mm/page_alloc.c: fix the value of fallback_migratetype in alloc_extfrag tracepoint()
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 #endif
87
88 /*
89 * Array of node states.
90 */
91 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
92 [N_POSSIBLE] = NODE_MASK_ALL,
93 [N_ONLINE] = { { [0] = 1UL } },
94 #ifndef CONFIG_NUMA
95 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
96 #ifdef CONFIG_HIGHMEM
97 [N_HIGH_MEMORY] = { { [0] = 1UL } },
98 #endif
99 #ifdef CONFIG_MOVABLE_NODE
100 [N_MEMORY] = { { [0] = 1UL } },
101 #endif
102 [N_CPU] = { { [0] = 1UL } },
103 #endif /* NUMA */
104 };
105 EXPORT_SYMBOL(node_states);
106
107 /* Protect totalram_pages and zone->managed_pages */
108 static DEFINE_SPINLOCK(managed_page_count_lock);
109
110 unsigned long totalram_pages __read_mostly;
111 unsigned long totalreserve_pages __read_mostly;
112 /*
113 * When calculating the number of globally allowed dirty pages, there
114 * is a certain number of per-zone reserves that should not be
115 * considered dirtyable memory. This is the sum of those reserves
116 * over all existing zones that contribute dirtyable memory.
117 */
118 unsigned long dirty_balance_reserve __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 #ifdef CONFIG_PM_SLEEP
124 /*
125 * The following functions are used by the suspend/hibernate code to temporarily
126 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
127 * while devices are suspended. To avoid races with the suspend/hibernate code,
128 * they should always be called with pm_mutex held (gfp_allowed_mask also should
129 * only be modified with pm_mutex held, unless the suspend/hibernate code is
130 * guaranteed not to run in parallel with that modification).
131 */
132
133 static gfp_t saved_gfp_mask;
134
135 void pm_restore_gfp_mask(void)
136 {
137 WARN_ON(!mutex_is_locked(&pm_mutex));
138 if (saved_gfp_mask) {
139 gfp_allowed_mask = saved_gfp_mask;
140 saved_gfp_mask = 0;
141 }
142 }
143
144 void pm_restrict_gfp_mask(void)
145 {
146 WARN_ON(!mutex_is_locked(&pm_mutex));
147 WARN_ON(saved_gfp_mask);
148 saved_gfp_mask = gfp_allowed_mask;
149 gfp_allowed_mask &= ~GFP_IOFS;
150 }
151
152 bool pm_suspended_storage(void)
153 {
154 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
155 return false;
156 return true;
157 }
158 #endif /* CONFIG_PM_SLEEP */
159
160 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
161 int pageblock_order __read_mostly;
162 #endif
163
164 static void __free_pages_ok(struct page *page, unsigned int order);
165
166 /*
167 * results with 256, 32 in the lowmem_reserve sysctl:
168 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
169 * 1G machine -> (16M dma, 784M normal, 224M high)
170 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
171 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
172 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
173 *
174 * TBD: should special case ZONE_DMA32 machines here - in those we normally
175 * don't need any ZONE_NORMAL reservation
176 */
177 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
178 #ifdef CONFIG_ZONE_DMA
179 256,
180 #endif
181 #ifdef CONFIG_ZONE_DMA32
182 256,
183 #endif
184 #ifdef CONFIG_HIGHMEM
185 32,
186 #endif
187 32,
188 };
189
190 EXPORT_SYMBOL(totalram_pages);
191
192 static char * const zone_names[MAX_NR_ZONES] = {
193 #ifdef CONFIG_ZONE_DMA
194 "DMA",
195 #endif
196 #ifdef CONFIG_ZONE_DMA32
197 "DMA32",
198 #endif
199 "Normal",
200 #ifdef CONFIG_HIGHMEM
201 "HighMem",
202 #endif
203 "Movable",
204 };
205
206 int min_free_kbytes = 1024;
207 int user_min_free_kbytes;
208
209 static unsigned long __meminitdata nr_kernel_pages;
210 static unsigned long __meminitdata nr_all_pages;
211 static unsigned long __meminitdata dma_reserve;
212
213 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
214 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
215 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __initdata required_kernelcore;
217 static unsigned long __initdata required_movablecore;
218 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
219
220 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
221 int movable_zone;
222 EXPORT_SYMBOL(movable_zone);
223 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
224
225 #if MAX_NUMNODES > 1
226 int nr_node_ids __read_mostly = MAX_NUMNODES;
227 int nr_online_nodes __read_mostly = 1;
228 EXPORT_SYMBOL(nr_node_ids);
229 EXPORT_SYMBOL(nr_online_nodes);
230 #endif
231
232 int page_group_by_mobility_disabled __read_mostly;
233
234 void set_pageblock_migratetype(struct page *page, int migratetype)
235 {
236
237 if (unlikely(page_group_by_mobility_disabled))
238 migratetype = MIGRATE_UNMOVABLE;
239
240 set_pageblock_flags_group(page, (unsigned long)migratetype,
241 PB_migrate, PB_migrate_end);
242 }
243
244 bool oom_killer_disabled __read_mostly;
245
246 #ifdef CONFIG_DEBUG_VM
247 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
248 {
249 int ret = 0;
250 unsigned seq;
251 unsigned long pfn = page_to_pfn(page);
252 unsigned long sp, start_pfn;
253
254 do {
255 seq = zone_span_seqbegin(zone);
256 start_pfn = zone->zone_start_pfn;
257 sp = zone->spanned_pages;
258 if (!zone_spans_pfn(zone, pfn))
259 ret = 1;
260 } while (zone_span_seqretry(zone, seq));
261
262 if (ret)
263 pr_err("page %lu outside zone [ %lu - %lu ]\n",
264 pfn, start_pfn, start_pfn + sp);
265
266 return ret;
267 }
268
269 static int page_is_consistent(struct zone *zone, struct page *page)
270 {
271 if (!pfn_valid_within(page_to_pfn(page)))
272 return 0;
273 if (zone != page_zone(page))
274 return 0;
275
276 return 1;
277 }
278 /*
279 * Temporary debugging check for pages not lying within a given zone.
280 */
281 static int bad_range(struct zone *zone, struct page *page)
282 {
283 if (page_outside_zone_boundaries(zone, page))
284 return 1;
285 if (!page_is_consistent(zone, page))
286 return 1;
287
288 return 0;
289 }
290 #else
291 static inline int bad_range(struct zone *zone, struct page *page)
292 {
293 return 0;
294 }
295 #endif
296
297 static void bad_page(struct page *page)
298 {
299 static unsigned long resume;
300 static unsigned long nr_shown;
301 static unsigned long nr_unshown;
302
303 /* Don't complain about poisoned pages */
304 if (PageHWPoison(page)) {
305 page_mapcount_reset(page); /* remove PageBuddy */
306 return;
307 }
308
309 /*
310 * Allow a burst of 60 reports, then keep quiet for that minute;
311 * or allow a steady drip of one report per second.
312 */
313 if (nr_shown == 60) {
314 if (time_before(jiffies, resume)) {
315 nr_unshown++;
316 goto out;
317 }
318 if (nr_unshown) {
319 printk(KERN_ALERT
320 "BUG: Bad page state: %lu messages suppressed\n",
321 nr_unshown);
322 nr_unshown = 0;
323 }
324 nr_shown = 0;
325 }
326 if (nr_shown++ == 0)
327 resume = jiffies + 60 * HZ;
328
329 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
330 current->comm, page_to_pfn(page));
331 dump_page(page);
332
333 print_modules();
334 dump_stack();
335 out:
336 /* Leave bad fields for debug, except PageBuddy could make trouble */
337 page_mapcount_reset(page); /* remove PageBuddy */
338 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
339 }
340
341 /*
342 * Higher-order pages are called "compound pages". They are structured thusly:
343 *
344 * The first PAGE_SIZE page is called the "head page".
345 *
346 * The remaining PAGE_SIZE pages are called "tail pages".
347 *
348 * All pages have PG_compound set. All tail pages have their ->first_page
349 * pointing at the head page.
350 *
351 * The first tail page's ->lru.next holds the address of the compound page's
352 * put_page() function. Its ->lru.prev holds the order of allocation.
353 * This usage means that zero-order pages may not be compound.
354 */
355
356 static void free_compound_page(struct page *page)
357 {
358 __free_pages_ok(page, compound_order(page));
359 }
360
361 void prep_compound_page(struct page *page, unsigned long order)
362 {
363 int i;
364 int nr_pages = 1 << order;
365
366 set_compound_page_dtor(page, free_compound_page);
367 set_compound_order(page, order);
368 __SetPageHead(page);
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
371 __SetPageTail(p);
372 set_page_count(p, 0);
373 p->first_page = page;
374 }
375 }
376
377 /* update __split_huge_page_refcount if you change this function */
378 static int destroy_compound_page(struct page *page, unsigned long order)
379 {
380 int i;
381 int nr_pages = 1 << order;
382 int bad = 0;
383
384 if (unlikely(compound_order(page) != order)) {
385 bad_page(page);
386 bad++;
387 }
388
389 __ClearPageHead(page);
390
391 for (i = 1; i < nr_pages; i++) {
392 struct page *p = page + i;
393
394 if (unlikely(!PageTail(p) || (p->first_page != page))) {
395 bad_page(page);
396 bad++;
397 }
398 __ClearPageTail(p);
399 }
400
401 return bad;
402 }
403
404 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
405 {
406 int i;
407
408 /*
409 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
410 * and __GFP_HIGHMEM from hard or soft interrupt context.
411 */
412 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
413 for (i = 0; i < (1 << order); i++)
414 clear_highpage(page + i);
415 }
416
417 #ifdef CONFIG_DEBUG_PAGEALLOC
418 unsigned int _debug_guardpage_minorder;
419
420 static int __init debug_guardpage_minorder_setup(char *buf)
421 {
422 unsigned long res;
423
424 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
425 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
426 return 0;
427 }
428 _debug_guardpage_minorder = res;
429 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
430 return 0;
431 }
432 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
433
434 static inline void set_page_guard_flag(struct page *page)
435 {
436 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
437 }
438
439 static inline void clear_page_guard_flag(struct page *page)
440 {
441 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
442 }
443 #else
444 static inline void set_page_guard_flag(struct page *page) { }
445 static inline void clear_page_guard_flag(struct page *page) { }
446 #endif
447
448 static inline void set_page_order(struct page *page, int order)
449 {
450 set_page_private(page, order);
451 __SetPageBuddy(page);
452 }
453
454 static inline void rmv_page_order(struct page *page)
455 {
456 __ClearPageBuddy(page);
457 set_page_private(page, 0);
458 }
459
460 /*
461 * Locate the struct page for both the matching buddy in our
462 * pair (buddy1) and the combined O(n+1) page they form (page).
463 *
464 * 1) Any buddy B1 will have an order O twin B2 which satisfies
465 * the following equation:
466 * B2 = B1 ^ (1 << O)
467 * For example, if the starting buddy (buddy2) is #8 its order
468 * 1 buddy is #10:
469 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
470 *
471 * 2) Any buddy B will have an order O+1 parent P which
472 * satisfies the following equation:
473 * P = B & ~(1 << O)
474 *
475 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
476 */
477 static inline unsigned long
478 __find_buddy_index(unsigned long page_idx, unsigned int order)
479 {
480 return page_idx ^ (1 << order);
481 }
482
483 /*
484 * This function checks whether a page is free && is the buddy
485 * we can do coalesce a page and its buddy if
486 * (a) the buddy is not in a hole &&
487 * (b) the buddy is in the buddy system &&
488 * (c) a page and its buddy have the same order &&
489 * (d) a page and its buddy are in the same zone.
490 *
491 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
492 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
493 *
494 * For recording page's order, we use page_private(page).
495 */
496 static inline int page_is_buddy(struct page *page, struct page *buddy,
497 int order)
498 {
499 if (!pfn_valid_within(page_to_pfn(buddy)))
500 return 0;
501
502 if (page_zone_id(page) != page_zone_id(buddy))
503 return 0;
504
505 if (page_is_guard(buddy) && page_order(buddy) == order) {
506 VM_BUG_ON(page_count(buddy) != 0);
507 return 1;
508 }
509
510 if (PageBuddy(buddy) && page_order(buddy) == order) {
511 VM_BUG_ON(page_count(buddy) != 0);
512 return 1;
513 }
514 return 0;
515 }
516
517 /*
518 * Freeing function for a buddy system allocator.
519 *
520 * The concept of a buddy system is to maintain direct-mapped table
521 * (containing bit values) for memory blocks of various "orders".
522 * The bottom level table contains the map for the smallest allocatable
523 * units of memory (here, pages), and each level above it describes
524 * pairs of units from the levels below, hence, "buddies".
525 * At a high level, all that happens here is marking the table entry
526 * at the bottom level available, and propagating the changes upward
527 * as necessary, plus some accounting needed to play nicely with other
528 * parts of the VM system.
529 * At each level, we keep a list of pages, which are heads of continuous
530 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
531 * order is recorded in page_private(page) field.
532 * So when we are allocating or freeing one, we can derive the state of the
533 * other. That is, if we allocate a small block, and both were
534 * free, the remainder of the region must be split into blocks.
535 * If a block is freed, and its buddy is also free, then this
536 * triggers coalescing into a block of larger size.
537 *
538 * -- nyc
539 */
540
541 static inline void __free_one_page(struct page *page,
542 struct zone *zone, unsigned int order,
543 int migratetype)
544 {
545 unsigned long page_idx;
546 unsigned long combined_idx;
547 unsigned long uninitialized_var(buddy_idx);
548 struct page *buddy;
549
550 VM_BUG_ON(!zone_is_initialized(zone));
551
552 if (unlikely(PageCompound(page)))
553 if (unlikely(destroy_compound_page(page, order)))
554 return;
555
556 VM_BUG_ON(migratetype == -1);
557
558 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
559
560 VM_BUG_ON(page_idx & ((1 << order) - 1));
561 VM_BUG_ON(bad_range(zone, page));
562
563 while (order < MAX_ORDER-1) {
564 buddy_idx = __find_buddy_index(page_idx, order);
565 buddy = page + (buddy_idx - page_idx);
566 if (!page_is_buddy(page, buddy, order))
567 break;
568 /*
569 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
570 * merge with it and move up one order.
571 */
572 if (page_is_guard(buddy)) {
573 clear_page_guard_flag(buddy);
574 set_page_private(page, 0);
575 __mod_zone_freepage_state(zone, 1 << order,
576 migratetype);
577 } else {
578 list_del(&buddy->lru);
579 zone->free_area[order].nr_free--;
580 rmv_page_order(buddy);
581 }
582 combined_idx = buddy_idx & page_idx;
583 page = page + (combined_idx - page_idx);
584 page_idx = combined_idx;
585 order++;
586 }
587 set_page_order(page, order);
588
589 /*
590 * If this is not the largest possible page, check if the buddy
591 * of the next-highest order is free. If it is, it's possible
592 * that pages are being freed that will coalesce soon. In case,
593 * that is happening, add the free page to the tail of the list
594 * so it's less likely to be used soon and more likely to be merged
595 * as a higher order page
596 */
597 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
598 struct page *higher_page, *higher_buddy;
599 combined_idx = buddy_idx & page_idx;
600 higher_page = page + (combined_idx - page_idx);
601 buddy_idx = __find_buddy_index(combined_idx, order + 1);
602 higher_buddy = higher_page + (buddy_idx - combined_idx);
603 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
604 list_add_tail(&page->lru,
605 &zone->free_area[order].free_list[migratetype]);
606 goto out;
607 }
608 }
609
610 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
611 out:
612 zone->free_area[order].nr_free++;
613 }
614
615 static inline int free_pages_check(struct page *page)
616 {
617 if (unlikely(page_mapcount(page) |
618 (page->mapping != NULL) |
619 (atomic_read(&page->_count) != 0) |
620 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
621 (mem_cgroup_bad_page_check(page)))) {
622 bad_page(page);
623 return 1;
624 }
625 page_nid_reset_last(page);
626 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
627 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
628 return 0;
629 }
630
631 /*
632 * Frees a number of pages from the PCP lists
633 * Assumes all pages on list are in same zone, and of same order.
634 * count is the number of pages to free.
635 *
636 * If the zone was previously in an "all pages pinned" state then look to
637 * see if this freeing clears that state.
638 *
639 * And clear the zone's pages_scanned counter, to hold off the "all pages are
640 * pinned" detection logic.
641 */
642 static void free_pcppages_bulk(struct zone *zone, int count,
643 struct per_cpu_pages *pcp)
644 {
645 int migratetype = 0;
646 int batch_free = 0;
647 int to_free = count;
648
649 spin_lock(&zone->lock);
650 zone->all_unreclaimable = 0;
651 zone->pages_scanned = 0;
652
653 while (to_free) {
654 struct page *page;
655 struct list_head *list;
656
657 /*
658 * Remove pages from lists in a round-robin fashion. A
659 * batch_free count is maintained that is incremented when an
660 * empty list is encountered. This is so more pages are freed
661 * off fuller lists instead of spinning excessively around empty
662 * lists
663 */
664 do {
665 batch_free++;
666 if (++migratetype == MIGRATE_PCPTYPES)
667 migratetype = 0;
668 list = &pcp->lists[migratetype];
669 } while (list_empty(list));
670
671 /* This is the only non-empty list. Free them all. */
672 if (batch_free == MIGRATE_PCPTYPES)
673 batch_free = to_free;
674
675 do {
676 int mt; /* migratetype of the to-be-freed page */
677
678 page = list_entry(list->prev, struct page, lru);
679 /* must delete as __free_one_page list manipulates */
680 list_del(&page->lru);
681 mt = get_freepage_migratetype(page);
682 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
683 __free_one_page(page, zone, 0, mt);
684 trace_mm_page_pcpu_drain(page, 0, mt);
685 if (likely(!is_migrate_isolate_page(page))) {
686 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
687 if (is_migrate_cma(mt))
688 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
689 }
690 } while (--to_free && --batch_free && !list_empty(list));
691 }
692 spin_unlock(&zone->lock);
693 }
694
695 static void free_one_page(struct zone *zone, struct page *page, int order,
696 int migratetype)
697 {
698 spin_lock(&zone->lock);
699 zone->all_unreclaimable = 0;
700 zone->pages_scanned = 0;
701
702 __free_one_page(page, zone, order, migratetype);
703 if (unlikely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705 spin_unlock(&zone->lock);
706 }
707
708 static bool free_pages_prepare(struct page *page, unsigned int order)
709 {
710 int i;
711 int bad = 0;
712
713 trace_mm_page_free(page, order);
714 kmemcheck_free_shadow(page, order);
715
716 if (PageAnon(page))
717 page->mapping = NULL;
718 for (i = 0; i < (1 << order); i++)
719 bad += free_pages_check(page + i);
720 if (bad)
721 return false;
722
723 if (!PageHighMem(page)) {
724 debug_check_no_locks_freed(page_address(page),
725 PAGE_SIZE << order);
726 debug_check_no_obj_freed(page_address(page),
727 PAGE_SIZE << order);
728 }
729 arch_free_page(page, order);
730 kernel_map_pages(page, 1 << order, 0);
731
732 return true;
733 }
734
735 static void __free_pages_ok(struct page *page, unsigned int order)
736 {
737 unsigned long flags;
738 int migratetype;
739
740 if (!free_pages_prepare(page, order))
741 return;
742
743 local_irq_save(flags);
744 __count_vm_events(PGFREE, 1 << order);
745 migratetype = get_pageblock_migratetype(page);
746 set_freepage_migratetype(page, migratetype);
747 free_one_page(page_zone(page), page, order, migratetype);
748 local_irq_restore(flags);
749 }
750
751 void __init __free_pages_bootmem(struct page *page, unsigned int order)
752 {
753 unsigned int nr_pages = 1 << order;
754 unsigned int loop;
755
756 prefetchw(page);
757 for (loop = 0; loop < nr_pages; loop++) {
758 struct page *p = &page[loop];
759
760 if (loop + 1 < nr_pages)
761 prefetchw(p + 1);
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
764 }
765
766 page_zone(page)->managed_pages += 1 << order;
767 set_page_refcounted(page);
768 __free_pages(page, order);
769 }
770
771 #ifdef CONFIG_CMA
772 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
773 void __init init_cma_reserved_pageblock(struct page *page)
774 {
775 unsigned i = pageblock_nr_pages;
776 struct page *p = page;
777
778 do {
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
781 } while (++p, --i);
782
783 set_page_refcounted(page);
784 set_pageblock_migratetype(page, MIGRATE_CMA);
785 __free_pages(page, pageblock_order);
786 adjust_managed_page_count(page, pageblock_nr_pages);
787 }
788 #endif
789
790 /*
791 * The order of subdivision here is critical for the IO subsystem.
792 * Please do not alter this order without good reasons and regression
793 * testing. Specifically, as large blocks of memory are subdivided,
794 * the order in which smaller blocks are delivered depends on the order
795 * they're subdivided in this function. This is the primary factor
796 * influencing the order in which pages are delivered to the IO
797 * subsystem according to empirical testing, and this is also justified
798 * by considering the behavior of a buddy system containing a single
799 * large block of memory acted on by a series of small allocations.
800 * This behavior is a critical factor in sglist merging's success.
801 *
802 * -- nyc
803 */
804 static inline void expand(struct zone *zone, struct page *page,
805 int low, int high, struct free_area *area,
806 int migratetype)
807 {
808 unsigned long size = 1 << high;
809
810 while (high > low) {
811 area--;
812 high--;
813 size >>= 1;
814 VM_BUG_ON(bad_range(zone, &page[size]));
815
816 #ifdef CONFIG_DEBUG_PAGEALLOC
817 if (high < debug_guardpage_minorder()) {
818 /*
819 * Mark as guard pages (or page), that will allow to
820 * merge back to allocator when buddy will be freed.
821 * Corresponding page table entries will not be touched,
822 * pages will stay not present in virtual address space
823 */
824 INIT_LIST_HEAD(&page[size].lru);
825 set_page_guard_flag(&page[size]);
826 set_page_private(&page[size], high);
827 /* Guard pages are not available for any usage */
828 __mod_zone_freepage_state(zone, -(1 << high),
829 migratetype);
830 continue;
831 }
832 #endif
833 list_add(&page[size].lru, &area->free_list[migratetype]);
834 area->nr_free++;
835 set_page_order(&page[size], high);
836 }
837 }
838
839 /*
840 * This page is about to be returned from the page allocator
841 */
842 static inline int check_new_page(struct page *page)
843 {
844 if (unlikely(page_mapcount(page) |
845 (page->mapping != NULL) |
846 (atomic_read(&page->_count) != 0) |
847 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
848 (mem_cgroup_bad_page_check(page)))) {
849 bad_page(page);
850 return 1;
851 }
852 return 0;
853 }
854
855 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
856 {
857 int i;
858
859 for (i = 0; i < (1 << order); i++) {
860 struct page *p = page + i;
861 if (unlikely(check_new_page(p)))
862 return 1;
863 }
864
865 set_page_private(page, 0);
866 set_page_refcounted(page);
867
868 arch_alloc_page(page, order);
869 kernel_map_pages(page, 1 << order, 1);
870
871 if (gfp_flags & __GFP_ZERO)
872 prep_zero_page(page, order, gfp_flags);
873
874 if (order && (gfp_flags & __GFP_COMP))
875 prep_compound_page(page, order);
876
877 return 0;
878 }
879
880 /*
881 * Go through the free lists for the given migratetype and remove
882 * the smallest available page from the freelists
883 */
884 static inline
885 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
886 int migratetype)
887 {
888 unsigned int current_order;
889 struct free_area *area;
890 struct page *page;
891
892 /* Find a page of the appropriate size in the preferred list */
893 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
894 area = &(zone->free_area[current_order]);
895 if (list_empty(&area->free_list[migratetype]))
896 continue;
897
898 page = list_entry(area->free_list[migratetype].next,
899 struct page, lru);
900 list_del(&page->lru);
901 rmv_page_order(page);
902 area->nr_free--;
903 expand(zone, page, order, current_order, area, migratetype);
904 return page;
905 }
906
907 return NULL;
908 }
909
910
911 /*
912 * This array describes the order lists are fallen back to when
913 * the free lists for the desirable migrate type are depleted
914 */
915 static int fallbacks[MIGRATE_TYPES][4] = {
916 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
917 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918 #ifdef CONFIG_CMA
919 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
920 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
921 #else
922 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
923 #endif
924 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
925 #ifdef CONFIG_MEMORY_ISOLATION
926 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
927 #endif
928 };
929
930 /*
931 * Move the free pages in a range to the free lists of the requested type.
