6bada99cd61c51cf98e36728b0ba646bd1410580
[deliverable/linux.git] / mm / rmap.c
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
28 * anon_vma->mutex
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 * anon_vma->mutex (memory_failure, collect_procs_anon)
44 * pte map lock
45 */
46
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61
62 #include <asm/tlbflush.h>
63
64 #include "internal.h"
65
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
68
69 static inline struct anon_vma *anon_vma_alloc(void)
70 {
71 struct anon_vma *anon_vma;
72
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
76 /*
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
79 */
80 anon_vma->root = anon_vma;
81 }
82
83 return anon_vma;
84 }
85
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 {
88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
89
90 /*
91 * Synchronize against page_lock_anon_vma() such that
92 * we can safely hold the lock without the anon_vma getting
93 * freed.
94 *
95 * Relies on the full mb implied by the atomic_dec_and_test() from
96 * put_anon_vma() against the acquire barrier implied by
97 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 *
99 * page_lock_anon_vma() VS put_anon_vma()
100 * mutex_trylock() atomic_dec_and_test()
101 * LOCK MB
102 * atomic_read() mutex_is_locked()
103 *
104 * LOCK should suffice since the actual taking of the lock must
105 * happen _before_ what follows.
106 */
107 if (mutex_is_locked(&anon_vma->root->mutex)) {
108 anon_vma_lock(anon_vma);
109 anon_vma_unlock(anon_vma);
110 }
111
112 kmem_cache_free(anon_vma_cachep, anon_vma);
113 }
114
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
116 {
117 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
118 }
119
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
121 {
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
123 }
124
125 /**
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
128 *
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
132 *
133 * The common case will be that we already have one, but if
134 * not we either need to find an adjacent mapping that we
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
138 *
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
144 *
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
148 * an anon_vma.
149 *
150 * This must be called with the mmap_sem held for reading.
151 */
152 int anon_vma_prepare(struct vm_area_struct *vma)
153 {
154 struct anon_vma *anon_vma = vma->anon_vma;
155 struct anon_vma_chain *avc;
156
157 might_sleep();
158 if (unlikely(!anon_vma)) {
159 struct mm_struct *mm = vma->vm_mm;
160 struct anon_vma *allocated;
161
162 avc = anon_vma_chain_alloc();
163 if (!avc)
164 goto out_enomem;
165
166 anon_vma = find_mergeable_anon_vma(vma);
167 allocated = NULL;
168 if (!anon_vma) {
169 anon_vma = anon_vma_alloc();
170 if (unlikely(!anon_vma))
171 goto out_enomem_free_avc;
172 allocated = anon_vma;
173 }
174
175 anon_vma_lock(anon_vma);
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm->page_table_lock);
178 if (likely(!vma->anon_vma)) {
179 vma->anon_vma = anon_vma;
180 avc->anon_vma = anon_vma;
181 avc->vma = vma;
182 list_add(&avc->same_vma, &vma->anon_vma_chain);
183 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
184 allocated = NULL;
185 avc = NULL;
186 }
187 spin_unlock(&mm->page_table_lock);
188 anon_vma_unlock(anon_vma);
189
190 if (unlikely(allocated))
191 put_anon_vma(allocated);
192 if (unlikely(avc))
193 anon_vma_chain_free(avc);
194 }
195 return 0;
196
197 out_enomem_free_avc:
198 anon_vma_chain_free(avc);
199 out_enomem:
200 return -ENOMEM;
201 }
202
203 static void anon_vma_chain_link(struct vm_area_struct *vma,
204 struct anon_vma_chain *avc,
205 struct anon_vma *anon_vma)
206 {
207 avc->vma = vma;
208 avc->anon_vma = anon_vma;
209 list_add(&avc->same_vma, &vma->anon_vma_chain);
210
211 anon_vma_lock(anon_vma);
212 /*
213 * It's critical to add new vmas to the tail of the anon_vma,
214 * see comment in huge_memory.c:__split_huge_page().
215 */
216 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
217 anon_vma_unlock(anon_vma);
218 }
219
220 /*
221 * Attach the anon_vmas from src to dst.
222 * Returns 0 on success, -ENOMEM on failure.
223 */
224 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
225 {
226 struct anon_vma_chain *avc, *pavc;
227
228 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
229 avc = anon_vma_chain_alloc();
230 if (!avc)
231 goto enomem_failure;
232 anon_vma_chain_link(dst, avc, pavc->anon_vma);
233 }
234 return 0;
235
236 enomem_failure:
237 unlink_anon_vmas(dst);
238 return -ENOMEM;
239 }
240
241 /*
242 * Attach vma to its own anon_vma, as well as to the anon_vmas that
243 * the corresponding VMA in the parent process is attached to.
244 * Returns 0 on success, non-zero on failure.
245 */
246 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
247 {
248 struct anon_vma_chain *avc;
249 struct anon_vma *anon_vma;
250
251 /* Don't bother if the parent process has no anon_vma here. */
252 if (!pvma->anon_vma)
253 return 0;
254
255 /*
256 * First, attach the new VMA to the parent VMA's anon_vmas,
257 * so rmap can find non-COWed pages in child processes.
258 */
259 if (anon_vma_clone(vma, pvma))
260 return -ENOMEM;
261
262 /* Then add our own anon_vma. */
263 anon_vma = anon_vma_alloc();
264 if (!anon_vma)
265 goto out_error;
266 avc = anon_vma_chain_alloc();
267 if (!avc)
268 goto out_error_free_anon_vma;
269
270 /*
271 * The root anon_vma's spinlock is the lock actually used when we
272 * lock any of the anon_vmas in this anon_vma tree.
273 */
274 anon_vma->root = pvma->anon_vma->root;
275 /*
276 * With refcounts, an anon_vma can stay around longer than the
277 * process it belongs to. The root anon_vma needs to be pinned until
278 * this anon_vma is freed, because the lock lives in the root.
279 */
280 get_anon_vma(anon_vma->root);
281 /* Mark this anon_vma as the one where our new (COWed) pages go. */
282 vma->anon_vma = anon_vma;
283 anon_vma_chain_link(vma, avc, anon_vma);
284
285 return 0;
286
287 out_error_free_anon_vma:
288 put_anon_vma(anon_vma);
289 out_error:
290 unlink_anon_vmas(vma);
291 return -ENOMEM;
292 }
293
294 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
295 {
296 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
297 int empty;
298
299 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
300 if (!anon_vma)
301 return;
302
303 anon_vma_lock(anon_vma);
304 list_del(&anon_vma_chain->same_anon_vma);
305
306 /* We must garbage collect the anon_vma if it's empty */
307 empty = list_empty(&anon_vma->head);
308 anon_vma_unlock(anon_vma);
309
310 if (empty)
311 put_anon_vma(anon_vma);
312 }
313
314 void unlink_anon_vmas(struct vm_area_struct *vma)
315 {
316 struct anon_vma_chain *avc, *next;
317
318 /*
319 * Unlink each anon_vma chained to the VMA. This list is ordered
320 * from newest to oldest, ensuring the root anon_vma gets freed last.
