fe5de97d7caaddd73d4a52824724b9036a47ca26
[deliverable/linux.git] / mm / percpu.c
1 /*
2 * mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
29 *
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
37 *
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
45 *
46 * To use this allocator, arch code should do the followings.
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
51 *
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
54 */
55
56 #include <linux/bitmap.h>
57 #include <linux/bootmem.h>
58 #include <linux/err.h>
59 #include <linux/list.h>
60 #include <linux/log2.h>
61 #include <linux/mm.h>
62 #include <linux/module.h>
63 #include <linux/mutex.h>
64 #include <linux/percpu.h>
65 #include <linux/pfn.h>
66 #include <linux/slab.h>
67 #include <linux/spinlock.h>
68 #include <linux/vmalloc.h>
69 #include <linux/workqueue.h>
70 #include <linux/kmemleak.h>
71
72 #include <asm/cacheflush.h>
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/io.h>
76
77 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
78 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
79
80 #ifdef CONFIG_SMP
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr) \
84 (void __percpu *)((unsigned long)(addr) - \
85 (unsigned long)pcpu_base_addr + \
86 (unsigned long)__per_cpu_start)
87 #endif
88 #ifndef __pcpu_ptr_to_addr
89 #define __pcpu_ptr_to_addr(ptr) \
90 (void __force *)((unsigned long)(ptr) + \
91 (unsigned long)pcpu_base_addr - \
92 (unsigned long)__per_cpu_start)
93 #endif
94 #else /* CONFIG_SMP */
95 /* on UP, it's always identity mapped */
96 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
97 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
98 #endif /* CONFIG_SMP */
99
100 struct pcpu_chunk {
101 struct list_head list; /* linked to pcpu_slot lists */
102 int free_size; /* free bytes in the chunk */
103 int contig_hint; /* max contiguous size hint */
104 void *base_addr; /* base address of this chunk */
105 int map_used; /* # of map entries used before the sentry */
106 int map_alloc; /* # of map entries allocated */
107 int *map; /* allocation map */
108 void *data; /* chunk data */
109 int first_free; /* no free below this */
110 bool immutable; /* no [de]population allowed */
111 unsigned long populated[]; /* populated bitmap */
112 };
113
114 static int pcpu_unit_pages __read_mostly;
115 static int pcpu_unit_size __read_mostly;
116 static int pcpu_nr_units __read_mostly;
117 static int pcpu_atom_size __read_mostly;
118 static int pcpu_nr_slots __read_mostly;
119 static size_t pcpu_chunk_struct_size __read_mostly;
120
121 /* cpus with the lowest and highest unit addresses */
122 static unsigned int pcpu_low_unit_cpu __read_mostly;
123 static unsigned int pcpu_high_unit_cpu __read_mostly;
124
125 /* the address of the first chunk which starts with the kernel static area */
126 void *pcpu_base_addr __read_mostly;
127 EXPORT_SYMBOL_GPL(pcpu_base_addr);
128
129 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
130 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
131
132 /* group information, used for vm allocation */
133 static int pcpu_nr_groups __read_mostly;
134 static const unsigned long *pcpu_group_offsets __read_mostly;
135 static const size_t *pcpu_group_sizes __read_mostly;
136
137 /*
138 * The first chunk which always exists. Note that unlike other
139 * chunks, this one can be allocated and mapped in several different
140 * ways and thus often doesn't live in the vmalloc area.
141 */
142 static struct pcpu_chunk *pcpu_first_chunk;
143
144 /*
145 * Optional reserved chunk. This chunk reserves part of the first
146 * chunk and serves it for reserved allocations. The amount of
147 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
148 * area doesn't exist, the following variables contain NULL and 0
149 * respectively.
150 */
151 static struct pcpu_chunk *pcpu_reserved_chunk;
152 static int pcpu_reserved_chunk_limit;
153
154 /*
155 * Synchronization rules.
156 *
157 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
158 * protects allocation/reclaim paths, chunks, populated bitmap and
159 * vmalloc mapping. The latter is a spinlock and protects the index
160 * data structures - chunk slots, chunks and area maps in chunks.
161 *
162 * During allocation, pcpu_alloc_mutex is kept locked all the time and
163 * pcpu_lock is grabbed and released as necessary. All actual memory
164 * allocations are done using GFP_KERNEL with pcpu_lock released. In
165 * general, percpu memory can't be allocated with irq off but
166 * irqsave/restore are still used in alloc path so that it can be used
167 * from early init path - sched_init() specifically.
168 *
169 * Free path accesses and alters only the index data structures, so it
170 * can be safely called from atomic context. When memory needs to be
171 * returned to the system, free path schedules reclaim_work which
172 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
173 * reclaimed, release both locks and frees the chunks. Note that it's
174 * necessary to grab both locks to remove a chunk from circulation as
175 * allocation path might be referencing the chunk with only
176 * pcpu_alloc_mutex locked.
177 */
178 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
179 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
180
181 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
182
183 /* reclaim work to release fully free chunks, scheduled from free path */
184 static void pcpu_reclaim(struct work_struct *work);
185 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
186
187 static bool pcpu_addr_in_first_chunk(void *addr)
188 {
189 void *first_start = pcpu_first_chunk->base_addr;
190
191 return addr >= first_start && addr < first_start + pcpu_unit_size;
192 }
193
194 static bool pcpu_addr_in_reserved_chunk(void *addr)
195 {
196 void *first_start = pcpu_first_chunk->base_addr;
197
198 return addr >= first_start &&
199 addr < first_start + pcpu_reserved_chunk_limit;
200 }
201
202 static int __pcpu_size_to_slot(int size)
203 {
204 int highbit = fls(size); /* size is in bytes */
205 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
206 }
207
208 static int pcpu_size_to_slot(int size)
209 {
210 if (size == pcpu_unit_size)
211 return pcpu_nr_slots - 1;
212 return __pcpu_size_to_slot(size);
213 }
214
215 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
216 {
217 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
218 return 0;
219
220 return pcpu_size_to_slot(chunk->free_size);
221 }
222
223 /* set the pointer to a chunk in a page struct */
224 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
225 {
226 page->index = (unsigned long)pcpu;
227 }
228
229 /* obtain pointer to a chunk from a page struct */
230 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
231 {
232 return (struct pcpu_chunk *)page->index;
233 }
234
235 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
236 {
237 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
238 }
239
240 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
241 unsigned int cpu, int page_idx)
242 {
243 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
244 (page_idx << PAGE_SHIFT);
245 }
246
247 static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
248 int *rs, int *re, int end)
249 {
250 *rs = find_next_zero_bit(chunk->populated, end, *rs);
251 *re = find_next_bit(chunk->populated, end, *rs + 1);
252 }
253
254 static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
255 int *rs, int *re, int end)
256 {
257 *rs = find_next_bit(chunk->populated, end, *rs);
258 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
259 }
260
261 /*
262 * (Un)populated page region iterators. Iterate over (un)populated
263 * page regions between @start and @end in @chunk. @rs and @re should
264 * be integer variables and will be set to start and end page index of
265 * the current region.
266 */
267 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
268 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
269 (rs) < (re); \
270 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
271
272 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
274 (rs) < (re); \
275 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276
277 /**
278 * pcpu_mem_zalloc - allocate memory
279 * @size: bytes to allocate
280 *
281 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
282 * kzalloc() is used; otherwise, vzalloc() is used. The returned
283 * memory is always zeroed.
284 *
285 * CONTEXT:
286 * Does GFP_KERNEL allocation.
287 *
288 * RETURNS:
289 * Pointer to the allocated area on success, NULL on failure.
