perpcu: fold pcpu_split_block() into the only caller
[deliverable/linux.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
80 #ifdef CONFIG_SMP
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr) \
84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start)
87 #endif
88 #ifndef __pcpu_ptr_to_addr
89 #define __pcpu_ptr_to_addr(ptr) \
90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start)
93 #endif
94 #else /* CONFIG_SMP */
95 /* on UP, it's always identity mapped */
96 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98 #endif /* CONFIG_SMP */
99
100 struct pcpu_chunk {
101 struct list_head list; /* linked to pcpu_slot lists */
102 int free_size; /* free bytes in the chunk */
103 int contig_hint; /* max contiguous size hint */
104 void *base_addr; /* base address of this chunk */
105 int map_used; /* # of map entries used */
106 int map_alloc; /* # of map entries allocated */
107 int *map; /* allocation map */
108 void *data; /* chunk data */
109 bool immutable; /* no [de]population allowed */
110 unsigned long populated[]; /* populated bitmap */
111 };
112
113 static int pcpu_unit_pages __read_mostly;
114 static int pcpu_unit_size __read_mostly;
115 static int pcpu_nr_units __read_mostly;
116 static int pcpu_atom_size __read_mostly;
117 static int pcpu_nr_slots __read_mostly;
118 static size_t pcpu_chunk_struct_size __read_mostly;
119
120 /* cpus with the lowest and highest unit addresses */
121 static unsigned int pcpu_low_unit_cpu __read_mostly;
122 static unsigned int pcpu_high_unit_cpu __read_mostly;
123
124 /* the address of the first chunk which starts with the kernel static area */
125 void *pcpu_base_addr __read_mostly;
126 EXPORT_SYMBOL_GPL(pcpu_base_addr);
127
128 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
129 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
130
131 /* group information, used for vm allocation */
132 static int pcpu_nr_groups __read_mostly;
133 static const unsigned long *pcpu_group_offsets __read_mostly;
134 static const size_t *pcpu_group_sizes __read_mostly;
135
136 /*
137 * The first chunk which always exists. Note that unlike other
138 * chunks, this one can be allocated and mapped in several different
139 * ways and thus often doesn't live in the vmalloc area.
140 */
141 static struct pcpu_chunk *pcpu_first_chunk;
142
143 /*
144 * Optional reserved chunk. This chunk reserves part of the first
145 * chunk and serves it for reserved allocations. The amount of
146 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
147 * area doesn't exist, the following variables contain NULL and 0
148 * respectively.
149 */
150 static struct pcpu_chunk *pcpu_reserved_chunk;
151 static int pcpu_reserved_chunk_limit;
152
153 /*
154 * Synchronization rules.
155 *
156 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
157 * protects allocation/reclaim paths, chunks, populated bitmap and
158 * vmalloc mapping. The latter is a spinlock and protects the index
159 * data structures - chunk slots, chunks and area maps in chunks.
160 *
161 * During allocation, pcpu_alloc_mutex is kept locked all the time and
162 * pcpu_lock is grabbed and released as necessary. All actual memory
163 * allocations are done using GFP_KERNEL with pcpu_lock released. In
164 * general, percpu memory can't be allocated with irq off but
165 * irqsave/restore are still used in alloc path so that it can be used
166 * from early init path - sched_init() specifically.
167 *
168 * Free path accesses and alters only the index data structures, so it
169 * can be safely called from atomic context. When memory needs to be
170 * returned to the system, free path schedules reclaim_work which
171 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
172 * reclaimed, release both locks and frees the chunks. Note that it's
173 * necessary to grab both locks to remove a chunk from circulation as
174 * allocation path might be referencing the chunk with only
175 * pcpu_alloc_mutex locked.
176 */
177 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
178 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
179
180 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
181
182 /* reclaim work to release fully free chunks, scheduled from free path */
183 static void pcpu_reclaim(struct work_struct *work);
184 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
185
186 static bool pcpu_addr_in_first_chunk(void *addr)
187 {
188 void *first_start = pcpu_first_chunk->base_addr;
189
190 return addr >= first_start && addr < first_start + pcpu_unit_size;
191 }
192
193 static bool pcpu_addr_in_reserved_chunk(void *addr)
194 {
195 void *first_start = pcpu_first_chunk->base_addr;
196
197 return addr >= first_start &&
198 addr < first_start + pcpu_reserved_chunk_limit;
199 }
200
201 static int __pcpu_size_to_slot(int size)
202 {
203 int highbit = fls(size); /* size is in bytes */
204 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
205 }
206
207 static int pcpu_size_to_slot(int size)
208 {
209 if (size == pcpu_unit_size)
210 return pcpu_nr_slots - 1;
211 return __pcpu_size_to_slot(size);
212 }
213
214 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
215 {
216 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
217 return 0;
218
219 return pcpu_size_to_slot(chunk->free_size);
220 }
221
222 /* set the pointer to a chunk in a page struct */
223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
224 {
225 page->index = (unsigned long)pcpu;
226 }
227
228 /* obtain pointer to a chunk from a page struct */
229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
230 {
231 return (struct pcpu_chunk *)page->index;
232 }
233
234 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
235 {
236 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
237 }
238
239 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
240 unsigned int cpu, int page_idx)
241 {
242 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
243 (page_idx << PAGE_SHIFT);
244 }
245
246 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
247 int *rs, int *re, int end)
248 {
249 *rs = find_next_zero_bit(chunk->populated, end, *rs);
250 *re = find_next_bit(chunk->populated, end, *rs + 1);
251 }
252
253 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
254 int *rs, int *re, int end)
255 {
256 *rs = find_next_bit(chunk->populated, end, *rs);
257 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
258 }
259
260 /*
261 * (Un)populated page region iterators. Iterate over (un)populated
262 * page regions between @start and @end in @chunk. @rs and @re should
263 * be integer variables and will be set to start and end page index of
264 * the current region.
265 */
266 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
267 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
268 (rs) < (re); \
269 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
270
271 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
272 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
273 (rs) < (re); \
274 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
275
276 /**
277 * pcpu_mem_zalloc - allocate memory
278 * @size: bytes to allocate
279 *
280 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
281 * kzalloc() is used; otherwise, vzalloc() is used. The returned
282 * memory is always zeroed.
283 *
284 * CONTEXT:
285 * Does GFP_KERNEL allocation.
286 *
287 * RETURNS:
288 * Pointer to the allocated area on success, NULL on failure.
289 */
290 static void *pcpu_mem_zalloc(size_t size)
291 {
292 if (WARN_ON_ONCE(!slab_is_available()))
293 return NULL;
294
295 if (size <= PAGE_SIZE)
296 return kzalloc(size, GFP_KERNEL);
297 else
298 return vzalloc(size);
299 }
300
301 /**
302 * pcpu_mem_free - free memory
303 * @ptr: memory to free
304 * @size: size of the area
305 *
306 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
307 */
308 static void pcpu_mem_free(void *ptr, size_t size)
309 {
310 if (size <= PAGE_SIZE)
311 kfree(ptr);
312 else
313 vfree(ptr);
314 }
315
316 /**
317 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
318 * @chunk: chunk of interest
319 * @oslot: the previous slot it was on
320 *
321 * This function is called after an allocation or free changed @chunk.
