mm, page_alloc: delete the zonelist_cache
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 int min_free_kbytes = 1024;
233 int user_min_free_kbytes = -1;
234
235 static unsigned long __meminitdata nr_kernel_pages;
236 static unsigned long __meminitdata nr_all_pages;
237 static unsigned long __meminitdata dma_reserve;
238
239 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
240 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
241 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
242 static unsigned long __initdata required_kernelcore;
243 static unsigned long __initdata required_movablecore;
244 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
245
246 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
247 int movable_zone;
248 EXPORT_SYMBOL(movable_zone);
249 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
250
251 #if MAX_NUMNODES > 1
252 int nr_node_ids __read_mostly = MAX_NUMNODES;
253 int nr_online_nodes __read_mostly = 1;
254 EXPORT_SYMBOL(nr_node_ids);
255 EXPORT_SYMBOL(nr_online_nodes);
256 #endif
257
258 int page_group_by_mobility_disabled __read_mostly;
259
260 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
261 static inline void reset_deferred_meminit(pg_data_t *pgdat)
262 {
263 pgdat->first_deferred_pfn = ULONG_MAX;
264 }
265
266 /* Returns true if the struct page for the pfn is uninitialised */
267 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
268 {
269 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
270 return true;
271
272 return false;
273 }
274
275 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
276 {
277 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
278 return true;
279
280 return false;
281 }
282
283 /*
284 * Returns false when the remaining initialisation should be deferred until
285 * later in the boot cycle when it can be parallelised.
286 */
287 static inline bool update_defer_init(pg_data_t *pgdat,
288 unsigned long pfn, unsigned long zone_end,
289 unsigned long *nr_initialised)
290 {
291 /* Always populate low zones for address-contrained allocations */
292 if (zone_end < pgdat_end_pfn(pgdat))
293 return true;
294
295 /* Initialise at least 2G of the highest zone */
296 (*nr_initialised)++;
297 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
298 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
299 pgdat->first_deferred_pfn = pfn;
300 return false;
301 }
302
303 return true;
304 }
305 #else
306 static inline void reset_deferred_meminit(pg_data_t *pgdat)
307 {
308 }
309
310 static inline bool early_page_uninitialised(unsigned long pfn)
311 {
312 return false;
313 }
314
315 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
316 {
317 return false;
318 }
319
320 static inline bool update_defer_init(pg_data_t *pgdat,
321 unsigned long pfn, unsigned long zone_end,
322 unsigned long *nr_initialised)
323 {
324 return true;
325 }
326 #endif
327
328
329 void set_pageblock_migratetype(struct page *page, int migratetype)
330 {
331 if (unlikely(page_group_by_mobility_disabled &&
332 migratetype < MIGRATE_PCPTYPES))
333 migratetype = MIGRATE_UNMOVABLE;
334
335 set_pageblock_flags_group(page, (unsigned long)migratetype,
336 PB_migrate, PB_migrate_end);
337 }
338
339 #ifdef CONFIG_DEBUG_VM
340 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
341 {
342 int ret = 0;
343 unsigned seq;
344 unsigned long pfn = page_to_pfn(page);
345 unsigned long sp, start_pfn;
346
347 do {
348 seq = zone_span_seqbegin(zone);
349 start_pfn = zone->zone_start_pfn;
350 sp = zone->spanned_pages;
351 if (!zone_spans_pfn(zone, pfn))
352 ret = 1;
353 } while (zone_span_seqretry(zone, seq));
354
355 if (ret)
356 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
357 pfn, zone_to_nid(zone), zone->name,
358 start_pfn, start_pfn + sp);
359
360 return ret;
361 }
362
363 static int page_is_consistent(struct zone *zone, struct page *page)
364 {
365 if (!pfn_valid_within(page_to_pfn(page)))
366 return 0;
367 if (zone != page_zone(page))
368 return 0;
369
370 return 1;
371 }
372 /*
373 * Temporary debugging check for pages not lying within a given zone.
374 */
375 static int bad_range(struct zone *zone, struct page *page)
376 {
377 if (page_outside_zone_boundaries(zone, page))
378 return 1;
379 if (!page_is_consistent(zone, page))
380 return 1;
381
382 return 0;
383 }
384 #else
385 static inline int bad_range(struct zone *zone, struct page *page)
386 {
387 return 0;
388 }
389 #endif
390
391 static void bad_page(struct page *page, const char *reason,
392 unsigned long bad_flags)
393 {
394 static unsigned long resume;
395 static unsigned long nr_shown;
396 static unsigned long nr_unshown;
397
398 /* Don't complain about poisoned pages */
399 if (PageHWPoison(page)) {
400 page_mapcount_reset(page); /* remove PageBuddy */
401 return;
402 }
403
404 /*
405 * Allow a burst of 60 reports, then keep quiet for that minute;
406 * or allow a steady drip of one report per second.
407 */
408 if (nr_shown == 60) {
409 if (time_before(jiffies, resume)) {
410 nr_unshown++;
411 goto out;
412 }
413 if (nr_unshown) {
414 printk(KERN_ALERT
415 "BUG: Bad page state: %lu messages suppressed\n",
416 nr_unshown);
417 nr_unshown = 0;
418 }
419 nr_shown = 0;
420 }
421 if (nr_shown++ == 0)
422 resume = jiffies + 60 * HZ;
423
424 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
425 current->comm, page_to_pfn(page));
426 dump_page_badflags(page, reason, bad_flags);
427
428 print_modules();
429 dump_stack();
430 out:
431 /* Leave bad fields for debug, except PageBuddy could make trouble */
432 page_mapcount_reset(page); /* remove PageBuddy */
433 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
434 }
435
436 /*
437 * Higher-order pages are called "compound pages". They are structured thusly:
438 *
439 * The first PAGE_SIZE page is called the "head page".
440 *
441 * The remaining PAGE_SIZE pages are called "tail pages".
442 *
443 * All pages have PG_compound set. All tail pages have their ->first_page
444 * pointing at the head page.
445 *
446 * The first tail page's ->lru.next holds the address of the compound page's
447 * put_page() function. Its ->lru.prev holds the order of allocation.
448 * This usage means that zero-order pages may not be compound.
449 */
450
451 static void free_compound_page(struct page *page)
452 {
453 __free_pages_ok(page, compound_order(page));
454 }
455
456 void prep_compound_page(struct page *page, unsigned long order)
457 {
458 int i;
459 int nr_pages = 1 << order;
460
461 set_compound_page_dtor(page, free_compound_page);
462 set_compound_order(page, order);
463 __SetPageHead(page);
464 for (i = 1; i < nr_pages; i++) {
465 struct page *p = page + i;
466 set_page_count(p, 0);
467 p->first_page = page;
468 /* Make sure p->first_page is always valid for PageTail() */
469 smp_wmb();
470 __SetPageTail(p);
471 }
472 }
473
474 #ifdef CONFIG_DEBUG_PAGEALLOC
475 unsigned int _debug_guardpage_minorder;
476 bool _debug_pagealloc_enabled __read_mostly;
477 bool _debug_guardpage_enabled __read_mostly;
478
479 static int __init early_debug_pagealloc(char *buf)
480 {
481 if (!buf)
482 return -EINVAL;
483
484 if (strcmp(buf, "on") == 0)
485 _debug_pagealloc_enabled = true;
486
487 return 0;
488 }
489 early_param("debug_pagealloc", early_debug_pagealloc);
490
491 static bool need_debug_guardpage(void)
492 {
493 /* If we don't use debug_pagealloc, we don't need guard page */
494 if (!debug_pagealloc_enabled())
495 return false;
496
497 return true;
498 }
499
500 static void init_debug_guardpage(void)
501 {
502 if (!debug_pagealloc_enabled())
503 return;
504
505 _debug_guardpage_enabled = true;
506 }
507
508 struct page_ext_operations debug_guardpage_ops = {
509 .need = need_debug_guardpage,
510 .init = init_debug_guardpage,
511 };
512
513 static int __init debug_guardpage_minorder_setup(char *buf)
514 {
515 unsigned long res;
516
517 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
518 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
519 return 0;
520 }
521 _debug_guardpage_minorder = res;
522 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
523 return 0;
524 }
525 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
526
527 static inline void set_page_guard(struct zone *zone, struct page *page,
528 unsigned int order, int migratetype)
529 {
530 struct page_ext *page_ext;
531
532 if (!debug_guardpage_enabled())
533 return;
534
535 page_ext = lookup_page_ext(page);
536 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
537
538 INIT_LIST_HEAD(&page->lru);
539 set_page_private(page, order);
540 /* Guard pages are not available for any usage */
541 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
542 }
543
544 static inline void clear_page_guard(struct zone *zone, struct page *page,
545 unsigned int order, int migratetype)
546 {
547 struct page_ext *page_ext;
548
549 if (!debug_guardpage_enabled())
550 return;
551
552 page_ext = lookup_page_ext(page);
553 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
554
555 set_page_private(page, 0);
556 if (!is_migrate_isolate(migratetype))
557 __mod_zone_freepage_state(zone, (1 << order), migratetype);
558 }
559 #else
560 struct page_ext_operations debug_guardpage_ops = { NULL, };
561 static inline void set_page_guard(struct zone *zone, struct page *page,
562 unsigned int order, int migratetype) {}
563 static inline void clear_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype) {}
565 #endif
566
567 static inline void set_page_order(struct page *page, unsigned int order)
568 {
569 set_page_private(page, order);
570 __SetPageBuddy(page);
571 }
572
573 static inline void rmv_page_order(struct page *page)
574 {
575 __ClearPageBuddy(page);
576 set_page_private(page, 0);
577 }
578
579 /*
580 * This function checks whether a page is free && is the buddy
581 * we can do coalesce a page and its buddy if
582 * (a) the buddy is not in a hole &&
583 * (b) the buddy is in the buddy system &&
584 * (c) a page and its buddy have the same order &&
585 * (d) a page and its buddy are in the same zone.
586 *
587 * For recording whether a page is in the buddy system, we set ->_mapcount
588 * PAGE_BUDDY_MAPCOUNT_VALUE.
589 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
590 * serialized by zone->lock.
591 *
592 * For recording page's order, we use page_private(page).
593 */
594 static inline int page_is_buddy(struct page *page, struct page *buddy,
595 unsigned int order)
596 {
597 if (!pfn_valid_within(page_to_pfn(buddy)))
598 return 0;
599
600 if (page_is_guard(buddy) && page_order(buddy) == order) {
601 if (page_zone_id(page) != page_zone_id(buddy))
602 return 0;
603
604 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
605
606 return 1;
607 }
608
609 if (PageBuddy(buddy) && page_order(buddy) == order) {
610 /*
611 * zone check is done late to avoid uselessly
612 * calculating zone/node ids for pages that could
613 * never merge.
614 */
615 if (page_zone_id(page) != page_zone_id(buddy))
616 return 0;
617
618 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
619
620 return 1;
621 }
622 return 0;
623 }
624
625 /*
626 * Freeing function for a buddy system allocator.
627 *
628 * The concept of a buddy system is to maintain direct-mapped table
629 * (containing bit values) for memory blocks of various "orders".
630 * The bottom level table contains the map for the smallest allocatable
631 * units of memory (here, pages), and each level above it describes
632 * pairs of units from the levels below, hence, "buddies".
633 * At a high level, all that happens here is marking the table entry
634 * at the bottom level available, and propagating the changes upward
635 * as necessary, plus some accounting needed to play nicely with other
636 * parts of the VM system.
637 * At each level, we keep a list of pages, which are heads of continuous
638 * free pages of length of (1 << order) and marked with _mapcount
639 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
640 * field.
641 * So when we are allocating or freeing one, we can derive the state of the
642 * other. That is, if we allocate a small block, and both were
643 * free, the remainder of the region must be split into blocks.
644 * If a block is freed, and its buddy is also free, then this
645 * triggers coalescing into a block of larger size.
646 *
647 * -- nyc
648 */
649
650 static inline void __free_one_page(struct page *page,
651 unsigned long pfn,
652 struct zone *zone, unsigned int order,
653 int migratetype)
654 {
655 unsigned long page_idx;
656 unsigned long combined_idx;
657 unsigned long uninitialized_var(buddy_idx);
658 struct page *buddy;
659 int max_order = MAX_ORDER;
660
661 VM_BUG_ON(!zone_is_initialized(zone));
662 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
663
664 VM_BUG_ON(migratetype == -1);
665 if (is_migrate_isolate(migratetype)) {
666 /*
667 * We restrict max order of merging to prevent merge
668 * between freepages on isolate pageblock and normal
669 * pageblock. Without this, pageblock isolation
670 * could cause incorrect freepage accounting.
671 */
672 max_order = min(MAX_ORDER, pageblock_order + 1);
673 } else {
674 __mod_zone_freepage_state(zone, 1 << order, migratetype);
675 }
676
677 page_idx = pfn & ((1 << max_order) - 1);
678
679 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
680 VM_BUG_ON_PAGE(bad_range(zone, page), page);
681
682 while (order < max_order - 1) {
683 buddy_idx = __find_buddy_index(page_idx, order);
684 buddy = page + (buddy_idx - page_idx);
685 if (!page_is_buddy(page, buddy, order))
686 break;
687 /*
688 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
689 * merge with it and move up one order.
690 */
691 if (page_is_guard(buddy)) {
692 clear_page_guard(zone, buddy, order, migratetype);
693 } else {
694 list_del(&buddy->lru);
695 zone->free_area[order].nr_free--;
696 rmv_page_order(buddy);
697 }
698 combined_idx = buddy_idx & page_idx;
699 page = page + (combined_idx - page_idx);
700 page_idx = combined_idx;
701 order++;
702 }
703 set_page_order(page, order);
704
705 /*
706 * If this is not the largest possible page, check if the buddy
707 * of the next-highest order is free. If it is, it's possible
708 * that pages are being freed that will coalesce soon. In case,
709 * that is happening, add the free page to the tail of the list
710 * so it's less likely to be used soon and more likely to be merged
711 * as a higher order page
712 */
713 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
714 struct page *higher_page, *higher_buddy;
715 combined_idx = buddy_idx & page_idx;
716 higher_page = page + (combined_idx - page_idx);
717 buddy_idx = __find_buddy_index(combined_idx, order + 1);
718 higher_buddy = higher_page + (buddy_idx - combined_idx);
719 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
720 list_add_tail(&page->lru,
721 &zone->free_area[order].free_list[migratetype]);
722 goto out;
723 }
724 }
725
726 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
727 out:
728 zone->free_area[order].nr_free++;
729 }
730
731 static inline int free_pages_check(struct page *page)
732 {
733 const char *bad_reason = NULL;
734 unsigned long bad_flags = 0;
735
736 if (unlikely(page_mapcount(page)))
737 bad_reason = "nonzero mapcount";
738 if (unlikely(page->mapping != NULL))
739 bad_reason = "non-NULL mapping";
740 if (unlikely(atomic_read(&page->_count) != 0))
741 bad_reason = "nonzero _count";
742 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
743 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
744 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
745 }
746 #ifdef CONFIG_MEMCG
747 if (unlikely(page->mem_cgroup))
748 bad_reason = "page still charged to cgroup";
749 #endif
750 if (unlikely(bad_reason)) {
751 bad_page(page, bad_reason, bad_flags);
752 return 1;
753 }
754 page_cpupid_reset_last(page);
755 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
756 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
757 return 0;
758 }
759
760 /*
761 * Frees a number of pages from the PCP lists
762 * Assumes all pages on list are in same zone, and of same order.
763 * count is the number of pages to free.
764 *
765 * If the zone was previously in an "all pages pinned" state then look to
766 * see if this freeing clears that state.
767 *
768 * And clear the zone's pages_scanned counter, to hold off the "all pages are
769 * pinned" detection logic.
770 */
771 static void free_pcppages_bulk(struct zone *zone, int count,
772 struct per_cpu_pages *pcp)
773 {
774 int migratetype = 0;
775 int batch_free = 0;
776 int to_free = count;
777 unsigned long nr_scanned;
778
779 spin_lock(&zone->lock);
780 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
781 if (nr_scanned)
782 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
783
784 while (to_free) {
785 struct page *page;
786 struct list_head *list;
787
788 /*
789 * Remove pages from lists in a round-robin fashion. A
790 * batch_free count is maintained that is incremented when an
791 * empty list is encountered. This is so more pages are freed
792 * off fuller lists instead of spinning excessively around empty
793 * lists
794 */
795 do {
796 batch_free++;
797 if (++migratetype == MIGRATE_PCPTYPES)
798 migratetype = 0;
799 list = &pcp->lists[migratetype];
800 } while (list_empty(list));
801
802 /* This is the only non-empty list. Free them all. */
803 if (batch_free == MIGRATE_PCPTYPES)
804 batch_free = to_free;
805
806 do {
807 int mt; /* migratetype of the to-be-freed page */
808
809 page = list_entry(list->prev, struct page, lru);
810 /* must delete as __free_one_page list manipulates */
811 list_del(&page->lru);
812
813 mt = get_pcppage_migratetype(page);
814 /* MIGRATE_ISOLATE page should not go to pcplists */
815 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
816 /* Pageblock could have been isolated meanwhile */
817 if (unlikely(has_isolate_pageblock(zone)))
818 mt = get_pageblock_migratetype(page);
819
820 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
821 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
822 trace_mm_page_pcpu_drain(page, 0, mt);
823 } while (--to_free && --batch_free && !list_empty(list));
824 }
825 spin_unlock(&zone->lock);
826 }
827
828 static void free_one_page(struct zone *zone,
829 struct page *page, unsigned long pfn,
830 unsigned int order,
831 int migratetype)
832 {
833 unsigned long nr_scanned;
834 spin_lock(&zone->lock);
835 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
836 if (nr_scanned)
837 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
838
839 if (unlikely(has_isolate_pageblock(zone) ||
840 is_migrate_isolate(migratetype))) {
841 migratetype = get_pfnblock_migratetype(page, pfn);
842 }
843 __free_one_page(page, pfn, zone, order, migratetype);
844 spin_unlock(&zone->lock);
845 }
846
847 static int free_tail_pages_check(struct page *head_page, struct page *page)
848 {
849 if (!IS_ENABLED(CONFIG_DEBUG_VM))
850 return 0;
851 if (unlikely(!PageTail(page))) {
852 bad_page(page, "PageTail not set", 0);
853 return 1;
854 }
855 if (unlikely(page->first_page != head_page)) {
856 bad_page(page, "first_page not consistent", 0);
857 return 1;
858 }
859 return 0;
860 }
861
862 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
863 unsigned long zone, int nid)
864 {
865 set_page_links(page, zone, nid, pfn);
866 init_page_count(page);
867 page_mapcount_reset(page);
868 page_cpupid_reset_last(page);
869
870 INIT_LIST_HEAD(&page->lru);
871 #ifdef WANT_PAGE_VIRTUAL
872 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
873 if (!is_highmem_idx(zone))
874 set_page_address(page, __va(pfn << PAGE_SHIFT));
875 #endif
876 }
877
878 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
879 int nid)
880 {
881 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
882 }
883
884 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
885 static void init_reserved_page(unsigned long pfn)
886 {
887 pg_data_t *pgdat;
888 int nid, zid;
889
890 if (!early_page_uninitialised(pfn))
891 return;
892
893 nid = early_pfn_to_nid(pfn);
894 pgdat = NODE_DATA(nid);
895
896 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
897 struct zone *zone = &pgdat->node_zones[zid];
898
899 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
900 break;
901 }
902 __init_single_pfn(pfn, zid, nid);
903 }
904 #else
905 static inline void init_reserved_page(unsigned long pfn)
906 {
907 }
908 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
909
910 /*
911 * Initialised pages do not have PageReserved set. This function is
912 * called for each range allocated by the bootmem allocator and
913 * marks the pages PageReserved. The remaining valid pages are later
914 * sent to the buddy page allocator.
915 */
916 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
917 {
918 unsigned long start_pfn = PFN_DOWN(start);
919 unsigned long end_pfn = PFN_UP(end);
920
921 for (; start_pfn < end_pfn; start_pfn++) {
922 if (pfn_valid(start_pfn)) {
923 struct page *page = pfn_to_page(start_pfn);
924
925 init_reserved_page(start_pfn);
926 SetPageReserved(page);
927 }
928 }
929 }
930
931 static bool free_pages_prepare(struct page *page, unsigned int order)
932 {
933 bool compound = PageCompound(page);
934 int i, bad = 0;
935
936 VM_BUG_ON_PAGE(PageTail(page), page);
937 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
938
939 trace_mm_page_free(page, order);
940 kmemcheck_free_shadow(page, order);
941 kasan_free_pages(page, order);
942
943 if (PageAnon(page))
944 page->mapping = NULL;
945 bad += free_pages_check(page);
946 for (i = 1; i < (1 << order); i++) {
947 if (compound)
948 bad += free_tail_pages_check(page, page + i);
949 bad += free_pages_check(page + i);
950 }
951 if (bad)
952 return false;
953
954 reset_page_owner(page, order);
955
956 if (!PageHighMem(page)) {
957 debug_check_no_locks_freed(page_address(page),
958 PAGE_SIZE << order);
959 debug_check_no_obj_freed(page_address(page),
960 PAGE_SIZE << order);
961 }
962 arch_free_page(page, order);
963 kernel_map_pages(page, 1 << order, 0);
964
965 return true;
966 }
967
968 static void __free_pages_ok(struct page *page, unsigned int order)
969 {
970 unsigned long flags;
971 int migratetype;
972 unsigned long pfn = page_to_pfn(page);
973
974 if (!free_pages_prepare(page, order))
975 return;
976
977 migratetype = get_pfnblock_migratetype(page, pfn);
978 local_irq_save(flags);
979 __count_vm_events(PGFREE, 1 << order);
980 free_one_page(page_zone(page), page, pfn, order, migratetype);
981 local_irq_restore(flags);
982 }
983
984 static void __init __free_pages_boot_core(struct page *page,
985 unsigned long pfn, unsigned int order)
986 {
987 unsigned int nr_pages = 1 << order;
988 struct page *p = page;
989 unsigned int loop;
990
991 prefetchw(p);
992 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
993 prefetchw(p + 1);
994 __ClearPageReserved(p);
995 set_page_count(p, 0);
996 }
997 __ClearPageReserved(p);
998 set_page_count(p, 0);
999
1000 page_zone(page)->managed_pages += nr_pages;
1001 set_page_refcounted(page);
1002 __free_pages(page, order);
1003 }
1004
1005 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1006 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1007
1008 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1009
1010 int __meminit early_pfn_to_nid(unsigned long pfn)
1011 {
1012 static DEFINE_SPINLOCK(early_pfn_lock);
1013 int nid;
1014
1015 spin_lock(&early_pfn_lock);
1016 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1017 if (nid < 0)
1018 nid = 0;
1019 spin_unlock(&early_pfn_lock);
1020
1021 return nid;
1022 }
1023 #endif
1024
1025 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1026 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1027 struct mminit_pfnnid_cache *state)
1028 {
1029 int nid;
1030
1031 nid = __early_pfn_to_nid(pfn, state);
1032 if (nid >= 0 && nid != node)
1033 return false;
1034 return true;
1035 }
1036
1037 /* Only safe to use early in boot when initialisation is single-threaded */
1038 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1039 {
1040 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1041 }
1042
1043 #else
1044
1045 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1046 {
1047 return true;
1048 }
1049 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1050 struct mminit_pfnnid_cache *state)
1051 {
1052 return true;
1053 }
1054 #endif
1055
1056
1057 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1058 unsigned int order)
1059 {
1060 if (early_page_uninitialised(pfn))
1061 return;
1062 return __free_pages_boot_core(page, pfn, order);
1063 }
1064
1065 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1066 static void __init deferred_free_range(struct page *page,
1067 unsigned long pfn, int nr_pages)
1068 {
1069 int i;
1070
1071 if (!page)
1072 return;
1073
1074 /* Free a large naturally-aligned chunk if possible */
1075 if (nr_pages == MAX_ORDER_NR_PAGES &&
1076 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1077 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1078 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1079 return;
1080 }
1081
1082 for (i = 0; i < nr_pages; i++, page++, pfn++)
1083 __free_pages_boot_core(page, pfn, 0);
1084 }
1085
1086 /* Completion tracking for deferred_init_memmap() threads */
1087 static atomic_t pgdat_init_n_undone __initdata;
1088 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1089
1090 static inline void __init pgdat_init_report_one_done(void)
1091 {
1092 if (atomic_dec_and_test(&pgdat_init_n_undone))
1093 complete(&pgdat_init_all_done_comp);
1094 }
1095
1096 /* Initialise remaining memory on a node */
1097 static int __init deferred_init_memmap(void *data)
1098 {
1099 pg_data_t *pgdat = data;
1100 int nid = pgdat->node_id;
1101 struct mminit_pfnnid_cache nid_init_state = { };
1102 unsigned long start = jiffies;
1103 unsigned long nr_pages = 0;
1104 unsigned long walk_start, walk_end;
1105 int i, zid;
1106 struct zone *zone;
1107 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1108 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1109
1110 if (first_init_pfn == ULONG_MAX) {
1111 pgdat_init_report_one_done();
1112 return 0;
1113 }
1114
1115 /* Bind memory initialisation thread to a local node if possible */
1116 if (!cpumask_empty(cpumask))
1117 set_cpus_allowed_ptr(current, cpumask);
1118
1119 /* Sanity check boundaries */
1120 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1121 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1122 pgdat->first_deferred_pfn = ULONG_MAX;
1123
1124 /* Only the highest zone is deferred so find it */
1125 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1126 zone = pgdat->node_zones + zid;
1127 if (first_init_pfn < zone_end_pfn(zone))
1128 break;
1129 }
1130
1131 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1132 unsigned long pfn, end_pfn;
1133 struct page *page = NULL;
1134 struct page *free_base_page = NULL;
1135 unsigned long free_base_pfn = 0;
1136 int nr_to_free = 0;
1137
1138 end_pfn = min(walk_end, zone_end_pfn(zone));
1139 pfn = first_init_pfn;
1140 if (pfn < walk_start)
1141 pfn = walk_start;
1142 if (pfn < zone->zone_start_pfn)
1143 pfn = zone->zone_start_pfn;
1144
1145 for (; pfn < end_pfn; pfn++) {
1146 if (!pfn_valid_within(pfn))
1147 goto free_range;
1148
1149 /*
1150 * Ensure pfn_valid is checked every
1151 * MAX_ORDER_NR_PAGES for memory holes
1152 */
1153 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1154 if (!pfn_valid(pfn)) {
1155 page = NULL;
1156 goto free_range;
1157 }
1158 }
1159
1160 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1161 page = NULL;
1162 goto free_range;
1163 }
1164
1165 /* Minimise pfn page lookups and scheduler checks */
1166 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1167 page++;
1168 } else {
1169 nr_pages += nr_to_free;
1170 deferred_free_range(free_base_page,
1171 free_base_pfn, nr_to_free);
1172 free_base_page = NULL;
1173 free_base_pfn = nr_to_free = 0;
1174
1175 page = pfn_to_page(pfn);
1176 cond_resched();
1177 }
1178
1179 if (page->flags) {
1180 VM_BUG_ON(page_zone(page) != zone);
1181 goto free_range;
1182 }
1183
1184 __init_single_page(page, pfn, zid, nid);
1185 if (!free_base_page) {
1186 free_base_page = page;
1187 free_base_pfn = pfn;
1188 nr_to_free = 0;
1189 }
1190 nr_to_free++;
1191
1192 /* Where possible, batch up pages for a single free */
1193 continue;
1194 free_range:
1195 /* Free the current block of pages to allocator */
1196 nr_pages += nr_to_free;
1197 deferred_free_range(free_base_page, free_base_pfn,
1198 nr_to_free);
1199 free_base_page = NULL;
1200 free_base_pfn = nr_to_free = 0;
1201 }
1202
1203 first_init_pfn = max(end_pfn, first_init_pfn);
1204 }
1205
1206 /* Sanity check that the next zone really is unpopulated */
1207 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1208
1209 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1210 jiffies_to_msecs(jiffies - start));
1211
1212 pgdat_init_report_one_done();
1213 return 0;
1214 }
1215
1216 void __init page_alloc_init_late(void)
1217 {
1218 int nid;
1219
1220 /* There will be num_node_state(N_MEMORY) threads */
1221 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1222 for_each_node_state(nid, N_MEMORY) {
1223 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1224 }
1225
1226 /* Block until all are initialised */
1227 wait_for_completion(&pgdat_init_all_done_comp);
1228
1229 /* Reinit limits that are based on free pages after the kernel is up */
1230 files_maxfiles_init();
1231 }
1232 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1233
1234 #ifdef CONFIG_CMA
1235 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1236 void __init init_cma_reserved_pageblock(struct page *page)
1237 {
1238 unsigned i = pageblock_nr_pages;
1239 struct page *p = page;
1240
1241 do {
1242 __ClearPageReserved(p);
1243 set_page_count(p, 0);
1244 } while (++p, --i);
1245
1246 set_pageblock_migratetype(page, MIGRATE_CMA);
1247
1248 if (pageblock_order >= MAX_ORDER) {
1249 i = pageblock_nr_pages;
1250 p = page;
1251 do {
1252 set_page_refcounted(p);
1253 __free_pages(p, MAX_ORDER - 1);
1254 p += MAX_ORDER_NR_PAGES;
1255 } while (i -= MAX_ORDER_NR_PAGES);
1256 } else {
1257 set_page_refcounted(page);
1258 __free_pages(page, pageblock_order);
1259 }
1260
1261 adjust_managed_page_count(page, pageblock_nr_pages);
1262 }
1263 #endif
1264
1265 /*
1266 * The order of subdivision here is critical for the IO subsystem.
