59da5b734c801c6186621fa5dabf94108268fd51
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
39 */
40
41 #include <linux/mm.h>
42 #include <linux/pagemap.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/slab.h>
46 #include <linux/init.h>
47 #include <linux/rmap.h>
48 #include <linux/rcupdate.h>
49 #include <linux/module.h>
50 #include <linux/kallsyms.h>
51
52 #include <asm/tlbflush.h>
53
54 struct kmem_cache *anon_vma_cachep;
55
56 static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57 {
58 #ifdef CONFIG_DEBUG_VM
59 struct anon_vma *anon_vma = find_vma->anon_vma;
60 struct vm_area_struct *vma;
61 unsigned int mapcount = 0;
62 int found = 0;
63
64 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 mapcount++;
66 BUG_ON(mapcount > 100000);
67 if (vma == find_vma)
68 found = 1;
69 }
70 BUG_ON(!found);
71 #endif
72 }
73
74 /* This must be called under the mmap_sem. */
75 int anon_vma_prepare(struct vm_area_struct *vma)
76 {
77 struct anon_vma *anon_vma = vma->anon_vma;
78
79 might_sleep();
80 if (unlikely(!anon_vma)) {
81 struct mm_struct *mm = vma->vm_mm;
82 struct anon_vma *allocated, *locked;
83
84 anon_vma = find_mergeable_anon_vma(vma);
85 if (anon_vma) {
86 allocated = NULL;
87 locked = anon_vma;
88 spin_lock(&locked->lock);
89 } else {
90 anon_vma = anon_vma_alloc();
91 if (unlikely(!anon_vma))
92 return -ENOMEM;
93 allocated = anon_vma;
94 locked = NULL;
95 }
96
97 /* page_table_lock to protect against threads */
98 spin_lock(&mm->page_table_lock);
99 if (likely(!vma->anon_vma)) {
100 vma->anon_vma = anon_vma;
101 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
102 allocated = NULL;
103 }
104 spin_unlock(&mm->page_table_lock);
105
106 if (locked)
107 spin_unlock(&locked->lock);
108 if (unlikely(allocated))
109 anon_vma_free(allocated);
110 }
111 return 0;
112 }
113
114 void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115 {
116 BUG_ON(vma->anon_vma != next->anon_vma);
117 list_del(&next->anon_vma_node);
118 }
119
120 void __anon_vma_link(struct vm_area_struct *vma)
121 {
122 struct anon_vma *anon_vma = vma->anon_vma;
123
124 if (anon_vma) {
125 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
126 validate_anon_vma(vma);
127 }
128 }
129
130 void anon_vma_link(struct vm_area_struct *vma)
131 {
132 struct anon_vma *anon_vma = vma->anon_vma;
133
134 if (anon_vma) {
135 spin_lock(&anon_vma->lock);
136 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
137 validate_anon_vma(vma);
138 spin_unlock(&anon_vma->lock);
139 }
140 }
141
142 void anon_vma_unlink(struct vm_area_struct *vma)
143 {
144 struct anon_vma *anon_vma = vma->anon_vma;
145 int empty;
146
147 if (!anon_vma)
148 return;
149
150 spin_lock(&anon_vma->lock);
151 validate_anon_vma(vma);
152 list_del(&vma->anon_vma_node);
153
154 /* We must garbage collect the anon_vma if it's empty */
155 empty = list_empty(&anon_vma->head);
156 spin_unlock(&anon_vma->lock);
157
158 if (empty)
159 anon_vma_free(anon_vma);
160 }
161
162 static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 unsigned long flags)
164 {
165 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
166 SLAB_CTOR_CONSTRUCTOR) {
167 struct anon_vma *anon_vma = data;
168
169 spin_lock_init(&anon_vma->lock);
170 INIT_LIST_HEAD(&anon_vma->head);
171 }
172 }
173
174 void __init anon_vma_init(void)
175 {
176 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
177 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
178 }
179
180 /*
181 * Getting a lock on a stable anon_vma from a page off the LRU is
182 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
183 */
184 static struct anon_vma *page_lock_anon_vma(struct page *page)
185 {
186 struct anon_vma *anon_vma;
187 unsigned long anon_mapping;
188
189 rcu_read_lock();
190 anon_mapping = (unsigned long) page->mapping;
191 if (!(anon_mapping & PAGE_MAPPING_ANON))
192 goto out;
193 if (!page_mapped(page))
194 goto out;
195
196 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
197 spin_lock(&anon_vma->lock);
198 return anon_vma;
199 out:
200 rcu_read_unlock();
201 return NULL;
202 }
203
204 static void page_unlock_anon_vma(struct anon_vma *anon_vma)
205 {
206 spin_unlock(&anon_vma->lock);
207 rcu_read_unlock();
208 }
209
210 /*
211 * At what user virtual address is page expected in vma?
