page_cgroup: add helper function to get swap_cgroup
[deliverable/linux.git] / mm / page_cgroup.c
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
13
14 static unsigned long total_usage;
15
16 #if !defined(CONFIG_SPARSEMEM)
17
18
19 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
20 {
21 pgdat->node_page_cgroup = NULL;
22 }
23
24 struct page_cgroup *lookup_page_cgroup(struct page *page)
25 {
26 unsigned long pfn = page_to_pfn(page);
27 unsigned long offset;
28 struct page_cgroup *base;
29
30 base = NODE_DATA(page_to_nid(page))->node_page_cgroup;
31 #ifdef CONFIG_DEBUG_VM
32 /*
33 * The sanity checks the page allocator does upon freeing a
34 * page can reach here before the page_cgroup arrays are
35 * allocated when feeding a range of pages to the allocator
36 * for the first time during bootup or memory hotplug.
37 */
38 if (unlikely(!base))
39 return NULL;
40 #endif
41 offset = pfn - NODE_DATA(page_to_nid(page))->node_start_pfn;
42 return base + offset;
43 }
44
45 static int __init alloc_node_page_cgroup(int nid)
46 {
47 struct page_cgroup *base;
48 unsigned long table_size;
49 unsigned long nr_pages;
50
51 nr_pages = NODE_DATA(nid)->node_spanned_pages;
52 if (!nr_pages)
53 return 0;
54
55 table_size = sizeof(struct page_cgroup) * nr_pages;
56
57 base = __alloc_bootmem_node_nopanic(NODE_DATA(nid),
58 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
59 if (!base)
60 return -ENOMEM;
61 NODE_DATA(nid)->node_page_cgroup = base;
62 total_usage += table_size;
63 return 0;
64 }
65
66 void __init page_cgroup_init_flatmem(void)
67 {
68
69 int nid, fail;
70
71 if (mem_cgroup_disabled())
72 return;
73
74 for_each_online_node(nid) {
75 fail = alloc_node_page_cgroup(nid);
76 if (fail)
77 goto fail;
78 }
79 printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
80 printk(KERN_INFO "please try 'cgroup_disable=memory' option if you"
81 " don't want memory cgroups\n");
82 return;
83 fail:
84 printk(KERN_CRIT "allocation of page_cgroup failed.\n");
85 printk(KERN_CRIT "please try 'cgroup_disable=memory' boot option\n");
86 panic("Out of memory");
87 }
88
89 #else /* CONFIG_FLAT_NODE_MEM_MAP */
90
91 struct page_cgroup *lookup_page_cgroup(struct page *page)
92 {
93 unsigned long pfn = page_to_pfn(page);
94 struct mem_section *section = __pfn_to_section(pfn);
95 #ifdef CONFIG_DEBUG_VM
96 /*
97 * The sanity checks the page allocator does upon freeing a
98 * page can reach here before the page_cgroup arrays are
99 * allocated when feeding a range of pages to the allocator
100 * for the first time during bootup or memory hotplug.
101 */
102 if (!section->page_cgroup)
103 return NULL;
104 #endif
105 return section->page_cgroup + pfn;
106 }
107
108 static void *__meminit alloc_page_cgroup(size_t size, int nid)
109 {
110 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
111 void *addr = NULL;
112
113 addr = alloc_pages_exact_nid(nid, size, flags);
114 if (addr) {
115 kmemleak_alloc(addr, size, 1, flags);
116 return addr;
117 }
118
119 if (node_state(nid, N_HIGH_MEMORY))
120 addr = vzalloc_node(size, nid);
121 else
122 addr = vzalloc(size);
123
124 return addr;
125 }
126
127 #ifdef CONFIG_MEMORY_HOTPLUG
128 static void free_page_cgroup(void *addr)
129 {
130 if (is_vmalloc_addr(addr)) {
131 vfree(addr);
132 } else {
133 struct page *page = virt_to_page(addr);
134 size_t table_size =
135 sizeof(struct page_cgroup) * PAGES_PER_SECTION;
136
137 BUG_ON(PageReserved(page));
138 free_pages_exact(addr, table_size);
139 }
140 }
141 #endif
142
143 static int __meminit init_section_page_cgroup(unsigned long pfn, int nid)
144 {
145 struct mem_section *section;
146 struct page_cgroup *base;
147 unsigned long table_size;
148
149 section = __pfn_to_section(pfn);
150
151 if (section->page_cgroup)
152 return 0;
153
154 table_size = sizeof(struct page_cgroup) * PAGES_PER_SECTION;
155 base = alloc_page_cgroup(table_size, nid);
156
157 /*
158 * The value stored in section->page_cgroup is (base - pfn)
159 * and it does not point to the memory block allocated above,
160 * causing kmemleak false positives.