932 * Note that start_page and end_pages are not aligned on a pageblock
933 * boundary. If alignment is required, use move_freepages_block()
934 */
935 int move_freepages(struct zone *zone,
936 struct page *start_page, struct page *end_page,
937 int migratetype)
938 {
939 struct page *page;
940 unsigned long order;
941 int pages_moved = 0;
942
943 #ifndef CONFIG_HOLES_IN_ZONE
944 /*
945 * page_zone is not safe to call in this context when
946 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
947 * anyway as we check zone boundaries in move_freepages_block().
948 * Remove at a later date when no bug reports exist related to
949 * grouping pages by mobility
950 */
951 BUG_ON(page_zone(start_page) != page_zone(end_page));
952 #endif
953
954 for (page = start_page; page <= end_page;) {
955 /* Make sure we are not inadvertently changing nodes */
956 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
957
958 if (!pfn_valid_within(page_to_pfn(page))) {
959 page++;
960 continue;
961 }
962
963 if (!PageBuddy(page)) {
964 page++;
965 continue;
966 }
967
968 order = page_order(page);
969 list_move(&page->lru,
970 &zone->free_area[order].free_list[migratetype]);
971 set_freepage_migratetype(page, migratetype);
972 page += 1 << order;
973 pages_moved += 1 << order;
974 }
975
976 return pages_moved;
977 }
978
979 int move_freepages_block(struct zone *zone, struct page *page,
980 int migratetype)
981 {
982 unsigned long start_pfn, end_pfn;
983 struct page *start_page, *end_page;
984
985 start_pfn = page_to_pfn(page);
986 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
987 start_page = pfn_to_page(start_pfn);
988 end_page = start_page + pageblock_nr_pages - 1;
989 end_pfn = start_pfn + pageblock_nr_pages - 1;
990
991 /* Do not cross zone boundaries */
992 if (!zone_spans_pfn(zone, start_pfn))
993 start_page = page;
994 if (!zone_spans_pfn(zone, end_pfn))
995 return 0;
996
997 return move_freepages(zone, start_page, end_page, migratetype);
998 }
999
1000 static void change_pageblock_range(struct page *pageblock_page,
1001 int start_order, int migratetype)
1002 {
1003 int nr_pageblocks = 1 << (start_order - pageblock_order);
1004
1005 while (nr_pageblocks--) {
1006 set_pageblock_migratetype(pageblock_page, migratetype);
1007 pageblock_page += pageblock_nr_pages;
1008 }
1009 }
1010
1011 /*
1012 * If breaking a large block of pages, move all free pages to the preferred
1013 * allocation list. If falling back for a reclaimable kernel allocation, be
1014 * more aggressive about taking ownership of free pages.
1015 *
1016 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1017 * nor move CMA pages to different free lists. We don't want unmovable pages
1018 * to be allocated from MIGRATE_CMA areas.
1019 *
1020 * Returns the new migratetype of the pageblock (or the same old migratetype
1021 * if it was unchanged).
1022 */
1023 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1024 int start_type, int fallback_type)
1025 {
1026 int current_order = page_order(page);
1027
1028 if (is_migrate_cma(fallback_type))
1029 return fallback_type;
1030
1031 /* Take ownership for orders >= pageblock_order */
1032 if (current_order >= pageblock_order) {
1033 change_pageblock_range(page, current_order, start_type);
1034 return start_type;
1035 }
1036
1037 if (current_order >= pageblock_order / 2 ||
1038 start_type == MIGRATE_RECLAIMABLE ||
1039 page_group_by_mobility_disabled) {
1040 int pages;
1041
1042 pages = move_freepages_block(zone, page, start_type);
1043
1044 /* Claim the whole block if over half of it is free */
1045 if (pages >= (1 << (pageblock_order-1)) ||
1046 page_group_by_mobility_disabled) {
1047
1048 set_pageblock_migratetype(page, start_type);
1049 return start_type;
1050 }
1051
1052 }
1053
1054 return fallback_type;
1055 }
1056
1057 /* Remove an element from the buddy allocator from the fallback list */
1058 static inline struct page *
1059 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1060 {
1061 struct free_area *area;
1062 int current_order;
1063 struct page *page;
1064 int migratetype, new_type, i;
1065
1066 /* Find the largest possible block of pages in the other list */
1067 for (current_order = MAX_ORDER-1; current_order >= order;
1068 --current_order) {
1069 for (i = 0;; i++) {
1070 migratetype = fallbacks[start_migratetype][i];
1071
1072 /* MIGRATE_RESERVE handled later if necessary */
1073 if (migratetype == MIGRATE_RESERVE)
1074 break;
1075
1076 area = &(zone->free_area[current_order]);
1077 if (list_empty(&area->free_list[migratetype]))
1078 continue;
1079
1080 page = list_entry(area->free_list[migratetype].next,
1081 struct page, lru);
1082 area->nr_free--;
1083
1084 new_type = try_to_steal_freepages(zone, page,
1085 start_migratetype,
1086 migratetype);
1087
1088 /* Remove the page from the freelists */
1089 list_del(&page->lru);
1090 rmv_page_order(page);
1091
1092 /*
1093 * Borrow the excess buddy pages as well, irrespective
1094 * of whether we stole freepages, or took ownership of
1095 * the pageblock or not.
1096 *
1097 * Exception: When borrowing from MIGRATE_CMA, release
1098 * the excess buddy pages to CMA itself.
1099 */
1100 expand(zone, page, order, current_order, area,
1101 is_migrate_cma(migratetype)
1102 ? migratetype : start_migratetype);
1103
1104 trace_mm_page_alloc_extfrag(page, order,
1105 current_order, start_migratetype, migratetype,
1106 new_type == start_migratetype);
1107
1108 return page;
1109 }
1110 }
1111
1112 return NULL;
1113 }
1114
1115 /*
1116 * Do the hard work of removing an element from the buddy allocator.
1117 * Call me with the zone->lock already held.
1118 */
1119 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1120 int migratetype)
1121 {
1122 struct page *page;
1123
1124 retry_reserve:
1125 page = __rmqueue_smallest(zone, order, migratetype);
1126
1127 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1128 page = __rmqueue_fallback(zone, order, migratetype);
1129
1130 /*
1131 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1132 * is used because __rmqueue_smallest is an inline function
1133 * and we want just one call site
1134 */
1135 if (!page) {
1136 migratetype = MIGRATE_RESERVE;
1137 goto retry_reserve;
1138 }
1139 }
1140
1141 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1142 return page;
1143 }
1144
1145 /*
1146 * Obtain a specified number of elements from the buddy allocator, all under
1147 * a single hold of the lock, for efficiency. Add them to the supplied list.
1148 * Returns the number of new pages which were placed at *list.
1149 */
1150 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1151 unsigned long count, struct list_head *list,
1152 int migratetype, int cold)
1153 {
1154 int mt = migratetype, i;
1155
1156 spin_lock(&zone->lock);
1157 for (i = 0; i < count; ++i) {
1158 struct page *page = __rmqueue(zone, order, migratetype);
1159 if (unlikely(page == NULL))
1160 break;
1161
1162 /*
1163 * Split buddy pages returned by expand() are received here
1164 * in physical page order. The page is added to the callers and
1165 * list and the list head then moves forward. From the callers
1166 * perspective, the linked list is ordered by page number in
1167 * some conditions. This is useful for IO devices that can
1168 * merge IO requests if the physical pages are ordered
1169 * properly.
1170 */
1171 if (likely(cold == 0))
1172 list_add(&page->lru, list);
1173 else
1174 list_add_tail(&page->lru, list);
1175 if (IS_ENABLED(CONFIG_CMA)) {
1176 mt = get_pageblock_migratetype(page);
1177 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1178 mt = migratetype;
1179 }
1180 set_freepage_migratetype(page, mt);
1181 list = &page->lru;
1182 if (is_migrate_cma(mt))
1183 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1184 -(1 << order));
1185 }
1186 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1187 spin_unlock(&zone->lock);
1188 return i;
1189 }
1190
1191 #ifdef CONFIG_NUMA
1192 /*
1193 * Called from the vmstat counter updater to drain pagesets of this
1194 * currently executing processor on remote nodes after they have
1195 * expired.
1196 *
1197 * Note that this function must be called with the thread pinned to
1198 * a single processor.
1199 */
1200 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1201 {
1202 unsigned long flags;
1203 int to_drain;
1204 unsigned long batch;
1205
1206 local_irq_save(flags);
1207 batch = ACCESS_ONCE(pcp->batch);
1208 if (pcp->count >= batch)
1209 to_drain = batch;
1210 else
1211 to_drain = pcp->count;
1212 if (to_drain > 0) {
1213 free_pcppages_bulk(zone, to_drain, pcp);
1214 pcp->count -= to_drain;
1215 }
1216 local_irq_restore(flags);
1217 }
1218 #endif
1219
1220 /*
1221 * Drain pages of the indicated processor.
1222 *
1223 * The processor must either be the current processor and the
1224 * thread pinned to the current processor or a processor that
1225 * is not online.
1226 */
1227 static void drain_pages(unsigned int cpu)
1228 {
1229 unsigned long flags;
1230 struct zone *zone;
1231
1232 for_each_populated_zone(zone) {
1233 struct per_cpu_pageset *pset;
1234 struct per_cpu_pages *pcp;
1235
1236 local_irq_save(flags);
1237 pset = per_cpu_ptr(zone->pageset, cpu);
1238
1239 pcp = &pset->pcp;
1240 if (pcp->count) {
1241 free_pcppages_bulk(zone, pcp->count, pcp);
1242 pcp->count = 0;
1243 }
1244 local_irq_restore(flags);
1245 }
1246 }
1247
1248 /*
1249 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1250 */
1251 void drain_local_pages(void *arg)
1252 {
1253 drain_pages(smp_processor_id());
1254 }
1255
1256 /*
1257 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1258 *
1259 * Note that this code is protected against sending an IPI to an offline
1260 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1261 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1262 * nothing keeps CPUs from showing up after we populated the cpumask and
1263 * before the call to on_each_cpu_mask().
1264 */
1265 void drain_all_pages(void)
1266 {
1267 int cpu;
1268 struct per_cpu_pageset *pcp;
1269 struct zone *zone;
1270
1271 /*
1272 * Allocate in the BSS so we wont require allocation in
1273 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1274 */
1275 static cpumask_t cpus_with_pcps;
1276
1277 /*
1278 * We don't care about racing with CPU hotplug event
1279 * as offline notification will cause the notified
1280 * cpu to drain that CPU pcps and on_each_cpu_mask
1281 * disables preemption as part of its processing
1282 */
1283 for_each_online_cpu(cpu) {
1284 bool has_pcps = false;
1285 for_each_populated_zone(zone) {
1286 pcp = per_cpu_ptr(zone->pageset, cpu);
1287 if (pcp->pcp.count) {
1288 has_pcps = true;
1289 break;
1290 }
1291 }
1292 if (has_pcps)
1293 cpumask_set_cpu(cpu, &cpus_with_pcps);
1294 else
1295 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1296 }
1297 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1298 }
1299
1300 #ifdef CONFIG_HIBERNATION
1301
1302 void mark_free_pages(struct zone *zone)
1303 {
1304 unsigned long pfn, max_zone_pfn;
1305 unsigned long flags;
1306 int order, t;
1307 struct list_head *curr;
1308
1309 if (!zone->spanned_pages)
1310 return;
1311
1312 spin_lock_irqsave(&zone->lock, flags);
1313
1314 max_zone_pfn = zone_end_pfn(zone);
1315 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1316 if (pfn_valid(pfn)) {
1317 struct page *page = pfn_to_page(pfn);
1318
1319 if (!swsusp_page_is_forbidden(page))
1320 swsusp_unset_page_free(page);
1321 }
1322
1323 for_each_migratetype_order(order, t) {
1324 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1325 unsigned long i;
1326
1327 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1328 for (i = 0; i < (1UL << order); i++)
1329 swsusp_set_page_free(pfn_to_page(pfn + i));
1330 }
1331 }
1332 spin_unlock_irqrestore(&zone->lock, flags);
1333 }
1334 #endif /* CONFIG_PM */
1335
1336 /*
1337 * Free a 0-order page
1338 * cold == 1 ? free a cold page : free a hot page
1339 */
1340 void free_hot_cold_page(struct page *page, int cold)
1341 {
1342 struct zone *zone = page_zone(page);
1343 struct per_cpu_pages *pcp;
1344 unsigned long flags;
1345 int migratetype;
1346
1347 if (!free_pages_prepare(page, 0))
1348 return;
1349
1350 migratetype = get_pageblock_migratetype(page);
1351 set_freepage_migratetype(page, migratetype);
1352 local_irq_save(flags);
1353 __count_vm_event(PGFREE);
1354
1355 /*
1356 * We only track unmovable, reclaimable and movable on pcp lists.
1357 * Free ISOLATE pages back to the allocator because they are being
1358 * offlined but treat RESERVE as movable pages so we can get those
1359 * areas back if necessary. Otherwise, we may have to free
1360 * excessively into the page allocator
1361 */
1362 if (migratetype >= MIGRATE_PCPTYPES) {
1363 if (unlikely(is_migrate_isolate(migratetype))) {
1364 free_one_page(zone, page, 0, migratetype);
1365 goto out;
1366 }
1367 migratetype = MIGRATE_MOVABLE;
1368 }
1369
1370 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1371 if (cold)
1372 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1373 else
1374 list_add(&page->lru, &pcp->lists[migratetype]);
1375 pcp->count++;
1376 if (pcp->count >= pcp->high) {
1377 unsigned long batch = ACCESS_ONCE(pcp->batch);
1378 free_pcppages_bulk(zone, batch, pcp);
1379 pcp->count -= batch;
1380 }
1381
1382 out:
1383 local_irq_restore(flags);
1384 }
1385
1386 /*
1387 * Free a list of 0-order pages
1388 */
1389 void free_hot_cold_page_list(struct list_head *list, int cold)
1390 {
1391 struct page *page, *next;
1392
1393 list_for_each_entry_safe(page, next, list, lru) {
1394 trace_mm_page_free_batched(page, cold);
1395 free_hot_cold_page(page, cold);
1396 }
1397 }
1398
1399 /*
1400 * split_page takes a non-compound higher-order page, and splits it into
1401 * n (1<<order) sub-pages: page[0..n]
1402 * Each sub-page must be freed individually.
1403 *
1404 * Note: this is probably too low level an operation for use in drivers.
1405 * Please consult with lkml before using this in your driver.
1406 */
1407 void split_page(struct page *page, unsigned int order)
1408 {
1409 int i;
1410
1411 VM_BUG_ON(PageCompound(page));
1412 VM_BUG_ON(!page_count(page));
1413
1414 #ifdef CONFIG_KMEMCHECK
1415 /*
1416 * Split shadow pages too, because free(page[0]) would
1417 * otherwise free the whole shadow.
1418 */
1419 if (kmemcheck_page_is_tracked(page))
1420 split_page(virt_to_page(page[0].shadow), order);
1421 #endif
1422
1423 for (i = 1; i < (1 << order); i++)
1424 set_page_refcounted(page + i);
1425 }
1426 EXPORT_SYMBOL_GPL(split_page);
1427
1428 static int __isolate_free_page(struct page *page, unsigned int order)
1429 {
1430 unsigned long watermark;
1431 struct zone *zone;
1432 int mt;
1433
1434 BUG_ON(!PageBuddy(page));
1435
1436 zone = page_zone(page);
1437 mt = get_pageblock_migratetype(page);
1438
1439 if (!is_migrate_isolate(mt)) {
1440 /* Obey watermarks as if the page was being allocated */
1441 watermark = low_wmark_pages(zone) + (1 << order);
1442 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1443 return 0;
1444
1445 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1446 }
1447
1448 /* Remove page from free list */
1449 list_del(&page->lru);
1450 zone->free_area[order].nr_free--;
1451 rmv_page_order(page);
1452
1453 /* Set the pageblock if the isolated page is at least a pageblock */
1454 if (order >= pageblock_order - 1) {
1455 struct page *endpage = page + (1 << order) - 1;
1456 for (; page < endpage; page += pageblock_nr_pages) {
1457 int mt = get_pageblock_migratetype(page);
1458 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1459 set_pageblock_migratetype(page,
1460 MIGRATE_MOVABLE);
1461 }
1462 }
1463
1464 return 1UL << order;
1465 }
1466
1467 /*
1468 * Similar to split_page except the page is already free. As this is only
1469 * being used for migration, the migratetype of the block also changes.
1470 * As this is called with interrupts disabled, the caller is responsible
1471 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1472 * are enabled.
1473 *
1474 * Note: this is probably too low level an operation for use in drivers.
1475 * Please consult with lkml before using this in your driver.
1476 */
1477 int split_free_page(struct page *page)
1478 {
1479 unsigned int order;
1480 int nr_pages;
1481
1482 order = page_order(page);
1483
1484 nr_pages = __isolate_free_page(page, order);
1485 if (!nr_pages)
1486 return 0;
1487
1488 /* Split into individual pages */
1489 set_page_refcounted(page);
1490 split_page(page, order);
1491 return nr_pages;
1492 }
1493
1494 /*
1495 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1496 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1497 * or two.
1498 */
1499 static inline
1500 struct page *buffered_rmqueue(struct zone *preferred_zone,
1501 struct zone *zone, int order, gfp_t gfp_flags,
1502 int migratetype)
1503 {
1504 unsigned long flags;
1505 struct page *page;
1506 int cold = !!(gfp_flags & __GFP_COLD);
1507
1508 again:
1509 if (likely(order == 0)) {
1510 struct per_cpu_pages *pcp;
1511 struct list_head *list;
1512
1513 local_irq_save(flags);
1514 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1515 list = &pcp->lists[migratetype];
1516 if (list_empty(list)) {
1517 pcp->count += rmqueue_bulk(zone, 0,
1518 pcp->batch, list,
1519 migratetype, cold);
1520 if (unlikely(list_empty(list)))
1521 goto failed;
1522 }
1523
1524 if (cold)
1525 page = list_entry(list->prev, struct page, lru);
1526 else
1527 page = list_entry(list->next, struct page, lru);
1528
1529 list_del(&page->lru);
1530 pcp->count--;
1531 } else {
1532 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1533 /*
1534 * __GFP_NOFAIL is not to be used in new code.
1535 *
1536 * All __GFP_NOFAIL callers should be fixed so that they
1537 * properly detect and handle allocation failures.
1538 *
1539 * We most definitely don't want callers attempting to
1540 * allocate greater than order-1 page units with
1541 * __GFP_NOFAIL.
1542 */
1543 WARN_ON_ONCE(order > 1);
1544 }
1545 spin_lock_irqsave(&zone->lock, flags);
1546 page = __rmqueue(zone, order, migratetype);
1547 spin_unlock(&zone->lock);
1548 if (!page)
1549 goto failed;
1550 __mod_zone_freepage_state(zone, -(1 << order),
1551 get_pageblock_migratetype(page));
1552 }
1553
1554 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1555 zone_statistics(preferred_zone, zone, gfp_flags);
1556 local_irq_restore(flags);
1557
1558 VM_BUG_ON(bad_range(zone, page));
1559 if (prep_new_page(page, order, gfp_flags))
1560 goto again;
1561 return page;
1562
1563 failed:
1564 local_irq_restore(flags);
1565 return NULL;
1566 }
1567
1568 #ifdef CONFIG_FAIL_PAGE_ALLOC
1569
1570 static struct {
1571 struct fault_attr attr;
1572
1573 u32 ignore_gfp_highmem;
1574 u32 ignore_gfp_wait;
1575 u32 min_order;
1576 } fail_page_alloc = {
1577 .attr = FAULT_ATTR_INITIALIZER,
1578 .ignore_gfp_wait = 1,
1579 .ignore_gfp_highmem = 1,
1580 .min_order = 1,
1581 };
1582
1583 static int __init setup_fail_page_alloc(char *str)
1584 {
1585 return setup_fault_attr(&fail_page_alloc.attr, str);
1586 }
1587 __setup("fail_page_alloc=", setup_fail_page_alloc);
1588
1589 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1590 {
1591 if (order < fail_page_alloc.min_order)
1592 return false;
1593 if (gfp_mask & __GFP_NOFAIL)
1594 return false;
1595 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1596 return false;
1597 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1598 return false;
1599
1600 return should_fail(&fail_page_alloc.attr, 1 << order);
1601 }
1602
1603 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1604
1605 static int __init fail_page_alloc_debugfs(void)
1606 {
1607 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1608 struct dentry *dir;
1609
1610 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1611 &fail_page_alloc.attr);
1612 if (IS_ERR(dir))
1613 return PTR_ERR(dir);
1614
1615 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1616 &fail_page_alloc.ignore_gfp_wait))
1617 goto fail;
1618 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1619 &fail_page_alloc.ignore_gfp_highmem))
1620 goto fail;
1621 if (!debugfs_create_u32("min-order", mode, dir,
1622 &fail_page_alloc.min_order))
1623 goto fail;
1624
1625 return 0;
1626 fail:
1627 debugfs_remove_recursive(dir);
1628
1629 return -ENOMEM;
1630 }
1631
1632 late_initcall(fail_page_alloc_debugfs);
1633
1634 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1635
1636 #else /* CONFIG_FAIL_PAGE_ALLOC */
1637
1638 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1639 {
1640 return false;
1641 }
1642
1643 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1644
1645 /*
1646 * Return true if free pages are above 'mark'. This takes into account the order
1647 * of the allocation.
1648 */
1649 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1650 int classzone_idx, int alloc_flags, long free_pages)
1651 {
1652 /* free_pages my go negative - that's OK */
1653 long min = mark;
1654 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1655 int o;
1656 long free_cma = 0;
1657
1658 free_pages -= (1 << order) - 1;
1659 if (alloc_flags & ALLOC_HIGH)
1660 min -= min / 2;
1661 if (alloc_flags & ALLOC_HARDER)
1662 min -= min / 4;
1663 #ifdef CONFIG_CMA
1664 /* If allocation can't use CMA areas don't use free CMA pages */
1665 if (!(alloc_flags & ALLOC_CMA))
1666 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1667 #endif
1668
1669 if (free_pages - free_cma <= min + lowmem_reserve)
1670 return false;
1671 for (o = 0; o < order; o++) {
1672 /* At the next order, this order's pages become unavailable */
1673 free_pages -= z->free_area[o].nr_free << o;
1674
1675 /* Require fewer higher order pages to be free */
1676 min >>= 1;
1677
1678 if (free_pages <= min)
1679 return false;
1680 }
1681 return true;
1682 }
1683
1684 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1685 int classzone_idx, int alloc_flags)
1686 {
1687 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1688 zone_page_state(z, NR_FREE_PAGES));
1689 }
1690
1691 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1692 int classzone_idx, int alloc_flags)
1693 {
1694 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1695
1696 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1697 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1698
1699 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1700 free_pages);
1701 }
1702
1703 #ifdef CONFIG_NUMA
1704 /*
1705 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1706 * skip over zones that are not allowed by the cpuset, or that have
1707 * been recently (in last second) found to be nearly full. See further
1708 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1709 * that have to skip over a lot of full or unallowed zones.
1710 *
1711 * If the zonelist cache is present in the passed in zonelist, then
1712 * returns a pointer to the allowed node mask (either the current
1713 * tasks mems_allowed, or node_states[N_MEMORY].)
1714 *
1715 * If the zonelist cache is not available for this zonelist, does
1716 * nothing and returns NULL.
1717 *
1718 * If the fullzones BITMAP in the zonelist cache is stale (more than
1719 * a second since last zap'd) then we zap it out (clear its bits.)
1720 *
1721 * We hold off even calling zlc_setup, until after we've checked the
1722 * first zone in the zonelist, on the theory that most allocations will
1723 * be satisfied from that first zone, so best to examine that zone as
1724 * quickly as we can.