212 */
213 static inline unsigned long
214 vma_address(struct page *page, struct vm_area_struct *vma)
215 {
216 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
217 unsigned long address;
218
219 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
220 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
221 /* page should be within any vma from prio_tree_next */
222 BUG_ON(!PageAnon(page));
223 return -EFAULT;
224 }
225 return address;
226 }
227
228 /*
229 * At what user virtual address is page expected in vma? checking that the
230 * page matches the vma: currently only used on anon pages, by unuse_vma;
231 */
232 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
233 {
234 if (PageAnon(page)) {
235 if ((void *)vma->anon_vma !=
236 (void *)page->mapping - PAGE_MAPPING_ANON)
237 return -EFAULT;
238 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
239 if (!vma->vm_file ||
240 vma->vm_file->f_mapping != page->mapping)
241 return -EFAULT;
242 } else
243 return -EFAULT;
244 return vma_address(page, vma);
245 }
246
247 /*
248 * Check that @page is mapped at @address into @mm.
249 *
250 * On success returns with pte mapped and locked.
251 */
252 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
253 unsigned long address, spinlock_t **ptlp)
254 {
255 pgd_t *pgd;
256 pud_t *pud;
257 pmd_t *pmd;
258 pte_t *pte;
259 spinlock_t *ptl;
260
261 pgd = pgd_offset(mm, address);
262 if (!pgd_present(*pgd))
263 return NULL;
264
265 pud = pud_offset(pgd, address);
266 if (!pud_present(*pud))
267 return NULL;
268
269 pmd = pmd_offset(pud, address);
270 if (!pmd_present(*pmd))
271 return NULL;
272
273 pte = pte_offset_map(pmd, address);
274 /* Make a quick check before getting the lock */
275 if (!pte_present(*pte)) {
276 pte_unmap(pte);
277 return NULL;
278 }
279
280 ptl = pte_lockptr(mm, pmd);
281 spin_lock(ptl);
282 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
283 *ptlp = ptl;
284 return pte;
285 }
286 pte_unmap_unlock(pte, ptl);
287 return NULL;
288 }
289
290 /*
291 * Subfunctions of page_referenced: page_referenced_one called
292 * repeatedly from either page_referenced_anon or page_referenced_file.
