ec158bb5f86d46fefc90dc3d9a44ef1e97d93c34
[deliverable/linux.git] / mm / percpu.c
1 /*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
18 *
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
23 *
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
30 *
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
46 *
47 * To use this allocator, arch code should do the followings.
48 *
49 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50 * regular address to percpu pointer and back if they need to be
51 * different from the default
52 *
53 * - use pcpu_setup_first_chunk() during percpu area initialization to
54 * setup the first chunk containing the kernel static percpu area
55 */
56
57 #include <linux/bitmap.h>
58 #include <linux/bootmem.h>
59 #include <linux/err.h>
60 #include <linux/list.h>
61 #include <linux/log2.h>
62 #include <linux/mm.h>
63 #include <linux/module.h>
64 #include <linux/mutex.h>
65 #include <linux/percpu.h>
66 #include <linux/pfn.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/vmalloc.h>
70 #include <linux/workqueue.h>
71
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75
76 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
77 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
78
79 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
80 #ifndef __addr_to_pcpu_ptr
81 #define __addr_to_pcpu_ptr(addr) \
82 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
83 + (unsigned long)__per_cpu_start)
84 #endif
85 #ifndef __pcpu_ptr_to_addr
86 #define __pcpu_ptr_to_addr(ptr) \
87 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
88 - (unsigned long)__per_cpu_start)
89 #endif
90
91 struct pcpu_chunk {
92 struct list_head list; /* linked to pcpu_slot lists */
93 int free_size; /* free bytes in the chunk */
94 int contig_hint; /* max contiguous size hint */
95 void *base_addr; /* base address of this chunk */
96 int map_used; /* # of map entries used */
97 int map_alloc; /* # of map entries allocated */
98 int *map; /* allocation map */
99 struct vm_struct **vms; /* mapped vmalloc regions */
100 bool immutable; /* no [de]population allowed */
101 unsigned long populated[]; /* populated bitmap */
102 };
103
104 static int pcpu_unit_pages __read_mostly;
105 static int pcpu_unit_size __read_mostly;
106 static int pcpu_nr_units __read_mostly;
107 static int pcpu_atom_size __read_mostly;
108 static int pcpu_nr_slots __read_mostly;
109 static size_t pcpu_chunk_struct_size __read_mostly;
110
111 /* cpus with the lowest and highest unit numbers */
112 static unsigned int pcpu_first_unit_cpu __read_mostly;
113 static unsigned int pcpu_last_unit_cpu __read_mostly;
114
115 /* the address of the first chunk which starts with the kernel static area */
116 void *pcpu_base_addr __read_mostly;
117 EXPORT_SYMBOL_GPL(pcpu_base_addr);
118
119 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
120 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
121
122 /* group information, used for vm allocation */
123 static int pcpu_nr_groups __read_mostly;
124 static const unsigned long *pcpu_group_offsets __read_mostly;
125 static const size_t *pcpu_group_sizes __read_mostly;
126
127 /*
128 * The first chunk which always exists. Note that unlike other
129 * chunks, this one can be allocated and mapped in several different
130 * ways and thus often doesn't live in the vmalloc area.
131 */
132 static struct pcpu_chunk *pcpu_first_chunk;
133
134 /*
135 * Optional reserved chunk. This chunk reserves part of the first
136 * chunk and serves it for reserved allocations. The amount of
137 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
138 * area doesn't exist, the following variables contain NULL and 0
139 * respectively.
140 */
141 static struct pcpu_chunk *pcpu_reserved_chunk;
142 static int pcpu_reserved_chunk_limit;
143
144 /*
145 * Synchronization rules.
146 *
147 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
148 * protects allocation/reclaim paths, chunks, populated bitmap and
149 * vmalloc mapping. The latter is a spinlock and protects the index
150 * data structures - chunk slots, chunks and area maps in chunks.
151 *
152 * During allocation, pcpu_alloc_mutex is kept locked all the time and
153 * pcpu_lock is grabbed and released as necessary. All actual memory
154 * allocations are done using GFP_KERNEL with pcpu_lock released.
155 *
156 * Free path accesses and alters only the index data structures, so it
157 * can be safely called from atomic context. When memory needs to be
158 * returned to the system, free path schedules reclaim_work which
159 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
160 * reclaimed, release both locks and frees the chunks. Note that it's
161 * necessary to grab both locks to remove a chunk from circulation as
162 * allocation path might be referencing the chunk with only
163 * pcpu_alloc_mutex locked.
164 */
165 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
166 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
167
168 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
169
170 /* reclaim work to release fully free chunks, scheduled from free path */
171 static void pcpu_reclaim(struct work_struct *work);
172 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
173
174 static int __pcpu_size_to_slot(int size)
175 {
176 int highbit = fls(size); /* size is in bytes */
177 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
178 }
179
180 static int pcpu_size_to_slot(int size)
181 {
182 if (size == pcpu_unit_size)
183 return pcpu_nr_slots - 1;
184 return __pcpu_size_to_slot(size);
185 }
186
187 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
188 {
189 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
190 return 0;
191
192 return pcpu_size_to_slot(chunk->free_size);
193 }
194
195 static int pcpu_page_idx(unsigned int cpu, int page_idx)
196 {
197 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
198 }
199
200 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
201 unsigned int cpu, int page_idx)
202 {
203 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
204 (page_idx << PAGE_SHIFT);
205 }
206
207 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
208 unsigned int cpu, int page_idx)
209 {
210 /* must not be used on pre-mapped chunk */
211 WARN_ON(chunk->immutable);
212
213 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
214 }
215
216 /* set the pointer to a chunk in a page struct */
217 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
218 {
219 page->index = (unsigned long)pcpu;
220 }
221
222 /* obtain pointer to a chunk from a page struct */
223 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
224 {
225 return (struct pcpu_chunk *)page->index;
226 }
227
228 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
229 {
230 *rs = find_next_zero_bit(chunk->populated, end, *rs);
231 *re = find_next_bit(chunk->populated, end, *rs + 1);
232 }
233
234 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
235 {
236 *rs = find_next_bit(chunk->populated, end, *rs);
237 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
238 }
239
240 /*
241 * (Un)populated page region iterators. Iterate over (un)populated
242 * page regions betwen @start and @end in @chunk. @rs and @re should
243 * be integer variables and will be set to start and end page index of
244 * the current region.
245 */
246 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
247 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
248 (rs) < (re); \
249 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
250
251 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
252 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
253 (rs) < (re); \
254 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
255
256 /**
257 * pcpu_mem_alloc - allocate memory
258 * @size: bytes to allocate
259 *
260 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
261 * kzalloc() is used; otherwise, vmalloc() is used. The returned
262 * memory is always zeroed.
263 *
264 * CONTEXT:
265 * Does GFP_KERNEL allocation.
266 *
267 * RETURNS:
268 * Pointer to the allocated area on success, NULL on failure.
269 */
270 static void *pcpu_mem_alloc(size_t size)
271 {
272 if (size <= PAGE_SIZE)
273 return kzalloc(size, GFP_KERNEL);
274 else {
275 void *ptr = vmalloc(size);
276 if (ptr)
277 memset(ptr, 0, size);
278 return ptr;
279 }
280 }
281
282 /**
283 * pcpu_mem_free - free memory
284 * @ptr: memory to free
285 * @size: size of the area
286 *
287 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
288 */
289 static void pcpu_mem_free(void *ptr, size_t size)
290 {
291 if (size <= PAGE_SIZE)
292 kfree(ptr);
293 else
294 vfree(ptr);
295 }
296
297 /**
298 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
299 * @chunk: chunk of interest
300 * @oslot: the previous slot it was on
301 *
302 * This function is called after an allocation or free changed @chunk.
