perf, probe-finder: Build fix on Debian
[deliverable/linux.git] / mm / percpu.c
1 /*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
18 *
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
23 *
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
30 *
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
46 *
47 * To use this allocator, arch code should do the followings.
48 *
49 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50 * regular address to percpu pointer and back if they need to be
51 * different from the default
52 *
53 * - use pcpu_setup_first_chunk() during percpu area initialization to
54 * setup the first chunk containing the kernel static percpu area
55 */
56
57 #include <linux/bitmap.h>
58 #include <linux/bootmem.h>
59 #include <linux/err.h>
60 #include <linux/list.h>
61 #include <linux/log2.h>
62 #include <linux/mm.h>
63 #include <linux/module.h>
64 #include <linux/mutex.h>
65 #include <linux/percpu.h>
66 #include <linux/pfn.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/vmalloc.h>
70 #include <linux/workqueue.h>
71
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
80 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81 #ifndef __addr_to_pcpu_ptr
82 #define __addr_to_pcpu_ptr(addr) \
83 (void __percpu *)((unsigned long)(addr) - \
84 (unsigned long)pcpu_base_addr + \
85 (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void __force *)((unsigned long)(ptr) + \
90 (unsigned long)pcpu_base_addr - \
91 (unsigned long)__per_cpu_start)
92 #endif
93
94 struct pcpu_chunk {
95 struct list_head list; /* linked to pcpu_slot lists */
96 int free_size; /* free bytes in the chunk */
97 int contig_hint; /* max contiguous size hint */
98 void *base_addr; /* base address of this chunk */
99 int map_used; /* # of map entries used */
100 int map_alloc; /* # of map entries allocated */
101 int *map; /* allocation map */
102 struct vm_struct **vms; /* mapped vmalloc regions */
103 bool immutable; /* no [de]population allowed */
104 unsigned long populated[]; /* populated bitmap */
105 };
106
107 static int pcpu_unit_pages __read_mostly;
108 static int pcpu_unit_size __read_mostly;
109 static int pcpu_nr_units __read_mostly;
110 static int pcpu_atom_size __read_mostly;
111 static int pcpu_nr_slots __read_mostly;
112 static size_t pcpu_chunk_struct_size __read_mostly;
113
114 /* cpus with the lowest and highest unit numbers */
115 static unsigned int pcpu_first_unit_cpu __read_mostly;
116 static unsigned int pcpu_last_unit_cpu __read_mostly;
117
118 /* the address of the first chunk which starts with the kernel static area */
119 void *pcpu_base_addr __read_mostly;
120 EXPORT_SYMBOL_GPL(pcpu_base_addr);
121
122 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
123 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
124
125 /* group information, used for vm allocation */
126 static int pcpu_nr_groups __read_mostly;
127 static const unsigned long *pcpu_group_offsets __read_mostly;
128 static const size_t *pcpu_group_sizes __read_mostly;
129
130 /*
131 * The first chunk which always exists. Note that unlike other
132 * chunks, this one can be allocated and mapped in several different
133 * ways and thus often doesn't live in the vmalloc area.
134 */
135 static struct pcpu_chunk *pcpu_first_chunk;
136
137 /*
138 * Optional reserved chunk. This chunk reserves part of the first
139 * chunk and serves it for reserved allocations. The amount of
140 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
141 * area doesn't exist, the following variables contain NULL and 0
142 * respectively.
143 */
144 static struct pcpu_chunk *pcpu_reserved_chunk;
145 static int pcpu_reserved_chunk_limit;
146
147 /*
148 * Synchronization rules.
149 *
150 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
151 * protects allocation/reclaim paths, chunks, populated bitmap and
152 * vmalloc mapping. The latter is a spinlock and protects the index
153 * data structures - chunk slots, chunks and area maps in chunks.
154 *
155 * During allocation, pcpu_alloc_mutex is kept locked all the time and
156 * pcpu_lock is grabbed and released as necessary. All actual memory
157 * allocations are done using GFP_KERNEL with pcpu_lock released. In
158 * general, percpu memory can't be allocated with irq off but
159 * irqsave/restore are still used in alloc path so that it can be used
160 * from early init path - sched_init() specifically.
161 *
162 * Free path accesses and alters only the index data structures, so it
163 * can be safely called from atomic context. When memory needs to be
164 * returned to the system, free path schedules reclaim_work which
165 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
166 * reclaimed, release both locks and frees the chunks. Note that it's
167 * necessary to grab both locks to remove a chunk from circulation as
168 * allocation path might be referencing the chunk with only
169 * pcpu_alloc_mutex locked.
170 */
171 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
172 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
173
174 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
175
176 /* reclaim work to release fully free chunks, scheduled from free path */
177 static void pcpu_reclaim(struct work_struct *work);
178 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
179
180 static int __pcpu_size_to_slot(int size)
181 {
182 int highbit = fls(size); /* size is in bytes */
183 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
184 }
185
186 static int pcpu_size_to_slot(int size)
187 {
188 if (size == pcpu_unit_size)
189 return pcpu_nr_slots - 1;
190 return __pcpu_size_to_slot(size);
191 }
192
193 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
194 {
195 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
196 return 0;
197
198 return pcpu_size_to_slot(chunk->free_size);
199 }
200
201 static int pcpu_page_idx(unsigned int cpu, int page_idx)
202 {
203 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
204 }
205
206 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
207 unsigned int cpu, int page_idx)
208 {
209 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
210 (page_idx << PAGE_SHIFT);
211 }
212
213 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
214 unsigned int cpu, int page_idx)
215 {
216 /* must not be used on pre-mapped chunk */
217 WARN_ON(chunk->immutable);
218
219 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
220 }
221
222 /* set the pointer to a chunk in a page struct */
223 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
224 {
225 page->index = (unsigned long)pcpu;
226 }
227
228 /* obtain pointer to a chunk from a page struct */
229 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
230 {
231 return (struct pcpu_chunk *)page->index;
232 }
233
234 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
235 {
236 *rs = find_next_zero_bit(chunk->populated, end, *rs);
237 *re = find_next_bit(chunk->populated, end, *rs + 1);
238 }
239
240 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
241 {
242 *rs = find_next_bit(chunk->populated, end, *rs);
243 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
244 }
245
246 /*
247 * (Un)populated page region iterators. Iterate over (un)populated
248 * page regions betwen @start and @end in @chunk. @rs and @re should
249 * be integer variables and will be set to start and end page index of
250 * the current region.
251 */
252 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
253 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
254 (rs) < (re); \
255 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
256
257 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
258 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
259 (rs) < (re); \
260 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
261
262 /**
263 * pcpu_mem_alloc - allocate memory
264 * @size: bytes to allocate
265 *
266 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
267 * kzalloc() is used; otherwise, vmalloc() is used. The returned
268 * memory is always zeroed.
269 *
270 * CONTEXT:
271 * Does GFP_KERNEL allocation.
272 *
273 * RETURNS:
274 * Pointer to the allocated area on success, NULL on failure.
275 */
276 static void *pcpu_mem_alloc(size_t size)
277 {
278 if (size <= PAGE_SIZE)
279 return kzalloc(size, GFP_KERNEL);
280 else {
281 void *ptr = vmalloc(size);
282 if (ptr)
283 memset(ptr, 0, size);
284 return ptr;
285 }
286 }
287
288 /**
289 * pcpu_mem_free - free memory
290 * @ptr: memory to free
291 * @size: size of the area
292 *
293 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
294 */
295 static void pcpu_mem_free(void *ptr, size_t size)
296 {
297 if (size <= PAGE_SIZE)
298 kfree(ptr);
299 else
300 vfree(ptr);
301 }
302
303 /**
304 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
305 * @chunk: chunk of interest
306 * @oslot: the previous slot it was on
307 *
308 * This function is called after an allocation or free changed @chunk.
309 * New slot according to the changed state is determined and @chunk is
310 * moved to the slot. Note that the reserved chunk is never put on
311 * chunk slots.