322 * New slot according to the changed state is determined and @chunk is
323 * moved to the slot. Note that the reserved chunk is never put on
324 * chunk slots.
325 *
326 * CONTEXT:
327 * pcpu_lock.
328 */
329 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
330 {
331 int nslot = pcpu_chunk_slot(chunk);
332
333 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
334 if (oslot < nslot)
335 list_move(&chunk->list, &pcpu_slot[nslot]);
336 else
337 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
338 }
339 }
340
341 /**
342 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
343 * @chunk: chunk of interest
344 *
345 * Determine whether area map of @chunk needs to be extended to
346 * accommodate a new allocation.
347 *
348 * CONTEXT:
349 * pcpu_lock.
350 *
351 * RETURNS:
352 * New target map allocation length if extension is necessary, 0
353 * otherwise.
354 */
355 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
356 {
357 int new_alloc;
358
359 if (chunk->map_alloc >= chunk->map_used + 2)
360 return 0;
361
362 new_alloc = PCPU_DFL_MAP_ALLOC;
363 while (new_alloc < chunk->map_used + 2)
364 new_alloc *= 2;
365
366 return new_alloc;
367 }
368
369 /**
370 * pcpu_extend_area_map - extend area map of a chunk
371 * @chunk: chunk of interest
372 * @new_alloc: new target allocation length of the area map
373 *
374 * Extend area map of @chunk to have @new_alloc entries.
375 *
376 * CONTEXT:
377 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
378 *
379 * RETURNS:
380 * 0 on success, -errno on failure.
381 */
382 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
383 {
384 int *old = NULL, *new = NULL;
385 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
386 unsigned long flags;
387
388 new = pcpu_mem_zalloc(new_size);
389 if (!new)
390 return -ENOMEM;
391
392 /* acquire pcpu_lock and switch to new area map */
393 spin_lock_irqsave(&pcpu_lock, flags);
394
395 if (new_alloc <= chunk->map_alloc)
396 goto out_unlock;
397
398 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
399 old = chunk->map;
400
401 memcpy(new, old, old_size);
402
403 chunk->map_alloc = new_alloc;
404 chunk->map = new;
405 new = NULL;
406
407 out_unlock:
408 spin_unlock_irqrestore(&pcpu_lock, flags);
409
410 /*
411 * pcpu_mem_free() might end up calling vfree() which uses
412 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
413 */
414 pcpu_mem_free(old, old_size);
415 pcpu_mem_free(new, new_size);
416
417 return 0;
418 }
419
420 /**
421 * pcpu_alloc_area - allocate area from a pcpu_chunk
422 * @chunk: chunk of interest
423 * @size: wanted size in bytes
424 * @align: wanted align
425 *
426 * Try to allocate @size bytes area aligned at @align from @chunk.
427 * Note that this function only allocates the offset. It doesn't
428 * populate or map the area.
429 *
430 * @chunk->map must have at least two free slots.
431 *
432 * CONTEXT:
433 * pcpu_lock.
434 *
435 * RETURNS:
436 * Allocated offset in @chunk on success, -1 if no matching area is
437 * found.
438 */
439 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
440 {
441 int oslot = pcpu_chunk_slot(chunk);
442 int max_contig = 0;
443 int i, off;
444
445 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
446 bool is_last = i + 1 == chunk->map_used;
447 int head, tail;
448
449 /* extra for alignment requirement */
450 head = ALIGN(off, align) - off;
451 BUG_ON(i == 0 && head != 0);
452
453 if (chunk->map[i] < 0)
454 continue;
455 if (chunk->map[i] < head + size) {
456 max_contig = max(chunk->map[i], max_contig);
457 continue;
458 }
459
460 /*
461 * If head is small or the previous block is free,
462 * merge'em. Note that 'small' is defined as smaller
463 * than sizeof(int), which is very small but isn't too
464 * uncommon for percpu allocations.
465 */
466 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
467 if (chunk->map[i - 1] > 0)
468 chunk->map[i - 1] += head;
469 else {
470 chunk->map[i - 1] -= head;
471 chunk->free_size -= head;
472 }
473 chunk->map[i] -= head;
474 off += head;
475 head = 0;
476 }
477
478 /* if tail is small, just keep it around */
479 tail = chunk->map[i] - head - size;
480 if (tail < sizeof(int))
481 tail = 0;
482
483 /* split if warranted */
484 if (head || tail) {
485 int nr_extra = !!head + !!tail;
486
487 /* insert new subblocks */
488 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
489 sizeof(chunk->map[0]) * (chunk->map_used - i));
490 chunk->map_used += nr_extra;
491
492 if (head) {
493 chunk->map[i + 1] = chunk->map[i] - head;
494 chunk->map[i] = head;
495 off += head;
496 i++;
497 max_contig = max(head, max_contig);
498 }
499 if (tail) {
500 chunk->map[i] -= tail;
501 chunk->map[i + 1] = tail;
502 max_contig = max(tail, max_contig);
503 }
504 }
505
506 /* update hint and mark allocated */
507 if (is_last)
508 chunk->contig_hint = max_contig; /* fully scanned */
509 else
510 chunk->contig_hint = max(chunk->contig_hint,
511 max_contig);
512
513 chunk->free_size -= chunk->map[i];
514 chunk->map[i] = -chunk->map[i];
515
516 pcpu_chunk_relocate(chunk, oslot);
517 return off;
518 }
519
520 chunk->contig_hint = max_contig; /* fully scanned */
521 pcpu_chunk_relocate(chunk, oslot);
522
523 /* tell the upper layer that this chunk has no matching area */
524 return -1;
525 }
526
527 /**
528 * pcpu_free_area - free area to a pcpu_chunk
529 * @chunk: chunk of interest
530 * @freeme: offset of area to free
531 *
532 * Free area starting from @freeme to @chunk. Note that this function
533 * only modifies the allocation map. It doesn't depopulate or unmap
534 * the area.
535 *
536 * CONTEXT:
537 * pcpu_lock.
538 */
539 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
540 {
541 int oslot = pcpu_chunk_slot(chunk);
542 int i, off;
543
544 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
545 if (off == freeme)
546 break;
547 BUG_ON(off != freeme);
548 BUG_ON(chunk->map[i] > 0);
549
550 chunk->map[i] = -chunk->map[i];
551 chunk->free_size += chunk->map[i];
552
553 /* merge with previous? */
554 if (i > 0 && chunk->map[i - 1] >= 0) {
555 chunk->map[i - 1] += chunk->map[i];
556 chunk->map_used--;
557 memmove(&chunk->map[i], &chunk->map[i + 1],
558 (chunk->map_used - i) * sizeof(chunk->map[0]));
559 i--;
560 }
561 /* merge with next? */
562 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
563 chunk->map[i] += chunk->map[i + 1];
564 chunk->map_used--;
565 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
566 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
567 }
568
569 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
570 pcpu_chunk_relocate(chunk, oslot);
571 }
572
573 static struct pcpu_chunk *pcpu_alloc_chunk(void)
574 {
575 struct pcpu_chunk *chunk;
576
577 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
578 if (!chunk)
579 return NULL;
580
581 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
582 sizeof(chunk->map[0]));
583 if (!chunk->map) {
584 kfree(chunk);
585 return NULL;
586 }
587
588 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
589 chunk->map[chunk->map_used++] = pcpu_unit_size;
590
591 INIT_LIST_HEAD(&chunk->list);
592 chunk->free_size = pcpu_unit_size;
593 chunk->contig_hint = pcpu_unit_size;
594
595 return chunk;
596 }
597
598 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
599 {
600 if (!chunk)
601 return;
602 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
603 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
604 }
605
606 /*
607 * Chunk management implementation.
