4a3487921effd04b4ab3c3cdbddf216259366d10
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51 #include <linux/memcontrol.h>
52
53 #include <asm/tlbflush.h>
54
55 struct kmem_cache *anon_vma_cachep;
56
57 /* This must be called under the mmap_sem. */
58 int anon_vma_prepare(struct vm_area_struct *vma)
59 {
60 struct anon_vma *anon_vma = vma->anon_vma;
61
62 might_sleep();
63 if (unlikely(!anon_vma)) {
64 struct mm_struct *mm = vma->vm_mm;
65 struct anon_vma *allocated, *locked;
66
67 anon_vma = find_mergeable_anon_vma(vma);
68 if (anon_vma) {
69 allocated = NULL;
70 locked = anon_vma;
71 spin_lock(&locked->lock);
72 } else {
73 anon_vma = anon_vma_alloc();
74 if (unlikely(!anon_vma))
75 return -ENOMEM;
76 allocated = anon_vma;
77 locked = NULL;
78 }
79
80 /* page_table_lock to protect against threads */
81 spin_lock(&mm->page_table_lock);
82 if (likely(!vma->anon_vma)) {
83 vma->anon_vma = anon_vma;
84 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
85 allocated = NULL;
86 }
87 spin_unlock(&mm->page_table_lock);
88
89 if (locked)
90 spin_unlock(&locked->lock);
91 if (unlikely(allocated))
92 anon_vma_free(allocated);
93 }
94 return 0;
95 }
96
97 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
98 {
99 BUG_ON(vma->anon_vma != next->anon_vma);
100 list_del(&next->anon_vma_node);
101 }
102
103 void __anon_vma_link(struct vm_area_struct *vma)
104 {
105 struct anon_vma *anon_vma = vma->anon_vma;
106
107 if (anon_vma)
108 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
109 }
110
111 void anon_vma_link(struct vm_area_struct *vma)
112 {
113 struct anon_vma *anon_vma = vma->anon_vma;
114
115 if (anon_vma) {
116 spin_lock(&anon_vma->lock);
117 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
118 spin_unlock(&anon_vma->lock);
119 }
120 }
121
122 void anon_vma_unlink(struct vm_area_struct *vma)
123 {
124 struct anon_vma *anon_vma = vma->anon_vma;
125 int empty;
126
127 if (!anon_vma)
128 return;
129
130 spin_lock(&anon_vma->lock);
131 list_del(&vma->anon_vma_node);
132
133 /* We must garbage collect the anon_vma if it's empty */
134 empty = list_empty(&anon_vma->head);
135 spin_unlock(&anon_vma->lock);
136
137 if (empty)
138 anon_vma_free(anon_vma);
139 }
140
141 static void anon_vma_ctor(struct kmem_cache *cachep, void *data)
142 {
143 struct anon_vma *anon_vma = data;
144
145 spin_lock_init(&anon_vma->lock);
146 INIT_LIST_HEAD(&anon_vma->head);
147 }
148
149 void __init anon_vma_init(void)
150 {
151 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
152 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
153 }
154
155 /*
156 * Getting a lock on a stable anon_vma from a page off the LRU is
157 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
158 */
159 static struct anon_vma *page_lock_anon_vma(struct page *page)
160 {
161 struct anon_vma *anon_vma;
162 unsigned long anon_mapping;
163
164 rcu_read_lock();
165 anon_mapping = (unsigned long) page->mapping;
166 if (!(anon_mapping & PAGE_MAPPING_ANON))
167 goto out;
168 if (!page_mapped(page))
169 goto out;
170
171 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
172 spin_lock(&anon_vma->lock);
173 return anon_vma;
174 out:
175 rcu_read_unlock();
176 return NULL;
177 }
178
179 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
180 {
181 spin_unlock(&anon_vma->lock);
182 rcu_read_unlock();
183 }
184
185 /*
186 * At what user virtual address is page expected in @vma?
187 * Returns virtual address or -EFAULT if page's index/offset is not
188 * within the range mapped the @vma.