303 * New slot according to the changed state is determined and @chunk is
304 * moved to the slot. Note that the reserved chunk is never put on
305 * chunk slots.
306 *
307 * CONTEXT:
308 * pcpu_lock.
309 */
310 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
311 {
312 int nslot = pcpu_chunk_slot(chunk);
313
314 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
315 if (oslot < nslot)
316 list_move(&chunk->list, &pcpu_slot[nslot]);
317 else
318 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
319 }
320 }
321
322 /**
323 * pcpu_chunk_addr_search - determine chunk containing specified address
324 * @addr: address for which the chunk needs to be determined.
325 *
326 * RETURNS:
327 * The address of the found chunk.
328 */
329 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
330 {
331 void *first_start = pcpu_first_chunk->base_addr;
332
333 /* is it in the first chunk? */
334 if (addr >= first_start && addr < first_start + pcpu_unit_size) {
335 /* is it in the reserved area? */
336 if (addr < first_start + pcpu_reserved_chunk_limit)
337 return pcpu_reserved_chunk;
338 return pcpu_first_chunk;
339 }
340
341 /*
342 * The address is relative to unit0 which might be unused and
343 * thus unmapped. Offset the address to the unit space of the
344 * current processor before looking it up in the vmalloc
345 * space. Note that any possible cpu id can be used here, so
346 * there's no need to worry about preemption or cpu hotplug.
347 */
348 addr += pcpu_unit_offsets[raw_smp_processor_id()];
349 return pcpu_get_page_chunk(vmalloc_to_page(addr));
350 }
351
352 /**
353 * pcpu_extend_area_map - extend area map for allocation
354 * @chunk: target chunk
355 *
356 * Extend area map of @chunk so that it can accomodate an allocation.
357 * A single allocation can split an area into three areas, so this
358 * function makes sure that @chunk->map has at least two extra slots.
359 *
360 * CONTEXT:
361 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
362 * if area map is extended.
363 *
364 * RETURNS:
365 * 0 if noop, 1 if successfully extended, -errno on failure.
366 */
367 static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
368 {
369 int new_alloc;
370 int *new;
371 size_t size;
372
373 /* has enough? */
374 if (chunk->map_alloc >= chunk->map_used + 2)
375 return 0;
376
377 spin_unlock_irq(&pcpu_lock);
378
379 new_alloc = PCPU_DFL_MAP_ALLOC;
380 while (new_alloc < chunk->map_used + 2)
381 new_alloc *= 2;
382
383 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
384 if (!new) {
385 spin_lock_irq(&pcpu_lock);
386 return -ENOMEM;
387 }
388
389 /*
390 * Acquire pcpu_lock and switch to new area map. Only free
391 * could have happened inbetween, so map_used couldn't have
392 * grown.
393 */
394 spin_lock_irq(&pcpu_lock);
395 BUG_ON(new_alloc < chunk->map_used + 2);
396
397 size = chunk->map_alloc * sizeof(chunk->map[0]);
398 memcpy(new, chunk->map, size);
399
400 /*
401 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
402 * one of the first chunks and still using static map.
403 */
404 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
405 pcpu_mem_free(chunk->map, size);
406
407 chunk->map_alloc = new_alloc;
408 chunk->map = new;
409 return 0;
410 }
411
412 /**
413 * pcpu_split_block - split a map block
414 * @chunk: chunk of interest
415 * @i: index of map block to split
416 * @head: head size in bytes (can be 0)
417 * @tail: tail size in bytes (can be 0)
418 *
419 * Split the @i'th map block into two or three blocks. If @head is
420 * non-zero, @head bytes block is inserted before block @i moving it
421 * to @i+1 and reducing its size by @head bytes.
422 *
423 * If @tail is non-zero, the target block, which can be @i or @i+1
424 * depending on @head, is reduced by @tail bytes and @tail byte block
425 * is inserted after the target block.
426 *
427 * @chunk->map must have enough free slots to accomodate the split.
428 *
429 * CONTEXT:
430 * pcpu_lock.
431 */
432 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
433 int head, int tail)
434 {
435 int nr_extra = !!head + !!tail;
436
437 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
438
439 /* insert new subblocks */
440 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
441 sizeof(chunk->map[0]) * (chunk->map_used - i));
442 chunk->map_used += nr_extra;
443
444 if (head) {
445 chunk->map[i + 1] = chunk->map[i] - head;
446 chunk->map[i++] = head;
447 }
448 if (tail) {
449 chunk->map[i++] -= tail;
450 chunk->map[i] = tail;
451 }
452 }
453
454 /**
455 * pcpu_alloc_area - allocate area from a pcpu_chunk
456 * @chunk: chunk of interest
457 * @size: wanted size in bytes
458 * @align: wanted align
459 *
460 * Try to allocate @size bytes area aligned at @align from @chunk.
461 * Note that this function only allocates the offset. It doesn't
462 * populate or map the area.
463 *
464 * @chunk->map must have at least two free slots.
465 *
466 * CONTEXT:
467 * pcpu_lock.
468 *
469 * RETURNS:
470 * Allocated offset in @chunk on success, -1 if no matching area is
471 * found.
472 */
473 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
474 {
475 int oslot = pcpu_chunk_slot(chunk);
476 int max_contig = 0;
477 int i, off;
478
479 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
480 bool is_last = i + 1 == chunk->map_used;
481 int head, tail;
482
483 /* extra for alignment requirement */
484 head = ALIGN(off, align) - off;
485 BUG_ON(i == 0 && head != 0);
486
487 if (chunk->map[i] < 0)
488 continue;
489 if (chunk->map[i] < head + size) {
490 max_contig = max(chunk->map[i], max_contig);
491 continue;
492 }
493
494 /*
495 * If head is small or the previous block is free,
496 * merge'em. Note that 'small' is defined as smaller
497 * than sizeof(int), which is very small but isn't too
498 * uncommon for percpu allocations.
499 */
500 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
501 if (chunk->map[i - 1] > 0)
502 chunk->map[i - 1] += head;
503 else {
504 chunk->map[i - 1] -= head;
505 chunk->free_size -= head;
506 }
507 chunk->map[i] -= head;
508 off += head;
509 head = 0;
510 }
511
512 /* if tail is small, just keep it around */
513 tail = chunk->map[i] - head - size;
514 if (tail < sizeof(int))
515 tail = 0;
516
517 /* split if warranted */
518 if (head || tail) {
519 pcpu_split_block(chunk, i, head, tail);
520 if (head) {
521 i++;
522 off += head;
523 max_contig = max(chunk->map[i - 1], max_contig);
524 }
525 if (tail)
526 max_contig = max(chunk->map[i + 1], max_contig);
527 }
528
529 /* update hint and mark allocated */
530 if (is_last)
531 chunk->contig_hint = max_contig; /* fully scanned */
532 else
533 chunk->contig_hint = max(chunk->contig_hint,
534 max_contig);
535
536 chunk->free_size -= chunk->map[i];
537 chunk->map[i] = -chunk->map[i];
538
539 pcpu_chunk_relocate(chunk, oslot);
540 return off;
541 }
542
543 chunk->contig_hint = max_contig; /* fully scanned */
544 pcpu_chunk_relocate(chunk, oslot);
545
546 /* tell the upper layer that this chunk has no matching area */
547 return -1;
548 }
549
550 /**
551 * pcpu_free_area - free area to a pcpu_chunk
552 * @chunk: chunk of interest
553 * @freeme: offset of area to free
554 *
555 * Free area starting from @freeme to @chunk. Note that this function
556 * only modifies the allocation map. It doesn't depopulate or unmap
557 * the area.
558 *
559 * CONTEXT:
560 * pcpu_lock.