608 *
609 * To allow different implementations, chunk alloc/free and
610 * [de]population are implemented in a separate file which is pulled
611 * into this file and compiled together. The following functions
612 * should be implemented.
613 *
614 * pcpu_populate_chunk - populate the specified range of a chunk
615 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
616 * pcpu_create_chunk - create a new chunk
617 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
618 * pcpu_addr_to_page - translate address to physical address
619 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
620 */
621 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
622 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
623 static struct pcpu_chunk *pcpu_create_chunk(void);
624 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
625 static struct page *pcpu_addr_to_page(void *addr);
626 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
627
628 #ifdef CONFIG_NEED_PER_CPU_KM
629 #include "percpu-km.c"
630 #else
631 #include "percpu-vm.c"
632 #endif
633
634 /**
635 * pcpu_chunk_addr_search - determine chunk containing specified address
636 * @addr: address for which the chunk needs to be determined.
637 *
638 * RETURNS:
639 * The address of the found chunk.
640 */
641 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
642 {
643 /* is it in the first chunk? */
644 if (pcpu_addr_in_first_chunk(addr)) {
645 /* is it in the reserved area? */
646 if (pcpu_addr_in_reserved_chunk(addr))
647 return pcpu_reserved_chunk;
648 return pcpu_first_chunk;
649 }
650
651 /*
652 * The address is relative to unit0 which might be unused and
653 * thus unmapped. Offset the address to the unit space of the
654 * current processor before looking it up in the vmalloc
655 * space. Note that any possible cpu id can be used here, so
656 * there's no need to worry about preemption or cpu hotplug.
657 */
658 addr += pcpu_unit_offsets[raw_smp_processor_id()];
659 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
660 }
661
662 /**
663 * pcpu_alloc - the percpu allocator
664 * @size: size of area to allocate in bytes
665 * @align: alignment of area (max PAGE_SIZE)
666 * @reserved: allocate from the reserved chunk if available
667 *
668 * Allocate percpu area of @size bytes aligned at @align.
669 *
670 * CONTEXT:
671 * Does GFP_KERNEL allocation.
672 *
673 * RETURNS:
674 * Percpu pointer to the allocated area on success, NULL on failure.
675 */
676 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
677 {
678 static int warn_limit = 10;
679 struct pcpu_chunk *chunk;
680 const char *err;
681 int slot, off, new_alloc;
682 unsigned long flags;
683 void __percpu *ptr;
684
685 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
686 WARN(true, "illegal size (%zu) or align (%zu) for "
687 "percpu allocation\n", size, align);
688 return NULL;
689 }
690
691 mutex_lock(&pcpu_alloc_mutex);
692 spin_lock_irqsave(&pcpu_lock, flags);
693
694 /* serve reserved allocations from the reserved chunk if available */
695 if (reserved && pcpu_reserved_chunk) {
696 chunk = pcpu_reserved_chunk;
697
698 if (size > chunk->contig_hint) {
699 err = "alloc from reserved chunk failed";
700 goto fail_unlock;
701 }
702
703 while ((new_alloc = pcpu_need_to_extend(chunk))) {
704 spin_unlock_irqrestore(&pcpu_lock, flags);
705 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
706 err = "failed to extend area map of reserved chunk";
707 goto fail_unlock_mutex;
708 }
709 spin_lock_irqsave(&pcpu_lock, flags);
710 }
711
712 off = pcpu_alloc_area(chunk, size, align);
713 if (off >= 0)
714 goto area_found;
715
716 err = "alloc from reserved chunk failed";
717 goto fail_unlock;
718 }
719
720 restart:
721 /* search through normal chunks */
722 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
723 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
724 if (size > chunk->contig_hint)
725 continue;
726
727 new_alloc = pcpu_need_to_extend(chunk);
728 if (new_alloc) {
729 spin_unlock_irqrestore(&pcpu_lock, flags);
730 if (pcpu_extend_area_map(chunk,
731 new_alloc) < 0) {
732 err = "failed to extend area map";
733 goto fail_unlock_mutex;
734 }
735 spin_lock_irqsave(&pcpu_lock, flags);
736 /*
737 * pcpu_lock has been dropped, need to
738 * restart cpu_slot list walking.
739 */
740 goto restart;
741 }
742
743 off = pcpu_alloc_area(chunk, size, align);
744 if (off >= 0)
745 goto area_found;
746 }
747 }
748
749 /* hmmm... no space left, create a new chunk */
750 spin_unlock_irqrestore(&pcpu_lock, flags);
751
752 chunk = pcpu_create_chunk();
753 if (!chunk) {
754 err = "failed to allocate new chunk";
755 goto fail_unlock_mutex;
756 }
757
758 spin_lock_irqsave(&pcpu_lock, flags);
759 pcpu_chunk_relocate(chunk, -1);
760 goto restart;
761
762 area_found:
763 spin_unlock_irqrestore(&pcpu_lock, flags);
764
765 /* populate, map and clear the area */
766 if (pcpu_populate_chunk(chunk, off, size)) {
767 spin_lock_irqsave(&pcpu_lock, flags);
768 pcpu_free_area(chunk, off);
769 err = "failed to populate";
770 goto fail_unlock;
771 }
772
773 mutex_unlock(&pcpu_alloc_mutex);
774
775 /* return address relative to base address */
776 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
777 kmemleak_alloc_percpu(ptr, size);
778 return ptr;
779
780 fail_unlock:
781 spin_unlock_irqrestore(&pcpu_lock, flags);
782 fail_unlock_mutex:
783 mutex_unlock(&pcpu_alloc_mutex);
784 if (warn_limit) {
785 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
786 "%s\n", size, align, err);
787 dump_stack();
788 if (!--warn_limit)
789 pr_info("PERCPU: limit reached, disable warning\n");
790 }
791 return NULL;
792 }
793
794 /**
795 * __alloc_percpu - allocate dynamic percpu area
796 * @size: size of area to allocate in bytes
797 * @align: alignment of area (max PAGE_SIZE)
798 *
799 * Allocate zero-filled percpu area of @size bytes aligned at @align.
800 * Might sleep. Might trigger writeouts.
801 *
802 * CONTEXT:
803 * Does GFP_KERNEL allocation.
804 *
805 * RETURNS:
806 * Percpu pointer to the allocated area on success, NULL on failure.
807 */
808 void __percpu *__alloc_percpu(size_t size, size_t align)
809 {
810 return pcpu_alloc(size, align, false);
811 }
812 EXPORT_SYMBOL_GPL(__alloc_percpu);
813
814 /**
815 * __alloc_reserved_percpu - allocate reserved percpu area
816 * @size: size of area to allocate in bytes
817 * @align: alignment of area (max PAGE_SIZE)
818 *
819 * Allocate zero-filled percpu area of @size bytes aligned at @align
820 * from reserved percpu area if arch has set it up; otherwise,
821 * allocation is served from the same dynamic area. Might sleep.
