percpu: make allocation failures more verbose
[deliverable/linux.git] / mm / percpu.c
1 /*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
18 *
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
23 *
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
30 *
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
46 *
47 * To use this allocator, arch code should do the followings.
48 *
49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50 *
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52 * regular address to percpu pointer and back if they need to be
53 * different from the default
54 *
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 * setup the first chunk containing the kernel static percpu area
57 */
58
59 #include <linux/bitmap.h>
60 #include <linux/bootmem.h>
61 #include <linux/err.h>
62 #include <linux/list.h>
63 #include <linux/log2.h>
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/mutex.h>
67 #include <linux/percpu.h>
68 #include <linux/pfn.h>
69 #include <linux/slab.h>
70 #include <linux/spinlock.h>
71 #include <linux/vmalloc.h>
72 #include <linux/workqueue.h>
73
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77
78 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
79 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
80
81 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82 #ifndef __addr_to_pcpu_ptr
83 #define __addr_to_pcpu_ptr(addr) \
84 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
85 + (unsigned long)__per_cpu_start)
86 #endif
87 #ifndef __pcpu_ptr_to_addr
88 #define __pcpu_ptr_to_addr(ptr) \
89 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
90 - (unsigned long)__per_cpu_start)
91 #endif
92
93 struct pcpu_chunk {
94 struct list_head list; /* linked to pcpu_slot lists */
95 int free_size; /* free bytes in the chunk */
96 int contig_hint; /* max contiguous size hint */
97 void *base_addr; /* base address of this chunk */
98 int map_used; /* # of map entries used */
99 int map_alloc; /* # of map entries allocated */
100 int *map; /* allocation map */
101 struct vm_struct **vms; /* mapped vmalloc regions */
102 bool immutable; /* no [de]population allowed */
103 unsigned long populated[]; /* populated bitmap */
104 };
105
106 static int pcpu_unit_pages __read_mostly;
107 static int pcpu_unit_size __read_mostly;
108 static int pcpu_nr_units __read_mostly;
109 static int pcpu_atom_size __read_mostly;
110 static int pcpu_nr_slots __read_mostly;
111 static size_t pcpu_chunk_struct_size __read_mostly;
112
113 /* cpus with the lowest and highest unit numbers */
114 static unsigned int pcpu_first_unit_cpu __read_mostly;
115 static unsigned int pcpu_last_unit_cpu __read_mostly;
116
117 /* the address of the first chunk which starts with the kernel static area */
118 void *pcpu_base_addr __read_mostly;
119 EXPORT_SYMBOL_GPL(pcpu_base_addr);
120
121 static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
122 const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
123
124 /* group information, used for vm allocation */
125 static int pcpu_nr_groups __read_mostly;
126 static const unsigned long *pcpu_group_offsets __read_mostly;
127 static const size_t *pcpu_group_sizes __read_mostly;
128
129 /*
130 * The first chunk which always exists. Note that unlike other
131 * chunks, this one can be allocated and mapped in several different
132 * ways and thus often doesn't live in the vmalloc area.
133 */
134 static struct pcpu_chunk *pcpu_first_chunk;
135
136 /*
137 * Optional reserved chunk. This chunk reserves part of the first
138 * chunk and serves it for reserved allocations. The amount of
139 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
140 * area doesn't exist, the following variables contain NULL and 0
141 * respectively.
142 */
143 static struct pcpu_chunk *pcpu_reserved_chunk;
144 static int pcpu_reserved_chunk_limit;
145
146 /*
147 * Synchronization rules.
148 *
149 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
150 * protects allocation/reclaim paths, chunks, populated bitmap and
151 * vmalloc mapping. The latter is a spinlock and protects the index
152 * data structures - chunk slots, chunks and area maps in chunks.
153 *
154 * During allocation, pcpu_alloc_mutex is kept locked all the time and
155 * pcpu_lock is grabbed and released as necessary. All actual memory
156 * allocations are done using GFP_KERNEL with pcpu_lock released.
157 *
158 * Free path accesses and alters only the index data structures, so it
159 * can be safely called from atomic context. When memory needs to be
160 * returned to the system, free path schedules reclaim_work which
161 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
162 * reclaimed, release both locks and frees the chunks. Note that it's
163 * necessary to grab both locks to remove a chunk from circulation as
164 * allocation path might be referencing the chunk with only
165 * pcpu_alloc_mutex locked.
166 */
167 static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
168 static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
169
170 static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
171
172 /* reclaim work to release fully free chunks, scheduled from free path */
173 static void pcpu_reclaim(struct work_struct *work);
174 static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
175
176 static int __pcpu_size_to_slot(int size)
177 {
178 int highbit = fls(size); /* size is in bytes */
179 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
180 }
181
182 static int pcpu_size_to_slot(int size)
183 {
184 if (size == pcpu_unit_size)
185 return pcpu_nr_slots - 1;
186 return __pcpu_size_to_slot(size);
187 }
188
189 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
190 {
191 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
192 return 0;
193
194 return pcpu_size_to_slot(chunk->free_size);
195 }
196
197 static int pcpu_page_idx(unsigned int cpu, int page_idx)
198 {
199 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
200 }
201
202 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
203 unsigned int cpu, int page_idx)
204 {
205 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
206 (page_idx << PAGE_SHIFT);
207 }
208
209 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
210 unsigned int cpu, int page_idx)
211 {
212 /* must not be used on pre-mapped chunk */
213 WARN_ON(chunk->immutable);
214
215 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
216 }
217
218 /* set the pointer to a chunk in a page struct */
219 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
220 {
221 page->index = (unsigned long)pcpu;
222 }
223
224 /* obtain pointer to a chunk from a page struct */
225 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
226 {
227 return (struct pcpu_chunk *)page->index;
228 }
229
230 static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
231 {
232 *rs = find_next_zero_bit(chunk->populated, end, *rs);
233 *re = find_next_bit(chunk->populated, end, *rs + 1);
234 }
235
236 static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
237 {
238 *rs = find_next_bit(chunk->populated, end, *rs);
239 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
240 }
241
242 /*
243 * (Un)populated page region iterators. Iterate over (un)populated
244 * page regions betwen @start and @end in @chunk. @rs and @re should
245 * be integer variables and will be set to start and end page index of
246 * the current region.
247 */
248 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
249 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
250 (rs) < (re); \
251 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
252
253 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
254 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
255 (rs) < (re); \
256 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
257
258 /**
259 * pcpu_mem_alloc - allocate memory
260 * @size: bytes to allocate
261 *
262 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
263 * kzalloc() is used; otherwise, vmalloc() is used. The returned
264 * memory is always zeroed.
265 *
266 * CONTEXT:
267 * Does GFP_KERNEL allocation.
268 *
269 * RETURNS:
270 * Pointer to the allocated area on success, NULL on failure.
271 */
272 static void *pcpu_mem_alloc(size_t size)
273 {
274 if (size <= PAGE_SIZE)
275 return kzalloc(size, GFP_KERNEL);
276 else {
277 void *ptr = vmalloc(size);
278 if (ptr)
279 memset(ptr, 0, size);
280 return ptr;
281 }
282 }
283
284 /**
285 * pcpu_mem_free - free memory
286 * @ptr: memory to free
287 * @size: size of the area
288 *
289 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
290 */
291 static void pcpu_mem_free(void *ptr, size_t size)
292 {
293 if (size <= PAGE_SIZE)
294 kfree(ptr);
295 else
296 vfree(ptr);
297 }
298
299 /**
300 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
301 * @chunk: chunk of interest
302 * @oslot: the previous slot it was on
303 *
304 * This function is called after an allocation or free changed @chunk.
305 * New slot according to the changed state is determined and @chunk is
306 * moved to the slot. Note that the reserved chunk is never put on
307 * chunk slots.