293 */
294 static int page_referenced_one(struct page *page,
295 struct vm_area_struct *vma, unsigned int *mapcount)
296 {
297 struct mm_struct *mm = vma->vm_mm;
298 unsigned long address;
299 pte_t *pte;
300 spinlock_t *ptl;
301 int referenced = 0;
302
303 address = vma_address(page, vma);
304 if (address == -EFAULT)
305 goto out;
306
307 pte = page_check_address(page, mm, address, &ptl);
308 if (!pte)
309 goto out;
310
311 if (ptep_clear_flush_young(vma, address, pte))
312 referenced++;
313
314 /* Pretend the page is referenced if the task has the
315 swap token and is in the middle of a page fault. */
316 if (mm != current->mm && has_swap_token(mm) &&
317 rwsem_is_locked(&mm->mmap_sem))
318 referenced++;
319
320 (*mapcount)--;
321 pte_unmap_unlock(pte, ptl);
322 out:
323 return referenced;
324 }
325
326 static int page_referenced_anon(struct page *page)
327 {
328 unsigned int mapcount;
329 struct anon_vma *anon_vma;
330 struct vm_area_struct *vma;
331 int referenced = 0;
332
333 anon_vma = page_lock_anon_vma(page);
334 if (!anon_vma)
335 return referenced;
336
337 mapcount = page_mapcount(page);
338 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
339 referenced += page_referenced_one(page, vma, &mapcount);
340 if (!mapcount)
341 break;
342 }
343
344 page_unlock_anon_vma(anon_vma);
345 return referenced;
346 }
347
348 /**
349 * page_referenced_file - referenced check for object-based rmap
350 * @page: the page we're checking references on.
351 *
352 * For an object-based mapped page, find all the places it is mapped and
353 * check/clear the referenced flag. This is done by following the page->mapping
354 * pointer, then walking the chain of vmas it holds. It returns the number
355 * of references it found.
356 *
357 * This function is only called from page_referenced for object-based pages.
358 */
359 static int page_referenced_file(struct page *page)
360 {
361 unsigned int mapcount;
362 struct address_space *mapping = page->mapping;
363 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
364 struct vm_area_struct *vma;
365 struct prio_tree_iter iter;
366 int referenced = 0;
367
368 /*
369 * The caller's checks on page->mapping and !PageAnon have made
370 * sure that this is a file page: the check for page->mapping
371 * excludes the case just before it gets set on an anon page.
372 */
373 BUG_ON(PageAnon(page));
374
375 /*
376 * The page lock not only makes sure that page->mapping cannot
377 * suddenly be NULLified by truncation, it makes sure that the
378 * structure at mapping cannot be freed and reused yet,
379 * so we can safely take mapping->i_mmap_lock.
380 */
381 BUG_ON(!PageLocked(page));
382
383 spin_lock(&mapping->i_mmap_lock);
384
385 /*
386 * i_mmap_lock does not stabilize mapcount at all, but mapcount
387 * is more likely to be accurate if we note it after spinning.
388 */
389 mapcount = page_mapcount(page);
390
391 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
392 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
393 == (VM_LOCKED|VM_MAYSHARE)) {
394 referenced++;
395 break;
396 }
397 referenced += page_referenced_one(page, vma, &mapcount);
398 if (!mapcount)
399 break;
400 }
401
402 spin_unlock(&mapping->i_mmap_lock);
403 return referenced;
404 }
405
406 /**
407 * page_referenced - test if the page was referenced
408 * @page: the page to test
409 * @is_locked: caller holds lock on the page
410 *
411 * Quick test_and_clear_referenced for all mappings to a page,
412 * returns the number of ptes which referenced the page.