822 * Might trigger writeouts.
823 *
824 * CONTEXT:
825 * Does GFP_KERNEL allocation.
826 *
827 * RETURNS:
828 * Percpu pointer to the allocated area on success, NULL on failure.
829 */
830 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
831 {
832 return pcpu_alloc(size, align, true);
833 }
834
835 /**
836 * pcpu_reclaim - reclaim fully free chunks, workqueue function
837 * @work: unused
838 *
839 * Reclaim all fully free chunks except for the first one.
840 *
841 * CONTEXT:
842 * workqueue context.
843 */
844 static void pcpu_reclaim(struct work_struct *work)
845 {
846 LIST_HEAD(todo);
847 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
848 struct pcpu_chunk *chunk, *next;
849
850 mutex_lock(&pcpu_alloc_mutex);
851 spin_lock_irq(&pcpu_lock);
852
853 list_for_each_entry_safe(chunk, next, head, list) {
854 WARN_ON(chunk->immutable);
855
856 /* spare the first one */
857 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
858 continue;
859
860 list_move(&chunk->list, &todo);
861 }
862
863 spin_unlock_irq(&pcpu_lock);
864
865 list_for_each_entry_safe(chunk, next, &todo, list) {
866 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
867 pcpu_destroy_chunk(chunk);
868 }
869
870 mutex_unlock(&pcpu_alloc_mutex);
871 }
872
873 /**
874 * free_percpu - free percpu area
875 * @ptr: pointer to area to free
876 *
877 * Free percpu area @ptr.
878 *
879 * CONTEXT:
880 * Can be called from atomic context.
881 */
882 void free_percpu(void __percpu *ptr)
883 {
884 void *addr;
885 struct pcpu_chunk *chunk;
886 unsigned long flags;
887 int off;
888
889 if (!ptr)
890 return;
891
892 kmemleak_free_percpu(ptr);
893
894 addr = __pcpu_ptr_to_addr(ptr);
895
896 spin_lock_irqsave(&pcpu_lock, flags);
897
898 chunk = pcpu_chunk_addr_search(addr);
899 off = addr - chunk->base_addr;
900
901 pcpu_free_area(chunk, off);
902
903 /* if there are more than one fully free chunks, wake up grim reaper */
904 if (chunk->free_size == pcpu_unit_size) {
905 struct pcpu_chunk *pos;
906
907 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
908 if (pos != chunk) {
909 schedule_work(&pcpu_reclaim_work);
910 break;
911 }
912 }
913
914 spin_unlock_irqrestore(&pcpu_lock, flags);
915 }
916 EXPORT_SYMBOL_GPL(free_percpu);
917
918 /**
919 * is_kernel_percpu_address - test whether address is from static percpu area
920 * @addr: address to test
921 *
922 * Test whether @addr belongs to in-kernel static percpu area. Module
923 * static percpu areas are not considered. For those, use
924 * is_module_percpu_address().
925 *
926 * RETURNS:
927 * %true if @addr is from in-kernel static percpu area, %false otherwise.
928 */
929 bool is_kernel_percpu_address(unsigned long addr)
930 {
931 #ifdef CONFIG_SMP
932 const size_t static_size = __per_cpu_end - __per_cpu_start;
933 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
934 unsigned int cpu;
935
936 for_each_possible_cpu(cpu) {
937 void *start = per_cpu_ptr(base, cpu);
938
939 if ((void *)addr >= start && (void *)addr < start + static_size)
940 return true;
941 }
942 #endif
943 /* on UP, can't distinguish from other static vars, always false */
944 return false;
945 }
946
947 /**
948 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
949 * @addr: the address to be converted to physical address
950 *
951 * Given @addr which is dereferenceable address obtained via one of
952 * percpu access macros, this function translates it into its physical
953 * address. The caller is responsible for ensuring @addr stays valid
954 * until this function finishes.
955 *
956 * percpu allocator has special setup for the first chunk, which currently
957 * supports either embedding in linear address space or vmalloc mapping,
958 * and, from the second one, the backing allocator (currently either vm or
959 * km) provides translation.
960 *
961 * The addr can be tranlated simply without checking if it falls into the
962 * first chunk. But the current code reflects better how percpu allocator
963 * actually works, and the verification can discover both bugs in percpu
964 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
965 * code.
966 *
967 * RETURNS:
968 * The physical address for @addr.
969 */
970 phys_addr_t per_cpu_ptr_to_phys(void *addr)
971 {
972 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
973 bool in_first_chunk = false;
974 unsigned long first_low, first_high;
975 unsigned int cpu;
976
977 /*
978 * The following test on unit_low/high isn't strictly
979 * necessary but will speed up lookups of addresses which
980 * aren't in the first chunk.
981 */
982 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
983 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
984 pcpu_unit_pages);
985 if ((unsigned long)addr >= first_low &&
986 (unsigned long)addr < first_high) {
987 for_each_possible_cpu(cpu) {
988 void *start = per_cpu_ptr(base, cpu);
989
990 if (addr >= start && addr < start + pcpu_unit_size) {
991 in_first_chunk = true;
992 break;
993 }
994 }
995 }
996
997 if (in_first_chunk) {
998 if (!is_vmalloc_addr(addr))
999 return __pa(addr);
1000 else
1001 return page_to_phys(vmalloc_to_page(addr)) +
1002 offset_in_page(addr);
1003 } else
1004 return page_to_phys(pcpu_addr_to_page(addr)) +
1005 offset_in_page(addr);
1006 }
1007
1008 /**
1009 * pcpu_alloc_alloc_info - allocate percpu allocation info
1010 * @nr_groups: the number of groups
1011 * @nr_units: the number of units
1012 *
1013 * Allocate ai which is large enough for @nr_groups groups containing
1014 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1015 * cpu_map array which is long enough for @nr_units and filled with
1016 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1017 * pointer of other groups.
1018 *
1019 * RETURNS:
1020 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1021 * failure.
1022 */
1023 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1024 int nr_units)
1025 {
1026 struct pcpu_alloc_info *ai;
1027 size_t base_size, ai_size;
1028 void *ptr;
1029 int unit;
1030
1031 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1032 __alignof__(ai->groups[0].cpu_map[0]));
1033 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1034
1035 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1036 if (!ptr)
1037 return NULL;
1038 ai = ptr;
1039 ptr += base_size;
1040
1041 ai->groups[0].cpu_map = ptr;
1042
1043 for (unit = 0; unit < nr_units; unit++)
1044 ai->groups[0].cpu_map[unit] = NR_CPUS;
1045
1046 ai->nr_groups = nr_groups;
1047 ai->__ai_size = PFN_ALIGN(ai_size);
1048
1049 return ai;
1050 }
1051
1052 /**
1053 * pcpu_free_alloc_info - free percpu allocation info
1054 * @ai: pcpu_alloc_info to free
1055 *
1056 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1057 */
1058 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1059 {
1060 memblock_free_early(__pa(ai), ai->__ai_size);
1061 }
1062
1063 /**
1064 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1065 * @lvl: loglevel
1066 * @ai: allocation info to dump
1067 *
1068 * Print out information about @ai using loglevel @lvl.