308 *
309 * CONTEXT:
310 * pcpu_lock.
311 */
312 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
313 {
314 int nslot = pcpu_chunk_slot(chunk);
315
316 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
317 if (oslot < nslot)
318 list_move(&chunk->list, &pcpu_slot[nslot]);
319 else
320 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
321 }
322 }
323
324 /**
325 * pcpu_chunk_addr_search - determine chunk containing specified address
326 * @addr: address for which the chunk needs to be determined.
327 *
328 * RETURNS:
329 * The address of the found chunk.
330 */
331 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
332 {
333 void *first_start = pcpu_first_chunk->base_addr;
334
335 /* is it in the first chunk? */
336 if (addr >= first_start && addr < first_start + pcpu_unit_size) {
337 /* is it in the reserved area? */
338 if (addr < first_start + pcpu_reserved_chunk_limit)
339 return pcpu_reserved_chunk;
340 return pcpu_first_chunk;
341 }
342
343 /*
344 * The address is relative to unit0 which might be unused and
345 * thus unmapped. Offset the address to the unit space of the
346 * current processor before looking it up in the vmalloc
347 * space. Note that any possible cpu id can be used here, so
348 * there's no need to worry about preemption or cpu hotplug.
349 */
350 addr += pcpu_unit_offsets[raw_smp_processor_id()];
351 return pcpu_get_page_chunk(vmalloc_to_page(addr));
352 }
353
354 /**
355 * pcpu_extend_area_map - extend area map for allocation
356 * @chunk: target chunk
357 *
358 * Extend area map of @chunk so that it can accomodate an allocation.
359 * A single allocation can split an area into three areas, so this
360 * function makes sure that @chunk->map has at least two extra slots.
361 *
362 * CONTEXT:
363 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
364 * if area map is extended.
365 *
366 * RETURNS:
367 * 0 if noop, 1 if successfully extended, -errno on failure.
368 */
369 static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
370 {
371 int new_alloc;
372 int *new;
373 size_t size;
374
375 /* has enough? */
376 if (chunk->map_alloc >= chunk->map_used + 2)
377 return 0;
378
379 spin_unlock_irq(&pcpu_lock);
380
381 new_alloc = PCPU_DFL_MAP_ALLOC;
382 while (new_alloc < chunk->map_used + 2)
383 new_alloc *= 2;
384
385 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
386 if (!new) {
387 spin_lock_irq(&pcpu_lock);
388 return -ENOMEM;
389 }
390
391 /*
392 * Acquire pcpu_lock and switch to new area map. Only free
393 * could have happened inbetween, so map_used couldn't have
394 * grown.
395 */
396 spin_lock_irq(&pcpu_lock);
397 BUG_ON(new_alloc < chunk->map_used + 2);
398
399 size = chunk->map_alloc * sizeof(chunk->map[0]);
400 memcpy(new, chunk->map, size);
401
402 /*
403 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
404 * one of the first chunks and still using static map.
405 */
406 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
407 pcpu_mem_free(chunk->map, size);
408
409 chunk->map_alloc = new_alloc;
410 chunk->map = new;
411 return 0;
412 }
413
414 /**
415 * pcpu_split_block - split a map block
416 * @chunk: chunk of interest
417 * @i: index of map block to split
418 * @head: head size in bytes (can be 0)
419 * @tail: tail size in bytes (can be 0)
420 *
421 * Split the @i'th map block into two or three blocks. If @head is
422 * non-zero, @head bytes block is inserted before block @i moving it
423 * to @i+1 and reducing its size by @head bytes.
424 *
425 * If @tail is non-zero, the target block, which can be @i or @i+1
426 * depending on @head, is reduced by @tail bytes and @tail byte block
427 * is inserted after the target block.
428 *
429 * @chunk->map must have enough free slots to accomodate the split.
430 *
431 * CONTEXT:
432 * pcpu_lock.
433 */
434 static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
435 int head, int tail)
436 {
437 int nr_extra = !!head + !!tail;
438
439 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
440
441 /* insert new subblocks */
442 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
443 sizeof(chunk->map[0]) * (chunk->map_used - i));
444 chunk->map_used += nr_extra;
445
446 if (head) {
447 chunk->map[i + 1] = chunk->map[i] - head;
448 chunk->map[i++] = head;
449 }
450 if (tail) {
451 chunk->map[i++] -= tail;
452 chunk->map[i] = tail;
453 }
454 }
455
456 /**
457 * pcpu_alloc_area - allocate area from a pcpu_chunk
458 * @chunk: chunk of interest
459 * @size: wanted size in bytes
460 * @align: wanted align
461 *
462 * Try to allocate @size bytes area aligned at @align from @chunk.
463 * Note that this function only allocates the offset. It doesn't
464 * populate or map the area.
465 *
466 * @chunk->map must have at least two free slots.
467 *
468 * CONTEXT:
469 * pcpu_lock.
470 *
471 * RETURNS:
472 * Allocated offset in @chunk on success, -1 if no matching area is
473 * found.
474 */
475 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
476 {
477 int oslot = pcpu_chunk_slot(chunk);
478 int max_contig = 0;
479 int i, off;
480
481 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
482 bool is_last = i + 1 == chunk->map_used;
483 int head, tail;
484
485 /* extra for alignment requirement */
486 head = ALIGN(off, align) - off;
487 BUG_ON(i == 0 && head != 0);
488
489 if (chunk->map[i] < 0)
490 continue;
491 if (chunk->map[i] < head + size) {
492 max_contig = max(chunk->map[i], max_contig);
493 continue;
494 }
495
496 /*
497 * If head is small or the previous block is free,
498 * merge'em. Note that 'small' is defined as smaller
499 * than sizeof(int), which is very small but isn't too
500 * uncommon for percpu allocations.
501 */
502 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
503 if (chunk->map[i - 1] > 0)
504 chunk->map[i - 1] += head;
505 else {
506 chunk->map[i - 1] -= head;
507 chunk->free_size -= head;
508 }
509 chunk->map[i] -= head;
510 off += head;
511 head = 0;
512 }
513
514 /* if tail is small, just keep it around */
515 tail = chunk->map[i] - head - size;
516 if (tail < sizeof(int))
517 tail = 0;
518
519 /* split if warranted */
520 if (head || tail) {
521 pcpu_split_block(chunk, i, head, tail);
522 if (head) {
523 i++;
524 off += head;
525 max_contig = max(chunk->map[i - 1], max_contig);
526 }
527 if (tail)
528 max_contig = max(chunk->map[i + 1], max_contig);
529 }
530
531 /* update hint and mark allocated */
532 if (is_last)
533 chunk->contig_hint = max_contig; /* fully scanned */
534 else
535 chunk->contig_hint = max(chunk->contig_hint,
536 max_contig);
537
538 chunk->free_size -= chunk->map[i];
539 chunk->map[i] = -chunk->map[i];
540
541 pcpu_chunk_relocate(chunk, oslot);
542 return off;
543 }
544
545 chunk->contig_hint = max_contig; /* fully scanned */
546 pcpu_chunk_relocate(chunk, oslot);
547
548 /* tell the upper layer that this chunk has no matching area */
549 return -1;
550 }
551
552 /**
553 * pcpu_free_area - free area to a pcpu_chunk
554 * @chunk: chunk of interest
555 * @freeme: offset of area to free
556 *
557 * Free area starting from @freeme to @chunk. Note that this function
558 * only modifies the allocation map. It doesn't depopulate or unmap
559 * the area.
560 *
561 * CONTEXT:
562 * pcpu_lock.