189 */
190 static inline unsigned long
191 vma_address(struct page *page, struct vm_area_struct *vma)
192 {
193 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
194 unsigned long address;
195
196 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
197 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
198 /* page should be within @vma mapping range */
199 return -EFAULT;
200 }
201 return address;
202 }
203
204 /*
205 * At what user virtual address is page expected in vma? checking that the
206 * page matches the vma: currently only used on anon pages, by unuse_vma;
207 */
208 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
209 {
210 if (PageAnon(page)) {
211 if ((void *)vma->anon_vma !=
212 (void *)page->mapping - PAGE_MAPPING_ANON)
213 return -EFAULT;
214 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
215 if (!vma->vm_file ||
216 vma->vm_file->f_mapping != page->mapping)
217 return -EFAULT;
218 } else
219 return -EFAULT;
220 return vma_address(page, vma);
221 }
222
223 /*
224 * Check that @page is mapped at @address into @mm.
225 *
226 * On success returns with pte mapped and locked.
227 */
228 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
229 unsigned long address, spinlock_t **ptlp)
230 {
231 pgd_t *pgd;
232 pud_t *pud;
233 pmd_t *pmd;
234 pte_t *pte;
235 spinlock_t *ptl;
236
237 pgd = pgd_offset(mm, address);
238 if (!pgd_present(*pgd))
239 return NULL;
240
241 pud = pud_offset(pgd, address);
242 if (!pud_present(*pud))
243 return NULL;
244
245 pmd = pmd_offset(pud, address);
246 if (!pmd_present(*pmd))
247 return NULL;
248
249 pte = pte_offset_map(pmd, address);
250 /* Make a quick check before getting the lock */
251 if (!pte_present(*pte)) {
252 pte_unmap(pte);
253 return NULL;
254 }
255
256 ptl = pte_lockptr(mm, pmd);
257 spin_lock(ptl);
258 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
259 *ptlp = ptl;
260 return pte;
261 }
262 pte_unmap_unlock(pte, ptl);
263 return NULL;
264 }
265
266 /*
267 * Subfunctions of page_referenced: page_referenced_one called
268 * repeatedly from either page_referenced_anon or page_referenced_file.
269 */
270 static int page_referenced_one(struct page *page,
271 struct vm_area_struct *vma, unsigned int *mapcount)
272 {
273 struct mm_struct *mm = vma->vm_mm;
274 unsigned long address;
275 pte_t *pte;
276 spinlock_t *ptl;
277 int referenced = 0;
278
279 address = vma_address(page, vma);
280 if (address == -EFAULT)
281 goto out;
282
283 pte = page_check_address(page, mm, address, &ptl);
284 if (!pte)
285 goto out;
286
287 if (vma->vm_flags & VM_LOCKED) {
288 referenced++;
289 *mapcount = 1; /* break early from loop */
290 } else if (ptep_clear_flush_young(vma, address, pte))
291 referenced++;
292
293 /* Pretend the page is referenced if the task has the
294 swap token and is in the middle of a page fault. */
295 if (mm != current->mm && has_swap_token(mm) &&
296 rwsem_is_locked(&mm->mmap_sem))
297 referenced++;
298
299 (*mapcount)--;
300 pte_unmap_unlock(pte, ptl);
301 out:
302 return referenced;
303 }
304
305 static int page_referenced_anon(struct page *page)
306 {
307 unsigned int mapcount;
308 struct anon_vma *anon_vma;
309 struct vm_area_struct *vma;
310 int referenced = 0;
311
312 anon_vma = page_lock_anon_vma(page);
313 if (!anon_vma)
314 return referenced;
315
316 mapcount = page_mapcount(page);
317 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
318 referenced += page_referenced_one(page, vma, &mapcount);
319 if (!mapcount)
320 break;
321 }
322
323 page_unlock_anon_vma(anon_vma);
324 return referenced;
325 }
326
327 /**
328 * page_referenced_file - referenced check for object-based rmap
329 * @page: the page we're checking references on.
330 *
331 * For an object-based mapped page, find all the places it is mapped and
332 * check/clear the referenced flag. This is done by following the page->mapping
333 * pointer, then walking the chain of vmas it holds. It returns the number
334 * of references it found.
335 *
336 * This function is only called from page_referenced for object-based pages.