1725 */
1726 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1727 {
1728 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1729 nodemask_t *allowednodes; /* zonelist_cache approximation */
1730
1731 zlc = zonelist->zlcache_ptr;
1732 if (!zlc)
1733 return NULL;
1734
1735 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1736 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1737 zlc->last_full_zap = jiffies;
1738 }
1739
1740 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1741 &cpuset_current_mems_allowed :
1742 &node_states[N_MEMORY];
1743 return allowednodes;
1744 }
1745
1746 /*
1747 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1748 * if it is worth looking at further for free memory:
1749 * 1) Check that the zone isn't thought to be full (doesn't have its
1750 * bit set in the zonelist_cache fullzones BITMAP).
1751 * 2) Check that the zones node (obtained from the zonelist_cache
1752 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1753 * Return true (non-zero) if zone is worth looking at further, or
1754 * else return false (zero) if it is not.
1755 *
1756 * This check -ignores- the distinction between various watermarks,
1757 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1758 * found to be full for any variation of these watermarks, it will
1759 * be considered full for up to one second by all requests, unless
1760 * we are so low on memory on all allowed nodes that we are forced
1761 * into the second scan of the zonelist.
1762 *
1763 * In the second scan we ignore this zonelist cache and exactly
1764 * apply the watermarks to all zones, even it is slower to do so.
1765 * We are low on memory in the second scan, and should leave no stone
1766 * unturned looking for a free page.
1767 */
1768 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1769 nodemask_t *allowednodes)
1770 {
1771 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1772 int i; /* index of *z in zonelist zones */
1773 int n; /* node that zone *z is on */
1774
1775 zlc = zonelist->zlcache_ptr;
1776 if (!zlc)
1777 return 1;
1778
1779 i = z - zonelist->_zonerefs;
1780 n = zlc->z_to_n[i];
1781
1782 /* This zone is worth trying if it is allowed but not full */
1783 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1784 }
1785
1786 /*
1787 * Given 'z' scanning a zonelist, set the corresponding bit in
1788 * zlc->fullzones, so that subsequent attempts to allocate a page
1789 * from that zone don't waste time re-examining it.
1790 */
1791 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1792 {
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794 int i; /* index of *z in zonelist zones */
1795
1796 zlc = zonelist->zlcache_ptr;
1797 if (!zlc)
1798 return;
1799
1800 i = z - zonelist->_zonerefs;
1801
1802 set_bit(i, zlc->fullzones);
1803 }
1804
1805 /*
1806 * clear all zones full, called after direct reclaim makes progress so that
1807 * a zone that was recently full is not skipped over for up to a second
1808 */
1809 static void zlc_clear_zones_full(struct zonelist *zonelist)
1810 {
1811 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1812
1813 zlc = zonelist->zlcache_ptr;
1814 if (!zlc)
1815 return;
1816
1817 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1818 }
1819
1820 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1821 {
1822 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1823 }
1824
1825 static void __paginginit init_zone_allows_reclaim(int nid)
1826 {
1827 int i;
1828
1829 for_each_online_node(i)
1830 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1831 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1832 else
1833 zone_reclaim_mode = 1;
1834 }
1835
1836 #else /* CONFIG_NUMA */
1837
1838 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1839 {
1840 return NULL;
1841 }
1842
1843 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1844 nodemask_t *allowednodes)
1845 {
1846 return 1;
1847 }
1848
1849 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1850 {
1851 }
1852
1853 static void zlc_clear_zones_full(struct zonelist *zonelist)
1854 {
1855 }
1856
1857 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1858 {
1859 return true;
1860 }
1861
1862 static inline void init_zone_allows_reclaim(int nid)
1863 {
1864 }
1865 #endif /* CONFIG_NUMA */
1866
1867 /*
1868 * get_page_from_freelist goes through the zonelist trying to allocate
1869 * a page.
1870 */
1871 static struct page *
1872 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1873 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1874 struct zone *preferred_zone, int migratetype)
1875 {
1876 struct zoneref *z;
1877 struct page *page = NULL;
1878 int classzone_idx;
1879 struct zone *zone;
1880 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1881 int zlc_active = 0; /* set if using zonelist_cache */
1882 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1883
1884 classzone_idx = zone_idx(preferred_zone);
1885 zonelist_scan:
1886 /*
1887 * Scan zonelist, looking for a zone with enough free.
1888 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1889 */
1890 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1891 high_zoneidx, nodemask) {
1892 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1893 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1894 continue;
1895 if ((alloc_flags & ALLOC_CPUSET) &&
1896 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1897 continue;
1898 /*
1899 * When allocating a page cache page for writing, we
1900 * want to get it from a zone that is within its dirty
1901 * limit, such that no single zone holds more than its
1902 * proportional share of globally allowed dirty pages.
1903 * The dirty limits take into account the zone's
1904 * lowmem reserves and high watermark so that kswapd
1905 * should be able to balance it without having to
1906 * write pages from its LRU list.
1907 *
1908 * This may look like it could increase pressure on
1909 * lower zones by failing allocations in higher zones
1910 * before they are full. But the pages that do spill
1911 * over are limited as the lower zones are protected
1912 * by this very same mechanism. It should not become
1913 * a practical burden to them.
1914 *
1915 * XXX: For now, allow allocations to potentially
1916 * exceed the per-zone dirty limit in the slowpath
1917 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1918 * which is important when on a NUMA setup the allowed
1919 * zones are together not big enough to reach the
1920 * global limit. The proper fix for these situations
1921 * will require awareness of zones in the
1922 * dirty-throttling and the flusher threads.
1923 */
1924 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1925 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1926 goto this_zone_full;
1927
1928 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1929 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1930 unsigned long mark;
1931 int ret;
1932
1933 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1934 if (zone_watermark_ok(zone, order, mark,
1935 classzone_idx, alloc_flags))
1936 goto try_this_zone;
1937
1938 if (IS_ENABLED(CONFIG_NUMA) &&
1939 !did_zlc_setup && nr_online_nodes > 1) {
1940 /*
1941 * we do zlc_setup if there are multiple nodes
1942 * and before considering the first zone allowed
1943 * by the cpuset.
1944 */
1945 allowednodes = zlc_setup(zonelist, alloc_flags);
1946 zlc_active = 1;
1947 did_zlc_setup = 1;
1948 }
1949
1950 if (zone_reclaim_mode == 0 ||
1951 !zone_allows_reclaim(preferred_zone, zone))
1952 goto this_zone_full;
1953
1954 /*
1955 * As we may have just activated ZLC, check if the first
1956 * eligible zone has failed zone_reclaim recently.
1957 */
1958 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1959 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1960 continue;
1961
1962 ret = zone_reclaim(zone, gfp_mask, order);
1963 switch (ret) {
1964 case ZONE_RECLAIM_NOSCAN:
1965 /* did not scan */
1966 continue;
1967 case ZONE_RECLAIM_FULL:
1968 /* scanned but unreclaimable */
1969 continue;
1970 default:
1971 /* did we reclaim enough */
1972 if (zone_watermark_ok(zone, order, mark,
1973 classzone_idx, alloc_flags))
1974 goto try_this_zone;
1975
1976 /*
1977 * Failed to reclaim enough to meet watermark.
1978 * Only mark the zone full if checking the min
1979 * watermark or if we failed to reclaim just
1980 * 1<<order pages or else the page allocator
1981 * fastpath will prematurely mark zones full
1982 * when the watermark is between the low and
1983 * min watermarks.
1984 */
1985 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
1986 ret == ZONE_RECLAIM_SOME)
1987 goto this_zone_full;
1988
1989 continue;
1990 }
1991 }
1992
1993 try_this_zone:
1994 page = buffered_rmqueue(preferred_zone, zone, order,
1995 gfp_mask, migratetype);
1996 if (page)
1997 break;
1998 this_zone_full:
1999 if (IS_ENABLED(CONFIG_NUMA))
2000 zlc_mark_zone_full(zonelist, z);
2001 }
2002
2003 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2004 /* Disable zlc cache for second zonelist scan */
2005 zlc_active = 0;
2006 goto zonelist_scan;
2007 }
2008
2009 if (page)
2010 /*
2011 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2012 * necessary to allocate the page. The expectation is
2013 * that the caller is taking steps that will free more
2014 * memory. The caller should avoid the page being used
2015 * for !PFMEMALLOC purposes.
2016 */
2017 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2018
2019 return page;
2020 }
2021
2022 /*
2023 * Large machines with many possible nodes should not always dump per-node
2024 * meminfo in irq context.
2025 */
2026 static inline bool should_suppress_show_mem(void)
2027 {
2028 bool ret = false;
2029
2030 #if NODES_SHIFT > 8
2031 ret = in_interrupt();
2032 #endif
2033 return ret;
2034 }
2035
2036 static DEFINE_RATELIMIT_STATE(nopage_rs,
2037 DEFAULT_RATELIMIT_INTERVAL,
2038 DEFAULT_RATELIMIT_BURST);
2039
2040 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2041 {
2042 unsigned int filter = SHOW_MEM_FILTER_NODES;
2043
2044 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2045 debug_guardpage_minorder() > 0)
2046 return;
2047
2048 /*
2049 * Walking all memory to count page types is very expensive and should
2050 * be inhibited in non-blockable contexts.
2051 */
2052 if (!(gfp_mask & __GFP_WAIT))
2053 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2054
2055 /*
2056 * This documents exceptions given to allocations in certain
2057 * contexts that are allowed to allocate outside current's set
2058 * of allowed nodes.
2059 */
2060 if (!(gfp_mask & __GFP_NOMEMALLOC))
2061 if (test_thread_flag(TIF_MEMDIE) ||
2062 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2063 filter &= ~SHOW_MEM_FILTER_NODES;
2064 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2065 filter &= ~SHOW_MEM_FILTER_NODES;
2066
2067 if (fmt) {
2068 struct va_format vaf;
2069 va_list args;
2070
2071 va_start(args, fmt);
2072
2073 vaf.fmt = fmt;
2074 vaf.va = &args;
2075
2076 pr_warn("%pV", &vaf);
2077
2078 va_end(args);
2079 }
2080
2081 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2082 current->comm, order, gfp_mask);
2083
2084 dump_stack();
2085 if (!should_suppress_show_mem())
2086 show_mem(filter);
2087 }
2088
2089 static inline int
2090 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2091 unsigned long did_some_progress,
2092 unsigned long pages_reclaimed)
2093 {
2094 /* Do not loop if specifically requested */
2095 if (gfp_mask & __GFP_NORETRY)
2096 return 0;
2097
2098 /* Always retry if specifically requested */
2099 if (gfp_mask & __GFP_NOFAIL)
2100 return 1;
2101
2102 /*
2103 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2104 * making forward progress without invoking OOM. Suspend also disables
2105 * storage devices so kswapd will not help. Bail if we are suspending.
2106 */
2107 if (!did_some_progress && pm_suspended_storage())
2108 return 0;
2109
2110 /*
2111 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2112 * means __GFP_NOFAIL, but that may not be true in other
2113 * implementations.
2114 */
2115 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2116 return 1;
2117
2118 /*
2119 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2120 * specified, then we retry until we no longer reclaim any pages
2121 * (above), or we've reclaimed an order of pages at least as
2122 * large as the allocation's order. In both cases, if the
2123 * allocation still fails, we stop retrying.
2124 */
2125 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2126 return 1;
2127
2128 return 0;
2129 }
2130
2131 static inline struct page *
2132 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2133 struct zonelist *zonelist, enum zone_type high_zoneidx,
2134 nodemask_t *nodemask, struct zone *preferred_zone,
2135 int migratetype)
2136 {
2137 struct page *page;
2138
2139 /* Acquire the OOM killer lock for the zones in zonelist */
2140 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2141 schedule_timeout_uninterruptible(1);
2142 return NULL;
2143 }
2144
2145 /*
2146 * Go through the zonelist yet one more time, keep very high watermark
2147 * here, this is only to catch a parallel oom killing, we must fail if
2148 * we're still under heavy pressure.
2149 */
2150 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2151 order, zonelist, high_zoneidx,
2152 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2153 preferred_zone, migratetype);
2154 if (page)
2155 goto out;
2156
2157 if (!(gfp_mask & __GFP_NOFAIL)) {
2158 /* The OOM killer will not help higher order allocs */
2159 if (order > PAGE_ALLOC_COSTLY_ORDER)
2160 goto out;
2161 /* The OOM killer does not needlessly kill tasks for lowmem */
2162 if (high_zoneidx < ZONE_NORMAL)
2163 goto out;
2164 /*
2165 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2166 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2167 * The caller should handle page allocation failure by itself if
2168 * it specifies __GFP_THISNODE.
2169 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2170 */
2171 if (gfp_mask & __GFP_THISNODE)
2172 goto out;
2173 }
2174 /* Exhausted what can be done so it's blamo time */
2175 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2176
2177 out:
2178 clear_zonelist_oom(zonelist, gfp_mask);
2179 return page;
2180 }
2181
2182 #ifdef CONFIG_COMPACTION
2183 /* Try memory compaction for high-order allocations before reclaim */
2184 static struct page *
2185 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2186 struct zonelist *zonelist, enum zone_type high_zoneidx,
2187 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2188 int migratetype, bool sync_migration,
2189 bool *contended_compaction, bool *deferred_compaction,
2190 unsigned long *did_some_progress)
2191 {
2192 if (!order)
2193 return NULL;
2194
2195 if (compaction_deferred(preferred_zone, order)) {
2196 *deferred_compaction = true;
2197 return NULL;
2198 }
2199
2200 current->flags |= PF_MEMALLOC;
2201 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2202 nodemask, sync_migration,
2203 contended_compaction);
2204 current->flags &= ~PF_MEMALLOC;
2205
2206 if (*did_some_progress != COMPACT_SKIPPED) {
2207 struct page *page;
2208
2209 /* Page migration frees to the PCP lists but we want merging */
2210 drain_pages(get_cpu());
2211 put_cpu();
2212
2213 page = get_page_from_freelist(gfp_mask, nodemask,
2214 order, zonelist, high_zoneidx,
2215 alloc_flags & ~ALLOC_NO_WATERMARKS,
2216 preferred_zone, migratetype);
2217 if (page) {
2218 preferred_zone->compact_blockskip_flush = false;
2219 preferred_zone->compact_considered = 0;
2220 preferred_zone->compact_defer_shift = 0;
2221 if (order >= preferred_zone->compact_order_failed)
2222 preferred_zone->compact_order_failed = order + 1;
2223 count_vm_event(COMPACTSUCCESS);
2224 return page;
2225 }
2226
2227 /*
2228 * It's bad if compaction run occurs and fails.
2229 * The most likely reason is that pages exist,
2230 * but not enough to satisfy watermarks.
2231 */
2232 count_vm_event(COMPACTFAIL);
2233
2234 /*
2235 * As async compaction considers a subset of pageblocks, only
2236 * defer if the failure was a sync compaction failure.
2237 */
2238 if (sync_migration)
2239 defer_compaction(preferred_zone, order);
2240
2241 cond_resched();
2242 }
2243
2244 return NULL;
2245 }
2246 #else
2247 static inline struct page *
2248 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2249 struct zonelist *zonelist, enum zone_type high_zoneidx,
2250 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2251 int migratetype, bool sync_migration,
2252 bool *contended_compaction, bool *deferred_compaction,
2253 unsigned long *did_some_progress)
2254 {
2255 return NULL;
2256 }
2257 #endif /* CONFIG_COMPACTION */
2258
2259 /* Perform direct synchronous page reclaim */
2260 static int
2261 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2262 nodemask_t *nodemask)
2263 {
2264 struct reclaim_state reclaim_state;
2265 int progress;
2266
2267 cond_resched();
2268
2269 /* We now go into synchronous reclaim */
2270 cpuset_memory_pressure_bump();
2271 current->flags |= PF_MEMALLOC;
2272 lockdep_set_current_reclaim_state(gfp_mask);
2273 reclaim_state.reclaimed_slab = 0;
2274 current->reclaim_state = &reclaim_state;
2275
2276 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2277
2278 current->reclaim_state = NULL;
2279 lockdep_clear_current_reclaim_state();
2280 current->flags &= ~PF_MEMALLOC;
2281
2282 cond_resched();
2283
2284 return progress;
2285 }
2286
2287 /* The really slow allocator path where we enter direct reclaim */
2288 static inline struct page *
2289 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2290 struct zonelist *zonelist, enum zone_type high_zoneidx,
2291 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2292 int migratetype, unsigned long *did_some_progress)
2293 {
2294 struct page *page = NULL;
2295 bool drained = false;
2296
2297 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2298 nodemask);
2299 if (unlikely(!(*did_some_progress)))
2300 return NULL;
2301
2302 /* After successful reclaim, reconsider all zones for allocation */
2303 if (IS_ENABLED(CONFIG_NUMA))
2304 zlc_clear_zones_full(zonelist);
2305
2306 retry:
2307 page = get_page_from_freelist(gfp_mask, nodemask, order,
2308 zonelist, high_zoneidx,
2309 alloc_flags & ~ALLOC_NO_WATERMARKS,
2310 preferred_zone, migratetype);
2311
2312 /*
2313 * If an allocation failed after direct reclaim, it could be because
2314 * pages are pinned on the per-cpu lists. Drain them and try again
2315 */
2316 if (!page && !drained) {
2317 drain_all_pages();
2318 drained = true;
2319 goto retry;
2320 }
2321
2322 return page;
2323 }
2324
2325 /*
2326 * This is called in the allocator slow-path if the allocation request is of
2327 * sufficient urgency to ignore watermarks and take other desperate measures
2328 */
2329 static inline struct page *
2330 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2331 struct zonelist *zonelist, enum zone_type high_zoneidx,
2332 nodemask_t *nodemask, struct zone *preferred_zone,
2333 int migratetype)
2334 {
2335 struct page *page;
2336
2337 do {
2338 page = get_page_from_freelist(gfp_mask, nodemask, order,
2339 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2340 preferred_zone, migratetype);
2341
2342 if (!page && gfp_mask & __GFP_NOFAIL)
2343 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2344 } while (!page && (gfp_mask & __GFP_NOFAIL));
2345
2346 return page;
2347 }
2348
2349 static inline
2350 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2351 enum zone_type high_zoneidx,
2352 enum zone_type classzone_idx)
2353 {
2354 struct zoneref *z;
2355 struct zone *zone;
2356
2357 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2358 wakeup_kswapd(zone, order, classzone_idx);
2359 }
2360
2361 static inline int
2362 gfp_to_alloc_flags(gfp_t gfp_mask)
2363 {
2364 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2365 const gfp_t wait = gfp_mask & __GFP_WAIT;
2366
2367 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2368 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2369
2370 /*
2371 * The caller may dip into page reserves a bit more if the caller
2372 * cannot run direct reclaim, or if the caller has realtime scheduling
2373 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2374 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2375 */
2376 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2377
2378 if (!wait) {
2379 /*
2380 * Not worth trying to allocate harder for
2381 * __GFP_NOMEMALLOC even if it can't schedule.
2382 */
2383 if (!(gfp_mask & __GFP_NOMEMALLOC))
2384 alloc_flags |= ALLOC_HARDER;
2385 /*
2386 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2387 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2388 */
2389 alloc_flags &= ~ALLOC_CPUSET;
2390 } else if (unlikely(rt_task(current)) && !in_interrupt())
2391 alloc_flags |= ALLOC_HARDER;
2392
2393 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2394 if (gfp_mask & __GFP_MEMALLOC)
2395 alloc_flags |= ALLOC_NO_WATERMARKS;
2396 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2397 alloc_flags |= ALLOC_NO_WATERMARKS;
2398 else if (!in_interrupt() &&
2399 ((current->flags & PF_MEMALLOC) ||
2400 unlikely(test_thread_flag(TIF_MEMDIE))))
2401 alloc_flags |= ALLOC_NO_WATERMARKS;
2402 }
2403 #ifdef CONFIG_CMA
2404 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2405 alloc_flags |= ALLOC_CMA;
2406 #endif
2407 return alloc_flags;
2408 }
2409
2410 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2411 {
2412 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2413 }
2414
2415 static inline struct page *
2416 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2417 struct zonelist *zonelist, enum zone_type high_zoneidx,
2418 nodemask_t *nodemask, struct zone *preferred_zone,
2419 int migratetype)
2420 {
2421 const gfp_t wait = gfp_mask & __GFP_WAIT;
2422 struct page *page = NULL;
2423 int alloc_flags;
2424 unsigned long pages_reclaimed = 0;
2425 unsigned long did_some_progress;
2426 bool sync_migration = false;
2427 bool deferred_compaction = false;
2428 bool contended_compaction = false;
2429
2430 /*
2431 * In the slowpath, we sanity check order to avoid ever trying to
2432 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2433 * be using allocators in order of preference for an area that is
2434 * too large.
2435 */
2436 if (order >= MAX_ORDER) {
2437 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2438 return NULL;
2439 }
2440
2441 /*
2442 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2443 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2444 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2445 * using a larger set of nodes after it has established that the
2446 * allowed per node queues are empty and that nodes are
2447 * over allocated.
2448 */
2449 if (IS_ENABLED(CONFIG_NUMA) &&
2450 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2451 goto nopage;
2452
2453 restart:
2454 if (!(gfp_mask & __GFP_NO_KSWAPD))
2455 wake_all_kswapd(order, zonelist, high_zoneidx,
2456 zone_idx(preferred_zone));
2457
2458 /*
2459 * OK, we're below the kswapd watermark and have kicked background
2460 * reclaim. Now things get more complex, so set up alloc_flags according
2461 * to how we want to proceed.
2462 */
2463 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2464
2465 /*
2466 * Find the true preferred zone if the allocation is unconstrained by
2467 * cpusets.
2468 */
2469 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2470 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2471 &preferred_zone);
2472
2473 rebalance:
2474 /* This is the last chance, in general, before the goto nopage. */
2475 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2476 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2477 preferred_zone, migratetype);
2478 if (page)
2479 goto got_pg;
2480
2481 /* Allocate without watermarks if the context allows */
2482 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2483 /*
2484 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2485 * the allocation is high priority and these type of
2486 * allocations are system rather than user orientated
2487 */
2488 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2489
2490 page = __alloc_pages_high_priority(gfp_mask, order,
2491 zonelist, high_zoneidx, nodemask,
2492 preferred_zone, migratetype);
2493 if (page) {
2494 goto got_pg;
2495 }
2496 }
2497
2498 /* Atomic allocations - we can't balance anything */
2499 if (!wait)
2500 goto nopage;
2501
2502 /* Avoid recursion of direct reclaim */
2503 if (current->flags & PF_MEMALLOC)
2504 goto nopage;
2505
2506 /* Avoid allocations with no watermarks from looping endlessly */
2507 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2508 goto nopage;
2509
2510 /*
2511 * Try direct compaction. The first pass is asynchronous. Subsequent
2512 * attempts after direct reclaim are synchronous
2513 */
2514 page = __alloc_pages_direct_compact(gfp_mask, order,
2515 zonelist, high_zoneidx,
2516 nodemask,
2517 alloc_flags, preferred_zone,
2518 migratetype, sync_migration,
2519 &contended_compaction,
2520 &deferred_compaction,
2521 &did_some_progress);
2522 if (page)
2523 goto got_pg;
2524 sync_migration = true;
2525
2526 /*
2527 * If compaction is deferred for high-order allocations, it is because
2528 * sync compaction recently failed. In this is the case and the caller
2529 * requested a movable allocation that does not heavily disrupt the
2530 * system then fail the allocation instead of entering direct reclaim.
2531 */
2532 if ((deferred_compaction || contended_compaction) &&
2533 (gfp_mask & __GFP_NO_KSWAPD))
2534 goto nopage;
2535
2536 /* Try direct reclaim and then allocating */
2537 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2538 zonelist, high_zoneidx,
2539 nodemask,
2540 alloc_flags, preferred_zone,
2541 migratetype, &did_some_progress);
2542 if (page)
2543 goto got_pg;
2544
2545 /*
2546 * If we failed to make any progress reclaiming, then we are
2547 * running out of options and have to consider going OOM
2548 */
2549 if (!did_some_progress) {
2550 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2551 if (oom_killer_disabled)
2552 goto nopage;
2553 /* Coredumps can quickly deplete all memory reserves */
2554 if ((current->flags & PF_DUMPCORE) &&
2555 !(gfp_mask & __GFP_NOFAIL))
2556 goto nopage;
2557 page = __alloc_pages_may_oom(gfp_mask, order,
2558 zonelist, high_zoneidx,
2559 nodemask, preferred_zone,
2560 migratetype);
2561 if (page)
2562 goto got_pg;
2563
2564 if (!(gfp_mask & __GFP_NOFAIL)) {
2565 /*
2566 * The oom killer is not called for high-order
2567 * allocations that may fail, so if no progress
2568 * is being made, there are no other options and
2569 * retrying is unlikely to help.