1267 * Please do not alter this order without good reasons and regression
1268 * testing. Specifically, as large blocks of memory are subdivided,
1269 * the order in which smaller blocks are delivered depends on the order
1270 * they're subdivided in this function. This is the primary factor
1271 * influencing the order in which pages are delivered to the IO
1272 * subsystem according to empirical testing, and this is also justified
1273 * by considering the behavior of a buddy system containing a single
1274 * large block of memory acted on by a series of small allocations.
1275 * This behavior is a critical factor in sglist merging's success.
1276 *
1277 * -- nyc
1278 */
1279 static inline void expand(struct zone *zone, struct page *page,
1280 int low, int high, struct free_area *area,
1281 int migratetype)
1282 {
1283 unsigned long size = 1 << high;
1284
1285 while (high > low) {
1286 area--;
1287 high--;
1288 size >>= 1;
1289 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1290
1291 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1292 debug_guardpage_enabled() &&
1293 high < debug_guardpage_minorder()) {
1294 /*
1295 * Mark as guard pages (or page), that will allow to
1296 * merge back to allocator when buddy will be freed.
1297 * Corresponding page table entries will not be touched,
1298 * pages will stay not present in virtual address space
1299 */
1300 set_page_guard(zone, &page[size], high, migratetype);
1301 continue;
1302 }
1303 list_add(&page[size].lru, &area->free_list[migratetype]);
1304 area->nr_free++;
1305 set_page_order(&page[size], high);
1306 }
1307 }
1308
1309 /*
1310 * This page is about to be returned from the page allocator
1311 */
1312 static inline int check_new_page(struct page *page)
1313 {
1314 const char *bad_reason = NULL;
1315 unsigned long bad_flags = 0;
1316
1317 if (unlikely(page_mapcount(page)))
1318 bad_reason = "nonzero mapcount";
1319 if (unlikely(page->mapping != NULL))
1320 bad_reason = "non-NULL mapping";
1321 if (unlikely(atomic_read(&page->_count) != 0))
1322 bad_reason = "nonzero _count";
1323 if (unlikely(page->flags & __PG_HWPOISON)) {
1324 bad_reason = "HWPoisoned (hardware-corrupted)";
1325 bad_flags = __PG_HWPOISON;
1326 }
1327 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1328 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1329 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1330 }
1331 #ifdef CONFIG_MEMCG
1332 if (unlikely(page->mem_cgroup))
1333 bad_reason = "page still charged to cgroup";
1334 #endif
1335 if (unlikely(bad_reason)) {
1336 bad_page(page, bad_reason, bad_flags);
1337 return 1;
1338 }
1339 return 0;
1340 }
1341
1342 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1343 int alloc_flags)
1344 {
1345 int i;
1346
1347 for (i = 0; i < (1 << order); i++) {
1348 struct page *p = page + i;
1349 if (unlikely(check_new_page(p)))
1350 return 1;
1351 }
1352
1353 set_page_private(page, 0);
1354 set_page_refcounted(page);
1355
1356 arch_alloc_page(page, order);
1357 kernel_map_pages(page, 1 << order, 1);
1358 kasan_alloc_pages(page, order);
1359
1360 if (gfp_flags & __GFP_ZERO)
1361 for (i = 0; i < (1 << order); i++)
1362 clear_highpage(page + i);
1363
1364 if (order && (gfp_flags & __GFP_COMP))
1365 prep_compound_page(page, order);
1366
1367 set_page_owner(page, order, gfp_flags);
1368
1369 /*
1370 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1371 * allocate the page. The expectation is that the caller is taking
1372 * steps that will free more memory. The caller should avoid the page
1373 * being used for !PFMEMALLOC purposes.
1374 */
1375 if (alloc_flags & ALLOC_NO_WATERMARKS)
1376 set_page_pfmemalloc(page);
1377 else
1378 clear_page_pfmemalloc(page);
1379
1380 return 0;
1381 }
1382
1383 /*
1384 * Go through the free lists for the given migratetype and remove
1385 * the smallest available page from the freelists
1386 */
1387 static inline
1388 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1389 int migratetype)
1390 {
1391 unsigned int current_order;
1392 struct free_area *area;
1393 struct page *page;
1394
1395 /* Find a page of the appropriate size in the preferred list */
1396 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1397 area = &(zone->free_area[current_order]);
1398 if (list_empty(&area->free_list[migratetype]))
1399 continue;
1400
1401 page = list_entry(area->free_list[migratetype].next,
1402 struct page, lru);
1403 list_del(&page->lru);
1404 rmv_page_order(page);
1405 area->nr_free--;
1406 expand(zone, page, order, current_order, area, migratetype);
1407 set_pcppage_migratetype(page, migratetype);
1408 return page;
1409 }
1410
1411 return NULL;
1412 }
1413
1414
1415 /*
1416 * This array describes the order lists are fallen back to when
1417 * the free lists for the desirable migrate type are depleted
1418 */
1419 static int fallbacks[MIGRATE_TYPES][4] = {
1420 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1421 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1422 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1423 #ifdef CONFIG_CMA
1424 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1425 #endif
1426 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1427 #ifdef CONFIG_MEMORY_ISOLATION
1428 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1429 #endif
1430 };
1431
1432 #ifdef CONFIG_CMA
1433 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1434 unsigned int order)
1435 {
1436 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1437 }
1438 #else
1439 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1440 unsigned int order) { return NULL; }
1441 #endif
1442
1443 /*
1444 * Move the free pages in a range to the free lists of the requested type.
1445 * Note that start_page and end_pages are not aligned on a pageblock
1446 * boundary. If alignment is required, use move_freepages_block()
1447 */
1448 int move_freepages(struct zone *zone,
1449 struct page *start_page, struct page *end_page,
1450 int migratetype)
1451 {
1452 struct page *page;
1453 unsigned long order;
1454 int pages_moved = 0;
1455
1456 #ifndef CONFIG_HOLES_IN_ZONE
1457 /*
1458 * page_zone is not safe to call in this context when
1459 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1460 * anyway as we check zone boundaries in move_freepages_block().
1461 * Remove at a later date when no bug reports exist related to
1462 * grouping pages by mobility
1463 */
1464 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1465 #endif
1466
1467 for (page = start_page; page <= end_page;) {
1468 /* Make sure we are not inadvertently changing nodes */
1469 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1470
1471 if (!pfn_valid_within(page_to_pfn(page))) {
1472 page++;
1473 continue;
1474 }
1475
1476 if (!PageBuddy(page)) {
1477 page++;
1478 continue;
1479 }
1480
1481 order = page_order(page);
1482 list_move(&page->lru,
1483 &zone->free_area[order].free_list[migratetype]);
1484 page += 1 << order;
1485 pages_moved += 1 << order;
1486 }
1487
1488 return pages_moved;
1489 }
1490
1491 int move_freepages_block(struct zone *zone, struct page *page,
1492 int migratetype)
1493 {
1494 unsigned long start_pfn, end_pfn;
1495 struct page *start_page, *end_page;
1496
1497 start_pfn = page_to_pfn(page);
1498 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1499 start_page = pfn_to_page(start_pfn);
1500 end_page = start_page + pageblock_nr_pages - 1;
1501 end_pfn = start_pfn + pageblock_nr_pages - 1;
1502
1503 /* Do not cross zone boundaries */
1504 if (!zone_spans_pfn(zone, start_pfn))
1505 start_page = page;
1506 if (!zone_spans_pfn(zone, end_pfn))
1507 return 0;
1508
1509 return move_freepages(zone, start_page, end_page, migratetype);
1510 }
1511
1512 static void change_pageblock_range(struct page *pageblock_page,
1513 int start_order, int migratetype)
1514 {
1515 int nr_pageblocks = 1 << (start_order - pageblock_order);
1516
1517 while (nr_pageblocks--) {
1518 set_pageblock_migratetype(pageblock_page, migratetype);
1519 pageblock_page += pageblock_nr_pages;
1520 }
1521 }
1522
1523 /*
1524 * When we are falling back to another migratetype during allocation, try to
1525 * steal extra free pages from the same pageblocks to satisfy further
1526 * allocations, instead of polluting multiple pageblocks.
1527 *
1528 * If we are stealing a relatively large buddy page, it is likely there will
1529 * be more free pages in the pageblock, so try to steal them all. For
1530 * reclaimable and unmovable allocations, we steal regardless of page size,
1531 * as fragmentation caused by those allocations polluting movable pageblocks
1532 * is worse than movable allocations stealing from unmovable and reclaimable
1533 * pageblocks.
1534 */
1535 static bool can_steal_fallback(unsigned int order, int start_mt)
1536 {
1537 /*
1538 * Leaving this order check is intended, although there is
1539 * relaxed order check in next check. The reason is that
1540 * we can actually steal whole pageblock if this condition met,
1541 * but, below check doesn't guarantee it and that is just heuristic
1542 * so could be changed anytime.
1543 */
1544 if (order >= pageblock_order)
1545 return true;
1546
1547 if (order >= pageblock_order / 2 ||
1548 start_mt == MIGRATE_RECLAIMABLE ||
1549 start_mt == MIGRATE_UNMOVABLE ||
1550 page_group_by_mobility_disabled)
1551 return true;
1552
1553 return false;
1554 }
1555
1556 /*
1557 * This function implements actual steal behaviour. If order is large enough,
1558 * we can steal whole pageblock. If not, we first move freepages in this
1559 * pageblock and check whether half of pages are moved or not. If half of
1560 * pages are moved, we can change migratetype of pageblock and permanently
1561 * use it's pages as requested migratetype in the future.
1562 */
1563 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1564 int start_type)
1565 {
1566 int current_order = page_order(page);
1567 int pages;
1568
1569 /* Take ownership for orders >= pageblock_order */
1570 if (current_order >= pageblock_order) {
1571 change_pageblock_range(page, current_order, start_type);
1572 return;
1573 }
1574
1575 pages = move_freepages_block(zone, page, start_type);
1576
1577 /* Claim the whole block if over half of it is free */
1578 if (pages >= (1 << (pageblock_order-1)) ||
1579 page_group_by_mobility_disabled)
1580 set_pageblock_migratetype(page, start_type);
1581 }
1582
1583 /*
1584 * Check whether there is a suitable fallback freepage with requested order.
1585 * If only_stealable is true, this function returns fallback_mt only if
1586 * we can steal other freepages all together. This would help to reduce
1587 * fragmentation due to mixed migratetype pages in one pageblock.
1588 */
1589 int find_suitable_fallback(struct free_area *area, unsigned int order,
1590 int migratetype, bool only_stealable, bool *can_steal)
1591 {
1592 int i;
1593 int fallback_mt;
1594
1595 if (area->nr_free == 0)
1596 return -1;
1597
1598 *can_steal = false;
1599 for (i = 0;; i++) {
1600 fallback_mt = fallbacks[migratetype][i];
1601 if (fallback_mt == MIGRATE_RESERVE)
1602 break;
1603
1604 if (list_empty(&area->free_list[fallback_mt]))
1605 continue;
1606
1607 if (can_steal_fallback(order, migratetype))
1608 *can_steal = true;
1609
1610 if (!only_stealable)
1611 return fallback_mt;
1612
1613 if (*can_steal)
1614 return fallback_mt;
1615 }
1616
1617 return -1;
1618 }
1619
1620 /* Remove an element from the buddy allocator from the fallback list */
1621 static inline struct page *
1622 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1623 {
1624 struct free_area *area;
1625 unsigned int current_order;
1626 struct page *page;
1627 int fallback_mt;
1628 bool can_steal;
1629
1630 /* Find the largest possible block of pages in the other list */
1631 for (current_order = MAX_ORDER-1;
1632 current_order >= order && current_order <= MAX_ORDER-1;
1633 --current_order) {
1634 area = &(zone->free_area[current_order]);
1635 fallback_mt = find_suitable_fallback(area, current_order,
1636 start_migratetype, false, &can_steal);
1637 if (fallback_mt == -1)
1638 continue;
1639
1640 page = list_entry(area->free_list[fallback_mt].next,
1641 struct page, lru);
1642 if (can_steal)
1643 steal_suitable_fallback(zone, page, start_migratetype);
1644
1645 /* Remove the page from the freelists */
1646 area->nr_free--;
1647 list_del(&page->lru);
1648 rmv_page_order(page);
1649
1650 expand(zone, page, order, current_order, area,
1651 start_migratetype);
1652 /*
1653 * The pcppage_migratetype may differ from pageblock's
1654 * migratetype depending on the decisions in
1655 * find_suitable_fallback(). This is OK as long as it does not
1656 * differ for MIGRATE_CMA pageblocks. Those can be used as
1657 * fallback only via special __rmqueue_cma_fallback() function
1658 */
1659 set_pcppage_migratetype(page, start_migratetype);
1660
1661 trace_mm_page_alloc_extfrag(page, order, current_order,
1662 start_migratetype, fallback_mt);
1663
1664 return page;
1665 }
1666
1667 return NULL;
1668 }
1669
1670 /*
1671 * Do the hard work of removing an element from the buddy allocator.
1672 * Call me with the zone->lock already held.
1673 */
1674 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1675 int migratetype)
1676 {
1677 struct page *page;
1678
1679 retry_reserve:
1680 page = __rmqueue_smallest(zone, order, migratetype);
1681
1682 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1683 if (migratetype == MIGRATE_MOVABLE)
1684 page = __rmqueue_cma_fallback(zone, order);
1685
1686 if (!page)
1687 page = __rmqueue_fallback(zone, order, migratetype);
1688
1689 /*
1690 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1691 * is used because __rmqueue_smallest is an inline function
1692 * and we want just one call site
1693 */
1694 if (!page) {
1695 migratetype = MIGRATE_RESERVE;
1696 goto retry_reserve;
1697 }
1698 }
1699
1700 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1701 return page;
1702 }
1703
1704 /*
1705 * Obtain a specified number of elements from the buddy allocator, all under
1706 * a single hold of the lock, for efficiency. Add them to the supplied list.
1707 * Returns the number of new pages which were placed at *list.
1708 */
1709 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1710 unsigned long count, struct list_head *list,
1711 int migratetype, bool cold)
1712 {
1713 int i;
1714
1715 spin_lock(&zone->lock);
1716 for (i = 0; i < count; ++i) {
1717 struct page *page = __rmqueue(zone, order, migratetype);
1718 if (unlikely(page == NULL))
1719 break;
1720
1721 /*
1722 * Split buddy pages returned by expand() are received here
1723 * in physical page order. The page is added to the callers and
1724 * list and the list head then moves forward. From the callers
1725 * perspective, the linked list is ordered by page number in
1726 * some conditions. This is useful for IO devices that can
1727 * merge IO requests if the physical pages are ordered
1728 * properly.
1729 */
1730 if (likely(!cold))
1731 list_add(&page->lru, list);
1732 else
1733 list_add_tail(&page->lru, list);
1734 list = &page->lru;
1735 if (is_migrate_cma(get_pcppage_migratetype(page)))
1736 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1737 -(1 << order));
1738 }
1739 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1740 spin_unlock(&zone->lock);
1741 return i;
1742 }
1743
1744 #ifdef CONFIG_NUMA
1745 /*
1746 * Called from the vmstat counter updater to drain pagesets of this
1747 * currently executing processor on remote nodes after they have
1748 * expired.
1749 *
1750 * Note that this function must be called with the thread pinned to
1751 * a single processor.
1752 */
1753 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1754 {
1755 unsigned long flags;
1756 int to_drain, batch;
1757
1758 local_irq_save(flags);
1759 batch = READ_ONCE(pcp->batch);
1760 to_drain = min(pcp->count, batch);
1761 if (to_drain > 0) {
1762 free_pcppages_bulk(zone, to_drain, pcp);
1763 pcp->count -= to_drain;
1764 }
1765 local_irq_restore(flags);
1766 }
1767 #endif
1768
1769 /*
1770 * Drain pcplists of the indicated processor and zone.
1771 *
1772 * The processor must either be the current processor and the
1773 * thread pinned to the current processor or a processor that
1774 * is not online.
1775 */
1776 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1777 {
1778 unsigned long flags;
1779 struct per_cpu_pageset *pset;
1780 struct per_cpu_pages *pcp;
1781
1782 local_irq_save(flags);
1783 pset = per_cpu_ptr(zone->pageset, cpu);
1784
1785 pcp = &pset->pcp;
1786 if (pcp->count) {
1787 free_pcppages_bulk(zone, pcp->count, pcp);
1788 pcp->count = 0;
1789 }
1790 local_irq_restore(flags);
1791 }
1792
1793 /*
1794 * Drain pcplists of all zones on the indicated processor.
1795 *
1796 * The processor must either be the current processor and the
1797 * thread pinned to the current processor or a processor that
1798 * is not online.
1799 */
1800 static void drain_pages(unsigned int cpu)
1801 {
1802 struct zone *zone;
1803
1804 for_each_populated_zone(zone) {
1805 drain_pages_zone(cpu, zone);
1806 }
1807 }
1808
1809 /*
1810 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1811 *
1812 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1813 * the single zone's pages.
1814 */
1815 void drain_local_pages(struct zone *zone)
1816 {
1817 int cpu = smp_processor_id();
1818
1819 if (zone)
1820 drain_pages_zone(cpu, zone);
1821 else
1822 drain_pages(cpu);
1823 }
1824
1825 /*
1826 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1827 *
1828 * When zone parameter is non-NULL, spill just the single zone's pages.
1829 *
1830 * Note that this code is protected against sending an IPI to an offline
1831 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1832 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1833 * nothing keeps CPUs from showing up after we populated the cpumask and
1834 * before the call to on_each_cpu_mask().
1835 */
1836 void drain_all_pages(struct zone *zone)
1837 {
1838 int cpu;
1839
1840 /*
1841 * Allocate in the BSS so we wont require allocation in
1842 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1843 */
1844 static cpumask_t cpus_with_pcps;
1845
1846 /*
1847 * We don't care about racing with CPU hotplug event
1848 * as offline notification will cause the notified
1849 * cpu to drain that CPU pcps and on_each_cpu_mask
1850 * disables preemption as part of its processing
1851 */
1852 for_each_online_cpu(cpu) {
1853 struct per_cpu_pageset *pcp;
1854 struct zone *z;
1855 bool has_pcps = false;
1856
1857 if (zone) {
1858 pcp = per_cpu_ptr(zone->pageset, cpu);
1859 if (pcp->pcp.count)
1860 has_pcps = true;
1861 } else {
1862 for_each_populated_zone(z) {
1863 pcp = per_cpu_ptr(z->pageset, cpu);
1864 if (pcp->pcp.count) {
1865 has_pcps = true;
1866 break;
1867 }
1868 }
1869 }
1870
1871 if (has_pcps)
1872 cpumask_set_cpu(cpu, &cpus_with_pcps);
1873 else
1874 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1875 }
1876 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1877 zone, 1);
1878 }
1879
1880 #ifdef CONFIG_HIBERNATION
1881
1882 void mark_free_pages(struct zone *zone)
1883 {
1884 unsigned long pfn, max_zone_pfn;
1885 unsigned long flags;
1886 unsigned int order, t;
1887 struct list_head *curr;
1888
1889 if (zone_is_empty(zone))
1890 return;
1891
1892 spin_lock_irqsave(&zone->lock, flags);
1893
1894 max_zone_pfn = zone_end_pfn(zone);
1895 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1896 if (pfn_valid(pfn)) {
1897 struct page *page = pfn_to_page(pfn);
1898
1899 if (!swsusp_page_is_forbidden(page))
1900 swsusp_unset_page_free(page);
1901 }
1902
1903 for_each_migratetype_order(order, t) {
1904 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1905 unsigned long i;
1906
1907 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1908 for (i = 0; i < (1UL << order); i++)
1909 swsusp_set_page_free(pfn_to_page(pfn + i));
1910 }
1911 }
1912 spin_unlock_irqrestore(&zone->lock, flags);
1913 }
1914 #endif /* CONFIG_PM */
1915
1916 /*
1917 * Free a 0-order page
1918 * cold == true ? free a cold page : free a hot page
1919 */
1920 void free_hot_cold_page(struct page *page, bool cold)
1921 {
1922 struct zone *zone = page_zone(page);
1923 struct per_cpu_pages *pcp;
1924 unsigned long flags;
1925 unsigned long pfn = page_to_pfn(page);
1926 int migratetype;
1927
1928 if (!free_pages_prepare(page, 0))
1929 return;
1930
1931 migratetype = get_pfnblock_migratetype(page, pfn);
1932 set_pcppage_migratetype(page, migratetype);
1933 local_irq_save(flags);
1934 __count_vm_event(PGFREE);
1935
1936 /*
1937 * We only track unmovable, reclaimable and movable on pcp lists.