563 */
564 static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
565 {
566 int oslot = pcpu_chunk_slot(chunk);
567 int i, off;
568
569 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
570 if (off == freeme)
571 break;
572 BUG_ON(off != freeme);
573 BUG_ON(chunk->map[i] > 0);
574
575 chunk->map[i] = -chunk->map[i];
576 chunk->free_size += chunk->map[i];
577
578 /* merge with previous? */
579 if (i > 0 && chunk->map[i - 1] >= 0) {
580 chunk->map[i - 1] += chunk->map[i];
581 chunk->map_used--;
582 memmove(&chunk->map[i], &chunk->map[i + 1],
583 (chunk->map_used - i) * sizeof(chunk->map[0]));
584 i--;
585 }
586 /* merge with next? */
587 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
588 chunk->map[i] += chunk->map[i + 1];
589 chunk->map_used--;
590 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
591 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
592 }
593
594 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
595 pcpu_chunk_relocate(chunk, oslot);
596 }
597
598 /**
599 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
600 * @chunk: chunk of interest
601 * @bitmapp: output parameter for bitmap
602 * @may_alloc: may allocate the array
603 *
604 * Returns pointer to array of pointers to struct page and bitmap,
605 * both of which can be indexed with pcpu_page_idx(). The returned
606 * array is cleared to zero and *@bitmapp is copied from
607 * @chunk->populated. Note that there is only one array and bitmap
608 * and access exclusion is the caller's responsibility.
609 *
610 * CONTEXT:
611 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
612 * Otherwise, don't care.
613 *
614 * RETURNS:
615 * Pointer to temp pages array on success, NULL on failure.
616 */
617 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
618 unsigned long **bitmapp,
619 bool may_alloc)
620 {
621 static struct page **pages;
622 static unsigned long *bitmap;
623 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
624 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
625 sizeof(unsigned long);
626
627 if (!pages || !bitmap) {
628 if (may_alloc && !pages)
629 pages = pcpu_mem_alloc(pages_size);
630 if (may_alloc && !bitmap)
631 bitmap = pcpu_mem_alloc(bitmap_size);
632 if (!pages || !bitmap)
633 return NULL;
634 }
635
636 memset(pages, 0, pages_size);
637 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
638
639 *bitmapp = bitmap;
640 return pages;
641 }
642
643 /**
644 * pcpu_free_pages - free pages which were allocated for @chunk
645 * @chunk: chunk pages were allocated for
646 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
647 * @populated: populated bitmap
648 * @page_start: page index of the first page to be freed
649 * @page_end: page index of the last page to be freed + 1
650 *
651 * Free pages [@page_start and @page_end) in @pages for all units.
652 * The pages were allocated for @chunk.
653 */
654 static void pcpu_free_pages(struct pcpu_chunk *chunk,
655 struct page **pages, unsigned long *populated,
656 int page_start, int page_end)
657 {
658 unsigned int cpu;
659 int i;
660
661 for_each_possible_cpu(cpu) {
662 for (i = page_start; i < page_end; i++) {
663 struct page *page = pages[pcpu_page_idx(cpu, i)];
664
665 if (page)
666 __free_page(page);
667 }
668 }
669 }
670
671 /**
672 * pcpu_alloc_pages - allocates pages for @chunk
673 * @chunk: target chunk
674 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
675 * @populated: populated bitmap
676 * @page_start: page index of the first page to be allocated
677 * @page_end: page index of the last page to be allocated + 1
678 *
679 * Allocate pages [@page_start,@page_end) into @pages for all units.
680 * The allocation is for @chunk. Percpu core doesn't care about the
681 * content of @pages and will pass it verbatim to pcpu_map_pages().
682 */
683 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
684 struct page **pages, unsigned long *populated,
685 int page_start, int page_end)
686 {
687 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
688 unsigned int cpu;
689 int i;
690
691 for_each_possible_cpu(cpu) {
692 for (i = page_start; i < page_end; i++) {
693 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
694
695 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
696 if (!*pagep) {
697 pcpu_free_pages(chunk, pages, populated,
698 page_start, page_end);
699 return -ENOMEM;
700 }
701 }
702 }
703 return 0;
704 }
705
706 /**
707 * pcpu_pre_unmap_flush - flush cache prior to unmapping
708 * @chunk: chunk the regions to be flushed belongs to
709 * @page_start: page index of the first page to be flushed
710 * @page_end: page index of the last page to be flushed + 1
711 *
712 * Pages in [@page_start,@page_end) of @chunk are about to be
713 * unmapped. Flush cache. As each flushing trial can be very
714 * expensive, issue flush on the whole region at once rather than
715 * doing it for each cpu. This could be an overkill but is more
716 * scalable.
717 */
718 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
719 int page_start, int page_end)
720 {
721 flush_cache_vunmap(
722 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
723 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
724 }
725
726 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
727 {
728 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
729 }
730
731 /**
732 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
733 * @chunk: chunk of interest
734 * @pages: pages array which can be used to pass information to free
735 * @populated: populated bitmap
736 * @page_start: page index of the first page to unmap
737 * @page_end: page index of the last page to unmap + 1
738 *
739 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
740 * Corresponding elements in @pages were cleared by the caller and can
741 * be used to carry information to pcpu_free_pages() which will be
742 * called after all unmaps are finished. The caller should call
743 * proper pre/post flush functions.
744 */
745 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
746 struct page **pages, unsigned long *populated,
747 int page_start, int page_end)
748 {
749 unsigned int cpu;
750 int i;
751
752 for_each_possible_cpu(cpu) {
753 for (i = page_start; i < page_end; i++) {
754 struct page *page;
755
756 page = pcpu_chunk_page(chunk, cpu, i);
757 WARN_ON(!page);
758 pages[pcpu_page_idx(cpu, i)] = page;
759 }
760 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
761 page_end - page_start);
762 }
763
764 for (i = page_start; i < page_end; i++)
765 __clear_bit(i, populated);
766 }
767
768 /**
769 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
770 * @chunk: pcpu_chunk the regions to be flushed belong to
771 * @page_start: page index of the first page to be flushed
772 * @page_end: page index of the last page to be flushed + 1
773 *
774 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
775 * TLB for the regions. This can be skipped if the area is to be
776 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
777 *
778 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
779 * for the whole region.
780 */
781 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
782 int page_start, int page_end)
783 {
784 flush_tlb_kernel_range(
785 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
786 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
787 }
788
789 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
790 int nr_pages)
791 {
792 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
793 PAGE_KERNEL, pages);
794 }
795
796 /**
797 * pcpu_map_pages - map pages into a pcpu_chunk
798 * @chunk: chunk of interest
799 * @pages: pages array containing pages to be mapped
800 * @populated: populated bitmap
801 * @page_start: page index of the first page to map
802 * @page_end: page index of the last page to map + 1
803 *
804 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
805 * caller is responsible for calling pcpu_post_map_flush() after all
806 * mappings are complete.
807 *
808 * This function is responsible for setting corresponding bits in
809 * @chunk->populated bitmap and whatever is necessary for reverse
810 * lookup (addr -> chunk).
811 */
812 static int pcpu_map_pages(struct pcpu_chunk *chunk,
813 struct page **pages, unsigned long *populated,
814 int page_start, int page_end)
815 {
816 unsigned int cpu, tcpu;
817 int i, err;
818
819 for_each_possible_cpu(cpu) {
820 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
821 &pages[pcpu_page_idx(cpu, page_start)],
822 page_end - page_start);
823 if (err < 0)
824 goto err;
825 }
826
827 /* mapping successful, link chunk and mark populated */
828 for (i = page_start; i < page_end; i++) {
829 for_each_possible_cpu(cpu)
830 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
831 chunk);
832 __set_bit(i, populated);
833 }
834
835 return 0;
836
837 err:
838 for_each_possible_cpu(tcpu) {
839 if (tcpu == cpu)
840 break;
841 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
842 page_end - page_start);
843 }
844 return err;
845 }
846
847 /**
848 * pcpu_post_map_flush - flush cache after mapping
849 * @chunk: pcpu_chunk the regions to be flushed belong to
850 * @page_start: page index of the first page to be flushed
851 * @page_end: page index of the last page to be flushed + 1
852 *
853 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
854 * cache.