312 *
313 * CONTEXT:
314 * pcpu_lock.
315 */
316 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
317 {
318 int nslot = pcpu_chunk_slot(chunk);
319
320 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
321 if (oslot < nslot)
322 list_move(&chunk->list, &pcpu_slot[nslot]);
323 else
324 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
325 }
326 }
327
328 /**
329 * pcpu_chunk_addr_search - determine chunk containing specified address
330 * @addr: address for which the chunk needs to be determined.
331 *
332 * RETURNS:
333 * The address of the found chunk.
334 */
335 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
336 {
337 void *first_start = pcpu_first_chunk->base_addr;
338
339 /* is it in the first chunk? */
340 if (addr >= first_start && addr < first_start + pcpu_unit_size) {
341 /* is it in the reserved area? */
342 if (addr < first_start + pcpu_reserved_chunk_limit)
343 return pcpu_reserved_chunk;
344 return pcpu_first_chunk;
345 }
346
347 /*
348 * The address is relative to unit0 which might be unused and
349 * thus unmapped. Offset the address to the unit space of the
350 * current processor before looking it up in the vmalloc
351 * space. Note that any possible cpu id can be used here, so
352 * there's no need to worry about preemption or cpu hotplug.
353 */
354 addr += pcpu_unit_offsets[raw_smp_processor_id()];
355 return pcpu_get_page_chunk(vmalloc_to_page(addr));
356 }
357
358 /**
359 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
360 * @chunk: chunk of interest
361 *
362 * Determine whether area map of @chunk needs to be extended to
363 * accomodate a new allocation.
364 *
365 * CONTEXT:
366 * pcpu_lock.
367 *
368 * RETURNS:
369 * New target map allocation length if extension is necessary, 0
370 * otherwise.
371 */
372 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
373 {
374 int new_alloc;
375
376 if (chunk->map_alloc >= chunk->map_used + 2)
377 return 0;
378
379 new_alloc = PCPU_DFL_MAP_ALLOC;
380 while (new_alloc < chunk->map_used + 2)
381 new_alloc *= 2;
382
383 return new_alloc;
384 }
385
386 /**
387 * pcpu_extend_area_map - extend area map of a chunk
388 * @chunk: chunk of interest
389 * @new_alloc: new target allocation length of the area map
390 *
391 * Extend area map of @chunk to have @new_alloc entries.
392 *
393 * CONTEXT:
394 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
395 *
396 * RETURNS:
397 * 0 on success, -errno on failure.
398 */
399 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
400 {
401 int *old = NULL, *new = NULL;
402 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
403 unsigned long flags;
404
405 new = pcpu_mem_alloc(new_size);
406 if (!new)
407 return -ENOMEM;
408
409 /* acquire pcpu_lock and switch to new area map */
410 spin_lock_irqsave(&pcpu_lock, flags);
411
412 if (new_alloc <= chunk->map_alloc)
413 goto out_unlock;
414
415 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
416 memcpy(new, chunk->map, old_size);
417
418 /*
419 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
420 * one of the first chunks and still using static map.
421 */
422 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
423 old = chunk->map;
424
425 chunk->map_alloc = new_alloc;
426 chunk->map = new;
427 new = NULL;
428
429 out_unlock:
430 spin_unlock_irqrestore(&pcpu_lock, flags);
431
432 /*
433 * pcpu_mem_free() might end up calling vfree() which uses
434 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
435 */
436 pcpu_mem_free(old, old_size);
437 pcpu_mem_free(new, new_size);
438
439 return 0;
440 }
441
442 /**
443 * pcpu_split_block - split a map block
444 * @chunk: chunk of interest
445 * @i: index of map block to split
446 * @head: head size in bytes (can be 0)
447 * @tail: tail size in bytes (can be 0)
448 *
449 * Split the @i'th map block into two or three blocks. If @head is
450 * non-zero, @head bytes block is inserted before block @i moving it
451 * to @i+1 and reducing its size by @head bytes.
452 *
453 * If @tail is non-zero, the target block, which can be @i or @i+1
454 * depending on @head, is reduced by @tail bytes and @tail byte block
455 * is inserted after the target block.
456 *
457 * @chunk->map must have enough free slots to accomodate the split.
458 *
459 * CONTEXT:
460 * pcpu_lock.
461 */
462 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
463 int head, int tail)
464 {
465 int nr_extra = !!head + !!tail;
466
467 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
468
469 /* insert new subblocks */
470 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
471 sizeof(chunk->map[0]) * (chunk->map_used - i));
472 chunk->map_used += nr_extra;
473
474 if (head) {
475 chunk->map[i + 1] = chunk->map[i] - head;
476 chunk->map[i++] = head;
477 }
478 if (tail) {
479 chunk->map[i++] -= tail;
480 chunk->map[i] = tail;
481 }
482 }
483
484 /**
485 * pcpu_alloc_area - allocate area from a pcpu_chunk
486 * @chunk: chunk of interest
487 * @size: wanted size in bytes
488 * @align: wanted align
489 *
490 * Try to allocate @size bytes area aligned at @align from @chunk.
491 * Note that this function only allocates the offset. It doesn't
492 * populate or map the area.
493 *
494 * @chunk->map must have at least two free slots.
495 *
496 * CONTEXT:
497 * pcpu_lock.
498 *
499 * RETURNS:
500 * Allocated offset in @chunk on success, -1 if no matching area is
501 * found.
502 */
503 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
504 {
505 int oslot = pcpu_chunk_slot(chunk);
506 int max_contig = 0;
507 int i, off;
508
509 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
510 bool is_last = i + 1 == chunk->map_used;
511 int head, tail;
512
513 /* extra for alignment requirement */
514 head = ALIGN(off, align) - off;
515 BUG_ON(i == 0 && head != 0);
516
517 if (chunk->map[i] < 0)
518 continue;
519 if (chunk->map[i] < head + size) {
520 max_contig = max(chunk->map[i], max_contig);
521 continue;
522 }
523
524 /*
525 * If head is small or the previous block is free,
526 * merge'em. Note that 'small' is defined as smaller
527 * than sizeof(int), which is very small but isn't too
528 * uncommon for percpu allocations.
529 */
530 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
531 if (chunk->map[i - 1] > 0)
532 chunk->map[i - 1] += head;
533 else {
534 chunk->map[i - 1] -= head;
535 chunk->free_size -= head;
536 }
537 chunk->map[i] -= head;
538 off += head;
539 head = 0;
540 }
541
542 /* if tail is small, just keep it around */
543 tail = chunk->map[i] - head - size;
544 if (tail < sizeof(int))
545 tail = 0;
546
547 /* split if warranted */
548 if (head || tail) {
549 pcpu_split_block(chunk, i, head, tail);
550 if (head) {
551 i++;
552 off += head;
553 max_contig = max(chunk->map[i - 1], max_contig);
554 }
555 if (tail)
556 max_contig = max(chunk->map[i + 1], max_contig);
557 }
558
559 /* update hint and mark allocated */
560 if (is_last)
561 chunk->contig_hint = max_contig; /* fully scanned */
562 else
563 chunk->contig_hint = max(chunk->contig_hint,
564 max_contig);
565
566 chunk->free_size -= chunk->map[i];
567 chunk->map[i] = -chunk->map[i];
568
569 pcpu_chunk_relocate(chunk, oslot);
570 return off;
571 }
572
573 chunk->contig_hint = max_contig; /* fully scanned */
574 pcpu_chunk_relocate(chunk, oslot);
575
576 /* tell the upper layer that this chunk has no matching area */
577 return -1;
578 }
579
580 /**
581 * pcpu_free_area - free area to a pcpu_chunk
582 * @chunk: chunk of interest
583 * @freeme: offset of area to free
584 *
585 * Free area starting from @freeme to @chunk. Note that this function
586 * only modifies the allocation map. It doesn't depopulate or unmap
587 * the area.
588 *
589 * CONTEXT:
590 * pcpu_lock.