2570 */
2571 if (order > PAGE_ALLOC_COSTLY_ORDER)
2572 goto nopage;
2573 /*
2574 * The oom killer is not called for lowmem
2575 * allocations to prevent needlessly killing
2576 * innocent tasks.
2577 */
2578 if (high_zoneidx < ZONE_NORMAL)
2579 goto nopage;
2580 }
2581
2582 goto restart;
2583 }
2584 }
2585
2586 /* Check if we should retry the allocation */
2587 pages_reclaimed += did_some_progress;
2588 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2589 pages_reclaimed)) {
2590 /* Wait for some write requests to complete then retry */
2591 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2592 goto rebalance;
2593 } else {
2594 /*
2595 * High-order allocations do not necessarily loop after
2596 * direct reclaim and reclaim/compaction depends on compaction
2597 * being called after reclaim so call directly if necessary
2598 */
2599 page = __alloc_pages_direct_compact(gfp_mask, order,
2600 zonelist, high_zoneidx,
2601 nodemask,
2602 alloc_flags, preferred_zone,
2603 migratetype, sync_migration,
2604 &contended_compaction,
2605 &deferred_compaction,
2606 &did_some_progress);
2607 if (page)
2608 goto got_pg;
2609 }
2610
2611 nopage:
2612 warn_alloc_failed(gfp_mask, order, NULL);
2613 return page;
2614 got_pg:
2615 if (kmemcheck_enabled)
2616 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2617
2618 return page;
2619 }
2620
2621 /*
2622 * This is the 'heart' of the zoned buddy allocator.
2623 */
2624 struct page *
2625 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2626 struct zonelist *zonelist, nodemask_t *nodemask)
2627 {
2628 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2629 struct zone *preferred_zone;
2630 struct page *page = NULL;
2631 int migratetype = allocflags_to_migratetype(gfp_mask);
2632 unsigned int cpuset_mems_cookie;
2633 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2634 struct mem_cgroup *memcg = NULL;
2635
2636 gfp_mask &= gfp_allowed_mask;
2637
2638 lockdep_trace_alloc(gfp_mask);
2639
2640 might_sleep_if(gfp_mask & __GFP_WAIT);
2641
2642 if (should_fail_alloc_page(gfp_mask, order))
2643 return NULL;
2644
2645 /*
2646 * Check the zones suitable for the gfp_mask contain at least one
2647 * valid zone. It's possible to have an empty zonelist as a result
2648 * of GFP_THISNODE and a memoryless node
2649 */
2650 if (unlikely(!zonelist->_zonerefs->zone))
2651 return NULL;
2652
2653 /*
2654 * Will only have any effect when __GFP_KMEMCG is set. This is
2655 * verified in the (always inline) callee
2656 */
2657 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2658 return NULL;
2659
2660 retry_cpuset:
2661 cpuset_mems_cookie = get_mems_allowed();
2662
2663 /* The preferred zone is used for statistics later */
2664 first_zones_zonelist(zonelist, high_zoneidx,
2665 nodemask ? : &cpuset_current_mems_allowed,
2666 &preferred_zone);
2667 if (!preferred_zone)
2668 goto out;
2669
2670 #ifdef CONFIG_CMA
2671 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2672 alloc_flags |= ALLOC_CMA;
2673 #endif
2674 /* First allocation attempt */
2675 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2676 zonelist, high_zoneidx, alloc_flags,
2677 preferred_zone, migratetype);
2678 if (unlikely(!page)) {
2679 /*
2680 * Runtime PM, block IO and its error handling path
2681 * can deadlock because I/O on the device might not
2682 * complete.
2683 */
2684 gfp_mask = memalloc_noio_flags(gfp_mask);
2685 page = __alloc_pages_slowpath(gfp_mask, order,
2686 zonelist, high_zoneidx, nodemask,
2687 preferred_zone, migratetype);
2688 }
2689
2690 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2691
2692 out:
2693 /*
2694 * When updating a task's mems_allowed, it is possible to race with
2695 * parallel threads in such a way that an allocation can fail while
2696 * the mask is being updated. If a page allocation is about to fail,
2697 * check if the cpuset changed during allocation and if so, retry.
2698 */
2699 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2700 goto retry_cpuset;
2701
2702 memcg_kmem_commit_charge(page, memcg, order);
2703
2704 return page;
2705 }
2706 EXPORT_SYMBOL(__alloc_pages_nodemask);
2707
2708 /*
2709 * Common helper functions.
2710 */
2711 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2712 {
2713 struct page *page;
2714
2715 /*
2716 * __get_free_pages() returns a 32-bit address, which cannot represent
2717 * a highmem page
2718 */
2719 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2720
2721 page = alloc_pages(gfp_mask, order);
2722 if (!page)
2723 return 0;
2724 return (unsigned long) page_address(page);
2725 }
2726 EXPORT_SYMBOL(__get_free_pages);
2727
2728 unsigned long get_zeroed_page(gfp_t gfp_mask)
2729 {
2730 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2731 }
2732 EXPORT_SYMBOL(get_zeroed_page);
2733
2734 void __free_pages(struct page *page, unsigned int order)
2735 {
2736 if (put_page_testzero(page)) {
2737 if (order == 0)
2738 free_hot_cold_page(page, 0);
2739 else
2740 __free_pages_ok(page, order);
2741 }
2742 }
2743
2744 EXPORT_SYMBOL(__free_pages);
2745
2746 void free_pages(unsigned long addr, unsigned int order)
2747 {
2748 if (addr != 0) {
2749 VM_BUG_ON(!virt_addr_valid((void *)addr));
2750 __free_pages(virt_to_page((void *)addr), order);
2751 }
2752 }
2753
2754 EXPORT_SYMBOL(free_pages);
2755
2756 /*
2757 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2758 * pages allocated with __GFP_KMEMCG.
2759 *
2760 * Those pages are accounted to a particular memcg, embedded in the
2761 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2762 * for that information only to find out that it is NULL for users who have no
2763 * interest in that whatsoever, we provide these functions.
2764 *
2765 * The caller knows better which flags it relies on.
2766 */
2767 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2768 {
2769 memcg_kmem_uncharge_pages(page, order);
2770 __free_pages(page, order);
2771 }
2772
2773 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2774 {
2775 if (addr != 0) {
2776 VM_BUG_ON(!virt_addr_valid((void *)addr));
2777 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2778 }
2779 }
2780
2781 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2782 {
2783 if (addr) {
2784 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2785 unsigned long used = addr + PAGE_ALIGN(size);
2786
2787 split_page(virt_to_page((void *)addr), order);
2788 while (used < alloc_end) {
2789 free_page(used);
2790 used += PAGE_SIZE;
2791 }
2792 }
2793 return (void *)addr;
2794 }
2795
2796 /**
2797 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2798 * @size: the number of bytes to allocate
2799 * @gfp_mask: GFP flags for the allocation
2800 *
2801 * This function is similar to alloc_pages(), except that it allocates the
2802 * minimum number of pages to satisfy the request. alloc_pages() can only
2803 * allocate memory in power-of-two pages.
2804 *
2805 * This function is also limited by MAX_ORDER.
2806 *
2807 * Memory allocated by this function must be released by free_pages_exact().
2808 */
2809 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2810 {
2811 unsigned int order = get_order(size);
2812 unsigned long addr;
2813
2814 addr = __get_free_pages(gfp_mask, order);
2815 return make_alloc_exact(addr, order, size);
2816 }
2817 EXPORT_SYMBOL(alloc_pages_exact);
2818
2819 /**
2820 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2821 * pages on a node.
2822 * @nid: the preferred node ID where memory should be allocated
2823 * @size: the number of bytes to allocate
2824 * @gfp_mask: GFP flags for the allocation
2825 *
2826 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2827 * back.
2828 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2829 * but is not exact.
2830 */
2831 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2832 {
2833 unsigned order = get_order(size);
2834 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2835 if (!p)
2836 return NULL;
2837 return make_alloc_exact((unsigned long)page_address(p), order, size);
2838 }
2839 EXPORT_SYMBOL(alloc_pages_exact_nid);
2840
2841 /**
2842 * free_pages_exact - release memory allocated via alloc_pages_exact()
2843 * @virt: the value returned by alloc_pages_exact.
2844 * @size: size of allocation, same value as passed to alloc_pages_exact().
2845 *
2846 * Release the memory allocated by a previous call to alloc_pages_exact.
2847 */
2848 void free_pages_exact(void *virt, size_t size)
2849 {
2850 unsigned long addr = (unsigned long)virt;
2851 unsigned long end = addr + PAGE_ALIGN(size);
2852
2853 while (addr < end) {
2854 free_page(addr);
2855 addr += PAGE_SIZE;
2856 }
2857 }
2858 EXPORT_SYMBOL(free_pages_exact);
2859
2860 /**
2861 * nr_free_zone_pages - count number of pages beyond high watermark
2862 * @offset: The zone index of the highest zone
2863 *
2864 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2865 * high watermark within all zones at or below a given zone index. For each
2866 * zone, the number of pages is calculated as:
2867 * managed_pages - high_pages
2868 */
2869 static unsigned long nr_free_zone_pages(int offset)
2870 {
2871 struct zoneref *z;
2872 struct zone *zone;
2873
2874 /* Just pick one node, since fallback list is circular */
2875 unsigned long sum = 0;
2876
2877 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2878
2879 for_each_zone_zonelist(zone, z, zonelist, offset) {
2880 unsigned long size = zone->managed_pages;
2881 unsigned long high = high_wmark_pages(zone);
2882 if (size > high)
2883 sum += size - high;
2884 }
2885
2886 return sum;
2887 }
2888
2889 /**
2890 * nr_free_buffer_pages - count number of pages beyond high watermark
2891 *
2892 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2893 * watermark within ZONE_DMA and ZONE_NORMAL.
2894 */
2895 unsigned long nr_free_buffer_pages(void)
2896 {
2897 return nr_free_zone_pages(gfp_zone(GFP_USER));
2898 }
2899 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2900
2901 /**
2902 * nr_free_pagecache_pages - count number of pages beyond high watermark
2903 *
2904 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2905 * high watermark within all zones.
2906 */
2907 unsigned long nr_free_pagecache_pages(void)
2908 {
2909 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2910 }
2911
2912 static inline void show_node(struct zone *zone)
2913 {
2914 if (IS_ENABLED(CONFIG_NUMA))
2915 printk("Node %d ", zone_to_nid(zone));
2916 }
2917
2918 void si_meminfo(struct sysinfo *val)
2919 {
2920 val->totalram = totalram_pages;
2921 val->sharedram = 0;
2922 val->freeram = global_page_state(NR_FREE_PAGES);
2923 val->bufferram = nr_blockdev_pages();
2924 val->totalhigh = totalhigh_pages;
2925 val->freehigh = nr_free_highpages();
2926 val->mem_unit = PAGE_SIZE;
2927 }
2928
2929 EXPORT_SYMBOL(si_meminfo);
2930
2931 #ifdef CONFIG_NUMA
2932 void si_meminfo_node(struct sysinfo *val, int nid)
2933 {
2934 int zone_type; /* needs to be signed */
2935 unsigned long managed_pages = 0;
2936 pg_data_t *pgdat = NODE_DATA(nid);
2937
2938 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2939 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2940 val->totalram = managed_pages;
2941 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2942 #ifdef CONFIG_HIGHMEM
2943 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2944 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2945 NR_FREE_PAGES);
2946 #else
2947 val->totalhigh = 0;
2948 val->freehigh = 0;
2949 #endif
2950 val->mem_unit = PAGE_SIZE;
2951 }
2952 #endif
2953
2954 /*
2955 * Determine whether the node should be displayed or not, depending on whether
2956 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2957 */
2958 bool skip_free_areas_node(unsigned int flags, int nid)
2959 {
2960 bool ret = false;
2961 unsigned int cpuset_mems_cookie;
2962
2963 if (!(flags & SHOW_MEM_FILTER_NODES))
2964 goto out;
2965
2966 do {
2967 cpuset_mems_cookie = get_mems_allowed();
2968 ret = !node_isset(nid, cpuset_current_mems_allowed);
2969 } while (!put_mems_allowed(cpuset_mems_cookie));
2970 out:
2971 return ret;
2972 }
2973
2974 #define K(x) ((x) << (PAGE_SHIFT-10))
2975
2976 static void show_migration_types(unsigned char type)
2977 {
2978 static const char types[MIGRATE_TYPES] = {
2979 [MIGRATE_UNMOVABLE] = 'U',
2980 [MIGRATE_RECLAIMABLE] = 'E',
2981 [MIGRATE_MOVABLE] = 'M',
2982 [MIGRATE_RESERVE] = 'R',
2983 #ifdef CONFIG_CMA
2984 [MIGRATE_CMA] = 'C',
2985 #endif
2986 #ifdef CONFIG_MEMORY_ISOLATION
2987 [MIGRATE_ISOLATE] = 'I',
2988 #endif
2989 };
2990 char tmp[MIGRATE_TYPES + 1];
2991 char *p = tmp;
2992 int i;
2993
2994 for (i = 0; i < MIGRATE_TYPES; i++) {
2995 if (type & (1 << i))
2996 *p++ = types[i];
2997 }
2998
2999 *p = '\0';
3000 printk("(%s) ", tmp);
3001 }
3002
3003 /*
3004 * Show free area list (used inside shift_scroll-lock stuff)
3005 * We also calculate the percentage fragmentation. We do this by counting the
3006 * memory on each free list with the exception of the first item on the list.
3007 * Suppresses nodes that are not allowed by current's cpuset if
3008 * SHOW_MEM_FILTER_NODES is passed.
3009 */
3010 void show_free_areas(unsigned int filter)
3011 {
3012 int cpu;
3013 struct zone *zone;
3014
3015 for_each_populated_zone(zone) {
3016 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3017 continue;
3018 show_node(zone);
3019 printk("%s per-cpu:\n", zone->name);
3020
3021 for_each_online_cpu(cpu) {
3022 struct per_cpu_pageset *pageset;
3023
3024 pageset = per_cpu_ptr(zone->pageset, cpu);
3025
3026 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3027 cpu, pageset->pcp.high,
3028 pageset->pcp.batch, pageset->pcp.count);
3029 }
3030 }
3031
3032 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3033 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3034 " unevictable:%lu"
3035 " dirty:%lu writeback:%lu unstable:%lu\n"
3036 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3037 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3038 " free_cma:%lu\n",
3039 global_page_state(NR_ACTIVE_ANON),
3040 global_page_state(NR_INACTIVE_ANON),
3041 global_page_state(NR_ISOLATED_ANON),
3042 global_page_state(NR_ACTIVE_FILE),
3043 global_page_state(NR_INACTIVE_FILE),
3044 global_page_state(NR_ISOLATED_FILE),
3045 global_page_state(NR_UNEVICTABLE),
3046 global_page_state(NR_FILE_DIRTY),
3047 global_page_state(NR_WRITEBACK),
3048 global_page_state(NR_UNSTABLE_NFS),
3049 global_page_state(NR_FREE_PAGES),
3050 global_page_state(NR_SLAB_RECLAIMABLE),
3051 global_page_state(NR_SLAB_UNRECLAIMABLE),
3052 global_page_state(NR_FILE_MAPPED),
3053 global_page_state(NR_SHMEM),
3054 global_page_state(NR_PAGETABLE),
3055 global_page_state(NR_BOUNCE),
3056 global_page_state(NR_FREE_CMA_PAGES));
3057
3058 for_each_populated_zone(zone) {
3059 int i;
3060
3061 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3062 continue;
3063 show_node(zone);
3064 printk("%s"
3065 " free:%lukB"
3066 " min:%lukB"
3067 " low:%lukB"
3068 " high:%lukB"
3069 " active_anon:%lukB"
3070 " inactive_anon:%lukB"
3071 " active_file:%lukB"
3072 " inactive_file:%lukB"
3073 " unevictable:%lukB"
3074 " isolated(anon):%lukB"
3075 " isolated(file):%lukB"
3076 " present:%lukB"
3077 " managed:%lukB"
3078 " mlocked:%lukB"
3079 " dirty:%lukB"
3080 " writeback:%lukB"
3081 " mapped:%lukB"
3082 " shmem:%lukB"
3083 " slab_reclaimable:%lukB"
3084 " slab_unreclaimable:%lukB"
3085 " kernel_stack:%lukB"
3086 " pagetables:%lukB"
3087 " unstable:%lukB"
3088 " bounce:%lukB"
3089 " free_cma:%lukB"
3090 " writeback_tmp:%lukB"
3091 " pages_scanned:%lu"
3092 " all_unreclaimable? %s"
3093 "\n",
3094 zone->name,
3095 K(zone_page_state(zone, NR_FREE_PAGES)),
3096 K(min_wmark_pages(zone)),
3097 K(low_wmark_pages(zone)),
3098 K(high_wmark_pages(zone)),
3099 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3100 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3101 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3102 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3103 K(zone_page_state(zone, NR_UNEVICTABLE)),
3104 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3105 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3106 K(zone->present_pages),
3107 K(zone->managed_pages),
3108 K(zone_page_state(zone, NR_MLOCK)),
3109 K(zone_page_state(zone, NR_FILE_DIRTY)),
3110 K(zone_page_state(zone, NR_WRITEBACK)),
3111 K(zone_page_state(zone, NR_FILE_MAPPED)),
3112 K(zone_page_state(zone, NR_SHMEM)),
3113 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3114 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3115 zone_page_state(zone, NR_KERNEL_STACK) *
3116 THREAD_SIZE / 1024,
3117 K(zone_page_state(zone, NR_PAGETABLE)),
3118 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3119 K(zone_page_state(zone, NR_BOUNCE)),
3120 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3121 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3122 zone->pages_scanned,
3123 (zone->all_unreclaimable ? "yes" : "no")
3124 );
3125 printk("lowmem_reserve[]:");
3126 for (i = 0; i < MAX_NR_ZONES; i++)
3127 printk(" %lu", zone->lowmem_reserve[i]);
3128 printk("\n");
3129 }
3130
3131 for_each_populated_zone(zone) {
3132 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3133 unsigned char types[MAX_ORDER];
3134
3135 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3136 continue;
3137 show_node(zone);
3138 printk("%s: ", zone->name);
3139
3140 spin_lock_irqsave(&zone->lock, flags);
3141 for (order = 0; order < MAX_ORDER; order++) {
3142 struct free_area *area = &zone->free_area[order];
3143 int type;
3144
3145 nr[order] = area->nr_free;
3146 total += nr[order] << order;
3147
3148 types[order] = 0;
3149 for (type = 0; type < MIGRATE_TYPES; type++) {
3150 if (!list_empty(&area->free_list[type]))
3151 types[order] |= 1 << type;
3152 }
3153 }
3154 spin_unlock_irqrestore(&zone->lock, flags);
3155 for (order = 0; order < MAX_ORDER; order++) {
3156 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3157 if (nr[order])
3158 show_migration_types(types[order]);
3159 }
3160 printk("= %lukB\n", K(total));
3161 }
3162
3163 hugetlb_show_meminfo();
3164
3165 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3166
3167 show_swap_cache_info();
3168 }
3169
3170 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3171 {
3172 zoneref->zone = zone;
3173 zoneref->zone_idx = zone_idx(zone);
3174 }
3175
3176 /*
3177 * Builds allocation fallback zone lists.
3178 *
3179 * Add all populated zones of a node to the zonelist.
3180 */
3181 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3182 int nr_zones)
3183 {
3184 struct zone *zone;
3185 enum zone_type zone_type = MAX_NR_ZONES;
3186
3187 do {
3188 zone_type--;
3189 zone = pgdat->node_zones + zone_type;
3190 if (populated_zone(zone)) {
3191 zoneref_set_zone(zone,
3192 &zonelist->_zonerefs[nr_zones++]);
3193 check_highest_zone(zone_type);
3194 }
3195 } while (zone_type);
3196
3197 return nr_zones;
3198 }
3199
3200
3201 /*
3202 * zonelist_order:
3203 * 0 = automatic detection of better ordering.
3204 * 1 = order by ([node] distance, -zonetype)
3205 * 2 = order by (-zonetype, [node] distance)
3206 *
3207 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3208 * the same zonelist. So only NUMA can configure this param.
3209 */
3210 #define ZONELIST_ORDER_DEFAULT 0
3211 #define ZONELIST_ORDER_NODE 1
3212 #define ZONELIST_ORDER_ZONE 2
3213
3214 /* zonelist order in the kernel.
3215 * set_zonelist_order() will set this to NODE or ZONE.
3216 */
3217 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3218 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3219
3220
3221 #ifdef CONFIG_NUMA
3222 /* The value user specified ....changed by config */
3223 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3224 /* string for sysctl */
3225 #define NUMA_ZONELIST_ORDER_LEN 16
3226 char numa_zonelist_order[16] = "default";
3227
3228 /*
3229 * interface for configure zonelist ordering.
3230 * command line option "numa_zonelist_order"
3231 * = "[dD]efault - default, automatic configuration.
3232 * = "[nN]ode - order by node locality, then by zone within node
3233 * = "[zZ]one - order by zone, then by locality within zone
3234 */
3235
3236 static int __parse_numa_zonelist_order(char *s)
3237 {
3238 if (*s == 'd' || *s == 'D') {
3239 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3240 } else if (*s == 'n' || *s == 'N') {
3241 user_zonelist_order = ZONELIST_ORDER_NODE;
3242 } else if (*s == 'z' || *s == 'Z') {
3243 user_zonelist_order = ZONELIST_ORDER_ZONE;
3244 } else {
3245 printk(KERN_WARNING
3246 "Ignoring invalid numa_zonelist_order value: "
3247 "%s\n", s);
3248 return -EINVAL;
3249 }
3250 return 0;
3251 }
3252
3253 static __init int setup_numa_zonelist_order(char *s)
3254 {
3255 int ret;
3256
3257 if (!s)
3258 return 0;
3259
3260 ret = __parse_numa_zonelist_order(s);
3261 if (ret == 0)
3262 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3263
3264 return ret;
3265 }
3266 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3267
3268 /*
3269 * sysctl handler for numa_zonelist_order
3270 */
3271 int numa_zonelist_order_handler(ctl_table *table, int write,
3272 void __user *buffer, size_t *length,
3273 loff_t *ppos)
3274 {
3275 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3276 int ret;
3277 static DEFINE_MUTEX(zl_order_mutex);
3278
3279 mutex_lock(&zl_order_mutex);
3280 if (write) {
3281 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3282 ret = -EINVAL;
3283 goto out;
3284 }
3285 strcpy(saved_string, (char *)table->data);
3286 }
3287 ret = proc_dostring(table, write, buffer, length, ppos);
3288 if (ret)
3289 goto out;
3290 if (write) {
3291 int oldval = user_zonelist_order;
3292
3293 ret = __parse_numa_zonelist_order((char *)table->data);
3294 if (ret) {
3295 /*
3296 * bogus value. restore saved string
3297 */
3298 strncpy((char *)table->data, saved_string,
3299 NUMA_ZONELIST_ORDER_LEN);
3300 user_zonelist_order = oldval;
3301 } else if (oldval != user_zonelist_order) {
3302 mutex_lock(&zonelists_mutex);
3303 build_all_zonelists(NULL, NULL);
3304 mutex_unlock(&zonelists_mutex);
3305 }
3306 }
3307 out:
3308 mutex_unlock(&zl_order_mutex);
3309 return ret;
3310 }
3311
3312
3313 #define MAX_NODE_LOAD (nr_online_nodes)
3314 static int node_load[MAX_NUMNODES];
3315
3316 /**
3317 * find_next_best_node - find the next node that should appear in a given node's fallback list
3318 * @node: node whose fallback list we're appending
3319 * @used_node_mask: nodemask_t of already used nodes
3320 *
3321 * We use a number of factors to determine which is the next node that should
3322 * appear on a given node's fallback list. The node should not have appeared
3323 * already in @node's fallback list, and it should be the next closest node
3324 * according to the distance array (which contains arbitrary distance values
3325 * from each node to each node in the system), and should also prefer nodes
3326 * with no CPUs, since presumably they'll have very little allocation pressure
3327 * on them otherwise.