337 */
338 static int page_referenced_file(struct page *page)
339 {
340 unsigned int mapcount;
341 struct address_space *mapping = page->mapping;
342 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
343 struct vm_area_struct *vma;
344 struct prio_tree_iter iter;
345 int referenced = 0;
346
347 /*
348 * The caller's checks on page->mapping and !PageAnon have made
349 * sure that this is a file page: the check for page->mapping
350 * excludes the case just before it gets set on an anon page.
351 */
352 BUG_ON(PageAnon(page));
353
354 /*
355 * The page lock not only makes sure that page->mapping cannot
356 * suddenly be NULLified by truncation, it makes sure that the
357 * structure at mapping cannot be freed and reused yet,
358 * so we can safely take mapping->i_mmap_lock.
359 */
360 BUG_ON(!PageLocked(page));
361
362 spin_lock(&mapping->i_mmap_lock);
363
364 /*
365 * i_mmap_lock does not stabilize mapcount at all, but mapcount
366 * is more likely to be accurate if we note it after spinning.
367 */
368 mapcount = page_mapcount(page);
369
370 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
371 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
372 == (VM_LOCKED|VM_MAYSHARE)) {
373 referenced++;
374 break;
375 }
376 referenced += page_referenced_one(page, vma, &mapcount);
377 if (!mapcount)
378 break;
379 }
380
381 spin_unlock(&mapping->i_mmap_lock);
382 return referenced;
383 }
384
385 /**
386 * page_referenced - test if the page was referenced
387 * @page: the page to test
388 * @is_locked: caller holds lock on the page
389 *
390 * Quick test_and_clear_referenced for all mappings to a page,
391 * returns the number of ptes which referenced the page.
392 */
393 int page_referenced(struct page *page, int is_locked)
394 {
395 int referenced = 0;
396
397 if (page_test_and_clear_young(page))
398 referenced++;
399
400 if (TestClearPageReferenced(page))
401 referenced++;
402
403 if (page_mapped(page) && page->mapping) {
404 if (PageAnon(page))
405 referenced += page_referenced_anon(page);
406 else if (is_locked)
407 referenced += page_referenced_file(page);
408 else if (TestSetPageLocked(page))
409 referenced++;
410 else {
411 if (page->mapping)
412 referenced += page_referenced_file(page);
413 unlock_page(page);
414 }
415 }
416 return referenced;
417 }
418
419 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
420 {
421 struct mm_struct *mm = vma->vm_mm;
422 unsigned long address;
423 pte_t *pte;
424 spinlock_t *ptl;
425 int ret = 0;
426
427 address = vma_address(page, vma);
428 if (address == -EFAULT)
429 goto out;
430
431 pte = page_check_address(page, mm, address, &ptl);
432 if (!pte)
433 goto out;
434
435 if (pte_dirty(*pte) || pte_write(*pte)) {
436 pte_t entry;
437
438 flush_cache_page(vma, address, pte_pfn(*pte));
439 entry = ptep_clear_flush(vma, address, pte);
440 entry = pte_wrprotect(entry);
441 entry = pte_mkclean(entry);
442 set_pte_at(mm, address, pte, entry);
443 ret = 1;
444 }
445
446 pte_unmap_unlock(pte, ptl);
447 out:
448 return ret;
449 }
450
451 static int page_mkclean_file(struct address_space *mapping, struct page *page)
452 {
453 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
454 struct vm_area_struct *vma;
455 struct prio_tree_iter iter;
456 int ret = 0;
457
458 BUG_ON(PageAnon(page));
459
460 spin_lock(&mapping->i_mmap_lock);
461 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
462 if (vma->vm_flags & VM_SHARED)
463 ret += page_mkclean_one(page, vma);
464 }
465 spin_unlock(&mapping->i_mmap_lock);
466 return ret;
467 }
468
469 int page_mkclean(struct page *page)
470 {
471 int ret = 0;
472
473 BUG_ON(!PageLocked(page));
474
475 if (page_mapped(page)) {
476 struct address_space *mapping = page_mapping(page);
477 if (mapping) {
478 ret = page_mkclean_file(mapping, page);
479 if (page_test_dirty(page)) {
480 page_clear_dirty(page);
481 ret = 1;
482 }
483 }
484 }
485
486 return ret;
487 }
488 EXPORT_SYMBOL_GPL(page_mkclean);
489
490 /**
491 * page_set_anon_rmap - setup new anonymous rmap
492 * @page: the page to add the mapping to
493 * @vma: the vm area in which the mapping is added
494 * @address: the user virtual address mapped
495 */
496 static void __page_set_anon_rmap(struct page *page,
497 struct vm_area_struct *vma, unsigned long address)
498 {
499 struct anon_vma *anon_vma = vma->anon_vma;
500
501 BUG_ON(!anon_vma);
502 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
503 page->mapping = (struct address_space *) anon_vma;
504
505 page->index = linear_page_index(vma, address);
506
507 /*
508 * nr_mapped state can be updated without turning off
509 * interrupts because it is not modified via interrupt.