290 */
291 static void *pcpu_mem_zalloc(size_t size)
292 {
293 if (WARN_ON_ONCE(!slab_is_available()))
294 return NULL;
295
296 if (size <= PAGE_SIZE)
297 return kzalloc(size, GFP_KERNEL);
298 else
299 return vzalloc(size);
300 }
301
302 /**
303 * pcpu_mem_free - free memory
304 * @ptr: memory to free
305 * @size: size of the area
306 *
307 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
308 */
309 static void pcpu_mem_free(void *ptr, size_t size)
310 {
311 if (size <= PAGE_SIZE)
312 kfree(ptr);
313 else
314 vfree(ptr);
315 }
316
317 /**
318 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
319 * @chunk: chunk of interest
320 * @oslot: the previous slot it was on
321 *
322 * This function is called after an allocation or free changed @chunk.
323 * New slot according to the changed state is determined and @chunk is
324 * moved to the slot. Note that the reserved chunk is never put on
325 * chunk slots.
326 *
327 * CONTEXT:
328 * pcpu_lock.
329 */
330 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
331 {
332 int nslot = pcpu_chunk_slot(chunk);
333
334 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
335 if (oslot < nslot)
336 list_move(&chunk->list, &pcpu_slot[nslot]);
337 else
338 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
339 }
340 }
341
342 /**
343 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
344 * @chunk: chunk of interest
345 *
346 * Determine whether area map of @chunk needs to be extended to
347 * accommodate a new allocation.
348 *
349 * CONTEXT:
350 * pcpu_lock.
351 *
352 * RETURNS:
353 * New target map allocation length if extension is necessary, 0
354 * otherwise.
355 */
356 static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
357 {
358 int new_alloc;
359
360 if (chunk->map_alloc >= chunk->map_used + 3)
361 return 0;
362
363 new_alloc = PCPU_DFL_MAP_ALLOC;
364 while (new_alloc < chunk->map_used + 3)
365 new_alloc *= 2;
366
367 return new_alloc;
368 }
369
370 /**
371 * pcpu_extend_area_map - extend area map of a chunk
372 * @chunk: chunk of interest
373 * @new_alloc: new target allocation length of the area map
374 *
375 * Extend area map of @chunk to have @new_alloc entries.
376 *
377 * CONTEXT:
378 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
379 *
380 * RETURNS:
381 * 0 on success, -errno on failure.
382 */
383 static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
384 {
385 int *old = NULL, *new = NULL;
386 size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
387 unsigned long flags;
388
389 new = pcpu_mem_zalloc(new_size);
390 if (!new)
391 return -ENOMEM;
392
393 /* acquire pcpu_lock and switch to new area map */
394 spin_lock_irqsave(&pcpu_lock, flags);
395
396 if (new_alloc <= chunk->map_alloc)
397 goto out_unlock;
398
399 old_size = chunk->map_alloc * sizeof(chunk->map[0]);
400 old = chunk->map;
401
402 memcpy(new, old, old_size);
403
404 chunk->map_alloc = new_alloc;
405 chunk->map = new;
406 new = NULL;
407
408 out_unlock:
409 spin_unlock_irqrestore(&pcpu_lock, flags);
410
411 /*
412 * pcpu_mem_free() might end up calling vfree() which uses
413 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
414 */
415 pcpu_mem_free(old, old_size);
416 pcpu_mem_free(new, new_size);
417
418 return 0;
419 }
420
421 /**
422 * pcpu_alloc_area - allocate area from a pcpu_chunk
423 * @chunk: chunk of interest
424 * @size: wanted size in bytes
425 * @align: wanted align
426 *
427 * Try to allocate @size bytes area aligned at @align from @chunk.
428 * Note that this function only allocates the offset. It doesn't
429 * populate or map the area.
430 *
431 * @chunk->map must have at least two free slots.
432 *
433 * CONTEXT:
434 * pcpu_lock.
435 *
436 * RETURNS:
437 * Allocated offset in @chunk on success, -1 if no matching area is
438 * found.
439 */
440 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
441 {
442 int oslot = pcpu_chunk_slot(chunk);
443 int max_contig = 0;
444 int i, off;
445 bool seen_free = false;
446 int *p;
447
448 for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
449 int head, tail;
450 int this_size;
451
452 off = *p;
453 if (off & 1)
454 continue;
455
456 /* extra for alignment requirement */
457 head = ALIGN(off, align) - off;
458
459 this_size = (p[1] & ~1) - off;
460 if (this_size < head + size) {
461 if (!seen_free) {
462 chunk->first_free = i;
463 seen_free = true;
464 }
465 max_contig = max(this_size, max_contig);
466 continue;
467 }
468
469 /*
470 * If head is small or the previous block is free,
471 * merge'em. Note that 'small' is defined as smaller
472 * than sizeof(int), which is very small but isn't too
473 * uncommon for percpu allocations.
474 */
475 if (head && (head < sizeof(int) || !(p[-1] & 1))) {
476 *p = off += head;
477 if (p[-1] & 1)
478 chunk->free_size -= head;
479 else
480 max_contig = max(*p - p[-1], max_contig);
481 this_size -= head;
482 head = 0;
483 }
484
485 /* if tail is small, just keep it around */
486 tail = this_size - head - size;
487 if (tail < sizeof(int)) {
488 tail = 0;
489 size = this_size - head;
490 }
491
492 /* split if warranted */
493 if (head || tail) {
494 int nr_extra = !!head + !!tail;
495
496 /* insert new subblocks */
497 memmove(p + nr_extra + 1, p + 1,
498 sizeof(chunk->map[0]) * (chunk->map_used - i));
499 chunk->map_used += nr_extra;
500
501 if (head) {
502 if (!seen_free) {
503 chunk->first_free = i;
504 seen_free = true;
505 }
506 *++p = off += head;
507 ++i;
508 max_contig = max(head, max_contig);
509 }
510 if (tail) {
511 p[1] = off + size;
512 max_contig = max(tail, max_contig);
513 }
514 }
515
516 if (!seen_free)
517 chunk->first_free = i + 1;
518
519 /* update hint and mark allocated */
520 if (i + 1 == chunk->map_used)
521 chunk->contig_hint = max_contig; /* fully scanned */
522 else
523 chunk->contig_hint = max(chunk->contig_hint,
524 max_contig);
525
526 chunk->free_size -= size;
527 *p |= 1;
528
529 pcpu_chunk_relocate(chunk, oslot);
530 return off;
531 }
532
533 chunk->contig_hint = max_contig; /* fully scanned */
534 pcpu_chunk_relocate(chunk, oslot);
535
536 /* tell the upper layer that this chunk has no matching area */
537 return -1;
538 }
539
540 /**
541 * pcpu_free_area - free area to a pcpu_chunk
542 * @chunk: chunk of interest
543 * @freeme: offset of area to free
544 *
545 * Free area starting from @freeme to @chunk. Note that this function
546 * only modifies the allocation map. It doesn't depopulate or unmap
547 * the area.
548 *
549 * CONTEXT:
550 * pcpu_lock.