561 */
562 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
563 {
564 int oslot = pcpu_chunk_slot(chunk);
565 int i, off;
566
567 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
568 if (off == freeme)
569 break;
570 BUG_ON(off != freeme);
571 BUG_ON(chunk->map[i] > 0);
572
573 chunk->map[i] = -chunk->map[i];
574 chunk->free_size += chunk->map[i];
575
576 /* merge with previous? */
577 if (i > 0 && chunk->map[i - 1] >= 0) {
578 chunk->map[i - 1] += chunk->map[i];
579 chunk->map_used--;
580 memmove(&chunk->map[i], &chunk->map[i + 1],
581 (chunk->map_used - i) * sizeof(chunk->map[0]));
582 i--;
583 }
584 /* merge with next? */
585 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
586 chunk->map[i] += chunk->map[i + 1];
587 chunk->map_used--;
588 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
589 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
590 }
591
592 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
593 pcpu_chunk_relocate(chunk, oslot);
594 }
595
596 /**
597 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
598 * @chunk: chunk of interest
599 * @bitmapp: output parameter for bitmap
600 * @may_alloc: may allocate the array
601 *
602 * Returns pointer to array of pointers to struct page and bitmap,
603 * both of which can be indexed with pcpu_page_idx(). The returned
604 * array is cleared to zero and *@bitmapp is copied from
605 * @chunk->populated. Note that there is only one array and bitmap
606 * and access exclusion is the caller's responsibility.
607 *
608 * CONTEXT:
609 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
610 * Otherwise, don't care.
611 *
612 * RETURNS:
613 * Pointer to temp pages array on success, NULL on failure.
614 */
615 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
616 unsigned long **bitmapp,
617 bool may_alloc)
618 {
619 static struct page **pages;
620 static unsigned long *bitmap;
621 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
622 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
623 sizeof(unsigned long);
624
625 if (!pages || !bitmap) {
626 if (may_alloc && !pages)
627 pages = pcpu_mem_alloc(pages_size);
628 if (may_alloc && !bitmap)
629 bitmap = pcpu_mem_alloc(bitmap_size);
630 if (!pages || !bitmap)
631 return NULL;
632 }
633
634 memset(pages, 0, pages_size);
635 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
636
637 *bitmapp = bitmap;
638 return pages;
639 }
640
641 /**
642 * pcpu_free_pages - free pages which were allocated for @chunk
643 * @chunk: chunk pages were allocated for
644 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
645 * @populated: populated bitmap
646 * @page_start: page index of the first page to be freed
647 * @page_end: page index of the last page to be freed + 1
648 *
649 * Free pages [@page_start and @page_end) in @pages for all units.
650 * The pages were allocated for @chunk.
651 */
652 static void pcpu_free_pages(struct pcpu_chunk *chunk,
653 struct page **pages, unsigned long *populated,
654 int page_start, int page_end)
655 {
656 unsigned int cpu;
657 int i;
658
659 for_each_possible_cpu(cpu) {
660 for (i = page_start; i < page_end; i++) {
661 struct page *page = pages[pcpu_page_idx(cpu, i)];
662
663 if (page)
664 __free_page(page);
665 }
666 }
667 }
668
669 /**
670 * pcpu_alloc_pages - allocates pages for @chunk
671 * @chunk: target chunk
672 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
673 * @populated: populated bitmap
674 * @page_start: page index of the first page to be allocated
675 * @page_end: page index of the last page to be allocated + 1
676 *
677 * Allocate pages [@page_start,@page_end) into @pages for all units.
678 * The allocation is for @chunk. Percpu core doesn't care about the
679 * content of @pages and will pass it verbatim to pcpu_map_pages().
680 */
681 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
682 struct page **pages, unsigned long *populated,
683 int page_start, int page_end)
684 {
685 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
686 unsigned int cpu;
687 int i;
688
689 for_each_possible_cpu(cpu) {
690 for (i = page_start; i < page_end; i++) {
691 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
692
693 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
694 if (!*pagep) {
695 pcpu_free_pages(chunk, pages, populated,
696 page_start, page_end);
697 return -ENOMEM;
698 }
699 }
700 }
701 return 0;
702 }
703
704 /**
705 * pcpu_pre_unmap_flush - flush cache prior to unmapping
706 * @chunk: chunk the regions to be flushed belongs to
707 * @page_start: page index of the first page to be flushed
708 * @page_end: page index of the last page to be flushed + 1
709 *
710 * Pages in [@page_start,@page_end) of @chunk are about to be
711 * unmapped. Flush cache. As each flushing trial can be very
712 * expensive, issue flush on the whole region at once rather than
713 * doing it for each cpu. This could be an overkill but is more
714 * scalable.
715 */
716 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
717 int page_start, int page_end)
718 {
719 flush_cache_vunmap(
720 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
721 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
722 }
723
724 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
725 {
726 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
727 }
728
729 /**
730 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
731 * @chunk: chunk of interest
732 * @pages: pages array which can be used to pass information to free
733 * @populated: populated bitmap
734 * @page_start: page index of the first page to unmap
735 * @page_end: page index of the last page to unmap + 1
736 *
737 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
738 * Corresponding elements in @pages were cleared by the caller and can
739 * be used to carry information to pcpu_free_pages() which will be
740 * called after all unmaps are finished. The caller should call
741 * proper pre/post flush functions.
742 */
743 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
744 struct page **pages, unsigned long *populated,
745 int page_start, int page_end)
746 {
747 unsigned int cpu;
748 int i;
749
750 for_each_possible_cpu(cpu) {
751 for (i = page_start; i < page_end; i++) {
752 struct page *page;
753
754 page = pcpu_chunk_page(chunk, cpu, i);
755 WARN_ON(!page);
756 pages[pcpu_page_idx(cpu, i)] = page;
757 }
758 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
759 page_end - page_start);
760 }
761
762 for (i = page_start; i < page_end; i++)
763 __clear_bit(i, populated);
764 }
765
766 /**
767 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
768 * @chunk: pcpu_chunk the regions to be flushed belong to
769 * @page_start: page index of the first page to be flushed
770 * @page_end: page index of the last page to be flushed + 1
771 *
772 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
773 * TLB for the regions. This can be skipped if the area is to be
774 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
775 *
776 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
777 * for the whole region.
778 */
779 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
780 int page_start, int page_end)
781 {
782 flush_tlb_kernel_range(
783 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
784 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
785 }
786
787 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
788 int nr_pages)
789 {
790 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
791 PAGE_KERNEL, pages);
792 }
793
794 /**
795 * pcpu_map_pages - map pages into a pcpu_chunk
796 * @chunk: chunk of interest
797 * @pages: pages array containing pages to be mapped
798 * @populated: populated bitmap
799 * @page_start: page index of the first page to map
800 * @page_end: page index of the last page to map + 1
801 *
802 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
803 * caller is responsible for calling pcpu_post_map_flush() after all
804 * mappings are complete.
805 *
806 * This function is responsible for setting corresponding bits in
807 * @chunk->populated bitmap and whatever is necessary for reverse
808 * lookup (addr -> chunk).
809 */
810 static int pcpu_map_pages(struct pcpu_chunk *chunk,
811 struct page **pages, unsigned long *populated,
812 int page_start, int page_end)
813 {
814 unsigned int cpu, tcpu;
815 int i, err;
816
817 for_each_possible_cpu(cpu) {
818 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
819 &pages[pcpu_page_idx(cpu, page_start)],
820 page_end - page_start);
821 if (err < 0)
822 goto err;
823 }
824
825 /* mapping successful, link chunk and mark populated */
826 for (i = page_start; i < page_end; i++) {
827 for_each_possible_cpu(cpu)
828 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
829 chunk);
830 __set_bit(i, populated);
831 }
832
833 return 0;
834
835 err:
836 for_each_possible_cpu(tcpu) {
837 if (tcpu == cpu)
838 break;
839 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
840 page_end - page_start);
841 }
842 return err;
843 }
844
845 /**
846 * pcpu_post_map_flush - flush cache after mapping
847 * @chunk: pcpu_chunk the regions to be flushed belong to
848 * @page_start: page index of the first page to be flushed
849 * @page_end: page index of the last page to be flushed + 1
850 *
851 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
852 * cache.