3328 * It returns -1 if no node is found.
3329 */
3330 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3331 {
3332 int n, val;
3333 int min_val = INT_MAX;
3334 int best_node = NUMA_NO_NODE;
3335 const struct cpumask *tmp = cpumask_of_node(0);
3336
3337 /* Use the local node if we haven't already */
3338 if (!node_isset(node, *used_node_mask)) {
3339 node_set(node, *used_node_mask);
3340 return node;
3341 }
3342
3343 for_each_node_state(n, N_MEMORY) {
3344
3345 /* Don't want a node to appear more than once */
3346 if (node_isset(n, *used_node_mask))
3347 continue;
3348
3349 /* Use the distance array to find the distance */
3350 val = node_distance(node, n);
3351
3352 /* Penalize nodes under us ("prefer the next node") */
3353 val += (n < node);
3354
3355 /* Give preference to headless and unused nodes */
3356 tmp = cpumask_of_node(n);
3357 if (!cpumask_empty(tmp))
3358 val += PENALTY_FOR_NODE_WITH_CPUS;
3359
3360 /* Slight preference for less loaded node */
3361 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3362 val += node_load[n];
3363
3364 if (val < min_val) {
3365 min_val = val;
3366 best_node = n;
3367 }
3368 }
3369
3370 if (best_node >= 0)
3371 node_set(best_node, *used_node_mask);
3372
3373 return best_node;
3374 }
3375
3376
3377 /*
3378 * Build zonelists ordered by node and zones within node.
3379 * This results in maximum locality--normal zone overflows into local
3380 * DMA zone, if any--but risks exhausting DMA zone.
3381 */
3382 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3383 {
3384 int j;
3385 struct zonelist *zonelist;
3386
3387 zonelist = &pgdat->node_zonelists[0];
3388 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3389 ;
3390 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3391 zonelist->_zonerefs[j].zone = NULL;
3392 zonelist->_zonerefs[j].zone_idx = 0;
3393 }
3394
3395 /*
3396 * Build gfp_thisnode zonelists
3397 */
3398 static void build_thisnode_zonelists(pg_data_t *pgdat)
3399 {
3400 int j;
3401 struct zonelist *zonelist;
3402
3403 zonelist = &pgdat->node_zonelists[1];
3404 j = build_zonelists_node(pgdat, zonelist, 0);
3405 zonelist->_zonerefs[j].zone = NULL;
3406 zonelist->_zonerefs[j].zone_idx = 0;
3407 }
3408
3409 /*
3410 * Build zonelists ordered by zone and nodes within zones.
3411 * This results in conserving DMA zone[s] until all Normal memory is
3412 * exhausted, but results in overflowing to remote node while memory
3413 * may still exist in local DMA zone.
3414 */
3415 static int node_order[MAX_NUMNODES];
3416
3417 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3418 {
3419 int pos, j, node;
3420 int zone_type; /* needs to be signed */
3421 struct zone *z;
3422 struct zonelist *zonelist;
3423
3424 zonelist = &pgdat->node_zonelists[0];
3425 pos = 0;
3426 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3427 for (j = 0; j < nr_nodes; j++) {
3428 node = node_order[j];
3429 z = &NODE_DATA(node)->node_zones[zone_type];
3430 if (populated_zone(z)) {
3431 zoneref_set_zone(z,
3432 &zonelist->_zonerefs[pos++]);
3433 check_highest_zone(zone_type);
3434 }
3435 }
3436 }
3437 zonelist->_zonerefs[pos].zone = NULL;
3438 zonelist->_zonerefs[pos].zone_idx = 0;
3439 }
3440
3441 static int default_zonelist_order(void)
3442 {
3443 int nid, zone_type;
3444 unsigned long low_kmem_size, total_size;
3445 struct zone *z;
3446 int average_size;
3447 /*
3448 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3449 * If they are really small and used heavily, the system can fall
3450 * into OOM very easily.
3451 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3452 */
3453 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3454 low_kmem_size = 0;
3455 total_size = 0;
3456 for_each_online_node(nid) {
3457 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3458 z = &NODE_DATA(nid)->node_zones[zone_type];
3459 if (populated_zone(z)) {
3460 if (zone_type < ZONE_NORMAL)
3461 low_kmem_size += z->managed_pages;
3462 total_size += z->managed_pages;
3463 } else if (zone_type == ZONE_NORMAL) {
3464 /*
3465 * If any node has only lowmem, then node order
3466 * is preferred to allow kernel allocations
3467 * locally; otherwise, they can easily infringe
3468 * on other nodes when there is an abundance of
3469 * lowmem available to allocate from.
3470 */
3471 return ZONELIST_ORDER_NODE;
3472 }
3473 }
3474 }
3475 if (!low_kmem_size || /* there are no DMA area. */
3476 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3477 return ZONELIST_ORDER_NODE;
3478 /*
3479 * look into each node's config.
3480 * If there is a node whose DMA/DMA32 memory is very big area on
3481 * local memory, NODE_ORDER may be suitable.
3482 */
3483 average_size = total_size /
3484 (nodes_weight(node_states[N_MEMORY]) + 1);
3485 for_each_online_node(nid) {
3486 low_kmem_size = 0;
3487 total_size = 0;
3488 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3489 z = &NODE_DATA(nid)->node_zones[zone_type];
3490 if (populated_zone(z)) {
3491 if (zone_type < ZONE_NORMAL)
3492 low_kmem_size += z->present_pages;
3493 total_size += z->present_pages;
3494 }
3495 }
3496 if (low_kmem_size &&
3497 total_size > average_size && /* ignore small node */
3498 low_kmem_size > total_size * 70/100)
3499 return ZONELIST_ORDER_NODE;
3500 }
3501 return ZONELIST_ORDER_ZONE;
3502 }
3503
3504 static void set_zonelist_order(void)
3505 {
3506 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3507 current_zonelist_order = default_zonelist_order();
3508 else
3509 current_zonelist_order = user_zonelist_order;
3510 }
3511
3512 static void build_zonelists(pg_data_t *pgdat)
3513 {
3514 int j, node, load;
3515 enum zone_type i;
3516 nodemask_t used_mask;
3517 int local_node, prev_node;
3518 struct zonelist *zonelist;
3519 int order = current_zonelist_order;
3520
3521 /* initialize zonelists */
3522 for (i = 0; i < MAX_ZONELISTS; i++) {
3523 zonelist = pgdat->node_zonelists + i;
3524 zonelist->_zonerefs[0].zone = NULL;
3525 zonelist->_zonerefs[0].zone_idx = 0;
3526 }
3527
3528 /* NUMA-aware ordering of nodes */
3529 local_node = pgdat->node_id;
3530 load = nr_online_nodes;
3531 prev_node = local_node;
3532 nodes_clear(used_mask);
3533
3534 memset(node_order, 0, sizeof(node_order));
3535 j = 0;
3536
3537 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3538 /*
3539 * We don't want to pressure a particular node.
3540 * So adding penalty to the first node in same
3541 * distance group to make it round-robin.
3542 */
3543 if (node_distance(local_node, node) !=
3544 node_distance(local_node, prev_node))
3545 node_load[node] = load;
3546
3547 prev_node = node;
3548 load--;
3549 if (order == ZONELIST_ORDER_NODE)
3550 build_zonelists_in_node_order(pgdat, node);
3551 else
3552 node_order[j++] = node; /* remember order */
3553 }
3554
3555 if (order == ZONELIST_ORDER_ZONE) {
3556 /* calculate node order -- i.e., DMA last! */
3557 build_zonelists_in_zone_order(pgdat, j);
3558 }
3559
3560 build_thisnode_zonelists(pgdat);
3561 }
3562
3563 /* Construct the zonelist performance cache - see further mmzone.h */
3564 static void build_zonelist_cache(pg_data_t *pgdat)
3565 {
3566 struct zonelist *zonelist;
3567 struct zonelist_cache *zlc;
3568 struct zoneref *z;
3569
3570 zonelist = &pgdat->node_zonelists[0];
3571 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3572 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3573 for (z = zonelist->_zonerefs; z->zone; z++)
3574 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3575 }
3576
3577 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3578 /*
3579 * Return node id of node used for "local" allocations.
3580 * I.e., first node id of first zone in arg node's generic zonelist.
3581 * Used for initializing percpu 'numa_mem', which is used primarily
3582 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3583 */
3584 int local_memory_node(int node)
3585 {
3586 struct zone *zone;
3587
3588 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3589 gfp_zone(GFP_KERNEL),
3590 NULL,
3591 &zone);
3592 return zone->node;
3593 }
3594 #endif
3595
3596 #else /* CONFIG_NUMA */
3597
3598 static void set_zonelist_order(void)
3599 {
3600 current_zonelist_order = ZONELIST_ORDER_ZONE;
3601 }
3602
3603 static void build_zonelists(pg_data_t *pgdat)
3604 {
3605 int node, local_node;
3606 enum zone_type j;
3607 struct zonelist *zonelist;
3608
3609 local_node = pgdat->node_id;
3610
3611 zonelist = &pgdat->node_zonelists[0];
3612 j = build_zonelists_node(pgdat, zonelist, 0);
3613
3614 /*
3615 * Now we build the zonelist so that it contains the zones
3616 * of all the other nodes.
3617 * We don't want to pressure a particular node, so when
3618 * building the zones for node N, we make sure that the
3619 * zones coming right after the local ones are those from
3620 * node N+1 (modulo N)
3621 */
3622 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3623 if (!node_online(node))
3624 continue;
3625 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3626 }
3627 for (node = 0; node < local_node; node++) {
3628 if (!node_online(node))
3629 continue;
3630 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3631 }
3632
3633 zonelist->_zonerefs[j].zone = NULL;
3634 zonelist->_zonerefs[j].zone_idx = 0;
3635 }
3636
3637 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3638 static void build_zonelist_cache(pg_data_t *pgdat)
3639 {
3640 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3641 }
3642
3643 #endif /* CONFIG_NUMA */
3644
3645 /*
3646 * Boot pageset table. One per cpu which is going to be used for all
3647 * zones and all nodes. The parameters will be set in such a way
3648 * that an item put on a list will immediately be handed over to
3649 * the buddy list. This is safe since pageset manipulation is done
3650 * with interrupts disabled.
3651 *
3652 * The boot_pagesets must be kept even after bootup is complete for
3653 * unused processors and/or zones. They do play a role for bootstrapping
3654 * hotplugged processors.
3655 *
3656 * zoneinfo_show() and maybe other functions do
3657 * not check if the processor is online before following the pageset pointer.
3658 * Other parts of the kernel may not check if the zone is available.
3659 */
3660 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3661 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3662 static void setup_zone_pageset(struct zone *zone);
3663
3664 /*
3665 * Global mutex to protect against size modification of zonelists
3666 * as well as to serialize pageset setup for the new populated zone.
3667 */
3668 DEFINE_MUTEX(zonelists_mutex);
3669
3670 /* return values int ....just for stop_machine() */
3671 static int __build_all_zonelists(void *data)
3672 {
3673 int nid;
3674 int cpu;
3675 pg_data_t *self = data;
3676
3677 #ifdef CONFIG_NUMA
3678 memset(node_load, 0, sizeof(node_load));
3679 #endif
3680
3681 if (self && !node_online(self->node_id)) {
3682 build_zonelists(self);
3683 build_zonelist_cache(self);
3684 }
3685
3686 for_each_online_node(nid) {
3687 pg_data_t *pgdat = NODE_DATA(nid);
3688
3689 build_zonelists(pgdat);
3690 build_zonelist_cache(pgdat);
3691 }
3692
3693 /*
3694 * Initialize the boot_pagesets that are going to be used
3695 * for bootstrapping processors. The real pagesets for
3696 * each zone will be allocated later when the per cpu
3697 * allocator is available.
3698 *
3699 * boot_pagesets are used also for bootstrapping offline
3700 * cpus if the system is already booted because the pagesets
3701 * are needed to initialize allocators on a specific cpu too.
3702 * F.e. the percpu allocator needs the page allocator which
3703 * needs the percpu allocator in order to allocate its pagesets
3704 * (a chicken-egg dilemma).
3705 */
3706 for_each_possible_cpu(cpu) {
3707 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3708
3709 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3710 /*
3711 * We now know the "local memory node" for each node--
3712 * i.e., the node of the first zone in the generic zonelist.
3713 * Set up numa_mem percpu variable for on-line cpus. During
3714 * boot, only the boot cpu should be on-line; we'll init the
3715 * secondary cpus' numa_mem as they come on-line. During
3716 * node/memory hotplug, we'll fixup all on-line cpus.
3717 */
3718 if (cpu_online(cpu))
3719 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3720 #endif
3721 }
3722
3723 return 0;
3724 }
3725
3726 /*
3727 * Called with zonelists_mutex held always
3728 * unless system_state == SYSTEM_BOOTING.
3729 */
3730 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3731 {
3732 set_zonelist_order();
3733
3734 if (system_state == SYSTEM_BOOTING) {
3735 __build_all_zonelists(NULL);
3736 mminit_verify_zonelist();
3737 cpuset_init_current_mems_allowed();
3738 } else {
3739 #ifdef CONFIG_MEMORY_HOTPLUG
3740 if (zone)
3741 setup_zone_pageset(zone);
3742 #endif
3743 /* we have to stop all cpus to guarantee there is no user
3744 of zonelist */
3745 stop_machine(__build_all_zonelists, pgdat, NULL);
3746 /* cpuset refresh routine should be here */
3747 }
3748 vm_total_pages = nr_free_pagecache_pages();
3749 /*
3750 * Disable grouping by mobility if the number of pages in the
3751 * system is too low to allow the mechanism to work. It would be
3752 * more accurate, but expensive to check per-zone. This check is
3753 * made on memory-hotadd so a system can start with mobility
3754 * disabled and enable it later
3755 */
3756 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3757 page_group_by_mobility_disabled = 1;
3758 else
3759 page_group_by_mobility_disabled = 0;
3760
3761 printk("Built %i zonelists in %s order, mobility grouping %s. "
3762 "Total pages: %ld\n",
3763 nr_online_nodes,
3764 zonelist_order_name[current_zonelist_order],
3765 page_group_by_mobility_disabled ? "off" : "on",
3766 vm_total_pages);
3767 #ifdef CONFIG_NUMA
3768 printk("Policy zone: %s\n", zone_names[policy_zone]);
3769 #endif
3770 }
3771
3772 /*
3773 * Helper functions to size the waitqueue hash table.
3774 * Essentially these want to choose hash table sizes sufficiently
3775 * large so that collisions trying to wait on pages are rare.
3776 * But in fact, the number of active page waitqueues on typical
3777 * systems is ridiculously low, less than 200. So this is even
3778 * conservative, even though it seems large.
3779 *
3780 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3781 * waitqueues, i.e. the size of the waitq table given the number of pages.
3782 */
3783 #define PAGES_PER_WAITQUEUE 256
3784
3785 #ifndef CONFIG_MEMORY_HOTPLUG
3786 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3787 {
3788 unsigned long size = 1;
3789
3790 pages /= PAGES_PER_WAITQUEUE;
3791
3792 while (size < pages)
3793 size <<= 1;
3794
3795 /*
3796 * Once we have dozens or even hundreds of threads sleeping
3797 * on IO we've got bigger problems than wait queue collision.
3798 * Limit the size of the wait table to a reasonable size.
3799 */
3800 size = min(size, 4096UL);
3801
3802 return max(size, 4UL);
3803 }
3804 #else
3805 /*
3806 * A zone's size might be changed by hot-add, so it is not possible to determine
3807 * a suitable size for its wait_table. So we use the maximum size now.
3808 *
3809 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3810 *
3811 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3812 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3813 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3814 *
3815 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3816 * or more by the traditional way. (See above). It equals:
3817 *
3818 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3819 * ia64(16K page size) : = ( 8G + 4M)byte.
3820 * powerpc (64K page size) : = (32G +16M)byte.
3821 */
3822 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3823 {
3824 return 4096UL;
3825 }
3826 #endif
3827
3828 /*
3829 * This is an integer logarithm so that shifts can be used later
3830 * to extract the more random high bits from the multiplicative
3831 * hash function before the remainder is taken.
3832 */
3833 static inline unsigned long wait_table_bits(unsigned long size)
3834 {
3835 return ffz(~size);
3836 }
3837
3838 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3839
3840 /*
3841 * Check if a pageblock contains reserved pages
3842 */
3843 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3844 {
3845 unsigned long pfn;
3846
3847 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3848 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3849 return 1;
3850 }
3851 return 0;
3852 }
3853
3854 /*
3855 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3856 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3857 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3858 * higher will lead to a bigger reserve which will get freed as contiguous
3859 * blocks as reclaim kicks in
3860 */
3861 static void setup_zone_migrate_reserve(struct zone *zone)
3862 {
3863 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3864 struct page *page;
3865 unsigned long block_migratetype;
3866 int reserve;
3867
3868 /*
3869 * Get the start pfn, end pfn and the number of blocks to reserve
3870 * We have to be careful to be aligned to pageblock_nr_pages to
3871 * make sure that we always check pfn_valid for the first page in
3872 * the block.
3873 */
3874 start_pfn = zone->zone_start_pfn;
3875 end_pfn = zone_end_pfn(zone);
3876 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3877 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3878 pageblock_order;
3879
3880 /*
3881 * Reserve blocks are generally in place to help high-order atomic
3882 * allocations that are short-lived. A min_free_kbytes value that
3883 * would result in more than 2 reserve blocks for atomic allocations
3884 * is assumed to be in place to help anti-fragmentation for the
3885 * future allocation of hugepages at runtime.
3886 */
3887 reserve = min(2, reserve);
3888
3889 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3890 if (!pfn_valid(pfn))
3891 continue;
3892 page = pfn_to_page(pfn);
3893
3894 /* Watch out for overlapping nodes */
3895 if (page_to_nid(page) != zone_to_nid(zone))
3896 continue;
3897
3898 block_migratetype = get_pageblock_migratetype(page);
3899
3900 /* Only test what is necessary when the reserves are not met */
3901 if (reserve > 0) {
3902 /*
3903 * Blocks with reserved pages will never free, skip
3904 * them.
3905 */
3906 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3907 if (pageblock_is_reserved(pfn, block_end_pfn))
3908 continue;
3909
3910 /* If this block is reserved, account for it */
3911 if (block_migratetype == MIGRATE_RESERVE) {
3912 reserve--;
3913 continue;
3914 }
3915
3916 /* Suitable for reserving if this block is movable */
3917 if (block_migratetype == MIGRATE_MOVABLE) {
3918 set_pageblock_migratetype(page,
3919 MIGRATE_RESERVE);
3920 move_freepages_block(zone, page,
3921 MIGRATE_RESERVE);
3922 reserve--;
3923 continue;
3924 }
3925 }
3926
3927 /*
3928 * If the reserve is met and this is a previous reserved block,
3929 * take it back
3930 */
3931 if (block_migratetype == MIGRATE_RESERVE) {
3932 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3933 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3934 }
3935 }
3936 }
3937
3938 /*
3939 * Initially all pages are reserved - free ones are freed
3940 * up by free_all_bootmem() once the early boot process is
3941 * done. Non-atomic initialization, single-pass.
3942 */
3943 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3944 unsigned long start_pfn, enum memmap_context context)
3945 {
3946 struct page *page;
3947 unsigned long end_pfn = start_pfn + size;
3948 unsigned long pfn;
3949 struct zone *z;
3950
3951 if (highest_memmap_pfn < end_pfn - 1)
3952 highest_memmap_pfn = end_pfn - 1;
3953
3954 z = &NODE_DATA(nid)->node_zones[zone];
3955 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3956 /*
3957 * There can be holes in boot-time mem_map[]s
3958 * handed to this function. They do not
3959 * exist on hotplugged memory.
3960 */
3961 if (context == MEMMAP_EARLY) {
3962 if (!early_pfn_valid(pfn))
3963 continue;
3964 if (!early_pfn_in_nid(pfn, nid))
3965 continue;
3966 }
3967 page = pfn_to_page(pfn);
3968 set_page_links(page, zone, nid, pfn);
3969 mminit_verify_page_links(page, zone, nid, pfn);
3970 init_page_count(page);
3971 page_mapcount_reset(page);
3972 page_nid_reset_last(page);
3973 SetPageReserved(page);
3974 /*
3975 * Mark the block movable so that blocks are reserved for
3976 * movable at startup. This will force kernel allocations
3977 * to reserve their blocks rather than leaking throughout
3978 * the address space during boot when many long-lived
3979 * kernel allocations are made. Later some blocks near
3980 * the start are marked MIGRATE_RESERVE by
3981 * setup_zone_migrate_reserve()
3982 *
3983 * bitmap is created for zone's valid pfn range. but memmap
3984 * can be created for invalid pages (for alignment)
3985 * check here not to call set_pageblock_migratetype() against
3986 * pfn out of zone.
3987 */
3988 if ((z->zone_start_pfn <= pfn)
3989 && (pfn < zone_end_pfn(z))
3990 && !(pfn & (pageblock_nr_pages - 1)))
3991 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3992
3993 INIT_LIST_HEAD(&page->lru);
3994 #ifdef WANT_PAGE_VIRTUAL
3995 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3996 if (!is_highmem_idx(zone))
3997 set_page_address(page, __va(pfn << PAGE_SHIFT));
3998 #endif
3999 }
4000 }
4001
4002 static void __meminit zone_init_free_lists(struct zone *zone)
4003 {
4004 int order, t;
4005 for_each_migratetype_order(order, t) {
4006 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4007 zone->free_area[order].nr_free = 0;
4008 }
4009 }
4010
4011 #ifndef __HAVE_ARCH_MEMMAP_INIT
4012 #define memmap_init(size, nid, zone, start_pfn) \
4013 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4014 #endif
4015
4016 static int __meminit zone_batchsize(struct zone *zone)
4017 {
4018 #ifdef CONFIG_MMU
4019 int batch;
4020
4021 /*
4022 * The per-cpu-pages pools are set to around 1000th of the
4023 * size of the zone. But no more than 1/2 of a meg.
4024 *
4025 * OK, so we don't know how big the cache is. So guess.
4026 */
4027 batch = zone->managed_pages / 1024;
4028 if (batch * PAGE_SIZE > 512 * 1024)
4029 batch = (512 * 1024) / PAGE_SIZE;
4030 batch /= 4; /* We effectively *= 4 below */
4031 if (batch < 1)
4032 batch = 1;
4033
4034 /*
4035 * Clamp the batch to a 2^n - 1 value. Having a power
4036 * of 2 value was found to be more likely to have
4037 * suboptimal cache aliasing properties in some cases.
4038 *
4039 * For example if 2 tasks are alternately allocating
4040 * batches of pages, one task can end up with a lot
4041 * of pages of one half of the possible page colors
4042 * and the other with pages of the other colors.
4043 */
4044 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4045
4046 return batch;
4047
4048 #else
4049 /* The deferral and batching of frees should be suppressed under NOMMU
4050 * conditions.
4051 *
4052 * The problem is that NOMMU needs to be able to allocate large chunks
4053 * of contiguous memory as there's no hardware page translation to
4054 * assemble apparent contiguous memory from discontiguous pages.
4055 *
4056 * Queueing large contiguous runs of pages for batching, however,
4057 * causes the pages to actually be freed in smaller chunks. As there
4058 * can be a significant delay between the individual batches being
4059 * recycled, this leads to the once large chunks of space being
4060 * fragmented and becoming unavailable for high-order allocations.
4061 */
4062 return 0;
4063 #endif
4064 }
4065
4066 /*
4067 * pcp->high and pcp->batch values are related and dependent on one another:
4068 * ->batch must never be higher then ->high.
4069 * The following function updates them in a safe manner without read side
4070 * locking.
4071 *
4072 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4073 * those fields changing asynchronously (acording the the above rule).
4074 *
4075 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4076 * outside of boot time (or some other assurance that no concurrent updaters
4077 * exist).
