percpu, module: implement reserved allocation and use it for module percpu variables
[deliverable/linux.git] / mm / percpu.c
1 /*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of num_possible_cpus() units and the first chunk
12 * is used for static percpu variables in the kernel image (special
13 * boot time alloc/init handling necessary as these areas need to be
14 * brought up before allocation services are running). Unit grows as
15 * necessary and all units grow or shrink in unison. When a chunk is
16 * filled up, another chunk is allocated. ie. in vmalloc area
17 *
18 * c0 c1 c2
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
22 *
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring
26 * percpu base registers UNIT_SIZE apart.
27 *
28 * There are usually many small percpu allocations many of them as
29 * small as 4 bytes. The allocator organizes chunks into lists
30 * according to free size and tries to allocate from the fullest one.
31 * Each chunk keeps the maximum contiguous area size hint which is
32 * guaranteed to be eqaul to or larger than the maximum contiguous
33 * area in the chunk. This helps the allocator not to iterate the
34 * chunk maps unnecessarily.
35 *
36 * Allocation state in each chunk is kept using an array of integers
37 * on chunk->map. A positive value in the map represents a free
38 * region and negative allocated. Allocation inside a chunk is done
39 * by scanning this map sequentially and serving the first matching
40 * entry. This is mostly copied from the percpu_modalloc() allocator.
41 * Chunks are also linked into a rb tree to ease address to chunk
42 * mapping during free.
43 *
44 * To use this allocator, arch code should do the followings.
45 *
46 * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA
47 *
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back
50 *
51 * - use pcpu_setup_first_chunk() during percpu area initialization to
52 * setup the first chunk containing the kernel static percpu area
53 */
54
55 #include <linux/bitmap.h>
56 #include <linux/bootmem.h>
57 #include <linux/list.h>
58 #include <linux/mm.h>
59 #include <linux/module.h>
60 #include <linux/mutex.h>
61 #include <linux/percpu.h>
62 #include <linux/pfn.h>
63 #include <linux/rbtree.h>
64 #include <linux/slab.h>
65 #include <linux/vmalloc.h>
66
67 #include <asm/cacheflush.h>
68 #include <asm/tlbflush.h>
69
70 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
71 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
72
73 struct pcpu_chunk {
74 struct list_head list; /* linked to pcpu_slot lists */
75 struct rb_node rb_node; /* key is chunk->vm->addr */
76 int free_size; /* free bytes in the chunk */
77 int contig_hint; /* max contiguous size hint */
78 struct vm_struct *vm; /* mapped vmalloc region */
79 int map_used; /* # of map entries used */
80 int map_alloc; /* # of map entries allocated */
81 int *map; /* allocation map */
82 bool immutable; /* no [de]population allowed */
83 struct page **page; /* points to page array */
84 struct page *page_ar[]; /* #cpus * UNIT_PAGES */
85 };
86
87 static int pcpu_unit_pages __read_mostly;
88 static int pcpu_unit_size __read_mostly;
89 static int pcpu_chunk_size __read_mostly;
90 static int pcpu_nr_slots __read_mostly;
91 static size_t pcpu_chunk_struct_size __read_mostly;
92
93 /* the address of the first chunk which starts with the kernel static area */
94 void *pcpu_base_addr __read_mostly;
95 EXPORT_SYMBOL_GPL(pcpu_base_addr);
96
97 /* optional reserved chunk, only accessible for reserved allocations */
98 static struct pcpu_chunk *pcpu_reserved_chunk;
99 /* offset limit of the reserved chunk */
100 static int pcpu_reserved_chunk_limit;
101
102 /*
103 * One mutex to rule them all.
104 *
105 * The following mutex is grabbed in the outermost public alloc/free
106 * interface functions and released only when the operation is
107 * complete. As such, every function in this file other than the
108 * outermost functions are called under pcpu_mutex.
109 *
110 * It can easily be switched to use spinlock such that only the area
111 * allocation and page population commit are protected with it doing
112 * actual [de]allocation without holding any lock. However, given
113 * what this allocator does, I think it's better to let them run
114 * sequentially.