853 *
854 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
855 * for the whole region.
856 */
857 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
858 int page_start, int page_end)
859 {
860 flush_cache_vmap(
861 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
862 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
863 }
864
865 /**
866 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
867 * @chunk: chunk to depopulate
868 * @off: offset to the area to depopulate
869 * @size: size of the area to depopulate in bytes
870 * @flush: whether to flush cache and tlb or not
871 *
872 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
873 * from @chunk. If @flush is true, vcache is flushed before unmapping
874 * and tlb after.
875 *
876 * CONTEXT:
877 * pcpu_alloc_mutex.
878 */
879 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
880 {
881 int page_start = PFN_DOWN(off);
882 int page_end = PFN_UP(off + size);
883 struct page **pages;
884 unsigned long *populated;
885 int rs, re;
886
887 /* quick path, check whether it's empty already */
888 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
889 if (rs == page_start && re == page_end)
890 return;
891 break;
892 }
893
894 /* immutable chunks can't be depopulated */
895 WARN_ON(chunk->immutable);
896
897 /*
898 * If control reaches here, there must have been at least one
899 * successful population attempt so the temp pages array must
900 * be available now.
901 */
902 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
903 BUG_ON(!pages);
904
905 /* unmap and free */
906 pcpu_pre_unmap_flush(chunk, page_start, page_end);
907
908 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
909 pcpu_unmap_pages(chunk, pages, populated, rs, re);
910
911 /* no need to flush tlb, vmalloc will handle it lazily */
912
913 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
914 pcpu_free_pages(chunk, pages, populated, rs, re);
915
916 /* commit new bitmap */
917 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
918 }
919
920 /**
921 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
922 * @chunk: chunk of interest
923 * @off: offset to the area to populate
924 * @size: size of the area to populate in bytes
925 *
926 * For each cpu, populate and map pages [@page_start,@page_end) into
927 * @chunk. The area is cleared on return.
928 *
929 * CONTEXT:
930 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
931 */
932 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
933 {
934 int page_start = PFN_DOWN(off);
935 int page_end = PFN_UP(off + size);
936 int free_end = page_start, unmap_end = page_start;
937 struct page **pages;
938 unsigned long *populated;
939 unsigned int cpu;
940 int rs, re, rc;
941
942 /* quick path, check whether all pages are already there */
943 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
944 if (rs == page_start && re == page_end)
945 goto clear;
946 break;
947 }
948
949 /* need to allocate and map pages, this chunk can't be immutable */
950 WARN_ON(chunk->immutable);
951
952 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
953 if (!pages)
954 return -ENOMEM;
955
956 /* alloc and map */
957 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
958 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
959 if (rc)
960 goto err_free;
961 free_end = re;
962 }
963
964 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
965 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
966 if (rc)
967 goto err_unmap;
968 unmap_end = re;
969 }
970 pcpu_post_map_flush(chunk, page_start, page_end);
971
972 /* commit new bitmap */
973 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
974 clear:
975 for_each_possible_cpu(cpu)
976 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
977 return 0;
978
979 err_unmap:
980 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
981 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
982 pcpu_unmap_pages(chunk, pages, populated, rs, re);
983 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
984 err_free:
985 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
986 pcpu_free_pages(chunk, pages, populated, rs, re);
987 return rc;
988 }
989
990 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
991 {
992 if (!chunk)
993 return;
994 if (chunk->vms)
995 pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
996 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
997 kfree(chunk);
998 }
999
1000 static struct pcpu_chunk *alloc_pcpu_chunk(void)
1001 {
1002 struct pcpu_chunk *chunk;
1003
1004 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1005 if (!chunk)
1006 return NULL;
1007
1008 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1009 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1010 chunk->map[chunk->map_used++] = pcpu_unit_size;
1011
1012 chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1013 pcpu_nr_groups, pcpu_atom_size,
1014 GFP_KERNEL);
1015 if (!chunk->vms) {
1016 free_pcpu_chunk(chunk);
1017 return NULL;
1018 }
1019
1020 INIT_LIST_HEAD(&chunk->list);
1021 chunk->free_size = pcpu_unit_size;
1022 chunk->contig_hint = pcpu_unit_size;
1023 chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1024
1025 return chunk;
1026 }
1027
1028 /**
1029 * pcpu_alloc - the percpu allocator
1030 * @size: size of area to allocate in bytes
1031 * @align: alignment of area (max PAGE_SIZE)
1032 * @reserved: allocate from the reserved chunk if available
1033 *
1034 * Allocate percpu area of @size bytes aligned at @align.
1035 *
1036 * CONTEXT:
1037 * Does GFP_KERNEL allocation.
1038 *
1039 * RETURNS:
1040 * Percpu pointer to the allocated area on success, NULL on failure.
1041 */
1042 static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1043 {
1044 static int warn_limit = 10;
1045 struct pcpu_chunk *chunk;
1046 const char *err;
1047 int slot, off;
1048
1049 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1050 WARN(true, "illegal size (%zu) or align (%zu) for "
1051 "percpu allocation\n", size, align);
1052 return NULL;
1053 }
1054
1055 mutex_lock(&pcpu_alloc_mutex);
1056 spin_lock_irq(&pcpu_lock);
1057
1058 /* serve reserved allocations from the reserved chunk if available */
1059 if (reserved && pcpu_reserved_chunk) {
1060 chunk = pcpu_reserved_chunk;
1061 if (size > chunk->contig_hint ||
1062 pcpu_extend_area_map(chunk) < 0) {
1063 err = "failed to extend area map of reserved chunk";
1064 goto fail_unlock;
1065 }
1066 off = pcpu_alloc_area(chunk, size, align);
1067 if (off >= 0)
1068 goto area_found;
1069 err = "alloc from reserved chunk failed";
1070 goto fail_unlock;
1071 }
1072
1073 restart:
1074 /* search through normal chunks */
1075 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1076 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1077 if (size > chunk->contig_hint)
1078 continue;
1079
1080 switch (pcpu_extend_area_map(chunk)) {
1081 case 0:
1082 break;
1083 case 1:
1084 goto restart; /* pcpu_lock dropped, restart */
1085 default:
1086 err = "failed to extend area map";
1087 goto fail_unlock;
1088 }
1089
1090 off = pcpu_alloc_area(chunk, size, align);
1091 if (off >= 0)
1092 goto area_found;
1093 }
1094 }
1095
1096 /* hmmm... no space left, create a new chunk */
1097 spin_unlock_irq(&pcpu_lock);
1098
1099 chunk = alloc_pcpu_chunk();
1100 if (!chunk) {
1101 err = "failed to allocate new chunk";
1102 goto fail_unlock_mutex;
1103 }
1104
1105 spin_lock_irq(&pcpu_lock);
1106 pcpu_chunk_relocate(chunk, -1);
1107 goto restart;
1108
1109 area_found:
1110 spin_unlock_irq(&pcpu_lock);
1111
1112 /* populate, map and clear the area */
1113 if (pcpu_populate_chunk(chunk, off, size)) {
1114 spin_lock_irq(&pcpu_lock);
1115 pcpu_free_area(chunk, off);
1116 err = "failed to populate";
1117 goto fail_unlock;
1118 }
1119
1120 mutex_unlock(&pcpu_alloc_mutex);
1121
1122 /* return address relative to base address */
1123 return __addr_to_pcpu_ptr(chunk->base_addr + off);
1124
1125 fail_unlock:
1126 spin_unlock_irq(&pcpu_lock);
1127 fail_unlock_mutex:
1128 mutex_unlock(&pcpu_alloc_mutex);
1129 if (warn_limit) {
1130 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1131 "%s\n", size, align, err);
1132 dump_stack();
1133 if (!--warn_limit)
1134 pr_info("PERCPU: limit reached, disable warning\n");
1135 }
1136 return NULL;
1137 }
1138
1139 /**
1140 * __alloc_percpu - allocate dynamic percpu area
1141 * @size: size of area to allocate in bytes
1142 * @align: alignment of area (max PAGE_SIZE)
1143 *
1144 * Allocate percpu area of @size bytes aligned at @align. Might
1145 * sleep. Might trigger writeouts.