1938 * Free ISOLATE pages back to the allocator because they are being
1939 * offlined but treat RESERVE as movable pages so we can get those
1940 * areas back if necessary. Otherwise, we may have to free
1941 * excessively into the page allocator
1942 */
1943 if (migratetype >= MIGRATE_PCPTYPES) {
1944 if (unlikely(is_migrate_isolate(migratetype))) {
1945 free_one_page(zone, page, pfn, 0, migratetype);
1946 goto out;
1947 }
1948 migratetype = MIGRATE_MOVABLE;
1949 }
1950
1951 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1952 if (!cold)
1953 list_add(&page->lru, &pcp->lists[migratetype]);
1954 else
1955 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1956 pcp->count++;
1957 if (pcp->count >= pcp->high) {
1958 unsigned long batch = READ_ONCE(pcp->batch);
1959 free_pcppages_bulk(zone, batch, pcp);
1960 pcp->count -= batch;
1961 }
1962
1963 out:
1964 local_irq_restore(flags);
1965 }
1966
1967 /*
1968 * Free a list of 0-order pages
1969 */
1970 void free_hot_cold_page_list(struct list_head *list, bool cold)
1971 {
1972 struct page *page, *next;
1973
1974 list_for_each_entry_safe(page, next, list, lru) {
1975 trace_mm_page_free_batched(page, cold);
1976 free_hot_cold_page(page, cold);
1977 }
1978 }
1979
1980 /*
1981 * split_page takes a non-compound higher-order page, and splits it into
1982 * n (1<<order) sub-pages: page[0..n]
1983 * Each sub-page must be freed individually.
1984 *
1985 * Note: this is probably too low level an operation for use in drivers.
1986 * Please consult with lkml before using this in your driver.
1987 */
1988 void split_page(struct page *page, unsigned int order)
1989 {
1990 int i;
1991 gfp_t gfp_mask;
1992
1993 VM_BUG_ON_PAGE(PageCompound(page), page);
1994 VM_BUG_ON_PAGE(!page_count(page), page);
1995
1996 #ifdef CONFIG_KMEMCHECK
1997 /*
1998 * Split shadow pages too, because free(page[0]) would
1999 * otherwise free the whole shadow.
2000 */
2001 if (kmemcheck_page_is_tracked(page))
2002 split_page(virt_to_page(page[0].shadow), order);
2003 #endif
2004
2005 gfp_mask = get_page_owner_gfp(page);
2006 set_page_owner(page, 0, gfp_mask);
2007 for (i = 1; i < (1 << order); i++) {
2008 set_page_refcounted(page + i);
2009 set_page_owner(page + i, 0, gfp_mask);
2010 }
2011 }
2012 EXPORT_SYMBOL_GPL(split_page);
2013
2014 int __isolate_free_page(struct page *page, unsigned int order)
2015 {
2016 unsigned long watermark;
2017 struct zone *zone;
2018 int mt;
2019
2020 BUG_ON(!PageBuddy(page));
2021
2022 zone = page_zone(page);
2023 mt = get_pageblock_migratetype(page);
2024
2025 if (!is_migrate_isolate(mt)) {
2026 /* Obey watermarks as if the page was being allocated */
2027 watermark = low_wmark_pages(zone) + (1 << order);
2028 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2029 return 0;
2030
2031 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2032 }
2033
2034 /* Remove page from free list */
2035 list_del(&page->lru);
2036 zone->free_area[order].nr_free--;
2037 rmv_page_order(page);
2038
2039 set_page_owner(page, order, __GFP_MOVABLE);
2040
2041 /* Set the pageblock if the isolated page is at least a pageblock */
2042 if (order >= pageblock_order - 1) {
2043 struct page *endpage = page + (1 << order) - 1;
2044 for (; page < endpage; page += pageblock_nr_pages) {
2045 int mt = get_pageblock_migratetype(page);
2046 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2047 set_pageblock_migratetype(page,
2048 MIGRATE_MOVABLE);
2049 }
2050 }
2051
2052
2053 return 1UL << order;
2054 }
2055
2056 /*
2057 * Similar to split_page except the page is already free. As this is only
2058 * being used for migration, the migratetype of the block also changes.
2059 * As this is called with interrupts disabled, the caller is responsible
2060 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2061 * are enabled.
2062 *
2063 * Note: this is probably too low level an operation for use in drivers.
2064 * Please consult with lkml before using this in your driver.
2065 */
2066 int split_free_page(struct page *page)
2067 {
2068 unsigned int order;
2069 int nr_pages;
2070
2071 order = page_order(page);
2072
2073 nr_pages = __isolate_free_page(page, order);
2074 if (!nr_pages)
2075 return 0;
2076
2077 /* Split into individual pages */
2078 set_page_refcounted(page);
2079 split_page(page, order);
2080 return nr_pages;
2081 }
2082
2083 /*
2084 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2085 */
2086 static inline
2087 struct page *buffered_rmqueue(struct zone *preferred_zone,
2088 struct zone *zone, unsigned int order,
2089 gfp_t gfp_flags, int migratetype)
2090 {
2091 unsigned long flags;
2092 struct page *page;
2093 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2094
2095 if (likely(order == 0)) {
2096 struct per_cpu_pages *pcp;
2097 struct list_head *list;
2098
2099 local_irq_save(flags);
2100 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2101 list = &pcp->lists[migratetype];
2102 if (list_empty(list)) {
2103 pcp->count += rmqueue_bulk(zone, 0,
2104 pcp->batch, list,
2105 migratetype, cold);
2106 if (unlikely(list_empty(list)))
2107 goto failed;
2108 }
2109
2110 if (cold)
2111 page = list_entry(list->prev, struct page, lru);
2112 else
2113 page = list_entry(list->next, struct page, lru);
2114
2115 list_del(&page->lru);
2116 pcp->count--;
2117 } else {
2118 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2119 /*
2120 * __GFP_NOFAIL is not to be used in new code.
2121 *
2122 * All __GFP_NOFAIL callers should be fixed so that they
2123 * properly detect and handle allocation failures.
2124 *
2125 * We most definitely don't want callers attempting to
2126 * allocate greater than order-1 page units with
2127 * __GFP_NOFAIL.
2128 */
2129 WARN_ON_ONCE(order > 1);
2130 }
2131 spin_lock_irqsave(&zone->lock, flags);
2132 page = __rmqueue(zone, order, migratetype);
2133 spin_unlock(&zone->lock);
2134 if (!page)
2135 goto failed;
2136 __mod_zone_freepage_state(zone, -(1 << order),
2137 get_pcppage_migratetype(page));
2138 }
2139
2140 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2141 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2142 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2143 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2144
2145 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2146 zone_statistics(preferred_zone, zone, gfp_flags);
2147 local_irq_restore(flags);
2148
2149 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2150 return page;
2151
2152 failed:
2153 local_irq_restore(flags);
2154 return NULL;
2155 }
2156
2157 #ifdef CONFIG_FAIL_PAGE_ALLOC
2158
2159 static struct {
2160 struct fault_attr attr;
2161
2162 bool ignore_gfp_highmem;
2163 bool ignore_gfp_reclaim;
2164 u32 min_order;
2165 } fail_page_alloc = {
2166 .attr = FAULT_ATTR_INITIALIZER,
2167 .ignore_gfp_reclaim = true,
2168 .ignore_gfp_highmem = true,
2169 .min_order = 1,
2170 };
2171
2172 static int __init setup_fail_page_alloc(char *str)
2173 {
2174 return setup_fault_attr(&fail_page_alloc.attr, str);
2175 }
2176 __setup("fail_page_alloc=", setup_fail_page_alloc);
2177
2178 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2179 {
2180 if (order < fail_page_alloc.min_order)
2181 return false;
2182 if (gfp_mask & __GFP_NOFAIL)
2183 return false;
2184 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2185 return false;
2186 if (fail_page_alloc.ignore_gfp_reclaim &&
2187 (gfp_mask & __GFP_DIRECT_RECLAIM))
2188 return false;
2189
2190 return should_fail(&fail_page_alloc.attr, 1 << order);
2191 }
2192
2193 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2194
2195 static int __init fail_page_alloc_debugfs(void)
2196 {
2197 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2198 struct dentry *dir;
2199
2200 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2201 &fail_page_alloc.attr);
2202 if (IS_ERR(dir))
2203 return PTR_ERR(dir);
2204
2205 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2206 &fail_page_alloc.ignore_gfp_reclaim))
2207 goto fail;
2208 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2209 &fail_page_alloc.ignore_gfp_highmem))
2210 goto fail;
2211 if (!debugfs_create_u32("min-order", mode, dir,
2212 &fail_page_alloc.min_order))
2213 goto fail;
2214
2215 return 0;
2216 fail:
2217 debugfs_remove_recursive(dir);
2218
2219 return -ENOMEM;
2220 }
2221
2222 late_initcall(fail_page_alloc_debugfs);
2223
2224 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2225
2226 #else /* CONFIG_FAIL_PAGE_ALLOC */
2227
2228 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2229 {
2230 return false;
2231 }
2232
2233 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2234
2235 /*
2236 * Return true if free pages are above 'mark'. This takes into account the order
2237 * of the allocation.
2238 */
2239 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2240 unsigned long mark, int classzone_idx, int alloc_flags,
2241 long free_pages)
2242 {
2243 /* free_pages may go negative - that's OK */
2244 long min = mark;
2245 int o;
2246 long free_cma = 0;
2247
2248 free_pages -= (1 << order) - 1;
2249 if (alloc_flags & ALLOC_HIGH)
2250 min -= min / 2;
2251 if (alloc_flags & ALLOC_HARDER)
2252 min -= min / 4;
2253
2254 #ifdef CONFIG_CMA
2255 /* If allocation can't use CMA areas don't use free CMA pages */
2256 if (!(alloc_flags & ALLOC_CMA))
2257 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2258 #endif
2259
2260 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2261 return false;
2262 for (o = 0; o < order; o++) {
2263 /* At the next order, this order's pages become unavailable */
2264 free_pages -= z->free_area[o].nr_free << o;
2265
2266 /* Require fewer higher order pages to be free */
2267 min >>= 1;
2268
2269 if (free_pages <= min)
2270 return false;
2271 }
2272 return true;
2273 }
2274
2275 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2276 int classzone_idx, int alloc_flags)
2277 {
2278 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2279 zone_page_state(z, NR_FREE_PAGES));
2280 }
2281
2282 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2283 unsigned long mark, int classzone_idx)
2284 {
2285 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2286
2287 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2288 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2289
2290 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2291 free_pages);
2292 }
2293
2294 #ifdef CONFIG_NUMA
2295 static bool zone_local(struct zone *local_zone, struct zone *zone)
2296 {
2297 return local_zone->node == zone->node;
2298 }
2299
2300 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2301 {
2302 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2303 RECLAIM_DISTANCE;
2304 }
2305 #else /* CONFIG_NUMA */
2306 static bool zone_local(struct zone *local_zone, struct zone *zone)
2307 {
2308 return true;
2309 }
2310
2311 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2312 {
2313 return true;
2314 }
2315 #endif /* CONFIG_NUMA */
2316
2317 static void reset_alloc_batches(struct zone *preferred_zone)
2318 {
2319 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2320
2321 do {
2322 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2323 high_wmark_pages(zone) - low_wmark_pages(zone) -
2324 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2325 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2326 } while (zone++ != preferred_zone);
2327 }
2328
2329 /*
2330 * get_page_from_freelist goes through the zonelist trying to allocate
2331 * a page.
2332 */
2333 static struct page *
2334 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2335 const struct alloc_context *ac)
2336 {
2337 struct zonelist *zonelist = ac->zonelist;
2338 struct zoneref *z;
2339 struct page *page = NULL;
2340 struct zone *zone;
2341 int nr_fair_skipped = 0;
2342 bool zonelist_rescan;
2343
2344 zonelist_scan:
2345 zonelist_rescan = false;
2346
2347 /*
2348 * Scan zonelist, looking for a zone with enough free.
2349 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2350 */
2351 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2352 ac->nodemask) {
2353 unsigned long mark;
2354
2355 if (cpusets_enabled() &&
2356 (alloc_flags & ALLOC_CPUSET) &&
2357 !cpuset_zone_allowed(zone, gfp_mask))
2358 continue;
2359 /*
2360 * Distribute pages in proportion to the individual
2361 * zone size to ensure fair page aging. The zone a
2362 * page was allocated in should have no effect on the
2363 * time the page has in memory before being reclaimed.
2364 */
2365 if (alloc_flags & ALLOC_FAIR) {
2366 if (!zone_local(ac->preferred_zone, zone))
2367 break;
2368 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2369 nr_fair_skipped++;
2370 continue;
2371 }
2372 }
2373 /*
2374 * When allocating a page cache page for writing, we
2375 * want to get it from a zone that is within its dirty
2376 * limit, such that no single zone holds more than its
2377 * proportional share of globally allowed dirty pages.
2378 * The dirty limits take into account the zone's
2379 * lowmem reserves and high watermark so that kswapd
2380 * should be able to balance it without having to
2381 * write pages from its LRU list.
2382 *
2383 * This may look like it could increase pressure on
2384 * lower zones by failing allocations in higher zones
2385 * before they are full. But the pages that do spill
2386 * over are limited as the lower zones are protected
2387 * by this very same mechanism. It should not become
2388 * a practical burden to them.
2389 *
2390 * XXX: For now, allow allocations to potentially
2391 * exceed the per-zone dirty limit in the slowpath
2392 * (spread_dirty_pages unset) before going into reclaim,
2393 * which is important when on a NUMA setup the allowed
2394 * zones are together not big enough to reach the
2395 * global limit. The proper fix for these situations
2396 * will require awareness of zones in the
2397 * dirty-throttling and the flusher threads.
2398 */
2399 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2400 continue;
2401
2402 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2403 if (!zone_watermark_ok(zone, order, mark,
2404 ac->classzone_idx, alloc_flags)) {
2405 int ret;
2406
2407 /* Checked here to keep the fast path fast */
2408 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2409 if (alloc_flags & ALLOC_NO_WATERMARKS)
2410 goto try_this_zone;
2411
2412 if (zone_reclaim_mode == 0 ||
2413 !zone_allows_reclaim(ac->preferred_zone, zone))
2414 continue;
2415
2416 ret = zone_reclaim(zone, gfp_mask, order);
2417 switch (ret) {
2418 case ZONE_RECLAIM_NOSCAN:
2419 /* did not scan */
2420 continue;
2421 case ZONE_RECLAIM_FULL:
2422 /* scanned but unreclaimable */
2423 continue;
2424 default:
2425 /* did we reclaim enough */
2426 if (zone_watermark_ok(zone, order, mark,
2427 ac->classzone_idx, alloc_flags))
2428 goto try_this_zone;
2429
2430 continue;
2431 }
2432 }
2433
2434 try_this_zone:
2435 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2436 gfp_mask, ac->migratetype);
2437 if (page) {
2438 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2439 goto try_this_zone;
2440 return page;
2441 }
2442 }
2443
2444 /*
2445 * The first pass makes sure allocations are spread fairly within the
2446 * local node. However, the local node might have free pages left
2447 * after the fairness batches are exhausted, and remote zones haven't
2448 * even been considered yet. Try once more without fairness, and
2449 * include remote zones now, before entering the slowpath and waking
2450 * kswapd: prefer spilling to a remote zone over swapping locally.
2451 */
2452 if (alloc_flags & ALLOC_FAIR) {
2453 alloc_flags &= ~ALLOC_FAIR;
2454 if (nr_fair_skipped) {
2455 zonelist_rescan = true;
2456 reset_alloc_batches(ac->preferred_zone);
2457 }
2458 if (nr_online_nodes > 1)
2459 zonelist_rescan = true;
2460 }
2461
2462 if (zonelist_rescan)
2463 goto zonelist_scan;
2464
2465 return NULL;
2466 }
2467
2468 /*
2469 * Large machines with many possible nodes should not always dump per-node
2470 * meminfo in irq context.
2471 */
2472 static inline bool should_suppress_show_mem(void)
2473 {
2474 bool ret = false;
2475
2476 #if NODES_SHIFT > 8
2477 ret = in_interrupt();
2478 #endif
2479 return ret;
2480 }
2481
2482 static DEFINE_RATELIMIT_STATE(nopage_rs,
2483 DEFAULT_RATELIMIT_INTERVAL,
2484 DEFAULT_RATELIMIT_BURST);
2485
2486 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2487 {
2488 unsigned int filter = SHOW_MEM_FILTER_NODES;
2489
2490 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2491 debug_guardpage_minorder() > 0)
2492 return;
2493
2494 /*
2495 * This documents exceptions given to allocations in certain
2496 * contexts that are allowed to allocate outside current's set
2497 * of allowed nodes.
2498 */
2499 if (!(gfp_mask & __GFP_NOMEMALLOC))
2500 if (test_thread_flag(TIF_MEMDIE) ||
2501 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2502 filter &= ~SHOW_MEM_FILTER_NODES;
2503 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2504 filter &= ~SHOW_MEM_FILTER_NODES;
2505
2506 if (fmt) {
2507 struct va_format vaf;
2508 va_list args;
2509
2510 va_start(args, fmt);
2511
2512 vaf.fmt = fmt;
2513 vaf.va = &args;
2514
2515 pr_warn("%pV", &vaf);
2516
2517 va_end(args);
2518 }
2519
2520 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2521 current->comm, order, gfp_mask);
2522
2523 dump_stack();
2524 if (!should_suppress_show_mem())
2525 show_mem(filter);
2526 }
2527
2528 static inline struct page *
2529 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2530 const struct alloc_context *ac, unsigned long *did_some_progress)
2531 {
2532 struct oom_control oc = {
2533 .zonelist = ac->zonelist,
2534 .nodemask = ac->nodemask,
2535 .gfp_mask = gfp_mask,
2536 .order = order,
2537 };
2538 struct page *page;
2539
2540 *did_some_progress = 0;
2541
2542 /*
2543 * Acquire the oom lock. If that fails, somebody else is
2544 * making progress for us.
2545 */
2546 if (!mutex_trylock(&oom_lock)) {
2547 *did_some_progress = 1;
2548 schedule_timeout_uninterruptible(1);
2549 return NULL;
2550 }
2551
2552 /*
2553 * Go through the zonelist yet one more time, keep very high watermark
2554 * here, this is only to catch a parallel oom killing, we must fail if
2555 * we're still under heavy pressure.
2556 */
2557 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2558 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2559 if (page)
2560 goto out;
2561
2562 if (!(gfp_mask & __GFP_NOFAIL)) {
2563 /* Coredumps can quickly deplete all memory reserves */
2564 if (current->flags & PF_DUMPCORE)
2565 goto out;
2566 /* The OOM killer will not help higher order allocs */
2567 if (order > PAGE_ALLOC_COSTLY_ORDER)
2568 goto out;
2569 /* The OOM killer does not needlessly kill tasks for lowmem */
2570 if (ac->high_zoneidx < ZONE_NORMAL)
2571 goto out;
2572 /* The OOM killer does not compensate for IO-less reclaim */
2573 if (!(gfp_mask & __GFP_FS)) {
2574 /*
2575 * XXX: Page reclaim didn't yield anything,
2576 * and the OOM killer can't be invoked, but
2577 * keep looping as per tradition.
2578 */
2579 *did_some_progress = 1;
2580 goto out;
2581 }
2582 if (pm_suspended_storage())
2583 goto out;
2584 /* The OOM killer may not free memory on a specific node */
2585 if (gfp_mask & __GFP_THISNODE)
2586 goto out;
2587 }
2588 /* Exhausted what can be done so it's blamo time */
2589 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2590 *did_some_progress = 1;
2591 out:
2592 mutex_unlock(&oom_lock);
2593 return page;
2594 }
2595
2596 #ifdef CONFIG_COMPACTION
2597 /* Try memory compaction for high-order allocations before reclaim */
2598 static struct page *
2599 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2600 int alloc_flags, const struct alloc_context *ac,
2601 enum migrate_mode mode, int *contended_compaction,
2602 bool *deferred_compaction)
2603 {
2604 unsigned long compact_result;
2605 struct page *page;
2606
2607 if (!order)
2608 return NULL;
2609
2610 current->flags |= PF_MEMALLOC;
2611 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2612 mode, contended_compaction);
2613 current->flags &= ~PF_MEMALLOC;
2614
2615 switch (compact_result) {
2616 case COMPACT_DEFERRED:
2617 *deferred_compaction = true;
2618 /* fall-through */
2619 case COMPACT_SKIPPED:
2620 return NULL;
2621 default:
2622 break;
2623 }
2624
2625 /*
2626 * At least in one zone compaction wasn't deferred or skipped, so let's
2627 * count a compaction stall
2628 */
2629 count_vm_event(COMPACTSTALL);
2630
2631 page = get_page_from_freelist(gfp_mask, order,
2632 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2633
2634 if (page) {
2635 struct zone *zone = page_zone(page);
2636
2637 zone->compact_blockskip_flush = false;
2638 compaction_defer_reset(zone, order, true);
2639 count_vm_event(COMPACTSUCCESS);
2640 return page;
2641 }
2642
2643 /*
2644 * It's bad if compaction run occurs and fails. The most likely reason
2645 * is that pages exist, but not enough to satisfy watermarks.
2646 */
2647 count_vm_event(COMPACTFAIL);
2648
2649 cond_resched();
2650
2651 return NULL;
2652 }
2653 #else
2654 static inline struct page *
2655 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2656 int alloc_flags, const struct alloc_context *ac,
2657 enum migrate_mode mode, int *contended_compaction,
2658 bool *deferred_compaction)
2659 {
2660 return NULL;
2661 }
2662 #endif /* CONFIG_COMPACTION */
2663
2664 /* Perform direct synchronous page reclaim */
2665 static int
2666 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2667 const struct alloc_context *ac)
2668 {
2669 struct reclaim_state reclaim_state;
2670 int progress;
2671
2672 cond_resched();
2673
2674 /* We now go into synchronous reclaim */
2675 cpuset_memory_pressure_bump();
2676 current->flags |= PF_MEMALLOC;
2677 lockdep_set_current_reclaim_state(gfp_mask);
2678 reclaim_state.reclaimed_slab = 0;
2679 current->reclaim_state = &reclaim_state;
2680
2681 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2682 ac->nodemask);
2683
2684 current->reclaim_state = NULL;
2685 lockdep_clear_current_reclaim_state();
2686 current->flags &= ~PF_MEMALLOC;
2687
2688 cond_resched();
2689
2690 return progress;
2691 }
2692
2693 /* The really slow allocator path where we enter direct reclaim */
2694 static inline struct page *
2695 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2696 int alloc_flags, const struct alloc_context *ac,
2697 unsigned long *did_some_progress)
2698 {
2699 struct page *page = NULL;
2700 bool drained = false;
2701
2702 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2703 if (unlikely(!(*did_some_progress)))
2704 return NULL;
2705
2706 retry:
2707 page = get_page_from_freelist(gfp_mask, order,
2708 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2709
2710 /*
2711 * If an allocation failed after direct reclaim, it could be because
2712 * pages are pinned on the per-cpu lists. Drain them and try again
2713 */
2714 if (!page && !drained) {
2715 drain_all_pages(NULL);
2716 drained = true;
2717 goto retry;
2718 }
2719
2720 return page;
2721 }
2722
2723 /*
2724 * This is called in the allocator slow-path if the allocation request is of
2725 * sufficient urgency to ignore watermarks and take other desperate measures
2726 */
2727 static inline struct page *
2728 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2729 const struct alloc_context *ac)
2730 {
2731 struct page *page;
2732
2733 do {
2734 page = get_page_from_freelist(gfp_mask, order,
2735 ALLOC_NO_WATERMARKS, ac);
2736
2737 if (!page && gfp_mask & __GFP_NOFAIL)
2738 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2739 HZ/50);
2740 } while (!page && (gfp_mask & __GFP_NOFAIL));
2741
2742 return page;
2743 }
2744
2745 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2746 {
2747 struct zoneref *z;
2748 struct zone *zone;
2749
2750 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2751 ac->high_zoneidx, ac->nodemask)
2752 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2753 }
2754
2755 static inline int
2756 gfp_to_alloc_flags(gfp_t gfp_mask)
2757 {
2758 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2759
2760 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2761 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2762
2763 /*
2764 * The caller may dip into page reserves a bit more if the caller
2765 * cannot run direct reclaim, or if the caller has realtime scheduling
2766 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2767 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2768 */
2769 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2770
2771 if (gfp_mask & __GFP_ATOMIC) {
2772 /*
2773 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2774 * if it can't schedule.
2775 */
2776 if (!(gfp_mask & __GFP_NOMEMALLOC))
2777 alloc_flags |= ALLOC_HARDER;
2778 /*
2779 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2780 * comment for __cpuset_node_allowed().