855 *
856 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
857 * for the whole region.
858 */
859 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
860 int page_start, int page_end)
861 {
862 flush_cache_vmap(
863 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
864 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
865 }
866
867 /**
868 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
869 * @chunk: chunk to depopulate
870 * @off: offset to the area to depopulate
871 * @size: size of the area to depopulate in bytes
872 * @flush: whether to flush cache and tlb or not
873 *
874 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
875 * from @chunk. If @flush is true, vcache is flushed before unmapping
876 * and tlb after.
877 *
878 * CONTEXT:
879 * pcpu_alloc_mutex.
880 */
881 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
882 {
883 int page_start = PFN_DOWN(off);
884 int page_end = PFN_UP(off + size);
885 struct page **pages;
886 unsigned long *populated;
887 int rs, re;
888
889 /* quick path, check whether it's empty already */
890 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
891 if (rs == page_start && re == page_end)
892 return;
893 break;
894 }
895
896 /* immutable chunks can't be depopulated */
897 WARN_ON(chunk->immutable);
898
899 /*
900 * If control reaches here, there must have been at least one
901 * successful population attempt so the temp pages array must
902 * be available now.
903 */
904 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
905 BUG_ON(!pages);
906
907 /* unmap and free */
908 pcpu_pre_unmap_flush(chunk, page_start, page_end);
909
910 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
911 pcpu_unmap_pages(chunk, pages, populated, rs, re);
912
913 /* no need to flush tlb, vmalloc will handle it lazily */
914
915 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
916 pcpu_free_pages(chunk, pages, populated, rs, re);
917
918 /* commit new bitmap */
919 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
920 }
921
922 /**
923 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
924 * @chunk: chunk of interest
925 * @off: offset to the area to populate
926 * @size: size of the area to populate in bytes
927 *
928 * For each cpu, populate and map pages [@page_start,@page_end) into
929 * @chunk. The area is cleared on return.
930 *
931 * CONTEXT:
932 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
933 */
934 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
935 {
936 int page_start = PFN_DOWN(off);
937 int page_end = PFN_UP(off + size);
938 int free_end = page_start, unmap_end = page_start;
939 struct page **pages;
940 unsigned long *populated;
941 unsigned int cpu;
942 int rs, re, rc;
943
944 /* quick path, check whether all pages are already there */
945 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
946 if (rs == page_start && re == page_end)
947 goto clear;
948 break;
949 }
950
951 /* need to allocate and map pages, this chunk can't be immutable */
952 WARN_ON(chunk->immutable);
953
954 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
955 if (!pages)
956 return -ENOMEM;
957
958 /* alloc and map */
959 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
960 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
961 if (rc)
962 goto err_free;
963 free_end = re;
964 }
965
966 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
967 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
968 if (rc)
969 goto err_unmap;
970 unmap_end = re;
971 }
972 pcpu_post_map_flush(chunk, page_start, page_end);
973
974 /* commit new bitmap */
975 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
976 clear:
977 for_each_possible_cpu(cpu)
978 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
979 return 0;
980
981 err_unmap:
982 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
983 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
984 pcpu_unmap_pages(chunk, pages, populated, rs, re);
985 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
986 err_free:
987 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
988 pcpu_free_pages(chunk, pages, populated, rs, re);
989 return rc;
990 }
991
992 static void free_pcpu_chunk(struct pcpu_chunk *chunk)
993 {
994 if (!chunk)
995 return;
996 if (chunk->vms)
997 pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
998 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
999 kfree(chunk);
1000 }
1001
1002 static struct pcpu_chunk *alloc_pcpu_chunk(void)
1003 {
1004 struct pcpu_chunk *chunk;
1005
1006 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1007 if (!chunk)
1008 return NULL;
1009
1010 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1011 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1012 chunk->map[chunk->map_used++] = pcpu_unit_size;
1013
1014 chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1015 pcpu_nr_groups, pcpu_atom_size,
1016 GFP_KERNEL);
1017 if (!chunk->vms) {
1018 free_pcpu_chunk(chunk);
1019 return NULL;
1020 }
1021
1022 INIT_LIST_HEAD(&chunk->list);
1023 chunk->free_size = pcpu_unit_size;
1024 chunk->contig_hint = pcpu_unit_size;
1025 chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1026
1027 return chunk;
1028 }
1029
1030 /**
1031 * pcpu_alloc - the percpu allocator
1032 * @size: size of area to allocate in bytes
1033 * @align: alignment of area (max PAGE_SIZE)
1034 * @reserved: allocate from the reserved chunk if available
1035 *
1036 * Allocate percpu area of @size bytes aligned at @align.
1037 *
1038 * CONTEXT:
1039 * Does GFP_KERNEL allocation.
1040 *
1041 * RETURNS:
1042 * Percpu pointer to the allocated area on success, NULL on failure.
1043 */
1044 static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1045 {
1046 static int warn_limit = 10;
1047 struct pcpu_chunk *chunk;
1048 const char *err;
1049 int slot, off;
1050
1051 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1052 WARN(true, "illegal size (%zu) or align (%zu) for "
1053 "percpu allocation\n", size, align);
1054 return NULL;
1055 }
1056
1057 mutex_lock(&pcpu_alloc_mutex);
1058 spin_lock_irq(&pcpu_lock);
1059
1060 /* serve reserved allocations from the reserved chunk if available */
1061 if (reserved && pcpu_reserved_chunk) {
1062 chunk = pcpu_reserved_chunk;
1063 if (size > chunk->contig_hint ||
1064 pcpu_extend_area_map(chunk) < 0) {
1065 err = "failed to extend area map of reserved chunk";
1066 goto fail_unlock;
1067 }
1068 off = pcpu_alloc_area(chunk, size, align);
1069 if (off >= 0)
1070 goto area_found;
1071 err = "alloc from reserved chunk failed";
1072 goto fail_unlock;
1073 }
1074
1075 restart:
1076 /* search through normal chunks */
1077 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1078 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1079 if (size > chunk->contig_hint)
1080 continue;
1081
1082 switch (pcpu_extend_area_map(chunk)) {
1083 case 0:
1084 break;
1085 case 1:
1086 goto restart; /* pcpu_lock dropped, restart */
1087 default:
1088 err = "failed to extend area map";
1089 goto fail_unlock;
1090 }
1091
1092 off = pcpu_alloc_area(chunk, size, align);
1093 if (off >= 0)
1094 goto area_found;
1095 }
1096 }
1097
1098 /* hmmm... no space left, create a new chunk */
1099 spin_unlock_irq(&pcpu_lock);
1100
1101 chunk = alloc_pcpu_chunk();
1102 if (!chunk) {
1103 err = "failed to allocate new chunk";
1104 goto fail_unlock_mutex;
1105 }
1106
1107 spin_lock_irq(&pcpu_lock);
1108 pcpu_chunk_relocate(chunk, -1);
1109 goto restart;
1110
1111 area_found:
1112 spin_unlock_irq(&pcpu_lock);
1113
1114 /* populate, map and clear the area */
1115 if (pcpu_populate_chunk(chunk, off, size)) {
1116 spin_lock_irq(&pcpu_lock);
1117 pcpu_free_area(chunk, off);
1118 err = "failed to populate";
1119 goto fail_unlock;
1120 }
1121
1122 mutex_unlock(&pcpu_alloc_mutex);
1123
1124 /* return address relative to base address */
1125 return __addr_to_pcpu_ptr(chunk->base_addr + off);
1126
1127 fail_unlock:
1128 spin_unlock_irq(&pcpu_lock);
1129 fail_unlock_mutex:
1130 mutex_unlock(&pcpu_alloc_mutex);
1131 if (warn_limit) {
1132 pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1133 "%s\n", size, align, err);
1134 dump_stack();
1135 if (!--warn_limit)
1136 pr_info("PERCPU: limit reached, disable warning\n");
1137 }
1138 return NULL;
1139 }
1140
1141 /**
1142 * __alloc_percpu - allocate dynamic percpu area
1143 * @size: size of area to allocate in bytes
1144 * @align: alignment of area (max PAGE_SIZE)
1145 *
1146 * Allocate percpu area of @size bytes aligned at @align. Might
1147 * sleep. Might trigger writeouts.