1146 *
1147 * CONTEXT:
1148 * Does GFP_KERNEL allocation.
1149 *
1150 * RETURNS:
1151 * Percpu pointer to the allocated area on success, NULL on failure.
1152 */
1153 void *__alloc_percpu(size_t size, size_t align)
1154 {
1155 return pcpu_alloc(size, align, false);
1156 }
1157 EXPORT_SYMBOL_GPL(__alloc_percpu);
1158
1159 /**
1160 * __alloc_reserved_percpu - allocate reserved percpu area
1161 * @size: size of area to allocate in bytes
1162 * @align: alignment of area (max PAGE_SIZE)
1163 *
1164 * Allocate percpu area of @size bytes aligned at @align from reserved
1165 * percpu area if arch has set it up; otherwise, allocation is served
1166 * from the same dynamic area. Might sleep. Might trigger writeouts.
1167 *
1168 * CONTEXT:
1169 * Does GFP_KERNEL allocation.
1170 *
1171 * RETURNS:
1172 * Percpu pointer to the allocated area on success, NULL on failure.
1173 */
1174 void *__alloc_reserved_percpu(size_t size, size_t align)
1175 {
1176 return pcpu_alloc(size, align, true);
1177 }
1178
1179 /**
1180 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1181 * @work: unused
1182 *
1183 * Reclaim all fully free chunks except for the first one.
1184 *
1185 * CONTEXT:
1186 * workqueue context.
1187 */
1188 static void pcpu_reclaim(struct work_struct *work)
1189 {
1190 LIST_HEAD(todo);
1191 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1192 struct pcpu_chunk *chunk, *next;
1193
1194 mutex_lock(&pcpu_alloc_mutex);
1195 spin_lock_irq(&pcpu_lock);
1196
1197 list_for_each_entry_safe(chunk, next, head, list) {
1198 WARN_ON(chunk->immutable);
1199
1200 /* spare the first one */
1201 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1202 continue;
1203
1204 list_move(&chunk->list, &todo);
1205 }
1206
1207 spin_unlock_irq(&pcpu_lock);
1208
1209 list_for_each_entry_safe(chunk, next, &todo, list) {
1210 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1211 free_pcpu_chunk(chunk);
1212 }
1213
1214 mutex_unlock(&pcpu_alloc_mutex);
1215 }
1216
1217 /**
1218 * free_percpu - free percpu area
1219 * @ptr: pointer to area to free
1220 *
1221 * Free percpu area @ptr.
1222 *
1223 * CONTEXT:
1224 * Can be called from atomic context.
1225 */
1226 void free_percpu(void *ptr)
1227 {
1228 void *addr = __pcpu_ptr_to_addr(ptr);
1229 struct pcpu_chunk *chunk;
1230 unsigned long flags;
1231 int off;
1232
1233 if (!ptr)
1234 return;
1235
1236 spin_lock_irqsave(&pcpu_lock, flags);
1237
1238 chunk = pcpu_chunk_addr_search(addr);
1239 off = addr - chunk->base_addr;
1240
1241 pcpu_free_area(chunk, off);
1242
1243 /* if there are more than one fully free chunks, wake up grim reaper */
1244 if (chunk->free_size == pcpu_unit_size) {
1245 struct pcpu_chunk *pos;
1246
1247 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1248 if (pos != chunk) {
1249 schedule_work(&pcpu_reclaim_work);
1250 break;
1251 }
1252 }
1253
1254 spin_unlock_irqrestore(&pcpu_lock, flags);
1255 }
1256 EXPORT_SYMBOL_GPL(free_percpu);
1257
1258 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1259 size_t reserved_size,
1260 ssize_t *dyn_sizep)
1261 {
1262 size_t size_sum;
1263
1264 size_sum = PFN_ALIGN(static_size + reserved_size +
1265 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1266 if (*dyn_sizep != 0)
1267 *dyn_sizep = size_sum - static_size - reserved_size;
1268
1269 return size_sum;
1270 }
1271
1272 /**
1273 * pcpu_alloc_alloc_info - allocate percpu allocation info
1274 * @nr_groups: the number of groups
1275 * @nr_units: the number of units
1276 *
1277 * Allocate ai which is large enough for @nr_groups groups containing
1278 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1279 * cpu_map array which is long enough for @nr_units and filled with
1280 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1281 * pointer of other groups.
1282 *
1283 * RETURNS:
1284 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1285 * failure.
1286 */
1287 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1288 int nr_units)
1289 {
1290 struct pcpu_alloc_info *ai;
1291 size_t base_size, ai_size;
1292 void *ptr;
1293 int unit;
1294
1295 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1296 __alignof__(ai->groups[0].cpu_map[0]));
1297 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1298
1299 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1300 if (!ptr)
1301 return NULL;
1302 ai = ptr;
1303 ptr += base_size;
1304
1305 ai->groups[0].cpu_map = ptr;
1306
1307 for (unit = 0; unit < nr_units; unit++)
1308 ai->groups[0].cpu_map[unit] = NR_CPUS;
1309
1310 ai->nr_groups = nr_groups;
1311 ai->__ai_size = PFN_ALIGN(ai_size);
1312
1313 return ai;
1314 }
1315
1316 /**
1317 * pcpu_free_alloc_info - free percpu allocation info
1318 * @ai: pcpu_alloc_info to free
1319 *
1320 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1321 */
1322 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1323 {
1324 free_bootmem(__pa(ai), ai->__ai_size);
1325 }
1326
1327 /**
1328 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1329 * @reserved_size: the size of reserved percpu area in bytes
1330 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1331 * @atom_size: allocation atom size
1332 * @cpu_distance_fn: callback to determine distance between cpus, optional
1333 *
1334 * This function determines grouping of units, their mappings to cpus
1335 * and other parameters considering needed percpu size, allocation
1336 * atom size and distances between CPUs.
1337 *
1338 * Groups are always mutliples of atom size and CPUs which are of
1339 * LOCAL_DISTANCE both ways are grouped together and share space for
1340 * units in the same group. The returned configuration is guaranteed
1341 * to have CPUs on different nodes on different groups and >=75% usage
1342 * of allocated virtual address space.
1343 *
1344 * RETURNS:
1345 * On success, pointer to the new allocation_info is returned. On
1346 * failure, ERR_PTR value is returned.