115 */
116 static DEFINE_MUTEX(pcpu_mutex);
117
118 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
119 static struct rb_root pcpu_addr_root = RB_ROOT; /* chunks by address */
120
121 static int __pcpu_size_to_slot(int size)
122 {
123 int highbit = fls(size); /* size is in bytes */
124 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
125 }
126
127 static int pcpu_size_to_slot(int size)
128 {
129 if (size == pcpu_unit_size)
130 return pcpu_nr_slots - 1;
131 return __pcpu_size_to_slot(size);
132 }
133
134 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
135 {
136 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
137 return 0;
138
139 return pcpu_size_to_slot(chunk->free_size);
140 }
141
142 static int pcpu_page_idx(unsigned int cpu, int page_idx)
143 {
144 return cpu * pcpu_unit_pages + page_idx;
145 }
146
147 static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk,
148 unsigned int cpu, int page_idx)
149 {
150 return &chunk->page[pcpu_page_idx(cpu, page_idx)];
151 }
152
153 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
154 unsigned int cpu, int page_idx)
155 {
156 return (unsigned long)chunk->vm->addr +
157 (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
158 }
159
160 static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk,
161 int page_idx)
162 {
163 return *pcpu_chunk_pagep(chunk, 0, page_idx) != NULL;
164 }
165
166 /**
167 * pcpu_realloc - versatile realloc
168 * @p: the current pointer (can be NULL for new allocations)
169 * @size: the current size in bytes (can be 0 for new allocations)
170 * @new_size: the wanted new size in bytes (can be 0 for free)
171 *
172 * More robust realloc which can be used to allocate, resize or free a
173 * memory area of arbitrary size. If the needed size goes over
174 * PAGE_SIZE, kernel VM is used.
175 *
176 * RETURNS:
177 * The new pointer on success, NULL on failure.
178 */
179 static void *pcpu_realloc(void *p, size_t size, size_t new_size)
180 {
181 void *new;
182
183 if (new_size <= PAGE_SIZE)
184 new = kmalloc(new_size, GFP_KERNEL);
185 else
186 new = vmalloc(new_size);
187 if (new_size && !new)
188 return NULL;
189
190 memcpy(new, p, min(size, new_size));
191 if (new_size > size)
192 memset(new + size, 0, new_size - size);
193
194 if (size <= PAGE_SIZE)
195 kfree(p);
196 else
197 vfree(p);
198
199 return new;
200 }
201
202 /**
203 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
204 * @chunk: chunk of interest
205 * @oslot: the previous slot it was on
206 *
207 * This function is called after an allocation or free changed @chunk.
208 * New slot according to the changed state is determined and @chunk is
209 * moved to the slot. Note that the reserved chunk is never put on
210 * chunk slots.
211 */
212 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
213 {
214 int nslot = pcpu_chunk_slot(chunk);
215
216 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
217 if (oslot < nslot)
218 list_move(&chunk->list, &pcpu_slot[nslot]);
219 else
220 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
221 }
222 }
223
224 static struct rb_node **pcpu_chunk_rb_search(void *addr,
225 struct rb_node **parentp)
226 {
227 struct rb_node **p = &pcpu_addr_root.rb_node;
228 struct rb_node *parent = NULL;
229 struct pcpu_chunk *chunk;
230
231 while (*p) {
232 parent = *p;
233 chunk = rb_entry(parent, struct pcpu_chunk, rb_node);
234
235 if (addr < chunk->vm->addr)
236 p = &(*p)->rb_left;
237 else if (addr > chunk->vm->addr)
238 p = &(*p)->rb_right;
239 else
240 break;
241 }
242
243 if (parentp)
244 *parentp = parent;
245 return p;
246 }
247
248 /**
249 * pcpu_chunk_addr_search - search for chunk containing specified address
250 * @addr: address to search for
251 *
252 * Look for chunk which might contain @addr. More specifically, it
253 * searchs for the chunk with the highest start address which isn't
254 * beyond @addr.
255 *
256 * RETURNS:
257 * The address of the found chunk.
258 */
259 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
260 {
261 struct rb_node *n, *parent;
262 struct pcpu_chunk *chunk;
263
264 /* is it in the reserved chunk? */
265 if (pcpu_reserved_chunk) {
266 void *start = pcpu_reserved_chunk->vm->addr;
267
268 if (addr >= start && addr < start + pcpu_reserved_chunk_limit)
269 return pcpu_reserved_chunk;
270 }
271
272 /* nah... search the regular ones */
273 n = *pcpu_chunk_rb_search(addr, &parent);
274 if (!n) {
275 /* no exactly matching chunk, the parent is the closest */
276 n = parent;
277 BUG_ON(!n);
278 }
279 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
280
281 if (addr < chunk->vm->addr) {
282 /* the parent was the next one, look for the previous one */
283 n = rb_prev(n);
284 BUG_ON(!n);
285 chunk = rb_entry(n, struct pcpu_chunk, rb_node);
286 }
287
288 return chunk;
289 }
290
291 /**
292 * pcpu_chunk_addr_insert - insert chunk into address rb tree
293 * @new: chunk to insert
294 *
295 * Insert @new into address rb tree.