1148 *
1149 * CONTEXT:
1150 * Does GFP_KERNEL allocation.
1151 *
1152 * RETURNS:
1153 * Percpu pointer to the allocated area on success, NULL on failure.
1154 */
1155 void *__alloc_percpu(size_t size, size_t align)
1156 {
1157 return pcpu_alloc(size, align, false);
1158 }
1159 EXPORT_SYMBOL_GPL(__alloc_percpu);
1160
1161 /**
1162 * __alloc_reserved_percpu - allocate reserved percpu area
1163 * @size: size of area to allocate in bytes
1164 * @align: alignment of area (max PAGE_SIZE)
1165 *
1166 * Allocate percpu area of @size bytes aligned at @align from reserved
1167 * percpu area if arch has set it up; otherwise, allocation is served
1168 * from the same dynamic area. Might sleep. Might trigger writeouts.
1169 *
1170 * CONTEXT:
1171 * Does GFP_KERNEL allocation.
1172 *
1173 * RETURNS:
1174 * Percpu pointer to the allocated area on success, NULL on failure.
1175 */
1176 void *__alloc_reserved_percpu(size_t size, size_t align)
1177 {
1178 return pcpu_alloc(size, align, true);
1179 }
1180
1181 /**
1182 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1183 * @work: unused
1184 *
1185 * Reclaim all fully free chunks except for the first one.
1186 *
1187 * CONTEXT:
1188 * workqueue context.
1189 */
1190 static void pcpu_reclaim(struct work_struct *work)
1191 {
1192 LIST_HEAD(todo);
1193 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1194 struct pcpu_chunk *chunk, *next;
1195
1196 mutex_lock(&pcpu_alloc_mutex);
1197 spin_lock_irq(&pcpu_lock);
1198
1199 list_for_each_entry_safe(chunk, next, head, list) {
1200 WARN_ON(chunk->immutable);
1201
1202 /* spare the first one */
1203 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1204 continue;
1205
1206 list_move(&chunk->list, &todo);
1207 }
1208
1209 spin_unlock_irq(&pcpu_lock);
1210
1211 list_for_each_entry_safe(chunk, next, &todo, list) {
1212 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1213 free_pcpu_chunk(chunk);
1214 }
1215
1216 mutex_unlock(&pcpu_alloc_mutex);
1217 }
1218
1219 /**
1220 * free_percpu - free percpu area
1221 * @ptr: pointer to area to free
1222 *
1223 * Free percpu area @ptr.
1224 *
1225 * CONTEXT:
1226 * Can be called from atomic context.
1227 */
1228 void free_percpu(void *ptr)
1229 {
1230 void *addr = __pcpu_ptr_to_addr(ptr);
1231 struct pcpu_chunk *chunk;
1232 unsigned long flags;
1233 int off;
1234
1235 if (!ptr)
1236 return;
1237
1238 spin_lock_irqsave(&pcpu_lock, flags);
1239
1240 chunk = pcpu_chunk_addr_search(addr);
1241 off = addr - chunk->base_addr;
1242
1243 pcpu_free_area(chunk, off);
1244
1245 /* if there are more than one fully free chunks, wake up grim reaper */
1246 if (chunk->free_size == pcpu_unit_size) {
1247 struct pcpu_chunk *pos;
1248
1249 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1250 if (pos != chunk) {
1251 schedule_work(&pcpu_reclaim_work);
1252 break;
1253 }
1254 }
1255
1256 spin_unlock_irqrestore(&pcpu_lock, flags);
1257 }
1258 EXPORT_SYMBOL_GPL(free_percpu);
1259
1260 static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1261 size_t reserved_size,
1262 ssize_t *dyn_sizep)
1263 {
1264 size_t size_sum;
1265
1266 size_sum = PFN_ALIGN(static_size + reserved_size +
1267 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1268 if (*dyn_sizep != 0)
1269 *dyn_sizep = size_sum - static_size - reserved_size;
1270
1271 return size_sum;
1272 }
1273
1274 /**
1275 * pcpu_alloc_alloc_info - allocate percpu allocation info
1276 * @nr_groups: the number of groups
1277 * @nr_units: the number of units
1278 *
1279 * Allocate ai which is large enough for @nr_groups groups containing
1280 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1281 * cpu_map array which is long enough for @nr_units and filled with
1282 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1283 * pointer of other groups.
1284 *
1285 * RETURNS:
1286 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1287 * failure.
1288 */
1289 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1290 int nr_units)
1291 {
1292 struct pcpu_alloc_info *ai;
1293 size_t base_size, ai_size;
1294 void *ptr;
1295 int unit;
1296
1297 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1298 __alignof__(ai->groups[0].cpu_map[0]));
1299 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1300
1301 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1302 if (!ptr)
1303 return NULL;
1304 ai = ptr;
1305 ptr += base_size;
1306
1307 ai->groups[0].cpu_map = ptr;
1308
1309 for (unit = 0; unit < nr_units; unit++)
1310 ai->groups[0].cpu_map[unit] = NR_CPUS;
1311
1312 ai->nr_groups = nr_groups;
1313 ai->__ai_size = PFN_ALIGN(ai_size);
1314
1315 return ai;
1316 }
1317
1318 /**
1319 * pcpu_free_alloc_info - free percpu allocation info
1320 * @ai: pcpu_alloc_info to free
1321 *
1322 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1323 */
1324 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1325 {
1326 free_bootmem(__pa(ai), ai->__ai_size);
1327 }
1328
1329 /**
1330 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1331 * @reserved_size: the size of reserved percpu area in bytes
1332 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1333 * @atom_size: allocation atom size
1334 * @cpu_distance_fn: callback to determine distance between cpus, optional
1335 *
1336 * This function determines grouping of units, their mappings to cpus
1337 * and other parameters considering needed percpu size, allocation
1338 * atom size and distances between CPUs.
1339 *
1340 * Groups are always mutliples of atom size and CPUs which are of
1341 * LOCAL_DISTANCE both ways are grouped together and share space for
1342 * units in the same group. The returned configuration is guaranteed
1343 * to have CPUs on different nodes on different groups and >=75% usage
1344 * of allocated virtual address space.
1345 *
1346 * RETURNS:
1347 * On success, pointer to the new allocation_info is returned. On
1348 * failure, ERR_PTR value is returned.
1349 */
1350 struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1351 size_t reserved_size, ssize_t dyn_size,
1352 size_t atom_size,
1353 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1354 {
1355 static int group_map[NR_CPUS] __initdata;
1356 static int group_cnt[NR_CPUS] __initdata;
1357 const size_t static_size = __per_cpu_end - __per_cpu_start;
1358 int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1359 size_t size_sum, min_unit_size, alloc_size;
1360 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
1361 int last_allocs, group, unit;
1362 unsigned int cpu, tcpu;
1363 struct pcpu_alloc_info *ai;
1364 unsigned int *cpu_map;
1365
1366 /* this function may be called multiple times */
1367 memset(group_map, 0, sizeof(group_map));
1368 memset(group_cnt, 0, sizeof(group_map));
1369
1370 /*
1371 * Determine min_unit_size, alloc_size and max_upa such that
1372 * alloc_size is multiple of atom_size and is the smallest
1373 * which can accomodate 4k aligned segments which are equal to
1374 * or larger than min_unit_size.