2781 */
2782 alloc_flags &= ~ALLOC_CPUSET;
2783 } else if (unlikely(rt_task(current)) && !in_interrupt())
2784 alloc_flags |= ALLOC_HARDER;
2785
2786 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2787 if (gfp_mask & __GFP_MEMALLOC)
2788 alloc_flags |= ALLOC_NO_WATERMARKS;
2789 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2790 alloc_flags |= ALLOC_NO_WATERMARKS;
2791 else if (!in_interrupt() &&
2792 ((current->flags & PF_MEMALLOC) ||
2793 unlikely(test_thread_flag(TIF_MEMDIE))))
2794 alloc_flags |= ALLOC_NO_WATERMARKS;
2795 }
2796 #ifdef CONFIG_CMA
2797 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2798 alloc_flags |= ALLOC_CMA;
2799 #endif
2800 return alloc_flags;
2801 }
2802
2803 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2804 {
2805 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2806 }
2807
2808 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2809 {
2810 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2811 }
2812
2813 static inline struct page *
2814 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2815 struct alloc_context *ac)
2816 {
2817 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2818 struct page *page = NULL;
2819 int alloc_flags;
2820 unsigned long pages_reclaimed = 0;
2821 unsigned long did_some_progress;
2822 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2823 bool deferred_compaction = false;
2824 int contended_compaction = COMPACT_CONTENDED_NONE;
2825
2826 /*
2827 * In the slowpath, we sanity check order to avoid ever trying to
2828 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2829 * be using allocators in order of preference for an area that is
2830 * too large.
2831 */
2832 if (order >= MAX_ORDER) {
2833 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2834 return NULL;
2835 }
2836
2837 /*
2838 * We also sanity check to catch abuse of atomic reserves being used by
2839 * callers that are not in atomic context.
2840 */
2841 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2842 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2843 gfp_mask &= ~__GFP_ATOMIC;
2844
2845 /*
2846 * If this allocation cannot block and it is for a specific node, then
2847 * fail early. There's no need to wakeup kswapd or retry for a
2848 * speculative node-specific allocation.
2849 */
2850 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
2851 goto nopage;
2852
2853 retry:
2854 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
2855 wake_all_kswapds(order, ac);
2856
2857 /*
2858 * OK, we're below the kswapd watermark and have kicked background
2859 * reclaim. Now things get more complex, so set up alloc_flags according
2860 * to how we want to proceed.
2861 */
2862 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2863
2864 /*
2865 * Find the true preferred zone if the allocation is unconstrained by
2866 * cpusets.
2867 */
2868 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2869 struct zoneref *preferred_zoneref;
2870 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2871 ac->high_zoneidx, NULL, &ac->preferred_zone);
2872 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2873 }
2874
2875 /* This is the last chance, in general, before the goto nopage. */
2876 page = get_page_from_freelist(gfp_mask, order,
2877 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2878 if (page)
2879 goto got_pg;
2880
2881 /* Allocate without watermarks if the context allows */
2882 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2883 /*
2884 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2885 * the allocation is high priority and these type of
2886 * allocations are system rather than user orientated
2887 */
2888 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2889
2890 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2891
2892 if (page) {
2893 goto got_pg;
2894 }
2895 }
2896
2897 /* Caller is not willing to reclaim, we can't balance anything */
2898 if (!can_direct_reclaim) {
2899 /*
2900 * All existing users of the deprecated __GFP_NOFAIL are
2901 * blockable, so warn of any new users that actually allow this
2902 * type of allocation to fail.
2903 */
2904 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2905 goto nopage;
2906 }
2907
2908 /* Avoid recursion of direct reclaim */
2909 if (current->flags & PF_MEMALLOC)
2910 goto nopage;
2911
2912 /* Avoid allocations with no watermarks from looping endlessly */
2913 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2914 goto nopage;
2915
2916 /*
2917 * Try direct compaction. The first pass is asynchronous. Subsequent
2918 * attempts after direct reclaim are synchronous
2919 */
2920 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2921 migration_mode,
2922 &contended_compaction,
2923 &deferred_compaction);
2924 if (page)
2925 goto got_pg;
2926
2927 /* Checks for THP-specific high-order allocations */
2928 if (is_thp_gfp_mask(gfp_mask)) {
2929 /*
2930 * If compaction is deferred for high-order allocations, it is
2931 * because sync compaction recently failed. If this is the case
2932 * and the caller requested a THP allocation, we do not want
2933 * to heavily disrupt the system, so we fail the allocation
2934 * instead of entering direct reclaim.
2935 */
2936 if (deferred_compaction)
2937 goto nopage;
2938
2939 /*
2940 * In all zones where compaction was attempted (and not
2941 * deferred or skipped), lock contention has been detected.
2942 * For THP allocation we do not want to disrupt the others
2943 * so we fallback to base pages instead.
2944 */
2945 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2946 goto nopage;
2947
2948 /*
2949 * If compaction was aborted due to need_resched(), we do not
2950 * want to further increase allocation latency, unless it is
2951 * khugepaged trying to collapse.
2952 */
2953 if (contended_compaction == COMPACT_CONTENDED_SCHED
2954 && !(current->flags & PF_KTHREAD))
2955 goto nopage;
2956 }
2957
2958 /*
2959 * It can become very expensive to allocate transparent hugepages at
2960 * fault, so use asynchronous memory compaction for THP unless it is
2961 * khugepaged trying to collapse.
2962 */
2963 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
2964 migration_mode = MIGRATE_SYNC_LIGHT;
2965
2966 /* Try direct reclaim and then allocating */
2967 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2968 &did_some_progress);
2969 if (page)
2970 goto got_pg;
2971
2972 /* Do not loop if specifically requested */
2973 if (gfp_mask & __GFP_NORETRY)
2974 goto noretry;
2975
2976 /* Keep reclaiming pages as long as there is reasonable progress */
2977 pages_reclaimed += did_some_progress;
2978 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
2979 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
2980 /* Wait for some write requests to complete then retry */
2981 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2982 goto retry;
2983 }
2984
2985 /* Reclaim has failed us, start killing things */
2986 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
2987 if (page)
2988 goto got_pg;
2989
2990 /* Retry as long as the OOM killer is making progress */
2991 if (did_some_progress)
2992 goto retry;
2993
2994 noretry:
2995 /*
2996 * High-order allocations do not necessarily loop after
2997 * direct reclaim and reclaim/compaction depends on compaction
2998 * being called after reclaim so call directly if necessary
2999 */
3000 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3001 ac, migration_mode,
3002 &contended_compaction,
3003 &deferred_compaction);
3004 if (page)
3005 goto got_pg;
3006 nopage:
3007 warn_alloc_failed(gfp_mask, order, NULL);
3008 got_pg:
3009 return page;
3010 }
3011
3012 /*
3013 * This is the 'heart' of the zoned buddy allocator.
3014 */
3015 struct page *
3016 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3017 struct zonelist *zonelist, nodemask_t *nodemask)
3018 {
3019 struct zoneref *preferred_zoneref;
3020 struct page *page = NULL;
3021 unsigned int cpuset_mems_cookie;
3022 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3023 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3024 struct alloc_context ac = {
3025 .high_zoneidx = gfp_zone(gfp_mask),
3026 .nodemask = nodemask,
3027 .migratetype = gfpflags_to_migratetype(gfp_mask),
3028 };
3029
3030 gfp_mask &= gfp_allowed_mask;
3031
3032 lockdep_trace_alloc(gfp_mask);
3033
3034 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3035
3036 if (should_fail_alloc_page(gfp_mask, order))
3037 return NULL;
3038
3039 /*
3040 * Check the zones suitable for the gfp_mask contain at least one
3041 * valid zone. It's possible to have an empty zonelist as a result
3042 * of __GFP_THISNODE and a memoryless node
3043 */
3044 if (unlikely(!zonelist->_zonerefs->zone))
3045 return NULL;
3046
3047 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3048 alloc_flags |= ALLOC_CMA;
3049
3050 retry_cpuset:
3051 cpuset_mems_cookie = read_mems_allowed_begin();
3052
3053 /* We set it here, as __alloc_pages_slowpath might have changed it */
3054 ac.zonelist = zonelist;
3055
3056 /* Dirty zone balancing only done in the fast path */
3057 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3058
3059 /* The preferred zone is used for statistics later */
3060 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3061 ac.nodemask ? : &cpuset_current_mems_allowed,
3062 &ac.preferred_zone);
3063 if (!ac.preferred_zone)
3064 goto out;
3065 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3066
3067 /* First allocation attempt */
3068 alloc_mask = gfp_mask|__GFP_HARDWALL;
3069 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3070 if (unlikely(!page)) {
3071 /*
3072 * Runtime PM, block IO and its error handling path
3073 * can deadlock because I/O on the device might not
3074 * complete.
3075 */
3076 alloc_mask = memalloc_noio_flags(gfp_mask);
3077 ac.spread_dirty_pages = false;
3078
3079 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3080 }
3081
3082 if (kmemcheck_enabled && page)
3083 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3084
3085 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3086
3087 out:
3088 /*
3089 * When updating a task's mems_allowed, it is possible to race with
3090 * parallel threads in such a way that an allocation can fail while
3091 * the mask is being updated. If a page allocation is about to fail,
3092 * check if the cpuset changed during allocation and if so, retry.
3093 */
3094 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3095 goto retry_cpuset;
3096
3097 return page;
3098 }
3099 EXPORT_SYMBOL(__alloc_pages_nodemask);
3100
3101 /*
3102 * Common helper functions.
3103 */
3104 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3105 {
3106 struct page *page;
3107
3108 /*
3109 * __get_free_pages() returns a 32-bit address, which cannot represent
3110 * a highmem page
3111 */
3112 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3113
3114 page = alloc_pages(gfp_mask, order);
3115 if (!page)
3116 return 0;
3117 return (unsigned long) page_address(page);
3118 }
3119 EXPORT_SYMBOL(__get_free_pages);
3120
3121 unsigned long get_zeroed_page(gfp_t gfp_mask)
3122 {
3123 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3124 }
3125 EXPORT_SYMBOL(get_zeroed_page);
3126
3127 void __free_pages(struct page *page, unsigned int order)
3128 {
3129 if (put_page_testzero(page)) {
3130 if (order == 0)
3131 free_hot_cold_page(page, false);
3132 else
3133 __free_pages_ok(page, order);
3134 }
3135 }
3136
3137 EXPORT_SYMBOL(__free_pages);
3138
3139 void free_pages(unsigned long addr, unsigned int order)
3140 {
3141 if (addr != 0) {
3142 VM_BUG_ON(!virt_addr_valid((void *)addr));
3143 __free_pages(virt_to_page((void *)addr), order);
3144 }
3145 }
3146
3147 EXPORT_SYMBOL(free_pages);
3148
3149 /*
3150 * Page Fragment:
3151 * An arbitrary-length arbitrary-offset area of memory which resides
3152 * within a 0 or higher order page. Multiple fragments within that page
3153 * are individually refcounted, in the page's reference counter.
3154 *
3155 * The page_frag functions below provide a simple allocation framework for
3156 * page fragments. This is used by the network stack and network device
3157 * drivers to provide a backing region of memory for use as either an
3158 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3159 */
3160 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3161 gfp_t gfp_mask)
3162 {
3163 struct page *page = NULL;
3164 gfp_t gfp = gfp_mask;
3165
3166 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3167 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3168 __GFP_NOMEMALLOC;
3169 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3170 PAGE_FRAG_CACHE_MAX_ORDER);
3171 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3172 #endif
3173 if (unlikely(!page))
3174 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3175
3176 nc->va = page ? page_address(page) : NULL;
3177
3178 return page;
3179 }
3180
3181 void *__alloc_page_frag(struct page_frag_cache *nc,
3182 unsigned int fragsz, gfp_t gfp_mask)
3183 {
3184 unsigned int size = PAGE_SIZE;
3185 struct page *page;
3186 int offset;
3187
3188 if (unlikely(!nc->va)) {
3189 refill:
3190 page = __page_frag_refill(nc, gfp_mask);
3191 if (!page)
3192 return NULL;
3193
3194 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3195 /* if size can vary use size else just use PAGE_SIZE */
3196 size = nc->size;
3197 #endif
3198 /* Even if we own the page, we do not use atomic_set().
3199 * This would break get_page_unless_zero() users.
3200 */
3201 atomic_add(size - 1, &page->_count);
3202
3203 /* reset page count bias and offset to start of new frag */
3204 nc->pfmemalloc = page_is_pfmemalloc(page);
3205 nc->pagecnt_bias = size;
3206 nc->offset = size;
3207 }
3208
3209 offset = nc->offset - fragsz;
3210 if (unlikely(offset < 0)) {
3211 page = virt_to_page(nc->va);
3212
3213 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3214 goto refill;
3215
3216 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3217 /* if size can vary use size else just use PAGE_SIZE */
3218 size = nc->size;
3219 #endif
3220 /* OK, page count is 0, we can safely set it */
3221 atomic_set(&page->_count, size);
3222
3223 /* reset page count bias and offset to start of new frag */
3224 nc->pagecnt_bias = size;
3225 offset = size - fragsz;
3226 }
3227
3228 nc->pagecnt_bias--;
3229 nc->offset = offset;
3230
3231 return nc->va + offset;
3232 }
3233 EXPORT_SYMBOL(__alloc_page_frag);
3234
3235 /*
3236 * Frees a page fragment allocated out of either a compound or order 0 page.
3237 */
3238 void __free_page_frag(void *addr)
3239 {
3240 struct page *page = virt_to_head_page(addr);
3241
3242 if (unlikely(put_page_testzero(page)))
3243 __free_pages_ok(page, compound_order(page));
3244 }
3245 EXPORT_SYMBOL(__free_page_frag);
3246
3247 /*
3248 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3249 * of the current memory cgroup.
3250 *
3251 * It should be used when the caller would like to use kmalloc, but since the
3252 * allocation is large, it has to fall back to the page allocator.
3253 */
3254 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3255 {
3256 struct page *page;
3257
3258 page = alloc_pages(gfp_mask, order);
3259 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3260 __free_pages(page, order);
3261 page = NULL;
3262 }
3263 return page;
3264 }
3265
3266 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3267 {
3268 struct page *page;
3269
3270 page = alloc_pages_node(nid, gfp_mask, order);
3271 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3272 __free_pages(page, order);
3273 page = NULL;
3274 }
3275 return page;
3276 }
3277
3278 /*
3279 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3280 * alloc_kmem_pages.
3281 */
3282 void __free_kmem_pages(struct page *page, unsigned int order)
3283 {
3284 memcg_kmem_uncharge(page, order);
3285 __free_pages(page, order);
3286 }
3287
3288 void free_kmem_pages(unsigned long addr, unsigned int order)
3289 {
3290 if (addr != 0) {
3291 VM_BUG_ON(!virt_addr_valid((void *)addr));
3292 __free_kmem_pages(virt_to_page((void *)addr), order);
3293 }
3294 }
3295
3296 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3297 {
3298 if (addr) {
3299 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3300 unsigned long used = addr + PAGE_ALIGN(size);
3301
3302 split_page(virt_to_page((void *)addr), order);
3303 while (used < alloc_end) {
3304 free_page(used);
3305 used += PAGE_SIZE;
3306 }
3307 }
3308 return (void *)addr;
3309 }
3310
3311 /**
3312 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3313 * @size: the number of bytes to allocate
3314 * @gfp_mask: GFP flags for the allocation
3315 *
3316 * This function is similar to alloc_pages(), except that it allocates the
3317 * minimum number of pages to satisfy the request. alloc_pages() can only
3318 * allocate memory in power-of-two pages.
3319 *
3320 * This function is also limited by MAX_ORDER.
3321 *
3322 * Memory allocated by this function must be released by free_pages_exact().
3323 */
3324 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3325 {
3326 unsigned int order = get_order(size);
3327 unsigned long addr;
3328
3329 addr = __get_free_pages(gfp_mask, order);
3330 return make_alloc_exact(addr, order, size);
3331 }
3332 EXPORT_SYMBOL(alloc_pages_exact);
3333
3334 /**
3335 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3336 * pages on a node.
3337 * @nid: the preferred node ID where memory should be allocated
3338 * @size: the number of bytes to allocate
3339 * @gfp_mask: GFP flags for the allocation
3340 *
3341 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3342 * back.
3343 */
3344 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3345 {
3346 unsigned order = get_order(size);
3347 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3348 if (!p)
3349 return NULL;
3350 return make_alloc_exact((unsigned long)page_address(p), order, size);
3351 }
3352
3353 /**
3354 * free_pages_exact - release memory allocated via alloc_pages_exact()
3355 * @virt: the value returned by alloc_pages_exact.
3356 * @size: size of allocation, same value as passed to alloc_pages_exact().
3357 *
3358 * Release the memory allocated by a previous call to alloc_pages_exact.
3359 */
3360 void free_pages_exact(void *virt, size_t size)
3361 {
3362 unsigned long addr = (unsigned long)virt;
3363 unsigned long end = addr + PAGE_ALIGN(size);
3364
3365 while (addr < end) {
3366 free_page(addr);
3367 addr += PAGE_SIZE;
3368 }
3369 }
3370 EXPORT_SYMBOL(free_pages_exact);
3371
3372 /**
3373 * nr_free_zone_pages - count number of pages beyond high watermark
3374 * @offset: The zone index of the highest zone
3375 *
3376 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3377 * high watermark within all zones at or below a given zone index. For each
3378 * zone, the number of pages is calculated as:
3379 * managed_pages - high_pages
3380 */
3381 static unsigned long nr_free_zone_pages(int offset)
3382 {
3383 struct zoneref *z;
3384 struct zone *zone;
3385
3386 /* Just pick one node, since fallback list is circular */
3387 unsigned long sum = 0;
3388
3389 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3390
3391 for_each_zone_zonelist(zone, z, zonelist, offset) {
3392 unsigned long size = zone->managed_pages;
3393 unsigned long high = high_wmark_pages(zone);
3394 if (size > high)
3395 sum += size - high;
3396 }
3397
3398 return sum;
3399 }
3400
3401 /**
3402 * nr_free_buffer_pages - count number of pages beyond high watermark
3403 *
3404 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3405 * watermark within ZONE_DMA and ZONE_NORMAL.
3406 */
3407 unsigned long nr_free_buffer_pages(void)
3408 {
3409 return nr_free_zone_pages(gfp_zone(GFP_USER));
3410 }
3411 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3412
3413 /**
3414 * nr_free_pagecache_pages - count number of pages beyond high watermark
3415 *
3416 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3417 * high watermark within all zones.
3418 */
3419 unsigned long nr_free_pagecache_pages(void)
3420 {
3421 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3422 }
3423
3424 static inline void show_node(struct zone *zone)
3425 {
3426 if (IS_ENABLED(CONFIG_NUMA))
3427 printk("Node %d ", zone_to_nid(zone));
3428 }
3429
3430 void si_meminfo(struct sysinfo *val)
3431 {
3432 val->totalram = totalram_pages;
3433 val->sharedram = global_page_state(NR_SHMEM);
3434 val->freeram = global_page_state(NR_FREE_PAGES);
3435 val->bufferram = nr_blockdev_pages();
3436 val->totalhigh = totalhigh_pages;
3437 val->freehigh = nr_free_highpages();
3438 val->mem_unit = PAGE_SIZE;
3439 }
3440
3441 EXPORT_SYMBOL(si_meminfo);
3442
3443 #ifdef CONFIG_NUMA
3444 void si_meminfo_node(struct sysinfo *val, int nid)
3445 {
3446 int zone_type; /* needs to be signed */
3447 unsigned long managed_pages = 0;
3448 pg_data_t *pgdat = NODE_DATA(nid);
3449
3450 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3451 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3452 val->totalram = managed_pages;
3453 val->sharedram = node_page_state(nid, NR_SHMEM);
3454 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3455 #ifdef CONFIG_HIGHMEM
3456 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3457 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3458 NR_FREE_PAGES);
3459 #else
3460 val->totalhigh = 0;
3461 val->freehigh = 0;
3462 #endif
3463 val->mem_unit = PAGE_SIZE;
3464 }
3465 #endif
3466
3467 /*
3468 * Determine whether the node should be displayed or not, depending on whether
3469 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3470 */
3471 bool skip_free_areas_node(unsigned int flags, int nid)
3472 {
3473 bool ret = false;
3474 unsigned int cpuset_mems_cookie;
3475
3476 if (!(flags & SHOW_MEM_FILTER_NODES))
3477 goto out;
3478
3479 do {
3480 cpuset_mems_cookie = read_mems_allowed_begin();
3481 ret = !node_isset(nid, cpuset_current_mems_allowed);
3482 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3483 out:
3484 return ret;
3485 }
3486
3487 #define K(x) ((x) << (PAGE_SHIFT-10))
3488
3489 static void show_migration_types(unsigned char type)
3490 {
3491 static const char types[MIGRATE_TYPES] = {
3492 [MIGRATE_UNMOVABLE] = 'U',
3493 [MIGRATE_RECLAIMABLE] = 'E',
3494 [MIGRATE_MOVABLE] = 'M',
3495 [MIGRATE_RESERVE] = 'R',
3496 #ifdef CONFIG_CMA
3497 [MIGRATE_CMA] = 'C',
3498 #endif
3499 #ifdef CONFIG_MEMORY_ISOLATION
3500 [MIGRATE_ISOLATE] = 'I',
3501 #endif
3502 };
3503 char tmp[MIGRATE_TYPES + 1];
3504 char *p = tmp;
3505 int i;
3506
3507 for (i = 0; i < MIGRATE_TYPES; i++) {
3508 if (type & (1 << i))
3509 *p++ = types[i];
3510 }
3511
3512 *p = '\0';
3513 printk("(%s) ", tmp);
3514 }
3515
3516 /*
3517 * Show free area list (used inside shift_scroll-lock stuff)
3518 * We also calculate the percentage fragmentation. We do this by counting the
3519 * memory on each free list with the exception of the first item on the list.
3520 *
3521 * Bits in @filter:
3522 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3523 * cpuset.
3524 */
3525 void show_free_areas(unsigned int filter)
3526 {
3527 unsigned long free_pcp = 0;
3528 int cpu;
3529 struct zone *zone;
3530
3531 for_each_populated_zone(zone) {
3532 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3533 continue;
3534
3535 for_each_online_cpu(cpu)
3536 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3537 }
3538
3539 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3540 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3541 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3542 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3543 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3544 " free:%lu free_pcp:%lu free_cma:%lu\n",
3545 global_page_state(NR_ACTIVE_ANON),
3546 global_page_state(NR_INACTIVE_ANON),
3547 global_page_state(NR_ISOLATED_ANON),
3548 global_page_state(NR_ACTIVE_FILE),
3549 global_page_state(NR_INACTIVE_FILE),
3550 global_page_state(NR_ISOLATED_FILE),
3551 global_page_state(NR_UNEVICTABLE),
3552 global_page_state(NR_FILE_DIRTY),
3553 global_page_state(NR_WRITEBACK),
3554 global_page_state(NR_UNSTABLE_NFS),
3555 global_page_state(NR_SLAB_RECLAIMABLE),
3556 global_page_state(NR_SLAB_UNRECLAIMABLE),
3557 global_page_state(NR_FILE_MAPPED),
3558 global_page_state(NR_SHMEM),
3559 global_page_state(NR_PAGETABLE),
3560 global_page_state(NR_BOUNCE),
3561 global_page_state(NR_FREE_PAGES),
3562 free_pcp,
3563 global_page_state(NR_FREE_CMA_PAGES));
3564
3565 for_each_populated_zone(zone) {
3566 int i;
3567
3568 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3569 continue;
3570
3571 free_pcp = 0;
3572 for_each_online_cpu(cpu)
3573 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3574
3575 show_node(zone);
3576 printk("%s"
3577 " free:%lukB"
3578 " min:%lukB"
3579 " low:%lukB"
3580 " high:%lukB"
3581 " active_anon:%lukB"
3582 " inactive_anon:%lukB"
3583 " active_file:%lukB"
3584 " inactive_file:%lukB"
3585 " unevictable:%lukB"
3586 " isolated(anon):%lukB"
3587 " isolated(file):%lukB"
3588 " present:%lukB"
3589 " managed:%lukB"
3590 " mlocked:%lukB"
3591 " dirty:%lukB"
3592 " writeback:%lukB"
3593 " mapped:%lukB"
3594 " shmem:%lukB"
3595 " slab_reclaimable:%lukB"
3596 " slab_unreclaimable:%lukB"
3597 " kernel_stack:%lukB"
3598 " pagetables:%lukB"
3599 " unstable:%lukB"
3600 " bounce:%lukB"
3601 " free_pcp:%lukB"
3602 " local_pcp:%ukB"
3603 " free_cma:%lukB"
3604 " writeback_tmp:%lukB"
3605 " pages_scanned:%lu"
3606 " all_unreclaimable? %s"
3607 "\n",
3608 zone->name,
3609 K(zone_page_state(zone, NR_FREE_PAGES)),
3610 K(min_wmark_pages(zone)),
3611 K(low_wmark_pages(zone)),
3612 K(high_wmark_pages(zone)),
3613 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3614 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3615 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3616 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3617 K(zone_page_state(zone, NR_UNEVICTABLE)),
3618 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3619 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3620 K(zone->present_pages),
3621 K(zone->managed_pages),
3622 K(zone_page_state(zone, NR_MLOCK)),
3623 K(zone_page_state(zone, NR_FILE_DIRTY)),
3624 K(zone_page_state(zone, NR_WRITEBACK)),
3625 K(zone_page_state(zone, NR_FILE_MAPPED)),
3626 K(zone_page_state(zone, NR_SHMEM)),
3627 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3628 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3629 zone_page_state(zone, NR_KERNEL_STACK) *
3630 THREAD_SIZE / 1024,
3631 K(zone_page_state(zone, NR_PAGETABLE)),
3632 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3633 K(zone_page_state(zone, NR_BOUNCE)),
3634 K(free_pcp),
3635 K(this_cpu_read(zone->pageset->pcp.count)),
3636 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3637 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3638 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3639 (!zone_reclaimable(zone) ? "yes" : "no")
3640 );
3641 printk("lowmem_reserve[]:");
3642 for (i = 0; i < MAX_NR_ZONES; i++)
3643 printk(" %ld", zone->lowmem_reserve[i]);
3644 printk("\n");
3645 }
3646
3647 for_each_populated_zone(zone) {
3648 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3649 unsigned char types[MAX_ORDER];
3650
3651 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3652 continue;
3653 show_node(zone);
3654 printk("%s: ", zone->name);
3655
3656 spin_lock_irqsave(&zone->lock, flags);
3657 for (order = 0; order < MAX_ORDER; order++) {
3658 struct free_area *area = &zone->free_area[order];
3659 int type;
3660
3661 nr[order] = area->nr_free;
3662 total += nr[order] << order;
3663
3664 types[order] = 0;
3665 for (type = 0; type < MIGRATE_TYPES; type++) {
3666 if (!list_empty(&area->free_list[type]))
3667 types[order] |= 1 << type;
3668 }
3669 }
3670 spin_unlock_irqrestore(&zone->lock, flags);
3671 for (order = 0; order < MAX_ORDER; order++) {
3672 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3673 if (nr[order])
3674 show_migration_types(types[order]);
3675 }
3676 printk("= %lukB\n", K(total));
3677 }
3678
3679 hugetlb_show_meminfo();
3680
3681 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3682
3683 show_swap_cache_info();
3684 }
3685
3686 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3687 {
3688 zoneref->zone = zone;
3689 zoneref->zone_idx = zone_idx(zone);
3690 }
3691
3692 /*
3693 * Builds allocation fallback zone lists.
