438 }
4439 #endif
4440
4441 /*
4442 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4443 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4444 * whenever sysctl_lowmem_reserve_ratio changes.
4445 *
4446 * The reserve ratio obviously has absolutely no relation with the
4447 * pages_min watermarks. The lowmem reserve ratio can only make sense
4448 * if in function of the boot time zone sizes.
4449 */
4450 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4451 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4452 {
4453 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4454 setup_per_zone_lowmem_reserve();
4455 return 0;
4456 }
4457
4458 /*
4459 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4460 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4461 * can have before it gets flushed back to buddy allocator.
4462 */
4463
4464 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4465 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4466 {
4467 struct zone *zone;
4468 unsigned int cpu;
4469 int ret;
4470
4471 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4472 if (!write || (ret == -EINVAL))
4473 return ret;
4474 for_each_zone(zone) {
4475 for_each_online_cpu(cpu) {
4476 unsigned long high;
4477 high = zone->present_pages / percpu_pagelist_fraction;
4478 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4479 }
4480 }
4481 return 0;
4482 }
4483
4484 int hashdist = HASHDIST_DEFAULT;
4485
4486 #ifdef CONFIG_NUMA
4487 static int __init set_hashdist(char *str)
4488 {
4489 if (!str)
4490 return 0;
4491 hashdist = simple_strtoul(str, &str, 0);
4492 return 1;
4493 }
4494 __setup("hashdist=", set_hashdist);
4495 #endif
4496
4497 /*
4498 * allocate a large system hash table from bootmem
4499 * - it is assumed that the hash table must contain an exact power-of-2
4500 * quantity of entries
4501 * - limit is the number of hash buckets, not the total allocation size
4502 */
4503 void *__init alloc_large_system_hash(const char *tablename,
4504 unsigned long bucketsize,
4505 unsigned long numentries,
4506 int scale,
4507 int flags,
4508 unsigned int *_hash_shift,
4509 unsigned int *_hash_mask,
4510 unsigned long limit)
4511 {
4512 unsigned long long max = limit;
4513 unsigned long log2qty, size;
4514 void *table = NULL;
4515
4516 /* allow the kernel cmdline to have a say */
4517 if (!numentries) {
4518 /* round applicable memory size up to nearest megabyte */
4519 numentries = nr_kernel_pages;
4520 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4521 numentries >>= 20 - PAGE_SHIFT;
4522 numentries <<= 20 - PAGE_SHIFT;
4523
4524 /* limit to 1 bucket per 2^scale bytes of low memory */
4525 if (scale > PAGE_SHIFT)
4526 numentries >>= (scale - PAGE_SHIFT);
4527 else
4528 numentries <<= (PAGE_SHIFT - scale);
4529
4530 /* Make sure we've got at least a 0-order allocation.. */
4531 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4532 numentries = PAGE_SIZE / bucketsize;
4533 }
4534 numentries = roundup_pow_of_two(numentries);
4535
4536 /* limit allocation size to 1/16 total memory by default */
4537 if (max == 0) {
4538 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4539 do_div(max, bucketsize);
4540 }
4541
4542 if (numentries > max)
4543 numentries = max;
4544
4545 log2qty = ilog2(numentries);
4546
4547 do {
4548 size = bucketsize << log2qty;
4549 if (flags & HASH_EARLY)
4550 table = alloc_bootmem_nopanic(size);
4551 else if (hashdist)
4552 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4553 else {
4554 unsigned long order = get_order(size);
4555 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4556 /*
4557 * If bucketsize is not a power-of-two, we may free
4558 * some pages at the end of hash table.
4559 */
4560 if (table) {
4561 unsigned long alloc_end = (unsigned long)table +
4562 (PAGE_SIZE << order);
4563 unsigned long used = (unsigned long)table +
4564 PAGE_ALIGN(size);
4565 split_page(virt_to_page(table), order);
4566 while (used < alloc_end) {
4567 free_page(used);
4568 used += PAGE_SIZE;
4569 }
4570 }
4571 }
4572 } while (!table && size > PAGE_SIZE && --log2qty);
4573
4574 if (!table)
4575 panic("Failed to allocate %s hash table\n", tablename);
4576
4577 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4578 tablename,
4579 (1U << log2qty),
4580 ilog2(size) - PAGE_SHIFT,
4581 size);
4582
4583 if (_hash_shift)
4584 *_hash_shift = log2qty;
4585 if (_hash_mask)
4586 *_hash_mask = (1 << log2qty) - 1;
4587
4588 return table;
4589 }
4590
4591 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4592 struct page *pfn_to_page(unsigned long pfn)
4593 {
4594 return __pfn_to_page(pfn);
4595 }
4596 unsigned long page_to_pfn(struct page *page)
4597 {
4598 return __page_to_pfn(page);
4599 }
4600 EXPORT_SYMBOL(pfn_to_page);
4601 EXPORT_SYMBOL(page_to_pfn);
4602 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4603
4604 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4605 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4606 unsigned long pfn)