296 */
297 static void pcpu_chunk_addr_insert(struct pcpu_chunk *new)
298 {
299 struct rb_node **p, *parent;
300
301 p = pcpu_chunk_rb_search(new->vm->addr, &parent);
302 BUG_ON(*p);
303 rb_link_node(&new->rb_node, parent, p);
304 rb_insert_color(&new->rb_node, &pcpu_addr_root);
305 }
306
307 /**
308 * pcpu_split_block - split a map block
309 * @chunk: chunk of interest
310 * @i: index of map block to split
311 * @head: head size in bytes (can be 0)
312 * @tail: tail size in bytes (can be 0)
313 *
314 * Split the @i'th map block into two or three blocks. If @head is
315 * non-zero, @head bytes block is inserted before block @i moving it
316 * to @i+1 and reducing its size by @head bytes.
317 *
318 * If @tail is non-zero, the target block, which can be @i or @i+1
319 * depending on @head, is reduced by @tail bytes and @tail byte block
320 * is inserted after the target block.
321 *
322 * RETURNS:
323 * 0 on success, -errno on failure.
324 */
325 static int pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail)
326 {
327 int nr_extra = !!head + !!tail;
328 int target = chunk->map_used + nr_extra;
329
330 /* reallocation required? */
331 if (chunk->map_alloc < target) {
332 int new_alloc;
333 int *new;
334
335 new_alloc = PCPU_DFL_MAP_ALLOC;
336 while (new_alloc < target)
337 new_alloc *= 2;
338
339 if (chunk->map_alloc < PCPU_DFL_MAP_ALLOC) {
340 /*
341 * map_alloc smaller than the default size
342 * indicates that the chunk is one of the
343 * first chunks and still using static map.
344 * Allocate a dynamic one and copy.
345 */
346 new = pcpu_realloc(NULL, 0, new_alloc * sizeof(new[0]));
347 if (new)
348 memcpy(new, chunk->map,
349 chunk->map_alloc * sizeof(new[0]));
350 } else
351 new = pcpu_realloc(chunk->map,
352 chunk->map_alloc * sizeof(new[0]),
353 new_alloc * sizeof(new[0]));
354 if (!new)
355 return -ENOMEM;
356
357 chunk->map_alloc = new_alloc;
358 chunk->map = new;
359 }
360
361 /* insert a new subblock */
362 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
363 sizeof(chunk->map[0]) * (chunk->map_used - i));
364 chunk->map_used += nr_extra;
365
366 if (head) {
367 chunk->map[i + 1] = chunk->map[i] - head;
368 chunk->map[i++] = head;
369 }
370 if (tail) {
371 chunk->map[i++] -= tail;
372 chunk->map[i] = tail;
373 }
374 return 0;
375 }
376
377 /**
378 * pcpu_alloc_area - allocate area from a pcpu_chunk
379 * @chunk: chunk of interest
380 * @size: wanted size in bytes
381 * @align: wanted align
382 *
383 * Try to allocate @size bytes area aligned at @align from @chunk.
384 * Note that this function only allocates the offset. It doesn't
385 * populate or map the area.
386 *
387 * RETURNS:
388 * Allocated offset in @chunk on success, -errno on failure.
389 */
390 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
391 {
392 int oslot = pcpu_chunk_slot(chunk);
393 int max_contig = 0;
394 int i, off;
395
396 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
397 bool is_last = i + 1 == chunk->map_used;
398 int head, tail;
399
400 /* extra for alignment requirement */
401 head = ALIGN(off, align) - off;
402 BUG_ON(i == 0 && head != 0);
403
404 if (chunk->map[i] < 0)
405 continue;
406 if (chunk->map[i] < head + size) {
407 max_contig = max(chunk->map[i], max_contig);
408 continue;
409 }
410
411 /*
412 * If head is small or the previous block is free,
413 * merge'em. Note that 'small' is defined as smaller
414 * than sizeof(int), which is very small but isn't too
415 * uncommon for percpu allocations.