3694 *
3695 * Add all populated zones of a node to the zonelist.
3696 */
3697 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3698 int nr_zones)
3699 {
3700 struct zone *zone;
3701 enum zone_type zone_type = MAX_NR_ZONES;
3702
3703 do {
3704 zone_type--;
3705 zone = pgdat->node_zones + zone_type;
3706 if (populated_zone(zone)) {
3707 zoneref_set_zone(zone,
3708 &zonelist->_zonerefs[nr_zones++]);
3709 check_highest_zone(zone_type);
3710 }
3711 } while (zone_type);
3712
3713 return nr_zones;
3714 }
3715
3716
3717 /*
3718 * zonelist_order:
3719 * 0 = automatic detection of better ordering.
3720 * 1 = order by ([node] distance, -zonetype)
3721 * 2 = order by (-zonetype, [node] distance)
3722 *
3723 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3724 * the same zonelist. So only NUMA can configure this param.
3725 */
3726 #define ZONELIST_ORDER_DEFAULT 0
3727 #define ZONELIST_ORDER_NODE 1
3728 #define ZONELIST_ORDER_ZONE 2
3729
3730 /* zonelist order in the kernel.
3731 * set_zonelist_order() will set this to NODE or ZONE.
3732 */
3733 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3734 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3735
3736
3737 #ifdef CONFIG_NUMA
3738 /* The value user specified ....changed by config */
3739 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3740 /* string for sysctl */
3741 #define NUMA_ZONELIST_ORDER_LEN 16
3742 char numa_zonelist_order[16] = "default";
3743
3744 /*
3745 * interface for configure zonelist ordering.
3746 * command line option "numa_zonelist_order"
3747 * = "[dD]efault - default, automatic configuration.
3748 * = "[nN]ode - order by node locality, then by zone within node
3749 * = "[zZ]one - order by zone, then by locality within zone
3750 */
3751
3752 static int __parse_numa_zonelist_order(char *s)
3753 {
3754 if (*s == 'd' || *s == 'D') {
3755 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3756 } else if (*s == 'n' || *s == 'N') {
3757 user_zonelist_order = ZONELIST_ORDER_NODE;
3758 } else if (*s == 'z' || *s == 'Z') {
3759 user_zonelist_order = ZONELIST_ORDER_ZONE;
3760 } else {
3761 printk(KERN_WARNING
3762 "Ignoring invalid numa_zonelist_order value: "
3763 "%s\n", s);
3764 return -EINVAL;
3765 }
3766 return 0;
3767 }
3768
3769 static __init int setup_numa_zonelist_order(char *s)
3770 {
3771 int ret;
3772
3773 if (!s)
3774 return 0;
3775
3776 ret = __parse_numa_zonelist_order(s);
3777 if (ret == 0)
3778 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3779
3780 return ret;
3781 }
3782 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3783
3784 /*
3785 * sysctl handler for numa_zonelist_order
3786 */
3787 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3788 void __user *buffer, size_t *length,
3789 loff_t *ppos)
3790 {
3791 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3792 int ret;
3793 static DEFINE_MUTEX(zl_order_mutex);
3794
3795 mutex_lock(&zl_order_mutex);
3796 if (write) {
3797 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3798 ret = -EINVAL;
3799 goto out;
3800 }
3801 strcpy(saved_string, (char *)table->data);
3802 }
3803 ret = proc_dostring(table, write, buffer, length, ppos);
3804 if (ret)
3805 goto out;
3806 if (write) {
3807 int oldval = user_zonelist_order;
3808
3809 ret = __parse_numa_zonelist_order((char *)table->data);
3810 if (ret) {
3811 /*
3812 * bogus value. restore saved string
3813 */
3814 strncpy((char *)table->data, saved_string,
3815 NUMA_ZONELIST_ORDER_LEN);
3816 user_zonelist_order = oldval;
3817 } else if (oldval != user_zonelist_order) {
3818 mutex_lock(&zonelists_mutex);
3819 build_all_zonelists(NULL, NULL);
3820 mutex_unlock(&zonelists_mutex);
3821 }
3822 }
3823 out:
3824 mutex_unlock(&zl_order_mutex);
3825 return ret;
3826 }
3827
3828
3829 #define MAX_NODE_LOAD (nr_online_nodes)
3830 static int node_load[MAX_NUMNODES];
3831
3832 /**
3833 * find_next_best_node - find the next node that should appear in a given node's fallback list
3834 * @node: node whose fallback list we're appending
3835 * @used_node_mask: nodemask_t of already used nodes
3836 *
3837 * We use a number of factors to determine which is the next node that should
3838 * appear on a given node's fallback list. The node should not have appeared
3839 * already in @node's fallback list, and it should be the next closest node
3840 * according to the distance array (which contains arbitrary distance values
3841 * from each node to each node in the system), and should also prefer nodes
3842 * with no CPUs, since presumably they'll have very little allocation pressure
3843 * on them otherwise.
3844 * It returns -1 if no node is found.
3845 */
3846 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3847 {
3848 int n, val;
3849 int min_val = INT_MAX;
3850 int best_node = NUMA_NO_NODE;
3851 const struct cpumask *tmp = cpumask_of_node(0);
3852
3853 /* Use the local node if we haven't already */
3854 if (!node_isset(node, *used_node_mask)) {
3855 node_set(node, *used_node_mask);
3856 return node;
3857 }
3858
3859 for_each_node_state(n, N_MEMORY) {
3860
3861 /* Don't want a node to appear more than once */
3862 if (node_isset(n, *used_node_mask))
3863 continue;
3864
3865 /* Use the distance array to find the distance */
3866 val = node_distance(node, n);
3867
3868 /* Penalize nodes under us ("prefer the next node") */
3869 val += (n < node);
3870
3871 /* Give preference to headless and unused nodes */
3872 tmp = cpumask_of_node(n);
3873 if (!cpumask_empty(tmp))
3874 val += PENALTY_FOR_NODE_WITH_CPUS;
3875
3876 /* Slight preference for less loaded node */
3877 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3878 val += node_load[n];
3879
3880 if (val < min_val) {
3881 min_val = val;
3882 best_node = n;
3883 }
3884 }
3885
3886 if (best_node >= 0)
3887 node_set(best_node, *used_node_mask);
3888
3889 return best_node;
3890 }
3891
3892
3893 /*
3894 * Build zonelists ordered by node and zones within node.
3895 * This results in maximum locality--normal zone overflows into local
3896 * DMA zone, if any--but risks exhausting DMA zone.
3897 */
3898 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3899 {
3900 int j;
3901 struct zonelist *zonelist;
3902
3903 zonelist = &pgdat->node_zonelists[0];
3904 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3905 ;
3906 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3907 zonelist->_zonerefs[j].zone = NULL;
3908 zonelist->_zonerefs[j].zone_idx = 0;
3909 }
3910
3911 /*
3912 * Build gfp_thisnode zonelists
3913 */
3914 static void build_thisnode_zonelists(pg_data_t *pgdat)
3915 {
3916 int j;
3917 struct zonelist *zonelist;
3918
3919 zonelist = &pgdat->node_zonelists[1];
3920 j = build_zonelists_node(pgdat, zonelist, 0);
3921 zonelist->_zonerefs[j].zone = NULL;
3922 zonelist->_zonerefs[j].zone_idx = 0;
3923 }
3924
3925 /*
3926 * Build zonelists ordered by zone and nodes within zones.
3927 * This results in conserving DMA zone[s] until all Normal memory is
3928 * exhausted, but results in overflowing to remote node while memory
3929 * may still exist in local DMA zone.
3930 */
3931 static int node_order[MAX_NUMNODES];
3932
3933 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3934 {
3935 int pos, j, node;
3936 int zone_type; /* needs to be signed */
3937 struct zone *z;
3938 struct zonelist *zonelist;
3939
3940 zonelist = &pgdat->node_zonelists[0];
3941 pos = 0;
3942 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3943 for (j = 0; j < nr_nodes; j++) {
3944 node = node_order[j];
3945 z = &NODE_DATA(node)->node_zones[zone_type];
3946 if (populated_zone(z)) {
3947 zoneref_set_zone(z,
3948 &zonelist->_zonerefs[pos++]);
3949 check_highest_zone(zone_type);
3950 }
3951 }
3952 }
3953 zonelist->_zonerefs[pos].zone = NULL;
3954 zonelist->_zonerefs[pos].zone_idx = 0;
3955 }
3956
3957 #if defined(CONFIG_64BIT)
3958 /*
3959 * Devices that require DMA32/DMA are relatively rare and do not justify a
3960 * penalty to every machine in case the specialised case applies. Default
3961 * to Node-ordering on 64-bit NUMA machines
3962 */
3963 static int default_zonelist_order(void)
3964 {
3965 return ZONELIST_ORDER_NODE;
3966 }
3967 #else
3968 /*
3969 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3970 * by the kernel. If processes running on node 0 deplete the low memory zone
3971 * then reclaim will occur more frequency increasing stalls and potentially
3972 * be easier to OOM if a large percentage of the zone is under writeback or
3973 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3974 * Hence, default to zone ordering on 32-bit.
3975 */
3976 static int default_zonelist_order(void)
3977 {
3978 return ZONELIST_ORDER_ZONE;
3979 }
3980 #endif /* CONFIG_64BIT */
3981
3982 static void set_zonelist_order(void)
3983 {
3984 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3985 current_zonelist_order = default_zonelist_order();
3986 else
3987 current_zonelist_order = user_zonelist_order;
3988 }
3989
3990 static void build_zonelists(pg_data_t *pgdat)
3991 {
3992 int j, node, load;
3993 enum zone_type i;
3994 nodemask_t used_mask;
3995 int local_node, prev_node;
3996 struct zonelist *zonelist;
3997 int order = current_zonelist_order;
3998
3999 /* initialize zonelists */
4000 for (i = 0; i < MAX_ZONELISTS; i++) {
4001 zonelist = pgdat->node_zonelists + i;
4002 zonelist->_zonerefs[0].zone = NULL;
4003 zonelist->_zonerefs[0].zone_idx = 0;
4004 }
4005
4006 /* NUMA-aware ordering of nodes */
4007 local_node = pgdat->node_id;
4008 load = nr_online_nodes;
4009 prev_node = local_node;
4010 nodes_clear(used_mask);
4011
4012 memset(node_order, 0, sizeof(node_order));
4013 j = 0;
4014
4015 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4016 /*
4017 * We don't want to pressure a particular node.
4018 * So adding penalty to the first node in same
4019 * distance group to make it round-robin.
4020 */
4021 if (node_distance(local_node, node) !=
4022 node_distance(local_node, prev_node))
4023 node_load[node] = load;
4024
4025 prev_node = node;
4026 load--;
4027 if (order == ZONELIST_ORDER_NODE)
4028 build_zonelists_in_node_order(pgdat, node);
4029 else
4030 node_order[j++] = node; /* remember order */
4031 }
4032
4033 if (order == ZONELIST_ORDER_ZONE) {
4034 /* calculate node order -- i.e., DMA last! */
4035 build_zonelists_in_zone_order(pgdat, j);
4036 }
4037
4038 build_thisnode_zonelists(pgdat);
4039 }
4040
4041 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4042 /*
4043 * Return node id of node used for "local" allocations.
4044 * I.e., first node id of first zone in arg node's generic zonelist.
4045 * Used for initializing percpu 'numa_mem', which is used primarily
4046 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4047 */
4048 int local_memory_node(int node)
4049 {
4050 struct zone *zone;
4051
4052 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4053 gfp_zone(GFP_KERNEL),
4054 NULL,
4055 &zone);
4056 return zone->node;
4057 }
4058 #endif
4059
4060 #else /* CONFIG_NUMA */
4061
4062 static void set_zonelist_order(void)
4063 {
4064 current_zonelist_order = ZONELIST_ORDER_ZONE;
4065 }
4066
4067 static void build_zonelists(pg_data_t *pgdat)
4068 {
4069 int node, local_node;
4070 enum zone_type j;
4071 struct zonelist *zonelist;
4072
4073 local_node = pgdat->node_id;
4074
4075 zonelist = &pgdat->node_zonelists[0];
4076 j = build_zonelists_node(pgdat, zonelist, 0);
4077
4078 /*
4079 * Now we build the zonelist so that it contains the zones
4080 * of all the other nodes.
4081 * We don't want to pressure a particular node, so when
4082 * building the zones for node N, we make sure that the
4083 * zones coming right after the local ones are those from
4084 * node N+1 (modulo N)
4085 */
4086 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4087 if (!node_online(node))
4088 continue;
4089 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4090 }
4091 for (node = 0; node < local_node; node++) {
4092 if (!node_online(node))
4093 continue;
4094 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4095 }
4096
4097 zonelist->_zonerefs[j].zone = NULL;
4098 zonelist->_zonerefs[j].zone_idx = 0;
4099 }
4100
4101 #endif /* CONFIG_NUMA */
4102
4103 /*
4104 * Boot pageset table. One per cpu which is going to be used for all
4105 * zones and all nodes. The parameters will be set in such a way
4106 * that an item put on a list will immediately be handed over to
4107 * the buddy list. This is safe since pageset manipulation is done
4108 * with interrupts disabled.
4109 *
4110 * The boot_pagesets must be kept even after bootup is complete for
4111 * unused processors and/or zones. They do play a role for bootstrapping
4112 * hotplugged processors.
4113 *
4114 * zoneinfo_show() and maybe other functions do
4115 * not check if the processor is online before following the pageset pointer.
4116 * Other parts of the kernel may not check if the zone is available.
4117 */
4118 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4119 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4120 static void setup_zone_pageset(struct zone *zone);
4121
4122 /*
4123 * Global mutex to protect against size modification of zonelists
4124 * as well as to serialize pageset setup for the new populated zone.
4125 */
4126 DEFINE_MUTEX(zonelists_mutex);
4127
4128 /* return values int ....just for stop_machine() */
4129 static int __build_all_zonelists(void *data)
4130 {
4131 int nid;
4132 int cpu;
4133 pg_data_t *self = data;
4134
4135 #ifdef CONFIG_NUMA
4136 memset(node_load, 0, sizeof(node_load));
4137 #endif
4138
4139 if (self && !node_online(self->node_id)) {
4140 build_zonelists(self);
4141 }
4142
4143 for_each_online_node(nid) {
4144 pg_data_t *pgdat = NODE_DATA(nid);
4145
4146 build_zonelists(pgdat);
4147 }
4148
4149 /*
4150 * Initialize the boot_pagesets that are going to be used
4151 * for bootstrapping processors. The real pagesets for
4152 * each zone will be allocated later when the per cpu
4153 * allocator is available.
4154 *
4155 * boot_pagesets are used also for bootstrapping offline
4156 * cpus if the system is already booted because the pagesets
4157 * are needed to initialize allocators on a specific cpu too.
4158 * F.e. the percpu allocator needs the page allocator which
4159 * needs the percpu allocator in order to allocate its pagesets
4160 * (a chicken-egg dilemma).
4161 */
4162 for_each_possible_cpu(cpu) {
4163 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4164
4165 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4166 /*
4167 * We now know the "local memory node" for each node--
4168 * i.e., the node of the first zone in the generic zonelist.
4169 * Set up numa_mem percpu variable for on-line cpus. During
4170 * boot, only the boot cpu should be on-line; we'll init the
4171 * secondary cpus' numa_mem as they come on-line. During
4172 * node/memory hotplug, we'll fixup all on-line cpus.
4173 */
4174 if (cpu_online(cpu))
4175 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4176 #endif
4177 }
4178
4179 return 0;
4180 }
4181
4182 static noinline void __init
4183 build_all_zonelists_init(void)
4184 {
4185 __build_all_zonelists(NULL);
4186 mminit_verify_zonelist();
4187 cpuset_init_current_mems_allowed();
4188 }
4189
4190 /*
4191 * Called with zonelists_mutex held always
4192 * unless system_state == SYSTEM_BOOTING.
4193 *
4194 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4195 * [we're only called with non-NULL zone through __meminit paths] and
4196 * (2) call of __init annotated helper build_all_zonelists_init
4197 * [protected by SYSTEM_BOOTING].
4198 */
4199 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4200 {
4201 set_zonelist_order();
4202
4203 if (system_state == SYSTEM_BOOTING) {
4204 build_all_zonelists_init();
4205 } else {
4206 #ifdef CONFIG_MEMORY_HOTPLUG
4207 if (zone)
4208 setup_zone_pageset(zone);
4209 #endif
4210 /* we have to stop all cpus to guarantee there is no user
4211 of zonelist */
4212 stop_machine(__build_all_zonelists, pgdat, NULL);
4213 /* cpuset refresh routine should be here */
4214 }
4215 vm_total_pages = nr_free_pagecache_pages();
4216 /*
4217 * Disable grouping by mobility if the number of pages in the
4218 * system is too low to allow the mechanism to work. It would be
4219 * more accurate, but expensive to check per-zone. This check is
4220 * made on memory-hotadd so a system can start with mobility
4221 * disabled and enable it later
4222 */
4223 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4224 page_group_by_mobility_disabled = 1;
4225 else
4226 page_group_by_mobility_disabled = 0;
4227
4228 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4229 "Total pages: %ld\n",
4230 nr_online_nodes,
4231 zonelist_order_name[current_zonelist_order],
4232 page_group_by_mobility_disabled ? "off" : "on",
4233 vm_total_pages);
4234 #ifdef CONFIG_NUMA
4235 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4236 #endif
4237 }
4238
4239 /*
4240 * Helper functions to size the waitqueue hash table.
4241 * Essentially these want to choose hash table sizes sufficiently
4242 * large so that collisions trying to wait on pages are rare.
4243 * But in fact, the number of active page waitqueues on typical
4244 * systems is ridiculously low, less than 200. So this is even
4245 * conservative, even though it seems large.
4246 *
4247 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4248 * waitqueues, i.e. the size of the waitq table given the number of pages.
4249 */
4250 #define PAGES_PER_WAITQUEUE 256
4251
4252 #ifndef CONFIG_MEMORY_HOTPLUG
4253 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4254 {
4255 unsigned long size = 1;
4256
4257 pages /= PAGES_PER_WAITQUEUE;
4258
4259 while (size < pages)
4260 size <<= 1;
4261
4262 /*
4263 * Once we have dozens or even hundreds of threads sleeping
4264 * on IO we've got bigger problems than wait queue collision.
4265 * Limit the size of the wait table to a reasonable size.
4266 */
4267 size = min(size, 4096UL);
4268
4269 return max(size, 4UL);
4270 }
4271 #else
4272 /*
4273 * A zone's size might be changed by hot-add, so it is not possible to determine
4274 * a suitable size for its wait_table. So we use the maximum size now.
4275 *
4276 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4277 *
4278 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4279 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4280 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4281 *
4282 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4283 * or more by the traditional way. (See above). It equals:
4284 *
4285 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4286 * ia64(16K page size) : = ( 8G + 4M)byte.
4287 * powerpc (64K page size) : = (32G +16M)byte.
4288 */
4289 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4290 {
4291 return 4096UL;
4292 }
4293 #endif
4294
4295 /*
4296 * This is an integer logarithm so that shifts can be used later
4297 * to extract the more random high bits from the multiplicative
4298 * hash function before the remainder is taken.
4299 */
4300 static inline unsigned long wait_table_bits(unsigned long size)
4301 {
4302 return ffz(~size);
4303 }
4304
4305 /*
4306 * Check if a pageblock contains reserved pages
4307 */
4308 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4309 {
4310 unsigned long pfn;
4311
4312 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4313 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4314 return 1;
4315 }
4316 return 0;
4317 }
4318
4319 /*
4320 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4321 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4322 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4323 * higher will lead to a bigger reserve which will get freed as contiguous
4324 * blocks as reclaim kicks in
4325 */
4326 static void setup_zone_migrate_reserve(struct zone *zone)
4327 {
4328 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4329 struct page *page;
4330 unsigned long block_migratetype;
4331 int reserve;
4332 int old_reserve;
4333
4334 /*
4335 * Get the start pfn, end pfn and the number of blocks to reserve
4336 * We have to be careful to be aligned to pageblock_nr_pages to
4337 * make sure that we always check pfn_valid for the first page in
4338 * the block.
4339 */
4340 start_pfn = zone->zone_start_pfn;
4341 end_pfn = zone_end_pfn(zone);
4342 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4343 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4344 pageblock_order;
4345
4346 /*
4347 * Reserve blocks are generally in place to help high-order atomic
4348 * allocations that are short-lived. A min_free_kbytes value that
4349 * would result in more than 2 reserve blocks for atomic allocations
4350 * is assumed to be in place to help anti-fragmentation for the
4351 * future allocation of hugepages at runtime.
4352 */
4353 reserve = min(2, reserve);
4354 old_reserve = zone->nr_migrate_reserve_block;
4355
4356 /* When memory hot-add, we almost always need to do nothing */
4357 if (reserve == old_reserve)
4358 return;
4359 zone->nr_migrate_reserve_block = reserve;
4360
4361 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4362 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4363 return;
4364
4365 if (!pfn_valid(pfn))
4366 continue;
4367 page = pfn_to_page(pfn);
4368
4369 /* Watch out for overlapping nodes */
4370 if (page_to_nid(page) != zone_to_nid(zone))
4371 continue;
4372
4373 block_migratetype = get_pageblock_migratetype(page);
4374
4375 /* Only test what is necessary when the reserves are not met */
4376 if (reserve > 0) {
4377 /*
4378 * Blocks with reserved pages will never free, skip
4379 * them.
4380 */
4381 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4382 if (pageblock_is_reserved(pfn, block_end_pfn))
4383 continue;
4384
4385 /* If this block is reserved, account for it */
4386 if (block_migratetype == MIGRATE_RESERVE) {
4387 reserve--;
4388 continue;
4389 }
4390
4391 /* Suitable for reserving if this block is movable */
4392 if (block_migratetype == MIGRATE_MOVABLE) {
4393 set_pageblock_migratetype(page,
4394 MIGRATE_RESERVE);
4395 move_freepages_block(zone, page,
4396 MIGRATE_RESERVE);
4397 reserve--;
4398 continue;
4399 }
4400 } else if (!old_reserve) {
4401 /*
4402 * At boot time we don't need to scan the whole zone
4403 * for turning off MIGRATE_RESERVE.
4404 */
4405 break;
4406 }
4407
4408 /*
4409 * If the reserve is met and this is a previous reserved block,
4410 * take it back
4411 */
4412 if (block_migratetype == MIGRATE_RESERVE) {
4413 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4414 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4415 }
4416 }
4417 }
4418
4419 /*
4420 * Initially all pages are reserved - free ones are freed
4421 * up by free_all_bootmem() once the early boot process is
4422 * done. Non-atomic initialization, single-pass.
4423 */
4424 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4425 unsigned long start_pfn, enum memmap_context context)
4426 {
4427 pg_data_t *pgdat = NODE_DATA(nid);
4428 unsigned long end_pfn = start_pfn + size;
4429 unsigned long pfn;
4430 struct zone *z;
4431 unsigned long nr_initialised = 0;
4432
4433 if (highest_memmap_pfn < end_pfn - 1)
4434 highest_memmap_pfn = end_pfn - 1;
4435
4436 z = &pgdat->node_zones[zone];
4437 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4438 /*
4439 * There can be holes in boot-time mem_map[]s
4440 * handed to this function. They do not
4441 * exist on hotplugged memory.