161 */
162 kmemleak_not_leak(base);
163
164 if (!base) {
165 printk(KERN_ERR "page cgroup allocation failure\n");
166 return -ENOMEM;
167 }
168
169 /*
170 * The passed "pfn" may not be aligned to SECTION. For the calculation
171 * we need to apply a mask.
172 */
173 pfn &= PAGE_SECTION_MASK;
174 section->page_cgroup = base - pfn;
175 total_usage += table_size;
176 return 0;
177 }
178 #ifdef CONFIG_MEMORY_HOTPLUG
179 void __free_page_cgroup(unsigned long pfn)
180 {
181 struct mem_section *ms;
182 struct page_cgroup *base;
183
184 ms = __pfn_to_section(pfn);
185 if (!ms || !ms->page_cgroup)
186 return;
187 base = ms->page_cgroup + pfn;
188 free_page_cgroup(base);
189 ms->page_cgroup = NULL;
190 }
191
192 int __meminit online_page_cgroup(unsigned long start_pfn,
193 unsigned long nr_pages,
194 int nid)
195 {
196 unsigned long start, end, pfn;
197 int fail = 0;
198
199 start = SECTION_ALIGN_DOWN(start_pfn);
200 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
201
202 if (nid == -1) {
203 /*
204 * In this case, "nid" already exists and contains valid memory.
205 * "start_pfn" passed to us is a pfn which is an arg for
206 * online__pages(), and start_pfn should exist.
207 */
208 nid = pfn_to_nid(start_pfn);
209 VM_BUG_ON(!node_state(nid, N_ONLINE));
210 }
211
212 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
213 if (!pfn_present(pfn))
214 continue;
215 fail = init_section_page_cgroup(pfn, nid);
216 }
217 if (!fail)
218 return 0;
219
220 /* rollback */
221 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
222 __free_page_cgroup(pfn);
223
224 return -ENOMEM;
225 }
226
227 int __meminit offline_page_cgroup(unsigned long start_pfn,
228 unsigned long nr_pages, int nid)
229 {
230 unsigned long start, end, pfn;
231
232 start = SECTION_ALIGN_DOWN(start_pfn);
233 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
234
235 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
236 __free_page_cgroup(pfn);
237 return 0;
238
239 }
240
241 static int __meminit page_cgroup_callback(struct notifier_block *self,
242 unsigned long action, void *arg)
243 {
244 struct memory_notify *mn = arg;
245 int ret = 0;
246 switch (action) {
247 case MEM_GOING_ONLINE:
248 ret = online_page_cgroup(mn->start_pfn,
249 mn->nr_pages, mn->status_change_nid);
250 break;
251 case MEM_OFFLINE:
252 offline_page_cgroup(mn->start_pfn,
253 mn->nr_pages, mn->status_change_nid);
254 break;
255 case MEM_CANCEL_ONLINE:
256 case MEM_GOING_OFFLINE:
257 break;
258 case MEM_ONLINE:
259 case MEM_CANCEL_OFFLINE:
260 break;
261 }
262
263 return notifier_from_errno(ret);
264 }
265
266 #endif
267
268 void __init page_cgroup_init(void)
269 {
270 unsigned long pfn;
271 int nid;
272
273 if (mem_cgroup_disabled())
274 return;
275
276 for_each_node_state(nid, N_HIGH_MEMORY) {
277 unsigned long start_pfn, end_pfn;
278
279 start_pfn = node_start_pfn(nid);
280 end_pfn = node_end_pfn(nid);
281 /*
282 * start_pfn and end_pfn may not be aligned to SECTION and the
283 * page->flags of out of node pages are not initialized. So we
284 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
285 */
286 for (pfn = start_pfn;
287 pfn < end_pfn;
288 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
289
290 if (!pfn_valid(pfn))
291 continue;
292 /*
293 * Nodes's pfns can be overlapping.