321 */
322 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
323 anon_vma_unlink(avc);
324 list_del(&avc->same_vma);
325 anon_vma_chain_free(avc);
326 }
327 }
328
329 static void anon_vma_ctor(void *data)
330 {
331 struct anon_vma *anon_vma = data;
332
333 mutex_init(&anon_vma->mutex);
334 atomic_set(&anon_vma->refcount, 0);
335 INIT_LIST_HEAD(&anon_vma->head);
336 }
337
338 void __init anon_vma_init(void)
339 {
340 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
341 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
342 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
343 }
344
345 /*
346 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
347 *
348 * Since there is no serialization what so ever against page_remove_rmap()
349 * the best this function can do is return a locked anon_vma that might
350 * have been relevant to this page.
351 *
352 * The page might have been remapped to a different anon_vma or the anon_vma
353 * returned may already be freed (and even reused).
354 *
355 * All users of this function must be very careful when walking the anon_vma
356 * chain and verify that the page in question is indeed mapped in it
357 * [ something equivalent to page_mapped_in_vma() ].
358 *
359 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
360 * that the anon_vma pointer from page->mapping is valid if there is a
361 * mapcount, we can dereference the anon_vma after observing those.
362 */
363 struct anon_vma *page_get_anon_vma(struct page *page)
364 {
365 struct anon_vma *anon_vma = NULL;
366 unsigned long anon_mapping;
367
368 rcu_read_lock();
369 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
370 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
371 goto out;
372 if (!page_mapped(page))
373 goto out;
374
375 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
376 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
377 anon_vma = NULL;
378 goto out;
379 }
380
381 /*
382 * If this page is still mapped, then its anon_vma cannot have been
383 * freed. But if it has been unmapped, we have no security against the
384 * anon_vma structure being freed and reused (for another anon_vma:
385 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
386 * above cannot corrupt).
387 */
388 if (!page_mapped(page)) {
389 put_anon_vma(anon_vma);
390 anon_vma = NULL;
391 }
392 out:
393 rcu_read_unlock();
394
395 return anon_vma;
396 }
397
398 /*
399 * Similar to page_get_anon_vma() except it locks the anon_vma.
400 *
401 * Its a little more complex as it tries to keep the fast path to a single
402 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
403 * reference like with page_get_anon_vma() and then block on the mutex.
404 */
405 struct anon_vma *page_lock_anon_vma(struct page *page)
406 {
407 struct anon_vma *anon_vma = NULL;
408 struct anon_vma *root_anon_vma;
409 unsigned long anon_mapping;
410
411 rcu_read_lock();
412 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
413 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
414 goto out;
415 if (!page_mapped(page))
416 goto out;
417
418 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
419 root_anon_vma = ACCESS_ONCE(anon_vma->root);
420 if (mutex_trylock(&root_anon_vma->mutex)) {
421 /*
422 * If the page is still mapped, then this anon_vma is still
423 * its anon_vma, and holding the mutex ensures that it will
424 * not go away, see __put_anon_vma().
425 */
426 if (!page_mapped(page)) {
427 mutex_unlock(&root_anon_vma->mutex);
428 anon_vma = NULL;
429 }
430 goto out;
431 }
432
433 /* trylock failed, we got to sleep */
434 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
435 anon_vma = NULL;
436 goto out;
437 }
438
439 if (!page_mapped(page)) {
440 put_anon_vma(anon_vma);
441 anon_vma = NULL;
442 goto out;
443 }
444
445 /* we pinned the anon_vma, its safe to sleep */
446 rcu_read_unlock();
447 anon_vma_lock(anon_vma);
448
449 if (atomic_dec_and_test(&anon_vma->refcount)) {
450 /*
451 * Oops, we held the last refcount, release the lock
452 * and bail -- can't simply use put_anon_vma() because
453 * we'll deadlock on the anon_vma_lock() recursion.
454 */
455 anon_vma_unlock(anon_vma);
456 __put_anon_vma(anon_vma);
457 anon_vma = NULL;
458 }
459
460 return anon_vma;
461
462 out:
463 rcu_read_unlock();
464 return anon_vma;
465 }
466
467 void page_unlock_anon_vma(struct anon_vma *anon_vma)
468 {
469 anon_vma_unlock(anon_vma);
470 }
471
472 /*
473 * At what user virtual address is page expected in @vma?
474 * Returns virtual address or -EFAULT if page's index/offset is not
475 * within the range mapped the @vma.
476 */
477 inline unsigned long
478 vma_address(struct page *page, struct vm_area_struct *vma)
479 {
480 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
481 unsigned long address;
482
483 if (unlikely(is_vm_hugetlb_page(vma)))
484 pgoff = page->index << huge_page_order(page_hstate(page));
485 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
486 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
487 /* page should be within @vma mapping range */
488 return -EFAULT;
489 }
490 return address;
491 }
492
493 /*
494 * At what user virtual address is page expected in vma?
495 * Caller should check the page is actually part of the vma.
496 */
497 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
498 {
499 if (PageAnon(page)) {
500 struct anon_vma *page__anon_vma = page_anon_vma(page);
501 /*
502 * Note: swapoff's unuse_vma() is more efficient with this
503 * check, and needs it to match anon_vma when KSM is active.
504 */
505 if (!vma->anon_vma || !page__anon_vma ||
506 vma->anon_vma->root != page__anon_vma->root)
507 return -EFAULT;
508 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
509 if (!vma->vm_file ||
510 vma->vm_file->f_mapping != page->mapping)
511 return -EFAULT;
512 } else
513 return -EFAULT;
514 return vma_address(page, vma);
515 }
516
517 /*
518 * Check that @page is mapped at @address into @mm.
519 *
520 * If @sync is false, page_check_address may perform a racy check to avoid
521 * the page table lock when the pte is not present (helpful when reclaiming
522 * highly shared pages).
523 *
524 * On success returns with pte mapped and locked.