413 */
414 int page_referenced(struct page *page, int is_locked)
415 {
416 int referenced = 0;
417
418 if (page_test_and_clear_young(page))
419 referenced++;
420
421 if (TestClearPageReferenced(page))
422 referenced++;
423
424 if (page_mapped(page) && page->mapping) {
425 if (PageAnon(page))
426 referenced += page_referenced_anon(page);
427 else if (is_locked)
428 referenced += page_referenced_file(page);
429 else if (TestSetPageLocked(page))
430 referenced++;
431 else {
432 if (page->mapping)
433 referenced += page_referenced_file(page);
434 unlock_page(page);
435 }
436 }
437 return referenced;
438 }
439
440 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
441 {
442 struct mm_struct *mm = vma->vm_mm;
443 unsigned long address;
444 pte_t *pte;
445 spinlock_t *ptl;
446 int ret = 0;
447
448 address = vma_address(page, vma);
449 if (address == -EFAULT)
450 goto out;
451
452 pte = page_check_address(page, mm, address, &ptl);
453 if (!pte)
454 goto out;
455
456 if (pte_dirty(*pte) || pte_write(*pte)) {
457 pte_t entry;
458
459 flush_cache_page(vma, address, pte_pfn(*pte));
460 entry = ptep_clear_flush(vma, address, pte);
461 entry = pte_wrprotect(entry);
462 entry = pte_mkclean(entry);
463 set_pte_at(mm, address, pte, entry);
464 lazy_mmu_prot_update(entry);
465 ret = 1;
466 }
467
468 pte_unmap_unlock(pte, ptl);
469 out:
470 return ret;
471 }
472
473 static int page_mkclean_file(struct address_space *mapping, struct page *page)
474 {
475 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
476 struct vm_area_struct *vma;
477 struct prio_tree_iter iter;
478 int ret = 0;
479
480 BUG_ON(PageAnon(page));
481
482 spin_lock(&mapping->i_mmap_lock);
483 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
484 if (vma->vm_flags & VM_SHARED)
485 ret += page_mkclean_one(page, vma);
486 }
487 spin_unlock(&mapping->i_mmap_lock);
488 return ret;
489 }
490
491 int page_mkclean(struct page *page)
492 {
493 int ret = 0;
494
495 BUG_ON(!PageLocked(page));
496
497 if (page_mapped(page)) {
498 struct address_space *mapping = page_mapping(page);
499 if (mapping)
500 ret = page_mkclean_file(mapping, page);
501 if (page_test_dirty(page)) {
502 page_clear_dirty(page);
503 ret = 1;
504 }
505 }
506
507 return ret;
508 }
509
510 /**
511 * page_set_anon_rmap - setup new anonymous rmap
512 * @page: the page to add the mapping to
513 * @vma: the vm area in which the mapping is added
514 * @address: the user virtual address mapped
515 */
516 static void __page_set_anon_rmap(struct page *page,
517 struct vm_area_struct *vma, unsigned long address)
518 {
519 struct anon_vma *anon_vma = vma->anon_vma;
520
521 BUG_ON(!anon_vma);
522 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
523 page->mapping = (struct address_space *) anon_vma;
524
525 page->index = linear_page_index(vma, address);
526
527 /*
528 * nr_mapped state can be updated without turning off
529 * interrupts because it is not modified via interrupt.
530 */
531 __inc_zone_page_state(page, NR_ANON_PAGES);
532 }
533
534 /**
535 * page_add_anon_rmap - add pte mapping to an anonymous page
536 * @page: the page to add the mapping to
537 * @vma: the vm area in which the mapping is added
538 * @address: the user virtual address mapped
539 *
540 * The caller needs to hold the pte lock.
541 */
542 void page_add_anon_rmap(struct page *page,
543 struct vm_area_struct *vma, unsigned long address)
544 {
545 if (atomic_inc_and_test(&page->_mapcount))
546 __page_set_anon_rmap(page, vma, address);
547 /* else checking page index and mapping is racy */
548 }
549
550 /*
551 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
552 * @page: the page to add the mapping to
553 * @vma: the vm area in which the mapping is added
554 * @address: the user virtual address mapped
555 *
556 * Same as page_add_anon_rmap but must only be called on *new* pages.
557 * This means the inc-and-test can be bypassed.
558 */
559 void page_add_new_anon_rmap(struct page *page,
560 struct vm_area_struct *vma, unsigned long address)
561 {
562 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
563 __page_set_anon_rmap(page, vma, address);
564 }
565
566 /**
567 * page_add_file_rmap - add pte mapping to a file page
568 * @page: the page to add the mapping to
569 *
570 * The caller needs to hold the pte lock.
571 */
572 void page_add_file_rmap(struct page *page)
573 {
574 if (atomic_inc_and_test(&page->_mapcount))
575 __inc_zone_page_state(page, NR_FILE_MAPPED);
576 }
577
578 /**
579 * page_remove_rmap - take down pte mapping from a page
580 * @page: page to remove mapping from
581 *
582 * The caller needs to hold the pte lock.