1069 */
1070 static void pcpu_dump_alloc_info(const char *lvl,
1071 const struct pcpu_alloc_info *ai)
1072 {
1073 int group_width = 1, cpu_width = 1, width;
1074 char empty_str[] = "--------";
1075 int alloc = 0, alloc_end = 0;
1076 int group, v;
1077 int upa, apl; /* units per alloc, allocs per line */
1078
1079 v = ai->nr_groups;
1080 while (v /= 10)
1081 group_width++;
1082
1083 v = num_possible_cpus();
1084 while (v /= 10)
1085 cpu_width++;
1086 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1087
1088 upa = ai->alloc_size / ai->unit_size;
1089 width = upa * (cpu_width + 1) + group_width + 3;
1090 apl = rounddown_pow_of_two(max(60 / width, 1));
1091
1092 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1093 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1094 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1095
1096 for (group = 0; group < ai->nr_groups; group++) {
1097 const struct pcpu_group_info *gi = &ai->groups[group];
1098 int unit = 0, unit_end = 0;
1099
1100 BUG_ON(gi->nr_units % upa);
1101 for (alloc_end += gi->nr_units / upa;
1102 alloc < alloc_end; alloc++) {
1103 if (!(alloc % apl)) {
1104 printk(KERN_CONT "\n");
1105 printk("%spcpu-alloc: ", lvl);
1106 }
1107 printk(KERN_CONT "[%0*d] ", group_width, group);
1108
1109 for (unit_end += upa; unit < unit_end; unit++)
1110 if (gi->cpu_map[unit] != NR_CPUS)
1111 printk(KERN_CONT "%0*d ", cpu_width,
1112 gi->cpu_map[unit]);
1113 else
1114 printk(KERN_CONT "%s ", empty_str);
1115 }
1116 }
1117 printk(KERN_CONT "\n");
1118 }
1119
1120 /**
1121 * pcpu_setup_first_chunk - initialize the first percpu chunk
1122 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1123 * @base_addr: mapped address
1124 *
1125 * Initialize the first percpu chunk which contains the kernel static
1126 * perpcu area. This function is to be called from arch percpu area
1127 * setup path.
1128 *
1129 * @ai contains all information necessary to initialize the first
1130 * chunk and prime the dynamic percpu allocator.
1131 *
1132 * @ai->static_size is the size of static percpu area.
1133 *
1134 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1135 * reserve after the static area in the first chunk. This reserves
1136 * the first chunk such that it's available only through reserved
1137 * percpu allocation. This is primarily used to serve module percpu
1138 * static areas on architectures where the addressing model has
1139 * limited offset range for symbol relocations to guarantee module
1140 * percpu symbols fall inside the relocatable range.
1141 *
1142 * @ai->dyn_size determines the number of bytes available for dynamic
1143 * allocation in the first chunk. The area between @ai->static_size +
1144 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1145 *
1146 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1147 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1148 * @ai->dyn_size.
1149 *
1150 * @ai->atom_size is the allocation atom size and used as alignment
1151 * for vm areas.
1152 *
1153 * @ai->alloc_size is the allocation size and always multiple of
1154 * @ai->atom_size. This is larger than @ai->atom_size if
1155 * @ai->unit_size is larger than @ai->atom_size.
1156 *
1157 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1158 * percpu areas. Units which should be colocated are put into the
1159 * same group. Dynamic VM areas will be allocated according to these
1160 * groupings. If @ai->nr_groups is zero, a single group containing
1161 * all units is assumed.
1162 *
1163 * The caller should have mapped the first chunk at @base_addr and
1164 * copied static data to each unit.
1165 *
1166 * If the first chunk ends up with both reserved and dynamic areas, it
1167 * is served by two chunks - one to serve the core static and reserved
1168 * areas and the other for the dynamic area. They share the same vm
1169 * and page map but uses different area allocation map to stay away
1170 * from each other. The latter chunk is circulated in the chunk slots
1171 * and available for dynamic allocation like any other chunks.
1172 *
1173 * RETURNS:
1174 * 0 on success, -errno on failure.
1175 */
1176 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1177 void *base_addr)
1178 {
1179 static char cpus_buf[4096] __initdata;
1180 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1181 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1182 size_t dyn_size = ai->dyn_size;
1183 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1184 struct pcpu_chunk *schunk, *dchunk = NULL;
1185 unsigned long *group_offsets;
1186 size_t *group_sizes;
1187 unsigned long *unit_off;
1188 unsigned int cpu;
1189 int *unit_map;
1190 int group, unit, i;
1191
1192 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1193
1194 #define PCPU_SETUP_BUG_ON(cond) do { \
1195 if (unlikely(cond)) { \
1196 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1197 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1198 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1199 BUG(); \
1200 } \
1201 } while (0)
1202
1203 /* sanity checks */
1204 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1205 #ifdef CONFIG_SMP
1206 PCPU_SETUP_BUG_ON(!ai->static_size);
1207 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1208 #endif
1209 PCPU_SETUP_BUG_ON(!base_addr);
1210 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1211 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1212 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1213 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1214 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1215 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1216
1217 /* process group information and build config tables accordingly */
1218 group_offsets = memblock_virt_alloc(ai->nr_groups *
1219 sizeof(group_offsets[0]), 0);
1220 group_sizes = memblock_virt_alloc(ai->nr_groups *
1221 sizeof(group_sizes[0]), 0);
1222 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1223 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1224
1225 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1226 unit_map[cpu] = UINT_MAX;
1227
1228 pcpu_low_unit_cpu = NR_CPUS;
1229 pcpu_high_unit_cpu = NR_CPUS;
1230
1231 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1232 const struct pcpu_group_info *gi = &ai->groups[group];
1233
1234 group_offsets[group] = gi->base_offset;
1235 group_sizes[group] = gi->nr_units * ai->unit_size;
1236
1237 for (i = 0; i < gi->nr_units; i++) {
1238 cpu = gi->cpu_map[i];
1239 if (cpu == NR_CPUS)
1240 continue;
1241
1242 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1243 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1244 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1245
1246 unit_map[cpu] = unit + i;
1247 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1248
1249 /* determine low/high unit_cpu */
1250 if (pcpu_low_unit_cpu == NR_CPUS ||
1251 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1252 pcpu_low_unit_cpu = cpu;
1253 if (pcpu_high_unit_cpu == NR_CPUS ||
1254 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1255 pcpu_high_unit_cpu = cpu;
1256 }
1257 }
1258 pcpu_nr_units = unit;
1259
1260 for_each_possible_cpu(cpu)
1261 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1262
1263 /* we're done parsing the input, undefine BUG macro and dump config */
1264 #undef PCPU_SETUP_BUG_ON
1265 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1266
1267 pcpu_nr_groups = ai->nr_groups;
1268 pcpu_group_offsets = group_offsets;
1269 pcpu_group_sizes = group_sizes;
1270 pcpu_unit_map = unit_map;
1271 pcpu_unit_offsets = unit_off;
1272
1273 /* determine basic parameters */
1274 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1275 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1276 pcpu_atom_size = ai->atom_size;
1277 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1278 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1279
1280 /*
1281 * Allocate chunk slots. The additional last slot is for
1282 * empty chunks.