525 */
526 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
527 unsigned long address, spinlock_t **ptlp, int sync)
528 {
529 pgd_t *pgd;
530 pud_t *pud;
531 pmd_t *pmd;
532 pte_t *pte;
533 spinlock_t *ptl;
534
535 if (unlikely(PageHuge(page))) {
536 pte = huge_pte_offset(mm, address);
537 ptl = &mm->page_table_lock;
538 goto check;
539 }
540
541 pgd = pgd_offset(mm, address);
542 if (!pgd_present(*pgd))
543 return NULL;
544
545 pud = pud_offset(pgd, address);
546 if (!pud_present(*pud))
547 return NULL;
548
549 pmd = pmd_offset(pud, address);
550 if (!pmd_present(*pmd))
551 return NULL;
552 if (pmd_trans_huge(*pmd))
553 return NULL;
554
555 pte = pte_offset_map(pmd, address);
556 /* Make a quick check before getting the lock */
557 if (!sync && !pte_present(*pte)) {
558 pte_unmap(pte);
559 return NULL;
560 }
561
562 ptl = pte_lockptr(mm, pmd);
563 check:
564 spin_lock(ptl);
565 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
566 *ptlp = ptl;
567 return pte;
568 }
569 pte_unmap_unlock(pte, ptl);
570 return NULL;
571 }
572
573 /**
574 * page_mapped_in_vma - check whether a page is really mapped in a VMA
575 * @page: the page to test
576 * @vma: the VMA to test
577 *
578 * Returns 1 if the page is mapped into the page tables of the VMA, 0
579 * if the page is not mapped into the page tables of this VMA. Only
580 * valid for normal file or anonymous VMAs.
581 */
582 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
583 {
584 unsigned long address;
585 pte_t *pte;
586 spinlock_t *ptl;
587
588 address = vma_address(page, vma);
589 if (address == -EFAULT) /* out of vma range */
590 return 0;
591 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
592 if (!pte) /* the page is not in this mm */
593 return 0;
594 pte_unmap_unlock(pte, ptl);
595
596 return 1;
597 }
598
599 /*
600 * Subfunctions of page_referenced: page_referenced_one called
601 * repeatedly from either page_referenced_anon or page_referenced_file.
602 */
603 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
604 unsigned long address, unsigned int *mapcount,
605 unsigned long *vm_flags)
606 {
607 struct mm_struct *mm = vma->vm_mm;
608 int referenced = 0;
609
610 if (unlikely(PageTransHuge(page))) {
611 pmd_t *pmd;
612
613 spin_lock(&mm->page_table_lock);
614 /*
615 * rmap might return false positives; we must filter
616 * these out using page_check_address_pmd().
617 */
618 pmd = page_check_address_pmd(page, mm, address,
619 PAGE_CHECK_ADDRESS_PMD_FLAG);
620 if (!pmd) {
621 spin_unlock(&mm->page_table_lock);
622 goto out;
623 }
624
625 if (vma->vm_flags & VM_LOCKED) {
626 spin_unlock(&mm->page_table_lock);
627 *mapcount = 0; /* break early from loop */
628 *vm_flags |= VM_LOCKED;
629 goto out;
630 }
631
632 /* go ahead even if the pmd is pmd_trans_splitting() */
633 if (pmdp_clear_flush_young_notify(vma, address, pmd))
634 referenced++;
635 spin_unlock(&mm->page_table_lock);
636 } else {
637 pte_t *pte;
638 spinlock_t *ptl;
639
640 /*
641 * rmap might return false positives; we must filter
642 * these out using page_check_address().
643 */
644 pte = page_check_address(page, mm, address, &ptl, 0);
645 if (!pte)
646 goto out;
647
648 if (vma->vm_flags & VM_LOCKED) {
649 pte_unmap_unlock(pte, ptl);
650 *mapcount = 0; /* break early from loop */
651 *vm_flags |= VM_LOCKED;
652 goto out;
653 }
654
655 if (ptep_clear_flush_young_notify(vma, address, pte)) {
656 /*
657 * Don't treat a reference through a sequentially read
658 * mapping as such. If the page has been used in
659 * another mapping, we will catch it; if this other
660 * mapping is already gone, the unmap path will have
661 * set PG_referenced or activated the page.
662 */
663 if (likely(!VM_SequentialReadHint(vma)))
664 referenced++;
665 }
666 pte_unmap_unlock(pte, ptl);
667 }
668
669 /* Pretend the page is referenced if the task has the
670 swap token and is in the middle of a page fault. */
671 if (mm != current->mm && has_swap_token(mm) &&
672 rwsem_is_locked(&mm->mmap_sem))
673 referenced++;
674
675 (*mapcount)--;
676
677 if (referenced)
678 *vm_flags |= vma->vm_flags;
679 out:
680 return referenced;
681 }
682
683 static int page_referenced_anon(struct page *page,
684 struct mem_cgroup *mem_cont,
685 unsigned long *vm_flags)
686 {
687 unsigned int mapcount;
688 struct anon_vma *anon_vma;
689 struct anon_vma_chain *avc;
690 int referenced = 0;
691
692 anon_vma = page_lock_anon_vma(page);
693 if (!anon_vma)
694 return referenced;
695
696 mapcount = page_mapcount(page);
697 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
698 struct vm_area_struct *vma = avc->vma;
699 unsigned long address = vma_address(page, vma);
700 if (address == -EFAULT)
701 continue;
702 /*
703 * If we are reclaiming on behalf of a cgroup, skip
704 * counting on behalf of references from different
705 * cgroups
706 */
707 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
708 continue;
709 referenced += page_referenced_one(page, vma, address,
710 &mapcount, vm_flags);
711 if (!mapcount)
712 break;
713 }
714
715 page_unlock_anon_vma(anon_vma);
716 return referenced;
717 }
718
719 /**
720 * page_referenced_file - referenced check for object-based rmap
721 * @page: the page we're checking references on.
722 * @mem_cont: target memory controller
723 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
724 *
725 * For an object-based mapped page, find all the places it is mapped and
726 * check/clear the referenced flag. This is done by following the page->mapping
727 * pointer, then walking the chain of vmas it holds. It returns the number
728 * of references it found.
729 *
730 * This function is only called from page_referenced for object-based pages.
731 */
732 static int page_referenced_file(struct page *page,
733 struct mem_cgroup *mem_cont,
734 unsigned long *vm_flags)
735 {
736 unsigned int mapcount;
737 struct address_space *mapping = page->mapping;
738 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
739 struct vm_area_struct *vma;
740 struct prio_tree_iter iter;
741 int referenced = 0;
742
743 /*
744 * The caller's checks on page->mapping and !PageAnon have made
745 * sure that this is a file page: the check for page->mapping
746 * excludes the case just before it gets set on an anon page.