583 */
584 void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
585 {
586 if (atomic_add_negative(-1, &page->_mapcount)) {
587 if (unlikely(page_mapcount(page) < 0)) {
588 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
589 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
590 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
591 printk (KERN_EMERG " page->count = %x\n", page_count(page));
592 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
593 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
594 if (vma->vm_ops)
595 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
596 if (vma->vm_file && vma->vm_file->f_op)
597 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
598 BUG();
599 }
600
601 /*
602 * It would be tidy to reset the PageAnon mapping here,
603 * but that might overwrite a racing page_add_anon_rmap
604 * which increments mapcount after us but sets mapping
605 * before us: so leave the reset to free_hot_cold_page,
606 * and remember that it's only reliable while mapped.
607 * Leaving it set also helps swapoff to reinstate ptes
608 * faster for those pages still in swapcache.
609 */
610 if (page_test_dirty(page)) {
611 page_clear_dirty(page);
612 set_page_dirty(page);
613 }
614 __dec_zone_page_state(page,
615 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
616 }
617 }
618
619 /*
620 * Subfunctions of try_to_unmap: try_to_unmap_one called
621 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
622 */
623 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
624 int migration)
625 {
626 struct mm_struct *mm = vma->vm_mm;
627 unsigned long address;
628 pte_t *pte;
629 pte_t pteval;
630 spinlock_t *ptl;
631 int ret = SWAP_AGAIN;
632
633 address = vma_address(page, vma);
634 if (address == -EFAULT)
635 goto out;
636
637 pte = page_check_address(page, mm, address, &ptl);
638 if (!pte)
639 goto out;
640
641 /*
642 * If the page is mlock()d, we cannot swap it out.
643 * If it's recently referenced (perhaps page_referenced
644 * skipped over this mm) then we should reactivate it.
645 */
646 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
647 (ptep_clear_flush_young(vma, address, pte)))) {
648 ret = SWAP_FAIL;
649 goto out_unmap;
650 }
651
652 /* Nuke the page table entry. */
653 flush_cache_page(vma, address, page_to_pfn(page));
654 pteval = ptep_clear_flush(vma, address, pte);
655
656 /* Move the dirty bit to the physical page now the pte is gone. */
657 if (pte_dirty(pteval))
658 set_page_dirty(page);
659
660 /* Update high watermark before we lower rss */
661 update_hiwater_rss(mm);
662
663 if (PageAnon(page)) {
664 swp_entry_t entry = { .val = page_private(page) };
665
666 if (PageSwapCache(page)) {
667 /*
668 * Store the swap location in the pte.
669 * See handle_pte_fault() ...
670 */
671 swap_duplicate(entry);
672 if (list_empty(&mm->mmlist)) {
673 spin_lock(&mmlist_lock);
674 if (list_empty(&mm->mmlist))
675 list_add(&mm->mmlist, &init_mm.mmlist);
676 spin_unlock(&mmlist_lock);
677 }
678 dec_mm_counter(mm, anon_rss);
679 #ifdef CONFIG_MIGRATION
680 } else {
681 /*
682 * Store the pfn of the page in a special migration
683 * pte. do_swap_page() will wait until the migration
684 * pte is removed and then restart fault handling.
685 */
686 BUG_ON(!migration);
687 entry = make_migration_entry(page, pte_write(pteval));
688 #endif
689 }
690 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
691 BUG_ON(pte_file(*pte));
692 } else
693 #ifdef CONFIG_MIGRATION
694 if (migration) {
695 /* Establish migration entry for a file page */
696 swp_entry_t entry;
697 entry = make_migration_entry(page, pte_write(pteval));
698 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
699 } else
700 #endif
701 dec_mm_counter(mm, file_rss);
702
703
704 page_remove_rmap(page, vma);
705 page_cache_release(page);
706
707 out_unmap:
708 pte_unmap_unlock(pte, ptl);
709 out:
710 return ret;
711 }
712
713 /*
714 * objrmap doesn't work for nonlinear VMAs because the assumption that
715 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
716 * Consequently, given a particular page and its ->index, we cannot locate the
717 * ptes which are mapping that page without an exhaustive linear search.