1347 */
1348 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1349 size_t reserved_size, ssize_t dyn_size,
1350 size_t atom_size,
1351 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1352 {
1353 static int group_map[NR_CPUS] __initdata;
1354 static int group_cnt[NR_CPUS] __initdata;
1355 const size_t static_size = __per_cpu_end - __per_cpu_start;
1356 int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1357 size_t size_sum, min_unit_size, alloc_size;
1358 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1359 int last_allocs, group, unit;
1360 unsigned int cpu, tcpu;
1361 struct pcpu_alloc_info *ai;
1362 unsigned int *cpu_map;
1363
1364 /* this function may be called multiple times */
1365 memset(group_map, 0, sizeof(group_map));
1366 memset(group_cnt, 0, sizeof(group_map));
1367
1368 /*
1369 * Determine min_unit_size, alloc_size and max_upa such that
1370 * alloc_size is multiple of atom_size and is the smallest
1371 * which can accomodate 4k aligned segments which are equal to
1372 * or larger than min_unit_size.
1373 */
1374 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1375 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1376
1377 alloc_size = roundup(min_unit_size, atom_size);
1378 upa = alloc_size / min_unit_size;
1379 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1380 upa--;
1381 max_upa = upa;
1382
1383 /* group cpus according to their proximity */
1384 for_each_possible_cpu(cpu) {
1385 group = 0;
1386 next_group:
1387 for_each_possible_cpu(tcpu) {
1388 if (cpu == tcpu)
1389 break;
1390 if (group_map[tcpu] == group && cpu_distance_fn &&
1391 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1392 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1393 group++;
1394 nr_groups = max(nr_groups, group + 1);
1395 goto next_group;
1396 }
1397 }
1398 group_map[cpu] = group;
1399 group_cnt[group]++;
1400 group_cnt_max = max(group_cnt_max, group_cnt[group]);
1401 }
1402
1403 /*
1404 * Expand unit size until address space usage goes over 75%
1405 * and then as much as possible without using more address
1406 * space.
1407 */
1408 last_allocs = INT_MAX;
1409 for (upa = max_upa; upa; upa--) {
1410 int allocs = 0, wasted = 0;
1411
1412 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1413 continue;
1414
1415 for (group = 0; group < nr_groups; group++) {
1416 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1417 allocs += this_allocs;
1418 wasted += this_allocs * upa - group_cnt[group];
1419 }
1420
1421 /*
1422 * Don't accept if wastage is over 25%. The
1423 * greater-than comparison ensures upa==1 always
1424 * passes the following check.
1425 */
1426 if (wasted > num_possible_cpus() / 3)
1427 continue;
1428
1429 /* and then don't consume more memory */
1430 if (allocs > last_allocs)
1431 break;
1432 last_allocs = allocs;
1433 best_upa = upa;
1434 }
1435 upa = best_upa;
1436
1437 /* allocate and fill alloc_info */
1438 for (group = 0; group < nr_groups; group++)
1439 nr_units += roundup(group_cnt[group], upa);
1440
1441 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1442 if (!ai)
1443 return ERR_PTR(-ENOMEM);
1444 cpu_map = ai->groups[0].cpu_map;
1445
1446 for (group = 0; group < nr_groups; group++) {
1447 ai->groups[group].cpu_map = cpu_map;
1448 cpu_map += roundup(group_cnt[group], upa);
1449 }
1450
1451 ai->static_size = static_size;
1452 ai->reserved_size = reserved_size;
1453 ai->dyn_size = dyn_size;
1454 ai->unit_size = alloc_size / upa;
1455 ai->atom_size = atom_size;
1456 ai->alloc_size = alloc_size;
1457
1458 for (group = 0, unit = 0; group_cnt[group]; group++) {
1459 struct pcpu_group_info *gi = &ai->groups[group];
1460
1461 /*
1462 * Initialize base_offset as if all groups are located
1463 * back-to-back. The caller should update this to
1464 * reflect actual allocation.
1465 */
1466 gi->base_offset = unit * ai->unit_size;
1467
1468 for_each_possible_cpu(cpu)
1469 if (group_map[cpu] == group)
1470 gi->cpu_map[gi->nr_units++] = cpu;
1471 gi->nr_units = roundup(gi->nr_units, upa);
1472 unit += gi->nr_units;
1473 }
1474 BUG_ON(unit != nr_units);
1475
1476 return ai;
1477 }
1478
1479 /**
1480 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1481 * @lvl: loglevel
1482 * @ai: allocation info to dump
1483 *
1484 * Print out information about @ai using loglevel @lvl.
1485 */
1486 static void pcpu_dump_alloc_info(const char *lvl,
1487 const struct pcpu_alloc_info *ai)
1488 {
1489 int group_width = 1, cpu_width = 1, width;
1490 char empty_str[] = "--------";
1491 int alloc = 0, alloc_end = 0;
1492 int group, v;
1493 int upa, apl; /* units per alloc, allocs per line */
1494
1495 v = ai->nr_groups;
1496 while (v /= 10)
1497 group_width++;
1498
1499 v = num_possible_cpus();
1500 while (v /= 10)
1501 cpu_width++;
1502 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1503
1504 upa = ai->alloc_size / ai->unit_size;
1505 width = upa * (cpu_width + 1) + group_width + 3;
1506 apl = rounddown_pow_of_two(max(60 / width, 1));
1507
1508 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1509 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1510 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1511
1512 for (group = 0; group < ai->nr_groups; group++) {
1513 const struct pcpu_group_info *gi = &ai->groups[group];
1514 int unit = 0, unit_end = 0;
1515
1516 BUG_ON(gi->nr_units % upa);
1517 for (alloc_end += gi->nr_units / upa;
1518 alloc < alloc_end; alloc++) {
1519 if (!(alloc % apl)) {
1520 printk("\n");
1521 printk("%spcpu-alloc: ", lvl);
1522 }
1523 printk("[%0*d] ", group_width, group);
1524
1525 for (unit_end += upa; unit < unit_end; unit++)
1526 if (gi->cpu_map[unit] != NR_CPUS)
1527 printk("%0*d ", cpu_width,
1528 gi->cpu_map[unit]);
1529 else
1530 printk("%s ", empty_str);
1531 }
1532 }
1533 printk("\n");
1534 }
1535
1536 /**
1537 * pcpu_setup_first_chunk - initialize the first percpu chunk
1538 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1539 * @base_addr: mapped address
1540 *
1541 * Initialize the first percpu chunk which contains the kernel static
1542 * perpcu area. This function is to be called from arch percpu area
1543 * setup path.
1544 *
1545 * @ai contains all information necessary to initialize the first
1546 * chunk and prime the dynamic percpu allocator.
1547 *
1548 * @ai->static_size is the size of static percpu area.
1549 *
1550 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1551 * reserve after the static area in the first chunk. This reserves
1552 * the first chunk such that it's available only through reserved
1553 * percpu allocation. This is primarily used to serve module percpu
1554 * static areas on architectures where the addressing model has
1555 * limited offset range for symbol relocations to guarantee module
1556 * percpu symbols fall inside the relocatable range.
1557 *
1558 * @ai->dyn_size determines the number of bytes available for dynamic
1559 * allocation in the first chunk. The area between @ai->static_size +
1560 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1561 *
1562 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1563 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1564 * @ai->dyn_size.
1565 *
1566 * @ai->atom_size is the allocation atom size and used as alignment
1567 * for vm areas.
1568 *
1569 * @ai->alloc_size is the allocation size and always multiple of
1570 * @ai->atom_size. This is larger than @ai->atom_size if
1571 * @ai->unit_size is larger than @ai->atom_size.
1572 *
1573 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1574 * percpu areas. Units which should be colocated are put into the
1575 * same group. Dynamic VM areas will be allocated according to these
1576 * groupings. If @ai->nr_groups is zero, a single group containing
1577 * all units is assumed.
1578 *
1579 * The caller should have mapped the first chunk at @base_addr and
1580 * copied static data to each unit.