416 */
417 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
418 if (chunk->map[i - 1] > 0)
419 chunk->map[i - 1] += head;
420 else {
421 chunk->map[i - 1] -= head;
422 chunk->free_size -= head;
423 }
424 chunk->map[i] -= head;
425 off += head;
426 head = 0;
427 }
428
429 /* if tail is small, just keep it around */
430 tail = chunk->map[i] - head - size;
431 if (tail < sizeof(int))
432 tail = 0;
433
434 /* split if warranted */
435 if (head || tail) {
436 if (pcpu_split_block(chunk, i, head, tail))
437 return -ENOMEM;
438 if (head) {
439 i++;
440 off += head;
441 max_contig = max(chunk->map[i - 1], max_contig);
442 }
443 if (tail)
444 max_contig = max(chunk->map[i + 1], max_contig);
445 }
446
447 /* update hint and mark allocated */
448 if (is_last)
449 chunk->contig_hint = max_contig; /* fully scanned */
450 else
451 chunk->contig_hint = max(chunk->contig_hint,
452 max_contig);
453
454 chunk->free_size -= chunk->map[i];
455 chunk->map[i] = -chunk->map[i];
456
457 pcpu_chunk_relocate(chunk, oslot);
458 return off;
459 }
460
461 chunk->contig_hint = max_contig; /* fully scanned */
462 pcpu_chunk_relocate(chunk, oslot);
463
464 /*
465 * Tell the upper layer that this chunk has no area left.
466 * Note that this is not an error condition but a notification
467 * to upper layer that it needs to look at other chunks.
468 * -ENOSPC is chosen as it isn't used in memory subsystem and
469 * matches the meaning in a way.
470 */
471 return -ENOSPC;
472 }
473
474 /**
475 * pcpu_free_area - free area to a pcpu_chunk
476 * @chunk: chunk of interest
477 * @freeme: offset of area to free
478 *
479 * Free area starting from @freeme to @chunk. Note that this function
480 * only modifies the allocation map. It doesn't depopulate or unmap
481 * the area.
482 */
483 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
484 {
485 int oslot = pcpu_chunk_slot(chunk);
486 int i, off;
487
488 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
489 if (off == freeme)
490 break;
491 BUG_ON(off != freeme);
492 BUG_ON(chunk->map[i] > 0);
493
494 chunk->map[i] = -chunk->map[i];
495 chunk->free_size += chunk->map[i];
496
497 /* merge with previous? */
498 if (i > 0 && chunk->map[i - 1] >= 0) {
499 chunk->map[i - 1] += chunk->map[i];
500 chunk->map_used--;
501 memmove(&chunk->map[i], &chunk->map[i + 1],
502 (chunk->map_used - i) * sizeof(chunk->map[0]));
503 i--;
504 }
505 /* merge with next? */
506 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
507 chunk->map[i] += chunk->map[i + 1];
508 chunk->map_used--;
509 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
510 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
511 }
512
513 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
514 pcpu_chunk_relocate(chunk, oslot);
515 }
516
517 /**
518 * pcpu_unmap - unmap pages out of a pcpu_chunk
519 * @chunk: chunk of interest
520 * @page_start: page index of the first page to unmap
521 * @page_end: page index of the last page to unmap + 1
522 * @flush: whether to flush cache and tlb or not
523 *
524 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
525 * If @flush is true, vcache is flushed before unmapping and tlb
526 * after.
527 */
528 static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end,
529 bool flush)
530 {
531 unsigned int last = num_possible_cpus() - 1;
532 unsigned int cpu;
533
534 /* unmap must not be done on immutable chunk */
535 WARN_ON(chunk->immutable);
536
537 /*
538 * Each flushing trial can be very expensive, issue flush on
539 * the whole region at once rather than doing it for each cpu.
540 * This could be an overkill but is more scalable.
541 */
542 if (flush)
543 flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start),
544 pcpu_chunk_addr(chunk, last, page_end));
545
546 for_each_possible_cpu(cpu)
547 unmap_kernel_range_noflush(
548 pcpu_chunk_addr(chunk, cpu, page_start),
549 (page_end - page_start) << PAGE_SHIFT);
550
551 /* ditto as flush_cache_vunmap() */
552 if (flush)
553 flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start),
554 pcpu_chunk_addr(chunk, last, page_end));
555 }
556
557 /**
558 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
559 * @chunk: chunk to depopulate
560 * @off: offset to the area to depopulate
561 * @size: size of the area to depopulate in bytes
562 * @flush: whether to flush cache and tlb or not
563 *
564 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
565 * from @chunk. If @flush is true, vcache is flushed before unmapping
566 * and tlb after.