4442 */
4443 if (context == MEMMAP_EARLY) {
4444 if (!early_pfn_valid(pfn))
4445 continue;
4446 if (!early_pfn_in_nid(pfn, nid))
4447 continue;
4448 if (!update_defer_init(pgdat, pfn, end_pfn,
4449 &nr_initialised))
4450 break;
4451 }
4452
4453 /*
4454 * Mark the block movable so that blocks are reserved for
4455 * movable at startup. This will force kernel allocations
4456 * to reserve their blocks rather than leaking throughout
4457 * the address space during boot when many long-lived
4458 * kernel allocations are made. Later some blocks near
4459 * the start are marked MIGRATE_RESERVE by
4460 * setup_zone_migrate_reserve()
4461 *
4462 * bitmap is created for zone's valid pfn range. but memmap
4463 * can be created for invalid pages (for alignment)
4464 * check here not to call set_pageblock_migratetype() against
4465 * pfn out of zone.
4466 */
4467 if (!(pfn & (pageblock_nr_pages - 1))) {
4468 struct page *page = pfn_to_page(pfn);
4469
4470 __init_single_page(page, pfn, zone, nid);
4471 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4472 } else {
4473 __init_single_pfn(pfn, zone, nid);
4474 }
4475 }
4476 }
4477
4478 static void __meminit zone_init_free_lists(struct zone *zone)
4479 {
4480 unsigned int order, t;
4481 for_each_migratetype_order(order, t) {
4482 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4483 zone->free_area[order].nr_free = 0;
4484 }
4485 }
4486
4487 #ifndef __HAVE_ARCH_MEMMAP_INIT
4488 #define memmap_init(size, nid, zone, start_pfn) \
4489 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4490 #endif
4491
4492 static int zone_batchsize(struct zone *zone)
4493 {
4494 #ifdef CONFIG_MMU
4495 int batch;
4496
4497 /*
4498 * The per-cpu-pages pools are set to around 1000th of the
4499 * size of the zone. But no more than 1/2 of a meg.
4500 *
4501 * OK, so we don't know how big the cache is. So guess.
4502 */
4503 batch = zone->managed_pages / 1024;
4504 if (batch * PAGE_SIZE > 512 * 1024)
4505 batch = (512 * 1024) / PAGE_SIZE;
4506 batch /= 4; /* We effectively *= 4 below */
4507 if (batch < 1)
4508 batch = 1;
4509
4510 /*
4511 * Clamp the batch to a 2^n - 1 value. Having a power
4512 * of 2 value was found to be more likely to have
4513 * suboptimal cache aliasing properties in some cases.
4514 *
4515 * For example if 2 tasks are alternately allocating
4516 * batches of pages, one task can end up with a lot
4517 * of pages of one half of the possible page colors
4518 * and the other with pages of the other colors.
4519 */
4520 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4521
4522 return batch;
4523
4524 #else
4525 /* The deferral and batching of frees should be suppressed under NOMMU
4526 * conditions.
4527 *
4528 * The problem is that NOMMU needs to be able to allocate large chunks
4529 * of contiguous memory as there's no hardware page translation to
4530 * assemble apparent contiguous memory from discontiguous pages.
4531 *
4532 * Queueing large contiguous runs of pages for batching, however,
4533 * causes the pages to actually be freed in smaller chunks. As there
4534 * can be a significant delay between the individual batches being
4535 * recycled, this leads to the once large chunks of space being
4536 * fragmented and becoming unavailable for high-order allocations.
4537 */
4538 return 0;
4539 #endif
4540 }
4541
4542 /*
4543 * pcp->high and pcp->batch values are related and dependent on one another:
4544 * ->batch must never be higher then ->high.
4545 * The following function updates them in a safe manner without read side
4546 * locking.
4547 *
4548 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4549 * those fields changing asynchronously (acording the the above rule).
4550 *
4551 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4552 * outside of boot time (or some other assurance that no concurrent updaters
4553 * exist).
4554 */
4555 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4556 unsigned long batch)
4557 {
4558 /* start with a fail safe value for batch */
4559 pcp->batch = 1;
4560 smp_wmb();
4561
4562 /* Update high, then batch, in order */
4563 pcp->high = high;
4564 smp_wmb();
4565
4566 pcp->batch = batch;
4567 }
4568
4569 /* a companion to pageset_set_high() */
4570 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4571 {
4572 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4573 }
4574
4575 static void pageset_init(struct per_cpu_pageset *p)
4576 {
4577 struct per_cpu_pages *pcp;
4578 int migratetype;
4579
4580 memset(p, 0, sizeof(*p));
4581
4582 pcp = &p->pcp;
4583 pcp->count = 0;
4584 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4585 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4586 }
4587
4588 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4589 {
4590 pageset_init(p);
4591 pageset_set_batch(p, batch);
4592 }
4593
4594 /*
4595 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4596 * to the value high for the pageset p.
4597 */
4598 static void pageset_set_high(struct per_cpu_pageset *p,
4599 unsigned long high)
4600 {
4601 unsigned long batch = max(1UL, high / 4);
4602 if ((high / 4) > (PAGE_SHIFT * 8))
4603 batch = PAGE_SHIFT * 8;
4604
4605 pageset_update(&p->pcp, high, batch);
4606 }
4607
4608 static void pageset_set_high_and_batch(struct zone *zone,
4609 struct per_cpu_pageset *pcp)
4610 {
4611 if (percpu_pagelist_fraction)
4612 pageset_set_high(pcp,
4613 (zone->managed_pages /
4614 percpu_pagelist_fraction));
4615 else
4616 pageset_set_batch(pcp, zone_batchsize(zone));
4617 }
4618
4619 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4620 {
4621 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4622
4623 pageset_init(pcp);
4624 pageset_set_high_and_batch(zone, pcp);
4625 }
4626
4627 static void __meminit setup_zone_pageset(struct zone *zone)
4628 {
4629 int cpu;
4630 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4631 for_each_possible_cpu(cpu)
4632 zone_pageset_init(zone, cpu);
4633 }
4634
4635 /*
4636 * Allocate per cpu pagesets and initialize them.
4637 * Before this call only boot pagesets were available.
4638 */
4639 void __init setup_per_cpu_pageset(void)
4640 {
4641 struct zone *zone;
4642
4643 for_each_populated_zone(zone)
4644 setup_zone_pageset(zone);
4645 }
4646
4647 static noinline __init_refok
4648 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4649 {
4650 int i;
4651 size_t alloc_size;
4652
4653 /*
4654 * The per-page waitqueue mechanism uses hashed waitqueues
4655 * per zone.
4656 */
4657 zone->wait_table_hash_nr_entries =
4658 wait_table_hash_nr_entries(zone_size_pages);
4659 zone->wait_table_bits =
4660 wait_table_bits(zone->wait_table_hash_nr_entries);
4661 alloc_size = zone->wait_table_hash_nr_entries
4662 * sizeof(wait_queue_head_t);
4663
4664 if (!slab_is_available()) {
4665 zone->wait_table = (wait_queue_head_t *)
4666 memblock_virt_alloc_node_nopanic(
4667 alloc_size, zone->zone_pgdat->node_id);
4668 } else {
4669 /*
4670 * This case means that a zone whose size was 0 gets new memory
4671 * via memory hot-add.
4672 * But it may be the case that a new node was hot-added. In
4673 * this case vmalloc() will not be able to use this new node's
4674 * memory - this wait_table must be initialized to use this new
4675 * node itself as well.
4676 * To use this new node's memory, further consideration will be
4677 * necessary.
4678 */
4679 zone->wait_table = vmalloc(alloc_size);
4680 }
4681 if (!zone->wait_table)
4682 return -ENOMEM;
4683
4684 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4685 init_waitqueue_head(zone->wait_table + i);
4686
4687 return 0;
4688 }
4689
4690 static __meminit void zone_pcp_init(struct zone *zone)
4691 {
4692 /*
4693 * per cpu subsystem is not up at this point. The following code
4694 * relies on the ability of the linker to provide the
4695 * offset of a (static) per cpu variable into the per cpu area.
4696 */
4697 zone->pageset = &boot_pageset;
4698
4699 if (populated_zone(zone))
4700 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4701 zone->name, zone->present_pages,
4702 zone_batchsize(zone));
4703 }
4704
4705 int __meminit init_currently_empty_zone(struct zone *zone,
4706 unsigned long zone_start_pfn,
4707 unsigned long size)
4708 {
4709 struct pglist_data *pgdat = zone->zone_pgdat;
4710 int ret;
4711 ret = zone_wait_table_init(zone, size);
4712 if (ret)
4713 return ret;
4714 pgdat->nr_zones = zone_idx(zone) + 1;
4715
4716 zone->zone_start_pfn = zone_start_pfn;
4717
4718 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4719 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4720 pgdat->node_id,
4721 (unsigned long)zone_idx(zone),
4722 zone_start_pfn, (zone_start_pfn + size));
4723
4724 zone_init_free_lists(zone);
4725
4726 return 0;
4727 }
4728
4729 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4730 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4731
4732 /*
4733 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4734 */
4735 int __meminit __early_pfn_to_nid(unsigned long pfn,
4736 struct mminit_pfnnid_cache *state)
4737 {
4738 unsigned long start_pfn, end_pfn;
4739 int nid;
4740
4741 if (state->last_start <= pfn && pfn < state->last_end)
4742 return state->last_nid;
4743
4744 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4745 if (nid != -1) {
4746 state->last_start = start_pfn;
4747 state->last_end = end_pfn;
4748 state->last_nid = nid;
4749 }
4750
4751 return nid;
4752 }
4753 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4754
4755 /**
4756 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4757 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4758 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4759 *
4760 * If an architecture guarantees that all ranges registered contain no holes
4761 * and may be freed, this this function may be used instead of calling
4762 * memblock_free_early_nid() manually.
4763 */
4764 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4765 {
4766 unsigned long start_pfn, end_pfn;
4767 int i, this_nid;
4768
4769 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4770 start_pfn = min(start_pfn, max_low_pfn);
4771 end_pfn = min(end_pfn, max_low_pfn);
4772
4773 if (start_pfn < end_pfn)
4774 memblock_free_early_nid(PFN_PHYS(start_pfn),
4775 (end_pfn - start_pfn) << PAGE_SHIFT,
4776 this_nid);
4777 }
4778 }
4779
4780 /**
4781 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4782 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4783 *
4784 * If an architecture guarantees that all ranges registered contain no holes and may
4785 * be freed, this function may be used instead of calling memory_present() manually.
4786 */
4787 void __init sparse_memory_present_with_active_regions(int nid)
4788 {
4789 unsigned long start_pfn, end_pfn;
4790 int i, this_nid;
4791
4792 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4793 memory_present(this_nid, start_pfn, end_pfn);
4794 }
4795
4796 /**
4797 * get_pfn_range_for_nid - Return the start and end page frames for a node
4798 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4799 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4800 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4801 *
4802 * It returns the start and end page frame of a node based on information
4803 * provided by memblock_set_node(). If called for a node
4804 * with no available memory, a warning is printed and the start and end
4805 * PFNs will be 0.
4806 */
4807 void __meminit get_pfn_range_for_nid(unsigned int nid,
4808 unsigned long *start_pfn, unsigned long *end_pfn)
4809 {
4810 unsigned long this_start_pfn, this_end_pfn;
4811 int i;
4812
4813 *start_pfn = -1UL;
4814 *end_pfn = 0;
4815
4816 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4817 *start_pfn = min(*start_pfn, this_start_pfn);
4818 *end_pfn = max(*end_pfn, this_end_pfn);
4819 }
4820
4821 if (*start_pfn == -1UL)
4822 *start_pfn = 0;
4823 }
4824
4825 /*
4826 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4827 * assumption is made that zones within a node are ordered in monotonic
4828 * increasing memory addresses so that the "highest" populated zone is used
4829 */
4830 static void __init find_usable_zone_for_movable(void)
4831 {
4832 int zone_index;
4833 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4834 if (zone_index == ZONE_MOVABLE)
4835 continue;
4836
4837 if (arch_zone_highest_possible_pfn[zone_index] >
4838 arch_zone_lowest_possible_pfn[zone_index])
4839 break;
4840 }
4841
4842 VM_BUG_ON(zone_index == -1);
4843 movable_zone = zone_index;
4844 }
4845
4846 /*
4847 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4848 * because it is sized independent of architecture. Unlike the other zones,
4849 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4850 * in each node depending on the size of each node and how evenly kernelcore
4851 * is distributed. This helper function adjusts the zone ranges
4852 * provided by the architecture for a given node by using the end of the
4853 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4854 * zones within a node are in order of monotonic increases memory addresses
4855 */
4856 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4857 unsigned long zone_type,
4858 unsigned long node_start_pfn,
4859 unsigned long node_end_pfn,
4860 unsigned long *zone_start_pfn,
4861 unsigned long *zone_end_pfn)
4862 {
4863 /* Only adjust if ZONE_MOVABLE is on this node */
4864 if (zone_movable_pfn[nid]) {
4865 /* Size ZONE_MOVABLE */
4866 if (zone_type == ZONE_MOVABLE) {
4867 *zone_start_pfn = zone_movable_pfn[nid];
4868 *zone_end_pfn = min(node_end_pfn,
4869 arch_zone_highest_possible_pfn[movable_zone]);
4870
4871 /* Adjust for ZONE_MOVABLE starting within this range */
4872 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4873 *zone_end_pfn > zone_movable_pfn[nid]) {
4874 *zone_end_pfn = zone_movable_pfn[nid];
4875
4876 /* Check if this whole range is within ZONE_MOVABLE */
4877 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4878 *zone_start_pfn = *zone_end_pfn;
4879 }
4880 }
4881
4882 /*
4883 * Return the number of pages a zone spans in a node, including holes
4884 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4885 */
4886 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4887 unsigned long zone_type,
4888 unsigned long node_start_pfn,
4889 unsigned long node_end_pfn,
4890 unsigned long *ignored)
4891 {
4892 unsigned long zone_start_pfn, zone_end_pfn;
4893
4894 /* When hotadd a new node from cpu_up(), the node should be empty */
4895 if (!node_start_pfn && !node_end_pfn)
4896 return 0;
4897
4898 /* Get the start and end of the zone */
4899 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4900 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4901 adjust_zone_range_for_zone_movable(nid, zone_type,
4902 node_start_pfn, node_end_pfn,
4903 &zone_start_pfn, &zone_end_pfn);
4904
4905 /* Check that this node has pages within the zone's required range */
4906 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4907 return 0;
4908
4909 /* Move the zone boundaries inside the node if necessary */
4910 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4911 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4912
4913 /* Return the spanned pages */
4914 return zone_end_pfn - zone_start_pfn;
4915 }
4916
4917 /*
4918 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4919 * then all holes in the requested range will be accounted for.
4920 */
4921 unsigned long __meminit __absent_pages_in_range(int nid,
4922 unsigned long range_start_pfn,
4923 unsigned long range_end_pfn)
4924 {
4925 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4926 unsigned long start_pfn, end_pfn;
4927 int i;
4928
4929 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4930 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4931 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4932 nr_absent -= end_pfn - start_pfn;
4933 }
4934 return nr_absent;
4935 }
4936
4937 /**
4938 * absent_pages_in_range - Return number of page frames in holes within a range
4939 * @start_pfn: The start PFN to start searching for holes
4940 * @end_pfn: The end PFN to stop searching for holes
4941 *
4942 * It returns the number of pages frames in memory holes within a range.
4943 */
4944 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4945 unsigned long end_pfn)
4946 {
4947 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4948 }
4949
4950 /* Return the number of page frames in holes in a zone on a node */
4951 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4952 unsigned long zone_type,
4953 unsigned long node_start_pfn,
4954 unsigned long node_end_pfn,
4955 unsigned long *ignored)
4956 {
4957 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4958 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4959 unsigned long zone_start_pfn, zone_end_pfn;
4960
4961 /* When hotadd a new node from cpu_up(), the node should be empty */
4962 if (!node_start_pfn && !node_end_pfn)
4963 return 0;
4964
4965 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4966 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4967
4968 adjust_zone_range_for_zone_movable(nid, zone_type,
4969 node_start_pfn, node_end_pfn,
4970 &zone_start_pfn, &zone_end_pfn);
4971 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4972 }
4973
4974 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4975 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4976 unsigned long zone_type,
4977 unsigned long node_start_pfn,
4978 unsigned long node_end_pfn,
4979 unsigned long *zones_size)
4980 {
4981 return zones_size[zone_type];
4982 }
4983
4984 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4985 unsigned long zone_type,
4986 unsigned long node_start_pfn,
4987 unsigned long node_end_pfn,
4988 unsigned long *zholes_size)
4989 {
4990 if (!zholes_size)
4991 return 0;
4992
4993 return zholes_size[zone_type];
4994 }
4995
4996 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4997
4998 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4999 unsigned long node_start_pfn,
5000 unsigned long node_end_pfn,
5001 unsigned long *zones_size,
5002 unsigned long *zholes_size)
5003 {
5004 unsigned long realtotalpages = 0, totalpages = 0;
5005 enum zone_type i;
5006
5007 for (i = 0; i < MAX_NR_ZONES; i++) {
5008 struct zone *zone = pgdat->node_zones + i;
5009 unsigned long size, real_size;
5010
5011 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5012 node_start_pfn,
5013 node_end_pfn,
5014 zones_size);
5015 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5016 node_start_pfn, node_end_pfn,
5017 zholes_size);
5018 zone->spanned_pages = size;
5019 zone->present_pages = real_size;
5020
5021 totalpages += size;
5022 realtotalpages += real_size;
5023 }
5024
5025 pgdat->node_spanned_pages = totalpages;
5026 pgdat->node_present_pages = realtotalpages;
5027 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5028 realtotalpages);
5029 }
5030
5031 #ifndef CONFIG_SPARSEMEM
5032 /*
5033 * Calculate the size of the zone->blockflags rounded to an unsigned long
5034 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5035 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5036 * round what is now in bits to nearest long in bits, then return it in
5037 * bytes.
5038 */
5039 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5040 {
5041 unsigned long usemapsize;
5042
5043 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5044 usemapsize = roundup(zonesize, pageblock_nr_pages);
5045 usemapsize = usemapsize >> pageblock_order;
5046 usemapsize *= NR_PAGEBLOCK_BITS;
5047 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5048
5049 return usemapsize / 8;
5050 }
5051
5052 static void __init setup_usemap(struct pglist_data *pgdat,
5053 struct zone *zone,
5054 unsigned long zone_start_pfn,
5055 unsigned long zonesize)
5056 {
5057 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5058 zone->pageblock_flags = NULL;
5059 if (usemapsize)
5060 zone->pageblock_flags =
5061 memblock_virt_alloc_node_nopanic(usemapsize,
5062 pgdat->node_id);
5063 }
5064 #else
5065 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5066 unsigned long zone_start_pfn, unsigned long zonesize) {}
5067 #endif /* CONFIG_SPARSEMEM */
5068
5069 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5070
5071 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5072 void __paginginit set_pageblock_order(void)
5073 {
5074 unsigned int order;
5075
5076 /* Check that pageblock_nr_pages has not already been setup */
5077 if (pageblock_order)
5078 return;
5079
5080 if (HPAGE_SHIFT > PAGE_SHIFT)
5081 order = HUGETLB_PAGE_ORDER;
5082 else
5083 order = MAX_ORDER - 1;
5084
5085 /*
5086 * Assume the largest contiguous order of interest is a huge page.
5087 * This value may be variable depending on boot parameters on IA64 and
5088 * powerpc.
5089 */
5090 pageblock_order = order;
5091 }
5092 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5093
5094 /*
5095 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5096 * is unused as pageblock_order is set at compile-time. See
5097 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5098 * the kernel config
5099 */
5100 void __paginginit set_pageblock_order(void)
5101 {
5102 }
5103
5104 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5105
5106 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5107 unsigned long present_pages)
5108 {
5109 unsigned long pages = spanned_pages;
5110
5111 /*
5112 * Provide a more accurate estimation if there are holes within
5113 * the zone and SPARSEMEM is in use. If there are holes within the
5114 * zone, each populated memory region may cost us one or two extra
5115 * memmap pages due to alignment because memmap pages for each
5116 * populated regions may not naturally algined on page boundary.
5117 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5118 */
5119 if (spanned_pages > present_pages + (present_pages >> 4) &&
5120 IS_ENABLED(CONFIG_SPARSEMEM))
5121 pages = present_pages;
5122
5123 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5124 }
5125
5126 /*
5127 * Set up the zone data structures:
5128 * - mark all pages reserved
5129 * - mark all memory queues empty
5130 * - clear the memory bitmaps
5131 *
5132 * NOTE: pgdat should get zeroed by caller.
5133 */
5134 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5135 {
5136 enum zone_type j;
5137 int nid = pgdat->node_id;
5138 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5139 int ret;
5140
5141 pgdat_resize_init(pgdat);
5142 #ifdef CONFIG_NUMA_BALANCING
5143 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5144 pgdat->numabalancing_migrate_nr_pages = 0;
5145 pgdat->numabalancing_migrate_next_window = jiffies;
5146 #endif
5147 init_waitqueue_head(&pgdat->kswapd_wait);
5148 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5149 pgdat_page_ext_init(pgdat);
5150
5151 for (j = 0; j < MAX_NR_ZONES; j++) {
5152 struct zone *zone = pgdat->node_zones + j;
5153 unsigned long size, realsize, freesize, memmap_pages;
5154
5155 size = zone->spanned_pages;
5156 realsize = freesize = zone->present_pages;
5157
5158 /*
5159 * Adjust freesize so that it accounts for how much memory
5160 * is used by this zone for memmap. This affects the watermark
5161 * and per-cpu initialisations
5162 */
5163 memmap_pages = calc_memmap_size(size, realsize);
5164 if (!is_highmem_idx(j)) {
5165 if (freesize >= memmap_pages) {
5166 freesize -= memmap_pages;
5167 if (memmap_pages)
5168 printk(KERN_DEBUG
5169 " %s zone: %lu pages used for memmap\n",
5170 zone_names[j], memmap_pages);
5171 } else
5172 printk(KERN_WARNING
5173 " %s zone: %lu pages exceeds freesize %lu\n",
5174 zone_names[j], memmap_pages, freesize);
5175 }
5176
5177 /* Account for reserved pages */
5178 if (j == 0 && freesize > dma_reserve) {
5179 freesize -= dma_reserve;
5180 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5181 zone_names[0], dma_reserve);
5182 }
5183
5184 if (!is_highmem_idx(j))
5185 nr_kernel_pages += freesize;
5186 /* Charge for highmem memmap if there are enough kernel pages */
5187 else if (nr_kernel_pages > memmap_pages * 2)
5188 nr_kernel_pages -= memmap_pages;
5189 nr_all_pages += freesize;
5190
5191 /*
5192 * Set an approximate value for lowmem here, it will be adjusted
5193 * when the bootmem allocator frees pages into the buddy system.
5194 * And all highmem pages will be managed by the buddy system.
5195 */
5196 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5197 #ifdef CONFIG_NUMA
5198 zone->node = nid;
5199 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5200 / 100;
5201 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5202 #endif
5203 zone->name = zone_names[j];
5204 spin_lock_init(&zone->lock);
5205 spin_lock_init(&zone->lru_lock);
5206 zone_seqlock_init(zone);
5207 zone->zone_pgdat = pgdat;
5208 zone_pcp_init(zone);
5209
5210 /* For bootup, initialized properly in watermark setup */
5211 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5212
5213 lruvec_init(&zone->lruvec);
5214 if (!size)
5215 continue;
5216
5217 set_pageblock_order();
5218 setup_usemap(pgdat, zone, zone_start_pfn, size);
5219 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5220 BUG_ON(ret);
5221 memmap_init(size, nid, j, zone_start_pfn);
5222 zone_start_pfn += size;
5223 }
5224 }
5225
5226 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5227 {
5228 unsigned long __maybe_unused offset = 0;
5229
5230 /* Skip empty nodes */
5231 if (!pgdat->node_spanned_pages)
5232 return;
5233
5234 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5235 /* ia64 gets its own node_mem_map, before this, without bootmem */
5236 if (!pgdat->node_mem_map) {
5237 unsigned long size, start, end;
5238 struct page *map;
5239
5240 /*
5241 * The zone's endpoints aren't required to be MAX_ORDER
5242 * aligned but the node_mem_map endpoints must be in order
5243 * for the buddy allocator to function correctly.