1581 *
1582 * If the first chunk ends up with both reserved and dynamic areas, it
1583 * is served by two chunks - one to serve the core static and reserved
1584 * areas and the other for the dynamic area. They share the same vm
1585 * and page map but uses different area allocation map to stay away
1586 * from each other. The latter chunk is circulated in the chunk slots
1587 * and available for dynamic allocation like any other chunks.
1588 *
1589 * RETURNS:
1590 * 0 on success, -errno on failure.
1591 */
1592 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1593 void *base_addr)
1594 {
1595 static char cpus_buf[4096] __initdata;
1596 static int smap[2], dmap[2];
1597 size_t dyn_size = ai->dyn_size;
1598 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1599 struct pcpu_chunk *schunk, *dchunk = NULL;
1600 unsigned long *group_offsets;
1601 size_t *group_sizes;
1602 unsigned long *unit_off;
1603 unsigned int cpu;
1604 int *unit_map;
1605 int group, unit, i;
1606
1607 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1608
1609 #define PCPU_SETUP_BUG_ON(cond) do { \
1610 if (unlikely(cond)) { \
1611 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1612 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1613 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1614 BUG(); \
1615 } \
1616 } while (0)
1617
1618 /* sanity checks */
1619 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1620 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1621 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1622 PCPU_SETUP_BUG_ON(!ai->static_size);
1623 PCPU_SETUP_BUG_ON(!base_addr);
1624 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1625 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1626 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1627
1628 /* process group information and build config tables accordingly */
1629 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1630 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1631 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1632 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1633
1634 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1635 unit_map[cpu] = UINT_MAX;
1636 pcpu_first_unit_cpu = NR_CPUS;
1637
1638 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1639 const struct pcpu_group_info *gi = &ai->groups[group];
1640
1641 group_offsets[group] = gi->base_offset;
1642 group_sizes[group] = gi->nr_units * ai->unit_size;
1643
1644 for (i = 0; i < gi->nr_units; i++) {
1645 cpu = gi->cpu_map[i];
1646 if (cpu == NR_CPUS)
1647 continue;
1648
1649 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1650 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1651 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1652
1653 unit_map[cpu] = unit + i;
1654 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1655
1656 if (pcpu_first_unit_cpu == NR_CPUS)
1657 pcpu_first_unit_cpu = cpu;
1658 }
1659 }
1660 pcpu_last_unit_cpu = cpu;
1661 pcpu_nr_units = unit;
1662
1663 for_each_possible_cpu(cpu)
1664 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1665
1666 /* we're done parsing the input, undefine BUG macro and dump config */
1667 #undef PCPU_SETUP_BUG_ON
1668 pcpu_dump_alloc_info(KERN_INFO, ai);
1669
1670 pcpu_nr_groups = ai->nr_groups;
1671 pcpu_group_offsets = group_offsets;
1672 pcpu_group_sizes = group_sizes;
1673 pcpu_unit_map = unit_map;
1674 pcpu_unit_offsets = unit_off;
1675
1676 /* determine basic parameters */
1677 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1678 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1679 pcpu_atom_size = ai->atom_size;
1680 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1681 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1682
1683 /*
1684 * Allocate chunk slots. The additional last slot is for
1685 * empty chunks.
1686 */
1687 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1688 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1689 for (i = 0; i < pcpu_nr_slots; i++)
1690 INIT_LIST_HEAD(&pcpu_slot[i]);
1691
1692 /*
1693 * Initialize static chunk. If reserved_size is zero, the
1694 * static chunk covers static area + dynamic allocation area
1695 * in the first chunk. If reserved_size is not zero, it
1696 * covers static area + reserved area (mostly used for module
1697 * static percpu allocation).
1698 */
1699 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1700 INIT_LIST_HEAD(&schunk->list);
1701 schunk->base_addr = base_addr;
1702 schunk->map = smap;
1703 schunk->map_alloc = ARRAY_SIZE(smap);
1704 schunk->immutable = true;
1705 bitmap_fill(schunk->populated, pcpu_unit_pages);
1706
1707 if (ai->reserved_size) {
1708 schunk->free_size = ai->reserved_size;
1709 pcpu_reserved_chunk = schunk;
1710 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1711 } else {
1712 schunk->free_size = dyn_size;
1713 dyn_size = 0; /* dynamic area covered */
1714 }
1715 schunk->contig_hint = schunk->free_size;
1716
1717 schunk->map[schunk->map_used++] = -ai->static_size;
1718 if (schunk->free_size)
1719 schunk->map[schunk->map_used++] = schunk->free_size;
1720
1721 /* init dynamic chunk if necessary */
1722 if (dyn_size) {
1723 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1724 INIT_LIST_HEAD(&dchunk->list);
1725 dchunk->base_addr = base_addr;
1726 dchunk->map = dmap;
1727 dchunk->map_alloc = ARRAY_SIZE(dmap);
1728 dchunk->immutable = true;
1729 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1730
1731 dchunk->contig_hint = dchunk->free_size = dyn_size;
1732 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1733 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1734 }
1735
1736 /* link the first chunk in */
1737 pcpu_first_chunk = dchunk ?: schunk;
1738 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1739
1740 /* we're done */
1741 pcpu_base_addr = base_addr;
1742 return 0;
1743 }
1744
1745 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1746 [PCPU_FC_AUTO] = "auto",
1747 [PCPU_FC_EMBED] = "embed",
1748 [PCPU_FC_PAGE] = "page",
1749 };
1750
1751 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1752
1753 static int __init percpu_alloc_setup(char *str)
1754 {
1755 if (0)
1756 /* nada */;
1757 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1758 else if (!strcmp(str, "embed"))
1759 pcpu_chosen_fc = PCPU_FC_EMBED;
1760 #endif
1761 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1762 else if (!strcmp(str, "page"))
1763 pcpu_chosen_fc = PCPU_FC_PAGE;
1764 #endif
1765 else
1766 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1767
1768 return 0;
1769 }
1770 early_param("percpu_alloc", percpu_alloc_setup);
1771
1772 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1773 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1774 /**
1775 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1776 * @reserved_size: the size of reserved percpu area in bytes
1777 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1778 * @atom_size: allocation atom size
1779 * @cpu_distance_fn: callback to determine distance between cpus, optional
1780 * @alloc_fn: function to allocate percpu page
1781 * @free_fn: funtion to free percpu page
1782 *
1783 * This is a helper to ease setting up embedded first percpu chunk and
1784 * can be called where pcpu_setup_first_chunk() is expected.
1785 *
1786 * If this function is used to setup the first chunk, it is allocated
1787 * by calling @alloc_fn and used as-is without being mapped into
1788 * vmalloc area. Allocations are always whole multiples of @atom_size
1789 * aligned to @atom_size.
1790 *
1791 * This enables the first chunk to piggy back on the linear physical
1792 * mapping which often uses larger page size. Please note that this
1793 * can result in very sparse cpu->unit mapping on NUMA machines thus
1794 * requiring large vmalloc address space. Don't use this allocator if
1795 * vmalloc space is not orders of magnitude larger than distances
1796 * between node memory addresses (ie. 32bit NUMA machines).
1797 *
1798 * When @dyn_size is positive, dynamic area might be larger than
1799 * specified to fill page alignment. When @dyn_size is auto,
1800 * @dyn_size is just big enough to fill page alignment after static
1801 * and reserved areas.
1802 *
1803 * If the needed size is smaller than the minimum or specified unit
1804 * size, the leftover is returned using @free_fn.
1805 *
1806 * RETURNS:
1807 * 0 on success, -errno on failure.