591 */
592 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
593 {
594 int oslot = pcpu_chunk_slot(chunk);
595 int i, off;
596
597 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
598 if (off == freeme)
599 break;
600 BUG_ON(off != freeme);
601 BUG_ON(chunk->map[i] > 0);
602
603 chunk->map[i] = -chunk->map[i];
604 chunk->free_size += chunk->map[i];
605
606 /* merge with previous? */
607 if (i > 0 && chunk->map[i - 1] >= 0) {
608 chunk->map[i - 1] += chunk->map[i];
609 chunk->map_used--;
610 memmove(&chunk->map[i], &chunk->map[i + 1],
611 (chunk->map_used - i) * sizeof(chunk->map[0]));
612 i--;
613 }
614 /* merge with next? */
615 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
616 chunk->map[i] += chunk->map[i + 1];
617 chunk->map_used--;
618 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
619 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
620 }
621
622 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
623 pcpu_chunk_relocate(chunk, oslot);
624 }
625
626 /**
627 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
628 * @chunk: chunk of interest
629 * @bitmapp: output parameter for bitmap
630 * @may_alloc: may allocate the array
631 *
632 * Returns pointer to array of pointers to struct page and bitmap,
633 * both of which can be indexed with pcpu_page_idx(). The returned
634 * array is cleared to zero and *@bitmapp is copied from
635 * @chunk->populated. Note that there is only one array and bitmap
636 * and access exclusion is the caller's responsibility.
637 *
638 * CONTEXT:
639 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
640 * Otherwise, don't care.
641 *
642 * RETURNS:
643 * Pointer to temp pages array on success, NULL on failure.
644 */
645 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
646 unsigned long **bitmapp,
647 bool may_alloc)
648 {
649 static struct page **pages;
650 static unsigned long *bitmap;
651 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
652 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
653 sizeof(unsigned long);
654
655 if (!pages || !bitmap) {
656 if (may_alloc && !pages)
657 pages = pcpu_mem_alloc(pages_size);
658 if (may_alloc && !bitmap)
659 bitmap = pcpu_mem_alloc(bitmap_size);
660 if (!pages || !bitmap)
661 return NULL;
662 }
663
664 memset(pages, 0, pages_size);
665 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
666
667 *bitmapp = bitmap;
668 return pages;
669 }
670
671 /**
672 * pcpu_free_pages - free pages which were allocated for @chunk
673 * @chunk: chunk pages were allocated for
674 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
675 * @populated: populated bitmap
676 * @page_start: page index of the first page to be freed
677 * @page_end: page index of the last page to be freed + 1
678 *
679 * Free pages [@page_start and @page_end) in @pages for all units.
680 * The pages were allocated for @chunk.
681 */
682 static void pcpu_free_pages(struct pcpu_chunk *chunk,
683 struct page **pages, unsigned long *populated,
684 int page_start, int page_end)
685 {
686 unsigned int cpu;
687 int i;
688
689 for_each_possible_cpu(cpu) {
690 for (i = page_start; i < page_end; i++) {
691 struct page *page = pages[pcpu_page_idx(cpu, i)];
692
693 if (page)
694 __free_page(page);
695 }
696 }
697 }
698
699 /**
700 * pcpu_alloc_pages - allocates pages for @chunk
701 * @chunk: target chunk
702 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
703 * @populated: populated bitmap
704 * @page_start: page index of the first page to be allocated
705 * @page_end: page index of the last page to be allocated + 1
706 *
707 * Allocate pages [@page_start,@page_end) into @pages for all units.
708 * The allocation is for @chunk. Percpu core doesn't care about the
709 * content of @pages and will pass it verbatim to pcpu_map_pages().
710 */
711 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
712 struct page **pages, unsigned long *populated,
713 int page_start, int page_end)
714 {
715 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
716 unsigned int cpu;
717 int i;
718
719 for_each_possible_cpu(cpu) {
720 for (i = page_start; i < page_end; i++) {
721 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
722
723 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
724 if (!*pagep) {
725 pcpu_free_pages(chunk, pages, populated,
726 page_start, page_end);
727 return -ENOMEM;
728 }
729 }
730 }
731 return 0;
732 }
733
734 /**
735 * pcpu_pre_unmap_flush - flush cache prior to unmapping
736 * @chunk: chunk the regions to be flushed belongs to
737 * @page_start: page index of the first page to be flushed
738 * @page_end: page index of the last page to be flushed + 1
739 *
740 * Pages in [@page_start,@page_end) of @chunk are about to be
741 * unmapped. Flush cache. As each flushing trial can be very
742 * expensive, issue flush on the whole region at once rather than
743 * doing it for each cpu. This could be an overkill but is more
744 * scalable.
745 */
746 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
747 int page_start, int page_end)
748 {
749 flush_cache_vunmap(
750 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
751 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
752 }
753
754 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
755 {
756 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
757 }
758
759 /**
760 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
761 * @chunk: chunk of interest
762 * @pages: pages array which can be used to pass information to free
763 * @populated: populated bitmap
764 * @page_start: page index of the first page to unmap
765 * @page_end: page index of the last page to unmap + 1
766 *
767 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
768 * Corresponding elements in @pages were cleared by the caller and can
769 * be used to carry information to pcpu_free_pages() which will be
770 * called after all unmaps are finished. The caller should call
771 * proper pre/post flush functions.
772 */
773 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
774 struct page **pages, unsigned long *populated,
775 int page_start, int page_end)
776 {
777 unsigned int cpu;
778 int i;
779
780 for_each_possible_cpu(cpu) {
781 for (i = page_start; i < page_end; i++) {
782 struct page *page;
783
784 page = pcpu_chunk_page(chunk, cpu, i);
785 WARN_ON(!page);
786 pages[pcpu_page_idx(cpu, i)] = page;
787 }
788 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
789 page_end - page_start);
790 }
791
792 for (i = page_start; i < page_end; i++)
793 __clear_bit(i, populated);
794 }
795
796 /**
797 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
798 * @chunk: pcpu_chunk the regions to be flushed belong to
799 * @page_start: page index of the first page to be flushed
800 * @page_end: page index of the last page to be flushed + 1
801 *
802 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
803 * TLB for the regions. This can be skipped if the area is to be
804 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
805 *
806 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
807 * for the whole region.
808 */
809 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
810 int page_start, int page_end)
811 {
812 flush_tlb_kernel_range(
813 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
814 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
815 }
816
817 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
818 int nr_pages)
819 {
820 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
821 PAGE_KERNEL, pages);
822 }
823
824 /**
825 * pcpu_map_pages - map pages into a pcpu_chunk
826 * @chunk: chunk of interest
827 * @pages: pages array containing pages to be mapped
828 * @populated: populated bitmap
829 * @page_start: page index of the first page to map
830 * @page_end: page index of the last page to map + 1
831 *
832 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
833 * caller is responsible for calling pcpu_post_map_flush() after all
834 * mappings are complete.
835 *
836 * This function is responsible for setting corresponding bits in
837 * @chunk->populated bitmap and whatever is necessary for reverse
838 * lookup (addr -> chunk).
839 */
840 static int pcpu_map_pages(struct pcpu_chunk *chunk,
841 struct page **pages, unsigned long *populated,
842 int page_start, int page_end)
843 {
844 unsigned int cpu, tcpu;
845 int i, err;
846
847 for_each_possible_cpu(cpu) {
848 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
849 &pages[pcpu_page_idx(cpu, page_start)],
850 page_end - page_start);
851 if (err < 0)
852 goto err;
853 }
854
855 /* mapping successful, link chunk and mark populated */
856 for (i = page_start; i < page_end; i++) {
857 for_each_possible_cpu(cpu)
858 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
859 chunk);
860 __set_bit(i, populated);
861 }
862
863 return 0;
864
865 err:
866 for_each_possible_cpu(tcpu) {
867 if (tcpu == cpu)
868 break;
869 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
870 page_end - page_start);
871 }
872 return err;
873 }
874
875 /**
876 * pcpu_post_map_flush - flush cache after mapping
877 * @chunk: pcpu_chunk the regions to be flushed belong to
878 * @page_start: page index of the first page to be flushed
879 * @page_end: page index of the last page to be flushed + 1
880 *
881 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
882 * cache.