510 */
511 __inc_zone_page_state(page, NR_ANON_PAGES);
512 }
513
514 /**
515 * page_set_anon_rmap - sanity check anonymous rmap addition
516 * @page: the page to add the mapping to
517 * @vma: the vm area in which the mapping is added
518 * @address: the user virtual address mapped
519 */
520 static void __page_check_anon_rmap(struct page *page,
521 struct vm_area_struct *vma, unsigned long address)
522 {
523 #ifdef CONFIG_DEBUG_VM
524 /*
525 * The page's anon-rmap details (mapping and index) are guaranteed to
526 * be set up correctly at this point.
527 *
528 * We have exclusion against page_add_anon_rmap because the caller
529 * always holds the page locked, except if called from page_dup_rmap,
530 * in which case the page is already known to be setup.
531 *
532 * We have exclusion against page_add_new_anon_rmap because those pages
533 * are initially only visible via the pagetables, and the pte is locked
534 * over the call to page_add_new_anon_rmap.
535 */
536 struct anon_vma *anon_vma = vma->anon_vma;
537 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
538 BUG_ON(page->mapping != (struct address_space *)anon_vma);
539 BUG_ON(page->index != linear_page_index(vma, address));
540 #endif
541 }
542
543 /**
544 * page_add_anon_rmap - add pte mapping to an anonymous page
545 * @page: the page to add the mapping to
546 * @vma: the vm area in which the mapping is added
547 * @address: the user virtual address mapped
548 *
549 * The caller needs to hold the pte lock and the page must be locked.
550 */
551 void page_add_anon_rmap(struct page *page,
552 struct vm_area_struct *vma, unsigned long address)
553 {
554 VM_BUG_ON(!PageLocked(page));
555 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
556 if (atomic_inc_and_test(&page->_mapcount))
557 __page_set_anon_rmap(page, vma, address);
558 else {
559 __page_check_anon_rmap(page, vma, address);
560 /*
561 * We unconditionally charged during prepare, we uncharge here
562 * This takes care of balancing the reference counts
563 */
564 mem_cgroup_uncharge_page(page);
565 }
566 }
567
568 /*
569 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
570 * @page: the page to add the mapping to
571 * @vma: the vm area in which the mapping is added
572 * @address: the user virtual address mapped
573 *
574 * Same as page_add_anon_rmap but must only be called on *new* pages.
575 * This means the inc-and-test can be bypassed.
576 * Page does not have to be locked.
577 */
578 void page_add_new_anon_rmap(struct page *page,
579 struct vm_area_struct *vma, unsigned long address)
580 {
581 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
582 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
583 __page_set_anon_rmap(page, vma, address);
584 }
585
586 /**
587 * page_add_file_rmap - add pte mapping to a file page
588 * @page: the page to add the mapping to
589 *
590 * The caller needs to hold the pte lock.
591 */
592 void page_add_file_rmap(struct page *page)
593 {
594 if (atomic_inc_and_test(&page->_mapcount))
595 __inc_zone_page_state(page, NR_FILE_MAPPED);
596 else
597 /*
598 * We unconditionally charged during prepare, we uncharge here
599 * This takes care of balancing the reference counts
600 */
601 mem_cgroup_uncharge_page(page);
602 }
603
604 #ifdef CONFIG_DEBUG_VM
605 /**
606 * page_dup_rmap - duplicate pte mapping to a page
607 * @page: the page to add the mapping to
608 *
609 * For copy_page_range only: minimal extract from page_add_file_rmap /
610 * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
611 * quicker.