5244 */
5245 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5246 offset = pgdat->node_start_pfn - start;
5247 end = pgdat_end_pfn(pgdat);
5248 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5249 size = (end - start) * sizeof(struct page);
5250 map = alloc_remap(pgdat->node_id, size);
5251 if (!map)
5252 map = memblock_virt_alloc_node_nopanic(size,
5253 pgdat->node_id);
5254 pgdat->node_mem_map = map + offset;
5255 }
5256 #ifndef CONFIG_NEED_MULTIPLE_NODES
5257 /*
5258 * With no DISCONTIG, the global mem_map is just set as node 0's
5259 */
5260 if (pgdat == NODE_DATA(0)) {
5261 mem_map = NODE_DATA(0)->node_mem_map;
5262 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5263 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5264 mem_map -= offset;
5265 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5266 }
5267 #endif
5268 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5269 }
5270
5271 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5272 unsigned long node_start_pfn, unsigned long *zholes_size)
5273 {
5274 pg_data_t *pgdat = NODE_DATA(nid);
5275 unsigned long start_pfn = 0;
5276 unsigned long end_pfn = 0;
5277
5278 /* pg_data_t should be reset to zero when it's allocated */
5279 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5280
5281 reset_deferred_meminit(pgdat);
5282 pgdat->node_id = nid;
5283 pgdat->node_start_pfn = node_start_pfn;
5284 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5285 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5286 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5287 (u64)start_pfn << PAGE_SHIFT,
5288 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5289 #endif
5290 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5291 zones_size, zholes_size);
5292
5293 alloc_node_mem_map(pgdat);
5294 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5295 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5296 nid, (unsigned long)pgdat,
5297 (unsigned long)pgdat->node_mem_map);
5298 #endif
5299
5300 free_area_init_core(pgdat);
5301 }
5302
5303 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5304
5305 #if MAX_NUMNODES > 1
5306 /*
5307 * Figure out the number of possible node ids.
5308 */
5309 void __init setup_nr_node_ids(void)
5310 {
5311 unsigned int highest;
5312
5313 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5314 nr_node_ids = highest + 1;
5315 }
5316 #endif
5317
5318 /**
5319 * node_map_pfn_alignment - determine the maximum internode alignment
5320 *
5321 * This function should be called after node map is populated and sorted.
5322 * It calculates the maximum power of two alignment which can distinguish
5323 * all the nodes.
5324 *
5325 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5326 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5327 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5328 * shifted, 1GiB is enough and this function will indicate so.
5329 *
5330 * This is used to test whether pfn -> nid mapping of the chosen memory
5331 * model has fine enough granularity to avoid incorrect mapping for the
5332 * populated node map.
5333 *
5334 * Returns the determined alignment in pfn's. 0 if there is no alignment
5335 * requirement (single node).
5336 */
5337 unsigned long __init node_map_pfn_alignment(void)
5338 {
5339 unsigned long accl_mask = 0, last_end = 0;
5340 unsigned long start, end, mask;
5341 int last_nid = -1;
5342 int i, nid;
5343
5344 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5345 if (!start || last_nid < 0 || last_nid == nid) {
5346 last_nid = nid;
5347 last_end = end;
5348 continue;
5349 }
5350
5351 /*
5352 * Start with a mask granular enough to pin-point to the
5353 * start pfn and tick off bits one-by-one until it becomes
5354 * too coarse to separate the current node from the last.
5355 */
5356 mask = ~((1 << __ffs(start)) - 1);
5357 while (mask && last_end <= (start & (mask << 1)))
5358 mask <<= 1;
5359
5360 /* accumulate all internode masks */
5361 accl_mask |= mask;
5362 }
5363
5364 /* convert mask to number of pages */
5365 return ~accl_mask + 1;
5366 }
5367
5368 /* Find the lowest pfn for a node */
5369 static unsigned long __init find_min_pfn_for_node(int nid)
5370 {
5371 unsigned long min_pfn = ULONG_MAX;
5372 unsigned long start_pfn;
5373 int i;
5374
5375 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5376 min_pfn = min(min_pfn, start_pfn);
5377
5378 if (min_pfn == ULONG_MAX) {
5379 printk(KERN_WARNING
5380 "Could not find start_pfn for node %d\n", nid);
5381 return 0;
5382 }
5383
5384 return min_pfn;
5385 }
5386
5387 /**
5388 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5389 *
5390 * It returns the minimum PFN based on information provided via
5391 * memblock_set_node().
5392 */
5393 unsigned long __init find_min_pfn_with_active_regions(void)
5394 {
5395 return find_min_pfn_for_node(MAX_NUMNODES);
5396 }
5397
5398 /*
5399 * early_calculate_totalpages()
5400 * Sum pages in active regions for movable zone.
5401 * Populate N_MEMORY for calculating usable_nodes.
5402 */
5403 static unsigned long __init early_calculate_totalpages(void)
5404 {
5405 unsigned long totalpages = 0;
5406 unsigned long start_pfn, end_pfn;
5407 int i, nid;
5408
5409 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5410 unsigned long pages = end_pfn - start_pfn;
5411
5412 totalpages += pages;
5413 if (pages)
5414 node_set_state(nid, N_MEMORY);
5415 }
5416 return totalpages;
5417 }
5418
5419 /*
5420 * Find the PFN the Movable zone begins in each node. Kernel memory
5421 * is spread evenly between nodes as long as the nodes have enough
5422 * memory. When they don't, some nodes will have more kernelcore than
5423 * others
5424 */
5425 static void __init find_zone_movable_pfns_for_nodes(void)
5426 {
5427 int i, nid;
5428 unsigned long usable_startpfn;
5429 unsigned long kernelcore_node, kernelcore_remaining;
5430 /* save the state before borrow the nodemask */
5431 nodemask_t saved_node_state = node_states[N_MEMORY];
5432 unsigned long totalpages = early_calculate_totalpages();
5433 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5434 struct memblock_region *r;
5435
5436 /* Need to find movable_zone earlier when movable_node is specified. */
5437 find_usable_zone_for_movable();
5438
5439 /*
5440 * If movable_node is specified, ignore kernelcore and movablecore
5441 * options.
5442 */
5443 if (movable_node_is_enabled()) {
5444 for_each_memblock(memory, r) {
5445 if (!memblock_is_hotpluggable(r))
5446 continue;
5447
5448 nid = r->nid;
5449
5450 usable_startpfn = PFN_DOWN(r->base);
5451 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5452 min(usable_startpfn, zone_movable_pfn[nid]) :
5453 usable_startpfn;
5454 }
5455
5456 goto out2;
5457 }
5458
5459 /*
5460 * If movablecore=nn[KMG] was specified, calculate what size of
5461 * kernelcore that corresponds so that memory usable for
5462 * any allocation type is evenly spread. If both kernelcore
5463 * and movablecore are specified, then the value of kernelcore
5464 * will be used for required_kernelcore if it's greater than
5465 * what movablecore would have allowed.
5466 */
5467 if (required_movablecore) {
5468 unsigned long corepages;
5469
5470 /*
5471 * Round-up so that ZONE_MOVABLE is at least as large as what
5472 * was requested by the user
5473 */
5474 required_movablecore =
5475 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5476 required_movablecore = min(totalpages, required_movablecore);
5477 corepages = totalpages - required_movablecore;
5478
5479 required_kernelcore = max(required_kernelcore, corepages);
5480 }
5481
5482 /*
5483 * If kernelcore was not specified or kernelcore size is larger
5484 * than totalpages, there is no ZONE_MOVABLE.
5485 */
5486 if (!required_kernelcore || required_kernelcore >= totalpages)
5487 goto out;
5488
5489 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5490 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5491
5492 restart:
5493 /* Spread kernelcore memory as evenly as possible throughout nodes */
5494 kernelcore_node = required_kernelcore / usable_nodes;
5495 for_each_node_state(nid, N_MEMORY) {
5496 unsigned long start_pfn, end_pfn;
5497
5498 /*
5499 * Recalculate kernelcore_node if the division per node
5500 * now exceeds what is necessary to satisfy the requested
5501 * amount of memory for the kernel
5502 */
5503 if (required_kernelcore < kernelcore_node)
5504 kernelcore_node = required_kernelcore / usable_nodes;
5505
5506 /*
5507 * As the map is walked, we track how much memory is usable
5508 * by the kernel using kernelcore_remaining. When it is
5509 * 0, the rest of the node is usable by ZONE_MOVABLE
5510 */
5511 kernelcore_remaining = kernelcore_node;
5512
5513 /* Go through each range of PFNs within this node */
5514 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5515 unsigned long size_pages;
5516
5517 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5518 if (start_pfn >= end_pfn)
5519 continue;
5520
5521 /* Account for what is only usable for kernelcore */
5522 if (start_pfn < usable_startpfn) {
5523 unsigned long kernel_pages;
5524 kernel_pages = min(end_pfn, usable_startpfn)
5525 - start_pfn;
5526
5527 kernelcore_remaining -= min(kernel_pages,
5528 kernelcore_remaining);
5529 required_kernelcore -= min(kernel_pages,
5530 required_kernelcore);
5531
5532 /* Continue if range is now fully accounted */
5533 if (end_pfn <= usable_startpfn) {
5534
5535 /*
5536 * Push zone_movable_pfn to the end so
5537 * that if we have to rebalance
5538 * kernelcore across nodes, we will
5539 * not double account here
5540 */
5541 zone_movable_pfn[nid] = end_pfn;
5542 continue;
5543 }
5544 start_pfn = usable_startpfn;
5545 }
5546
5547 /*
5548 * The usable PFN range for ZONE_MOVABLE is from
5549 * start_pfn->end_pfn. Calculate size_pages as the
5550 * number of pages used as kernelcore
5551 */
5552 size_pages = end_pfn - start_pfn;
5553 if (size_pages > kernelcore_remaining)
5554 size_pages = kernelcore_remaining;
5555 zone_movable_pfn[nid] = start_pfn + size_pages;
5556
5557 /*
5558 * Some kernelcore has been met, update counts and
5559 * break if the kernelcore for this node has been
5560 * satisfied
5561 */
5562 required_kernelcore -= min(required_kernelcore,
5563 size_pages);
5564 kernelcore_remaining -= size_pages;
5565 if (!kernelcore_remaining)
5566 break;
5567 }
5568 }
5569
5570 /*
5571 * If there is still required_kernelcore, we do another pass with one
5572 * less node in the count. This will push zone_movable_pfn[nid] further
5573 * along on the nodes that still have memory until kernelcore is
5574 * satisfied
5575 */
5576 usable_nodes--;
5577 if (usable_nodes && required_kernelcore > usable_nodes)
5578 goto restart;
5579
5580 out2:
5581 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5582 for (nid = 0; nid < MAX_NUMNODES; nid++)
5583 zone_movable_pfn[nid] =
5584 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5585
5586 out:
5587 /* restore the node_state */
5588 node_states[N_MEMORY] = saved_node_state;
5589 }
5590
5591 /* Any regular or high memory on that node ? */
5592 static void check_for_memory(pg_data_t *pgdat, int nid)
5593 {
5594 enum zone_type zone_type;
5595
5596 if (N_MEMORY == N_NORMAL_MEMORY)
5597 return;
5598
5599 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5600 struct zone *zone = &pgdat->node_zones[zone_type];
5601 if (populated_zone(zone)) {
5602 node_set_state(nid, N_HIGH_MEMORY);
5603 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5604 zone_type <= ZONE_NORMAL)
5605 node_set_state(nid, N_NORMAL_MEMORY);
5606 break;
5607 }
5608 }
5609 }
5610
5611 /**
5612 * free_area_init_nodes - Initialise all pg_data_t and zone data
5613 * @max_zone_pfn: an array of max PFNs for each zone
5614 *
5615 * This will call free_area_init_node() for each active node in the system.
5616 * Using the page ranges provided by memblock_set_node(), the size of each
5617 * zone in each node and their holes is calculated. If the maximum PFN
5618 * between two adjacent zones match, it is assumed that the zone is empty.
5619 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5620 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5621 * starts where the previous one ended. For example, ZONE_DMA32 starts
5622 * at arch_max_dma_pfn.
5623 */
5624 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5625 {
5626 unsigned long start_pfn, end_pfn;
5627 int i, nid;
5628
5629 /* Record where the zone boundaries are */
5630 memset(arch_zone_lowest_possible_pfn, 0,
5631 sizeof(arch_zone_lowest_possible_pfn));
5632 memset(arch_zone_highest_possible_pfn, 0,
5633 sizeof(arch_zone_highest_possible_pfn));
5634 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5635 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5636 for (i = 1; i < MAX_NR_ZONES; i++) {
5637 if (i == ZONE_MOVABLE)
5638 continue;
5639 arch_zone_lowest_possible_pfn[i] =
5640 arch_zone_highest_possible_pfn[i-1];
5641 arch_zone_highest_possible_pfn[i] =
5642 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5643 }
5644 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5645 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5646
5647 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5648 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5649 find_zone_movable_pfns_for_nodes();
5650
5651 /* Print out the zone ranges */
5652 pr_info("Zone ranges:\n");
5653 for (i = 0; i < MAX_NR_ZONES; i++) {
5654 if (i == ZONE_MOVABLE)
5655 continue;
5656 pr_info(" %-8s ", zone_names[i]);
5657 if (arch_zone_lowest_possible_pfn[i] ==
5658 arch_zone_highest_possible_pfn[i])
5659 pr_cont("empty\n");
5660 else
5661 pr_cont("[mem %#018Lx-%#018Lx]\n",
5662 (u64)arch_zone_lowest_possible_pfn[i]
5663 << PAGE_SHIFT,
5664 ((u64)arch_zone_highest_possible_pfn[i]
5665 << PAGE_SHIFT) - 1);
5666 }
5667
5668 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5669 pr_info("Movable zone start for each node\n");
5670 for (i = 0; i < MAX_NUMNODES; i++) {
5671 if (zone_movable_pfn[i])
5672 pr_info(" Node %d: %#018Lx\n", i,
5673 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5674 }
5675
5676 /* Print out the early node map */
5677 pr_info("Early memory node ranges\n");
5678 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5679 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5680 (u64)start_pfn << PAGE_SHIFT,
5681 ((u64)end_pfn << PAGE_SHIFT) - 1);
5682
5683 /* Initialise every node */
5684 mminit_verify_pageflags_layout();
5685 setup_nr_node_ids();
5686 for_each_online_node(nid) {
5687 pg_data_t *pgdat = NODE_DATA(nid);
5688 free_area_init_node(nid, NULL,
5689 find_min_pfn_for_node(nid), NULL);
5690
5691 /* Any memory on that node */
5692 if (pgdat->node_present_pages)
5693 node_set_state(nid, N_MEMORY);
5694 check_for_memory(pgdat, nid);
5695 }
5696 }
5697
5698 static int __init cmdline_parse_core(char *p, unsigned long *core)
5699 {
5700 unsigned long long coremem;
5701 if (!p)
5702 return -EINVAL;
5703
5704 coremem = memparse(p, &p);
5705 *core = coremem >> PAGE_SHIFT;
5706
5707 /* Paranoid check that UL is enough for the coremem value */
5708 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5709
5710 return 0;
5711 }
5712
5713 /*
5714 * kernelcore=size sets the amount of memory for use for allocations that
5715 * cannot be reclaimed or migrated.
5716 */
5717 static int __init cmdline_parse_kernelcore(char *p)
5718 {
5719 return cmdline_parse_core(p, &required_kernelcore);
5720 }
5721
5722 /*
5723 * movablecore=size sets the amount of memory for use for allocations that
5724 * can be reclaimed or migrated.
5725 */
5726 static int __init cmdline_parse_movablecore(char *p)
5727 {
5728 return cmdline_parse_core(p, &required_movablecore);
5729 }
5730
5731 early_param("kernelcore", cmdline_parse_kernelcore);
5732 early_param("movablecore", cmdline_parse_movablecore);
5733
5734 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5735
5736 void adjust_managed_page_count(struct page *page, long count)
5737 {
5738 spin_lock(&managed_page_count_lock);
5739 page_zone(page)->managed_pages += count;
5740 totalram_pages += count;
5741 #ifdef CONFIG_HIGHMEM
5742 if (PageHighMem(page))
5743 totalhigh_pages += count;
5744 #endif
5745 spin_unlock(&managed_page_count_lock);
5746 }
5747 EXPORT_SYMBOL(adjust_managed_page_count);
5748
5749 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5750 {
5751 void *pos;
5752 unsigned long pages = 0;
5753
5754 start = (void *)PAGE_ALIGN((unsigned long)start);
5755 end = (void *)((unsigned long)end & PAGE_MASK);
5756 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5757 if ((unsigned int)poison <= 0xFF)
5758 memset(pos, poison, PAGE_SIZE);
5759 free_reserved_page(virt_to_page(pos));
5760 }
5761
5762 if (pages && s)
5763 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5764 s, pages << (PAGE_SHIFT - 10), start, end);
5765
5766 return pages;
5767 }
5768 EXPORT_SYMBOL(free_reserved_area);
5769
5770 #ifdef CONFIG_HIGHMEM
5771 void free_highmem_page(struct page *page)
5772 {
5773 __free_reserved_page(page);
5774 totalram_pages++;
5775 page_zone(page)->managed_pages++;
5776 totalhigh_pages++;
5777 }
5778 #endif
5779
5780
5781 void __init mem_init_print_info(const char *str)
5782 {
5783 unsigned long physpages, codesize, datasize, rosize, bss_size;
5784 unsigned long init_code_size, init_data_size;
5785
5786 physpages = get_num_physpages();
5787 codesize = _etext - _stext;
5788 datasize = _edata - _sdata;
5789 rosize = __end_rodata - __start_rodata;
5790 bss_size = __bss_stop - __bss_start;
5791 init_data_size = __init_end - __init_begin;
5792 init_code_size = _einittext - _sinittext;
5793
5794 /*
5795 * Detect special cases and adjust section sizes accordingly:
5796 * 1) .init.* may be embedded into .data sections
5797 * 2) .init.text.* may be out of [__init_begin, __init_end],
5798 * please refer to arch/tile/kernel/vmlinux.lds.S.
5799 * 3) .rodata.* may be embedded into .text or .data sections.
5800 */
5801 #define adj_init_size(start, end, size, pos, adj) \
5802 do { \
5803 if (start <= pos && pos < end && size > adj) \
5804 size -= adj; \
5805 } while (0)
5806
5807 adj_init_size(__init_begin, __init_end, init_data_size,
5808 _sinittext, init_code_size);
5809 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5810 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5811 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5812 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5813
5814 #undef adj_init_size
5815
5816 pr_info("Memory: %luK/%luK available "
5817 "(%luK kernel code, %luK rwdata, %luK rodata, "
5818 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5819 #ifdef CONFIG_HIGHMEM
5820 ", %luK highmem"
5821 #endif
5822 "%s%s)\n",
5823 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5824 codesize >> 10, datasize >> 10, rosize >> 10,
5825 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5826 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5827 totalcma_pages << (PAGE_SHIFT-10),
5828 #ifdef CONFIG_HIGHMEM
5829 totalhigh_pages << (PAGE_SHIFT-10),
5830 #endif
5831 str ? ", " : "", str ? str : "");
5832 }
5833
5834 /**
5835 * set_dma_reserve - set the specified number of pages reserved in the first zone
5836 * @new_dma_reserve: The number of pages to mark reserved
5837 *
5838 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5839 * In the DMA zone, a significant percentage may be consumed by kernel image
5840 * and other unfreeable allocations which can skew the watermarks badly. This
5841 * function may optionally be used to account for unfreeable pages in the
5842 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5843 * smaller per-cpu batchsize.
5844 */
5845 void __init set_dma_reserve(unsigned long new_dma_reserve)
5846 {
5847 dma_reserve = new_dma_reserve;
5848 }
5849
5850 void __init free_area_init(unsigned long *zones_size)
5851 {
5852 free_area_init_node(0, zones_size,
5853 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5854 }
5855
5856 static int page_alloc_cpu_notify(struct notifier_block *self,
5857 unsigned long action, void *hcpu)
5858 {
5859 int cpu = (unsigned long)hcpu;
5860
5861 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5862 lru_add_drain_cpu(cpu);
5863 drain_pages(cpu);
5864
5865 /*
5866 * Spill the event counters of the dead processor
5867 * into the current processors event counters.
5868 * This artificially elevates the count of the current
5869 * processor.
5870 */
5871 vm_events_fold_cpu(cpu);
5872
5873 /*
5874 * Zero the differential counters of the dead processor
5875 * so that the vm statistics are consistent.
5876 *
5877 * This is only okay since the processor is dead and cannot
5878 * race with what we are doing.
5879 */
5880 cpu_vm_stats_fold(cpu);
5881 }
5882 return NOTIFY_OK;
5883 }
5884
5885 void __init page_alloc_init(void)
5886 {
5887 hotcpu_notifier(page_alloc_cpu_notify, 0);
5888 }
5889
5890 /*
5891 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5892 * or min_free_kbytes changes.
5893 */
5894 static void calculate_totalreserve_pages(void)
5895 {
5896 struct pglist_data *pgdat;
5897 unsigned long reserve_pages = 0;
5898 enum zone_type i, j;
5899
5900 for_each_online_pgdat(pgdat) {
5901 for (i = 0; i < MAX_NR_ZONES; i++) {
5902 struct zone *zone = pgdat->node_zones + i;
5903 long max = 0;
5904
5905 /* Find valid and maximum lowmem_reserve in the zone */
5906 for (j = i; j < MAX_NR_ZONES; j++) {
5907 if (zone->lowmem_reserve[j] > max)
5908 max = zone->lowmem_reserve[j];
5909 }
5910
5911 /* we treat the high watermark as reserved pages. */
5912 max += high_wmark_pages(zone);
5913
5914 if (max > zone->managed_pages)
5915 max = zone->managed_pages;
5916 reserve_pages += max;
5917 /*
5918 * Lowmem reserves are not available to
5919 * GFP_HIGHUSER page cache allocations and
5920 * kswapd tries to balance zones to their high
5921 * watermark. As a result, neither should be
5922 * regarded as dirtyable memory, to prevent a
5923 * situation where reclaim has to clean pages
5924 * in order to balance the zones.
5925 */
5926 zone->dirty_balance_reserve = max;
5927 }
5928 }
5929 dirty_balance_reserve = reserve_pages;
5930 totalreserve_pages = reserve_pages;
5931 }
5932
5933 /*
5934 * setup_per_zone_lowmem_reserve - called whenever
5935 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5936 * has a correct pages reserved value, so an adequate number of
5937 * pages are left in the zone after a successful __alloc_pages().
5938 */
5939 static void setup_per_zone_lowmem_reserve(void)
5940 {
5941 struct pglist_data *pgdat;
5942 enum zone_type j, idx;
5943
5944 for_each_online_pgdat(pgdat) {
5945 for (j = 0; j < MAX_NR_ZONES; j++) {
5946 struct zone *zone = pgdat->node_zones + j;
5947 unsigned long managed_pages = zone->managed_pages;
5948
5949 zone->lowmem_reserve[j] = 0;
5950
5951 idx = j;
5952 while (idx) {
5953 struct zone *lower_zone;
5954
5955 idx--;
5956
5957 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5958 sysctl_lowmem_reserve_ratio[idx] = 1;
5959
5960 lower_zone = pgdat->node_zones + idx;
5961 lower_zone->lowmem_reserve[j] = managed_pages /
5962 sysctl_lowmem_reserve_ratio[idx];
5963 managed_pages += lower_zone->managed_pages;
5964 }
5965 }
5966 }
5967
5968 /* update totalreserve_pages */
5969 calculate_totalreserve_pages();
5970 }
5971
5972 static void __setup_per_zone_wmarks(void)
5973 {
5974 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5975 unsigned long lowmem_pages = 0;
5976 struct zone *zone;
5977 unsigned long flags;
5978
5979 /* Calculate total number of !ZONE_HIGHMEM pages */
5980 for_each_zone(zone) {
5981 if (!is_highmem(zone))
5982 lowmem_pages += zone->managed_pages;
5983 }
5984
5985 for_each_zone(zone) {
5986 u64 tmp;
5987
5988 spin_lock_irqsave(&zone->lock, flags);
5989 tmp = (u64)pages_min * zone->managed_pages;
5990 do_div(tmp, lowmem_pages);
5991 if (is_highmem(zone)) {
5992 /*
5993 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5994 * need highmem pages, so cap pages_min to a small
5995 * value here.
5996 *
5997 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5998 * deltas control asynch page reclaim, and so should
5999 * not be capped for highmem.
6000 */
6001 unsigned long min_pages;
6002
6003 min_pages = zone->managed_pages / 1024;
6004 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6005 zone->watermark[WMARK_MIN] = min_pages;
6006 } else {
6007 /*
6008 * If it's a lowmem zone, reserve a number of pages
6009 * proportionate to the zone's size.
6010 */
6011 zone->watermark[WMARK_MIN] = tmp;
6012 }
6013
6014 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6015 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6016
6017 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6018 high_wmark_pages(zone) - low_wmark_pages(zone) -
6019 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6020
6021 setup_zone_migrate_reserve(zone);
6022 spin_unlock_irqrestore(&zone->lock, flags);
6023 }
6024
6025 /* update totalreserve_pages */
6026 calculate_totalreserve_pages();
6027 }
6028
6029 /**
6030 * setup_per_zone_wmarks - called when min_free_kbytes changes
6031 * or when memory is hot-{added|removed}
6032 *
6033 * Ensures that the watermark[min,low,high] values for each zone are set
6034 * correctly with respect to min_free_kbytes.
6035 */
6036 void setup_per_zone_wmarks(void)
6037 {
6038 mutex_lock(&zonelists_mutex);
6039 __setup_per_zone_wmarks();
6040 mutex_unlock(&zonelists_mutex);
6041 }
6042
6043 /*
6044 * The inactive anon list should be small enough that the VM never has to
6045 * do too much work, but large enough that each inactive page has a chance
6046 * to be referenced again before it is swapped out.