1283 */
1284 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1285 pcpu_slot = memblock_virt_alloc(
1286 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1287 for (i = 0; i < pcpu_nr_slots; i++)
1288 INIT_LIST_HEAD(&pcpu_slot[i]);
1289
1290 /*
1291 * Initialize static chunk. If reserved_size is zero, the
1292 * static chunk covers static area + dynamic allocation area
1293 * in the first chunk. If reserved_size is not zero, it
1294 * covers static area + reserved area (mostly used for module
1295 * static percpu allocation).
1296 */
1297 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1298 INIT_LIST_HEAD(&schunk->list);
1299 schunk->base_addr = base_addr;
1300 schunk->map = smap;
1301 schunk->map_alloc = ARRAY_SIZE(smap);
1302 schunk->immutable = true;
1303 bitmap_fill(schunk->populated, pcpu_unit_pages);
1304
1305 if (ai->reserved_size) {
1306 schunk->free_size = ai->reserved_size;
1307 pcpu_reserved_chunk = schunk;
1308 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1309 } else {
1310 schunk->free_size = dyn_size;
1311 dyn_size = 0; /* dynamic area covered */
1312 }
1313 schunk->contig_hint = schunk->free_size;
1314
1315 schunk->map[schunk->map_used++] = -ai->static_size;
1316 if (schunk->free_size)
1317 schunk->map[schunk->map_used++] = schunk->free_size;
1318
1319 /* init dynamic chunk if necessary */
1320 if (dyn_size) {
1321 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1322 INIT_LIST_HEAD(&dchunk->list);
1323 dchunk->base_addr = base_addr;
1324 dchunk->map = dmap;
1325 dchunk->map_alloc = ARRAY_SIZE(dmap);
1326 dchunk->immutable = true;
1327 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1328
1329 dchunk->contig_hint = dchunk->free_size = dyn_size;
1330 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1331 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1332 }
1333
1334 /* link the first chunk in */
1335 pcpu_first_chunk = dchunk ?: schunk;
1336 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1337
1338 /* we're done */
1339 pcpu_base_addr = base_addr;
1340 return 0;
1341 }
1342
1343 #ifdef CONFIG_SMP
1344
1345 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1346 [PCPU_FC_AUTO] = "auto",
1347 [PCPU_FC_EMBED] = "embed",
1348 [PCPU_FC_PAGE] = "page",
1349 };
1350
1351 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1352
1353 static int __init percpu_alloc_setup(char *str)
1354 {
1355 if (!str)
1356 return -EINVAL;
1357
1358 if (0)
1359 /* nada */;
1360 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1361 else if (!strcmp(str, "embed"))
1362 pcpu_chosen_fc = PCPU_FC_EMBED;
1363 #endif
1364 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1365 else if (!strcmp(str, "page"))
1366 pcpu_chosen_fc = PCPU_FC_PAGE;
1367 #endif
1368 else
1369 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1370
1371 return 0;
1372 }
1373 early_param("percpu_alloc", percpu_alloc_setup);
1374
1375 /*
1376 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1377 * Build it if needed by the arch config or the generic setup is going
1378 * to be used.
1379 */
1380 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1381 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1382 #define BUILD_EMBED_FIRST_CHUNK
1383 #endif
1384
1385 /* build pcpu_page_first_chunk() iff needed by the arch config */
1386 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1387 #define BUILD_PAGE_FIRST_CHUNK
1388 #endif
1389
1390 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1391 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1392 /**
1393 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1394 * @reserved_size: the size of reserved percpu area in bytes
1395 * @dyn_size: minimum free size for dynamic allocation in bytes
1396 * @atom_size: allocation atom size
1397 * @cpu_distance_fn: callback to determine distance between cpus, optional
1398 *
1399 * This function determines grouping of units, their mappings to cpus
1400 * and other parameters considering needed percpu size, allocation
1401 * atom size and distances between CPUs.
1402 *
1403 * Groups are always mutliples of atom size and CPUs which are of
1404 * LOCAL_DISTANCE both ways are grouped together and share space for
1405 * units in the same group. The returned configuration is guaranteed
1406 * to have CPUs on different nodes on different groups and >=75% usage
1407 * of allocated virtual address space.
1408 *
1409 * RETURNS:
1410 * On success, pointer to the new allocation_info is returned. On
1411 * failure, ERR_PTR value is returned.
1412 */
1413 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1414 size_t reserved_size, size_t dyn_size,
1415 size_t atom_size,
1416 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1417 {
1418 static int group_map[NR_CPUS] __initdata;
1419 static int group_cnt[NR_CPUS] __initdata;
1420 const size_t static_size = __per_cpu_end - __per_cpu_start;
1421 int nr_groups = 1, nr_units = 0;
1422 size_t size_sum, min_unit_size, alloc_size;
1423 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1424 int last_allocs, group, unit;
1425 unsigned int cpu, tcpu;
1426 struct pcpu_alloc_info *ai;
1427 unsigned int *cpu_map;
1428
1429 /* this function may be called multiple times */
1430 memset(group_map, 0, sizeof(group_map));
1431 memset(group_cnt, 0, sizeof(group_cnt));
1432
1433 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1434 size_sum = PFN_ALIGN(static_size + reserved_size +
1435 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1436 dyn_size = size_sum - static_size - reserved_size;
1437
1438 /*
1439 * Determine min_unit_size, alloc_size and max_upa such that
1440 * alloc_size is multiple of atom_size and is the smallest
1441 * which can accommodate 4k aligned segments which are equal to
1442 * or larger than min_unit_size.
1443 */
1444 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1445
1446 alloc_size = roundup(min_unit_size, atom_size);
1447 upa = alloc_size / min_unit_size;
1448 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1449 upa--;
1450 max_upa = upa;
1451
1452 /* group cpus according to their proximity */
1453 for_each_possible_cpu(cpu) {
1454 group = 0;
1455 next_group:
1456 for_each_possible_cpu(tcpu) {
1457 if (cpu == tcpu)
1458 break;
1459 if (group_map[tcpu] == group && cpu_distance_fn &&
1460 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1461 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1462 group++;
1463 nr_groups = max(nr_groups, group + 1);
1464 goto next_group;
1465 }
1466 }
1467 group_map[cpu] = group;
1468 group_cnt[group]++;
1469 }
1470
1471 /*
1472 * Expand unit size until address space usage goes over 75%
1473 * and then as much as possible without using more address
1474 * space.
1475 */
1476 last_allocs = INT_MAX;
1477 for (upa = max_upa; upa; upa--) {
1478 int allocs = 0, wasted = 0;
1479
1480 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1481 continue;
1482
1483 for (group = 0; group < nr_groups; group++) {
1484 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1485 allocs += this_allocs;
1486 wasted += this_allocs * upa - group_cnt[group];
1487 }
1488
1489 /*
1490 * Don't accept if wastage is over 1/3. The
1491 * greater-than comparison ensures upa==1 always
1492 * passes the following check.