883 *
884 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
885 * for the whole region.
886 */
887 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
888 int page_start, int page_end)
889 {
890 flush_cache_vmap(
891 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
892 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
893 }
894
895 /**
896 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
897 * @chunk: chunk to depopulate
898 * @off: offset to the area to depopulate
899 * @size: size of the area to depopulate in bytes
900 * @flush: whether to flush cache and tlb or not
901 *
902 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
903 * from @chunk. If @flush is true, vcache is flushed before unmapping
904 * and tlb after.
905 *
906 * CONTEXT:
907 * pcpu_alloc_mutex.
908 */
909 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
910 {
911 int page_start = PFN_DOWN(off);
912 int page_end = PFN_UP(off + size);
913 struct page **pages;
914 unsigned long *populated;
915 int rs, re;
916
917 /* quick path, check whether it's empty already */
918 rs = page_start;
919 pcpu_next_unpop(chunk, &rs, &re, page_end);
920 if (rs == page_start && re == page_end)
921 return;
922
923 /* immutable chunks can't be depopulated */
924 WARN_ON(chunk->immutable);
925
926 /*
927 * If control reaches here, there must have been at least one
928 * successful population attempt so the temp pages array must
929 * be available now.
930 */
931 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
932 BUG_ON(!pages);
933
934 /* unmap and free */
935 pcpu_pre_unmap_flush(chunk, page_start, page_end);
936
937 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
938 pcpu_unmap_pages(chunk, pages, populated, rs, re);
939
940 /* no need to flush tlb, vmalloc will handle it lazily */
941
942 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
943 pcpu_free_pages(chunk, pages, populated, rs, re);
944
945 /* commit new bitmap */
946 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
947 }
948
949 /**
950 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
951 * @chunk: chunk of interest
952 * @off: offset to the area to populate
953 * @size: size of the area to populate in bytes
954 *
955 * For each cpu, populate and map pages [@page_start,@page_end) into
956 * @chunk. The area is cleared on return.
957 *
958 * CONTEXT:
959 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
960 */
961 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
962 {
963 int page_start = PFN_DOWN(off);
964 int page_end = PFN_UP(off + size);
965 int free_end = page_start, unmap_end = page_start;
966 struct page **pages;
967 unsigned long *populated;
968 unsigned int cpu;
969 int rs, re, rc;
970
971 /* quick path, check whether all pages are already there */
972 rs = page_start;
973 pcpu_next_pop(chunk, &rs, &re, page_end);
974 if (rs == page_start && re == page_end)
975 goto clear;
976
977 /* need to allocate and map pages, this chunk can't be immutable */
978 WARN_ON(chunk->immutable);
979
980 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
981 if (!pages)
982 return -ENOMEM;
983
984 /* alloc and map */
985 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
986 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
987 if (rc)
988 goto err_free;
989 free_end = re;
990 }
991
992 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
993 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
994 if (rc)
995 goto err_unmap;
996 unmap_end = re;
997 }
998 pcpu_post_map_flush(chunk, page_start, page_end);
999
1000 /* commit new bitmap */
1001 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1002 clear:
1003 for_each_possible_cpu(cpu)
1004 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1005 return 0;
1006
1007 err_unmap:
1008 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1009 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1010 pcpu_unmap_pages(chunk, pages, populated, rs, re);
1011 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1012 err_free:
1013 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1014 pcpu_free_pages(chunk, pages, populated, rs, re);
1015 return rc;
1016 }
1017
1018 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
1019 {
1020 if (!chunk)
1021 return;
1022 if (chunk->vms)
1023 pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
1024 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
1025 kfree(chunk);
1026 }
1027
1028 static struct pcpu_chunk *alloc_pcpu_chunk(void)
1029 {
1030 struct pcpu_chunk *chunk;
1031
1032 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1033 if (!chunk)
1034 return NULL;
1035
1036 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1037 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1038 chunk->map[chunk->map_used++] = pcpu_unit_size;
1039
1040 chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1041 pcpu_nr_groups, pcpu_atom_size,
1042 GFP_KERNEL);
1043 if (!chunk->vms) {
1044 free_pcpu_chunk(chunk);
1045 return NULL;
1046 }
1047
1048 INIT_LIST_HEAD(&chunk->list);
1049 chunk->free_size = pcpu_unit_size;
1050 chunk->contig_hint = pcpu_unit_size;
1051 chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1052
1053 return chunk;
1054 }
1055
1056 /**
1057 * pcpu_alloc - the percpu allocator
1058 * @size: size of area to allocate in bytes
1059 * @align: alignment of area (max PAGE_SIZE)
1060 * @reserved: allocate from the reserved chunk if available
1061 *
1062 * Allocate percpu area of @size bytes aligned at @align.
1063 *
1064 * CONTEXT:
1065 * Does GFP_KERNEL allocation.
1066 *
1067 * RETURNS:
1068 * Percpu pointer to the allocated area on success, NULL on failure.
1069 */
1070 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
1071 {
1072 static int warn_limit = 10;
1073 struct pcpu_chunk *chunk;
1074 const char *err;
1075 int slot, off, new_alloc;
1076 unsigned long flags;
1077
1078 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1079 WARN(true, "illegal size (%zu) or align (%zu) for "
1080 "percpu allocation\n", size, align);
1081 return NULL;
1082 }
1083
1084 mutex_lock(&pcpu_alloc_mutex);
1085 spin_lock_irqsave(&pcpu_lock, flags);
1086
1087 /* serve reserved allocations from the reserved chunk if available */
1088 if (reserved && pcpu_reserved_chunk) {
1089 chunk = pcpu_reserved_chunk;
1090
1091 if (size > chunk->contig_hint) {
1092 err = "alloc from reserved chunk failed";
1093 goto fail_unlock;
1094 }
1095
1096 while ((new_alloc = pcpu_need_to_extend(chunk))) {
1097 spin_unlock_irqrestore(&pcpu_lock, flags);
1098 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
1099 err = "failed to extend area map of reserved chunk";
1100 goto fail_unlock_mutex;
1101 }
1102 spin_lock_irqsave(&pcpu_lock, flags);
1103 }
1104
1105 off = pcpu_alloc_area(chunk, size, align);
1106 if (off >= 0)
1107 goto area_found;
1108
1109 err = "alloc from reserved chunk failed";
1110 goto fail_unlock;
1111 }
1112
1113 restart:
1114 /* search through normal chunks */
1115 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1116 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1117 if (size > chunk->contig_hint)
1118 continue;
1119
1120 new_alloc = pcpu_need_to_extend(chunk);
1121 if (new_alloc) {
1122 spin_unlock_irqrestore(&pcpu_lock, flags);
1123 if (pcpu_extend_area_map(chunk,
1124 new_alloc) < 0) {
1125 err = "failed to extend area map";
1126 goto fail_unlock_mutex;
1127 }
1128 spin_lock_irqsave(&pcpu_lock, flags);
1129 /*
1130 * pcpu_lock has been dropped, need to
1131 * restart cpu_slot list walking.