4078 */
4079 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4080 unsigned long batch)
4081 {
4082 /* start with a fail safe value for batch */
4083 pcp->batch = 1;
4084 smp_wmb();
4085
4086 /* Update high, then batch, in order */
4087 pcp->high = high;
4088 smp_wmb();
4089
4090 pcp->batch = batch;
4091 }
4092
4093 /* a companion to pageset_set_high() */
4094 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4095 {
4096 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4097 }
4098
4099 static void pageset_init(struct per_cpu_pageset *p)
4100 {
4101 struct per_cpu_pages *pcp;
4102 int migratetype;
4103
4104 memset(p, 0, sizeof(*p));
4105
4106 pcp = &p->pcp;
4107 pcp->count = 0;
4108 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4109 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4110 }
4111
4112 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4113 {
4114 pageset_init(p);
4115 pageset_set_batch(p, batch);
4116 }
4117
4118 /*
4119 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4120 * to the value high for the pageset p.
4121 */
4122 static void pageset_set_high(struct per_cpu_pageset *p,
4123 unsigned long high)
4124 {
4125 unsigned long batch = max(1UL, high / 4);
4126 if ((high / 4) > (PAGE_SHIFT * 8))
4127 batch = PAGE_SHIFT * 8;
4128
4129 pageset_update(&p->pcp, high, batch);
4130 }
4131
4132 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4133 struct per_cpu_pageset *pcp)
4134 {
4135 if (percpu_pagelist_fraction)
4136 pageset_set_high(pcp,
4137 (zone->managed_pages /
4138 percpu_pagelist_fraction));
4139 else
4140 pageset_set_batch(pcp, zone_batchsize(zone));
4141 }
4142
4143 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4144 {
4145 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4146
4147 pageset_init(pcp);
4148 pageset_set_high_and_batch(zone, pcp);
4149 }
4150
4151 static void __meminit setup_zone_pageset(struct zone *zone)
4152 {
4153 int cpu;
4154 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4155 for_each_possible_cpu(cpu)
4156 zone_pageset_init(zone, cpu);
4157 }
4158
4159 /*
4160 * Allocate per cpu pagesets and initialize them.
4161 * Before this call only boot pagesets were available.
4162 */
4163 void __init setup_per_cpu_pageset(void)
4164 {
4165 struct zone *zone;
4166
4167 for_each_populated_zone(zone)
4168 setup_zone_pageset(zone);
4169 }
4170
4171 static noinline __init_refok
4172 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4173 {
4174 int i;
4175 struct pglist_data *pgdat = zone->zone_pgdat;
4176 size_t alloc_size;
4177
4178 /*
4179 * The per-page waitqueue mechanism uses hashed waitqueues
4180 * per zone.
4181 */
4182 zone->wait_table_hash_nr_entries =
4183 wait_table_hash_nr_entries(zone_size_pages);
4184 zone->wait_table_bits =
4185 wait_table_bits(zone->wait_table_hash_nr_entries);
4186 alloc_size = zone->wait_table_hash_nr_entries
4187 * sizeof(wait_queue_head_t);
4188
4189 if (!slab_is_available()) {
4190 zone->wait_table = (wait_queue_head_t *)
4191 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4192 } else {
4193 /*
4194 * This case means that a zone whose size was 0 gets new memory
4195 * via memory hot-add.
4196 * But it may be the case that a new node was hot-added. In
4197 * this case vmalloc() will not be able to use this new node's
4198 * memory - this wait_table must be initialized to use this new
4199 * node itself as well.
4200 * To use this new node's memory, further consideration will be
4201 * necessary.
4202 */
4203 zone->wait_table = vmalloc(alloc_size);
4204 }
4205 if (!zone->wait_table)
4206 return -ENOMEM;
4207
4208 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4209 init_waitqueue_head(zone->wait_table + i);
4210
4211 return 0;
4212 }
4213
4214 static __meminit void zone_pcp_init(struct zone *zone)
4215 {
4216 /*
4217 * per cpu subsystem is not up at this point. The following code
4218 * relies on the ability of the linker to provide the
4219 * offset of a (static) per cpu variable into the per cpu area.
4220 */
4221 zone->pageset = &boot_pageset;
4222
4223 if (zone->present_pages)
4224 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4225 zone->name, zone->present_pages,
4226 zone_batchsize(zone));
4227 }
4228
4229 int __meminit init_currently_empty_zone(struct zone *zone,
4230 unsigned long zone_start_pfn,
4231 unsigned long size,
4232 enum memmap_context context)
4233 {
4234 struct pglist_data *pgdat = zone->zone_pgdat;
4235 int ret;
4236 ret = zone_wait_table_init(zone, size);
4237 if (ret)
4238 return ret;
4239 pgdat->nr_zones = zone_idx(zone) + 1;
4240
4241 zone->zone_start_pfn = zone_start_pfn;
4242
4243 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4244 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4245 pgdat->node_id,
4246 (unsigned long)zone_idx(zone),
4247 zone_start_pfn, (zone_start_pfn + size));
4248
4249 zone_init_free_lists(zone);
4250
4251 return 0;
4252 }
4253
4254 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4255 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4256 /*
4257 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4258 * Architectures may implement their own version but if add_active_range()
4259 * was used and there are no special requirements, this is a convenient
4260 * alternative
4261 */
4262 int __meminit __early_pfn_to_nid(unsigned long pfn)
4263 {
4264 unsigned long start_pfn, end_pfn;
4265 int i, nid;
4266 /*
4267 * NOTE: The following SMP-unsafe globals are only used early in boot
4268 * when the kernel is running single-threaded.
4269 */
4270 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4271 static int __meminitdata last_nid;
4272
4273 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4274 return last_nid;
4275
4276 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4277 if (start_pfn <= pfn && pfn < end_pfn) {
4278 last_start_pfn = start_pfn;
4279 last_end_pfn = end_pfn;
4280 last_nid = nid;
4281 return nid;
4282 }
4283 /* This is a memory hole */
4284 return -1;
4285 }
4286 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4287
4288 int __meminit early_pfn_to_nid(unsigned long pfn)
4289 {
4290 int nid;
4291
4292 nid = __early_pfn_to_nid(pfn);
4293 if (nid >= 0)
4294 return nid;
4295 /* just returns 0 */
4296 return 0;
4297 }
4298
4299 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4300 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4301 {
4302 int nid;
4303
4304 nid = __early_pfn_to_nid(pfn);
4305 if (nid >= 0 && nid != node)
4306 return false;
4307 return true;
4308 }
4309 #endif
4310
4311 /**
4312 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4313 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4314 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4315 *
4316 * If an architecture guarantees that all ranges registered with
4317 * add_active_ranges() contain no holes and may be freed, this
4318 * this function may be used instead of calling free_bootmem() manually.
4319 */
4320 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4321 {
4322 unsigned long start_pfn, end_pfn;
4323 int i, this_nid;
4324
4325 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4326 start_pfn = min(start_pfn, max_low_pfn);
4327 end_pfn = min(end_pfn, max_low_pfn);
4328
4329 if (start_pfn < end_pfn)
4330 free_bootmem_node(NODE_DATA(this_nid),
4331 PFN_PHYS(start_pfn),
4332 (end_pfn - start_pfn) << PAGE_SHIFT);
4333 }
4334 }
4335
4336 /**
4337 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4338 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4339 *
4340 * If an architecture guarantees that all ranges registered with
4341 * add_active_ranges() contain no holes and may be freed, this
4342 * function may be used instead of calling memory_present() manually.
4343 */
4344 void __init sparse_memory_present_with_active_regions(int nid)
4345 {
4346 unsigned long start_pfn, end_pfn;
4347 int i, this_nid;
4348
4349 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4350 memory_present(this_nid, start_pfn, end_pfn);
4351 }
4352
4353 /**
4354 * get_pfn_range_for_nid - Return the start and end page frames for a node
4355 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4356 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4357 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4358 *
4359 * It returns the start and end page frame of a node based on information
4360 * provided by an arch calling add_active_range(). If called for a node
4361 * with no available memory, a warning is printed and the start and end
4362 * PFNs will be 0.
4363 */
4364 void __meminit get_pfn_range_for_nid(unsigned int nid,
4365 unsigned long *start_pfn, unsigned long *end_pfn)
4366 {
4367 unsigned long this_start_pfn, this_end_pfn;
4368 int i;
4369
4370 *start_pfn = -1UL;
4371 *end_pfn = 0;
4372
4373 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4374 *start_pfn = min(*start_pfn, this_start_pfn);
4375 *end_pfn = max(*end_pfn, this_end_pfn);
4376 }
4377
4378 if (*start_pfn == -1UL)
4379 *start_pfn = 0;
4380 }
4381
4382 /*
4383 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4384 * assumption is made that zones within a node are ordered in monotonic
4385 * increasing memory addresses so that the "highest" populated zone is used
4386 */
4387 static void __init find_usable_zone_for_movable(void)
4388 {
4389 int zone_index;
4390 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4391 if (zone_index == ZONE_MOVABLE)
4392 continue;
4393
4394 if (arch_zone_highest_possible_pfn[zone_index] >
4395 arch_zone_lowest_possible_pfn[zone_index])
4396 break;
4397 }
4398
4399 VM_BUG_ON(zone_index == -1);
4400 movable_zone = zone_index;
4401 }
4402
4403 /*
4404 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4405 * because it is sized independent of architecture. Unlike the other zones,
4406 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4407 * in each node depending on the size of each node and how evenly kernelcore
4408 * is distributed. This helper function adjusts the zone ranges
4409 * provided by the architecture for a given node by using the end of the
4410 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4411 * zones within a node are in order of monotonic increases memory addresses
4412 */
4413 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4414 unsigned long zone_type,
4415 unsigned long node_start_pfn,
4416 unsigned long node_end_pfn,
4417 unsigned long *zone_start_pfn,
4418 unsigned long *zone_end_pfn)
4419 {
4420 /* Only adjust if ZONE_MOVABLE is on this node */
4421 if (zone_movable_pfn[nid]) {
4422 /* Size ZONE_MOVABLE */
4423 if (zone_type == ZONE_MOVABLE) {
4424 *zone_start_pfn = zone_movable_pfn[nid];
4425 *zone_end_pfn = min(node_end_pfn,
4426 arch_zone_highest_possible_pfn[movable_zone]);
4427
4428 /* Adjust for ZONE_MOVABLE starting within this range */
4429 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4430 *zone_end_pfn > zone_movable_pfn[nid]) {
4431 *zone_end_pfn = zone_movable_pfn[nid];
4432
4433 /* Check if this whole range is within ZONE_MOVABLE */
4434 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4435 *zone_start_pfn = *zone_end_pfn;
4436 }
4437 }
4438
4439 /*
4440 * Return the number of pages a zone spans in a node, including holes
4441 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4442 */
4443 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4444 unsigned long zone_type,
4445 unsigned long node_start_pfn,
4446 unsigned long node_end_pfn,
4447 unsigned long *ignored)
4448 {
4449 unsigned long zone_start_pfn, zone_end_pfn;
4450
4451 /* Get the start and end of the zone */
4452 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4453 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4454 adjust_zone_range_for_zone_movable(nid, zone_type,
4455 node_start_pfn, node_end_pfn,
4456 &zone_start_pfn, &zone_end_pfn);
4457
4458 /* Check that this node has pages within the zone's required range */
4459 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4460 return 0;
4461
4462 /* Move the zone boundaries inside the node if necessary */
4463 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4464 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4465
4466 /* Return the spanned pages */
4467 return zone_end_pfn - zone_start_pfn;
4468 }
4469
4470 /*
4471 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4472 * then all holes in the requested range will be accounted for.
4473 */
4474 unsigned long __meminit __absent_pages_in_range(int nid,
4475 unsigned long range_start_pfn,
4476 unsigned long range_end_pfn)
4477 {
4478 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4479 unsigned long start_pfn, end_pfn;
4480 int i;
4481
4482 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4483 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4484 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4485 nr_absent -= end_pfn - start_pfn;
4486 }
4487 return nr_absent;
4488 }
4489
4490 /**
4491 * absent_pages_in_range - Return number of page frames in holes within a range
4492 * @start_pfn: The start PFN to start searching for holes
4493 * @end_pfn: The end PFN to stop searching for holes
4494 *
4495 * It returns the number of pages frames in memory holes within a range.
4496 */
4497 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4498 unsigned long end_pfn)
4499 {
4500 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4501 }
4502
4503 /* Return the number of page frames in holes in a zone on a node */
4504 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4505 unsigned long zone_type,
4506 unsigned long node_start_pfn,
4507 unsigned long node_end_pfn,
4508 unsigned long *ignored)
4509 {
4510 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4511 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4512 unsigned long zone_start_pfn, zone_end_pfn;
4513
4514 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4515 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4516
4517 adjust_zone_range_for_zone_movable(nid, zone_type,
4518 node_start_pfn, node_end_pfn,
4519 &zone_start_pfn, &zone_end_pfn);
4520 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4521 }
4522
4523 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4524 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4525 unsigned long zone_type,
4526 unsigned long node_start_pfn,
4527 unsigned long node_end_pfn,
4528 unsigned long *zones_size)
4529 {
4530 return zones_size[zone_type];
4531 }
4532
4533 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4534 unsigned long zone_type,
4535 unsigned long node_start_pfn,
4536 unsigned long node_end_pfn,
4537 unsigned long *zholes_size)
4538 {
4539 if (!zholes_size)
4540 return 0;
4541
4542 return zholes_size[zone_type];
4543 }
4544
4545 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4546
4547 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4548 unsigned long node_start_pfn,
4549 unsigned long node_end_pfn,
4550 unsigned long *zones_size,
4551 unsigned long *zholes_size)
4552 {
4553 unsigned long realtotalpages, totalpages = 0;
4554 enum zone_type i;
4555
4556 for (i = 0; i < MAX_NR_ZONES; i++)
4557 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4558 node_start_pfn,
4559 node_end_pfn,
4560 zones_size);
4561 pgdat->node_spanned_pages = totalpages;
4562
4563 realtotalpages = totalpages;
4564 for (i = 0; i < MAX_NR_ZONES; i++)
4565 realtotalpages -=
4566 zone_absent_pages_in_node(pgdat->node_id, i,
4567 node_start_pfn, node_end_pfn,
4568 zholes_size);
4569 pgdat->node_present_pages = realtotalpages;
4570 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4571 realtotalpages);
4572 }
4573
4574 #ifndef CONFIG_SPARSEMEM
4575 /*
4576 * Calculate the size of the zone->blockflags rounded to an unsigned long
4577 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4578 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4579 * round what is now in bits to nearest long in bits, then return it in
4580 * bytes.
4581 */
4582 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4583 {
4584 unsigned long usemapsize;
4585
4586 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4587 usemapsize = roundup(zonesize, pageblock_nr_pages);
4588 usemapsize = usemapsize >> pageblock_order;
4589 usemapsize *= NR_PAGEBLOCK_BITS;
4590 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4591
4592 return usemapsize / 8;
4593 }
4594
4595 static void __init setup_usemap(struct pglist_data *pgdat,
4596 struct zone *zone,
4597 unsigned long zone_start_pfn,
4598 unsigned long zonesize)
4599 {
4600 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4601 zone->pageblock_flags = NULL;
4602 if (usemapsize)
4603 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4604 usemapsize);
4605 }
4606 #else
4607 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4608 unsigned long zone_start_pfn, unsigned long zonesize) {}
4609 #endif /* CONFIG_SPARSEMEM */
4610
4611 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4612
4613 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4614 void __paginginit set_pageblock_order(void)
4615 {
4616 unsigned int order;
4617
4618 /* Check that pageblock_nr_pages has not already been setup */
4619 if (pageblock_order)
4620 return;
4621
4622 if (HPAGE_SHIFT > PAGE_SHIFT)
4623 order = HUGETLB_PAGE_ORDER;
4624 else
4625 order = MAX_ORDER - 1;
4626
4627 /*
4628 * Assume the largest contiguous order of interest is a huge page.
4629 * This value may be variable depending on boot parameters on IA64 and
4630 * powerpc.
4631 */
4632 pageblock_order = order;
4633 }
4634 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4635
4636 /*
4637 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4638 * is unused as pageblock_order is set at compile-time. See
4639 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4640 * the kernel config
4641 */
4642 void __paginginit set_pageblock_order(void)
4643 {
4644 }
4645
4646 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4647
4648 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4649 unsigned long present_pages)
4650 {
4651 unsigned long pages = spanned_pages;
4652
4653 /*
4654 * Provide a more accurate estimation if there are holes within
4655 * the zone and SPARSEMEM is in use. If there are holes within the
4656 * zone, each populated memory region may cost us one or two extra
4657 * memmap pages due to alignment because memmap pages for each
4658 * populated regions may not naturally algined on page boundary.
4659 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4660 */
4661 if (spanned_pages > present_pages + (present_pages >> 4) &&
4662 IS_ENABLED(CONFIG_SPARSEMEM))
4663 pages = present_pages;
4664
4665 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4666 }
4667
4668 /*
4669 * Set up the zone data structures:
4670 * - mark all pages reserved
4671 * - mark all memory queues empty
4672 * - clear the memory bitmaps
4673 *
4674 * NOTE: pgdat should get zeroed by caller.
4675 */
4676 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4677 unsigned long node_start_pfn, unsigned long node_end_pfn,
4678 unsigned long *zones_size, unsigned long *zholes_size)
4679 {
4680 enum zone_type j;
4681 int nid = pgdat->node_id;
4682 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4683 int ret;
4684
4685 pgdat_resize_init(pgdat);
4686 #ifdef CONFIG_NUMA_BALANCING
4687 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4688 pgdat->numabalancing_migrate_nr_pages = 0;
4689 pgdat->numabalancing_migrate_next_window = jiffies;
4690 #endif
4691 init_waitqueue_head(&pgdat->kswapd_wait);
4692 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4693 pgdat_page_cgroup_init(pgdat);
4694
4695 for (j = 0; j < MAX_NR_ZONES; j++) {
4696 struct zone *zone = pgdat->node_zones + j;
4697 unsigned long size, realsize, freesize, memmap_pages;
4698
4699 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4700 node_end_pfn, zones_size);
4701 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4702 node_start_pfn,
4703 node_end_pfn,
4704 zholes_size);
4705
4706 /*
4707 * Adjust freesize so that it accounts for how much memory
4708 * is used by this zone for memmap. This affects the watermark
4709 * and per-cpu initialisations
4710 */
4711 memmap_pages = calc_memmap_size(size, realsize);
4712 if (freesize >= memmap_pages) {
4713 freesize -= memmap_pages;
4714 if (memmap_pages)
4715 printk(KERN_DEBUG
4716 " %s zone: %lu pages used for memmap\n",
4717 zone_names[j], memmap_pages);
4718 } else
4719 printk(KERN_WARNING
4720 " %s zone: %lu pages exceeds freesize %lu\n",
4721 zone_names[j], memmap_pages, freesize);
4722
4723 /* Account for reserved pages */
4724 if (j == 0 && freesize > dma_reserve) {
4725 freesize -= dma_reserve;
4726 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4727 zone_names[0], dma_reserve);
4728 }
4729
4730 if (!is_highmem_idx(j))
4731 nr_kernel_pages += freesize;
4732 /* Charge for highmem memmap if there are enough kernel pages */
4733 else if (nr_kernel_pages > memmap_pages * 2)
4734 nr_kernel_pages -= memmap_pages;
4735 nr_all_pages += freesize;
4736
4737 zone->spanned_pages = size;
4738 zone->present_pages = realsize;
4739 /*
4740 * Set an approximate value for lowmem here, it will be adjusted
4741 * when the bootmem allocator frees pages into the buddy system.
4742 * And all highmem pages will be managed by the buddy system.
4743 */
4744 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4745 #ifdef CONFIG_NUMA
4746 zone->node = nid;
4747 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4748 / 100;
4749 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4750 #endif
4751 zone->name = zone_names[j];
4752 spin_lock_init(&zone->lock);
4753 spin_lock_init(&zone->lru_lock);
4754 zone_seqlock_init(zone);
4755 zone->zone_pgdat = pgdat;
4756
4757 zone_pcp_init(zone);
4758 lruvec_init(&zone->lruvec);
4759 if (!size)
4760 continue;
4761
4762 set_pageblock_order();
4763 setup_usemap(pgdat, zone, zone_start_pfn, size);
4764 ret = init_currently_empty_zone(zone, zone_start_pfn,
4765 size, MEMMAP_EARLY);
4766 BUG_ON(ret);
4767 memmap_init(size, nid, j, zone_start_pfn);
4768 zone_start_pfn += size;
4769 }
4770 }
4771
4772 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4773 {
4774 /* Skip empty nodes */
4775 if (!pgdat->node_spanned_pages)
4776 return;
4777
4778 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4779 /* ia64 gets its own node_mem_map, before this, without bootmem */
4780 if (!pgdat->node_mem_map) {
4781 unsigned long size, start, end;
4782 struct page *map;
4783
4784 /*
4785 * The zone's endpoints aren't required to be MAX_ORDER
4786 * aligned but the node_mem_map endpoints must be in order
4787 * for the buddy allocator to function correctly.
4788 */
4789 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4790 end = pgdat_end_pfn(pgdat);
4791 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4792 size = (end - start) * sizeof(struct page);
4793 map = alloc_remap(pgdat->node_id, size);
4794 if (!map)
4795 map = alloc_bootmem_node_nopanic(pgdat, size);
4796 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4797 }
4798 #ifndef CONFIG_NEED_MULTIPLE_NODES
4799 /*
4800 * With no DISCONTIG, the global mem_map is just set as node 0's
4801 */
4802 if (pgdat == NODE_DATA(0)) {
4803 mem_map = NODE_DATA(0)->node_mem_map;
4804 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4805 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4806 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4807 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4808 }
4809 #endif
4810 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4811 }
4812
4813 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4814 unsigned long node_start_pfn, unsigned long *zholes_size)
4815 {
4816 pg_data_t *pgdat = NODE_DATA(nid);
4817 unsigned long start_pfn = 0;
4818 unsigned long end_pfn = 0;
4819
4820 /* pg_data_t should be reset to zero when it's allocated */
4821 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4822
4823 pgdat->node_id = nid;
4824 pgdat->node_start_pfn = node_start_pfn;
4825 init_zone_allows_reclaim(nid);
4826 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4827 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4828 #endif
4829 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4830 zones_size, zholes_size);
4831
4832 alloc_node_mem_map(pgdat);
4833 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4834 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4835 nid, (unsigned long)pgdat,
4836 (unsigned long)pgdat->node_mem_map);
4837 #endif
4838
4839 free_area_init_core(pgdat, start_pfn, end_pfn,
4840 zones_size, zholes_size);
4841 }
4842
4843 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4844
4845 #if MAX_NUMNODES > 1
4846 /*
4847 * Figure out the number of possible node ids.
4848 */
4849 void __init setup_nr_node_ids(void)
4850 {
4851 unsigned int node;
4852 unsigned int highest = 0;
4853
4854 for_each_node_mask(node, node_possible_map)
4855 highest = node;
4856 nr_node_ids = highest + 1;
4857 }
4858 #endif
4859
4860 /**
4861 * node_map_pfn_alignment - determine the maximum internode alignment
4862 *
4863 * This function should be called after node map is populated and sorted.
4864 * It calculates the maximum power of two alignment which can distinguish
4865 * all the nodes.
4866 *
4867 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4868 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4869 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4870 * shifted, 1GiB is enough and this function will indicate so.
4871 *
4872 * This is used to test whether pfn -> nid mapping of the chosen memory
4873 * model has fine enough granularity to avoid incorrect mapping for the
4874 * populated node map.
4875 *
4876 * Returns the determined alignment in pfn's. 0 if there is no alignment
4877 * requirement (single node).
4878 */
4879 unsigned long __init node_map_pfn_alignment(void)
4880 {
4881 unsigned long accl_mask = 0, last_end = 0;
4882 unsigned long start, end, mask;
4883 int last_nid = -1;
4884 int i, nid;
4885
4886 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4887 if (!start || last_nid < 0 || last_nid == nid) {
4888 last_nid = nid;
4889 last_end = end;
4890 continue;
4891 }
4892
4893 /*
4894 * Start with a mask granular enough to pin-point to the
4895 * start pfn and tick off bits one-by-one until it becomes
4896 * too coarse to separate the current node from the last.