567 */
568 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size,
569 bool flush)
570 {
571 int page_start = PFN_DOWN(off);
572 int page_end = PFN_UP(off + size);
573 int unmap_start = -1;
574 int uninitialized_var(unmap_end);
575 unsigned int cpu;
576 int i;
577
578 for (i = page_start; i < page_end; i++) {
579 for_each_possible_cpu(cpu) {
580 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
581
582 if (!*pagep)
583 continue;
584
585 __free_page(*pagep);
586
587 /*
588 * If it's partial depopulation, it might get
589 * populated or depopulated again. Mark the
590 * page gone.
591 */
592 *pagep = NULL;
593
594 unmap_start = unmap_start < 0 ? i : unmap_start;
595 unmap_end = i + 1;
596 }
597 }
598
599 if (unmap_start >= 0)
600 pcpu_unmap(chunk, unmap_start, unmap_end, flush);
601 }
602
603 /**
604 * pcpu_map - map pages into a pcpu_chunk
605 * @chunk: chunk of interest
606 * @page_start: page index of the first page to map
607 * @page_end: page index of the last page to map + 1
608 *
609 * For each cpu, map pages [@page_start,@page_end) into @chunk.
610 * vcache is flushed afterwards.
611 */
612 static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end)
613 {
614 unsigned int last = num_possible_cpus() - 1;
615 unsigned int cpu;
616 int err;
617
618 /* map must not be done on immutable chunk */
619 WARN_ON(chunk->immutable);
620
621 for_each_possible_cpu(cpu) {
622 err = map_kernel_range_noflush(
623 pcpu_chunk_addr(chunk, cpu, page_start),
624 (page_end - page_start) << PAGE_SHIFT,
625 PAGE_KERNEL,
626 pcpu_chunk_pagep(chunk, cpu, page_start));
627 if (err < 0)
628 return err;
629 }
630
631 /* flush at once, please read comments in pcpu_unmap() */
632 flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start),
633 pcpu_chunk_addr(chunk, last, page_end));
634 return 0;
635 }
636
637 /**
638 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
639 * @chunk: chunk of interest
640 * @off: offset to the area to populate
641 * @size: size of the area to populate in bytes
642 *
643 * For each cpu, populate and map pages [@page_start,@page_end) into
644 * @chunk. The area is cleared on return.
645 */
646 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
647 {
648 const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
649 int page_start = PFN_DOWN(off);
650 int page_end = PFN_UP(off + size);
651 int map_start = -1;
652 int uninitialized_var(map_end);
653 unsigned int cpu;
654 int i;
655
656 for (i = page_start; i < page_end; i++) {
657 if (pcpu_chunk_page_occupied(chunk, i)) {
658 if (map_start >= 0) {
659 if (pcpu_map(chunk, map_start, map_end))
660 goto err;
661 map_start = -1;
662 }
663 continue;
664 }
665
666 map_start = map_start < 0 ? i : map_start;
667 map_end = i + 1;
668
669 for_each_possible_cpu(cpu) {
670 struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i);
671
672 *pagep = alloc_pages_node(cpu_to_node(cpu),
673 alloc_mask, 0);
674 if (!*pagep)
675 goto err;
676 }
677 }
678
679 if (map_start >= 0 && pcpu_map(chunk, map_start, map_end))
680 goto err;
681
682 for_each_possible_cpu(cpu)
683 memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0,
684 size);
685
686 return 0;
687 err:
688 /* likely under heavy memory pressure, give memory back */
689 pcpu_depopulate_chunk(chunk, off, size, true);
690 return -ENOMEM;
691 }
692
693 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
694 {
695 if (!chunk)
696 return;
697 if (chunk->vm)
698 free_vm_area(chunk->vm);
699 pcpu_realloc(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]), 0);
700 kfree(chunk);
701 }
702
703 static struct pcpu_chunk *alloc_pcpu_chunk(void)
704 {
705 struct pcpu_chunk *chunk;
706
707 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
708 if (!chunk)
709 return NULL;
710
711 chunk->map = pcpu_realloc(NULL, 0,
712 PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
713 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
714 chunk->map[chunk->map_used++] = pcpu_unit_size;
715 chunk->page = chunk->page_ar;
716
717 chunk->vm = get_vm_area(pcpu_chunk_size, GFP_KERNEL);
718 if (!chunk->vm) {
719 free_pcpu_chunk(chunk);
720 return NULL;
721 }
722
723 INIT_LIST_HEAD(&chunk->list);
724 chunk->free_size = pcpu_unit_size;
725 chunk->contig_hint = pcpu_unit_size;
726
727 return chunk;
728 }
729
730 /**
731 * pcpu_alloc - the percpu allocator
732 * @size: size of area to allocate in bytes
733 * @align: alignment of area (max PAGE_SIZE)
734 * @reserved: allocate from the reserved chunk if available
735 *
736 * Allocate percpu area of @size bytes aligned at @align. Might
737 * sleep. Might trigger writeouts.