747 */
748 BUG_ON(PageAnon(page));
749
750 /*
751 * The page lock not only makes sure that page->mapping cannot
752 * suddenly be NULLified by truncation, it makes sure that the
753 * structure at mapping cannot be freed and reused yet,
754 * so we can safely take mapping->i_mmap_mutex.
755 */
756 BUG_ON(!PageLocked(page));
757
758 mutex_lock(&mapping->i_mmap_mutex);
759
760 /*
761 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
762 * is more likely to be accurate if we note it after spinning.
763 */
764 mapcount = page_mapcount(page);
765
766 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
767 unsigned long address = vma_address(page, vma);
768 if (address == -EFAULT)
769 continue;
770 /*
771 * If we are reclaiming on behalf of a cgroup, skip
772 * counting on behalf of references from different
773 * cgroups
774 */
775 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
776 continue;
777 referenced += page_referenced_one(page, vma, address,
778 &mapcount, vm_flags);
779 if (!mapcount)
780 break;
781 }
782
783 mutex_unlock(&mapping->i_mmap_mutex);
784 return referenced;
785 }
786
787 /**
788 * page_referenced - test if the page was referenced
789 * @page: the page to test
790 * @is_locked: caller holds lock on the page
791 * @mem_cont: target memory controller
792 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
793 *
794 * Quick test_and_clear_referenced for all mappings to a page,
795 * returns the number of ptes which referenced the page.
796 */
797 int page_referenced(struct page *page,
798 int is_locked,
799 struct mem_cgroup *mem_cont,
800 unsigned long *vm_flags)
801 {
802 int referenced = 0;
803 int we_locked = 0;
804
805 *vm_flags = 0;
806 if (page_mapped(page) && page_rmapping(page)) {
807 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
808 we_locked = trylock_page(page);
809 if (!we_locked) {
810 referenced++;
811 goto out;
812 }
813 }
814 if (unlikely(PageKsm(page)))
815 referenced += page_referenced_ksm(page, mem_cont,
816 vm_flags);
817 else if (PageAnon(page))
818 referenced += page_referenced_anon(page, mem_cont,
819 vm_flags);
820 else if (page->mapping)
821 referenced += page_referenced_file(page, mem_cont,
822 vm_flags);
823 if (we_locked)
824 unlock_page(page);
825 }
826 out:
827 if (page_test_and_clear_young(page_to_pfn(page)))
828 referenced++;
829
830 return referenced;
831 }
832
833 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
834 unsigned long address)
835 {
836 struct mm_struct *mm = vma->vm_mm;
837 pte_t *pte;
838 spinlock_t *ptl;
839 int ret = 0;
840
841 pte = page_check_address(page, mm, address, &ptl, 1);
842 if (!pte)
843 goto out;
844
845 if (pte_dirty(*pte) || pte_write(*pte)) {
846 pte_t entry;
847
848 flush_cache_page(vma, address, pte_pfn(*pte));
849 entry = ptep_clear_flush_notify(vma, address, pte);
850 entry = pte_wrprotect(entry);
851 entry = pte_mkclean(entry);
852 set_pte_at(mm, address, pte, entry);
853 ret = 1;
854 }
855
856 pte_unmap_unlock(pte, ptl);
857 out:
858 return ret;
859 }
860
861 static int page_mkclean_file(struct address_space *mapping, struct page *page)
862 {
863 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
864 struct vm_area_struct *vma;
865 struct prio_tree_iter iter;
866 int ret = 0;
867
868 BUG_ON(PageAnon(page));
869
870 mutex_lock(&mapping->i_mmap_mutex);
871 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
872 if (vma->vm_flags & VM_SHARED) {
873 unsigned long address = vma_address(page, vma);
874 if (address == -EFAULT)
875 continue;
876 ret += page_mkclean_one(page, vma, address);
877 }
878 }
879 mutex_unlock(&mapping->i_mmap_mutex);
880 return ret;
881 }
882
883 int page_mkclean(struct page *page)
884 {
885 int ret = 0;
886
887 BUG_ON(!PageLocked(page));
888
889 if (page_mapped(page)) {
890 struct address_space *mapping = page_mapping(page);
891 if (mapping) {
892 ret = page_mkclean_file(mapping, page);
893 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
894 ret = 1;
895 }
896 }
897
898 return ret;
899 }
900 EXPORT_SYMBOL_GPL(page_mkclean);
901
902 /**
903 * page_move_anon_rmap - move a page to our anon_vma
904 * @page: the page to move to our anon_vma
905 * @vma: the vma the page belongs to
906 * @address: the user virtual address mapped
907 *
908 * When a page belongs exclusively to one process after a COW event,
909 * that page can be moved into the anon_vma that belongs to just that
910 * process, so the rmap code will not search the parent or sibling
911 * processes.
912 */
913 void page_move_anon_rmap(struct page *page,
914 struct vm_area_struct *vma, unsigned long address)
915 {
916 struct anon_vma *anon_vma = vma->anon_vma;
917
918 VM_BUG_ON(!PageLocked(page));
919 VM_BUG_ON(!anon_vma);
920 VM_BUG_ON(page->index != linear_page_index(vma, address));
921
922 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
923 page->mapping = (struct address_space *) anon_vma;
924 }
925
926 /**
927 * __page_set_anon_rmap - set up new anonymous rmap
928 * @page: Page to add to rmap
929 * @vma: VM area to add page to.
930 * @address: User virtual address of the mapping
931 * @exclusive: the page is exclusively owned by the current process
932 */
933 static void __page_set_anon_rmap(struct page *page,
934 struct vm_area_struct *vma, unsigned long address, int exclusive)
935 {
936 struct anon_vma *anon_vma = vma->anon_vma;
937
938 BUG_ON(!anon_vma);
939
940 if (PageAnon(page))
941 return;
942
943 /*
944 * If the page isn't exclusively mapped into this vma,
945 * we must use the _oldest_ possible anon_vma for the
946 * page mapping!
947 */
948 if (!exclusive)
949 anon_vma = anon_vma->root;
950
951 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
952 page->mapping = (struct address_space *) anon_vma;
953 page->index = linear_page_index(vma, address);
954 }
955
956 /**
957 * __page_check_anon_rmap - sanity check anonymous rmap addition
958 * @page: the page to add the mapping to
959 * @vma: the vm area in which the mapping is added
960 * @address: the user virtual address mapped
961 */
962 static void __page_check_anon_rmap(struct page *page,
963 struct vm_area_struct *vma, unsigned long address)
964 {
965 #ifdef CONFIG_DEBUG_VM
966 /*
967 * The page's anon-rmap details (mapping and index) are guaranteed to
968 * be set up correctly at this point.