4897 */
4898 mask = ~((1 << __ffs(start)) - 1);
4899 while (mask && last_end <= (start & (mask << 1)))
4900 mask <<= 1;
4901
4902 /* accumulate all internode masks */
4903 accl_mask |= mask;
4904 }
4905
4906 /* convert mask to number of pages */
4907 return ~accl_mask + 1;
4908 }
4909
4910 /* Find the lowest pfn for a node */
4911 static unsigned long __init find_min_pfn_for_node(int nid)
4912 {
4913 unsigned long min_pfn = ULONG_MAX;
4914 unsigned long start_pfn;
4915 int i;
4916
4917 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4918 min_pfn = min(min_pfn, start_pfn);
4919
4920 if (min_pfn == ULONG_MAX) {
4921 printk(KERN_WARNING
4922 "Could not find start_pfn for node %d\n", nid);
4923 return 0;
4924 }
4925
4926 return min_pfn;
4927 }
4928
4929 /**
4930 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4931 *
4932 * It returns the minimum PFN based on information provided via
4933 * add_active_range().
4934 */
4935 unsigned long __init find_min_pfn_with_active_regions(void)
4936 {
4937 return find_min_pfn_for_node(MAX_NUMNODES);
4938 }
4939
4940 /*
4941 * early_calculate_totalpages()
4942 * Sum pages in active regions for movable zone.
4943 * Populate N_MEMORY for calculating usable_nodes.
4944 */
4945 static unsigned long __init early_calculate_totalpages(void)
4946 {
4947 unsigned long totalpages = 0;
4948 unsigned long start_pfn, end_pfn;
4949 int i, nid;
4950
4951 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4952 unsigned long pages = end_pfn - start_pfn;
4953
4954 totalpages += pages;
4955 if (pages)
4956 node_set_state(nid, N_MEMORY);
4957 }
4958 return totalpages;
4959 }
4960
4961 /*
4962 * Find the PFN the Movable zone begins in each node. Kernel memory
4963 * is spread evenly between nodes as long as the nodes have enough
4964 * memory. When they don't, some nodes will have more kernelcore than
4965 * others
4966 */
4967 static void __init find_zone_movable_pfns_for_nodes(void)
4968 {
4969 int i, nid;
4970 unsigned long usable_startpfn;
4971 unsigned long kernelcore_node, kernelcore_remaining;
4972 /* save the state before borrow the nodemask */
4973 nodemask_t saved_node_state = node_states[N_MEMORY];
4974 unsigned long totalpages = early_calculate_totalpages();
4975 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4976
4977 /*
4978 * If movablecore was specified, calculate what size of
4979 * kernelcore that corresponds so that memory usable for
4980 * any allocation type is evenly spread. If both kernelcore
4981 * and movablecore are specified, then the value of kernelcore
4982 * will be used for required_kernelcore if it's greater than
4983 * what movablecore would have allowed.
4984 */
4985 if (required_movablecore) {
4986 unsigned long corepages;
4987
4988 /*
4989 * Round-up so that ZONE_MOVABLE is at least as large as what
4990 * was requested by the user
4991 */
4992 required_movablecore =
4993 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4994 corepages = totalpages - required_movablecore;
4995
4996 required_kernelcore = max(required_kernelcore, corepages);
4997 }
4998
4999 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5000 if (!required_kernelcore)
5001 goto out;
5002
5003 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5004 find_usable_zone_for_movable();
5005 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5006
5007 restart:
5008 /* Spread kernelcore memory as evenly as possible throughout nodes */
5009 kernelcore_node = required_kernelcore / usable_nodes;
5010 for_each_node_state(nid, N_MEMORY) {
5011 unsigned long start_pfn, end_pfn;
5012
5013 /*
5014 * Recalculate kernelcore_node if the division per node
5015 * now exceeds what is necessary to satisfy the requested
5016 * amount of memory for the kernel
5017 */
5018 if (required_kernelcore < kernelcore_node)
5019 kernelcore_node = required_kernelcore / usable_nodes;
5020
5021 /*
5022 * As the map is walked, we track how much memory is usable
5023 * by the kernel using kernelcore_remaining. When it is
5024 * 0, the rest of the node is usable by ZONE_MOVABLE
5025 */
5026 kernelcore_remaining = kernelcore_node;
5027
5028 /* Go through each range of PFNs within this node */
5029 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5030 unsigned long size_pages;
5031
5032 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5033 if (start_pfn >= end_pfn)
5034 continue;
5035
5036 /* Account for what is only usable for kernelcore */
5037 if (start_pfn < usable_startpfn) {
5038 unsigned long kernel_pages;
5039 kernel_pages = min(end_pfn, usable_startpfn)
5040 - start_pfn;
5041
5042 kernelcore_remaining -= min(kernel_pages,
5043 kernelcore_remaining);
5044 required_kernelcore -= min(kernel_pages,
5045 required_kernelcore);
5046
5047 /* Continue if range is now fully accounted */
5048 if (end_pfn <= usable_startpfn) {
5049
5050 /*
5051 * Push zone_movable_pfn to the end so
5052 * that if we have to rebalance
5053 * kernelcore across nodes, we will
5054 * not double account here
5055 */
5056 zone_movable_pfn[nid] = end_pfn;
5057 continue;
5058 }
5059 start_pfn = usable_startpfn;
5060 }
5061
5062 /*
5063 * The usable PFN range for ZONE_MOVABLE is from
5064 * start_pfn->end_pfn. Calculate size_pages as the
5065 * number of pages used as kernelcore
5066 */
5067 size_pages = end_pfn - start_pfn;
5068 if (size_pages > kernelcore_remaining)
5069 size_pages = kernelcore_remaining;
5070 zone_movable_pfn[nid] = start_pfn + size_pages;
5071
5072 /*
5073 * Some kernelcore has been met, update counts and
5074 * break if the kernelcore for this node has been
5075 * satisfied
5076 */
5077 required_kernelcore -= min(required_kernelcore,
5078 size_pages);
5079 kernelcore_remaining -= size_pages;
5080 if (!kernelcore_remaining)
5081 break;
5082 }
5083 }
5084
5085 /*
5086 * If there is still required_kernelcore, we do another pass with one
5087 * less node in the count. This will push zone_movable_pfn[nid] further
5088 * along on the nodes that still have memory until kernelcore is
5089 * satisfied
5090 */
5091 usable_nodes--;
5092 if (usable_nodes && required_kernelcore > usable_nodes)
5093 goto restart;
5094
5095 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5096 for (nid = 0; nid < MAX_NUMNODES; nid++)
5097 zone_movable_pfn[nid] =
5098 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5099
5100 out:
5101 /* restore the node_state */
5102 node_states[N_MEMORY] = saved_node_state;
5103 }
5104
5105 /* Any regular or high memory on that node ? */
5106 static void check_for_memory(pg_data_t *pgdat, int nid)
5107 {
5108 enum zone_type zone_type;
5109
5110 if (N_MEMORY == N_NORMAL_MEMORY)
5111 return;
5112
5113 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5114 struct zone *zone = &pgdat->node_zones[zone_type];
5115 if (zone->present_pages) {
5116 node_set_state(nid, N_HIGH_MEMORY);
5117 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5118 zone_type <= ZONE_NORMAL)
5119 node_set_state(nid, N_NORMAL_MEMORY);
5120 break;
5121 }
5122 }
5123 }
5124
5125 /**
5126 * free_area_init_nodes - Initialise all pg_data_t and zone data
5127 * @max_zone_pfn: an array of max PFNs for each zone
5128 *
5129 * This will call free_area_init_node() for each active node in the system.
5130 * Using the page ranges provided by add_active_range(), the size of each
5131 * zone in each node and their holes is calculated. If the maximum PFN
5132 * between two adjacent zones match, it is assumed that the zone is empty.
5133 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5134 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5135 * starts where the previous one ended. For example, ZONE_DMA32 starts
5136 * at arch_max_dma_pfn.
5137 */
5138 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5139 {
5140 unsigned long start_pfn, end_pfn;
5141 int i, nid;
5142
5143 /* Record where the zone boundaries are */
5144 memset(arch_zone_lowest_possible_pfn, 0,
5145 sizeof(arch_zone_lowest_possible_pfn));
5146 memset(arch_zone_highest_possible_pfn, 0,
5147 sizeof(arch_zone_highest_possible_pfn));
5148 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5149 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5150 for (i = 1; i < MAX_NR_ZONES; i++) {
5151 if (i == ZONE_MOVABLE)
5152 continue;
5153 arch_zone_lowest_possible_pfn[i] =
5154 arch_zone_highest_possible_pfn[i-1];
5155 arch_zone_highest_possible_pfn[i] =
5156 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5157 }
5158 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5159 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5160
5161 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5162 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5163 find_zone_movable_pfns_for_nodes();
5164
5165 /* Print out the zone ranges */
5166 printk("Zone ranges:\n");
5167 for (i = 0; i < MAX_NR_ZONES; i++) {
5168 if (i == ZONE_MOVABLE)
5169 continue;
5170 printk(KERN_CONT " %-8s ", zone_names[i]);
5171 if (arch_zone_lowest_possible_pfn[i] ==
5172 arch_zone_highest_possible_pfn[i])
5173 printk(KERN_CONT "empty\n");
5174 else
5175 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5176 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5177 (arch_zone_highest_possible_pfn[i]
5178 << PAGE_SHIFT) - 1);
5179 }
5180
5181 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5182 printk("Movable zone start for each node\n");
5183 for (i = 0; i < MAX_NUMNODES; i++) {
5184 if (zone_movable_pfn[i])
5185 printk(" Node %d: %#010lx\n", i,
5186 zone_movable_pfn[i] << PAGE_SHIFT);
5187 }
5188
5189 /* Print out the early node map */
5190 printk("Early memory node ranges\n");
5191 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5192 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5193 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5194
5195 /* Initialise every node */
5196 mminit_verify_pageflags_layout();
5197 setup_nr_node_ids();
5198 for_each_online_node(nid) {
5199 pg_data_t *pgdat = NODE_DATA(nid);
5200 free_area_init_node(nid, NULL,
5201 find_min_pfn_for_node(nid), NULL);
5202
5203 /* Any memory on that node */
5204 if (pgdat->node_present_pages)
5205 node_set_state(nid, N_MEMORY);
5206 check_for_memory(pgdat, nid);
5207 }
5208 }
5209
5210 static int __init cmdline_parse_core(char *p, unsigned long *core)
5211 {
5212 unsigned long long coremem;
5213 if (!p)
5214 return -EINVAL;
5215
5216 coremem = memparse(p, &p);
5217 *core = coremem >> PAGE_SHIFT;
5218
5219 /* Paranoid check that UL is enough for the coremem value */
5220 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5221
5222 return 0;
5223 }
5224
5225 /*
5226 * kernelcore=size sets the amount of memory for use for allocations that
5227 * cannot be reclaimed or migrated.
5228 */
5229 static int __init cmdline_parse_kernelcore(char *p)
5230 {
5231 return cmdline_parse_core(p, &required_kernelcore);
5232 }
5233
5234 /*
5235 * movablecore=size sets the amount of memory for use for allocations that
5236 * can be reclaimed or migrated.
5237 */
5238 static int __init cmdline_parse_movablecore(char *p)
5239 {
5240 return cmdline_parse_core(p, &required_movablecore);
5241 }
5242
5243 early_param("kernelcore", cmdline_parse_kernelcore);
5244 early_param("movablecore", cmdline_parse_movablecore);
5245
5246 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5247
5248 void adjust_managed_page_count(struct page *page, long count)
5249 {
5250 spin_lock(&managed_page_count_lock);
5251 page_zone(page)->managed_pages += count;
5252 totalram_pages += count;
5253 #ifdef CONFIG_HIGHMEM
5254 if (PageHighMem(page))
5255 totalhigh_pages += count;
5256 #endif
5257 spin_unlock(&managed_page_count_lock);
5258 }
5259 EXPORT_SYMBOL(adjust_managed_page_count);
5260
5261 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5262 {
5263 void *pos;
5264 unsigned long pages = 0;
5265
5266 start = (void *)PAGE_ALIGN((unsigned long)start);
5267 end = (void *)((unsigned long)end & PAGE_MASK);
5268 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5269 if ((unsigned int)poison <= 0xFF)
5270 memset(pos, poison, PAGE_SIZE);
5271 free_reserved_page(virt_to_page(pos));
5272 }
5273
5274 if (pages && s)
5275 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5276 s, pages << (PAGE_SHIFT - 10), start, end);
5277
5278 return pages;
5279 }
5280 EXPORT_SYMBOL(free_reserved_area);
5281
5282 #ifdef CONFIG_HIGHMEM
5283 void free_highmem_page(struct page *page)
5284 {
5285 __free_reserved_page(page);
5286 totalram_pages++;
5287 page_zone(page)->managed_pages++;
5288 totalhigh_pages++;
5289 }
5290 #endif
5291
5292
5293 void __init mem_init_print_info(const char *str)
5294 {
5295 unsigned long physpages, codesize, datasize, rosize, bss_size;
5296 unsigned long init_code_size, init_data_size;
5297
5298 physpages = get_num_physpages();
5299 codesize = _etext - _stext;
5300 datasize = _edata - _sdata;
5301 rosize = __end_rodata - __start_rodata;
5302 bss_size = __bss_stop - __bss_start;
5303 init_data_size = __init_end - __init_begin;
5304 init_code_size = _einittext - _sinittext;
5305
5306 /*
5307 * Detect special cases and adjust section sizes accordingly:
5308 * 1) .init.* may be embedded into .data sections
5309 * 2) .init.text.* may be out of [__init_begin, __init_end],
5310 * please refer to arch/tile/kernel/vmlinux.lds.S.
5311 * 3) .rodata.* may be embedded into .text or .data sections.
5312 */
5313 #define adj_init_size(start, end, size, pos, adj) \
5314 do { \
5315 if (start <= pos && pos < end && size > adj) \
5316 size -= adj; \
5317 } while (0)
5318
5319 adj_init_size(__init_begin, __init_end, init_data_size,
5320 _sinittext, init_code_size);
5321 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5322 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5323 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5324 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5325
5326 #undef adj_init_size
5327
5328 printk("Memory: %luK/%luK available "
5329 "(%luK kernel code, %luK rwdata, %luK rodata, "
5330 "%luK init, %luK bss, %luK reserved"
5331 #ifdef CONFIG_HIGHMEM
5332 ", %luK highmem"
5333 #endif
5334 "%s%s)\n",
5335 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5336 codesize >> 10, datasize >> 10, rosize >> 10,
5337 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5338 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5339 #ifdef CONFIG_HIGHMEM
5340 totalhigh_pages << (PAGE_SHIFT-10),
5341 #endif
5342 str ? ", " : "", str ? str : "");
5343 }
5344
5345 /**
5346 * set_dma_reserve - set the specified number of pages reserved in the first zone
5347 * @new_dma_reserve: The number of pages to mark reserved
5348 *
5349 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5350 * In the DMA zone, a significant percentage may be consumed by kernel image
5351 * and other unfreeable allocations which can skew the watermarks badly. This
5352 * function may optionally be used to account for unfreeable pages in the
5353 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5354 * smaller per-cpu batchsize.
5355 */
5356 void __init set_dma_reserve(unsigned long new_dma_reserve)
5357 {
5358 dma_reserve = new_dma_reserve;
5359 }
5360
5361 void __init free_area_init(unsigned long *zones_size)
5362 {
5363 free_area_init_node(0, zones_size,
5364 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5365 }
5366
5367 static int page_alloc_cpu_notify(struct notifier_block *self,
5368 unsigned long action, void *hcpu)
5369 {
5370 int cpu = (unsigned long)hcpu;
5371
5372 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5373 lru_add_drain_cpu(cpu);
5374 drain_pages(cpu);
5375
5376 /*
5377 * Spill the event counters of the dead processor
5378 * into the current processors event counters.
5379 * This artificially elevates the count of the current
5380 * processor.
5381 */
5382 vm_events_fold_cpu(cpu);
5383
5384 /*
5385 * Zero the differential counters of the dead processor
5386 * so that the vm statistics are consistent.
5387 *
5388 * This is only okay since the processor is dead and cannot
5389 * race with what we are doing.
5390 */
5391 refresh_cpu_vm_stats(cpu);
5392 }
5393 return NOTIFY_OK;
5394 }
5395
5396 void __init page_alloc_init(void)
5397 {
5398 hotcpu_notifier(page_alloc_cpu_notify, 0);
5399 }
5400
5401 /*
5402 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5403 * or min_free_kbytes changes.
5404 */
5405 static void calculate_totalreserve_pages(void)
5406 {
5407 struct pglist_data *pgdat;
5408 unsigned long reserve_pages = 0;
5409 enum zone_type i, j;
5410
5411 for_each_online_pgdat(pgdat) {
5412 for (i = 0; i < MAX_NR_ZONES; i++) {
5413 struct zone *zone = pgdat->node_zones + i;
5414 unsigned long max = 0;
5415
5416 /* Find valid and maximum lowmem_reserve in the zone */
5417 for (j = i; j < MAX_NR_ZONES; j++) {
5418 if (zone->lowmem_reserve[j] > max)
5419 max = zone->lowmem_reserve[j];
5420 }
5421
5422 /* we treat the high watermark as reserved pages. */
5423 max += high_wmark_pages(zone);
5424
5425 if (max > zone->managed_pages)
5426 max = zone->managed_pages;
5427 reserve_pages += max;
5428 /*
5429 * Lowmem reserves are not available to
5430 * GFP_HIGHUSER page cache allocations and
5431 * kswapd tries to balance zones to their high
5432 * watermark. As a result, neither should be
5433 * regarded as dirtyable memory, to prevent a
5434 * situation where reclaim has to clean pages
5435 * in order to balance the zones.
5436 */
5437 zone->dirty_balance_reserve = max;
5438 }
5439 }
5440 dirty_balance_reserve = reserve_pages;
5441 totalreserve_pages = reserve_pages;
5442 }
5443
5444 /*
5445 * setup_per_zone_lowmem_reserve - called whenever
5446 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5447 * has a correct pages reserved value, so an adequate number of
5448 * pages are left in the zone after a successful __alloc_pages().
5449 */
5450 static void setup_per_zone_lowmem_reserve(void)
5451 {
5452 struct pglist_data *pgdat;
5453 enum zone_type j, idx;
5454
5455 for_each_online_pgdat(pgdat) {
5456 for (j = 0; j < MAX_NR_ZONES; j++) {
5457 struct zone *zone = pgdat->node_zones + j;
5458 unsigned long managed_pages = zone->managed_pages;
5459
5460 zone->lowmem_reserve[j] = 0;
5461
5462 idx = j;
5463 while (idx) {
5464 struct zone *lower_zone;
5465
5466 idx--;
5467
5468 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5469 sysctl_lowmem_reserve_ratio[idx] = 1;
5470
5471 lower_zone = pgdat->node_zones + idx;
5472 lower_zone->lowmem_reserve[j] = managed_pages /
5473 sysctl_lowmem_reserve_ratio[idx];
5474 managed_pages += lower_zone->managed_pages;
5475 }
5476 }
5477 }
5478
5479 /* update totalreserve_pages */
5480 calculate_totalreserve_pages();
5481 }
5482
5483 static void __setup_per_zone_wmarks(void)
5484 {
5485 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5486 unsigned long lowmem_pages = 0;
5487 struct zone *zone;
5488 unsigned long flags;
5489
5490 /* Calculate total number of !ZONE_HIGHMEM pages */
5491 for_each_zone(zone) {
5492 if (!is_highmem(zone))
5493 lowmem_pages += zone->managed_pages;
5494 }
5495
5496 for_each_zone(zone) {
5497 u64 tmp;
5498
5499 spin_lock_irqsave(&zone->lock, flags);
5500 tmp = (u64)pages_min * zone->managed_pages;
5501 do_div(tmp, lowmem_pages);
5502 if (is_highmem(zone)) {
5503 /*
5504 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5505 * need highmem pages, so cap pages_min to a small
5506 * value here.
5507 *
5508 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5509 * deltas controls asynch page reclaim, and so should
5510 * not be capped for highmem.
5511 */
5512 unsigned long min_pages;
5513
5514 min_pages = zone->managed_pages / 1024;
5515 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5516 zone->watermark[WMARK_MIN] = min_pages;
5517 } else {
5518 /*
5519 * If it's a lowmem zone, reserve a number of pages
5520 * proportionate to the zone's size.
5521 */
5522 zone->watermark[WMARK_MIN] = tmp;
5523 }
5524
5525 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5526 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5527
5528 setup_zone_migrate_reserve(zone);
5529 spin_unlock_irqrestore(&zone->lock, flags);
5530 }
5531
5532 /* update totalreserve_pages */
5533 calculate_totalreserve_pages();
5534 }
5535
5536 /**
5537 * setup_per_zone_wmarks - called when min_free_kbytes changes
5538 * or when memory is hot-{added|removed}
5539 *
5540 * Ensures that the watermark[min,low,high] values for each zone are set
5541 * correctly with respect to min_free_kbytes.
5542 */
5543 void setup_per_zone_wmarks(void)
5544 {
5545 mutex_lock(&zonelists_mutex);
5546 __setup_per_zone_wmarks();
5547 mutex_unlock(&zonelists_mutex);
5548 }
5549
5550 /*
5551 * The inactive anon list should be small enough that the VM never has to
5552 * do too much work, but large enough that each inactive page has a chance
5553 * to be referenced again before it is swapped out.
5554 *
5555 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5556 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5557 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5558 * the anonymous pages are kept on the inactive list.
5559 *
5560 * total target max
5561 * memory ratio inactive anon
5562 * -------------------------------------
5563 * 10MB 1 5MB
5564 * 100MB 1 50MB
5565 * 1GB 3 250MB
5566 * 10GB 10 0.9GB
5567 * 100GB 31 3GB
5568 * 1TB 101 10GB
5569 * 10TB 320 32GB
5570 */
5571 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5572 {
5573 unsigned int gb, ratio;
5574
5575 /* Zone size in gigabytes */
5576 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5577 if (gb)
5578 ratio = int_sqrt(10 * gb);
5579 else
5580 ratio = 1;
5581
5582 zone->inactive_ratio = ratio;
5583 }
5584
5585 static void __meminit setup_per_zone_inactive_ratio(void)
5586 {
5587 struct zone *zone;
5588
5589 for_each_zone(zone)
5590 calculate_zone_inactive_ratio(zone);
5591 }
5592
5593 /*
5594 * Initialise min_free_kbytes.
5595 *
5596 * For small machines we want it small (128k min). For large machines
5597 * we want it large (64MB max). But it is not linear, because network
5598 * bandwidth does not increase linearly with machine size. We use
5599 *
5600 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5601 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5602 *
5603 * which yields
5604 *
5605 * 16MB: 512k
5606 * 32MB: 724k
5607 * 64MB: 1024k
5608 * 128MB: 1448k
5609 * 256MB: 2048k
5610 * 512MB: 2896k
5611 * 1024MB: 4096k
5612 * 2048MB: 5792k
5613 * 4096MB: 8192k
5614 * 8192MB: 11584k
5615 * 16384MB: 16384k
5616 */
5617 int __meminit init_per_zone_wmark_min(void)
5618 {
5619 unsigned long lowmem_kbytes;
5620 int new_min_free_kbytes;
5621
5622 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5623 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5624
5625 if (new_min_free_kbytes > user_min_free_kbytes) {
5626 min_free_kbytes = new_min_free_kbytes;
5627 if (min_free_kbytes < 128)
5628 min_free_kbytes = 128;
5629 if (min_free_kbytes > 65536)
5630 min_free_kbytes = 65536;
5631 } else {
5632 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5633 new_min_free_kbytes, user_min_free_kbytes);
5634 }
5635 setup_per_zone_wmarks();
5636 refresh_zone_stat_thresholds();
5637 setup_per_zone_lowmem_reserve();
5638 setup_per_zone_inactive_ratio();
5639 return 0;
5640 }
5641 module_init(init_per_zone_wmark_min)
5642
5643 /*
5644 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5645 * that we can call two helper functions whenever min_free_kbytes
5646 * changes.