551 */
552 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
553 {
554 int oslot = pcpu_chunk_slot(chunk);
555 int off = 0;
556 unsigned i, j;
557 int to_free = 0;
558 int *p;
559
560 freeme |= 1; /* we are searching for <given offset, in use> pair */
561
562 i = 0;
563 j = chunk->map_used;
564 while (i != j) {
565 unsigned k = (i + j) / 2;
566 off = chunk->map[k];
567 if (off < freeme)
568 i = k + 1;
569 else if (off > freeme)
570 j = k;
571 else
572 i = j = k;
573 }
574 BUG_ON(off != freeme);
575
576 if (i < chunk->first_free)
577 chunk->first_free = i;
578
579 p = chunk->map + i;
580 *p = off &= ~1;
581 chunk->free_size += (p[1] & ~1) - off;
582
583 /* merge with next? */
584 if (!(p[1] & 1))
585 to_free++;
586 /* merge with previous? */
587 if (i > 0 && !(p[-1] & 1)) {
588 to_free++;
589 i--;
590 p--;
591 }
592 if (to_free) {
593 chunk->map_used -= to_free;
594 memmove(p + 1, p + 1 + to_free,
595 (chunk->map_used - i) * sizeof(chunk->map[0]));
596 }
597
598 chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
599 pcpu_chunk_relocate(chunk, oslot);
600 }
601
602 static struct pcpu_chunk *pcpu_alloc_chunk(void)
603 {
604 struct pcpu_chunk *chunk;
605
606 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
607 if (!chunk)
608 return NULL;
609
610 chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
611 sizeof(chunk->map[0]));
612 if (!chunk->map) {
613 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
614 return NULL;
615 }
616
617 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
618 chunk->map[0] = 0;
619 chunk->map[1] = pcpu_unit_size | 1;
620 chunk->map_used = 1;
621
622 INIT_LIST_HEAD(&chunk->list);
623 chunk->free_size = pcpu_unit_size;
624 chunk->contig_hint = pcpu_unit_size;
625
626 return chunk;
627 }
628
629 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
630 {
631 if (!chunk)
632 return;
633 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
634 pcpu_mem_free(chunk, pcpu_chunk_struct_size);
635 }
636
637 /*
638 * Chunk management implementation.
639 *
640 * To allow different implementations, chunk alloc/free and
641 * [de]population are implemented in a separate file which is pulled
642 * into this file and compiled together. The following functions
643 * should be implemented.
644 *
645 * pcpu_populate_chunk - populate the specified range of a chunk
646 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
647 * pcpu_create_chunk - create a new chunk
648 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
649 * pcpu_addr_to_page - translate address to physical address
650 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
651 */
652 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
653 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
654 static struct pcpu_chunk *pcpu_create_chunk(void);
655 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
656 static struct page *pcpu_addr_to_page(void *addr);
657 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
658
659 #ifdef CONFIG_NEED_PER_CPU_KM
660 #include "percpu-km.c"
661 #else
662 #include "percpu-vm.c"
663 #endif
664
665 /**
666 * pcpu_chunk_addr_search - determine chunk containing specified address
667 * @addr: address for which the chunk needs to be determined.
668 *
669 * RETURNS:
670 * The address of the found chunk.
671 */
672 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
673 {
674 /* is it in the first chunk? */
675 if (pcpu_addr_in_first_chunk(addr)) {
676 /* is it in the reserved area? */
677 if (pcpu_addr_in_reserved_chunk(addr))
678 return pcpu_reserved_chunk;
679 return pcpu_first_chunk;
680 }
681
682 /*
683 * The address is relative to unit0 which might be unused and
684 * thus unmapped. Offset the address to the unit space of the
685 * current processor before looking it up in the vmalloc
686 * space. Note that any possible cpu id can be used here, so
687 * there's no need to worry about preemption or cpu hotplug.
688 */
689 addr += pcpu_unit_offsets[raw_smp_processor_id()];
690 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
691 }
692
693 /**
694 * pcpu_alloc - the percpu allocator
695 * @size: size of area to allocate in bytes
696 * @align: alignment of area (max PAGE_SIZE)
697 * @reserved: allocate from the reserved chunk if available
698 *
699 * Allocate percpu area of @size bytes aligned at @align.
700 *
701 * CONTEXT:
702 * Does GFP_KERNEL allocation.
703 *
704 * RETURNS:
705 * Percpu pointer to the allocated area on success, NULL on failure.
706 */
707 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
708 {
709 static int warn_limit = 10;
710 struct pcpu_chunk *chunk;
711 const char *err;
712 int slot, off, new_alloc, cpu;
713 int page_start, page_end, rs, re;
714 unsigned long flags;
715 void __percpu *ptr;
716
717 /*
718 * We want the lowest bit of offset available for in-use/free
719 * indicator, so force >= 16bit alignment and make size even.
720 */
721 if (unlikely(align < 2))
722 align = 2;
723
724 size = ALIGN(size, 2);
725
726 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
727 WARN(true, "illegal size (%zu) or align (%zu) for "
728 "percpu allocation\n", size, align);
729 return NULL;
730 }
731
732 mutex_lock(&pcpu_alloc_mutex);
733 spin_lock_irqsave(&pcpu_lock, flags);
734
735 /* serve reserved allocations from the reserved chunk if available */
736 if (reserved && pcpu_reserved_chunk) {
737 chunk = pcpu_reserved_chunk;
738
739 if (size > chunk->contig_hint) {
740 err = "alloc from reserved chunk failed";
741 goto fail_unlock;
742 }
743
744 while ((new_alloc = pcpu_need_to_extend(chunk))) {
745 spin_unlock_irqrestore(&pcpu_lock, flags);
746 if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
747 err = "failed to extend area map of reserved chunk";
748 goto fail_unlock_mutex;
749 }
750 spin_lock_irqsave(&pcpu_lock, flags);
751 }
752
753 off = pcpu_alloc_area(chunk, size, align);
754 if (off >= 0)
755 goto area_found;
756
757 err = "alloc from reserved chunk failed";
758 goto fail_unlock;
759 }
760
761 restart:
762 /* search through normal chunks */
763 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
764 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
765 if (size > chunk->contig_hint)
766 continue;
767
768 new_alloc = pcpu_need_to_extend(chunk);
769 if (new_alloc) {
770 spin_unlock_irqrestore(&pcpu_lock, flags);
771 if (pcpu_extend_area_map(chunk,
772 new_alloc) < 0) {
773 err = "failed to extend area map";
774 goto fail_unlock_mutex;
775 }
776 spin_lock_irqsave(&pcpu_lock, flags);
777 /*
778 * pcpu_lock has been dropped, need to
779 * restart cpu_slot list walking.
780 */
781 goto restart;
782 }
783
784 off = pcpu_alloc_area(chunk, size, align);
785 if (off >= 0)
786 goto area_found;
787 }
788 }
789
790 /* hmmm... no space left, create a new chunk */
791 spin_unlock_irqrestore(&pcpu_lock, flags);
792
793 chunk = pcpu_create_chunk();
794 if (!chunk) {
795 err = "failed to allocate new chunk";
796 goto fail_unlock_mutex;
797 }
798
799 spin_lock_irqsave(&pcpu_lock, flags);
800 pcpu_chunk_relocate(chunk, -1);
801 goto restart;
802
803 area_found:
804 spin_unlock_irqrestore(&pcpu_lock, flags);
805
806 /* populate if not all pages are already there */
807 page_start = PFN_DOWN(off);
808 page_end = PFN_UP(off + size);
809
810 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
811 WARN_ON(chunk->immutable);
812
813 if (pcpu_populate_chunk(chunk, rs, re)) {
814 spin_lock_irqsave(&pcpu_lock, flags);
815 pcpu_free_area(chunk, off);
816 err = "failed to populate";
817 goto fail_unlock;
818 }
819
820 bitmap_set(chunk->populated, rs, re - rs);
821 }
822
823 mutex_unlock(&pcpu_alloc_mutex);
824
825 /* clear the areas and return address relative to base address */
826 for_each_possible_cpu(cpu)
827 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
828
829 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
830 kmemleak_alloc_percpu(ptr, size);
831 return ptr;
832
833 fail_unlock:
834 spin_unlock_irqrestore(&pcpu_lock, flags);
835 fail_unlock_mutex:
836 mutex_unlock(&pcpu_alloc_mutex);
837 if (warn_limit) {
838 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
839 "%s\n", size, align, err);
840 dump_stack();
841 if (!--warn_limit)
842 pr_info("PERCPU: limit reached, disable warning\n");
843 }
844 return NULL;
845 }
846
847 /**
848 * __alloc_percpu - allocate dynamic percpu area
849 * @size: size of area to allocate in bytes
850 * @align: alignment of area (max PAGE_SIZE)
851 *
852 * Allocate zero-filled percpu area of @size bytes aligned at @align.