969 *
970 * We have exclusion against page_add_anon_rmap because the caller
971 * always holds the page locked, except if called from page_dup_rmap,
972 * in which case the page is already known to be setup.
973 *
974 * We have exclusion against page_add_new_anon_rmap because those pages
975 * are initially only visible via the pagetables, and the pte is locked
976 * over the call to page_add_new_anon_rmap.
977 */
978 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
979 BUG_ON(page->index != linear_page_index(vma, address));
980 #endif
981 }
982
983 /**
984 * page_add_anon_rmap - add pte mapping to an anonymous page
985 * @page: the page to add the mapping to
986 * @vma: the vm area in which the mapping is added
987 * @address: the user virtual address mapped
988 *
989 * The caller needs to hold the pte lock, and the page must be locked in
990 * the anon_vma case: to serialize mapping,index checking after setting,
991 * and to ensure that PageAnon is not being upgraded racily to PageKsm
992 * (but PageKsm is never downgraded to PageAnon).
993 */
994 void page_add_anon_rmap(struct page *page,
995 struct vm_area_struct *vma, unsigned long address)
996 {
997 do_page_add_anon_rmap(page, vma, address, 0);
998 }
999
1000 /*
1001 * Special version of the above for do_swap_page, which often runs
1002 * into pages that are exclusively owned by the current process.
1003 * Everybody else should continue to use page_add_anon_rmap above.
1004 */
1005 void do_page_add_anon_rmap(struct page *page,
1006 struct vm_area_struct *vma, unsigned long address, int exclusive)
1007 {
1008 int first = atomic_inc_and_test(&page->_mapcount);
1009 if (first) {
1010 if (!PageTransHuge(page))
1011 __inc_zone_page_state(page, NR_ANON_PAGES);
1012 else
1013 __inc_zone_page_state(page,
1014 NR_ANON_TRANSPARENT_HUGEPAGES);
1015 }
1016 if (unlikely(PageKsm(page)))
1017 return;
1018
1019 VM_BUG_ON(!PageLocked(page));
1020 /* address might be in next vma when migration races vma_adjust */
1021 if (first)
1022 __page_set_anon_rmap(page, vma, address, exclusive);
1023 else
1024 __page_check_anon_rmap(page, vma, address);
1025 }
1026
1027 /**
1028 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1029 * @page: the page to add the mapping to
1030 * @vma: the vm area in which the mapping is added
1031 * @address: the user virtual address mapped
1032 *
1033 * Same as page_add_anon_rmap but must only be called on *new* pages.
1034 * This means the inc-and-test can be bypassed.
1035 * Page does not have to be locked.
1036 */
1037 void page_add_new_anon_rmap(struct page *page,
1038 struct vm_area_struct *vma, unsigned long address)
1039 {
1040 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1041 SetPageSwapBacked(page);
1042 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1043 if (!PageTransHuge(page))
1044 __inc_zone_page_state(page, NR_ANON_PAGES);
1045 else
1046 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1047 __page_set_anon_rmap(page, vma, address, 1);
1048 if (page_evictable(page, vma))
1049 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1050 else
1051 add_page_to_unevictable_list(page);
1052 }
1053
1054 /**
1055 * page_add_file_rmap - add pte mapping to a file page
1056 * @page: the page to add the mapping to
1057 *
1058 * The caller needs to hold the pte lock.
1059 */
1060 void page_add_file_rmap(struct page *page)
1061 {
1062 if (atomic_inc_and_test(&page->_mapcount)) {
1063 __inc_zone_page_state(page, NR_FILE_MAPPED);
1064 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1065 }
1066 }
1067
1068 /**
1069 * page_remove_rmap - take down pte mapping from a page
1070 * @page: page to remove mapping from
1071 *
1072 * The caller needs to hold the pte lock.
1073 */
1074 void page_remove_rmap(struct page *page)
1075 {
1076 /* page still mapped by someone else? */
1077 if (!atomic_add_negative(-1, &page->_mapcount))
1078 return;
1079
1080 /*
1081 * Now that the last pte has gone, s390 must transfer dirty
1082 * flag from storage key to struct page. We can usually skip
1083 * this if the page is anon, so about to be freed; but perhaps
1084 * not if it's in swapcache - there might be another pte slot
1085 * containing the swap entry, but page not yet written to swap.
1086 */
1087 if ((!PageAnon(page) || PageSwapCache(page)) &&
1088 page_test_and_clear_dirty(page_to_pfn(page), 1))
1089 set_page_dirty(page);
1090 /*
1091 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1092 * and not charged by memcg for now.
1093 */
1094 if (unlikely(PageHuge(page)))
1095 return;
1096 if (PageAnon(page)) {
1097 mem_cgroup_uncharge_page(page);
1098 if (!PageTransHuge(page))
1099 __dec_zone_page_state(page, NR_ANON_PAGES);
1100 else
1101 __dec_zone_page_state(page,
1102 NR_ANON_TRANSPARENT_HUGEPAGES);
1103 } else {
1104 __dec_zone_page_state(page, NR_FILE_MAPPED);
1105 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1106 }
1107 /*
1108 * It would be tidy to reset the PageAnon mapping here,
1109 * but that might overwrite a racing page_add_anon_rmap
1110 * which increments mapcount after us but sets mapping
1111 * before us: so leave the reset to free_hot_cold_page,
1112 * and remember that it's only reliable while mapped.
1113 * Leaving it set also helps swapoff to reinstate ptes
1114 * faster for those pages still in swapcache.
1115 */
1116 }
1117
1118 /*
1119 * Subfunctions of try_to_unmap: try_to_unmap_one called
1120 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1121 */
1122 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1123 unsigned long address, enum ttu_flags flags)
1124 {
1125 struct mm_struct *mm = vma->vm_mm;
1126 pte_t *pte;
1127 pte_t pteval;
1128 spinlock_t *ptl;
1129 int ret = SWAP_AGAIN;
1130
1131 pte = page_check_address(page, mm, address, &ptl, 0);
1132 if (!pte)
1133 goto out;
1134
1135 /*
1136 * If the page is mlock()d, we cannot swap it out.
1137 * If it's recently referenced (perhaps page_referenced
1138 * skipped over this mm) then we should reactivate it.