4607 {
4608 #ifdef CONFIG_SPARSEMEM
4609 return __pfn_to_section(pfn)->pageblock_flags;
4610 #else
4611 return zone->pageblock_flags;
4612 #endif /* CONFIG_SPARSEMEM */
4613 }
4614
4615 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4616 {
4617 #ifdef CONFIG_SPARSEMEM
4618 pfn &= (PAGES_PER_SECTION-1);
4619 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4620 #else
4621 pfn = pfn - zone->zone_start_pfn;
4622 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4623 #endif /* CONFIG_SPARSEMEM */
4624 }
4625
4626 /**
4627 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4628 * @page: The page within the block of interest
4629 * @start_bitidx: The first bit of interest to retrieve
4630 * @end_bitidx: The last bit of interest
4631 * returns pageblock_bits flags
4632 */
4633 unsigned long get_pageblock_flags_group(struct page *page,
4634 int start_bitidx, int end_bitidx)
4635 {
4636 struct zone *zone;
4637 unsigned long *bitmap;
4638 unsigned long pfn, bitidx;
4639 unsigned long flags = 0;
4640 unsigned long value = 1;
4641
4642 zone = page_zone(page);
4643 pfn = page_to_pfn(page);
4644 bitmap = get_pageblock_bitmap(zone, pfn);
4645 bitidx = pfn_to_bitidx(zone, pfn);
4646
4647 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4648 if (test_bit(bitidx + start_bitidx, bitmap))
4649 flags |= value;
4650
4651 return flags;
4652 }
4653
4654 /**
4655 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4656 * @page: The page within the block of interest
4657 * @start_bitidx: The first bit of interest
4658 * @end_bitidx: The last bit of interest
4659 * @flags: The flags to set
4660 */
4661 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4662 int start_bitidx, int end_bitidx)
4663 {
4664 struct zone *zone;
4665 unsigned long *bitmap;
4666 unsigned long pfn, bitidx;
4667 unsigned long value = 1;
4668
4669 zone = page_zone(page);
4670 pfn = page_to_pfn(page);
4671 bitmap = get_pageblock_bitmap(zone, pfn);
4672 bitidx = pfn_to_bitidx(zone, pfn);
4673 VM_BUG_ON(pfn < zone->zone_start_pfn);
4674 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4675
4676 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4677 if (flags & value)
4678 __set_bit(bitidx + start_bitidx, bitmap);
4679 else
4680 __clear_bit(bitidx + start_bitidx, bitmap);
4681 }
4682
4683 /*
4684 * This is designed as sub function...plz see page_isolation.c also.
4685 * set/clear page block's type to be ISOLATE.
4686 * page allocater never alloc memory from ISOLATE block.
4687 */
4688
4689 int set_migratetype_isolate(struct page *page)
4690 {
4691 struct zone *zone;
4692 unsigned long flags;
4693 int ret = -EBUSY;
4694
4695 zone = page_zone(page);
4696 spin_lock_irqsave(&zone->lock, flags);
4697 /*
4698 * In future, more migrate types will be able to be isolation target.
4699 */
4700 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4701 goto out;
4702 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4703 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4704 ret = 0;
4705 out:
4706 spin_unlock_irqrestore(&zone->lock, flags);
4707 if (!ret)
4708 drain_all_pages();
4709 return ret;
4710 }
4711
4712 void unset_migratetype_isolate(struct page *page)
4713 {
4714 struct zone *zone;
4715 unsigned long flags;
4716 zone = page_zone(page);
4717 spin_lock_irqsave(&zone->lock, flags);
4718 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4719 goto out;
4720 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4721 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4722 out:
4723 spin_unlock_irqrestore(&zone->lock, flags);
4724 }
4725
4726 #ifdef CONFIG_MEMORY_HOTREMOVE
4727 /*
4728 * All pages in the range must be isolated before calling this.
4729 */
4730 void
4731 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4732 {
4733 struct page *page;
4734 struct zone *zone;
4735 int order, i;
4736 unsigned long pfn;
4737 unsigned long flags;
4738 /* find the first valid pfn */
4739 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4740 if (pfn_valid(pfn))
4741 break;
4742 if (pfn == end_pfn)
4743 return;
4744 zone = page_zone(pfn_to_page(pfn));
4745 spin_lock_irqsave(&zone->lock, flags);
4746 pfn = start_pfn;
4747 while (pfn < end_pfn) {
4748 if (!pfn_valid(pfn)) {
4749 pfn++;
4750 continue;
4751 }
4752 page = pfn_to_page(pfn);
4753 BUG_ON(page_count(page));
4754 BUG_ON(!PageBuddy(page));
4755 order = page_order(page);
4756 #ifdef CONFIG_DEBUG_VM
4757 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4758 pfn, 1 << order, end_pfn);
4759 #endif
4760 list_del(&page->lru);
4761 rmv_page_order(page);
4762 zone->free_area[order].nr_free--;
4763 __mod_zone_page_state(zone, NR_FREE_PAGES,
4764 - (1UL << order));
4765 for (i = 0; i < (1 << order); i++)
4766 SetPageReserved((page+i));
4767 pfn += (1 << order);
4768 }
4769 spin_unlock_irqrestore(&zone->lock, flags);
4770 }
4771 #endif
This page took 0.119542 seconds and 6 git commands to generate.