718 *
719 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
720 * maps the file to which the target page belongs. The ->vm_private_data field
721 * holds the current cursor into that scan. Successive searches will circulate
722 * around the vma's virtual address space.
723 *
724 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
725 * more scanning pressure is placed against them as well. Eventually pages
726 * will become fully unmapped and are eligible for eviction.
727 *
728 * For very sparsely populated VMAs this is a little inefficient - chances are
729 * there there won't be many ptes located within the scan cluster. In this case
730 * maybe we could scan further - to the end of the pte page, perhaps.
731 */
732 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
733 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
734
735 static void try_to_unmap_cluster(unsigned long cursor,
736 unsigned int *mapcount, struct vm_area_struct *vma)
737 {
738 struct mm_struct *mm = vma->vm_mm;
739 pgd_t *pgd;
740 pud_t *pud;
741 pmd_t *pmd;
742 pte_t *pte;
743 pte_t pteval;
744 spinlock_t *ptl;
745 struct page *page;
746 unsigned long address;
747 unsigned long end;
748
749 address = (vma->vm_start + cursor) & CLUSTER_MASK;
750 end = address + CLUSTER_SIZE;
751 if (address < vma->vm_start)
752 address = vma->vm_start;
753 if (end > vma->vm_end)
754 end = vma->vm_end;
755
756 pgd = pgd_offset(mm, address);
757 if (!pgd_present(*pgd))
758 return;
759
760 pud = pud_offset(pgd, address);
761 if (!pud_present(*pud))
762 return;
763
764 pmd = pmd_offset(pud, address);
765 if (!pmd_present(*pmd))
766 return;
767
768 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
769
770 /* Update high watermark before we lower rss */
771 update_hiwater_rss(mm);
772
773 for (; address < end; pte++, address += PAGE_SIZE) {
774 if (!pte_present(*pte))
775 continue;
776 page = vm_normal_page(vma, address, *pte);
777 BUG_ON(!page || PageAnon(page));
778
779 if (ptep_clear_flush_young(vma, address, pte))
780 continue;
781
782 /* Nuke the page table entry. */
783 flush_cache_page(vma, address, pte_pfn(*pte));
784 pteval = ptep_clear_flush(vma, address, pte);
785
786 /* If nonlinear, store the file page offset in the pte. */
787 if (page->index != linear_page_index(vma, address))
788 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
789
790 /* Move the dirty bit to the physical page now the pte is gone. */
791 if (pte_dirty(pteval))
792 set_page_dirty(page);
793
794 page_remove_rmap(page, vma);
795 page_cache_release(page);
796 dec_mm_counter(mm, file_rss);
797 (*mapcount)--;
798 }
799 pte_unmap_unlock(pte - 1, ptl);
800 }
801
802 static int try_to_unmap_anon(struct page *page, int migration)
803 {
804 struct anon_vma *anon_vma;
805 struct vm_area_struct *vma;
806 int ret = SWAP_AGAIN;
807
808 anon_vma = page_lock_anon_vma(page);
809 if (!anon_vma)
810 return ret;
811
812 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
813 ret = try_to_unmap_one(page, vma, migration);
814 if (ret == SWAP_FAIL || !page_mapped(page))
815 break;
816 }
817
818 page_unlock_anon_vma(anon_vma);
819 return ret;
820 }
821
822 /**
823 * try_to_unmap_file - unmap file page using the object-based rmap method
824 * @page: the page to unmap
825 *
826 * Find all the mappings of a page using the mapping pointer and the vma chains
827 * contained in the address_space struct it points to.
828 *
829 * This function is only called from try_to_unmap for object-based pages.