1139 */
1140 if (!(flags & TTU_IGNORE_MLOCK)) {
1141 if (vma->vm_flags & VM_LOCKED)
1142 goto out_mlock;
1143
1144 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1145 goto out_unmap;
1146 }
1147 if (!(flags & TTU_IGNORE_ACCESS)) {
1148 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1149 ret = SWAP_FAIL;
1150 goto out_unmap;
1151 }
1152 }
1153
1154 /* Nuke the page table entry. */
1155 flush_cache_page(vma, address, page_to_pfn(page));
1156 pteval = ptep_clear_flush_notify(vma, address, pte);
1157
1158 /* Move the dirty bit to the physical page now the pte is gone. */
1159 if (pte_dirty(pteval))
1160 set_page_dirty(page);
1161
1162 /* Update high watermark before we lower rss */
1163 update_hiwater_rss(mm);
1164
1165 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1166 if (PageAnon(page))
1167 dec_mm_counter(mm, MM_ANONPAGES);
1168 else
1169 dec_mm_counter(mm, MM_FILEPAGES);
1170 set_pte_at(mm, address, pte,
1171 swp_entry_to_pte(make_hwpoison_entry(page)));
1172 } else if (PageAnon(page)) {
1173 swp_entry_t entry = { .val = page_private(page) };
1174
1175 if (PageSwapCache(page)) {
1176 /*
1177 * Store the swap location in the pte.
1178 * See handle_pte_fault() ...
1179 */
1180 if (swap_duplicate(entry) < 0) {
1181 set_pte_at(mm, address, pte, pteval);
1182 ret = SWAP_FAIL;
1183 goto out_unmap;
1184 }
1185 if (list_empty(&mm->mmlist)) {
1186 spin_lock(&mmlist_lock);
1187 if (list_empty(&mm->mmlist))
1188 list_add(&mm->mmlist, &init_mm.mmlist);
1189 spin_unlock(&mmlist_lock);
1190 }
1191 dec_mm_counter(mm, MM_ANONPAGES);
1192 inc_mm_counter(mm, MM_SWAPENTS);
1193 } else if (PAGE_MIGRATION) {
1194 /*
1195 * Store the pfn of the page in a special migration
1196 * pte. do_swap_page() will wait until the migration
1197 * pte is removed and then restart fault handling.
1198 */
1199 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1200 entry = make_migration_entry(page, pte_write(pteval));
1201 }
1202 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1203 BUG_ON(pte_file(*pte));
1204 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1205 /* Establish migration entry for a file page */
1206 swp_entry_t entry;
1207 entry = make_migration_entry(page, pte_write(pteval));
1208 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1209 } else
1210 dec_mm_counter(mm, MM_FILEPAGES);
1211
1212 page_remove_rmap(page);
1213 page_cache_release(page);
1214
1215 out_unmap:
1216 pte_unmap_unlock(pte, ptl);
1217 out:
1218 return ret;
1219
1220 out_mlock:
1221 pte_unmap_unlock(pte, ptl);
1222
1223
1224 /*
1225 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1226 * unstable result and race. Plus, We can't wait here because
1227 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1228 * if trylock failed, the page remain in evictable lru and later
1229 * vmscan could retry to move the page to unevictable lru if the
1230 * page is actually mlocked.
1231 */
1232 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1233 if (vma->vm_flags & VM_LOCKED) {
1234 mlock_vma_page(page);
1235 ret = SWAP_MLOCK;
1236 }
1237 up_read(&vma->vm_mm->mmap_sem);
1238 }
1239 return ret;
1240 }
1241
1242 /*
1243 * objrmap doesn't work for nonlinear VMAs because the assumption that
1244 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1245 * Consequently, given a particular page and its ->index, we cannot locate the
1246 * ptes which are mapping that page without an exhaustive linear search.
1247 *
1248 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1249 * maps the file to which the target page belongs. The ->vm_private_data field
1250 * holds the current cursor into that scan. Successive searches will circulate
1251 * around the vma's virtual address space.
1252 *
1253 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1254 * more scanning pressure is placed against them as well. Eventually pages
1255 * will become fully unmapped and are eligible for eviction.
1256 *
1257 * For very sparsely populated VMAs this is a little inefficient - chances are
1258 * there there won't be many ptes located within the scan cluster. In this case
1259 * maybe we could scan further - to the end of the pte page, perhaps.
1260 *
1261 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1262 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1263 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1264 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1265 */
1266 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1267 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1268
1269 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1270 struct vm_area_struct *vma, struct page *check_page)
1271 {
1272 struct mm_struct *mm = vma->vm_mm;
1273 pgd_t *pgd;
1274 pud_t *pud;
1275 pmd_t *pmd;
1276 pte_t *pte;
1277 pte_t pteval;
1278 spinlock_t *ptl;
1279 struct page *page;
1280 unsigned long address;
1281 unsigned long end;
1282 int ret = SWAP_AGAIN;
1283 int locked_vma = 0;
1284
1285 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1286 end = address + CLUSTER_SIZE;
1287 if (address < vma->vm_start)
1288 address = vma->vm_start;
1289 if (end > vma->vm_end)
1290 end = vma->vm_end;
1291
1292 pgd = pgd_offset(mm, address);
1293 if (!pgd_present(*pgd))
1294 return ret;
1295
1296 pud = pud_offset(pgd, address);
1297 if (!pud_present(*pud))
1298 return ret;
1299
1300 pmd = pmd_offset(pud, address);
1301 if (!pmd_present(*pmd))
1302 return ret;
1303
1304 /*
1305 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1306 * keep the sem while scanning the cluster for mlocking pages.