738 *
739 * RETURNS:
740 * Percpu pointer to the allocated area on success, NULL on failure.
741 */
742 static void *pcpu_alloc(size_t size, size_t align, bool reserved)
743 {
744 void *ptr = NULL;
745 struct pcpu_chunk *chunk;
746 int slot, off;
747
748 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
749 WARN(true, "illegal size (%zu) or align (%zu) for "
750 "percpu allocation\n", size, align);
751 return NULL;
752 }
753
754 mutex_lock(&pcpu_mutex);
755
756 /* serve reserved allocations from the reserved chunk if available */
757 if (reserved && pcpu_reserved_chunk) {
758 chunk = pcpu_reserved_chunk;
759 if (size > chunk->contig_hint)
760 goto out_unlock;
761 off = pcpu_alloc_area(chunk, size, align);
762 if (off >= 0)
763 goto area_found;
764 goto out_unlock;
765 }
766
767 /* search through normal chunks */
768 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
769 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
770 if (size > chunk->contig_hint)
771 continue;
772 off = pcpu_alloc_area(chunk, size, align);
773 if (off >= 0)
774 goto area_found;
775 if (off != -ENOSPC)
776 goto out_unlock;
777 }
778 }
779
780 /* hmmm... no space left, create a new chunk */
781 chunk = alloc_pcpu_chunk();
782 if (!chunk)
783 goto out_unlock;
784 pcpu_chunk_relocate(chunk, -1);
785 pcpu_chunk_addr_insert(chunk);
786
787 off = pcpu_alloc_area(chunk, size, align);
788 if (off < 0)
789 goto out_unlock;
790
791 area_found:
792 /* populate, map and clear the area */
793 if (pcpu_populate_chunk(chunk, off, size)) {
794 pcpu_free_area(chunk, off);
795 goto out_unlock;
796 }
797
798 ptr = __addr_to_pcpu_ptr(chunk->vm->addr + off);
799 out_unlock:
800 mutex_unlock(&pcpu_mutex);
801 return ptr;
802 }
803
804 /**
805 * __alloc_percpu - allocate dynamic percpu area
806 * @size: size of area to allocate in bytes
807 * @align: alignment of area (max PAGE_SIZE)
808 *
809 * Allocate percpu area of @size bytes aligned at @align. Might
810 * sleep. Might trigger writeouts.
811 *
812 * RETURNS:
813 * Percpu pointer to the allocated area on success, NULL on failure.
814 */
815 void *__alloc_percpu(size_t size, size_t align)
816 {
817 return pcpu_alloc(size, align, false);
818 }
819 EXPORT_SYMBOL_GPL(__alloc_percpu);
820
821 /**
822 * __alloc_reserved_percpu - allocate reserved percpu area
823 * @size: size of area to allocate in bytes
824 * @align: alignment of area (max PAGE_SIZE)
825 *
826 * Allocate percpu area of @size bytes aligned at @align from reserved
827 * percpu area if arch has set it up; otherwise, allocation is served
828 * from the same dynamic area. Might sleep. Might trigger writeouts.
829 *
830 * RETURNS:
831 * Percpu pointer to the allocated area on success, NULL on failure.
832 */
833 void *__alloc_reserved_percpu(size_t size, size_t align)
834 {
835 return pcpu_alloc(size, align, true);
836 }
837
838 static void pcpu_kill_chunk(struct pcpu_chunk *chunk)
839 {
840 WARN_ON(chunk->immutable);
841 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false);
842 list_del(&chunk->list);
843 rb_erase(&chunk->rb_node, &pcpu_addr_root);
844 free_pcpu_chunk(chunk);
845 }
846
847 /**
848 * free_percpu - free percpu area
849 * @ptr: pointer to area to free
850 *
851 * Free percpu area @ptr. Might sleep.