1132 */
1133 goto restart;
1134 }
1135
1136 off = pcpu_alloc_area(chunk, size, align);
1137 if (off >= 0)
1138 goto area_found;
1139 }
1140 }
1141
1142 /* hmmm... no space left, create a new chunk */
1143 spin_unlock_irqrestore(&pcpu_lock, flags);
1144
1145 chunk = alloc_pcpu_chunk();
1146 if (!chunk) {
1147 err = "failed to allocate new chunk";
1148 goto fail_unlock_mutex;
1149 }
1150
1151 spin_lock_irqsave(&pcpu_lock, flags);
1152 pcpu_chunk_relocate(chunk, -1);
1153 goto restart;
1154
1155 area_found:
1156 spin_unlock_irqrestore(&pcpu_lock, flags);
1157
1158 /* populate, map and clear the area */
1159 if (pcpu_populate_chunk(chunk, off, size)) {
1160 spin_lock_irqsave(&pcpu_lock, flags);
1161 pcpu_free_area(chunk, off);
1162 err = "failed to populate";
1163 goto fail_unlock;
1164 }
1165
1166 mutex_unlock(&pcpu_alloc_mutex);
1167
1168 /* return address relative to base address */
1169 return __addr_to_pcpu_ptr(chunk->base_addr + off);
1170
1171 fail_unlock:
1172 spin_unlock_irqrestore(&pcpu_lock, flags);
1173 fail_unlock_mutex:
1174 mutex_unlock(&pcpu_alloc_mutex);
1175 if (warn_limit) {
1176 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1177 "%s\n", size, align, err);
1178 dump_stack();
1179 if (!--warn_limit)
1180 pr_info("PERCPU: limit reached, disable warning\n");
1181 }
1182 return NULL;
1183 }
1184
1185 /**
1186 * __alloc_percpu - allocate dynamic percpu area
1187 * @size: size of area to allocate in bytes
1188 * @align: alignment of area (max PAGE_SIZE)
1189 *
1190 * Allocate percpu area of @size bytes aligned at @align. Might
1191 * sleep. Might trigger writeouts.
1192 *
1193 * CONTEXT:
1194 * Does GFP_KERNEL allocation.
1195 *
1196 * RETURNS:
1197 * Percpu pointer to the allocated area on success, NULL on failure.
1198 */
1199 void __percpu *__alloc_percpu(size_t size, size_t align)
1200 {
1201 return pcpu_alloc(size, align, false);
1202 }
1203 EXPORT_SYMBOL_GPL(__alloc_percpu);
1204
1205 /**
1206 * __alloc_reserved_percpu - allocate reserved percpu area
1207 * @size: size of area to allocate in bytes
1208 * @align: alignment of area (max PAGE_SIZE)
1209 *
1210 * Allocate percpu area of @size bytes aligned at @align from reserved
1211 * percpu area if arch has set it up; otherwise, allocation is served
1212 * from the same dynamic area. Might sleep. Might trigger writeouts.
1213 *
1214 * CONTEXT:
1215 * Does GFP_KERNEL allocation.
1216 *
1217 * RETURNS:
1218 * Percpu pointer to the allocated area on success, NULL on failure.
1219 */
1220 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1221 {
1222 return pcpu_alloc(size, align, true);
1223 }
1224
1225 /**
1226 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1227 * @work: unused
1228 *
1229 * Reclaim all fully free chunks except for the first one.
1230 *
1231 * CONTEXT:
1232 * workqueue context.
1233 */
1234 static void pcpu_reclaim(struct work_struct *work)
1235 {
1236 LIST_HEAD(todo);
1237 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1238 struct pcpu_chunk *chunk, *next;
1239
1240 mutex_lock(&pcpu_alloc_mutex);
1241 spin_lock_irq(&pcpu_lock);
1242
1243 list_for_each_entry_safe(chunk, next, head, list) {
1244 WARN_ON(chunk->immutable);
1245
1246 /* spare the first one */
1247 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1248 continue;
1249
1250 list_move(&chunk->list, &todo);
1251 }
1252
1253 spin_unlock_irq(&pcpu_lock);
1254
1255 list_for_each_entry_safe(chunk, next, &todo, list) {
1256 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1257 free_pcpu_chunk(chunk);
1258 }
1259
1260 mutex_unlock(&pcpu_alloc_mutex);
1261 }
1262
1263 /**
1264 * free_percpu - free percpu area
1265 * @ptr: pointer to area to free
1266 *
1267 * Free percpu area @ptr.
1268 *
1269 * CONTEXT:
1270 * Can be called from atomic context.
1271 */
1272 void free_percpu(void __percpu *ptr)
1273 {
1274 void *addr;
1275 struct pcpu_chunk *chunk;
1276 unsigned long flags;
1277 int off;
1278
1279 if (!ptr)
1280 return;
1281
1282 addr = __pcpu_ptr_to_addr(ptr);
1283
1284 spin_lock_irqsave(&pcpu_lock, flags);
1285
1286 chunk = pcpu_chunk_addr_search(addr);
1287 off = addr - chunk->base_addr;
1288
1289 pcpu_free_area(chunk, off);
1290
1291 /* if there are more than one fully free chunks, wake up grim reaper */
1292 if (chunk->free_size == pcpu_unit_size) {
1293 struct pcpu_chunk *pos;
1294
1295 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1296 if (pos != chunk) {
1297 schedule_work(&pcpu_reclaim_work);
1298 break;
1299 }
1300 }
1301
1302 spin_unlock_irqrestore(&pcpu_lock, flags);
1303 }
1304 EXPORT_SYMBOL_GPL(free_percpu);
1305
1306 /**
1307 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1308 * @addr: the address to be converted to physical address
1309 *
1310 * Given @addr which is dereferenceable address obtained via one of
1311 * percpu access macros, this function translates it into its physical
1312 * address. The caller is responsible for ensuring @addr stays valid
1313 * until this function finishes.
1314 *
1315 * RETURNS:
1316 * The physical address for @addr.
1317 */
1318 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1319 {
1320 if ((unsigned long)addr < VMALLOC_START ||
1321 (unsigned long)addr >= VMALLOC_END)
1322 return __pa(addr);
1323 else
1324 return page_to_phys(vmalloc_to_page(addr));
1325 }
1326
1327 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1328 size_t reserved_size,
1329 ssize_t *dyn_sizep)
1330 {
1331 size_t size_sum;
1332
1333 size_sum = PFN_ALIGN(static_size + reserved_size +
1334 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1335 if (*dyn_sizep != 0)
1336 *dyn_sizep = size_sum - static_size - reserved_size;
1337
1338 return size_sum;
1339 }
1340
1341 /**
1342 * pcpu_alloc_alloc_info - allocate percpu allocation info
1343 * @nr_groups: the number of groups
1344 * @nr_units: the number of units
1345 *
1346 * Allocate ai which is large enough for @nr_groups groups containing
1347 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1348 * cpu_map array which is long enough for @nr_units and filled with
1349 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1350 * pointer of other groups.
1351 *
1352 * RETURNS:
1353 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1354 * failure.
1355 */
1356 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1357 int nr_units)
1358 {
1359 struct pcpu_alloc_info *ai;
1360 size_t base_size, ai_size;
1361 void *ptr;
1362 int unit;
1363
1364 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1365 __alignof__(ai->groups[0].cpu_map[0]));
1366 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1367
1368 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1369 if (!ptr)
1370 return NULL;
1371 ai = ptr;
1372 ptr += base_size;
1373
1374 ai->groups[0].cpu_map = ptr;
1375
1376 for (unit = 0; unit < nr_units; unit++)
1377 ai->groups[0].cpu_map[unit] = NR_CPUS;
1378
1379 ai->nr_groups = nr_groups;
1380 ai->__ai_size = PFN_ALIGN(ai_size);
1381
1382 return ai;
1383 }
1384
1385 /**
1386 * pcpu_free_alloc_info - free percpu allocation info
1387 * @ai: pcpu_alloc_info to free
1388 *
1389 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1390 */
1391 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1392 {
1393 free_bootmem(__pa(ai), ai->__ai_size);
1394 }
1395
1396 /**
1397 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1398 * @reserved_size: the size of reserved percpu area in bytes
1399 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1400 * @atom_size: allocation atom size
1401 * @cpu_distance_fn: callback to determine distance between cpus, optional
1402 *
1403 * This function determines grouping of units, their mappings to cpus
1404 * and other parameters considering needed percpu size, allocation
1405 * atom size and distances between CPUs.