1307 */
1308 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1309 locked_vma = (vma->vm_flags & VM_LOCKED);
1310 if (!locked_vma)
1311 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1312 }
1313
1314 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1315
1316 /* Update high watermark before we lower rss */
1317 update_hiwater_rss(mm);
1318
1319 for (; address < end; pte++, address += PAGE_SIZE) {
1320 if (!pte_present(*pte))
1321 continue;
1322 page = vm_normal_page(vma, address, *pte);
1323 BUG_ON(!page || PageAnon(page));
1324
1325 if (locked_vma) {
1326 mlock_vma_page(page); /* no-op if already mlocked */
1327 if (page == check_page)
1328 ret = SWAP_MLOCK;
1329 continue; /* don't unmap */
1330 }
1331
1332 if (ptep_clear_flush_young_notify(vma, address, pte))
1333 continue;
1334
1335 /* Nuke the page table entry. */
1336 flush_cache_page(vma, address, pte_pfn(*pte));
1337 pteval = ptep_clear_flush_notify(vma, address, pte);
1338
1339 /* If nonlinear, store the file page offset in the pte. */
1340 if (page->index != linear_page_index(vma, address))
1341 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1342
1343 /* Move the dirty bit to the physical page now the pte is gone. */
1344 if (pte_dirty(pteval))
1345 set_page_dirty(page);
1346
1347 page_remove_rmap(page);
1348 page_cache_release(page);
1349 dec_mm_counter(mm, MM_FILEPAGES);
1350 (*mapcount)--;
1351 }
1352 pte_unmap_unlock(pte - 1, ptl);
1353 if (locked_vma)
1354 up_read(&vma->vm_mm->mmap_sem);
1355 return ret;
1356 }
1357
1358 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1359 {
1360 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1361
1362 if (!maybe_stack)
1363 return false;
1364
1365 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1366 VM_STACK_INCOMPLETE_SETUP)
1367 return true;
1368
1369 return false;
1370 }
1371
1372 /**
1373 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1374 * rmap method
1375 * @page: the page to unmap/unlock
1376 * @flags: action and flags
1377 *
1378 * Find all the mappings of a page using the mapping pointer and the vma chains
1379 * contained in the anon_vma struct it points to.
1380 *
1381 * This function is only called from try_to_unmap/try_to_munlock for
1382 * anonymous pages.
1383 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1384 * where the page was found will be held for write. So, we won't recheck
1385 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1386 * 'LOCKED.
1387 */
1388 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1389 {
1390 struct anon_vma *anon_vma;
1391 struct anon_vma_chain *avc;
1392 int ret = SWAP_AGAIN;
1393
1394 anon_vma = page_lock_anon_vma(page);
1395 if (!anon_vma)
1396 return ret;
1397
1398 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1399 struct vm_area_struct *vma = avc->vma;
1400 unsigned long address;
1401
1402 /*
1403 * During exec, a temporary VMA is setup and later moved.
1404 * The VMA is moved under the anon_vma lock but not the
1405 * page tables leading to a race where migration cannot
1406 * find the migration ptes. Rather than increasing the
1407 * locking requirements of exec(), migration skips
1408 * temporary VMAs until after exec() completes.
1409 */
1410 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1411 is_vma_temporary_stack(vma))
1412 continue;
1413
1414 address = vma_address(page, vma);
1415 if (address == -EFAULT)
1416 continue;
1417 ret = try_to_unmap_one(page, vma, address, flags);
1418 if (ret != SWAP_AGAIN || !page_mapped(page))
1419 break;
1420 }
1421
1422 page_unlock_anon_vma(anon_vma);
1423 return ret;
1424 }
1425
1426 /**
1427 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1428 * @page: the page to unmap/unlock
1429 * @flags: action and flags
1430 *
1431 * Find all the mappings of a page using the mapping pointer and the vma chains
1432 * contained in the address_space struct it points to.
1433 *
1434 * This function is only called from try_to_unmap/try_to_munlock for
1435 * object-based pages.
1436 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1437 * where the page was found will be held for write. So, we won't recheck
1438 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1439 * 'LOCKED.
1440 */
1441 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1442 {
1443 struct address_space *mapping = page->mapping;
1444 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1445 struct vm_area_struct *vma;
1446 struct prio_tree_iter iter;
1447 int ret = SWAP_AGAIN;
1448 unsigned long cursor;
1449 unsigned long max_nl_cursor = 0;
1450 unsigned long max_nl_size = 0;
1451 unsigned int mapcount;
1452
1453 mutex_lock(&mapping->i_mmap_mutex);
1454 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1455 unsigned long address = vma_address(page, vma);
1456 if (address == -EFAULT)
1457 continue;
1458 ret = try_to_unmap_one(page, vma, address, flags);
1459 if (ret != SWAP_AGAIN || !page_mapped(page))
1460 goto out;
1461 }
1462
1463 if (list_empty(&mapping->i_mmap_nonlinear))
1464 goto out;
1465
1466 /*
1467 * We don't bother to try to find the munlocked page in nonlinears.
1468 * It's costly. Instead, later, page reclaim logic may call
1469 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1470 */
1471 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1472 goto out;
1473
1474 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1475 shared.vm_set.list) {
1476 cursor = (unsigned long) vma->vm_private_data;
1477 if (cursor > max_nl_cursor)
1478 max_nl_cursor = cursor;
1479 cursor = vma->vm_end - vma->vm_start;
1480 if (cursor > max_nl_size)
1481 max_nl_size = cursor;
1482 }
1483
1484 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1485 ret = SWAP_FAIL;
1486 goto out;
1487 }
1488
1489 /*
1490 * We don't try to search for this page in the nonlinear vmas,
1491 * and page_referenced wouldn't have found it anyway. Instead
1492 * just walk the nonlinear vmas trying to age and unmap some.
1493 * The mapcount of the page we came in with is irrelevant,
1494 * but even so use it as a guide to how hard we should try?
1495 */
1496 mapcount = page_mapcount(page);
1497 if (!mapcount)
1498 goto out;
1499 cond_resched();
1500
1501 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1502 if (max_nl_cursor == 0)
1503 max_nl_cursor = CLUSTER_SIZE;
1504
1505 do {
1506 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1507 shared.vm_set.list) {
1508 cursor = (unsigned long) vma->vm_private_data;
1509 while ( cursor < max_nl_cursor &&
1510 cursor < vma->vm_end - vma->vm_start) {
1511 if (try_to_unmap_cluster(cursor, &mapcount,
1512 vma, page) == SWAP_MLOCK)
1513 ret = SWAP_MLOCK;
1514 cursor += CLUSTER_SIZE;
1515 vma->vm_private_data = (void *) cursor;
1516 if ((int)mapcount <= 0)
1517 goto out;
1518 }
1519 vma->vm_private_data = (void *) max_nl_cursor;
1520 }
1521 cond_resched();
1522 max_nl_cursor += CLUSTER_SIZE;
1523 } while (max_nl_cursor <= max_nl_size);
1524
1525 /*
1526 * Don't loop forever (perhaps all the remaining pages are
1527 * in locked vmas). Reset cursor on all unreserved nonlinear
1528 * vmas, now forgetting on which ones it had fallen behind.
1529 */
1530 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1531 vma->vm_private_data = NULL;
1532 out:
1533 mutex_unlock(&mapping->i_mmap_mutex);
1534 return ret;
1535 }
1536
1537 /**
1538 * try_to_unmap - try to remove all page table mappings to a page
1539 * @page: the page to get unmapped
1540 * @flags: action and flags
1541 *
1542 * Tries to remove all the page table entries which are mapping this
1543 * page, used in the pageout path. Caller must hold the page lock.