612 *
613 * The caller needs to hold the pte lock.
614 */
615 void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
616 {
617 BUG_ON(page_mapcount(page) == 0);
618 if (PageAnon(page))
619 __page_check_anon_rmap(page, vma, address);
620 atomic_inc(&page->_mapcount);
621 }
622 #endif
623
624 /**
625 * page_remove_rmap - take down pte mapping from a page
626 * @page: page to remove mapping from
627 *
628 * The caller needs to hold the pte lock.
629 */
630 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
631 {
632 if (atomic_add_negative(-1, &page->_mapcount)) {
633 if (unlikely(page_mapcount(page) < 0)) {
634 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
635 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
636 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
637 printk (KERN_EMERG " page->count = %x\n", page_count(page));
638 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
639 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
640 if (vma->vm_ops) {
641 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
642 print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
643 }
644 if (vma->vm_file && vma->vm_file->f_op)
645 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
646 BUG();
647 }
648
649 /*
650 * It would be tidy to reset the PageAnon mapping here,
651 * but that might overwrite a racing page_add_anon_rmap
652 * which increments mapcount after us but sets mapping
653 * before us: so leave the reset to free_hot_cold_page,
654 * and remember that it's only reliable while mapped.
655 * Leaving it set also helps swapoff to reinstate ptes
656 * faster for those pages still in swapcache.
657 */
658 if (page_test_dirty(page)) {
659 page_clear_dirty(page);
660 set_page_dirty(page);
661 }
662 mem_cgroup_uncharge_page(page);
663
664 __dec_zone_page_state(page,
665 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
666 }
667 }
668
669 /*
670 * Subfunctions of try_to_unmap: try_to_unmap_one called
671 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
672 */
673 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
674 int migration)
675 {
676 struct mm_struct *mm = vma->vm_mm;
677 unsigned long address;
678 pte_t *pte;
679 pte_t pteval;
680 spinlock_t *ptl;
681 int ret = SWAP_AGAIN;
682
683 address = vma_address(page, vma);
684 if (address == -EFAULT)
685 goto out;
686
687 pte = page_check_address(page, mm, address, &ptl);
688 if (!pte)
689 goto out;
690
691 /*
692 * If the page is mlock()d, we cannot swap it out.
693 * If it's recently referenced (perhaps page_referenced
694 * skipped over this mm) then we should reactivate it.
695 */
696 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
697 (ptep_clear_flush_young(vma, address, pte)))) {
698 ret = SWAP_FAIL;
699 goto out_unmap;
700 }
701
702 /* Nuke the page table entry. */
703 flush_cache_page(vma, address, page_to_pfn(page));
704 pteval = ptep_clear_flush(vma, address, pte);
705
706 /* Move the dirty bit to the physical page now the pte is gone. */
707 if (pte_dirty(pteval))
708 set_page_dirty(page);
709
710 /* Update high watermark before we lower rss */
711 update_hiwater_rss(mm);
712
713 if (PageAnon(page)) {
714 swp_entry_t entry = { .val = page_private(page) };
715
716 if (PageSwapCache(page)) {
717 /*
718 * Store the swap location in the pte.
719 * See handle_pte_fault() ...
720 */
721 swap_duplicate(entry);
722 if (list_empty(&mm->mmlist)) {
723 spin_lock(&mmlist_lock);
724 if (list_empty(&mm->mmlist))
725 list_add(&mm->mmlist, &init_mm.mmlist);
726 spin_unlock(&mmlist_lock);
727 }
728 dec_mm_counter(mm, anon_rss);
729 #ifdef CONFIG_MIGRATION
730 } else {
731 /*
732 * Store the pfn of the page in a special migration
733 * pte. do_swap_page() will wait until the migration
734 * pte is removed and then restart fault handling.