5647 */
5648 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5649 void __user *buffer, size_t *length, loff_t *ppos)
5650 {
5651 proc_dointvec(table, write, buffer, length, ppos);
5652 if (write) {
5653 user_min_free_kbytes = min_free_kbytes;
5654 setup_per_zone_wmarks();
5655 }
5656 return 0;
5657 }
5658
5659 #ifdef CONFIG_NUMA
5660 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5661 void __user *buffer, size_t *length, loff_t *ppos)
5662 {
5663 struct zone *zone;
5664 int rc;
5665
5666 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5667 if (rc)
5668 return rc;
5669
5670 for_each_zone(zone)
5671 zone->min_unmapped_pages = (zone->managed_pages *
5672 sysctl_min_unmapped_ratio) / 100;
5673 return 0;
5674 }
5675
5676 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5677 void __user *buffer, size_t *length, loff_t *ppos)
5678 {
5679 struct zone *zone;
5680 int rc;
5681
5682 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5683 if (rc)
5684 return rc;
5685
5686 for_each_zone(zone)
5687 zone->min_slab_pages = (zone->managed_pages *
5688 sysctl_min_slab_ratio) / 100;
5689 return 0;
5690 }
5691 #endif
5692
5693 /*
5694 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5695 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5696 * whenever sysctl_lowmem_reserve_ratio changes.
5697 *
5698 * The reserve ratio obviously has absolutely no relation with the
5699 * minimum watermarks. The lowmem reserve ratio can only make sense
5700 * if in function of the boot time zone sizes.
5701 */
5702 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5703 void __user *buffer, size_t *length, loff_t *ppos)
5704 {
5705 proc_dointvec_minmax(table, write, buffer, length, ppos);
5706 setup_per_zone_lowmem_reserve();
5707 return 0;
5708 }
5709
5710 /*
5711 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5712 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5713 * pagelist can have before it gets flushed back to buddy allocator.
5714 */
5715 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5716 void __user *buffer, size_t *length, loff_t *ppos)
5717 {
5718 struct zone *zone;
5719 unsigned int cpu;
5720 int ret;
5721
5722 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5723 if (!write || (ret < 0))
5724 return ret;
5725
5726 mutex_lock(&pcp_batch_high_lock);
5727 for_each_populated_zone(zone) {
5728 unsigned long high;
5729 high = zone->managed_pages / percpu_pagelist_fraction;
5730 for_each_possible_cpu(cpu)
5731 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5732 high);
5733 }
5734 mutex_unlock(&pcp_batch_high_lock);
5735 return 0;
5736 }
5737
5738 int hashdist = HASHDIST_DEFAULT;
5739
5740 #ifdef CONFIG_NUMA
5741 static int __init set_hashdist(char *str)
5742 {
5743 if (!str)
5744 return 0;
5745 hashdist = simple_strtoul(str, &str, 0);
5746 return 1;
5747 }
5748 __setup("hashdist=", set_hashdist);
5749 #endif
5750
5751 /*
5752 * allocate a large system hash table from bootmem
5753 * - it is assumed that the hash table must contain an exact power-of-2
5754 * quantity of entries
5755 * - limit is the number of hash buckets, not the total allocation size
5756 */
5757 void *__init alloc_large_system_hash(const char *tablename,
5758 unsigned long bucketsize,
5759 unsigned long numentries,
5760 int scale,
5761 int flags,
5762 unsigned int *_hash_shift,
5763 unsigned int *_hash_mask,
5764 unsigned long low_limit,
5765 unsigned long high_limit)
5766 {
5767 unsigned long long max = high_limit;
5768 unsigned long log2qty, size;
5769 void *table = NULL;
5770
5771 /* allow the kernel cmdline to have a say */
5772 if (!numentries) {
5773 /* round applicable memory size up to nearest megabyte */
5774 numentries = nr_kernel_pages;
5775
5776 /* It isn't necessary when PAGE_SIZE >= 1MB */
5777 if (PAGE_SHIFT < 20)
5778 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5779
5780 /* limit to 1 bucket per 2^scale bytes of low memory */
5781 if (scale > PAGE_SHIFT)
5782 numentries >>= (scale - PAGE_SHIFT);
5783 else
5784 numentries <<= (PAGE_SHIFT - scale);
5785
5786 /* Make sure we've got at least a 0-order allocation.. */
5787 if (unlikely(flags & HASH_SMALL)) {
5788 /* Makes no sense without HASH_EARLY */
5789 WARN_ON(!(flags & HASH_EARLY));
5790 if (!(numentries >> *_hash_shift)) {
5791 numentries = 1UL << *_hash_shift;
5792 BUG_ON(!numentries);
5793 }
5794 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5795 numentries = PAGE_SIZE / bucketsize;
5796 }
5797 numentries = roundup_pow_of_two(numentries);
5798
5799 /* limit allocation size to 1/16 total memory by default */
5800 if (max == 0) {
5801 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5802 do_div(max, bucketsize);
5803 }
5804 max = min(max, 0x80000000ULL);
5805
5806 if (numentries < low_limit)
5807 numentries = low_limit;
5808 if (numentries > max)
5809 numentries = max;
5810
5811 log2qty = ilog2(numentries);
5812
5813 do {
5814 size = bucketsize << log2qty;
5815 if (flags & HASH_EARLY)
5816 table = alloc_bootmem_nopanic(size);
5817 else if (hashdist)
5818 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5819 else {
5820 /*
5821 * If bucketsize is not a power-of-two, we may free
5822 * some pages at the end of hash table which
5823 * alloc_pages_exact() automatically does
5824 */
5825 if (get_order(size) < MAX_ORDER) {
5826 table = alloc_pages_exact(size, GFP_ATOMIC);
5827 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5828 }
5829 }
5830 } while (!table && size > PAGE_SIZE && --log2qty);
5831
5832 if (!table)
5833 panic("Failed to allocate %s hash table\n", tablename);
5834
5835 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5836 tablename,
5837 (1UL << log2qty),
5838 ilog2(size) - PAGE_SHIFT,
5839 size);
5840
5841 if (_hash_shift)
5842 *_hash_shift = log2qty;
5843 if (_hash_mask)
5844 *_hash_mask = (1 << log2qty) - 1;
5845
5846 return table;
5847 }
5848
5849 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5850 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5851 unsigned long pfn)
5852 {
5853 #ifdef CONFIG_SPARSEMEM
5854 return __pfn_to_section(pfn)->pageblock_flags;
5855 #else
5856 return zone->pageblock_flags;
5857 #endif /* CONFIG_SPARSEMEM */
5858 }
5859
5860 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5861 {
5862 #ifdef CONFIG_SPARSEMEM
5863 pfn &= (PAGES_PER_SECTION-1);
5864 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5865 #else
5866 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5867 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5868 #endif /* CONFIG_SPARSEMEM */
5869 }
5870
5871 /**
5872 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5873 * @page: The page within the block of interest
5874 * @start_bitidx: The first bit of interest to retrieve
5875 * @end_bitidx: The last bit of interest
5876 * returns pageblock_bits flags
5877 */
5878 unsigned long get_pageblock_flags_group(struct page *page,
5879 int start_bitidx, int end_bitidx)
5880 {
5881 struct zone *zone;
5882 unsigned long *bitmap;
5883 unsigned long pfn, bitidx;
5884 unsigned long flags = 0;
5885 unsigned long value = 1;
5886
5887 zone = page_zone(page);
5888 pfn = page_to_pfn(page);
5889 bitmap = get_pageblock_bitmap(zone, pfn);
5890 bitidx = pfn_to_bitidx(zone, pfn);
5891
5892 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5893 if (test_bit(bitidx + start_bitidx, bitmap))
5894 flags |= value;
5895
5896 return flags;
5897 }
5898
5899 /**
5900 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5901 * @page: The page within the block of interest
5902 * @start_bitidx: The first bit of interest
5903 * @end_bitidx: The last bit of interest
5904 * @flags: The flags to set
5905 */
5906 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5907 int start_bitidx, int end_bitidx)
5908 {
5909 struct zone *zone;
5910 unsigned long *bitmap;
5911 unsigned long pfn, bitidx;
5912 unsigned long value = 1;
5913
5914 zone = page_zone(page);
5915 pfn = page_to_pfn(page);
5916 bitmap = get_pageblock_bitmap(zone, pfn);
5917 bitidx = pfn_to_bitidx(zone, pfn);
5918 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5919
5920 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5921 if (flags & value)
5922 __set_bit(bitidx + start_bitidx, bitmap);
5923 else
5924 __clear_bit(bitidx + start_bitidx, bitmap);
5925 }
5926
5927 /*
5928 * This function checks whether pageblock includes unmovable pages or not.
5929 * If @count is not zero, it is okay to include less @count unmovable pages
5930 *
5931 * PageLRU check without isolation or lru_lock could race so that
5932 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5933 * expect this function should be exact.
5934 */
5935 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5936 bool skip_hwpoisoned_pages)
5937 {
5938 unsigned long pfn, iter, found;
5939 int mt;
5940
5941 /*
5942 * For avoiding noise data, lru_add_drain_all() should be called
5943 * If ZONE_MOVABLE, the zone never contains unmovable pages
5944 */
5945 if (zone_idx(zone) == ZONE_MOVABLE)
5946 return false;
5947 mt = get_pageblock_migratetype(page);
5948 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5949 return false;
5950
5951 pfn = page_to_pfn(page);
5952 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5953 unsigned long check = pfn + iter;
5954
5955 if (!pfn_valid_within(check))
5956 continue;
5957
5958 page = pfn_to_page(check);
5959 /*
5960 * We can't use page_count without pin a page
5961 * because another CPU can free compound page.
5962 * This check already skips compound tails of THP
5963 * because their page->_count is zero at all time.
5964 */
5965 if (!atomic_read(&page->_count)) {
5966 if (PageBuddy(page))
5967 iter += (1 << page_order(page)) - 1;
5968 continue;
5969 }
5970
5971 /*
5972 * The HWPoisoned page may be not in buddy system, and
5973 * page_count() is not 0.
5974 */
5975 if (skip_hwpoisoned_pages && PageHWPoison(page))
5976 continue;
5977
5978 if (!PageLRU(page))
5979 found++;
5980 /*
5981 * If there are RECLAIMABLE pages, we need to check it.
5982 * But now, memory offline itself doesn't call shrink_slab()
5983 * and it still to be fixed.
5984 */
5985 /*
5986 * If the page is not RAM, page_count()should be 0.
5987 * we don't need more check. This is an _used_ not-movable page.
5988 *
5989 * The problematic thing here is PG_reserved pages. PG_reserved
5990 * is set to both of a memory hole page and a _used_ kernel
5991 * page at boot.
5992 */
5993 if (found > count)
5994 return true;
5995 }
5996 return false;
5997 }
5998
5999 bool is_pageblock_removable_nolock(struct page *page)
6000 {
6001 struct zone *zone;
6002 unsigned long pfn;
6003
6004 /*
6005 * We have to be careful here because we are iterating over memory
6006 * sections which are not zone aware so we might end up outside of
6007 * the zone but still within the section.
6008 * We have to take care about the node as well. If the node is offline
6009 * its NODE_DATA will be NULL - see page_zone.
6010 */
6011 if (!node_online(page_to_nid(page)))
6012 return false;
6013
6014 zone = page_zone(page);
6015 pfn = page_to_pfn(page);
6016 if (!zone_spans_pfn(zone, pfn))
6017 return false;
6018
6019 return !has_unmovable_pages(zone, page, 0, true);
6020 }
6021
6022 #ifdef CONFIG_CMA
6023
6024 static unsigned long pfn_max_align_down(unsigned long pfn)
6025 {
6026 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6027 pageblock_nr_pages) - 1);
6028 }
6029
6030 static unsigned long pfn_max_align_up(unsigned long pfn)
6031 {
6032 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6033 pageblock_nr_pages));
6034 }
6035
6036 /* [start, end) must belong to a single zone. */
6037 static int __alloc_contig_migrate_range(struct compact_control *cc,
6038 unsigned long start, unsigned long end)
6039 {
6040 /* This function is based on compact_zone() from compaction.c. */
6041 unsigned long nr_reclaimed;
6042 unsigned long pfn = start;
6043 unsigned int tries = 0;
6044 int ret = 0;
6045
6046 migrate_prep();
6047
6048 while (pfn < end || !list_empty(&cc->migratepages)) {
6049 if (fatal_signal_pending(current)) {
6050 ret = -EINTR;
6051 break;
6052 }
6053
6054 if (list_empty(&cc->migratepages)) {
6055 cc->nr_migratepages = 0;
6056 pfn = isolate_migratepages_range(cc->zone, cc,
6057 pfn, end, true);
6058 if (!pfn) {
6059 ret = -EINTR;
6060 break;
6061 }
6062 tries = 0;
6063 } else if (++tries == 5) {
6064 ret = ret < 0 ? ret : -EBUSY;
6065 break;
6066 }
6067
6068 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6069 &cc->migratepages);
6070 cc->nr_migratepages -= nr_reclaimed;
6071
6072 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6073 0, MIGRATE_SYNC, MR_CMA);
6074 }
6075 if (ret < 0) {
6076 putback_movable_pages(&cc->migratepages);
6077 return ret;
6078 }
6079 return 0;
6080 }
6081
6082 /**
6083 * alloc_contig_range() -- tries to allocate given range of pages
6084 * @start: start PFN to allocate
6085 * @end: one-past-the-last PFN to allocate
6086 * @migratetype: migratetype of the underlaying pageblocks (either
6087 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6088 * in range must have the same migratetype and it must
6089 * be either of the two.
6090 *
6091 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6092 * aligned, however it's the caller's responsibility to guarantee that
6093 * we are the only thread that changes migrate type of pageblocks the
6094 * pages fall in.
6095 *
6096 * The PFN range must belong to a single zone.
6097 *
6098 * Returns zero on success or negative error code. On success all
6099 * pages which PFN is in [start, end) are allocated for the caller and
6100 * need to be freed with free_contig_range().
6101 */
6102 int alloc_contig_range(unsigned long start, unsigned long end,
6103 unsigned migratetype)
6104 {
6105 unsigned long outer_start, outer_end;
6106 int ret = 0, order;
6107
6108 struct compact_control cc = {
6109 .nr_migratepages = 0,
6110 .order = -1,
6111 .zone = page_zone(pfn_to_page(start)),
6112 .sync = true,
6113 .ignore_skip_hint = true,
6114 };
6115 INIT_LIST_HEAD(&cc.migratepages);
6116
6117 /*
6118 * What we do here is we mark all pageblocks in range as
6119 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6120 * have different sizes, and due to the way page allocator
6121 * work, we align the range to biggest of the two pages so
6122 * that page allocator won't try to merge buddies from
6123 * different pageblocks and change MIGRATE_ISOLATE to some
6124 * other migration type.
6125 *
6126 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6127 * migrate the pages from an unaligned range (ie. pages that
6128 * we are interested in). This will put all the pages in
6129 * range back to page allocator as MIGRATE_ISOLATE.
6130 *
6131 * When this is done, we take the pages in range from page
6132 * allocator removing them from the buddy system. This way
6133 * page allocator will never consider using them.
6134 *
6135 * This lets us mark the pageblocks back as
6136 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6137 * aligned range but not in the unaligned, original range are
6138 * put back to page allocator so that buddy can use them.
6139 */
6140
6141 ret = start_isolate_page_range(pfn_max_align_down(start),
6142 pfn_max_align_up(end), migratetype,
6143 false);
6144 if (ret)
6145 return ret;
6146
6147 ret = __alloc_contig_migrate_range(&cc, start, end);
6148 if (ret)
6149 goto done;
6150
6151 /*
6152 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6153 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6154 * more, all pages in [start, end) are free in page allocator.
6155 * What we are going to do is to allocate all pages from
6156 * [start, end) (that is remove them from page allocator).
6157 *
6158 * The only problem is that pages at the beginning and at the
6159 * end of interesting range may be not aligned with pages that
6160 * page allocator holds, ie. they can be part of higher order
6161 * pages. Because of this, we reserve the bigger range and
6162 * once this is done free the pages we are not interested in.
6163 *
6164 * We don't have to hold zone->lock here because the pages are
6165 * isolated thus they won't get removed from buddy.
6166 */
6167
6168 lru_add_drain_all();
6169 drain_all_pages();
6170
6171 order = 0;
6172 outer_start = start;
6173 while (!PageBuddy(pfn_to_page(outer_start))) {
6174 if (++order >= MAX_ORDER) {
6175 ret = -EBUSY;
6176 goto done;
6177 }
6178 outer_start &= ~0UL << order;
6179 }
6180
6181 /* Make sure the range is really isolated. */
6182 if (test_pages_isolated(outer_start, end, false)) {
6183 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6184 outer_start, end);
6185 ret = -EBUSY;
6186 goto done;
6187 }
6188
6189
6190 /* Grab isolated pages from freelists. */
6191 outer_end = isolate_freepages_range(&cc, outer_start, end);
6192 if (!outer_end) {
6193 ret = -EBUSY;
6194 goto done;
6195 }
6196
6197 /* Free head and tail (if any) */
6198 if (start != outer_start)
6199 free_contig_range(outer_start, start - outer_start);
6200 if (end != outer_end)
6201 free_contig_range(end, outer_end - end);
6202
6203 done:
6204 undo_isolate_page_range(pfn_max_align_down(start),
6205 pfn_max_align_up(end), migratetype);
6206 return ret;
6207 }
6208
6209 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6210 {
6211 unsigned int count = 0;
6212
6213 for (; nr_pages--; pfn++) {
6214 struct page *page = pfn_to_page(pfn);
6215
6216 count += page_count(page) != 1;
6217 __free_page(page);
6218 }
6219 WARN(count != 0, "%d pages are still in use!\n", count);
6220 }
6221 #endif
6222
6223 #ifdef CONFIG_MEMORY_HOTPLUG
6224 /*
6225 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6226 * page high values need to be recalulated.
6227 */
6228 void __meminit zone_pcp_update(struct zone *zone)
6229 {
6230 unsigned cpu;
6231 mutex_lock(&pcp_batch_high_lock);
6232 for_each_possible_cpu(cpu)
6233 pageset_set_high_and_batch(zone,
6234 per_cpu_ptr(zone->pageset, cpu));
6235 mutex_unlock(&pcp_batch_high_lock);
6236 }
6237 #endif
6238
6239 void zone_pcp_reset(struct zone *zone)
6240 {
6241 unsigned long flags;
6242 int cpu;
6243 struct per_cpu_pageset *pset;
6244
6245 /* avoid races with drain_pages() */
6246 local_irq_save(flags);
6247 if (zone->pageset != &boot_pageset) {
6248 for_each_online_cpu(cpu) {
6249 pset = per_cpu_ptr(zone->pageset, cpu);
6250 drain_zonestat(zone, pset);
6251 }
6252 free_percpu(zone->pageset);
6253 zone->pageset = &boot_pageset;
6254 }
6255 local_irq_restore(flags);
6256 }
6257
6258 #ifdef CONFIG_MEMORY_HOTREMOVE
6259 /*
6260 * All pages in the range must be isolated before calling this.
6261 */
6262 void
6263 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6264 {
6265 struct page *page;
6266 struct zone *zone;
6267 int order, i;
6268 unsigned long pfn;
6269 unsigned long flags;
6270 /* find the first valid pfn */
6271 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6272 if (pfn_valid(pfn))
6273 break;
6274 if (pfn == end_pfn)
6275 return;
6276 zone = page_zone(pfn_to_page(pfn));
6277 spin_lock_irqsave(&zone->lock, flags);
6278 pfn = start_pfn;
6279 while (pfn < end_pfn) {
6280 if (!pfn_valid(pfn)) {
6281 pfn++;
6282 continue;
6283 }
6284 page = pfn_to_page(pfn);
6285 /*
6286 * The HWPoisoned page may be not in buddy system, and
6287 * page_count() is not 0.
6288 */
6289 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6290 pfn++;
6291 SetPageReserved(page);
6292 continue;
6293 }
6294
6295 BUG_ON(page_count(page));
6296 BUG_ON(!PageBuddy(page));
6297 order = page_order(page);
6298 #ifdef CONFIG_DEBUG_VM
6299 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6300 pfn, 1 << order, end_pfn);
6301 #endif
6302 list_del(&page->lru);
6303 rmv_page_order(page);
6304 zone->free_area[order].nr_free--;
6305 #ifdef CONFIG_HIGHMEM
6306 if (PageHighMem(page))
6307 totalhigh_pages -= 1 << order;
6308 #endif
6309 for (i = 0; i < (1 << order); i++)
6310 SetPageReserved((page+i));
6311 pfn += (1 << order);
6312 }
6313 spin_unlock_irqrestore(&zone->lock, flags);
6314 }
6315 #endif
6316
6317 #ifdef CONFIG_MEMORY_FAILURE
6318 bool is_free_buddy_page(struct page *page)
6319 {
6320 struct zone *zone = page_zone(page);
6321 unsigned long pfn = page_to_pfn(page);
6322 unsigned long flags;
6323 int order;
6324
6325 spin_lock_irqsave(&zone->lock, flags);
6326 for (order = 0; order < MAX_ORDER; order++) {
6327 struct page *page_head = page - (pfn & ((1 << order) - 1));
6328
6329 if (PageBuddy(page_head) && page_order(page_head) >= order)
6330 break;
6331 }
6332 spin_unlock_irqrestore(&zone->lock, flags);
6333
6334 return order < MAX_ORDER;
6335 }
6336 #endif
6337
6338 static const struct trace_print_flags pageflag_names[] = {
6339 {1UL << PG_locked, "locked" },
6340 {1UL << PG_error, "error" },
6341 {1UL << PG_referenced, "referenced" },
6342 {1UL << PG_uptodate, "uptodate" },
6343 {1UL << PG_dirty, "dirty" },
6344 {1UL << PG_lru, "lru" },
6345 {1UL << PG_active, "active" },
6346 {1UL << PG_slab, "slab" },
6347 {1UL << PG_owner_priv_1, "owner_priv_1" },
6348 {1UL << PG_arch_1, "arch_1" },
6349 {1UL << PG_reserved, "reserved" },
6350 {1UL << PG_private, "private" },
6351 {1UL << PG_private_2, "private_2" },
6352 {1UL << PG_writeback, "writeback" },
6353 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6354 {1UL << PG_head, "head" },
6355 {1UL << PG_tail, "tail" },
6356 #else
6357 {1UL << PG_compound, "compound" },
6358 #endif
6359 {1UL << PG_swapcache, "swapcache" },
6360 {1UL << PG_mappedtodisk, "mappedtodisk" },
6361 {1UL << PG_reclaim, "reclaim" },
6362 {1UL << PG_swapbacked, "swapbacked" },
6363 {1UL << PG_unevictable, "unevictable" },
6364 #ifdef CONFIG_MMU
6365 {1UL << PG_mlocked, "mlocked" },
6366 #endif
6367 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6368 {1UL << PG_uncached, "uncached" },
6369 #endif
6370 #ifdef CONFIG_MEMORY_FAILURE
6371 {1UL << PG_hwpoison, "hwpoison" },
6372 #endif
6373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6374 {1UL << PG_compound_lock, "compound_lock" },
6375 #endif
6376 };
6377
6378 static void dump_page_flags(unsigned long flags)
6379 {
6380 const char *delim = "";
6381 unsigned long mask;
6382 int i;
6383
6384 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6385
6386 printk(KERN_ALERT "page flags: %#lx(", flags);
6387
6388 /* remove zone id */
6389 flags &= (1UL << NR_PAGEFLAGS) - 1;
6390
6391 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6392
6393 mask = pageflag_names[i].mask;
6394 if ((flags & mask) != mask)
6395 continue;
6396
6397 flags &= ~mask;
6398 printk("%s%s", delim, pageflag_names[i].name);
6399 delim = "|";
6400 }
6401
6402 /* check for left over flags */
6403 if (flags)
6404 printk("%s%#lx", delim, flags);
6405
6406 printk(")\n");
6407 }
6408
6409 void dump_page(struct page *page)
6410 {
6411 printk(KERN_ALERT
6412 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6413 page, atomic_read(&page->_count), page_mapcount(page),
6414 page->mapping, page->index);
6415 dump_page_flags(page->flags);
6416 mem_cgroup_print_bad_page(page);
6417 }
This page took 0.15389 seconds and 6 git commands to generate.