1544 * Return values are:
1545 *
1546 * SWAP_SUCCESS - we succeeded in removing all mappings
1547 * SWAP_AGAIN - we missed a mapping, try again later
1548 * SWAP_FAIL - the page is unswappable
1549 * SWAP_MLOCK - page is mlocked.
1550 */
1551 int try_to_unmap(struct page *page, enum ttu_flags flags)
1552 {
1553 int ret;
1554
1555 BUG_ON(!PageLocked(page));
1556 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1557
1558 if (unlikely(PageKsm(page)))
1559 ret = try_to_unmap_ksm(page, flags);
1560 else if (PageAnon(page))
1561 ret = try_to_unmap_anon(page, flags);
1562 else
1563 ret = try_to_unmap_file(page, flags);
1564 if (ret != SWAP_MLOCK && !page_mapped(page))
1565 ret = SWAP_SUCCESS;
1566 return ret;
1567 }
1568
1569 /**
1570 * try_to_munlock - try to munlock a page
1571 * @page: the page to be munlocked
1572 *
1573 * Called from munlock code. Checks all of the VMAs mapping the page
1574 * to make sure nobody else has this page mlocked. The page will be
1575 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1576 *
1577 * Return values are:
1578 *
1579 * SWAP_AGAIN - no vma is holding page mlocked, or,
1580 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1581 * SWAP_FAIL - page cannot be located at present
1582 * SWAP_MLOCK - page is now mlocked.
1583 */
1584 int try_to_munlock(struct page *page)
1585 {
1586 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1587
1588 if (unlikely(PageKsm(page)))
1589 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1590 else if (PageAnon(page))
1591 return try_to_unmap_anon(page, TTU_MUNLOCK);
1592 else
1593 return try_to_unmap_file(page, TTU_MUNLOCK);
1594 }
1595
1596 void __put_anon_vma(struct anon_vma *anon_vma)
1597 {
1598 struct anon_vma *root = anon_vma->root;
1599
1600 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1601 anon_vma_free(root);
1602
1603 anon_vma_free(anon_vma);
1604 }
1605
1606 #ifdef CONFIG_MIGRATION
1607 /*
1608 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1609 * Called by migrate.c to remove migration ptes, but might be used more later.
1610 */
1611 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1612 struct vm_area_struct *, unsigned long, void *), void *arg)
1613 {
1614 struct anon_vma *anon_vma;
1615 struct anon_vma_chain *avc;
1616 int ret = SWAP_AGAIN;
1617
1618 /*
1619 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1620 * because that depends on page_mapped(); but not all its usages
1621 * are holding mmap_sem. Users without mmap_sem are required to
1622 * take a reference count to prevent the anon_vma disappearing
1623 */
1624 anon_vma = page_anon_vma(page);
1625 if (!anon_vma)
1626 return ret;
1627 anon_vma_lock(anon_vma);
1628 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1629 struct vm_area_struct *vma = avc->vma;
1630 unsigned long address = vma_address(page, vma);
1631 if (address == -EFAULT)
1632 continue;
1633 ret = rmap_one(page, vma, address, arg);
1634 if (ret != SWAP_AGAIN)
1635 break;
1636 }
1637 anon_vma_unlock(anon_vma);
1638 return ret;
1639 }
1640
1641 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1642 struct vm_area_struct *, unsigned long, void *), void *arg)
1643 {
1644 struct address_space *mapping = page->mapping;
1645 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1646 struct vm_area_struct *vma;
1647 struct prio_tree_iter iter;
1648 int ret = SWAP_AGAIN;
1649
1650 if (!mapping)
1651 return ret;
1652 mutex_lock(&mapping->i_mmap_mutex);
1653 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1654 unsigned long address = vma_address(page, vma);
1655 if (address == -EFAULT)
1656 continue;
1657 ret = rmap_one(page, vma, address, arg);
1658 if (ret != SWAP_AGAIN)
1659 break;
1660 }
1661 /*
1662 * No nonlinear handling: being always shared, nonlinear vmas
1663 * never contain migration ptes. Decide what to do about this
1664 * limitation to linear when we need rmap_walk() on nonlinear.
1665 */
1666 mutex_unlock(&mapping->i_mmap_mutex);
1667 return ret;
1668 }
1669
1670 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1671 struct vm_area_struct *, unsigned long, void *), void *arg)
1672 {
1673 VM_BUG_ON(!PageLocked(page));
1674
1675 if (unlikely(PageKsm(page)))
1676 return rmap_walk_ksm(page, rmap_one, arg);
1677 else if (PageAnon(page))
1678 return rmap_walk_anon(page, rmap_one, arg);
1679 else
1680 return rmap_walk_file(page, rmap_one, arg);
1681 }
1682 #endif /* CONFIG_MIGRATION */
1683
1684 #ifdef CONFIG_HUGETLB_PAGE
1685 /*
1686 * The following three functions are for anonymous (private mapped) hugepages.
1687 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1688 * and no lru code, because we handle hugepages differently from common pages.
1689 */
1690 static void __hugepage_set_anon_rmap(struct page *page,
1691 struct vm_area_struct *vma, unsigned long address, int exclusive)
1692 {
1693 struct anon_vma *anon_vma = vma->anon_vma;
1694
1695 BUG_ON(!anon_vma);
1696
1697 if (PageAnon(page))
1698 return;
1699 if (!exclusive)
1700 anon_vma = anon_vma->root;
1701
1702 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1703 page->mapping = (struct address_space *) anon_vma;
1704 page->index = linear_page_index(vma, address);
1705 }
1706
1707 void hugepage_add_anon_rmap(struct page *page,
1708 struct vm_area_struct *vma, unsigned long address)
1709 {
1710 struct anon_vma *anon_vma = vma->anon_vma;
1711 int first;
1712
1713 BUG_ON(!PageLocked(page));
1714 BUG_ON(!anon_vma);
1715 /* address might be in next vma when migration races vma_adjust */
1716 first = atomic_inc_and_test(&page->_mapcount);
1717 if (first)
1718 __hugepage_set_anon_rmap(page, vma, address, 0);
1719 }
1720
1721 void hugepage_add_new_anon_rmap(struct page *page,
1722 struct vm_area_struct *vma, unsigned long address)
1723 {
1724 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1725 atomic_set(&page->_mapcount, 0);
1726 __hugepage_set_anon_rmap(page, vma, address, 1);
1727 }
1728 #endif /* CONFIG_HUGETLB_PAGE */
This page took 0.109631 seconds and 5 git commands to generate.