853 * Might sleep. Might trigger writeouts.
854 *
855 * CONTEXT:
856 * Does GFP_KERNEL allocation.
857 *
858 * RETURNS:
859 * Percpu pointer to the allocated area on success, NULL on failure.
860 */
861 void __percpu *__alloc_percpu(size_t size, size_t align)
862 {
863 return pcpu_alloc(size, align, false);
864 }
865 EXPORT_SYMBOL_GPL(__alloc_percpu);
866
867 /**
868 * __alloc_reserved_percpu - allocate reserved percpu area
869 * @size: size of area to allocate in bytes
870 * @align: alignment of area (max PAGE_SIZE)
871 *
872 * Allocate zero-filled percpu area of @size bytes aligned at @align
873 * from reserved percpu area if arch has set it up; otherwise,
874 * allocation is served from the same dynamic area. Might sleep.
875 * Might trigger writeouts.
876 *
877 * CONTEXT:
878 * Does GFP_KERNEL allocation.
879 *
880 * RETURNS:
881 * Percpu pointer to the allocated area on success, NULL on failure.
882 */
883 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
884 {
885 return pcpu_alloc(size, align, true);
886 }
887
888 /**
889 * pcpu_reclaim - reclaim fully free chunks, workqueue function
890 * @work: unused
891 *
892 * Reclaim all fully free chunks except for the first one.
893 *
894 * CONTEXT:
895 * workqueue context.
896 */
897 static void pcpu_reclaim(struct work_struct *work)
898 {
899 LIST_HEAD(todo);
900 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
901 struct pcpu_chunk *chunk, *next;
902
903 mutex_lock(&pcpu_alloc_mutex);
904 spin_lock_irq(&pcpu_lock);
905
906 list_for_each_entry_safe(chunk, next, head, list) {
907 WARN_ON(chunk->immutable);
908
909 /* spare the first one */
910 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
911 continue;
912
913 list_move(&chunk->list, &todo);
914 }
915
916 spin_unlock_irq(&pcpu_lock);
917
918 list_for_each_entry_safe(chunk, next, &todo, list) {
919 int rs, re;
920
921 pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
922 pcpu_depopulate_chunk(chunk, rs, re);
923 bitmap_clear(chunk->populated, rs, re - rs);
924 }
925 pcpu_destroy_chunk(chunk);
926 }
927
928 mutex_unlock(&pcpu_alloc_mutex);
929 }
930
931 /**
932 * free_percpu - free percpu area
933 * @ptr: pointer to area to free
934 *
935 * Free percpu area @ptr.
936 *
937 * CONTEXT:
938 * Can be called from atomic context.
939 */
940 void free_percpu(void __percpu *ptr)
941 {
942 void *addr;
943 struct pcpu_chunk *chunk;
944 unsigned long flags;
945 int off;
946
947 if (!ptr)
948 return;
949
950 kmemleak_free_percpu(ptr);
951
952 addr = __pcpu_ptr_to_addr(ptr);
953
954 spin_lock_irqsave(&pcpu_lock, flags);
955
956 chunk = pcpu_chunk_addr_search(addr);
957 off = addr - chunk->base_addr;
958
959 pcpu_free_area(chunk, off);
960
961 /* if there are more than one fully free chunks, wake up grim reaper */
962 if (chunk->free_size == pcpu_unit_size) {
963 struct pcpu_chunk *pos;
964
965 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
966 if (pos != chunk) {
967 schedule_work(&pcpu_reclaim_work);
968 break;
969 }
970 }
971
972 spin_unlock_irqrestore(&pcpu_lock, flags);
973 }
974 EXPORT_SYMBOL_GPL(free_percpu);
975
976 /**
977 * is_kernel_percpu_address - test whether address is from static percpu area
978 * @addr: address to test
979 *
980 * Test whether @addr belongs to in-kernel static percpu area. Module
981 * static percpu areas are not considered. For those, use
982 * is_module_percpu_address().
983 *
984 * RETURNS:
985 * %true if @addr is from in-kernel static percpu area, %false otherwise.
986 */
987 bool is_kernel_percpu_address(unsigned long addr)
988 {
989 #ifdef CONFIG_SMP
990 const size_t static_size = __per_cpu_end - __per_cpu_start;
991 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
992 unsigned int cpu;
993
994 for_each_possible_cpu(cpu) {
995 void *start = per_cpu_ptr(base, cpu);
996
997 if ((void *)addr >= start && (void *)addr < start + static_size)
998 return true;
999 }
1000 #endif
1001 /* on UP, can't distinguish from other static vars, always false */
1002 return false;
1003 }
1004
1005 /**
1006 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1007 * @addr: the address to be converted to physical address
1008 *
1009 * Given @addr which is dereferenceable address obtained via one of
1010 * percpu access macros, this function translates it into its physical
1011 * address. The caller is responsible for ensuring @addr stays valid
1012 * until this function finishes.
1013 *
1014 * percpu allocator has special setup for the first chunk, which currently
1015 * supports either embedding in linear address space or vmalloc mapping,
1016 * and, from the second one, the backing allocator (currently either vm or
1017 * km) provides translation.
1018 *
1019 * The addr can be tranlated simply without checking if it falls into the
1020 * first chunk. But the current code reflects better how percpu allocator
1021 * actually works, and the verification can discover both bugs in percpu
1022 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1023 * code.
1024 *
1025 * RETURNS:
1026 * The physical address for @addr.
1027 */
1028 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1029 {
1030 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1031 bool in_first_chunk = false;
1032 unsigned long first_low, first_high;
1033 unsigned int cpu;
1034
1035 /*
1036 * The following test on unit_low/high isn't strictly
1037 * necessary but will speed up lookups of addresses which
1038 * aren't in the first chunk.
1039 */
1040 first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
1041 first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
1042 pcpu_unit_pages);
1043 if ((unsigned long)addr >= first_low &&
1044 (unsigned long)addr < first_high) {
1045 for_each_possible_cpu(cpu) {
1046 void *start = per_cpu_ptr(base, cpu);
1047
1048 if (addr >= start && addr < start + pcpu_unit_size) {
1049 in_first_chunk = true;
1050 break;
1051 }
1052 }
1053 }
1054
1055 if (in_first_chunk) {
1056 if (!is_vmalloc_addr(addr))
1057 return __pa(addr);
1058 else
1059 return page_to_phys(vmalloc_to_page(addr)) +
1060 offset_in_page(addr);
1061 } else
1062 return page_to_phys(pcpu_addr_to_page(addr)) +
1063 offset_in_page(addr);
1064 }
1065
1066 /**
1067 * pcpu_alloc_alloc_info - allocate percpu allocation info
1068 * @nr_groups: the number of groups
1069 * @nr_units: the number of units
1070 *
1071 * Allocate ai which is large enough for @nr_groups groups containing
1072 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1073 * cpu_map array which is long enough for @nr_units and filled with
1074 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1075 * pointer of other groups.
1076 *
1077 * RETURNS:
1078 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1079 * failure.