1493 */
1494 if (wasted > num_possible_cpus() / 3)
1495 continue;
1496
1497 /* and then don't consume more memory */
1498 if (allocs > last_allocs)
1499 break;
1500 last_allocs = allocs;
1501 best_upa = upa;
1502 }
1503 upa = best_upa;
1504
1505 /* allocate and fill alloc_info */
1506 for (group = 0; group < nr_groups; group++)
1507 nr_units += roundup(group_cnt[group], upa);
1508
1509 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1510 if (!ai)
1511 return ERR_PTR(-ENOMEM);
1512 cpu_map = ai->groups[0].cpu_map;
1513
1514 for (group = 0; group < nr_groups; group++) {
1515 ai->groups[group].cpu_map = cpu_map;
1516 cpu_map += roundup(group_cnt[group], upa);
1517 }
1518
1519 ai->static_size = static_size;
1520 ai->reserved_size = reserved_size;
1521 ai->dyn_size = dyn_size;
1522 ai->unit_size = alloc_size / upa;
1523 ai->atom_size = atom_size;
1524 ai->alloc_size = alloc_size;
1525
1526 for (group = 0, unit = 0; group_cnt[group]; group++) {
1527 struct pcpu_group_info *gi = &ai->groups[group];
1528
1529 /*
1530 * Initialize base_offset as if all groups are located
1531 * back-to-back. The caller should update this to
1532 * reflect actual allocation.
1533 */
1534 gi->base_offset = unit * ai->unit_size;
1535
1536 for_each_possible_cpu(cpu)
1537 if (group_map[cpu] == group)
1538 gi->cpu_map[gi->nr_units++] = cpu;
1539 gi->nr_units = roundup(gi->nr_units, upa);
1540 unit += gi->nr_units;
1541 }
1542 BUG_ON(unit != nr_units);
1543
1544 return ai;
1545 }
1546 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1547
1548 #if defined(BUILD_EMBED_FIRST_CHUNK)
1549 /**
1550 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1551 * @reserved_size: the size of reserved percpu area in bytes
1552 * @dyn_size: minimum free size for dynamic allocation in bytes
1553 * @atom_size: allocation atom size
1554 * @cpu_distance_fn: callback to determine distance between cpus, optional
1555 * @alloc_fn: function to allocate percpu page
1556 * @free_fn: function to free percpu page
1557 *
1558 * This is a helper to ease setting up embedded first percpu chunk and
1559 * can be called where pcpu_setup_first_chunk() is expected.
1560 *
1561 * If this function is used to setup the first chunk, it is allocated
1562 * by calling @alloc_fn and used as-is without being mapped into
1563 * vmalloc area. Allocations are always whole multiples of @atom_size
1564 * aligned to @atom_size.
1565 *
1566 * This enables the first chunk to piggy back on the linear physical
1567 * mapping which often uses larger page size. Please note that this
1568 * can result in very sparse cpu->unit mapping on NUMA machines thus
1569 * requiring large vmalloc address space. Don't use this allocator if
1570 * vmalloc space is not orders of magnitude larger than distances
1571 * between node memory addresses (ie. 32bit NUMA machines).
1572 *
1573 * @dyn_size specifies the minimum dynamic area size.
1574 *
1575 * If the needed size is smaller than the minimum or specified unit
1576 * size, the leftover is returned using @free_fn.
1577 *
1578 * RETURNS:
1579 * 0 on success, -errno on failure.
1580 */
1581 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1582 size_t atom_size,
1583 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1584 pcpu_fc_alloc_fn_t alloc_fn,
1585 pcpu_fc_free_fn_t free_fn)
1586 {
1587 void *base = (void *)ULONG_MAX;
1588 void **areas = NULL;
1589 struct pcpu_alloc_info *ai;
1590 size_t size_sum, areas_size, max_distance;
1591 int group, i, rc;
1592
1593 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1594 cpu_distance_fn);
1595 if (IS_ERR(ai))
1596 return PTR_ERR(ai);
1597
1598 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1599 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1600
1601 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1602 if (!areas) {
1603 rc = -ENOMEM;
1604 goto out_free;
1605 }
1606
1607 /* allocate, copy and determine base address */
1608 for (group = 0; group < ai->nr_groups; group++) {
1609 struct pcpu_group_info *gi = &ai->groups[group];
1610 unsigned int cpu = NR_CPUS;
1611 void *ptr;
1612
1613 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1614 cpu = gi->cpu_map[i];
1615 BUG_ON(cpu == NR_CPUS);
1616
1617 /* allocate space for the whole group */
1618 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1619 if (!ptr) {
1620 rc = -ENOMEM;
1621 goto out_free_areas;
1622 }
1623 /* kmemleak tracks the percpu allocations separately */
1624 kmemleak_free(ptr);
1625 areas[group] = ptr;
1626
1627 base = min(ptr, base);
1628 }
1629
1630 /*
1631 * Copy data and free unused parts. This should happen after all
1632 * allocations are complete; otherwise, we may end up with
1633 * overlapping groups.
1634 */
1635 for (group = 0; group < ai->nr_groups; group++) {
1636 struct pcpu_group_info *gi = &ai->groups[group];
1637 void *ptr = areas[group];
1638
1639 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1640 if (gi->cpu_map[i] == NR_CPUS) {
1641 /* unused unit, free whole */
1642 free_fn(ptr, ai->unit_size);
1643 continue;
1644 }
1645 /* copy and return the unused part */
1646 memcpy(ptr, __per_cpu_load, ai->static_size);
1647 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1648 }
1649 }
1650
1651 /* base address is now known, determine group base offsets */
1652 max_distance = 0;
1653 for (group = 0; group < ai->nr_groups; group++) {
1654 ai->groups[group].base_offset = areas[group] - base;
1655 max_distance = max_t(size_t, max_distance,
1656 ai->groups[group].base_offset);
1657 }
1658 max_distance += ai->unit_size;
1659
1660 /* warn if maximum distance is further than 75% of vmalloc space */
1661 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1662 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1663 "space 0x%lx\n", max_distance,
1664 VMALLOC_TOTAL);
1665 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1666 /* and fail if we have fallback */
1667 rc = -EINVAL;
1668 goto out_free;
1669 #endif
1670 }
1671
1672 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1673 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1674 ai->dyn_size, ai->unit_size);
1675
1676 rc = pcpu_setup_first_chunk(ai, base);
1677 goto out_free;
1678
1679 out_free_areas:
1680 for (group = 0; group < ai->nr_groups; group++)
1681 if (areas[group])
1682 free_fn(areas[group],
1683 ai->groups[group].nr_units * ai->unit_size);
1684 out_free:
1685 pcpu_free_alloc_info(ai);
1686 if (areas)
1687 memblock_free_early(__pa(areas), areas_size);
1688 return rc;
1689 }
1690 #endif /* BUILD_EMBED_FIRST_CHUNK */
1691
1692 #ifdef BUILD_PAGE_FIRST_CHUNK
1693 /**
1694 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1695 * @reserved_size: the size of reserved percpu area in bytes
1696 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1697 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1698 * @populate_pte_fn: function to populate pte
1699 *
1700 * This is a helper to ease setting up page-remapped first percpu
1701 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1702 *
1703 * This is the basic allocator. Static percpu area is allocated
1704 * page-by-page into vmalloc area.
1705 *
1706 * RETURNS:
1707 * 0 on success, -errno on failure.