1375 */
1376 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1377 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1378
1379 alloc_size = roundup(min_unit_size, atom_size);
1380 upa = alloc_size / min_unit_size;
1381 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1382 upa--;
1383 max_upa = upa;
1384
1385 /* group cpus according to their proximity */
1386 for_each_possible_cpu(cpu) {
1387 group = 0;
1388 next_group:
1389 for_each_possible_cpu(tcpu) {
1390 if (cpu == tcpu)
1391 break;
1392 if (group_map[tcpu] == group && cpu_distance_fn &&
1393 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1394 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1395 group++;
1396 nr_groups = max(nr_groups, group + 1);
1397 goto next_group;
1398 }
1399 }
1400 group_map[cpu] = group;
1401 group_cnt[group]++;
1402 group_cnt_max = max(group_cnt_max, group_cnt[group]);
1403 }
1404
1405 /*
1406 * Expand unit size until address space usage goes over 75%
1407 * and then as much as possible without using more address
1408 * space.
1409 */
1410 last_allocs = INT_MAX;
1411 for (upa = max_upa; upa; upa--) {
1412 int allocs = 0, wasted = 0;
1413
1414 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1415 continue;
1416
1417 for (group = 0; group < nr_groups; group++) {
1418 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1419 allocs += this_allocs;
1420 wasted += this_allocs * upa - group_cnt[group];
1421 }
1422
1423 /*
1424 * Don't accept if wastage is over 25%. The
1425 * greater-than comparison ensures upa==1 always
1426 * passes the following check.
1427 */
1428 if (wasted > num_possible_cpus() / 3)
1429 continue;
1430
1431 /* and then don't consume more memory */
1432 if (allocs > last_allocs)
1433 break;
1434 last_allocs = allocs;
1435 best_upa = upa;
1436 }
1437 upa = best_upa;
1438
1439 /* allocate and fill alloc_info */
1440 for (group = 0; group < nr_groups; group++)
1441 nr_units += roundup(group_cnt[group], upa);
1442
1443 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1444 if (!ai)
1445 return ERR_PTR(-ENOMEM);
1446 cpu_map = ai->groups[0].cpu_map;
1447
1448 for (group = 0; group < nr_groups; group++) {
1449 ai->groups[group].cpu_map = cpu_map;
1450 cpu_map += roundup(group_cnt[group], upa);
1451 }
1452
1453 ai->static_size = static_size;
1454 ai->reserved_size = reserved_size;
1455 ai->dyn_size = dyn_size;
1456 ai->unit_size = alloc_size / upa;
1457 ai->atom_size = atom_size;
1458 ai->alloc_size = alloc_size;
1459
1460 for (group = 0, unit = 0; group_cnt[group]; group++) {
1461 struct pcpu_group_info *gi = &ai->groups[group];
1462
1463 /*
1464 * Initialize base_offset as if all groups are located
1465 * back-to-back. The caller should update this to
1466 * reflect actual allocation.
1467 */
1468 gi->base_offset = unit * ai->unit_size;
1469
1470 for_each_possible_cpu(cpu)
1471 if (group_map[cpu] == group)
1472 gi->cpu_map[gi->nr_units++] = cpu;
1473 gi->nr_units = roundup(gi->nr_units, upa);
1474 unit += gi->nr_units;
1475 }
1476 BUG_ON(unit != nr_units);
1477
1478 return ai;
1479 }
1480
1481 /**
1482 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1483 * @lvl: loglevel
1484 * @ai: allocation info to dump
1485 *
1486 * Print out information about @ai using loglevel @lvl.
1487 */
1488 static void pcpu_dump_alloc_info(const char *lvl,
1489 const struct pcpu_alloc_info *ai)
1490 {
1491 int group_width = 1, cpu_width = 1, width;
1492 char empty_str[] = "--------";
1493 int alloc = 0, alloc_end = 0;
1494 int group, v;
1495 int upa, apl; /* units per alloc, allocs per line */
1496
1497 v = ai->nr_groups;
1498 while (v /= 10)
1499 group_width++;
1500
1501 v = num_possible_cpus();
1502 while (v /= 10)
1503 cpu_width++;
1504 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1505
1506 upa = ai->alloc_size / ai->unit_size;
1507 width = upa * (cpu_width + 1) + group_width + 3;
1508 apl = rounddown_pow_of_two(max(60 / width, 1));
1509
1510 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1511 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1512 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1513
1514 for (group = 0; group < ai->nr_groups; group++) {
1515 const struct pcpu_group_info *gi = &ai->groups[group];
1516 int unit = 0, unit_end = 0;
1517
1518 BUG_ON(gi->nr_units % upa);
1519 for (alloc_end += gi->nr_units / upa;
1520 alloc < alloc_end; alloc++) {
1521 if (!(alloc % apl)) {
1522 printk("\n");
1523 printk("%spcpu-alloc: ", lvl);
1524 }
1525 printk("[%0*d] ", group_width, group);
1526
1527 for (unit_end += upa; unit < unit_end; unit++)
1528 if (gi->cpu_map[unit] != NR_CPUS)
1529 printk("%0*d ", cpu_width,
1530 gi->cpu_map[unit]);
1531 else
1532 printk("%s ", empty_str);
1533 }
1534 }
1535 printk("\n");
1536 }
1537
1538 /**
1539 * pcpu_setup_first_chunk - initialize the first percpu chunk
1540 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1541 * @base_addr: mapped address
1542 *
1543 * Initialize the first percpu chunk which contains the kernel static
1544 * perpcu area. This function is to be called from arch percpu area
1545 * setup path.
1546 *
1547 * @ai contains all information necessary to initialize the first
1548 * chunk and prime the dynamic percpu allocator.
1549 *
1550 * @ai->static_size is the size of static percpu area.
1551 *
1552 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1553 * reserve after the static area in the first chunk. This reserves
1554 * the first chunk such that it's available only through reserved
1555 * percpu allocation. This is primarily used to serve module percpu
1556 * static areas on architectures where the addressing model has
1557 * limited offset range for symbol relocations to guarantee module
1558 * percpu symbols fall inside the relocatable range.
1559 *
1560 * @ai->dyn_size determines the number of bytes available for dynamic
1561 * allocation in the first chunk. The area between @ai->static_size +
1562 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1563 *
1564 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1565 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1566 * @ai->dyn_size.
1567 *
1568 * @ai->atom_size is the allocation atom size and used as alignment
1569 * for vm areas.
1570 *
1571 * @ai->alloc_size is the allocation size and always multiple of
1572 * @ai->atom_size. This is larger than @ai->atom_size if
1573 * @ai->unit_size is larger than @ai->atom_size.
1574 *
1575 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1576 * percpu areas. Units which should be colocated are put into the
1577 * same group. Dynamic VM areas will be allocated according to these
1578 * groupings. If @ai->nr_groups is zero, a single group containing
1579 * all units is assumed.
1580 *
1581 * The caller should have mapped the first chunk at @base_addr and
1582 * copied static data to each unit.
1583 *
1584 * If the first chunk ends up with both reserved and dynamic areas, it
1585 * is served by two chunks - one to serve the core static and reserved
1586 * areas and the other for the dynamic area. They share the same vm
1587 * and page map but uses different area allocation map to stay away
1588 * from each other. The latter chunk is circulated in the chunk slots
1589 * and available for dynamic allocation like any other chunks.
1590 *
1591 * RETURNS:
1592 * 0 on success, -errno on failure.