1406 *
1407 * Groups are always mutliples of atom size and CPUs which are of
1408 * LOCAL_DISTANCE both ways are grouped together and share space for
1409 * units in the same group. The returned configuration is guaranteed
1410 * to have CPUs on different nodes on different groups and >=75% usage
1411 * of allocated virtual address space.
1412 *
1413 * RETURNS:
1414 * On success, pointer to the new allocation_info is returned. On
1415 * failure, ERR_PTR value is returned.
1416 */
1417 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1418 size_t reserved_size, ssize_t dyn_size,
1419 size_t atom_size,
1420 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1421 {
1422 static int group_map[NR_CPUS] __initdata;
1423 static int group_cnt[NR_CPUS] __initdata;
1424 const size_t static_size = __per_cpu_end - __per_cpu_start;
1425 int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1426 size_t size_sum, min_unit_size, alloc_size;
1427 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1428 int last_allocs, group, unit;
1429 unsigned int cpu, tcpu;
1430 struct pcpu_alloc_info *ai;
1431 unsigned int *cpu_map;
1432
1433 /* this function may be called multiple times */
1434 memset(group_map, 0, sizeof(group_map));
1435 memset(group_cnt, 0, sizeof(group_map));
1436
1437 /*
1438 * Determine min_unit_size, alloc_size and max_upa such that
1439 * alloc_size is multiple of atom_size and is the smallest
1440 * which can accomodate 4k aligned segments which are equal to
1441 * or larger than min_unit_size.
1442 */
1443 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1444 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1445
1446 alloc_size = roundup(min_unit_size, atom_size);
1447 upa = alloc_size / min_unit_size;
1448 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1449 upa--;
1450 max_upa = upa;
1451
1452 /* group cpus according to their proximity */
1453 for_each_possible_cpu(cpu) {
1454 group = 0;
1455 next_group:
1456 for_each_possible_cpu(tcpu) {
1457 if (cpu == tcpu)
1458 break;
1459 if (group_map[tcpu] == group && cpu_distance_fn &&
1460 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1461 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1462 group++;
1463 nr_groups = max(nr_groups, group + 1);
1464 goto next_group;
1465 }
1466 }
1467 group_map[cpu] = group;
1468 group_cnt[group]++;
1469 group_cnt_max = max(group_cnt_max, group_cnt[group]);
1470 }
1471
1472 /*
1473 * Expand unit size until address space usage goes over 75%
1474 * and then as much as possible without using more address
1475 * space.
1476 */
1477 last_allocs = INT_MAX;
1478 for (upa = max_upa; upa; upa--) {
1479 int allocs = 0, wasted = 0;
1480
1481 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1482 continue;
1483
1484 for (group = 0; group < nr_groups; group++) {
1485 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1486 allocs += this_allocs;
1487 wasted += this_allocs * upa - group_cnt[group];
1488 }
1489
1490 /*
1491 * Don't accept if wastage is over 25%. The
1492 * greater-than comparison ensures upa==1 always
1493 * passes the following check.
1494 */
1495 if (wasted > num_possible_cpus() / 3)
1496 continue;
1497
1498 /* and then don't consume more memory */
1499 if (allocs > last_allocs)
1500 break;
1501 last_allocs = allocs;
1502 best_upa = upa;
1503 }
1504 upa = best_upa;
1505
1506 /* allocate and fill alloc_info */
1507 for (group = 0; group < nr_groups; group++)
1508 nr_units += roundup(group_cnt[group], upa);
1509
1510 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1511 if (!ai)
1512 return ERR_PTR(-ENOMEM);
1513 cpu_map = ai->groups[0].cpu_map;
1514
1515 for (group = 0; group < nr_groups; group++) {
1516 ai->groups[group].cpu_map = cpu_map;
1517 cpu_map += roundup(group_cnt[group], upa);
1518 }
1519
1520 ai->static_size = static_size;
1521 ai->reserved_size = reserved_size;
1522 ai->dyn_size = dyn_size;
1523 ai->unit_size = alloc_size / upa;
1524 ai->atom_size = atom_size;
1525 ai->alloc_size = alloc_size;
1526
1527 for (group = 0, unit = 0; group_cnt[group]; group++) {
1528 struct pcpu_group_info *gi = &ai->groups[group];
1529
1530 /*
1531 * Initialize base_offset as if all groups are located
1532 * back-to-back. The caller should update this to
1533 * reflect actual allocation.
1534 */
1535 gi->base_offset = unit * ai->unit_size;
1536
1537 for_each_possible_cpu(cpu)
1538 if (group_map[cpu] == group)
1539 gi->cpu_map[gi->nr_units++] = cpu;
1540 gi->nr_units = roundup(gi->nr_units, upa);
1541 unit += gi->nr_units;
1542 }
1543 BUG_ON(unit != nr_units);
1544
1545 return ai;
1546 }
1547
1548 /**
1549 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1550 * @lvl: loglevel
1551 * @ai: allocation info to dump
1552 *
1553 * Print out information about @ai using loglevel @lvl.
1554 */
1555 static void pcpu_dump_alloc_info(const char *lvl,
1556 const struct pcpu_alloc_info *ai)
1557 {
1558 int group_width = 1, cpu_width = 1, width;
1559 char empty_str[] = "--------";
1560 int alloc = 0, alloc_end = 0;
1561 int group, v;
1562 int upa, apl; /* units per alloc, allocs per line */
1563
1564 v = ai->nr_groups;
1565 while (v /= 10)
1566 group_width++;
1567
1568 v = num_possible_cpus();
1569 while (v /= 10)
1570 cpu_width++;
1571 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1572
1573 upa = ai->alloc_size / ai->unit_size;
1574 width = upa * (cpu_width + 1) + group_width + 3;
1575 apl = rounddown_pow_of_two(max(60 / width, 1));
1576
1577 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1578 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1579 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1580
1581 for (group = 0; group < ai->nr_groups; group++) {
1582 const struct pcpu_group_info *gi = &ai->groups[group];
1583 int unit = 0, unit_end = 0;
1584
1585 BUG_ON(gi->nr_units % upa);
1586 for (alloc_end += gi->nr_units / upa;
1587 alloc < alloc_end; alloc++) {
1588 if (!(alloc % apl)) {
1589 printk("\n");
1590 printk("%spcpu-alloc: ", lvl);
1591 }
1592 printk("[%0*d] ", group_width, group);
1593
1594 for (unit_end += upa; unit < unit_end; unit++)
1595 if (gi->cpu_map[unit] != NR_CPUS)
1596 printk("%0*d ", cpu_width,
1597 gi->cpu_map[unit]);
1598 else
1599 printk("%s ", empty_str);
1600 }
1601 }
1602 printk("\n");
1603 }
1604
1605 /**
1606 * pcpu_setup_first_chunk - initialize the first percpu chunk
1607 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1608 * @base_addr: mapped address
1609 *
1610 * Initialize the first percpu chunk which contains the kernel static
1611 * perpcu area. This function is to be called from arch percpu area
1612 * setup path.
1613 *
1614 * @ai contains all information necessary to initialize the first
1615 * chunk and prime the dynamic percpu allocator.
1616 *
1617 * @ai->static_size is the size of static percpu area.
1618 *
1619 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1620 * reserve after the static area in the first chunk. This reserves
1621 * the first chunk such that it's available only through reserved
1622 * percpu allocation. This is primarily used to serve module percpu
1623 * static areas on architectures where the addressing model has
1624 * limited offset range for symbol relocations to guarantee module
1625 * percpu symbols fall inside the relocatable range.
1626 *
1627 * @ai->dyn_size determines the number of bytes available for dynamic
1628 * allocation in the first chunk. The area between @ai->static_size +
1629 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1630 *
1631 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1632 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1633 * @ai->dyn_size.
1634 *
1635 * @ai->atom_size is the allocation atom size and used as alignment
1636 * for vm areas.
1637 *
1638 * @ai->alloc_size is the allocation size and always multiple of
1639 * @ai->atom_size. This is larger than @ai->atom_size if
1640 * @ai->unit_size is larger than @ai->atom_size.