1708 */
1709 int __init pcpu_page_first_chunk(size_t reserved_size,
1710 pcpu_fc_alloc_fn_t alloc_fn,
1711 pcpu_fc_free_fn_t free_fn,
1712 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1713 {
1714 static struct vm_struct vm;
1715 struct pcpu_alloc_info *ai;
1716 char psize_str[16];
1717 int unit_pages;
1718 size_t pages_size;
1719 struct page **pages;
1720 int unit, i, j, rc;
1721
1722 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1723
1724 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1725 if (IS_ERR(ai))
1726 return PTR_ERR(ai);
1727 BUG_ON(ai->nr_groups != 1);
1728 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1729
1730 unit_pages = ai->unit_size >> PAGE_SHIFT;
1731
1732 /* unaligned allocations can't be freed, round up to page size */
1733 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1734 sizeof(pages[0]));
1735 pages = memblock_virt_alloc(pages_size, 0);
1736
1737 /* allocate pages */
1738 j = 0;
1739 for (unit = 0; unit < num_possible_cpus(); unit++)
1740 for (i = 0; i < unit_pages; i++) {
1741 unsigned int cpu = ai->groups[0].cpu_map[unit];
1742 void *ptr;
1743
1744 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1745 if (!ptr) {
1746 pr_warning("PERCPU: failed to allocate %s page "
1747 "for cpu%u\n", psize_str, cpu);
1748 goto enomem;
1749 }
1750 /* kmemleak tracks the percpu allocations separately */
1751 kmemleak_free(ptr);
1752 pages[j++] = virt_to_page(ptr);
1753 }
1754
1755 /* allocate vm area, map the pages and copy static data */
1756 vm.flags = VM_ALLOC;
1757 vm.size = num_possible_cpus() * ai->unit_size;
1758 vm_area_register_early(&vm, PAGE_SIZE);
1759
1760 for (unit = 0; unit < num_possible_cpus(); unit++) {
1761 unsigned long unit_addr =
1762 (unsigned long)vm.addr + unit * ai->unit_size;
1763
1764 for (i = 0; i < unit_pages; i++)
1765 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1766
1767 /* pte already populated, the following shouldn't fail */
1768 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1769 unit_pages);
1770 if (rc < 0)
1771 panic("failed to map percpu area, err=%d\n", rc);
1772
1773 /*
1774 * FIXME: Archs with virtual cache should flush local
1775 * cache for the linear mapping here - something
1776 * equivalent to flush_cache_vmap() on the local cpu.
1777 * flush_cache_vmap() can't be used as most supporting
1778 * data structures are not set up yet.
1779 */
1780
1781 /* copy static data */
1782 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1783 }
1784
1785 /* we're ready, commit */
1786 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1787 unit_pages, psize_str, vm.addr, ai->static_size,
1788 ai->reserved_size, ai->dyn_size);
1789
1790 rc = pcpu_setup_first_chunk(ai, vm.addr);
1791 goto out_free_ar;
1792
1793 enomem:
1794 while (--j >= 0)
1795 free_fn(page_address(pages[j]), PAGE_SIZE);
1796 rc = -ENOMEM;
1797 out_free_ar:
1798 memblock_free_early(__pa(pages), pages_size);
1799 pcpu_free_alloc_info(ai);
1800 return rc;
1801 }
1802 #endif /* BUILD_PAGE_FIRST_CHUNK */
1803
1804 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1805 /*
1806 * Generic SMP percpu area setup.
1807 *
1808 * The embedding helper is used because its behavior closely resembles
1809 * the original non-dynamic generic percpu area setup. This is
1810 * important because many archs have addressing restrictions and might
1811 * fail if the percpu area is located far away from the previous
1812 * location. As an added bonus, in non-NUMA cases, embedding is
1813 * generally a good idea TLB-wise because percpu area can piggy back
1814 * on the physical linear memory mapping which uses large page
1815 * mappings on applicable archs.
1816 */
1817 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1818 EXPORT_SYMBOL(__per_cpu_offset);
1819
1820 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1821 size_t align)
1822 {
1823 return memblock_virt_alloc_from_nopanic(
1824 size, align, __pa(MAX_DMA_ADDRESS));
1825 }
1826
1827 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1828 {
1829 memblock_free_early(__pa(ptr), size);
1830 }
1831
1832 void __init setup_per_cpu_areas(void)
1833 {
1834 unsigned long delta;
1835 unsigned int cpu;
1836 int rc;
1837
1838 /*
1839 * Always reserve area for module percpu variables. That's
1840 * what the legacy allocator did.
1841 */
1842 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1843 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1844 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1845 if (rc < 0)
1846 panic("Failed to initialize percpu areas.");
1847
1848 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1849 for_each_possible_cpu(cpu)
1850 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1851 }
1852 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1853
1854 #else /* CONFIG_SMP */
1855
1856 /*
1857 * UP percpu area setup.
1858 *
1859 * UP always uses km-based percpu allocator with identity mapping.
1860 * Static percpu variables are indistinguishable from the usual static
1861 * variables and don't require any special preparation.
1862 */
1863 void __init setup_per_cpu_areas(void)
1864 {
1865 const size_t unit_size =
1866 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1867 PERCPU_DYNAMIC_RESERVE));
1868 struct pcpu_alloc_info *ai;
1869 void *fc;
1870
1871 ai = pcpu_alloc_alloc_info(1, 1);
1872 fc = memblock_virt_alloc_from_nopanic(unit_size,
1873 PAGE_SIZE,
1874 __pa(MAX_DMA_ADDRESS));
1875 if (!ai || !fc)
1876 panic("Failed to allocate memory for percpu areas.");
1877 /* kmemleak tracks the percpu allocations separately */
1878 kmemleak_free(fc);
1879
1880 ai->dyn_size = unit_size;
1881 ai->unit_size = unit_size;
1882 ai->atom_size = unit_size;
1883 ai->alloc_size = unit_size;
1884 ai->groups[0].nr_units = 1;
1885 ai->groups[0].cpu_map[0] = 0;
1886
1887 if (pcpu_setup_first_chunk(ai, fc) < 0)
1888 panic("Failed to initialize percpu areas.");
1889 }
1890
1891 #endif /* CONFIG_SMP */
1892
1893 /*
1894 * First and reserved chunks are initialized with temporary allocation
1895 * map in initdata so that they can be used before slab is online.
1896 * This function is called after slab is brought up and replaces those
1897 * with properly allocated maps.
1898 */
1899 void __init percpu_init_late(void)
1900 {
1901 struct pcpu_chunk *target_chunks[] =
1902 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1903 struct pcpu_chunk *chunk;
1904 unsigned long flags;
1905 int i;
1906
1907 for (i = 0; (chunk = target_chunks[i]); i++) {
1908 int *map;
1909 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1910
1911 BUILD_BUG_ON(size > PAGE_SIZE);
1912
1913 map = pcpu_mem_zalloc(size);
1914 BUG_ON(!map);
1915
1916 spin_lock_irqsave(&pcpu_lock, flags);
1917 memcpy(map, chunk->map, size);
1918 chunk->map = map;
1919 spin_unlock_irqrestore(&pcpu_lock, flags);
1920 }
1921 }
This page took 0.079206 seconds and 5 git commands to generate.