1593 */
1594 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1595 void *base_addr)
1596 {
1597 static char cpus_buf[4096] __initdata;
1598 static int smap[2], dmap[2];
1599 size_t dyn_size = ai->dyn_size;
1600 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1601 struct pcpu_chunk *schunk, *dchunk = NULL;
1602 unsigned long *group_offsets;
1603 size_t *group_sizes;
1604 unsigned long *unit_off;
1605 unsigned int cpu;
1606 int *unit_map;
1607 int group, unit, i;
1608
1609 cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1610
1611 #define PCPU_SETUP_BUG_ON(cond) do { \
1612 if (unlikely(cond)) { \
1613 pr_emerg("PERCPU: failed to initialize, %s", #cond); \
1614 pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf); \
1615 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1616 BUG(); \
1617 } \
1618 } while (0)
1619
1620 /* sanity checks */
1621 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1622 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1623 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1624 PCPU_SETUP_BUG_ON(!ai->static_size);
1625 PCPU_SETUP_BUG_ON(!base_addr);
1626 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1627 PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1628 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1629
1630 /* process group information and build config tables accordingly */
1631 group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1632 group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1633 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1634 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1635
1636 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1637 unit_map[cpu] = UINT_MAX;
1638 pcpu_first_unit_cpu = NR_CPUS;
1639
1640 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1641 const struct pcpu_group_info *gi = &ai->groups[group];
1642
1643 group_offsets[group] = gi->base_offset;
1644 group_sizes[group] = gi->nr_units * ai->unit_size;
1645
1646 for (i = 0; i < gi->nr_units; i++) {
1647 cpu = gi->cpu_map[i];
1648 if (cpu == NR_CPUS)
1649 continue;
1650
1651 PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1652 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1653 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1654
1655 unit_map[cpu] = unit + i;
1656 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1657
1658 if (pcpu_first_unit_cpu == NR_CPUS)
1659 pcpu_first_unit_cpu = cpu;
1660 }
1661 }
1662 pcpu_last_unit_cpu = cpu;
1663 pcpu_nr_units = unit;
1664
1665 for_each_possible_cpu(cpu)
1666 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1667
1668 /* we're done parsing the input, undefine BUG macro and dump config */
1669 #undef PCPU_SETUP_BUG_ON
1670 pcpu_dump_alloc_info(KERN_INFO, ai);
1671
1672 pcpu_nr_groups = ai->nr_groups;
1673 pcpu_group_offsets = group_offsets;
1674 pcpu_group_sizes = group_sizes;
1675 pcpu_unit_map = unit_map;
1676 pcpu_unit_offsets = unit_off;
1677
1678 /* determine basic parameters */
1679 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1680 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1681 pcpu_atom_size = ai->atom_size;
1682 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1683 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1684
1685 /*
1686 * Allocate chunk slots. The additional last slot is for
1687 * empty chunks.
1688 */
1689 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1690 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1691 for (i = 0; i < pcpu_nr_slots; i++)
1692 INIT_LIST_HEAD(&pcpu_slot[i]);
1693
1694 /*
1695 * Initialize static chunk. If reserved_size is zero, the
1696 * static chunk covers static area + dynamic allocation area
1697 * in the first chunk. If reserved_size is not zero, it
1698 * covers static area + reserved area (mostly used for module
1699 * static percpu allocation).
1700 */
1701 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1702 INIT_LIST_HEAD(&schunk->list);
1703 schunk->base_addr = base_addr;
1704 schunk->map = smap;
1705 schunk->map_alloc = ARRAY_SIZE(smap);
1706 schunk->immutable = true;
1707 bitmap_fill(schunk->populated, pcpu_unit_pages);
1708
1709 if (ai->reserved_size) {
1710 schunk->free_size = ai->reserved_size;
1711 pcpu_reserved_chunk = schunk;
1712 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1713 } else {
1714 schunk->free_size = dyn_size;
1715 dyn_size = 0; /* dynamic area covered */
1716 }
1717 schunk->contig_hint = schunk->free_size;
1718
1719 schunk->map[schunk->map_used++] = -ai->static_size;
1720 if (schunk->free_size)
1721 schunk->map[schunk->map_used++] = schunk->free_size;
1722
1723 /* init dynamic chunk if necessary */
1724 if (dyn_size) {
1725 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1726 INIT_LIST_HEAD(&dchunk->list);
1727 dchunk->base_addr = base_addr;
1728 dchunk->map = dmap;
1729 dchunk->map_alloc = ARRAY_SIZE(dmap);
1730 dchunk->immutable = true;
1731 bitmap_fill(dchunk->populated, pcpu_unit_pages);
1732
1733 dchunk->contig_hint = dchunk->free_size = dyn_size;
1734 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1735 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1736 }
1737
1738 /* link the first chunk in */
1739 pcpu_first_chunk = dchunk ?: schunk;
1740 pcpu_chunk_relocate(pcpu_first_chunk, -1);
1741
1742 /* we're done */
1743 pcpu_base_addr = base_addr;
1744 return 0;
1745 }
1746
1747 const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1748 [PCPU_FC_AUTO] = "auto",
1749 [PCPU_FC_EMBED] = "embed",
1750 [PCPU_FC_PAGE] = "page",
1751 };
1752
1753 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1754
1755 static int __init percpu_alloc_setup(char *str)
1756 {
1757 if (0)
1758 /* nada */;
1759 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1760 else if (!strcmp(str, "embed"))
1761 pcpu_chosen_fc = PCPU_FC_EMBED;
1762 #endif
1763 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1764 else if (!strcmp(str, "page"))
1765 pcpu_chosen_fc = PCPU_FC_PAGE;
1766 #endif
1767 else
1768 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1769
1770 return 0;
1771 }
1772 early_param("percpu_alloc", percpu_alloc_setup);
1773
1774 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1775 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1776 /**
1777 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1778 * @reserved_size: the size of reserved percpu area in bytes
1779 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1780 * @atom_size: allocation atom size
1781 * @cpu_distance_fn: callback to determine distance between cpus, optional
1782 * @alloc_fn: function to allocate percpu page
1783 * @free_fn: funtion to free percpu page
1784 *
1785 * This is a helper to ease setting up embedded first percpu chunk and
1786 * can be called where pcpu_setup_first_chunk() is expected.
1787 *
1788 * If this function is used to setup the first chunk, it is allocated
1789 * by calling @alloc_fn and used as-is without being mapped into
1790 * vmalloc area. Allocations are always whole multiples of @atom_size
1791 * aligned to @atom_size.
1792 *
1793 * This enables the first chunk to piggy back on the linear physical
1794 * mapping which often uses larger page size. Please note that this
1795 * can result in very sparse cpu->unit mapping on NUMA machines thus
1796 * requiring large vmalloc address space. Don't use this allocator if
1797 * vmalloc space is not orders of magnitude larger than distances
1798 * between node memory addresses (ie. 32bit NUMA machines).
1799 *
1800 * When @dyn_size is positive, dynamic area might be larger than
1801 * specified to fill page alignment. When @dyn_size is auto,
1802 * @dyn_size is just big enough to fill page alignment after static
1803 * and reserved areas.
1804 *
1805 * If the needed size is smaller than the minimum or specified unit
1806 * size, the leftover is returned using @free_fn.
1807 *
1808 * RETURNS:
1809 * 0 on success, -errno on failure.