735 */
736 BUG_ON(!migration);
737 entry = make_migration_entry(page, pte_write(pteval));
738 #endif
739 }
740 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
741 BUG_ON(pte_file(*pte));
742 } else
743 #ifdef CONFIG_MIGRATION
744 if (migration) {
745 /* Establish migration entry for a file page */
746 swp_entry_t entry;
747 entry = make_migration_entry(page, pte_write(pteval));
748 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
749 } else
750 #endif
751 dec_mm_counter(mm, file_rss);
752
753
754 page_remove_rmap(page, vma);
755 page_cache_release(page);
756
757 out_unmap:
758 pte_unmap_unlock(pte, ptl);
759 out:
760 return ret;
761 }
762
763 /*
764 * objrmap doesn't work for nonlinear VMAs because the assumption that
765 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
766 * Consequently, given a particular page and its ->index, we cannot locate the
767 * ptes which are mapping that page without an exhaustive linear search.
768 *
769 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
770 * maps the file to which the target page belongs. The ->vm_private_data field
771 * holds the current cursor into that scan. Successive searches will circulate
772 * around the vma's virtual address space.
773 *
774 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
775 * more scanning pressure is placed against them as well. Eventually pages
776 * will become fully unmapped and are eligible for eviction.
777 *
778 * For very sparsely populated VMAs this is a little inefficient - chances are
779 * there there won't be many ptes located within the scan cluster. In this case
780 * maybe we could scan further - to the end of the pte page, perhaps.
781 */
782 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
783 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
784
785 static void try_to_unmap_cluster(unsigned long cursor,
786 unsigned int *mapcount, struct vm_area_struct *vma)
787 {
788 struct mm_struct *mm = vma->vm_mm;
789 pgd_t *pgd;
790 pud_t *pud;
791 pmd_t *pmd;
792 pte_t *pte;
793 pte_t pteval;
794 spinlock_t *ptl;
795 struct page *page;
796 unsigned long address;
797 unsigned long end;
798
799 address = (vma->vm_start + cursor) & CLUSTER_MASK;
800 end = address + CLUSTER_SIZE;
801 if (address < vma->vm_start)
802 address = vma->vm_start;
803 if (end > vma->vm_end)
804 end = vma->vm_end;
805
806 pgd = pgd_offset(mm, address);
807 if (!pgd_present(*pgd))
808 return;
809
810 pud = pud_offset(pgd, address);
811 if (!pud_present(*pud))
812 return;
813
814 pmd = pmd_offset(pud, address);
815 if (!pmd_present(*pmd))
816 return;
817
818 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
819
820 /* Update high watermark before we lower rss */
821 update_hiwater_rss(mm);
822
823 for (; address < end; pte++, address += PAGE_SIZE) {
824 if (!pte_present(*pte))
825 continue;
826 page = vm_normal_page(vma, address, *pte);
827 BUG_ON(!page || PageAnon(page));
828
829 if (ptep_clear_flush_young(vma, address, pte))
830 continue;
831
832 /* Nuke the page table entry. */
833 flush_cache_page(vma, address, pte_pfn(*pte));
834 pteval = ptep_clear_flush(vma, address, pte);
835
836 /* If nonlinear, store the file page offset in the pte. */
837 if (page->index != linear_page_index(vma, address))
838 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
839
840 /* Move the dirty bit to the physical page now the pte is gone. */
841 if (pte_dirty(pteval))
842 set_page_dirty(page);
843
844 page_remove_rmap(page, vma);
845 page_cache_release(page);
846 dec_mm_counter(mm, file_rss);
847 (*mapcount)--;
848 }
849 pte_unmap_unlock(pte - 1, ptl);
850 }
851
852 static int try_to_unmap_anon(struct page *page, int migration)
853 {
854 struct anon_vma *anon_vma;
855 struct vm_area_struct *vma;
856 int ret = SWAP_AGAIN;
857
858 anon_vma = page_lock_anon_vma(page);
859 if (!anon_vma)
860 return ret;
861
862 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
863 ret = try_to_unmap_one(page, vma, migration);
864 if (ret == SWAP_FAIL || !page_mapped(page))
865 break;
866 }
867
868 page_unlock_anon_vma(anon_vma);
869 return ret;
870 }
871
872 /**
873 * try_to_unmap_file - unmap file page using the object-based rmap method
874 * @page: the page to unmap
875 *
876 * Find all the mappings of a page using the mapping pointer and the vma chains
877 * contained in the address_space struct it points to.