1080 */
1081 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1082 int nr_units)
1083 {
1084 struct pcpu_alloc_info *ai;
1085 size_t base_size, ai_size;
1086 void *ptr;
1087 int unit;
1088
1089 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1090 __alignof__(ai->groups[0].cpu_map[0]));
1091 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1092
1093 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1094 if (!ptr)
1095 return NULL;
1096 ai = ptr;
1097 ptr += base_size;
1098
1099 ai->groups[0].cpu_map = ptr;
1100
1101 for (unit = 0; unit < nr_units; unit++)
1102 ai->groups[0].cpu_map[unit] = NR_CPUS;
1103
1104 ai->nr_groups = nr_groups;
1105 ai->__ai_size = PFN_ALIGN(ai_size);
1106
1107 return ai;
1108 }
1109
1110 /**
1111 * pcpu_free_alloc_info - free percpu allocation info
1112 * @ai: pcpu_alloc_info to free
1113 *
1114 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1115 */
1116 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1117 {
1118 memblock_free_early(__pa(ai), ai->__ai_size);
1119 }
1120
1121 /**
1122 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1123 * @lvl: loglevel
1124 * @ai: allocation info to dump
1125 *
1126 * Print out information about @ai using loglevel @lvl.
1127 */
1128 static void pcpu_dump_alloc_info(const char *lvl,
1129 const struct pcpu_alloc_info *ai)
1130 {
1131 int group_width = 1, cpu_width = 1, width;
1132 char empty_str[] = "--------";
1133 int alloc = 0, alloc_end = 0;
1134 int group, v;
1135 int upa, apl; /* units per alloc, allocs per line */
1136
1137 v = ai->nr_groups;
1138 while (v /= 10)
1139 group_width++;
1140
1141 v = num_possible_cpus();
1142 while (v /= 10)
1143 cpu_width++;
1144 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1145
1146 upa = ai->alloc_size / ai->unit_size;
1147 width = upa * (cpu_width + 1) + group_width + 3;
1148 apl = rounddown_pow_of_two(max(60 / width, 1));
1149
1150 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1151 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1152 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1153
1154 for (group = 0; group < ai->nr_groups; group++) {
1155 const struct pcpu_group_info *gi = &ai->groups[group];
1156 int unit = 0, unit_end = 0;
1157
1158 BUG_ON(gi->nr_units % upa);
1159 for (alloc_end += gi->nr_units / upa;
1160 alloc < alloc_end; alloc++) {
1161 if (!(alloc % apl)) {
1162 printk(KERN_CONT "\n");
1163 printk("%spcpu-alloc: ", lvl);
1164 }
1165 printk(KERN_CONT "[%0*d] ", group_width, group);
1166
1167 for (unit_end += upa; unit < unit_end; unit++)
1168 if (gi->cpu_map[unit] != NR_CPUS)
1169 printk(KERN_CONT "%0*d ", cpu_width,
1170 gi->cpu_map[unit]);
1171 else
1172 printk(KERN_CONT "%s ", empty_str);
1173 }
1174 }
1175 printk(KERN_CONT "\n");
1176 }
1177
1178 /**
1179 * pcpu_setup_first_chunk - initialize the first percpu chunk
1180 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1181 * @base_addr: mapped address
1182 *
1183 * Initialize the first percpu chunk which contains the kernel static
1184 * perpcu area. This function is to be called from arch percpu area
1185 * setup path.
1186 *
1187 * @ai contains all information necessary to initialize the first
1188 * chunk and prime the dynamic percpu allocator.
1189 *
1190 * @ai->static_size is the size of static percpu area.
1191 *
1192 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1193 * reserve after the static area in the first chunk. This reserves
1194 * the first chunk such that it's available only through reserved
1195 * percpu allocation. This is primarily used to serve module percpu
1196 * static areas on architectures where the addressing model has
1197 * limited offset range for symbol relocations to guarantee module
1198 * percpu symbols fall inside the relocatable range.
1199 *
1200 * @ai->dyn_size determines the number of bytes available for dynamic
1201 * allocation in the first chunk. The area between @ai->static_size +
1202 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1203 *
1204 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1205 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1206 * @ai->dyn_size.
1207 *
1208 * @ai->atom_size is the allocation atom size and used as alignment
1209 * for vm areas.
1210 *
1211 * @ai->alloc_size is the allocation size and always multiple of
1212 * @ai->atom_size. This is larger than @ai->atom_size if
1213 * @ai->unit_size is larger than @ai->atom_size.
1214 *
1215 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1216 * percpu areas. Units which should be colocated are put into the
1217 * same group. Dynamic VM areas will be allocated according to these
1218 * groupings. If @ai->nr_groups is zero, a single group containing
1219 * all units is assumed.
1220 *
1221 * The caller should have mapped the first chunk at @base_addr and
1222 * copied static data to each unit.
1223 *
1224 * If the first chunk ends up with both reserved and dynamic areas, it
1225 * is served by two chunks - one to serve the core static and reserved
1226 * areas and the other for the dynamic area. They share the same vm
1227 * and page map but uses different area allocation map to stay away
1228 * from each other. The latter chunk is circulated in the chunk slots
1229 * and available for dynamic allocation like any other chunks.
1230 *
1231 * RETURNS:
1232 * 0 on success, -errno on failure.
1233 */
1234 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1235 void *base_addr)
1236 {
1237 static char cpus_buf[4096] __initdata;
1238 static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1239 static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1240 size_t dyn_size = ai->dyn_size;
1241 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1242 struct pcpu_chunk *schunk, *dchunk = NULL;
1243 unsigned long *group_offsets;
1244 size_t *group_sizes;
1245 unsigned long *unit_off;
1246 unsigned int cpu;
1247 int *unit_map;
1248 int group, unit, i;
1249
1250 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1251
1252 #define PCPU_SETUP_BUG_ON(cond) do { \
1253 if (unlikely(cond)) { \
1254 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1255 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1256 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1257 BUG(); \
1258 } \
1259 } while (0)
1260
1261 /* sanity checks */
1262 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1263 #ifdef CONFIG_SMP
1264 PCPU_SETUP_BUG_ON(!ai->static_size);
1265 PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1266 #endif
1267 PCPU_SETUP_BUG_ON(!base_addr);
1268 PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1269 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1270 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1271 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1272 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1273 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1274
1275 /* process group information and build config tables accordingly */
1276 group_offsets = memblock_virt_alloc(ai->nr_groups *
1277 sizeof(group_offsets[0]), 0);
1278 group_sizes = memblock_virt_alloc(ai->nr_groups *
1279 sizeof(group_sizes[0]), 0);
1280 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
1281 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1282
1283 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1284 unit_map[cpu] = UINT_MAX;
1285
1286 pcpu_low_unit_cpu = NR_CPUS;
1287 pcpu_high_unit_cpu = NR_CPUS;
1288
1289 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1290 const struct pcpu_group_info *gi = &ai->groups[group];
1291
1292 group_offsets[group] = gi->base_offset;
1293 group_sizes[group] = gi->nr_units * ai->unit_size;
1294
1295 for (i = 0; i < gi->nr_units; i++) {
1296 cpu = gi->cpu_map[i];
1297 if (cpu == NR_CPUS)
1298 continue;
1299
1300 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1301 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1302 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1303
1304 unit_map[cpu] = unit + i;
1305 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1306
1307 /* determine low/high unit_cpu */
1308 if (pcpu_low_unit_cpu == NR_CPUS ||
1309 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
1310 pcpu_low_unit_cpu = cpu;
1311 if (pcpu_high_unit_cpu == NR_CPUS ||
1312 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
1313 pcpu_high_unit_cpu = cpu;
1314 }
1315 }
1316 pcpu_nr_units = unit;
1317
1318 for_each_possible_cpu(cpu)
1319 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1320
1321 /* we're done parsing the input, undefine BUG macro and dump config */
1322 #undef PCPU_SETUP_BUG_ON
1323 pcpu_dump_alloc_info(KERN_DEBUG, ai);
1324
1325 pcpu_nr_groups = ai->nr_groups;
1326 pcpu_group_offsets = group_offsets;
1327 pcpu_group_sizes = group_sizes;
1328 pcpu_unit_map = unit_map;
1329 pcpu_unit_offsets = unit_off;
1330
1331 /* determine basic parameters */
1332 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1333 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1334 pcpu_atom_size = ai->atom_size;
1335 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1336 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1337
1338 /*
1339 * Allocate chunk slots. The additional last slot is for
1340 * empty chunks.