1641 *
1642 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1643 * percpu areas. Units which should be colocated are put into the
1644 * same group. Dynamic VM areas will be allocated according to these
1645 * groupings. If @ai->nr_groups is zero, a single group containing
1646 * all units is assumed.
1647 *
1648 * The caller should have mapped the first chunk at @base_addr and
1649 * copied static data to each unit.
1650 *
1651 * If the first chunk ends up with both reserved and dynamic areas, it
1652 * is served by two chunks - one to serve the core static and reserved
1653 * areas and the other for the dynamic area. They share the same vm
1654 * and page map but uses different area allocation map to stay away
1655 * from each other. The latter chunk is circulated in the chunk slots
1656 * and available for dynamic allocation like any other chunks.
1657 *
1658 * RETURNS:
1659 * 0 on success, -errno on failure.
1660 */
1661 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1662 void *base_addr)
1663 {
1664 static char cpus_buf[4096] __initdata;
1665 static int smap[2], dmap[2];
1666 size_t dyn_size = ai->dyn_size;
1667 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1668 struct pcpu_chunk *schunk, *dchunk = NULL;
1669 unsigned long *group_offsets;
1670 size_t *group_sizes;
1671 unsigned long *unit_off;
1672 unsigned int cpu;
1673 int *unit_map;
1674 int group, unit, i;
1675
1676 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1677
1678 #define PCPU_SETUP_BUG_ON(cond) do { \
1679 if (unlikely(cond)) { \
1680 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1681 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1682 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1683 BUG(); \
1684 } \
1685 } while (0)
1686
1687 /* sanity checks */
1688 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1689 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1690 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1691 PCPU_SETUP_BUG_ON(!ai->static_size);
1692 PCPU_SETUP_BUG_ON(!base_addr);
1693 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1694 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1695 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1696
1697 /* process group information and build config tables accordingly */
1698 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1699 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1700 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1701 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1702
1703 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1704 unit_map[cpu] = UINT_MAX;
1705 pcpu_first_unit_cpu = NR_CPUS;
1706
1707 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1708 const struct pcpu_group_info *gi = &ai->groups[group];
1709
1710 group_offsets[group] = gi->base_offset;
1711 group_sizes[group] = gi->nr_units * ai->unit_size;
1712
1713 for (i = 0; i < gi->nr_units; i++) {
1714 cpu = gi->cpu_map[i];
1715 if (cpu == NR_CPUS)
1716 continue;
1717
1718 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1719 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1720 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1721
1722 unit_map[cpu] = unit + i;
1723 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1724
1725 if (pcpu_first_unit_cpu == NR_CPUS)
1726 pcpu_first_unit_cpu = cpu;
1727 }
1728 }
1729 pcpu_last_unit_cpu = cpu;
1730 pcpu_nr_units = unit;
1731
1732 for_each_possible_cpu(cpu)
1733 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1734
1735 /* we're done parsing the input, undefine BUG macro and dump config */
1736 #undef PCPU_SETUP_BUG_ON
1737 pcpu_dump_alloc_info(KERN_INFO, ai);
1738
1739 pcpu_nr_groups = ai->nr_groups;
1740 pcpu_group_offsets = group_offsets;
1741 pcpu_group_sizes = group_sizes;
1742 pcpu_unit_map = unit_map;
1743 pcpu_unit_offsets = unit_off;
1744
1745 /* determine basic parameters */
1746 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1747 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1748 pcpu_atom_size = ai->atom_size;
1749 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1750 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1751
1752 /*
1753 * Allocate chunk slots. The additional last slot is for
1754 * empty chunks.
1755 */
1756 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1757 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1758 for (i = 0; i < pcpu_nr_slots; i++)
1759 INIT_LIST_HEAD(&pcpu_slot[i]);
1760
1761 /*
1762 * Initialize static chunk. If reserved_size is zero, the
1763 * static chunk covers static area + dynamic allocation area
1764 * in the first chunk. If reserved_size is not zero, it
1765 * covers static area + reserved area (mostly used for module
1766 * static percpu allocation).
1767 */
1768 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1769 INIT_LIST_HEAD(&schunk->list);
1770 schunk->base_addr = base_addr;
1771 schunk->map = smap;
1772 schunk->map_alloc = ARRAY_SIZE(smap);
1773 schunk->immutable = true;
1774 bitmap_fill(schunk->populated, pcpu_unit_pages);
1775
1776 if (ai->reserved_size) {
1777 schunk->free_size = ai->reserved_size;
1778 pcpu_reserved_chunk = schunk;
1779 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1780 } else {
1781 schunk->free_size = dyn_size;
1782 dyn_size = 0; /* dynamic area covered */
1783 }
1784 schunk->contig_hint = schunk->free_size;
1785
1786 schunk->map[schunk->map_used++] = -ai->static_size;
1787 if (schunk->free_size)
1788 schunk->map[schunk->map_used++] = schunk->free_size;
1789
1790 /* init dynamic chunk if necessary */
1791 if (dyn_size) {
1792 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1793 INIT_LIST_HEAD(&dchunk->list);
1794 dchunk->base_addr = base_addr;
1795 dchunk->map = dmap;
1796 dchunk->map_alloc = ARRAY_SIZE(dmap);
1797 dchunk->immutable = true;
1798 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1799
1800 dchunk->contig_hint = dchunk->free_size = dyn_size;
1801 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1802 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1803 }
1804
1805 /* link the first chunk in */
1806 pcpu_first_chunk = dchunk ?: schunk;
1807 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1808
1809 /* we're done */
1810 pcpu_base_addr = base_addr;
1811 return 0;
1812 }
1813
1814 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1815 [PCPU_FC_AUTO] = "auto",
1816 [PCPU_FC_EMBED] = "embed",
1817 [PCPU_FC_PAGE] = "page",
1818 };
1819
1820 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1821
1822 static int __init percpu_alloc_setup(char *str)
1823 {
1824 if (0)
1825 /* nada */;
1826 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1827 else if (!strcmp(str, "embed"))
1828 pcpu_chosen_fc = PCPU_FC_EMBED;
1829 #endif
1830 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1831 else if (!strcmp(str, "page"))
1832 pcpu_chosen_fc = PCPU_FC_PAGE;
1833 #endif
1834 else
1835 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1836
1837 return 0;
1838 }
1839 early_param("percpu_alloc", percpu_alloc_setup);
1840
1841 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1842 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1843 /**
1844 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1845 * @reserved_size: the size of reserved percpu area in bytes
1846 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1847 * @atom_size: allocation atom size
1848 * @cpu_distance_fn: callback to determine distance between cpus, optional
1849 * @alloc_fn: function to allocate percpu page
1850 * @free_fn: funtion to free percpu page
1851 *
1852 * This is a helper to ease setting up embedded first percpu chunk and
1853 * can be called where pcpu_setup_first_chunk() is expected.
1854 *
1855 * If this function is used to setup the first chunk, it is allocated
1856 * by calling @alloc_fn and used as-is without being mapped into
1857 * vmalloc area. Allocations are always whole multiples of @atom_size
1858 * aligned to @atom_size.
1859 *
1860 * This enables the first chunk to piggy back on the linear physical
1861 * mapping which often uses larger page size. Please note that this
1862 * can result in very sparse cpu->unit mapping on NUMA machines thus
1863 * requiring large vmalloc address space. Don't use this allocator if
1864 * vmalloc space is not orders of magnitude larger than distances
1865 * between node memory addresses (ie. 32bit NUMA machines).
1866 *
1867 * When @dyn_size is positive, dynamic area might be larger than
1868 * specified to fill page alignment. When @dyn_size is auto,
1869 * @dyn_size is just big enough to fill page alignment after static
1870 * and reserved areas.
1871 *
1872 * If the needed size is smaller than the minimum or specified unit
1873 * size, the leftover is returned using @free_fn.
1874 *
1875 * RETURNS:
1876 * 0 on success, -errno on failure.