878 *
879 * This function is only called from try_to_unmap for object-based pages.
880 */
881 static int try_to_unmap_file(struct page *page, int migration)
882 {
883 struct address_space *mapping = page->mapping;
884 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
885 struct vm_area_struct *vma;
886 struct prio_tree_iter iter;
887 int ret = SWAP_AGAIN;
888 unsigned long cursor;
889 unsigned long max_nl_cursor = 0;
890 unsigned long max_nl_size = 0;
891 unsigned int mapcount;
892
893 spin_lock(&mapping->i_mmap_lock);
894 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
895 ret = try_to_unmap_one(page, vma, migration);
896 if (ret == SWAP_FAIL || !page_mapped(page))
897 goto out;
898 }
899
900 if (list_empty(&mapping->i_mmap_nonlinear))
901 goto out;
902
903 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
904 shared.vm_set.list) {
905 if ((vma->vm_flags & VM_LOCKED) && !migration)
906 continue;
907 cursor = (unsigned long) vma->vm_private_data;
908 if (cursor > max_nl_cursor)
909 max_nl_cursor = cursor;
910 cursor = vma->vm_end - vma->vm_start;
911 if (cursor > max_nl_size)
912 max_nl_size = cursor;
913 }
914
915 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
916 ret = SWAP_FAIL;
917 goto out;
918 }
919
920 /*
921 * We don't try to search for this page in the nonlinear vmas,
922 * and page_referenced wouldn't have found it anyway. Instead
923 * just walk the nonlinear vmas trying to age and unmap some.
924 * The mapcount of the page we came in with is irrelevant,
925 * but even so use it as a guide to how hard we should try?
926 */
927 mapcount = page_mapcount(page);
928 if (!mapcount)
929 goto out;
930 cond_resched_lock(&mapping->i_mmap_lock);
931
932 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
933 if (max_nl_cursor == 0)
934 max_nl_cursor = CLUSTER_SIZE;
935
936 do {
937 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
938 shared.vm_set.list) {
939 if ((vma->vm_flags & VM_LOCKED) && !migration)
940 continue;
941 cursor = (unsigned long) vma->vm_private_data;
942 while ( cursor < max_nl_cursor &&
943 cursor < vma->vm_end - vma->vm_start) {
944 try_to_unmap_cluster(cursor, &mapcount, vma);
945 cursor += CLUSTER_SIZE;
946 vma->vm_private_data = (void *) cursor;
947 if ((int)mapcount <= 0)
948 goto out;
949 }
950 vma->vm_private_data = (void *) max_nl_cursor;
951 }
952 cond_resched_lock(&mapping->i_mmap_lock);
953 max_nl_cursor += CLUSTER_SIZE;
954 } while (max_nl_cursor <= max_nl_size);
955
956 /*
957 * Don't loop forever (perhaps all the remaining pages are
958 * in locked vmas). Reset cursor on all unreserved nonlinear
959 * vmas, now forgetting on which ones it had fallen behind.
960 */
961 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
962 vma->vm_private_data = NULL;
963 out:
964 spin_unlock(&mapping->i_mmap_lock);
965 return ret;
966 }
967
968 /**
969 * try_to_unmap - try to remove all page table mappings to a page
970 * @page: the page to get unmapped
971 *
972 * Tries to remove all the page table entries which are mapping this
973 * page, used in the pageout path. Caller must hold the page lock.
974 * Return values are:
975 *
976 * SWAP_SUCCESS - we succeeded in removing all mappings
977 * SWAP_AGAIN - we missed a mapping, try again later
978 * SWAP_FAIL - the page is unswappable
979 */
980 int try_to_unmap(struct page *page, int migration)
981 {
982 int ret;
983
984 BUG_ON(!PageLocked(page));
985
986 if (PageAnon(page))
987 ret = try_to_unmap_anon(page, migration);
988 else
989 ret = try_to_unmap_file(page, migration);
990
991 if (!page_mapped(page))
992 ret = SWAP_SUCCESS;
993 return ret;
994 }
995
This page took 0.054147 seconds and 4 git commands to generate.