1341 */
1342 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1343 pcpu_slot = memblock_virt_alloc(
1344 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1345 for (i = 0; i < pcpu_nr_slots; i++)
1346 INIT_LIST_HEAD(&pcpu_slot[i]);
1347
1348 /*
1349 * Initialize static chunk. If reserved_size is zero, the
1350 * static chunk covers static area + dynamic allocation area
1351 * in the first chunk. If reserved_size is not zero, it
1352 * covers static area + reserved area (mostly used for module
1353 * static percpu allocation).
1354 */
1355 schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1356 INIT_LIST_HEAD(&schunk->list);
1357 schunk->base_addr = base_addr;
1358 schunk->map = smap;
1359 schunk->map_alloc = ARRAY_SIZE(smap);
1360 schunk->immutable = true;
1361 bitmap_fill(schunk->populated, pcpu_unit_pages);
1362
1363 if (ai->reserved_size) {
1364 schunk->free_size = ai->reserved_size;
1365 pcpu_reserved_chunk = schunk;
1366 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1367 } else {
1368 schunk->free_size = dyn_size;
1369 dyn_size = 0; /* dynamic area covered */
1370 }
1371 schunk->contig_hint = schunk->free_size;
1372
1373 schunk->map[0] = 1;
1374 schunk->map[1] = ai->static_size;
1375 schunk->map_used = 1;
1376 if (schunk->free_size)
1377 schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
1378 else
1379 schunk->map[1] |= 1;
1380
1381 /* init dynamic chunk if necessary */
1382 if (dyn_size) {
1383 dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1384 INIT_LIST_HEAD(&dchunk->list);
1385 dchunk->base_addr = base_addr;
1386 dchunk->map = dmap;
1387 dchunk->map_alloc = ARRAY_SIZE(dmap);
1388 dchunk->immutable = true;
1389 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1390
1391 dchunk->contig_hint = dchunk->free_size = dyn_size;
1392 dchunk->map[0] = 1;
1393 dchunk->map[1] = pcpu_reserved_chunk_limit;
1394 dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
1395 dchunk->map_used = 2;
1396 }
1397
1398 /* link the first chunk in */
1399 pcpu_first_chunk = dchunk ?: schunk;
1400 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1401
1402 /* we're done */
1403 pcpu_base_addr = base_addr;
1404 return 0;
1405 }
1406
1407 #ifdef CONFIG_SMP
1408
1409 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1410 [PCPU_FC_AUTO] = "auto",
1411 [PCPU_FC_EMBED] = "embed",
1412 [PCPU_FC_PAGE] = "page",
1413 };
1414
1415 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1416
1417 static int __init percpu_alloc_setup(char *str)
1418 {
1419 if (!str)
1420 return -EINVAL;
1421
1422 if (0)
1423 /* nada */;
1424 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1425 else if (!strcmp(str, "embed"))
1426 pcpu_chosen_fc = PCPU_FC_EMBED;
1427 #endif
1428 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1429 else if (!strcmp(str, "page"))
1430 pcpu_chosen_fc = PCPU_FC_PAGE;
1431 #endif
1432 else
1433 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1434
1435 return 0;
1436 }
1437 early_param("percpu_alloc", percpu_alloc_setup);
1438
1439 /*
1440 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1441 * Build it if needed by the arch config or the generic setup is going
1442 * to be used.
1443 */
1444 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1445 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1446 #define BUILD_EMBED_FIRST_CHUNK
1447 #endif
1448
1449 /* build pcpu_page_first_chunk() iff needed by the arch config */
1450 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1451 #define BUILD_PAGE_FIRST_CHUNK
1452 #endif
1453
1454 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1455 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1456 /**
1457 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1458 * @reserved_size: the size of reserved percpu area in bytes
1459 * @dyn_size: minimum free size for dynamic allocation in bytes
1460 * @atom_size: allocation atom size
1461 * @cpu_distance_fn: callback to determine distance between cpus, optional
1462 *
1463 * This function determines grouping of units, their mappings to cpus
1464 * and other parameters considering needed percpu size, allocation
1465 * atom size and distances between CPUs.
1466 *
1467 * Groups are always mutliples of atom size and CPUs which are of
1468 * LOCAL_DISTANCE both ways are grouped together and share space for
1469 * units in the same group. The returned configuration is guaranteed
1470 * to have CPUs on different nodes on different groups and >=75% usage
1471 * of allocated virtual address space.
1472 *
1473 * RETURNS:
1474 * On success, pointer to the new allocation_info is returned. On
1475 * failure, ERR_PTR value is returned.
1476 */
1477 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1478 size_t reserved_size, size_t dyn_size,
1479 size_t atom_size,
1480 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1481 {
1482 static int group_map[NR_CPUS] __initdata;
1483 static int group_cnt[NR_CPUS] __initdata;
1484 const size_t static_size = __per_cpu_end - __per_cpu_start;
1485 int nr_groups = 1, nr_units = 0;
1486 size_t size_sum, min_unit_size, alloc_size;
1487 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1488 int last_allocs, group, unit;
1489 unsigned int cpu, tcpu;
1490 struct pcpu_alloc_info *ai;
1491 unsigned int *cpu_map;
1492
1493 /* this function may be called multiple times */
1494 memset(group_map, 0, sizeof(group_map));
1495 memset(group_cnt, 0, sizeof(group_cnt));
1496
1497 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1498 size_sum = PFN_ALIGN(static_size + reserved_size +
1499 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1500 dyn_size = size_sum - static_size - reserved_size;
1501
1502 /*
1503 * Determine min_unit_size, alloc_size and max_upa such that
1504 * alloc_size is multiple of atom_size and is the smallest
1505 * which can accommodate 4k aligned segments which are equal to
1506 * or larger than min_unit_size.
1507 */
1508 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1509
1510 alloc_size = roundup(min_unit_size, atom_size);
1511 upa = alloc_size / min_unit_size;
1512 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1513 upa--;
1514 max_upa = upa;
1515
1516 /* group cpus according to their proximity */
1517 for_each_possible_cpu(cpu) {
1518 group = 0;
1519 next_group:
1520 for_each_possible_cpu(tcpu) {
1521 if (cpu == tcpu)
1522 break;
1523 if (group_map[tcpu] == group && cpu_distance_fn &&
1524 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1525 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1526 group++;
1527 nr_groups = max(nr_groups, group + 1);
1528 goto next_group;
1529 }
1530 }
1531 group_map[cpu] = group;
1532 group_cnt[group]++;
1533 }
1534
1535 /*
1536 * Expand unit size until address space usage goes over 75%
1537 * and then as much as possible without using more address
1538 * space.