294 * We know some arch can have a nodes layout such as
295 * -------------pfn-------------->
296 * N0 | N1 | N2 | N0 | N1 | N2|....
297 */
298 if (pfn_to_nid(pfn) != nid)
299 continue;
300 if (init_section_page_cgroup(pfn, nid))
301 goto oom;
302 }
303 }
304 hotplug_memory_notifier(page_cgroup_callback, 0);
305 printk(KERN_INFO "allocated %ld bytes of page_cgroup\n", total_usage);
306 printk(KERN_INFO "please try 'cgroup_disable=memory' option if you "
307 "don't want memory cgroups\n");
308 return;
309 oom:
310 printk(KERN_CRIT "try 'cgroup_disable=memory' boot option\n");
311 panic("Out of memory");
312 }
313
314 void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
315 {
316 return;
317 }
318
319 #endif
320
321
322 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
323
324 static DEFINE_MUTEX(swap_cgroup_mutex);
325 struct swap_cgroup_ctrl {
326 struct page **map;
327 unsigned long length;
328 spinlock_t lock;
329 };
330
331 static struct swap_cgroup_ctrl swap_cgroup_ctrl[MAX_SWAPFILES];
332
333 struct swap_cgroup {
334 unsigned short id;
335 };
336 #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup))
337
338 /*
339 * SwapCgroup implements "lookup" and "exchange" operations.
340 * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
341 * against SwapCache. At swap_free(), this is accessed directly from swap.
342 *
343 * This means,
344 * - we have no race in "exchange" when we're accessed via SwapCache because
345 * SwapCache(and its swp_entry) is under lock.
346 * - When called via swap_free(), there is no user of this entry and no race.
347 * Then, we don't need lock around "exchange".
348 *
349 * TODO: we can push these buffers out to HIGHMEM.
350 */
351
352 /*
353 * allocate buffer for swap_cgroup.
354 */
355 static int swap_cgroup_prepare(int type)
356 {
357 struct page *page;
358 struct swap_cgroup_ctrl *ctrl;
359 unsigned long idx, max;
360
361 ctrl = &swap_cgroup_ctrl[type];
362
363 for (idx = 0; idx < ctrl->length; idx++) {
364 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
365 if (!page)
366 goto not_enough_page;
367 ctrl->map[idx] = page;
368 }
369 return 0;
370 not_enough_page:
371 max = idx;
372 for (idx = 0; idx < max; idx++)
373 __free_page(ctrl->map[idx]);
374
375 return -ENOMEM;
376 }
377
378 static struct swap_cgroup *lookup_swap_cgroup(swp_entry_t ent,
379 struct swap_cgroup_ctrl **ctrlp)
380 {
381 pgoff_t offset = swp_offset(ent);
382 struct swap_cgroup_ctrl *ctrl;
383 struct page *mappage;
384
385 ctrl = &swap_cgroup_ctrl[swp_type(ent)];
386 if (ctrlp)
387 *ctrlp = ctrl;
388
389 mappage = ctrl->map[offset / SC_PER_PAGE];
390 return page_address(mappage) + offset % SC_PER_PAGE;
391 }
392
393 /**
394 * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
395 * @end: swap entry to be cmpxchged
396 * @old: old id
397 * @new: new id
398 *
399 * Returns old id at success, 0 at failure.