852 */
853 void free_percpu(void *ptr)
854 {
855 void *addr = __pcpu_ptr_to_addr(ptr);
856 struct pcpu_chunk *chunk;
857 int off;
858
859 if (!ptr)
860 return;
861
862 mutex_lock(&pcpu_mutex);
863
864 chunk = pcpu_chunk_addr_search(addr);
865 off = addr - chunk->vm->addr;
866
867 pcpu_free_area(chunk, off);
868
869 /* the chunk became fully free, kill one if there are other free ones */
870 if (chunk->free_size == pcpu_unit_size) {
871 struct pcpu_chunk *pos;
872
873 list_for_each_entry(pos,
874 &pcpu_slot[pcpu_chunk_slot(chunk)], list)
875 if (pos != chunk) {
876 pcpu_kill_chunk(pos);
877 break;
878 }
879 }
880
881 mutex_unlock(&pcpu_mutex);
882 }
883 EXPORT_SYMBOL_GPL(free_percpu);
884
885 /**
886 * pcpu_setup_first_chunk - initialize the first percpu chunk
887 * @get_page_fn: callback to fetch page pointer
888 * @static_size: the size of static percpu area in bytes
889 * @reserved_size: the size of reserved percpu area in bytes
890 * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto
891 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
892 * @base_addr: mapped address, NULL for auto
893 * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary
894 *
895 * Initialize the first percpu chunk which contains the kernel static
896 * perpcu area. This function is to be called from arch percpu area
897 * setup path. The first two parameters are mandatory. The rest are
898 * optional.
899 *
900 * @get_page_fn() should return pointer to percpu page given cpu
901 * number and page number. It should at least return enough pages to
902 * cover the static area. The returned pages for static area should
903 * have been initialized with valid data. If @unit_size is specified,
904 * it can also return pages after the static area. NULL return
905 * indicates end of pages for the cpu. Note that @get_page_fn() must
906 * return the same number of pages for all cpus.
907 *
908 * @reserved_size, if non-zero, specifies the amount of bytes to
909 * reserve after the static area in the first chunk. This reserves
910 * the first chunk such that it's available only through reserved
911 * percpu allocation. This is primarily used to serve module percpu
912 * static areas on architectures where the addressing model has
913 * limited offset range for symbol relocations to guarantee module
914 * percpu symbols fall inside the relocatable range.
915 *
916 * @unit_size, if non-negative, specifies unit size and must be
917 * aligned to PAGE_SIZE and equal to or larger than @static_size +
918 * @reserved_size + @dyn_size.
919 *
920 * @dyn_size, if non-negative, limits the number of bytes available
921 * for dynamic allocation in the first chunk. Specifying non-negative
922 * value make percpu leave alone the area beyond @static_size +
923 * @reserved_size + @dyn_size.
924 *
925 * Non-null @base_addr means that the caller already allocated virtual
926 * region for the first chunk and mapped it. percpu must not mess
927 * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL
928 * @populate_pte_fn doesn't make any sense.
929 *
930 * @populate_pte_fn is used to populate the pagetable. NULL means the
931 * caller already populated the pagetable.
932 *
933 * If the first chunk ends up with both reserved and dynamic areas, it
934 * is served by two chunks - one to serve the core static and reserved
935 * areas and the other for the dynamic area. They share the same vm
936 * and page map but uses different area allocation map to stay away
937 * from each other. The latter chunk is circulated in the chunk slots
938 * and available for dynamic allocation like any other chunks.
939 *
940 * RETURNS:
941 * The determined pcpu_unit_size which can be used to initialize
942 * percpu access.
943 */
944 size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn,
945 size_t static_size, size_t reserved_size,
946 ssize_t unit_size, ssize_t dyn_size,
947 void *base_addr,
948 pcpu_populate_pte_fn_t populate_pte_fn)
949 {
950 static struct vm_struct first_vm;
951 static int smap[2], dmap[2];
952 struct pcpu_chunk *schunk, *dchunk = NULL;
953 unsigned int cpu;
954 int nr_pages;
955 int err, i;
956
957 /* santiy checks */
958 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
959 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
960 BUG_ON(!static_size);
961 if (unit_size >= 0) {
962 BUG_ON(unit_size < static_size + reserved_size +
963 (dyn_size >= 0 ? dyn_size : 0));
964 BUG_ON(unit_size & ~PAGE_MASK);
965 } else {
966 BUG_ON(dyn_size >= 0);
967 BUG_ON(base_addr);
968 }
969 BUG_ON(base_addr && populate_pte_fn);
970
971 if (unit_size >= 0)
972 pcpu_unit_pages = unit_size >> PAGE_SHIFT;
973 else
974 pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT,
975 PFN_UP(static_size + reserved_size));
976
977 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
978 pcpu_chunk_size = num_possible_cpus() * pcpu_unit_size;
979 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk)
980 + num_possible_cpus() * pcpu_unit_pages * sizeof(struct page *);
981
982 if (dyn_size < 0)
983 dyn_size = pcpu_unit_size - static_size - reserved_size;
984
985 /*
986 * Allocate chunk slots. The additional last slot is for
987 * empty chunks.