830 */
831 static int try_to_unmap_file(struct page *page, int migration)
832 {
833 struct address_space *mapping = page->mapping;
834 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
835 struct vm_area_struct *vma;
836 struct prio_tree_iter iter;
837 int ret = SWAP_AGAIN;
838 unsigned long cursor;
839 unsigned long max_nl_cursor = 0;
840 unsigned long max_nl_size = 0;
841 unsigned int mapcount;
842
843 spin_lock(&mapping->i_mmap_lock);
844 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
845 ret = try_to_unmap_one(page, vma, migration);
846 if (ret == SWAP_FAIL || !page_mapped(page))
847 goto out;
848 }
849
850 if (list_empty(&mapping->i_mmap_nonlinear))
851 goto out;
852
853 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
854 shared.vm_set.list) {
855 if ((vma->vm_flags & VM_LOCKED) && !migration)
856 continue;
857 cursor = (unsigned long) vma->vm_private_data;
858 if (cursor > max_nl_cursor)
859 max_nl_cursor = cursor;
860 cursor = vma->vm_end - vma->vm_start;
861 if (cursor > max_nl_size)
862 max_nl_size = cursor;
863 }
864
865 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
866 ret = SWAP_FAIL;
867 goto out;
868 }
869
870 /*
871 * We don't try to search for this page in the nonlinear vmas,
872 * and page_referenced wouldn't have found it anyway. Instead
873 * just walk the nonlinear vmas trying to age and unmap some.
874 * The mapcount of the page we came in with is irrelevant,
875 * but even so use it as a guide to how hard we should try?
876 */
877 mapcount = page_mapcount(page);
878 if (!mapcount)
879 goto out;
880 cond_resched_lock(&mapping->i_mmap_lock);
881
882 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
883 if (max_nl_cursor == 0)
884 max_nl_cursor = CLUSTER_SIZE;
885
886 do {
887 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
888 shared.vm_set.list) {
889 if ((vma->vm_flags & VM_LOCKED) && !migration)
890 continue;
891 cursor = (unsigned long) vma->vm_private_data;
892 while ( cursor < max_nl_cursor &&
893 cursor < vma->vm_end - vma->vm_start) {
894 try_to_unmap_cluster(cursor, &mapcount, vma);
895 cursor += CLUSTER_SIZE;
896 vma->vm_private_data = (void *) cursor;
897 if ((int)mapcount <= 0)
898 goto out;
899 }
900 vma->vm_private_data = (void *) max_nl_cursor;
901 }
902 cond_resched_lock(&mapping->i_mmap_lock);
903 max_nl_cursor += CLUSTER_SIZE;
904 } while (max_nl_cursor <= max_nl_size);
905
906 /*
907 * Don't loop forever (perhaps all the remaining pages are
908 * in locked vmas). Reset cursor on all unreserved nonlinear
909 * vmas, now forgetting on which ones it had fallen behind.
910 */
911 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
912 vma->vm_private_data = NULL;
913 out:
914 spin_unlock(&mapping->i_mmap_lock);
915 return ret;
916 }
917
918 /**
919 * try_to_unmap - try to remove all page table mappings to a page
920 * @page: the page to get unmapped
921 *
922 * Tries to remove all the page table entries which are mapping this
923 * page, used in the pageout path. Caller must hold the page lock.
924 * Return values are:
925 *
926 * SWAP_SUCCESS - we succeeded in removing all mappings
927 * SWAP_AGAIN - we missed a mapping, try again later
928 * SWAP_FAIL - the page is unswappable
929 */
930 int try_to_unmap(struct page *page, int migration)
931 {
932 int ret;
933
934 BUG_ON(!PageLocked(page));
935
936 if (PageAnon(page))
937 ret = try_to_unmap_anon(page, migration);
938 else
939 ret = try_to_unmap_file(page, migration);
940
941 if (!page_mapped(page))
942 ret = SWAP_SUCCESS;
943 return ret;
944 }
945
This page took 0.05066 seconds and 5 git commands to generate.