1810 */
1811 int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1812 size_t atom_size,
1813 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1814 pcpu_fc_alloc_fn_t alloc_fn,
1815 pcpu_fc_free_fn_t free_fn)
1816 {
1817 void *base = (void *)ULONG_MAX;
1818 void **areas = NULL;
1819 struct pcpu_alloc_info *ai;
1820 size_t size_sum, areas_size, max_distance;
1821 int group, i, rc;
1822
1823 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1824 cpu_distance_fn);
1825 if (IS_ERR(ai))
1826 return PTR_ERR(ai);
1827
1828 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1829 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1830
1831 areas = alloc_bootmem_nopanic(areas_size);
1832 if (!areas) {
1833 rc = -ENOMEM;
1834 goto out_free;
1835 }
1836
1837 /* allocate, copy and determine base address */
1838 for (group = 0; group < ai->nr_groups; group++) {
1839 struct pcpu_group_info *gi = &ai->groups[group];
1840 unsigned int cpu = NR_CPUS;
1841 void *ptr;
1842
1843 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1844 cpu = gi->cpu_map[i];
1845 BUG_ON(cpu == NR_CPUS);
1846
1847 /* allocate space for the whole group */
1848 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1849 if (!ptr) {
1850 rc = -ENOMEM;
1851 goto out_free_areas;
1852 }
1853 areas[group] = ptr;
1854
1855 base = min(ptr, base);
1856
1857 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1858 if (gi->cpu_map[i] == NR_CPUS) {
1859 /* unused unit, free whole */
1860 free_fn(ptr, ai->unit_size);
1861 continue;
1862 }
1863 /* copy and return the unused part */
1864 memcpy(ptr, __per_cpu_load, ai->static_size);
1865 free_fn(ptr + size_sum, ai->unit_size - size_sum);
1866 }
1867 }
1868
1869 /* base address is now known, determine group base offsets */
1870 max_distance = 0;
1871 for (group = 0; group < ai->nr_groups; group++) {
1872 ai->groups[group].base_offset = areas[group] - base;
1873 max_distance = max(max_distance, ai->groups[group].base_offset);
1874 }
1875 max_distance += ai->unit_size;
1876
1877 /* warn if maximum distance is further than 75% of vmalloc space */
1878 if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1879 pr_warning("PERCPU: max_distance=0x%lx too large for vmalloc "
1880 "space 0x%lx\n",
1881 max_distance, VMALLOC_END - VMALLOC_START);
1882 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1883 /* and fail if we have fallback */
1884 rc = -EINVAL;
1885 goto out_free;
1886 #endif
1887 }
1888
1889 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1890 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1891 ai->dyn_size, ai->unit_size);
1892
1893 rc = pcpu_setup_first_chunk(ai, base);
1894 goto out_free;
1895
1896 out_free_areas:
1897 for (group = 0; group < ai->nr_groups; group++)
1898 free_fn(areas[group],
1899 ai->groups[group].nr_units * ai->unit_size);
1900 out_free:
1901 pcpu_free_alloc_info(ai);
1902 if (areas)
1903 free_bootmem(__pa(areas), areas_size);
1904 return rc;
1905 }
1906 #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1907 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
1908
1909 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1910 /**
1911 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1912 * @reserved_size: the size of reserved percpu area in bytes
1913 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1914 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1915 * @populate_pte_fn: function to populate pte
1916 *
1917 * This is a helper to ease setting up page-remapped first percpu
1918 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1919 *
1920 * This is the basic allocator. Static percpu area is allocated
1921 * page-by-page into vmalloc area.
1922 *
1923 * RETURNS:
1924 * 0 on success, -errno on failure.
1925 */
1926 int __init pcpu_page_first_chunk(size_t reserved_size,
1927 pcpu_fc_alloc_fn_t alloc_fn,
1928 pcpu_fc_free_fn_t free_fn,
1929 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1930 {
1931 static struct vm_struct vm;
1932 struct pcpu_alloc_info *ai;
1933 char psize_str[16];
1934 int unit_pages;
1935 size_t pages_size;
1936 struct page **pages;
1937 int unit, i, j, rc;
1938
1939 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1940
1941 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1942 if (IS_ERR(ai))
1943 return PTR_ERR(ai);
1944 BUG_ON(ai->nr_groups != 1);
1945 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1946
1947 unit_pages = ai->unit_size >> PAGE_SHIFT;
1948
1949 /* unaligned allocations can't be freed, round up to page size */
1950 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1951 sizeof(pages[0]));
1952 pages = alloc_bootmem(pages_size);
1953
1954 /* allocate pages */
1955 j = 0;
1956 for (unit = 0; unit < num_possible_cpus(); unit++)
1957 for (i = 0; i < unit_pages; i++) {
1958 unsigned int cpu = ai->groups[0].cpu_map[unit];
1959 void *ptr;
1960
1961 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1962 if (!ptr) {
1963 pr_warning("PERCPU: failed to allocate %s page "
1964 "for cpu%u\n", psize_str, cpu);
1965 goto enomem;
1966 }
1967 pages[j++] = virt_to_page(ptr);
1968 }
1969
1970 /* allocate vm area, map the pages and copy static data */
1971 vm.flags = VM_ALLOC;
1972 vm.size = num_possible_cpus() * ai->unit_size;
1973 vm_area_register_early(&vm, PAGE_SIZE);
1974
1975 for (unit = 0; unit < num_possible_cpus(); unit++) {
1976 unsigned long unit_addr =
1977 (unsigned long)vm.addr + unit * ai->unit_size;
1978
1979 for (i = 0; i < unit_pages; i++)
1980 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1981
1982 /* pte already populated, the following shouldn't fail */
1983 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1984 unit_pages);
1985 if (rc < 0)
1986 panic("failed to map percpu area, err=%d\n", rc);
1987
1988 /*
1989 * FIXME: Archs with virtual cache should flush local
1990 * cache for the linear mapping here - something
1991 * equivalent to flush_cache_vmap() on the local cpu.
1992 * flush_cache_vmap() can't be used as most supporting
1993 * data structures are not set up yet.
1994 */
1995
1996 /* copy static data */
1997 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1998 }
1999
2000 /* we're ready, commit */
2001 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2002 unit_pages, psize_str, vm.addr, ai->static_size,
2003 ai->reserved_size, ai->dyn_size);
2004
2005 rc = pcpu_setup_first_chunk(ai, vm.addr);
2006 goto out_free_ar;
2007
2008 enomem:
2009 while (--j >= 0)
2010 free_fn(page_address(pages[j]), PAGE_SIZE);
2011 rc = -ENOMEM;
2012 out_free_ar:
2013 free_bootmem(__pa(pages), pages_size);
2014 pcpu_free_alloc_info(ai);
2015 return rc;
2016 }
2017 #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2018
2019 /*
2020 * Generic percpu area setup.
2021 *
2022 * The embedding helper is used because its behavior closely resembles
2023 * the original non-dynamic generic percpu area setup. This is
2024 * important because many archs have addressing restrictions and might
2025 * fail if the percpu area is located far away from the previous
2026 * location. As an added bonus, in non-NUMA cases, embedding is
2027 * generally a good idea TLB-wise because percpu area can piggy back
2028 * on the physical linear memory mapping which uses large page
2029 * mappings on applicable archs.
2030 */
2031 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2032 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2033 EXPORT_SYMBOL(__per_cpu_offset);
2034
2035 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2036 size_t align)
2037 {
2038 return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2039 }
2040
2041 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2042 {
2043 free_bootmem(__pa(ptr), size);
2044 }
2045
2046 void __init setup_per_cpu_areas(void)
2047 {
2048 unsigned long delta;
2049 unsigned int cpu;
2050 int rc;
2051
2052 /*
2053 * Always reserve area for module percpu variables. That's
2054 * what the legacy allocator did.
2055 */
2056 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2057 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2058 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2059 if (rc < 0)
2060 panic("Failed to initialized percpu areas.");
2061
2062 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2063 for_each_possible_cpu(cpu)
2064 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2065 }
2066 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
This page took 0.086873 seconds and 6 git commands to generate.