1539 */
1540 last_allocs = INT_MAX;
1541 for (upa = max_upa; upa; upa--) {
1542 int allocs = 0, wasted = 0;
1543
1544 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1545 continue;
1546
1547 for (group = 0; group < nr_groups; group++) {
1548 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1549 allocs += this_allocs;
1550 wasted += this_allocs * upa - group_cnt[group];
1551 }
1552
1553 /*
1554 * Don't accept if wastage is over 1/3. The
1555 * greater-than comparison ensures upa==1 always
1556 * passes the following check.
1557 */
1558 if (wasted > num_possible_cpus() / 3)
1559 continue;
1560
1561 /* and then don't consume more memory */
1562 if (allocs > last_allocs)
1563 break;
1564 last_allocs = allocs;
1565 best_upa = upa;
1566 }
1567 upa = best_upa;
1568
1569 /* allocate and fill alloc_info */
1570 for (group = 0; group < nr_groups; group++)
1571 nr_units += roundup(group_cnt[group], upa);
1572
1573 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1574 if (!ai)
1575 return ERR_PTR(-ENOMEM);
1576 cpu_map = ai->groups[0].cpu_map;
1577
1578 for (group = 0; group < nr_groups; group++) {
1579 ai->groups[group].cpu_map = cpu_map;
1580 cpu_map += roundup(group_cnt[group], upa);
1581 }
1582
1583 ai->static_size = static_size;
1584 ai->reserved_size = reserved_size;
1585 ai->dyn_size = dyn_size;
1586 ai->unit_size = alloc_size / upa;
1587 ai->atom_size = atom_size;
1588 ai->alloc_size = alloc_size;
1589
1590 for (group = 0, unit = 0; group_cnt[group]; group++) {
1591 struct pcpu_group_info *gi = &ai->groups[group];
1592
1593 /*
1594 * Initialize base_offset as if all groups are located
1595 * back-to-back. The caller should update this to
1596 * reflect actual allocation.
1597 */
1598 gi->base_offset = unit * ai->unit_size;
1599
1600 for_each_possible_cpu(cpu)
1601 if (group_map[cpu] == group)
1602 gi->cpu_map[gi->nr_units++] = cpu;
1603 gi->nr_units = roundup(gi->nr_units, upa);
1604 unit += gi->nr_units;
1605 }
1606 BUG_ON(unit != nr_units);
1607
1608 return ai;
1609 }
1610 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1611
1612 #if defined(BUILD_EMBED_FIRST_CHUNK)
1613 /**
1614 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1615 * @reserved_size: the size of reserved percpu area in bytes
1616 * @dyn_size: minimum free size for dynamic allocation in bytes
1617 * @atom_size: allocation atom size
1618 * @cpu_distance_fn: callback to determine distance between cpus, optional
1619 * @alloc_fn: function to allocate percpu page
1620 * @free_fn: function to free percpu page
1621 *
1622 * This is a helper to ease setting up embedded first percpu chunk and
1623 * can be called where pcpu_setup_first_chunk() is expected.
1624 *
1625 * If this function is used to setup the first chunk, it is allocated
1626 * by calling @alloc_fn and used as-is without being mapped into
1627 * vmalloc area. Allocations are always whole multiples of @atom_size
1628 * aligned to @atom_size.
1629 *
1630 * This enables the first chunk to piggy back on the linear physical
1631 * mapping which often uses larger page size. Please note that this
1632 * can result in very sparse cpu->unit mapping on NUMA machines thus
1633 * requiring large vmalloc address space. Don't use this allocator if
1634 * vmalloc space is not orders of magnitude larger than distances
1635 * between node memory addresses (ie. 32bit NUMA machines).
1636 *
1637 * @dyn_size specifies the minimum dynamic area size.
1638 *
1639 * If the needed size is smaller than the minimum or specified unit
1640 * size, the leftover is returned using @free_fn.
1641 *
1642 * RETURNS:
1643 * 0 on success, -errno on failure.
1644 */
1645 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1646 size_t atom_size,
1647 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1648 pcpu_fc_alloc_fn_t alloc_fn,
1649 pcpu_fc_free_fn_t free_fn)
1650 {
1651 void *base = (void *)ULONG_MAX;
1652 void **areas = NULL;
1653 struct pcpu_alloc_info *ai;
1654 size_t size_sum, areas_size, max_distance;
1655 int group, i, rc;
1656
1657 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1658 cpu_distance_fn);
1659 if (IS_ERR(ai))
1660 return PTR_ERR(ai);
1661
1662 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1663 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1664
1665 areas = memblock_virt_alloc_nopanic(areas_size, 0);
1666 if (!areas) {
1667 rc = -ENOMEM;
1668 goto out_free;
1669 }
1670
1671 /* allocate, copy and determine base address */
1672 for (group = 0; group < ai->nr_groups; group++) {
1673 struct pcpu_group_info *gi = &ai->groups[group];
1674 unsigned int cpu = NR_CPUS;
1675 void *ptr;
1676
1677 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1678 cpu = gi->cpu_map[i];
1679 BUG_ON(cpu == NR_CPUS);
1680
1681 /* allocate space for the whole group */
1682 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1683 if (!ptr) {
1684 rc = -ENOMEM;
1685 goto out_free_areas;
1686 }
1687 /* kmemleak tracks the percpu allocations separately */
1688 kmemleak_free(ptr);
1689 areas[group] = ptr;
1690
1691 base = min(ptr, base);
1692 }
1693
1694 /*
1695 * Copy data and free unused parts. This should happen after all
1696 * allocations are complete; otherwise, we may end up with
1697 * overlapping groups.
1698 */
1699 for (group = 0; group < ai->nr_groups; group++) {
1700 struct pcpu_group_info *gi = &ai->groups[group];
1701 void *ptr = areas[group];
1702
1703 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1704 if (gi->cpu_map[i] == NR_CPUS) {
1705 /* unused unit, free whole */
1706 free_fn(ptr, ai->unit_size);
1707 continue;
1708 }
1709 /* copy and return the unused part */
1710 memcpy(ptr, __per_cpu_load, ai->static_size);
1711 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1712 }
1713 }
1714
1715 /* base address is now known, determine group base offsets */
1716 max_distance = 0;
1717 for (group = 0; group < ai->nr_groups; group++) {
1718 ai->groups[group].base_offset = areas[group] - base;
1719 max_distance = max_t(size_t, max_distance,
1720 ai->groups[group].base_offset);
1721 }
1722 max_distance += ai->unit_size;
1723
1724 /* warn if maximum distance is further than 75% of vmalloc space */
1725 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
1726 pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1727 "space 0x%lx\n", max_distance,
1728 VMALLOC_TOTAL);
1729 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1730 /* and fail if we have fallback */
1731 rc = -EINVAL;
1732 goto out_free;
1733 #endif
1734 }
1735
1736 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1737 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1738 ai->dyn_size, ai->unit_size);
1739
1740 rc = pcpu_setup_first_chunk(ai, base);
1741 goto out_free;
1742
1743 out_free_areas:
1744 for (group = 0; group < ai->nr_groups; group++)
1745 if (areas[group])
1746 free_fn(areas[group],
1747 ai->groups[group].nr_units * ai->unit_size);
1748 out_free:
1749 pcpu_free_alloc_info(ai);
1750 if (areas)
1751 memblock_free_early(__pa(areas), areas_size);
1752 return rc;
1753 }
1754 #endif /* BUILD_EMBED_FIRST_CHUNK */
1755
1756 #ifdef BUILD_PAGE_FIRST_CHUNK
1757 /**
1758 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1759 * @reserved_size: the size of reserved percpu area in bytes
1760 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1761 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1762 * @populate_pte_fn: function to populate pte
1763 *
1764 * This is a helper to ease setting up page-remapped first percpu
1765 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1766 *
1767 * This is the basic allocator. Static percpu area is allocated
1768 * page-by-page into vmalloc area.