988 */
989 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
990 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
991 for (i = 0; i < pcpu_nr_slots; i++)
992 INIT_LIST_HEAD(&pcpu_slot[i]);
993
994 /*
995 * Initialize static chunk. If reserved_size is zero, the
996 * static chunk covers static area + dynamic allocation area
997 * in the first chunk. If reserved_size is not zero, it
998 * covers static area + reserved area (mostly used for module
999 * static percpu allocation).
1000 */
1001 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1002 INIT_LIST_HEAD(&schunk->list);
1003 schunk->vm = &first_vm;
1004 schunk->map = smap;
1005 schunk->map_alloc = ARRAY_SIZE(smap);
1006 schunk->page = schunk->page_ar;
1007
1008 if (reserved_size) {
1009 schunk->free_size = reserved_size;
1010 pcpu_reserved_chunk = schunk; /* not for dynamic alloc */
1011 } else {
1012 schunk->free_size = dyn_size;
1013 dyn_size = 0; /* dynamic area covered */
1014 }
1015 schunk->contig_hint = schunk->free_size;
1016
1017 schunk->map[schunk->map_used++] = -static_size;
1018 if (schunk->free_size)
1019 schunk->map[schunk->map_used++] = schunk->free_size;
1020
1021 pcpu_reserved_chunk_limit = static_size + schunk->free_size;
1022
1023 /* init dynamic chunk if necessary */
1024 if (dyn_size) {
1025 dchunk = alloc_bootmem(sizeof(struct pcpu_chunk));
1026 INIT_LIST_HEAD(&dchunk->list);
1027 dchunk->vm = &first_vm;
1028 dchunk->map = dmap;
1029 dchunk->map_alloc = ARRAY_SIZE(dmap);
1030 dchunk->page = schunk->page_ar; /* share page map with schunk */
1031
1032 dchunk->contig_hint = dchunk->free_size = dyn_size;
1033 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1034 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1035 }
1036
1037 /* allocate vm address */
1038 first_vm.flags = VM_ALLOC;
1039 first_vm.size = pcpu_chunk_size;
1040
1041 if (!base_addr)
1042 vm_area_register_early(&first_vm, PAGE_SIZE);
1043 else {
1044 /*
1045 * Pages already mapped. No need to remap into
1046 * vmalloc area. In this case the first chunks can't
1047 * be mapped or unmapped by percpu and are marked
1048 * immutable.
1049 */
1050 first_vm.addr = base_addr;
1051 schunk->immutable = true;
1052 if (dchunk)
1053 dchunk->immutable = true;
1054 }
1055
1056 /* assign pages */
1057 nr_pages = -1;
1058 for_each_possible_cpu(cpu) {
1059 for (i = 0; i < pcpu_unit_pages; i++) {
1060 struct page *page = get_page_fn(cpu, i);
1061
1062 if (!page)
1063 break;
1064 *pcpu_chunk_pagep(schunk, cpu, i) = page;
1065 }
1066
1067 BUG_ON(i < PFN_UP(static_size));
1068
1069 if (nr_pages < 0)
1070 nr_pages = i;
1071 else
1072 BUG_ON(nr_pages != i);
1073 }
1074
1075 /* map them */
1076 if (populate_pte_fn) {
1077 for_each_possible_cpu(cpu)
1078 for (i = 0; i < nr_pages; i++)
1079 populate_pte_fn(pcpu_chunk_addr(schunk,
1080 cpu, i));
1081
1082 err = pcpu_map(schunk, 0, nr_pages);
1083 if (err)
1084 panic("failed to setup static percpu area, err=%d\n",
1085 err);
1086 }
1087
1088 /* link the first chunk in */
1089 if (!dchunk) {
1090 pcpu_chunk_relocate(schunk, -1);
1091 pcpu_chunk_addr_insert(schunk);
1092 } else {
1093 pcpu_chunk_relocate(dchunk, -1);
1094 pcpu_chunk_addr_insert(dchunk);
1095 }
1096
1097 /* we're done */
1098 pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0);
1099 return pcpu_unit_size;
1100 }
This page took 0.054261 seconds and 6 git commands to generate.