1808 */
1809 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1810 size_t atom_size,
1811 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1812 pcpu_fc_alloc_fn_t alloc_fn,
1813 pcpu_fc_free_fn_t free_fn)
1814 {
1815 void *base = (void *)ULONG_MAX;
1816 void **areas = NULL;
1817 struct pcpu_alloc_info *ai;
1818 size_t size_sum, areas_size, max_distance;
1819 int group, i, rc;
1820
1821 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1822 cpu_distance_fn);
1823 if (IS_ERR(ai))
1824 return PTR_ERR(ai);
1825
1826 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1827 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1828
1829 areas = alloc_bootmem_nopanic(areas_size);
1830 if (!areas) {
1831 rc = -ENOMEM;
1832 goto out_free;
1833 }
1834
1835 /* allocate, copy and determine base address */
1836 for (group = 0; group < ai->nr_groups; group++) {
1837 struct pcpu_group_info *gi = &ai->groups[group];
1838 unsigned int cpu = NR_CPUS;
1839 void *ptr;
1840
1841 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1842 cpu = gi->cpu_map[i];
1843 BUG_ON(cpu == NR_CPUS);
1844
1845 /* allocate space for the whole group */
1846 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1847 if (!ptr) {
1848 rc = -ENOMEM;
1849 goto out_free_areas;
1850 }
1851 areas[group] = ptr;
1852
1853 base = min(ptr, base);
1854
1855 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1856 if (gi->cpu_map[i] == NR_CPUS) {
1857 /* unused unit, free whole */
1858 free_fn(ptr, ai->unit_size);
1859 continue;
1860 }
1861 /* copy and return the unused part */
1862 memcpy(ptr, __per_cpu_load, ai->static_size);
1863 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1864 }
1865 }
1866
1867 /* base address is now known, determine group base offsets */
1868 max_distance = 0;
1869 for (group = 0; group < ai->nr_groups; group++) {
1870 ai->groups[group].base_offset = areas[group] - base;
1871 max_distance = max_t(size_t, max_distance,
1872 ai->groups[group].base_offset);
1873 }
1874 max_distance += ai->unit_size;
1875
1876 /* warn if maximum distance is further than 75% of vmalloc space */
1877 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1878 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1879 "space 0x%lx\n",
1880 max_distance, VMALLOC_END - VMALLOC_START);
1881 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1882 /* and fail if we have fallback */
1883 rc = -EINVAL;
1884 goto out_free;
1885 #endif
1886 }
1887
1888 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1889 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1890 ai->dyn_size, ai->unit_size);
1891
1892 rc = pcpu_setup_first_chunk(ai, base);
1893 goto out_free;
1894
1895 out_free_areas:
1896 for (group = 0; group < ai->nr_groups; group++)
1897 free_fn(areas[group],
1898 ai->groups[group].nr_units * ai->unit_size);
1899 out_free:
1900 pcpu_free_alloc_info(ai);
1901 if (areas)
1902 free_bootmem(__pa(areas), areas_size);
1903 return rc;
1904 }
1905 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1906 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1907
1908 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1909 /**
1910 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1911 * @reserved_size: the size of reserved percpu area in bytes
1912 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1913 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1914 * @populate_pte_fn: function to populate pte
1915 *
1916 * This is a helper to ease setting up page-remapped first percpu
1917 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1918 *
1919 * This is the basic allocator. Static percpu area is allocated
1920 * page-by-page into vmalloc area.
1921 *
1922 * RETURNS:
1923 * 0 on success, -errno on failure.
1924 */
1925 int __init pcpu_page_first_chunk(size_t reserved_size,
1926 pcpu_fc_alloc_fn_t alloc_fn,
1927 pcpu_fc_free_fn_t free_fn,
1928 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1929 {
1930 static struct vm_struct vm;
1931 struct pcpu_alloc_info *ai;
1932 char psize_str[16];
1933 int unit_pages;
1934 size_t pages_size;
1935 struct page **pages;
1936 int unit, i, j, rc;
1937
1938 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1939
1940 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1941 if (IS_ERR(ai))
1942 return PTR_ERR(ai);
1943 BUG_ON(ai->nr_groups != 1);
1944 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1945
1946 unit_pages = ai->unit_size >> PAGE_SHIFT;
1947
1948 /* unaligned allocations can't be freed, round up to page size */
1949 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1950 sizeof(pages[0]));
1951 pages = alloc_bootmem(pages_size);
1952
1953 /* allocate pages */
1954 j = 0;
1955 for (unit = 0; unit < num_possible_cpus(); unit++)
1956 for (i = 0; i < unit_pages; i++) {
1957 unsigned int cpu = ai->groups[0].cpu_map[unit];
1958 void *ptr;
1959
1960 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1961 if (!ptr) {
1962 pr_warning("PERCPU: failed to allocate %s page "
1963 "for cpu%u\n", psize_str, cpu);
1964 goto enomem;
1965 }
1966 pages[j++] = virt_to_page(ptr);
1967 }
1968
1969 /* allocate vm area, map the pages and copy static data */
1970 vm.flags = VM_ALLOC;
1971 vm.size = num_possible_cpus() * ai->unit_size;
1972 vm_area_register_early(&vm, PAGE_SIZE);
1973
1974 for (unit = 0; unit < num_possible_cpus(); unit++) {
1975 unsigned long unit_addr =
1976 (unsigned long)vm.addr + unit * ai->unit_size;
1977
1978 for (i = 0; i < unit_pages; i++)
1979 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1980
1981 /* pte already populated, the following shouldn't fail */
1982 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1983 unit_pages);
1984 if (rc < 0)
1985 panic("failed to map percpu area, err=%d\n", rc);
1986
1987 /*
1988 * FIXME: Archs with virtual cache should flush local
1989 * cache for the linear mapping here - something
1990 * equivalent to flush_cache_vmap() on the local cpu.
1991 * flush_cache_vmap() can't be used as most supporting
1992 * data structures are not set up yet.
1993 */
1994
1995 /* copy static data */
1996 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1997 }
1998
1999 /* we're ready, commit */
2000 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2001 unit_pages, psize_str, vm.addr, ai->static_size,
2002 ai->reserved_size, ai->dyn_size);
2003
2004 rc = pcpu_setup_first_chunk(ai, vm.addr);
2005 goto out_free_ar;
2006
2007 enomem:
2008 while (--j >= 0)
2009 free_fn(page_address(pages[j]), PAGE_SIZE);
2010 rc = -ENOMEM;
2011 out_free_ar:
2012 free_bootmem(__pa(pages), pages_size);
2013 pcpu_free_alloc_info(ai);
2014 return rc;
2015 }
2016 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2017
2018 /*
2019 * Generic percpu area setup.
2020 *
2021 * The embedding helper is used because its behavior closely resembles
2022 * the original non-dynamic generic percpu area setup. This is
2023 * important because many archs have addressing restrictions and might
2024 * fail if the percpu area is located far away from the previous
2025 * location. As an added bonus, in non-NUMA cases, embedding is
2026 * generally a good idea TLB-wise because percpu area can piggy back
2027 * on the physical linear memory mapping which uses large page
2028 * mappings on applicable archs.
2029 */
2030 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2031 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2032 EXPORT_SYMBOL(__per_cpu_offset);
2033
2034 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2035 size_t align)
2036 {
2037 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2038 }
2039
2040 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2041 {
2042 free_bootmem(__pa(ptr), size);
2043 }
2044
2045 void __init setup_per_cpu_areas(void)
2046 {
2047 unsigned long delta;
2048 unsigned int cpu;
2049 int rc;
2050
2051 /*
2052 * Always reserve area for module percpu variables. That's
2053 * what the legacy allocator did.
2054 */
2055 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2056 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2057 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2058 if (rc < 0)
2059 panic("Failed to initialized percpu areas.");
2060
2061 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2062 for_each_possible_cpu(cpu)
2063 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2064 }
2065 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
This page took 0.255113 seconds and 4 git commands to generate.