1769 *
1770 * RETURNS:
1771 * 0 on success, -errno on failure.
1772 */
1773 int __init pcpu_page_first_chunk(size_t reserved_size,
1774 pcpu_fc_alloc_fn_t alloc_fn,
1775 pcpu_fc_free_fn_t free_fn,
1776 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1777 {
1778 static struct vm_struct vm;
1779 struct pcpu_alloc_info *ai;
1780 char psize_str[16];
1781 int unit_pages;
1782 size_t pages_size;
1783 struct page **pages;
1784 int unit, i, j, rc;
1785
1786 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1787
1788 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1789 if (IS_ERR(ai))
1790 return PTR_ERR(ai);
1791 BUG_ON(ai->nr_groups != 1);
1792 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1793
1794 unit_pages = ai->unit_size >> PAGE_SHIFT;
1795
1796 /* unaligned allocations can't be freed, round up to page size */
1797 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1798 sizeof(pages[0]));
1799 pages = memblock_virt_alloc(pages_size, 0);
1800
1801 /* allocate pages */
1802 j = 0;
1803 for (unit = 0; unit < num_possible_cpus(); unit++)
1804 for (i = 0; i < unit_pages; i++) {
1805 unsigned int cpu = ai->groups[0].cpu_map[unit];
1806 void *ptr;
1807
1808 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1809 if (!ptr) {
1810 pr_warning("PERCPU: failed to allocate %s page "
1811 "for cpu%u\n", psize_str, cpu);
1812 goto enomem;
1813 }
1814 /* kmemleak tracks the percpu allocations separately */
1815 kmemleak_free(ptr);
1816 pages[j++] = virt_to_page(ptr);
1817 }
1818
1819 /* allocate vm area, map the pages and copy static data */
1820 vm.flags = VM_ALLOC;
1821 vm.size = num_possible_cpus() * ai->unit_size;
1822 vm_area_register_early(&vm, PAGE_SIZE);
1823
1824 for (unit = 0; unit < num_possible_cpus(); unit++) {
1825 unsigned long unit_addr =
1826 (unsigned long)vm.addr + unit * ai->unit_size;
1827
1828 for (i = 0; i < unit_pages; i++)
1829 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1830
1831 /* pte already populated, the following shouldn't fail */
1832 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1833 unit_pages);
1834 if (rc < 0)
1835 panic("failed to map percpu area, err=%d\n", rc);
1836
1837 /*
1838 * FIXME: Archs with virtual cache should flush local
1839 * cache for the linear mapping here - something
1840 * equivalent to flush_cache_vmap() on the local cpu.
1841 * flush_cache_vmap() can't be used as most supporting
1842 * data structures are not set up yet.
1843 */
1844
1845 /* copy static data */
1846 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1847 }
1848
1849 /* we're ready, commit */
1850 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1851 unit_pages, psize_str, vm.addr, ai->static_size,
1852 ai->reserved_size, ai->dyn_size);
1853
1854 rc = pcpu_setup_first_chunk(ai, vm.addr);
1855 goto out_free_ar;
1856
1857 enomem:
1858 while (--j >= 0)
1859 free_fn(page_address(pages[j]), PAGE_SIZE);
1860 rc = -ENOMEM;
1861 out_free_ar:
1862 memblock_free_early(__pa(pages), pages_size);
1863 pcpu_free_alloc_info(ai);
1864 return rc;
1865 }
1866 #endif /* BUILD_PAGE_FIRST_CHUNK */
1867
1868 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1869 /*
1870 * Generic SMP percpu area setup.
1871 *
1872 * The embedding helper is used because its behavior closely resembles
1873 * the original non-dynamic generic percpu area setup. This is
1874 * important because many archs have addressing restrictions and might
1875 * fail if the percpu area is located far away from the previous
1876 * location. As an added bonus, in non-NUMA cases, embedding is
1877 * generally a good idea TLB-wise because percpu area can piggy back
1878 * on the physical linear memory mapping which uses large page
1879 * mappings on applicable archs.
1880 */
1881 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1882 EXPORT_SYMBOL(__per_cpu_offset);
1883
1884 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1885 size_t align)
1886 {
1887 return memblock_virt_alloc_from_nopanic(
1888 size, align, __pa(MAX_DMA_ADDRESS));
1889 }
1890
1891 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1892 {
1893 memblock_free_early(__pa(ptr), size);
1894 }
1895
1896 void __init setup_per_cpu_areas(void)
1897 {
1898 unsigned long delta;
1899 unsigned int cpu;
1900 int rc;
1901
1902 /*
1903 * Always reserve area for module percpu variables. That's
1904 * what the legacy allocator did.
1905 */
1906 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1907 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1908 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1909 if (rc < 0)
1910 panic("Failed to initialize percpu areas.");
1911
1912 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1913 for_each_possible_cpu(cpu)
1914 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1915 }
1916 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1917
1918 #else /* CONFIG_SMP */
1919
1920 /*
1921 * UP percpu area setup.
1922 *
1923 * UP always uses km-based percpu allocator with identity mapping.
1924 * Static percpu variables are indistinguishable from the usual static
1925 * variables and don't require any special preparation.
1926 */
1927 void __init setup_per_cpu_areas(void)
1928 {
1929 const size_t unit_size =
1930 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1931 PERCPU_DYNAMIC_RESERVE));
1932 struct pcpu_alloc_info *ai;
1933 void *fc;
1934
1935 ai = pcpu_alloc_alloc_info(1, 1);
1936 fc = memblock_virt_alloc_from_nopanic(unit_size,
1937 PAGE_SIZE,
1938 __pa(MAX_DMA_ADDRESS));
1939 if (!ai || !fc)
1940 panic("Failed to allocate memory for percpu areas.");
1941 /* kmemleak tracks the percpu allocations separately */
1942 kmemleak_free(fc);
1943
1944 ai->dyn_size = unit_size;
1945 ai->unit_size = unit_size;
1946 ai->atom_size = unit_size;
1947 ai->alloc_size = unit_size;
1948 ai->groups[0].nr_units = 1;
1949 ai->groups[0].cpu_map[0] = 0;
1950
1951 if (pcpu_setup_first_chunk(ai, fc) < 0)
1952 panic("Failed to initialize percpu areas.");
1953
1954 pcpu_free_alloc_info(ai);
1955 }
1956
1957 #endif /* CONFIG_SMP */
1958
1959 /*
1960 * First and reserved chunks are initialized with temporary allocation
1961 * map in initdata so that they can be used before slab is online.
1962 * This function is called after slab is brought up and replaces those
1963 * with properly allocated maps.
1964 */
1965 void __init percpu_init_late(void)
1966 {
1967 struct pcpu_chunk *target_chunks[] =
1968 { pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1969 struct pcpu_chunk *chunk;
1970 unsigned long flags;
1971 int i;
1972
1973 for (i = 0; (chunk = target_chunks[i]); i++) {
1974 int *map;
1975 const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1976
1977 BUILD_BUG_ON(size > PAGE_SIZE);
1978
1979 map = pcpu_mem_zalloc(size);
1980 BUG_ON(!map);
1981
1982 spin_lock_irqsave(&pcpu_lock, flags);
1983 memcpy(map, chunk->map, size);
1984 chunk->map = map;
1985 spin_unlock_irqrestore(&pcpu_lock, flags);
1986 }
1987 }
This page took 0.229146 seconds and 5 git commands to generate.