6047 *
6048 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6049 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6050 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6051 * the anonymous pages are kept on the inactive list.
6052 *
6053 * total target max
6054 * memory ratio inactive anon
6055 * -------------------------------------
6056 * 10MB 1 5MB
6057 * 100MB 1 50MB
6058 * 1GB 3 250MB
6059 * 10GB 10 0.9GB
6060 * 100GB 31 3GB
6061 * 1TB 101 10GB
6062 * 10TB 320 32GB
6063 */
6064 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6065 {
6066 unsigned int gb, ratio;
6067
6068 /* Zone size in gigabytes */
6069 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6070 if (gb)
6071 ratio = int_sqrt(10 * gb);
6072 else
6073 ratio = 1;
6074
6075 zone->inactive_ratio = ratio;
6076 }
6077
6078 static void __meminit setup_per_zone_inactive_ratio(void)
6079 {
6080 struct zone *zone;
6081
6082 for_each_zone(zone)
6083 calculate_zone_inactive_ratio(zone);
6084 }
6085
6086 /*
6087 * Initialise min_free_kbytes.
6088 *
6089 * For small machines we want it small (128k min). For large machines
6090 * we want it large (64MB max). But it is not linear, because network
6091 * bandwidth does not increase linearly with machine size. We use
6092 *
6093 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6094 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6095 *
6096 * which yields
6097 *
6098 * 16MB: 512k
6099 * 32MB: 724k
6100 * 64MB: 1024k
6101 * 128MB: 1448k
6102 * 256MB: 2048k
6103 * 512MB: 2896k
6104 * 1024MB: 4096k
6105 * 2048MB: 5792k
6106 * 4096MB: 8192k
6107 * 8192MB: 11584k
6108 * 16384MB: 16384k
6109 */
6110 int __meminit init_per_zone_wmark_min(void)
6111 {
6112 unsigned long lowmem_kbytes;
6113 int new_min_free_kbytes;
6114
6115 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6116 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6117
6118 if (new_min_free_kbytes > user_min_free_kbytes) {
6119 min_free_kbytes = new_min_free_kbytes;
6120 if (min_free_kbytes < 128)
6121 min_free_kbytes = 128;
6122 if (min_free_kbytes > 65536)
6123 min_free_kbytes = 65536;
6124 } else {
6125 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6126 new_min_free_kbytes, user_min_free_kbytes);
6127 }
6128 setup_per_zone_wmarks();
6129 refresh_zone_stat_thresholds();
6130 setup_per_zone_lowmem_reserve();
6131 setup_per_zone_inactive_ratio();
6132 return 0;
6133 }
6134 module_init(init_per_zone_wmark_min)
6135
6136 /*
6137 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6138 * that we can call two helper functions whenever min_free_kbytes
6139 * changes.
6140 */
6141 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6142 void __user *buffer, size_t *length, loff_t *ppos)
6143 {
6144 int rc;
6145
6146 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6147 if (rc)
6148 return rc;
6149
6150 if (write) {
6151 user_min_free_kbytes = min_free_kbytes;
6152 setup_per_zone_wmarks();
6153 }
6154 return 0;
6155 }
6156
6157 #ifdef CONFIG_NUMA
6158 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6159 void __user *buffer, size_t *length, loff_t *ppos)
6160 {
6161 struct zone *zone;
6162 int rc;
6163
6164 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6165 if (rc)
6166 return rc;
6167
6168 for_each_zone(zone)
6169 zone->min_unmapped_pages = (zone->managed_pages *
6170 sysctl_min_unmapped_ratio) / 100;
6171 return 0;
6172 }
6173
6174 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6175 void __user *buffer, size_t *length, loff_t *ppos)
6176 {
6177 struct zone *zone;
6178 int rc;
6179
6180 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6181 if (rc)
6182 return rc;
6183
6184 for_each_zone(zone)
6185 zone->min_slab_pages = (zone->managed_pages *
6186 sysctl_min_slab_ratio) / 100;
6187 return 0;
6188 }
6189 #endif
6190
6191 /*
6192 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6193 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6194 * whenever sysctl_lowmem_reserve_ratio changes.
6195 *
6196 * The reserve ratio obviously has absolutely no relation with the
6197 * minimum watermarks. The lowmem reserve ratio can only make sense
6198 * if in function of the boot time zone sizes.
6199 */
6200 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6201 void __user *buffer, size_t *length, loff_t *ppos)
6202 {
6203 proc_dointvec_minmax(table, write, buffer, length, ppos);
6204 setup_per_zone_lowmem_reserve();
6205 return 0;
6206 }
6207
6208 /*
6209 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6210 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6211 * pagelist can have before it gets flushed back to buddy allocator.
6212 */
6213 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6214 void __user *buffer, size_t *length, loff_t *ppos)
6215 {
6216 struct zone *zone;
6217 int old_percpu_pagelist_fraction;
6218 int ret;
6219
6220 mutex_lock(&pcp_batch_high_lock);
6221 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6222
6223 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6224 if (!write || ret < 0)
6225 goto out;
6226
6227 /* Sanity checking to avoid pcp imbalance */
6228 if (percpu_pagelist_fraction &&
6229 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6230 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6231 ret = -EINVAL;
6232 goto out;
6233 }
6234
6235 /* No change? */
6236 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6237 goto out;
6238
6239 for_each_populated_zone(zone) {
6240 unsigned int cpu;
6241
6242 for_each_possible_cpu(cpu)
6243 pageset_set_high_and_batch(zone,
6244 per_cpu_ptr(zone->pageset, cpu));
6245 }
6246 out:
6247 mutex_unlock(&pcp_batch_high_lock);
6248 return ret;
6249 }
6250
6251 #ifdef CONFIG_NUMA
6252 int hashdist = HASHDIST_DEFAULT;
6253
6254 static int __init set_hashdist(char *str)
6255 {
6256 if (!str)
6257 return 0;
6258 hashdist = simple_strtoul(str, &str, 0);
6259 return 1;
6260 }
6261 __setup("hashdist=", set_hashdist);
6262 #endif
6263
6264 /*
6265 * allocate a large system hash table from bootmem
6266 * - it is assumed that the hash table must contain an exact power-of-2
6267 * quantity of entries
6268 * - limit is the number of hash buckets, not the total allocation size
6269 */
6270 void *__init alloc_large_system_hash(const char *tablename,
6271 unsigned long bucketsize,
6272 unsigned long numentries,
6273 int scale,
6274 int flags,
6275 unsigned int *_hash_shift,
6276 unsigned int *_hash_mask,
6277 unsigned long low_limit,
6278 unsigned long high_limit)
6279 {
6280 unsigned long long max = high_limit;
6281 unsigned long log2qty, size;
6282 void *table = NULL;
6283
6284 /* allow the kernel cmdline to have a say */
6285 if (!numentries) {
6286 /* round applicable memory size up to nearest megabyte */
6287 numentries = nr_kernel_pages;
6288
6289 /* It isn't necessary when PAGE_SIZE >= 1MB */
6290 if (PAGE_SHIFT < 20)
6291 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6292
6293 /* limit to 1 bucket per 2^scale bytes of low memory */
6294 if (scale > PAGE_SHIFT)
6295 numentries >>= (scale - PAGE_SHIFT);
6296 else
6297 numentries <<= (PAGE_SHIFT - scale);
6298
6299 /* Make sure we've got at least a 0-order allocation.. */
6300 if (unlikely(flags & HASH_SMALL)) {
6301 /* Makes no sense without HASH_EARLY */
6302 WARN_ON(!(flags & HASH_EARLY));
6303 if (!(numentries >> *_hash_shift)) {
6304 numentries = 1UL << *_hash_shift;
6305 BUG_ON(!numentries);
6306 }
6307 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6308 numentries = PAGE_SIZE / bucketsize;
6309 }
6310 numentries = roundup_pow_of_two(numentries);
6311
6312 /* limit allocation size to 1/16 total memory by default */
6313 if (max == 0) {
6314 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6315 do_div(max, bucketsize);
6316 }
6317 max = min(max, 0x80000000ULL);
6318
6319 if (numentries < low_limit)
6320 numentries = low_limit;
6321 if (numentries > max)
6322 numentries = max;
6323
6324 log2qty = ilog2(numentries);
6325
6326 do {
6327 size = bucketsize << log2qty;
6328 if (flags & HASH_EARLY)
6329 table = memblock_virt_alloc_nopanic(size, 0);
6330 else if (hashdist)
6331 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6332 else {
6333 /*
6334 * If bucketsize is not a power-of-two, we may free
6335 * some pages at the end of hash table which
6336 * alloc_pages_exact() automatically does
6337 */
6338 if (get_order(size) < MAX_ORDER) {
6339 table = alloc_pages_exact(size, GFP_ATOMIC);
6340 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6341 }
6342 }
6343 } while (!table && size > PAGE_SIZE && --log2qty);
6344
6345 if (!table)
6346 panic("Failed to allocate %s hash table\n", tablename);
6347
6348 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6349 tablename,
6350 (1UL << log2qty),
6351 ilog2(size) - PAGE_SHIFT,
6352 size);
6353
6354 if (_hash_shift)
6355 *_hash_shift = log2qty;
6356 if (_hash_mask)
6357 *_hash_mask = (1 << log2qty) - 1;
6358
6359 return table;
6360 }
6361
6362 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6363 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6364 unsigned long pfn)
6365 {
6366 #ifdef CONFIG_SPARSEMEM
6367 return __pfn_to_section(pfn)->pageblock_flags;
6368 #else
6369 return zone->pageblock_flags;
6370 #endif /* CONFIG_SPARSEMEM */
6371 }
6372
6373 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6374 {
6375 #ifdef CONFIG_SPARSEMEM
6376 pfn &= (PAGES_PER_SECTION-1);
6377 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6378 #else
6379 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6380 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6381 #endif /* CONFIG_SPARSEMEM */
6382 }
6383
6384 /**
6385 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6386 * @page: The page within the block of interest
6387 * @pfn: The target page frame number
6388 * @end_bitidx: The last bit of interest to retrieve
6389 * @mask: mask of bits that the caller is interested in
6390 *
6391 * Return: pageblock_bits flags
6392 */
6393 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6394 unsigned long end_bitidx,
6395 unsigned long mask)
6396 {
6397 struct zone *zone;
6398 unsigned long *bitmap;
6399 unsigned long bitidx, word_bitidx;
6400 unsigned long word;
6401
6402 zone = page_zone(page);
6403 bitmap = get_pageblock_bitmap(zone, pfn);
6404 bitidx = pfn_to_bitidx(zone, pfn);
6405 word_bitidx = bitidx / BITS_PER_LONG;
6406 bitidx &= (BITS_PER_LONG-1);
6407
6408 word = bitmap[word_bitidx];
6409 bitidx += end_bitidx;
6410 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6411 }
6412
6413 /**
6414 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6415 * @page: The page within the block of interest
6416 * @flags: The flags to set
6417 * @pfn: The target page frame number
6418 * @end_bitidx: The last bit of interest
6419 * @mask: mask of bits that the caller is interested in
6420 */
6421 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6422 unsigned long pfn,
6423 unsigned long end_bitidx,
6424 unsigned long mask)
6425 {
6426 struct zone *zone;
6427 unsigned long *bitmap;
6428 unsigned long bitidx, word_bitidx;
6429 unsigned long old_word, word;
6430
6431 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6432
6433 zone = page_zone(page);
6434 bitmap = get_pageblock_bitmap(zone, pfn);
6435 bitidx = pfn_to_bitidx(zone, pfn);
6436 word_bitidx = bitidx / BITS_PER_LONG;
6437 bitidx &= (BITS_PER_LONG-1);
6438
6439 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6440
6441 bitidx += end_bitidx;
6442 mask <<= (BITS_PER_LONG - bitidx - 1);
6443 flags <<= (BITS_PER_LONG - bitidx - 1);
6444
6445 word = READ_ONCE(bitmap[word_bitidx]);
6446 for (;;) {
6447 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6448 if (word == old_word)
6449 break;
6450 word = old_word;
6451 }
6452 }
6453
6454 /*
6455 * This function checks whether pageblock includes unmovable pages or not.
6456 * If @count is not zero, it is okay to include less @count unmovable pages
6457 *
6458 * PageLRU check without isolation or lru_lock could race so that
6459 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6460 * expect this function should be exact.
6461 */
6462 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6463 bool skip_hwpoisoned_pages)
6464 {
6465 unsigned long pfn, iter, found;
6466 int mt;
6467
6468 /*
6469 * For avoiding noise data, lru_add_drain_all() should be called
6470 * If ZONE_MOVABLE, the zone never contains unmovable pages
6471 */
6472 if (zone_idx(zone) == ZONE_MOVABLE)
6473 return false;
6474 mt = get_pageblock_migratetype(page);
6475 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6476 return false;
6477
6478 pfn = page_to_pfn(page);
6479 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6480 unsigned long check = pfn + iter;
6481
6482 if (!pfn_valid_within(check))
6483 continue;
6484
6485 page = pfn_to_page(check);
6486
6487 /*
6488 * Hugepages are not in LRU lists, but they're movable.
6489 * We need not scan over tail pages bacause we don't
6490 * handle each tail page individually in migration.
6491 */
6492 if (PageHuge(page)) {
6493 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6494 continue;
6495 }
6496
6497 /*
6498 * We can't use page_count without pin a page
6499 * because another CPU can free compound page.
6500 * This check already skips compound tails of THP
6501 * because their page->_count is zero at all time.
6502 */
6503 if (!atomic_read(&page->_count)) {
6504 if (PageBuddy(page))
6505 iter += (1 << page_order(page)) - 1;
6506 continue;
6507 }
6508
6509 /*
6510 * The HWPoisoned page may be not in buddy system, and
6511 * page_count() is not 0.
6512 */
6513 if (skip_hwpoisoned_pages && PageHWPoison(page))
6514 continue;
6515
6516 if (!PageLRU(page))
6517 found++;
6518 /*
6519 * If there are RECLAIMABLE pages, we need to check
6520 * it. But now, memory offline itself doesn't call
6521 * shrink_node_slabs() and it still to be fixed.
6522 */
6523 /*
6524 * If the page is not RAM, page_count()should be 0.
6525 * we don't need more check. This is an _used_ not-movable page.
6526 *
6527 * The problematic thing here is PG_reserved pages. PG_reserved
6528 * is set to both of a memory hole page and a _used_ kernel
6529 * page at boot.
6530 */
6531 if (found > count)
6532 return true;
6533 }
6534 return false;
6535 }
6536
6537 bool is_pageblock_removable_nolock(struct page *page)
6538 {
6539 struct zone *zone;
6540 unsigned long pfn;
6541
6542 /*
6543 * We have to be careful here because we are iterating over memory
6544 * sections which are not zone aware so we might end up outside of
6545 * the zone but still within the section.
6546 * We have to take care about the node as well. If the node is offline
6547 * its NODE_DATA will be NULL - see page_zone.
6548 */
6549 if (!node_online(page_to_nid(page)))
6550 return false;
6551
6552 zone = page_zone(page);
6553 pfn = page_to_pfn(page);
6554 if (!zone_spans_pfn(zone, pfn))
6555 return false;
6556
6557 return !has_unmovable_pages(zone, page, 0, true);
6558 }
6559
6560 #ifdef CONFIG_CMA
6561
6562 static unsigned long pfn_max_align_down(unsigned long pfn)
6563 {
6564 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6565 pageblock_nr_pages) - 1);
6566 }
6567
6568 static unsigned long pfn_max_align_up(unsigned long pfn)
6569 {
6570 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6571 pageblock_nr_pages));
6572 }
6573
6574 /* [start, end) must belong to a single zone. */
6575 static int __alloc_contig_migrate_range(struct compact_control *cc,
6576 unsigned long start, unsigned long end)
6577 {
6578 /* This function is based on compact_zone() from compaction.c. */
6579 unsigned long nr_reclaimed;
6580 unsigned long pfn = start;
6581 unsigned int tries = 0;
6582 int ret = 0;
6583
6584 migrate_prep();
6585
6586 while (pfn < end || !list_empty(&cc->migratepages)) {
6587 if (fatal_signal_pending(current)) {
6588 ret = -EINTR;
6589 break;
6590 }
6591
6592 if (list_empty(&cc->migratepages)) {
6593 cc->nr_migratepages = 0;
6594 pfn = isolate_migratepages_range(cc, pfn, end);
6595 if (!pfn) {
6596 ret = -EINTR;
6597 break;
6598 }
6599 tries = 0;
6600 } else if (++tries == 5) {
6601 ret = ret < 0 ? ret : -EBUSY;
6602 break;
6603 }
6604
6605 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6606 &cc->migratepages);
6607 cc->nr_migratepages -= nr_reclaimed;
6608
6609 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6610 NULL, 0, cc->mode, MR_CMA);
6611 }
6612 if (ret < 0) {
6613 putback_movable_pages(&cc->migratepages);
6614 return ret;
6615 }
6616 return 0;
6617 }
6618
6619 /**
6620 * alloc_contig_range() -- tries to allocate given range of pages
6621 * @start: start PFN to allocate
6622 * @end: one-past-the-last PFN to allocate
6623 * @migratetype: migratetype of the underlaying pageblocks (either
6624 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6625 * in range must have the same migratetype and it must
6626 * be either of the two.
6627 *
6628 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6629 * aligned, however it's the caller's responsibility to guarantee that
6630 * we are the only thread that changes migrate type of pageblocks the
6631 * pages fall in.
6632 *
6633 * The PFN range must belong to a single zone.
6634 *
6635 * Returns zero on success or negative error code. On success all
6636 * pages which PFN is in [start, end) are allocated for the caller and
6637 * need to be freed with free_contig_range().
6638 */
6639 int alloc_contig_range(unsigned long start, unsigned long end,
6640 unsigned migratetype)
6641 {
6642 unsigned long outer_start, outer_end;
6643 int ret = 0, order;
6644
6645 struct compact_control cc = {
6646 .nr_migratepages = 0,
6647 .order = -1,
6648 .zone = page_zone(pfn_to_page(start)),
6649 .mode = MIGRATE_SYNC,
6650 .ignore_skip_hint = true,
6651 };
6652 INIT_LIST_HEAD(&cc.migratepages);
6653
6654 /*
6655 * What we do here is we mark all pageblocks in range as
6656 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6657 * have different sizes, and due to the way page allocator
6658 * work, we align the range to biggest of the two pages so
6659 * that page allocator won't try to merge buddies from
6660 * different pageblocks and change MIGRATE_ISOLATE to some
6661 * other migration type.
6662 *
6663 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6664 * migrate the pages from an unaligned range (ie. pages that
6665 * we are interested in). This will put all the pages in
6666 * range back to page allocator as MIGRATE_ISOLATE.
6667 *
6668 * When this is done, we take the pages in range from page
6669 * allocator removing them from the buddy system. This way
6670 * page allocator will never consider using them.
6671 *
6672 * This lets us mark the pageblocks back as
6673 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6674 * aligned range but not in the unaligned, original range are
6675 * put back to page allocator so that buddy can use them.
6676 */
6677
6678 ret = start_isolate_page_range(pfn_max_align_down(start),
6679 pfn_max_align_up(end), migratetype,
6680 false);
6681 if (ret)
6682 return ret;
6683
6684 ret = __alloc_contig_migrate_range(&cc, start, end);
6685 if (ret)
6686 goto done;
6687
6688 /*
6689 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6690 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6691 * more, all pages in [start, end) are free in page allocator.
6692 * What we are going to do is to allocate all pages from
6693 * [start, end) (that is remove them from page allocator).
6694 *
6695 * The only problem is that pages at the beginning and at the
6696 * end of interesting range may be not aligned with pages that
6697 * page allocator holds, ie. they can be part of higher order
6698 * pages. Because of this, we reserve the bigger range and
6699 * once this is done free the pages we are not interested in.
6700 *
6701 * We don't have to hold zone->lock here because the pages are
6702 * isolated thus they won't get removed from buddy.
6703 */
6704
6705 lru_add_drain_all();
6706 drain_all_pages(cc.zone);
6707
6708 order = 0;
6709 outer_start = start;
6710 while (!PageBuddy(pfn_to_page(outer_start))) {
6711 if (++order >= MAX_ORDER) {
6712 ret = -EBUSY;
6713 goto done;
6714 }
6715 outer_start &= ~0UL << order;
6716 }
6717
6718 /* Make sure the range is really isolated. */
6719 if (test_pages_isolated(outer_start, end, false)) {
6720 pr_info("%s: [%lx, %lx) PFNs busy\n",
6721 __func__, outer_start, end);
6722 ret = -EBUSY;
6723 goto done;
6724 }
6725
6726 /* Grab isolated pages from freelists. */
6727 outer_end = isolate_freepages_range(&cc, outer_start, end);
6728 if (!outer_end) {
6729 ret = -EBUSY;
6730 goto done;
6731 }
6732
6733 /* Free head and tail (if any) */
6734 if (start != outer_start)
6735 free_contig_range(outer_start, start - outer_start);
6736 if (end != outer_end)
6737 free_contig_range(end, outer_end - end);
6738
6739 done:
6740 undo_isolate_page_range(pfn_max_align_down(start),
6741 pfn_max_align_up(end), migratetype);
6742 return ret;
6743 }
6744
6745 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6746 {
6747 unsigned int count = 0;
6748
6749 for (; nr_pages--; pfn++) {
6750 struct page *page = pfn_to_page(pfn);
6751
6752 count += page_count(page) != 1;
6753 __free_page(page);
6754 }
6755 WARN(count != 0, "%d pages are still in use!\n", count);
6756 }
6757 #endif
6758
6759 #ifdef CONFIG_MEMORY_HOTPLUG
6760 /*
6761 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6762 * page high values need to be recalulated.
6763 */
6764 void __meminit zone_pcp_update(struct zone *zone)
6765 {
6766 unsigned cpu;
6767 mutex_lock(&pcp_batch_high_lock);
6768 for_each_possible_cpu(cpu)
6769 pageset_set_high_and_batch(zone,
6770 per_cpu_ptr(zone->pageset, cpu));
6771 mutex_unlock(&pcp_batch_high_lock);
6772 }
6773 #endif
6774
6775 void zone_pcp_reset(struct zone *zone)
6776 {
6777 unsigned long flags;
6778 int cpu;
6779 struct per_cpu_pageset *pset;
6780
6781 /* avoid races with drain_pages() */
6782 local_irq_save(flags);
6783 if (zone->pageset != &boot_pageset) {
6784 for_each_online_cpu(cpu) {
6785 pset = per_cpu_ptr(zone->pageset, cpu);
6786 drain_zonestat(zone, pset);
6787 }
6788 free_percpu(zone->pageset);
6789 zone->pageset = &boot_pageset;
6790 }
6791 local_irq_restore(flags);
6792 }
6793
6794 #ifdef CONFIG_MEMORY_HOTREMOVE
6795 /*
6796 * All pages in the range must be isolated before calling this.
6797 */
6798 void
6799 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6800 {
6801 struct page *page;
6802 struct zone *zone;
6803 unsigned int order, i;
6804 unsigned long pfn;
6805 unsigned long flags;
6806 /* find the first valid pfn */
6807 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6808 if (pfn_valid(pfn))
6809 break;
6810 if (pfn == end_pfn)
6811 return;
6812 zone = page_zone(pfn_to_page(pfn));
6813 spin_lock_irqsave(&zone->lock, flags);
6814 pfn = start_pfn;
6815 while (pfn < end_pfn) {
6816 if (!pfn_valid(pfn)) {
6817 pfn++;
6818 continue;
6819 }
6820 page = pfn_to_page(pfn);
6821 /*
6822 * The HWPoisoned page may be not in buddy system, and
6823 * page_count() is not 0.
6824 */
6825 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6826 pfn++;
6827 SetPageReserved(page);
6828 continue;
6829 }
6830
6831 BUG_ON(page_count(page));
6832 BUG_ON(!PageBuddy(page));
6833 order = page_order(page);
6834 #ifdef CONFIG_DEBUG_VM
6835 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6836 pfn, 1 << order, end_pfn);
6837 #endif
6838 list_del(&page->lru);
6839 rmv_page_order(page);
6840 zone->free_area[order].nr_free--;
6841 for (i = 0; i < (1 << order); i++)
6842 SetPageReserved((page+i));
6843 pfn += (1 << order);
6844 }
6845 spin_unlock_irqrestore(&zone->lock, flags);
6846 }
6847 #endif
6848
6849 #ifdef CONFIG_MEMORY_FAILURE
6850 bool is_free_buddy_page(struct page *page)
6851 {
6852 struct zone *zone = page_zone(page);
6853 unsigned long pfn = page_to_pfn(page);
6854 unsigned long flags;
6855 unsigned int order;
6856
6857 spin_lock_irqsave(&zone->lock, flags);
6858 for (order = 0; order < MAX_ORDER; order++) {
6859 struct page *page_head = page - (pfn & ((1 << order) - 1));
6860
6861 if (PageBuddy(page_head) && page_order(page_head) >= order)
6862 break;
6863 }
6864 spin_unlock_irqrestore(&zone->lock, flags);
6865
6866 return order < MAX_ORDER;
6867 }
6868 #endif
This page took 0.167113 seconds and 6 git commands to generate.