1877 */
1878 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1879 size_t atom_size,
1880 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1881 pcpu_fc_alloc_fn_t alloc_fn,
1882 pcpu_fc_free_fn_t free_fn)
1883 {
1884 void *base = (void *)ULONG_MAX;
1885 void **areas = NULL;
1886 struct pcpu_alloc_info *ai;
1887 size_t size_sum, areas_size, max_distance;
1888 int group, i, rc;
1889
1890 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1891 cpu_distance_fn);
1892 if (IS_ERR(ai))
1893 return PTR_ERR(ai);
1894
1895 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1896 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1897
1898 areas = alloc_bootmem_nopanic(areas_size);
1899 if (!areas) {
1900 rc = -ENOMEM;
1901 goto out_free;
1902 }
1903
1904 /* allocate, copy and determine base address */
1905 for (group = 0; group < ai->nr_groups; group++) {
1906 struct pcpu_group_info *gi = &ai->groups[group];
1907 unsigned int cpu = NR_CPUS;
1908 void *ptr;
1909
1910 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1911 cpu = gi->cpu_map[i];
1912 BUG_ON(cpu == NR_CPUS);
1913
1914 /* allocate space for the whole group */
1915 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1916 if (!ptr) {
1917 rc = -ENOMEM;
1918 goto out_free_areas;
1919 }
1920 areas[group] = ptr;
1921
1922 base = min(ptr, base);
1923
1924 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1925 if (gi->cpu_map[i] == NR_CPUS) {
1926 /* unused unit, free whole */
1927 free_fn(ptr, ai->unit_size);
1928 continue;
1929 }
1930 /* copy and return the unused part */
1931 memcpy(ptr, __per_cpu_load, ai->static_size);
1932 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1933 }
1934 }
1935
1936 /* base address is now known, determine group base offsets */
1937 max_distance = 0;
1938 for (group = 0; group < ai->nr_groups; group++) {
1939 ai->groups[group].base_offset = areas[group] - base;
1940 max_distance = max_t(size_t, max_distance,
1941 ai->groups[group].base_offset);
1942 }
1943 max_distance += ai->unit_size;
1944
1945 /* warn if maximum distance is further than 75% of vmalloc space */
1946 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1947 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1948 "space 0x%lx\n",
1949 max_distance, VMALLOC_END - VMALLOC_START);
1950 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1951 /* and fail if we have fallback */
1952 rc = -EINVAL;
1953 goto out_free;
1954 #endif
1955 }
1956
1957 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1958 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1959 ai->dyn_size, ai->unit_size);
1960
1961 rc = pcpu_setup_first_chunk(ai, base);
1962 goto out_free;
1963
1964 out_free_areas:
1965 for (group = 0; group < ai->nr_groups; group++)
1966 free_fn(areas[group],
1967 ai->groups[group].nr_units * ai->unit_size);
1968 out_free:
1969 pcpu_free_alloc_info(ai);
1970 if (areas)
1971 free_bootmem(__pa(areas), areas_size);
1972 return rc;
1973 }
1974 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1975 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1976
1977 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1978 /**
1979 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1980 * @reserved_size: the size of reserved percpu area in bytes
1981 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1982 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1983 * @populate_pte_fn: function to populate pte
1984 *
1985 * This is a helper to ease setting up page-remapped first percpu
1986 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1987 *
1988 * This is the basic allocator. Static percpu area is allocated
1989 * page-by-page into vmalloc area.
1990 *
1991 * RETURNS:
1992 * 0 on success, -errno on failure.
1993 */
1994 int __init pcpu_page_first_chunk(size_t reserved_size,
1995 pcpu_fc_alloc_fn_t alloc_fn,
1996 pcpu_fc_free_fn_t free_fn,
1997 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1998 {
1999 static struct vm_struct vm;
2000 struct pcpu_alloc_info *ai;
2001 char psize_str[16];
2002 int unit_pages;
2003 size_t pages_size;
2004 struct page **pages;
2005 int unit, i, j, rc;
2006
2007 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2008
2009 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
2010 if (IS_ERR(ai))
2011 return PTR_ERR(ai);
2012 BUG_ON(ai->nr_groups != 1);
2013 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2014
2015 unit_pages = ai->unit_size >> PAGE_SHIFT;
2016
2017 /* unaligned allocations can't be freed, round up to page size */
2018 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2019 sizeof(pages[0]));
2020 pages = alloc_bootmem(pages_size);
2021
2022 /* allocate pages */
2023 j = 0;
2024 for (unit = 0; unit < num_possible_cpus(); unit++)
2025 for (i = 0; i < unit_pages; i++) {
2026 unsigned int cpu = ai->groups[0].cpu_map[unit];
2027 void *ptr;
2028
2029 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2030 if (!ptr) {
2031 pr_warning("PERCPU: failed to allocate %s page "
2032 "for cpu%u\n", psize_str, cpu);
2033 goto enomem;
2034 }
2035 pages[j++] = virt_to_page(ptr);
2036 }
2037
2038 /* allocate vm area, map the pages and copy static data */
2039 vm.flags = VM_ALLOC;
2040 vm.size = num_possible_cpus() * ai->unit_size;
2041 vm_area_register_early(&vm, PAGE_SIZE);
2042
2043 for (unit = 0; unit < num_possible_cpus(); unit++) {
2044 unsigned long unit_addr =
2045 (unsigned long)vm.addr + unit * ai->unit_size;
2046
2047 for (i = 0; i < unit_pages; i++)
2048 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2049
2050 /* pte already populated, the following shouldn't fail */
2051 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2052 unit_pages);
2053 if (rc < 0)
2054 panic("failed to map percpu area, err=%d\n", rc);
2055
2056 /*
2057 * FIXME: Archs with virtual cache should flush local
2058 * cache for the linear mapping here - something
2059 * equivalent to flush_cache_vmap() on the local cpu.
2060 * flush_cache_vmap() can't be used as most supporting
2061 * data structures are not set up yet.
2062 */
2063
2064 /* copy static data */
2065 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2066 }
2067
2068 /* we're ready, commit */
2069 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2070 unit_pages, psize_str, vm.addr, ai->static_size,
2071 ai->reserved_size, ai->dyn_size);
2072
2073 rc = pcpu_setup_first_chunk(ai, vm.addr);
2074 goto out_free_ar;
2075
2076 enomem:
2077 while (--j >= 0)
2078 free_fn(page_address(pages[j]), PAGE_SIZE);
2079 rc = -ENOMEM;
2080 out_free_ar:
2081 free_bootmem(__pa(pages), pages_size);
2082 pcpu_free_alloc_info(ai);
2083 return rc;
2084 }
2085 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2086
2087 /*
2088 * Generic percpu area setup.
2089 *
2090 * The embedding helper is used because its behavior closely resembles
2091 * the original non-dynamic generic percpu area setup. This is
2092 * important because many archs have addressing restrictions and might
2093 * fail if the percpu area is located far away from the previous
2094 * location. As an added bonus, in non-NUMA cases, embedding is
2095 * generally a good idea TLB-wise because percpu area can piggy back
2096 * on the physical linear memory mapping which uses large page
2097 * mappings on applicable archs.
2098 */
2099 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2100 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2101 EXPORT_SYMBOL(__per_cpu_offset);
2102
2103 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2104 size_t align)
2105 {
2106 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2107 }
2108
2109 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2110 {
2111 free_bootmem(__pa(ptr), size);
2112 }
2113
2114 void __init setup_per_cpu_areas(void)
2115 {
2116 unsigned long delta;
2117 unsigned int cpu;
2118 int rc;
2119
2120 /*
2121 * Always reserve area for module percpu variables. That's
2122 * what the legacy allocator did.
2123 */
2124 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2125 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2126 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2127 if (rc < 0)
2128 panic("Failed to initialized percpu areas.");
2129
2130 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2131 for_each_possible_cpu(cpu)
2132 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2133 }
2134 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
This page took 0.119608 seconds and 5 git commands to generate.