400 * (There is no mem_cgroup using 0 as its id)
401 */
402 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent,
403 unsigned short old, unsigned short new)
404 {
405 struct swap_cgroup_ctrl *ctrl;
406 struct swap_cgroup *sc;
407 unsigned long flags;
408 unsigned short retval;
409
410 sc = lookup_swap_cgroup(ent, &ctrl);
411
412 spin_lock_irqsave(&ctrl->lock, flags);
413 retval = sc->id;
414 if (retval == old)
415 sc->id = new;
416 else
417 retval = 0;
418 spin_unlock_irqrestore(&ctrl->lock, flags);
419 return retval;
420 }
421
422 /**
423 * swap_cgroup_record - record mem_cgroup for this swp_entry.
424 * @ent: swap entry to be recorded into
425 * @mem: mem_cgroup to be recorded
426 *
427 * Returns old value at success, 0 at failure.
428 * (Of course, old value can be 0.)
429 */
430 unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
431 {
432 struct swap_cgroup_ctrl *ctrl;
433 struct swap_cgroup *sc;
434 unsigned short old;
435 unsigned long flags;
436
437 sc = lookup_swap_cgroup(ent, &ctrl);
438
439 spin_lock_irqsave(&ctrl->lock, flags);
440 old = sc->id;
441 sc->id = id;
442 spin_unlock_irqrestore(&ctrl->lock, flags);
443
444 return old;
445 }
446
447 /**
448 * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
449 * @ent: swap entry to be looked up.
450 *
451 * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
452 */
453 unsigned short lookup_swap_cgroup_id(swp_entry_t ent)
454 {
455 return lookup_swap_cgroup(ent, NULL)->id;
456 }
457
458 int swap_cgroup_swapon(int type, unsigned long max_pages)
459 {
460 void *array;
461 unsigned long array_size;
462 unsigned long length;
463 struct swap_cgroup_ctrl *ctrl;
464
465 if (!do_swap_account)
466 return 0;
467
468 length = DIV_ROUND_UP(max_pages, SC_PER_PAGE);
469 array_size = length * sizeof(void *);
470
471 array = vzalloc(array_size);
472 if (!array)
473 goto nomem;
474
475 ctrl = &swap_cgroup_ctrl[type];
476 mutex_lock(&swap_cgroup_mutex);
477 ctrl->length = length;
478 ctrl->map = array;
479 spin_lock_init(&ctrl->lock);
480 if (swap_cgroup_prepare(type)) {
481 /* memory shortage */
482 ctrl->map = NULL;
483 ctrl->length = 0;
484 mutex_unlock(&swap_cgroup_mutex);
485 vfree(array);
486 goto nomem;
487 }
488 mutex_unlock(&swap_cgroup_mutex);
489
490 return 0;
491 nomem:
492 printk(KERN_INFO "couldn't allocate enough memory for swap_cgroup.\n");
493 printk(KERN_INFO
494 "swap_cgroup can be disabled by swapaccount=0 boot option\n");
495 return -ENOMEM;
496 }
497
498 void swap_cgroup_swapoff(int type)
499 {
500 struct page **map;
501 unsigned long i, length;
502 struct swap_cgroup_ctrl *ctrl;
503
504 if (!do_swap_account)
505 return;
506
507 mutex_lock(&swap_cgroup_mutex);
508 ctrl = &swap_cgroup_ctrl[type];
509 map = ctrl->map;
510 length = ctrl->length;
511 ctrl->map = NULL;
512 ctrl->length = 0;
513 mutex_unlock(&swap_cgroup_mutex);
514
515 if (map) {
516 for (i = 0; i < length; i++) {
517 struct page *page = map[i];
518 if (page)
519 __free_page(page);
520 }
521 vfree(map);
522 }
523 }
524
525 #endif
This page took 0.055058 seconds and 6 git commands to generate.